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(57) Abstract: A method for producing highly accurate, 10w cost phenotype labels for a cohort of individual using a machine learning
model. The model 1s trained to predict phenotype labels from routine clinical data. We describe routine clinical data in the form of
fundus 1mages and making predictions as to phenotypes associated with eye diseases, such as glaucoma, however the methodology 1s
more generally applicable to phenotype assignment from clinical data. The model 1s applied to a cohort of interest which includes both
genomic data and the same type of routine clinical data. The model produces phenotype labels for each of the members of the cohort
of interest. We then conduct a genetic association test (€.g., GW AS) on the cohort of interest using the phenotype labels produced
by the model along with associated genomic data and identify genomic information (e.g., specific loci 1n the genome) associated with

the phenotype.
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Using Machine Learning-based Trait Predictions for Genetic Association Discovery

Background

The term “phenotype” refers to the set of observable characteristics of an individual
resutling from the interaction of its genotype with the environment. The {erm “phenotyping”
refers to a8 methodology of assigning a particutar f{abel to such characteristics for a particular
individual.

Currently, the task of phenotyping occurs on a spectrum in which high accuracy of a
phenotype assignment requires an associated high cost {o acquire, or lower accuracy can be
achieved at a lower cost. The task of accurately phenotyping large cohorts (e.g., a
collection of clinicat data for thousands or tens of thousands of individuals) is a substantial
challienge. Acquiring clinical phenotypes can be costly, time-consuming, or infeasible.
Examples of the high-accuracy, high-cost phenotypes are phenotypes derived in clinical
settings or as part of an explicit research program focused on a disease of interest. Each of
these methods requires interaction with individuals in the cohort to determine additional
phenotypes for which genetic links can be analyzed.

By contrast, self-reported phenotypes can be easier to obtain but are often less

accurate or susceptible to muttiple forms of bias. In particular, low cost self-reported

phenotypes are subject to ascertainment bias in the population of people who participate in
the program, as well as self-selection ang non-response piases. Low-accuracy, iow-cost
phenotypes can be gathered through self-reporting, e.g., from web-based gquestionnaires
sych as found on websites such as Z3andMe.com.

Discovering the influence of genetic variation on phenotypes (i.e. trails or disease
susceptibility) requires collecting a cohort of individuals with both genetic information and
accurate phenotype labeis. This tradeoff of accuracy and cost in generating phenotype
labels poses a challenge o discovering the genetic contributions to disease. Many common
diseases have been shown to have hundreds or thousands of genetic varianis each with a
very smali contribution to overall disease risk. Both sampie size and phenoctype accuracy are
required to maximize statistical power {o discover genetic variant links to phenotypes.

This disclosure relates to a method for accurately generating phenotype {abels for a
large cohort of interest, and the subseguent use of the labeled cohort along with associated
genomic data for genetic association discovery. The method overcomes the hurdles
described above in accurately assigning phenotype labels 1o large cohorls, namely cost,
time-consuming effort and infeasibility, while aiso avoiding the various piases and fack of

accuracy in seif-reporting phenotypes.
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Summary

A method is disclosed for identifying an association between genomic information
and a phenotype associated with a particular disease or medical condition. The method
includes a step of raining a machine learning model {o predict phenotype status from a
fraining dataset in the torm of phenotype-iabeled routine clinical data for a muititude of
individuals. This tabeling can be a mixture of manual {abeling or automatic tabeling with
manual review/adjudication, and can be applied to both training data generated in real-world
settings and synthetically-generaied training data.

Next, the model is applied to a cohort of interest that contains both genomic data and
the same routine clinical data (e.g., fundus images) used as input to the model during
training. The model produces phonotype labels for the members of the cohort of interest.
The method continues with a step of conducting a genetic association test on the cohort of
interest using the phenotype labels produced in in the previous step along with associated
genomic data. Such a study identifies genomic information associated with the phenotype.
One method for associating genetic variants with a phenotype is a genome-wide association
study (GWAS), which is described at some length below.

The inventors describe an application of their methodology in which the phenotype
labels are associated with glaucoma. The training dataset consisted of 80,232 fundus
images from individuals not in the UK Biobank {UKB)}. Phenotype iabels for this training
dataset were adjudicated by a team of ophthalmologists, optometrists, and glaucoma
specitatists. This data formed the majority of training images previcusty used o train a model
of referable GON risk and muitiple oplic nerve head features that performed on par with
glaucoma specialists in three validation datasets, described in a paper (S. Phene et al.,
Deep Learning for Glaucoma Spegcialists, American Academy of Ophthaimology, published
onthine July 24, 2019). The inventors trained an ensemble of ten deep convolutional
networks using the 80,232 fundus images and used the model to predict glaucomatous optic
neuropathy (GON), vertical cup-to-disk ratio (VCDR), retinal nerve fiber layer defect, disc
nemorrhage, and focal noiching presence phenotypes.

They then appilied this trained modei {0 a cohort of fundus tmages from 80,271
glaucoma patients who were in the UK Biobank, and assigned a phenotype iabel of
predicied GON risk to each member of this cohort. The phenotype prediction was a
continuous variable, not a binary {abel. Genomic data was present for every individuatl in this
cohort. A GWAS study was then conduct for this cohort. The inventors discovered 22
genome-wide significant toci {i.e., specific locations in the genome, each identified with a
reference singie nucleotide poiymorphism (SNP) {D number, or “rs” {D number) associated
with the GON risk phenotypes in individuals of European ancestry. fourteen of such loc

replicate known genomic associations with primary open angle glaucoma (POAG) or
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endophenotypes like intraocuiar pressure and VCDR. The remaining 8 loct are novel or have
equivocatl prior evidence for glaucoma association. A description of these {oci is set forth
later in this document. While we try to map each iocus (a region of the genome) o the likely

gene that it influences, such a mapping is an estimate based solely on genome location.

However, there are well-known examples of specific genomic regions influencing genes

much further away, and so the loci are not necessarily associated firmily with specific genes.
While the application will provide as an example the phenotype labeling of a cohort
pased on fundus images as the clinical data, in theory the same methodology can be used
with other types of clinical data. For example, alternative embodiments of this disclosure
are contemplated exiending the prediction capacity for other phenotypes from cotor fundus
images, including phenotypes associated with diabetic retinopathy and macutar
degeneration. Additionally, the methods are applicable {0 other routine clinical data types
including but not limited to electronic health records, medical imaging data, and taboratory
test values. In these fatter situations, the trained machine iearning model for generating
phenotype predictions may vary, and may for exampile take the form of long-short term
memory models, transformer models, convolutionat neurat networks and fully-connected
neurat networks. For exampie, the models described in Google Published PCT application
of Kai Chen et al., publication no. WO 20198/022779 {describing severat different model
architectures for making future heaith predictions from electronic health records) could be

used.

Brief Description of the Drawings

Figures 1A and 1B are a diagram of a method or worktlow for highly accurate low-cost

phenotyping and associated genomic association studies of this disclosure.

Figure 1A shows the workfiow for a one-time model training procedure. A training dataset
{possibly smaller and/or unrelated to the cohort of interest with both genomics and clinical data) has
extensive curation of phenotype tabels {o determine individual phenotype status, and is used o frain a
model to predict the phenotype.

Figure 1B illustrates the workflow of the trained model from Figure 1A fo a cohort of interest to

generate phenotype values and their sub's'equen't use in a genomic association study for genetic

discovery.

Detailed Description

A method is described for identifying an association between genomic information
and a phenotype associated with a particular disease or medical condition. The
methodology or workfiow is showtt in Figures 1A and 1B and consists of two parts, namely a

tirst part 100 {model training procedure, Figure 1A} and a second part 200 (Figure 1B), in
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which the model trained in the first part 100 is used to iabel a cohort of interest and

subsequent genetic association testing is performed to produce a list of genetic variants

associated with one or more phenotypes.

Referring now in particular to Figure 1A, this figure shows a modet training exercise.

A training dataset 102 includes routine clinical data, such as electronic medical records,

image data {(e.g., retinal images, elc.). This training dataset 102 is subject to detailed
phenotype iabeling and adjudication, typically by human experts, to assign phenotype labels
to the individuals in the training dataset. The result of this phenotyping process 104 is a
phenotype {abeled training dataset 106 of routine clinical data associated with particular
phenotype {abels. This dataset 106 is then subject to a machine learning model training
exercise as indicated at step 108. This model training exercise could take a variety of forms,
including training a neural network, training a deep convolutional neural network, ensemble
of deep convolutionatl neurat networks, etc. which tearns to associate phenotype tabels with
particular data clinical data such that it can accurately ciassify or label new instances of
routine clinical data {of the same type as in the training dataset 102) with a phenotype iabel.
Examples of this model training process 106 will be given below.

The result of the model training exercise 108 is a trained mode! 110 for phenotype
pregiction from clinicat data. An exampie of the trained modei for training eye-related clinical
data to produce phenotype labels associated with glaucoma risk is described in detail on the
paper of S. Phene et al., Deep Learning for Glaucoma Specialists, American Academy of
Ophthaimoiogy, published online July 24, 2019. The methodology of this paper, inciuding
the machine learning architecture, can be extended to other types of clinicat datasets. For
exampie, the method of process 100 can pbe applied to alternative, routine data including but
not limited to electronic health records, medical imaging data, and laboratory test values. in
these latter situations, the trained machine learning model 110 generating phenotype
predictions may vary, and may for example take the form of long-short term memory modeis,
transformer modeis, convolutional neural networks and fully-connected networks. For
example, the models described in Googie Published PCT application of Kai Chen et al.,
publication no. WO 2019/022779 (describing several different model architectures for
making future health predictions from electronic health records) couid be used. The entire
content of the WO 2019/022779 patent application publication is incorporated by reference
herein. See also Juan Banda et al., Advances in Electronic Phenolyping: From Rule-Based
Definitions to Machine Learning Models, Annual Review of Biomedical Data Science, vol. 1,
pp. 53-68 (July 2018), the content of which IS incorporated by reference herein.

Referring now io Figure 1B, a workfiow 200 is shown in which trained modei 110
from Figure 1A is applied to a cohort of interest to generate phenotype values and their

subsequent use {in step 210) in a genomic association stuady for genetic discovery resulting

4
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in a list 212 of genetic variants which are associated with a particutar phenotype. Workfiow
200 includes two parts. Data for a cohort of interest 202 including both genomic data 204
and clinical data 206 (of the same type of routine clinical data 102 used for model training in

workflow 100 of Figure 1A) is obtained. Data for the cohort of interest could be obtained

from publicly-available sources, such as for example the UK Biobank. The genomic data

204 could take the form of full genomic sequencing or sequencing of particular genes or
genomic regions. The clinical data could consist of demographic data, test values, image
data, medical record data, etc. This cohort of interest 202 is initially unlabeled as to the
phenotypes of interest; the procedure of Figure 1B assigns accurate phenotype labels to the
cohort 202, automatically, and without requiring any substantial human effort, as would be
required py prior art methods discussed previously.

In particular, in Figure 1B, the trained model 110 from Figure 1A is applied to this
cohort of interest 202 whereby the model 110 produces phenotype labels for each of the
members of the cohort of inlerest 202 from the rouline clinical data. Moreover, because the
routine clinical data 200 is associated with genomic data, the result of the application of the
trained model 110 to the cohort 202 is a dataset {(208) of phenotype-iabeled clinical data
which is also associated with genomic data. in order {o discover particular genetic variants
which are associated with the phenotype labels, a genetic association test 210 is conducted
on the dalaset 208. This genomic association test is designed to identify particular genomic
information {e.g., genetic loc, single nucleotide polymorphisms, etc.) which are associated
or linked o the phenotype labels. While any of the known genetic association tests for
making such discoveries could be used, in this disclosure we particutarly contemplate the
use of a genome-wide association study (GWAS) for the procedure 210. This procedure
resuits in a list of genetic varnants that are associated with phenotypes.

A genome-wide association study (GWAS) is an experimental design used to detect

associations between genetic variants and traits (phenotypes) in samples from populations.

The pnmary goat of these studies is to betier understand the biology of disease, under the
assumption that a better understanding wili tead to prevention or betier treatment. A good
overview of GWAS methods is set forth in the educational article of William S. Bush et al.,
Chapter Il Genome-Wide Association Studies, PLOS Computational Biology, December
2012, Volume 8, Issue 12, the content of which is incorporated by reference herein.

The path from GWAS to biclogy is not straighiforward because an association
petween a genetic variant at a genomic tocus and a trait is not directly informative with
respect to the target gene or the mechanism whereby the variant is associated with
phenotypic differences. However, as descriped in the review articie of Peter M. Visscher et
al., 10 Years of GWAS Discovery: Bioloqy, Function, and Transiation, The American Journal

of Human Genetics vol. 101, pp. 5-22 {(July 6, 2017}, new types of data, new molecular
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technoiogies, and new anaiytical methods have provided opportunities to bridge the
kKnowledge gap from sequence 1o consequence. The content of the Visscher et al. reference,
including the descriptions of the analysis methods of Table 1 of the Visscher et al. cifed in
the article, is also incorporated by reference herein. GWASs have also been successfully
implemented for better defining the relative role of genes and the environment in disease
risk, assisting in risk prediction, and investigating natural selection and population

differences.

Example

An example of the use of the methodotogy of Figures 1A and 18 will now be set forth.
The modet 110 of Figure 1A was trained to generate a phenotype iabel of referabie
glaucomatous optic neuropathy (GON) using retinal fundus color photographic images as
the routine clinical data (102) and using such iabels in Figure 1B in a cohort of interest {o
discover genetic influences on primary open angie giaucoma (POAG) using GWAS.

In Figure 1A, the training dataset 102 consisted of 80,232 fundus images from
individuais not in the UK Biobank (UKB) adjudicated by a team of ophthaimologists,
optometrists, and glaucoma specialisis in step 104. This data formed the majority of training
images previously used to train a model of referable GON risk and multipie optic nerve head
teatures that performed on par with glaucoma specialists in three validation datasets, see
the S. Phene et al. article cited previousty for details.

In the model training process 100, we trained a model 110 in the form of an
ensemble of ten deep convolutional networks using the 80,232 fundus images. This model
110 is preterably designed such that the phonotype label produced by the modet in the form
of a continuous variable probability prediction. For example, the phenotype {abel can be an
ensemble average from the ten deep convolutional neural networks and expressed as a
probability of a given phenotype iabel being correct of between 0 and 1.

In Figure 1B, the modei 110 is used {o predict GON, vertical cup-{o-disk ratio
(VCDR), retinal nerve fiber layer defect, disc hemorrhage, and focal notching presence
phenotypes for all 80,271 individuals in the UKB with fundus images. GON prediction
performance was vatidated in the subset of UKB images that had undergone adjudication
previously (N=378; AUC=0.802, AUPRC=0.579).

At step 210, we performed a genome-wide association study on the predicted GON
risk phenotype in the UKB individuals of European ancestry (N=58,503}. Of 22 genome-wide
significant loci, see Tabie 1 below, 14 loci replicate known associations with POAG or

endophenotypes like intraocuiar pressure and VCDR. The remaining 8 are novel or have
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eqguivocal prior evidence for glaucoma association. The loci are identified with an rsibD

number identifier, as is common in the art.

TABLE 1

rs12024620 (p=4.55 x 10°-08)
rs4658101  (p=4.81 x 107-23)
rs1346789  (p=2.34 x 107-11)
rs4858683  (p=2.88 x 107-11)
rs34025447 (p=8.19 x 10°-09)
rs2448966  (p=2.70 x 10°-10)
rs562380403 (p=6.80 x 10°-09)
rs72655753 (p=8.74 x 10°-10)
rs1360589  (p=3.71 x 10°-46)
rs11244049 (p=2.13 x 10"-08)
rs7916697  (p=3.17 x 10"-26)
rs1223102  (p=6.07 x 10"-11)
rs7936928  (p=1.83 x 10"-09)
rs11115955 (p=2.88 x 10"-30)
rs4899012  (p=2.39 x 10-15)
rs74056339 (p=2.23 x 10-08)
rs8053277  (p=2.92 x 10*-11)
rs123698  (p=5.73 x 10"-12)
rs928203  (p=4.31 x 10*-10)
rs545472419 (p=4.86 x 10*-08)
rs5752776  (p=4.15 x 10*-27)
rs34611740 (p=5.19 x 10*-10)

Qur method for conducting GWAS on this dataset is set forth betow. {t will be
understood by persons skitied i the art that the foliowing is a representative but not iimiting
exampie of how GWAS can be conducted. Further exampies are set forth in the two GWAS
papers cited previously, as well as in many references in the scientific literature, including
the list of papers ciied in the arlicle of Peter M. Visscher et al., 10 Years of GWAS
Discovery: Biofogy, Function, and Transiation, The American Journal of Human Genetics
vol. 101, pp. 5-22 (July 8, 2017). Accordingly the following description is offered by way of
example only.

a) Shard UKB imputed genotype data and convert to PLINK format

Note: This is an impiementation detail to make the process run faster by using
multiple computers. it is not core to the idea of running GWAS, but is included here for the
sake of completeness. Imputed genotype data contains, for each variant to be iesied for
association with the trait of interest, an estimate of the number of alternate atieles each
individuat in the cohort contains. Since humans are diptoid organisms, this estimate is a

numbper petween 0 and 2 {possibly fractionat to represent uncertainty in the estimate).

PCT/US2020/055348
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Sharding the imputed data involves splitting a single file containing all imputed data into
multiple disjoint files, each containing data for a subset of ail variants.

D) Perform GWAS on all selected phenotypes and settings (e.qg. adding intraocular
pressure {IOP) as a covariate to discover non-10OP related genetic factors)

As discussed in the links above, in a GWAS, each variant is tested independently for
significance of association with the trait of interest. This is typically done by fitting a null
model in which the trait cutcome y is a function of non-variant covariates {e.g. age, sex, body
mass index {bmi), and 5-20 principal components of genetic ancestry} and comparing the
modet fit {o one in which the estimated number of non-reference alleles of the variant of
interest is also included in the model.

¢) Perform QC on GWAS resuits (QQ-piots, genomic correction, variant QC)

Quality controt (QC) measures are cruciat to ensure the validity of the GWAS run.
Quantile-quantile (QQ)) plots of the genome-wide marginatl p-values against the expected
distribution of p-values can identify unknown popuiation structure in the data leading to
spurious results, as well as evidence of polygenic trait architecture. Variant guatity conirol
can include filtering vanants with a high no-call rate, allele frequencies substantially out of
Hardy-Weinberg equilibrium, imputed variants with poor imputation quality, and vanants with
very low ailele frequencies.

d) Enumerate the associated {oci, generate locus-specific association plots and
cross-reference with published loci

High-qualily genome-wide significant ioct can be further examined by visualizing the
distribution of p-values of variants in the nearby genomic context, by using a visualization
tool like LocusZoom, a suite of tools 1o provide fast visualization of GWAS resulis for
research and publication, available for download at locuszoom.org. See R.J. Pruim et al.,
LocusZoom: regional visuafization of genocme-wide association scan resuits Bioinformatics
15; 26(18) pp. 2336-7 {September 2010). An absence of LD-linked variants at similar p-
values for enrichment are often indicative of low quality or spurious associations. Another
way 1o gain confidence in the GWAS resuits is to cross-reference the reporied associations
with existing, known variants associated with the trait of interest. |t is expected that some or
many of the known associated variants should be replicated in a new GWAS from the same
poputation, with similar estimated effect sizes of the variants.

e) Perform meta-analysis with existing published GWAS

To increase power and identify significant variants that do not meet genome-wide
significance in any singie study, meta-analysis of association statistics across two or more
studies can pe performed. See the open source tool known as METAL for an example,

described in the article of Cristen Willer et al., METAL: fast and efficient meta-analysis of
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genomewide association scans, Bioinformatics Appilication note Voi. 20 no. 17, pp. 2190-
2191 (2010).

) repeat GWAS siep 210 and conditional association discovery

When we use a model 110 that produces phenotype labels that are probabilities (not
binary values) repeating the GWAS allows both conditional association discovery (e.g.
genelic associations with a first phenotype, €.g., POAG that are not acting through changes
to VCDR, a second phenotype) and potentially allowing novel associations to subclinical
phenotypes. Conditional associations can identity genes or pathways not previously
implicated in the disease etiology and thus shed light on novel biological mechanisms of the
disease. For diseases which manifest as gradual changes to eye morphology, disease
status predictions far from the {0, 1} classification states may represent subclinical
phenotypes. GWAS on these continuous predictions boost statistical power and can identify

novel associations.

Other Examples

Alternative embodiments of this disclosure are contempiated, inciuding extending the
prediction capacity for other phenotypes from color fundus images. |t is specifically
contemplated that we can appiy the procedures of Figures 1A and 1B 1o research in not just
glaucoma genetics, but rather we can extend this work to diabetic retinopathy and age-
related macular degeneration genetics.

Adaitionally, alternative data modalities can be used for the training dataset 102 and
the cohort of interest 202 that are also routine clinical measurements including but not
imited to electronic health records, medical imaging data, and {aboratory values.

The features of this disclosure provides muitiple benetits over existing phenotyping
solutions.

First, the mechanism for phenotyping of Figure 1A has a cost that is fixed as a
tunction of the phenotype: the cost to {abel a dataset (step 104) from which {o train the
modet 110 and then perform the modet training. The marginal cost to phenotype an
individuat given this model is negligibie. This contrasts with existing phenotyping
mechanisms whose costs are dependent on the number of individuals in the target cohort of
interest, and explained above the cost and effort to produce phenotype fabels in such
cohorts can be prohibitive.

Second, the application of this phenotyping method is not subject to individual biases
as seen in self-reported data.

Third, this phenotyping method implemented in Figure 1B can be used o
retrospectively phenotype a cohort without requiring additional interaction with the individuals

in the cohori, for example where the indiviguals cannot be found, or may have died.

9
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Fourth, this phenotyping method produces more nuanced phenotypes than a binary
labet provides, allowing both conditional association discovery {(e.g. genetic associations with
POAG that are not acting through changes o VCDR) and potentiatly allowing novel

associations to subclinical phenolypes.

10
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Claims

We claim:

1. A method for identifying an association between genomic information and a
phenotype associated with a particular disease or medical condition, comprising ihe steps of:

a) training a machine learning model to predict phenotype status from a training
dataset containing phenotype-tabeted routine clinical data for a muititude of individuals;

D)} applying the model trained in step a) to a cohort of interest comprising both
genomic data and the same type of routine clinical data used for modetl training in step a) for
a multitude of individuals, whereby the model produces phenotype labels for each of the
members of the cohort of interest; and

¢) conducting a genetlic association test on the cohort of interest using the
phenotype iabeis produced in step b) along with associated genomic data and responsively

identifying genomic information associated with the phenotype.

2. The method of claim 1, wherein the phenotype is associated with glaucoma

and wherein the routine clinical data comprises retinal fundus photographic images.

3. The method of claim 2, wherein the phenotype comprises risk of

gtaucomatous optic neuropathy.

4. The method of any of claims 1-3 wherein the genetic association test

comprises a genome-wide association study (GWAS).

5. The method of ciaim 1, wherein the model comprises an ensembie of deep

convolutional neural networks.

6. The method of claim 1, wherein the phonotype {abei produced by the model in

step b) is in the form of a continuous varnable probability prediction.

/. The method of claim 1, further comprising the step of repeating step €) so as
to provide discovery of genelic associations between a first phenotype which are not

associated with a second phenotype.

8. The method of claim 1, wherein the routine clinicat data comprises electronic

health records.

11
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S. The method of claim 1, wherein the routine chnical data comprises medicatl

imaging data.

10. The method of claim 1, wherein the routine clinical data comprises laboratory

test vaiues.

11. The method of claim 1, wherein the genomic information identified in step ¢)

comprises a set of one or more genomic {oct.
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