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MACHINE LEARNING PREDICTION OF BIOLOGICAL EFFECT IN
MULTICELLULAR ANIMALS FROM MICROORGANISM TRANSCRIPTIONAL
FINGERPRINT PATTERNS IN NON-INHIBITORY CHEMICAL CHALLENGE

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority to United States Provisional Application No.
63/049,845 filed on July 9, 2020, the teachings of which are hereby incorporated by

reference.

TECHNICAL FIELD

[0002] The present disclosure relates to machine learning technology for predicting the

biological effect of a chemical.

BACKGROUND

[0003] Modern drug discovery pipelines, regardless of the therapeutic, frequently begin
with a high-throughput chemical screen to assess (bio)activity within a chemical library®-2.
Such screening campaigns are expensive, and are limited to either a single target in the
case of target-based screening, or are specific to a single organism in the case of cell-based
screening. Target-based screening typically aims to find a specific enzymatic inhibitor,
defining a therapeutic target in the primary screen. Searching for a single inhibitor,
though, can be a ‘needle in a haystack’ situation with smaller chemical libraries. Cell-
based screening approaches are phenotypically specific and can identify chemical
perturbants of biology without being limited to a single target. A downside of casting the
net wider with a phenotypically specific approach, is that there are often a number of
possible drug targets that arise in cell-based screens. The biological mechanism of action
for these drugs must be characterized to aid in downstream optimization, on route to the
clinic. Further, inhibition of these targets commonly results in multifaceted downstream
effects that extend beyond simple enzyme inhibition>*. While direct protein targets have
been identified for most conventional antibiotics, indirect (off-target) and secondary
responses to these antibiotics are often poorly characterized®. Further, even compounds
with no single bacterial target, such as metal complexes, detergents, or metabolites from

other organisms, elicit transcriptional responses that indicate bioactivity.
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SUMMARY

[0004] The present disclosure describes the development of machine learning models to
predict the biological effect of chemicals using models based on microorganism gene
expression. The biological effect can provide a basis for exploring therapeutic potential of

the chemicals.

[0005] In one aspect, a computer-implemented method for building a machine learning
predictive model for predicting biological effect of a subject chemical is provided. The
method comprises feeding a training dataset to a machine learning engine, wherein the
training dataset comprises known transcription fingerprint patterns in at least one
microorganism species in response to challenge by known chemicals of respective known
biological effects in at least one multicellular animal. The known biological effects
include effects that are non-inhibitory in the microorganism species. The method further
comprises building, by the machine learning engine, a model for determining a predicted
biological effect of a subject chemical based on a transcription fingerprint pattern for the
subject chemical in the microorganism species in response to challenge by the subject
chemical. The gene expression reflected in the transcription fingerprint patterns is

predictive of the expected biological effect.

[0006] In some embodiments, the known transcription fingerprint patterns in the training
dataset comprise, for each of the known chemicals, a series of time-dependent individual
transcription fingerprints in the microorganism species whereby the model incorporates
time-dependent response by the at least one microorganism species in response to
challenge by the known chemicals. In specific implementations, by incorporation in the
model of the time-dependent response, the model has a feature set larger than a number of
features associated with physicochemical properties of the known chemicals. In some
instances, the model has a feature set larger than a number of features associated with

physicochemical properties of the known chemicals by at least a factor of two.
[0007] In some implementations, the known chemicals are non-antimicrobial.

[0008] In some implementations, the subject chemicals are non-antimicrobial.
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[0009] In some implementations, the known chemicals are not targeted toward the at least

one microorganism species.

[0010] In some implementations, the subject chemicals are not targeted toward the at least

one microorganism species.
[0011] In some implementations, the model is organism-agnostic.

[0012] In some implementations, the known biological effects include effects that are

phenotypically agnostic in the at least one microorganism species.

[0013] In another aspect, a computer-implemented method for predicting biological effect
of a subject chemical is provided. The method comprises obtaining a sample transcription
fingerprint pattern for the subject chemical based on expression of an array of promoters
of at least one microorganism species when exposed to the subject chemical and
determining a predicted biological effect of the subject chemical based on the transcription
fingerprint pattern for the subject chemical according to a model. The model is a machine
learning model derived from a training dataset comprising known transcription fingerprint
patterns in the microorganism species in response to challenge by known chemicals of
respective known biological effects in at least one multicellular animal. The known

biological effects include effects that are non-inhibitory in the microorganism species.

[0014] In some embodiments, the sample transcription fingerprint pattern comprises a
series of time-dependent individual transcription fingerprints in the microorganism species
and the known transcription fingerprint patterns in the training dataset comprise, for each
of the known chemicals, a series of time-dependent individual transcription fingerprints in
the microorganism species. The model incorporates time-dependent response by the
microorganism species in response to challenge by the known chemicals. In specific
implementations, by incorporation in the model of the time-dependent response, the model
has a feature set larger than a number of features associated with physicochemical
properties of the known chemicals. In some instances, the model has a feature set larger
than a number of features associated with physicochemical properties of the known

chemicals by at least a factor of two.

[0015] In some implementations, the known chemicals are non-antimicrobial.

3
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[0016] In some implementations, the subject chemicals are non-antimicrobial.

[0017] In some implementations, the known chemicals are not targeted toward the at least

one microorganism species.

[0018] In some implementations, the subject chemicals are not targeted toward the at least

one microorganism species.
[0019] In some implementations, the model is organism-agnostic.

[0020] In some implementations, the known biological effects include effects that are

phenotypically agnostic in the at least one microorganism species.
BRIEF DESCRIPTION OF THE DRAWINGS

[0021] These and other features will become more apparent from the following

description in which reference is made to the appended drawings wherein:

FIGURE 1A is a schematic illustration of a machine learning methodology according to an

aspect of the present disclosure;

FIGURE 1B is a block diagram showing an illustrative computer system in respect of

which the technology herein described may be implemented;

FIGURE 2 shows schematically how genome-wide transcriptional regulation studies can
provide training data to support a deep learning model, structural-genomic analyses, and
response signatures of chemicals that do not have antibiotic activity against a

microorganism to which the chemicals are presented;

FIGURE 3A illustrates linear discriminant analysis showing variations in differentially

regulated promoters between classes of compounds;

FIGURE 3B is a bar chart showing that the first three discriminant dimensions from
Figure 3A explain ~75% (44.5%, 18.5%, and 12.7% respectively) of the variances

between the classes;
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FIGURE 4A depicts aspects of an illustrative deep leaming model according to the present

disclosure;
FIGURE 4B shows network accuracy for the model depicted in Figure 4A;
FIGURE 4C shows loss for the model depicted in Figure 4A;

FIGURE 4D illustrates analysis of an unknown test molecule according to the model

depicted in Figure 4A;

FIGURE 5A shows a selection of ceftazidime, cefadroxil, cefazolin, cefmetazole, and

cefoxitin, broken down to their pharmacophore cores and side groups;

FIGURE 5B is a heat map showing transcriptional fingerprints for cefmetazole and

cefoxitin;

FIGURE 6A depicts linear discriminant analysis illustrating clustering of an NSAID group

of chemicals;

FIGURE 6B shows chemical structures of the NSAIDs Diclofenac, Carprofen, Naproxen,

Ibuprofen, and Piroxicam;

FIGURE 6C shows a correlation matrix created using the most active promoters of each

NSAID chemical shown in Figure 6B.

FIGURE 7A depicts linear discriminant analysis illustrating clustering of several non-

antimicrobial targets relevant to humans;

FIGURE 7B shows chemical structures of STAT3 inhibitors in the linear discriminant

analysis; and

FIGURE 7C shows chemical structures of adenosine receptor inhibitors in the linear

discriminant analysis;

FIGURE 8A illustrates the model prediction of the NSAID diclofenac to mimic the IDO

anticancer molecule NLG919; and

FIGURE 8B illustrates the model prediction of ceftriaxone as a STAT3 inhibitor.
5
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DETAILED DESCRIPTION
Overview

[0022] Microorganisms such as bacteria live in diverse and dynamic environments that
necessitate adaptation to stimuli. Whether chemicals in their environment are metabolites,
nutrients, inorganic complexes, or otherwise, there is a transcriptional response to these
molecules. Such foreign molecules may not always have a biological target, but cellular

organelles and structures interact with them just the same.

[0023] Chemical stresses in bacterial environments are numerous, regardless of the
ecological niche. These include antimicrobial agents, hydrogen ions, or nutrient
deprivation, amongst others. In nutrient limited conditions, for example, the stringent
response is often initiated. This is a global physiological response, arising from stresses
such as restrictions in amino acids, carbon sources, iron, and phosphates®. This response
is mediated by the alarmone (p)ppGpp, which are regulated by the widely conserved
RelA/SpoT homolog enzymes depending on nutrient availability®’. The (p)ppGpp acts as
a global transcriptional regulator by modulating RNA polymerase activity to help diverge
cell resources from protein synthesis to activating metabolic biosynthesis processes®®.
Alternatively, in cell envelope stress transcriptional responses, the Psp response helps to
stabilize the proton motive force of the cell when the inner membrane integrity is
impaired®!®. A variety of outer-membrane related perturbations, such as mutations in the
periplasmic chaperones!! and in genes that alter lipopolysaccharide (LPS)'?, have been
described to induce the cE-dependent extracytoplasmic stress response. oF is known to
regulate over 60 transcriptional units in Escherichia coli (E. coli), most of which are
involved in the biosynthesis, folding, and homeostasis of outer membrane proteins and
LPS, and can help target misfolded proteins for degradation®!®. Sub-inhibitory
concentrations of antibiotics can also trigger diverse changes in gene expression.
Fluoroquinolone treatment, for example, results in the formation of double-stranded DNA
breaks, stalled DNA replication forks and ultimately cell death!*!>. At sub-inhibitory
concentrations, they are potent inducers of the SOS response in response to DNA damage,
in which the cell cycle is arrested and DNA repair is initiated's. The SOS response leads
to the induction of a cascade of over 50+ genes involved in high fidelity DNA repair (e.g.,

polB'7), inhibition of cell division (e.g., sulA'®), and low fidelity DNA tolerance repair
6
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pathway (e.g., umuC'®)?°. Exposure to fatty acid biosynthesis inhibitors, such as triclosan
and cerulenin (FabI?! and FabB?? enzymes respectively), can cause transcriptional
induction of the fabl, fabF, fabA, and fabB genes®. Indeed, transcriptional responses can

result in secondary or off-target effects as a compensatory response by bacterial cells.

[0024] Beyond the direct transcriptional response to the inhibition of the primary target,
expression alterations are often complicated by secondary target inhibition or indirect
downstream effects. Mitosch et al. observed that sublethal concentrations of trimethoprim
initiated rapid acid stress response in E. coli by upregulating the acid stress operon
gadBC* . Cells with higher gadBC expression following trimethoprim treatment are able
to maintain higher intracellular pH and survive subsequent acid challenge®*. These
indirect/secondary effects provide a better understanding of the downstream effects of
antibiotics or the compensatory mechanisms that may arise due to changes in the
environment. As such, antibiotics may elicit transcriptional fingerprint patterns unique to
their class, and reflective of the target inhibition. These signatures, however, may also
include transcriptional alterations on secondary targets or downstream effects, which may
not be conserved within the same class of antibiotics nor unique to a single biological

mechanism of action class.

[0025] Genome-wide queries into antibiotic responses have been undertaken using DNA

25-28 30,31

microarrays> 28, proteomic investigations?’, and transcriptional reporter systems*’2!. For
instance, Goh et al. measured bacterial transcription patterns using a promoter-lux reporter
construct in a 6,500-clone Sa/monella Typhimurium library under erythromycin and
rifampicin stress*°. In this study, approximately 5% of the promoters were found to be
modulated in the presence of sub-inhibitory concentrations of antibiotics, and these active
promoters will respond at varying extents depending on the antibiotic and drug
concentration being used*®. These promoters help transcribe genes of various function,
such as transport, virulence, DNA repair; a large subset of them have no known function.
Furthermore, Utaida et al. conducted a genome-wide transcriptional profiling experiment
directed toward understanding the molecular events occurring upon challenge with the cell
wall active antibiotics oxacillin, bacitracin, and D-cycloserine®?. More than a hundred
genes were commonly regulated by these three antibiotics; they belong to various

functional categories, such as cell-envelope biogenesis, DNA replication, amino acid

7
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transport and metabolism®2. More interestingly, there are more than 300 differentially

expressed genes that are unique to just one of these antibiotics?2.

[0026] Leveraging bacterial transcriptional profiles toward antibiotic biological
mechanism of action prediction has been approached in several ways®-1*. Global
transcript levels of Gram-positive Bacillus subtilis were assessed in nutrient-rich media,
following treatment with 37 known antibiotics spanning 6 biological mechanism of action
classes using microarrays2’. Mechanistic predictions were made using a support vector
machine (SVM), which is able to classify compounds based on differences between the
biological mechanism of action classes®. This model achieved high success rates (>80%)
in biological mechanism of action predictions in all known antibiotic classes. Further, this
data was then used to identify marker genes that are indicative of certain compound
classes®®. Differentiating reporter strains were identified for inhibitors of protein
biosynthesis (yrzl), fatty acid biosynthesis (fabHB and gipD), cell wall biosynthesis
(ypbG), as well as quinolones (dinB) and glycopeptide antibiotics (vt#4 and ywoB)**.
Transcriptional assays using next-gen sequencing, such as RNA-seq, have also been used
to speculate on biological mechanism of action for unknown antibiotics. F. coli was
probed with 37 antibiotics spanning 6 different biological mechanism of action classes,
then transcriptomic profiles were obtained using next-gen sequencing®>. Through
supervised clustering, two cell wall (wca and ent/fep specific for fosfomycin) and one fatty
acid synthesis (fabl/fabB) expression signatures were discovered based on the magnitude
of the transcriptional response®®. However, these diagnostic genes were often modestly
regulated (3-8-fold) by many small molecules from other biological mechanism of action
classes®>. More than 400 diagnostic genes were identified based on significant regulation

for each compound™.

[0027] Conventional plate reader hardware and consumable options do not allow for
screening beyond 1,536-density microwell plates. Using solid media arrays and custom
hardware called “Printed Fluorescence Imaging Boxes” (PFIboxes?*), it is possible to
acquire images of fluorescence phenotypes with high temporal resolution in a simple and
inexpensive manner’®. This utilizes the transcriptional responses of £. coli to drug stress,
measuring global promoter activity in £. coli by means of promoter-reporter fusion

constructs. Zaslaver et al. have created an 1,820 promoter-GFP fusion library to measure

8
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transcriptional activity in E. coli*’, and upscaling this approach to a full screening platform
allows for high throughput acquisition of time-course global gene expression data in .
coli*”. PFIbox screening pipelines produce a wealth of multidimensional data, in 6,144-

density, for every screened chemical.

[0028] The rich data produced by such a screening effort can provide biological insights
into cell responses to chemicals, but also can be linked to the chemical structure of each
stressor. This offers an opportunity to mine a mass array of features that go beyond
properties derived from chemical structures themselves; cheminformatics pipelines
typically only utilize chemical structures for downstream modelling. These existing
methods utilize deep learning neural networks with 2D structural inputs, or alternatively
character codes (simplified molecular-input line-entry system; SMILES) to build 2D
structures, as entry points to their networks. Physicochemical properties are often
calculated from these structures, which generates a series of quantitative features such as
hydrophobicity, molecular weight, and surface area, to be used as descriptors when
training a model. Molecules that have similar properties to a set of input molecules, or
that fit within a pocket of chemical space, are output from such pipelines. Alternatively,
chemical structures themselves can be fragmented into substructural fingerprints, which
are quantified, and used as features for model training. Ultimately, such models look for
structural similarity to input molecules, or molecules with similar functional groups.
Nonetheless, each of these methods of identifying new chemical matter seeks to use an in
silico approach to developing new drugs, by finding molecules that are structurally or
physicochemically similar to existing actives. This in silico approach, though, is limited
by design; prediction of molecules according to a training set of structurally-derived data
will only return molecules of like-structure and/or properties to input actives. In contrast,
correlating cell responses with chemical structure offers a means to produce unique
biological signatures for each input molecule that can be indifferent to chemical structure
or properties. This increases the number of distinct features that can be used to train a

machine learning model, which improves upon approaches in existing learning models.

[0029] Drug repurposing requires the generation of hypotheses for potential alternate
therapeutic indications of a chemical compound. Likewise, new chemical leads in drug

discovery programs benefit greatly from strong hypotheses on therapeutic use to guide

9
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clinical development. Methods to generate or confirm such hypotheses are few in number
and have shortcomings. Methods exist to predict general modes of action using

3840 next-gen sequencing methods*!, and other

phenotypic assays such as microscopy
library-based omics techniques****. These methods, however, tend to be organism-
specific, are limited in their number of extractable features (typically <1000), and are
often limited to compounds that have known targets within the organism of interest. For

38 developed a pipeline to predict the class of antimicrobial agents

example, Nonejuie et al
in bacteria using super-resolution microscopy and several fluorescent probes. This
technique formed the basis for Linnaeus Bioscience, an antimicrobial discovery company.
While an elegant method for class-based predictions, it is currently limited to bacteria, and
is heavily dependent on cell structure-based phenotypes for effective prediction. Also
using imaging-based methods, Recursion Pharmaceuticals is a drug repurposing company
that has implemented machine learning into their analysis pipeline*. Using their
‘Phenoprinting” approach, they are able to predict biological mechanism of action of new
compounds, and also hypothesize biological target, using their exhaustive training set
containing more than 4 Petabytes of images. Such a method has tremendous power,
particularly in drug repurposing, but is again limited to organism and phenotypes that are
acquired through imaging; cells need to elicit a biological response and physically change,

in order to classify a drug. Ultimately, an organism-agnostic approach is needed, and such

an approach is described herein.

[0030] The present disclosure describes a method for building a machine learning model
for predicting the biological effect of a subject chemical. The term “biological effect” is
used herein in its broad sense, and includes both broad macroscopic effects on a
multicellular animal (e.g. non-steroidal anti-inflammatory, anticancer, muscle growth) as
well as specific biological mechanisms of action (e.g. inhibitors of CTLA-4 (checkpoint
protein), modulation of mammalian target of rapamycin (mTOR) signaling pathway, etc.).
Thus, the term “biological effect” as applied to a subject chemical may include (but is not
limited to) a therapeutic class of the subject chemical. Accordingly, in some embodiments
the predicted biological effect may, for example, be a therapeutic effect such that the
machine learning model may predict a broad therapeutic class of the subject chemical and
thereby enable identification of potential therapeutic applications of the subject chemical.

Reference is now made to Figure 1A, in which the method is shown schematically. A
10
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training dataset 102 comprises known transcription fingerprint patterns 104 in at least one
microorganism species 106 in response to challenge by known chemicals 108 of
respective known biological effects 110 in at least one multicellular animal 112. Merely
for purposes of illustration, a dog is shown as a representative multicellular animal 112;
the methods described herein may be employed to predict the biological effect in any
multicellular animal, including human beings. Thus, the applications include medical
applications in both human medicine and veterinary medicine. Moreover, a training
dataset 102 may comprise known transcription fingerprint patterns 104 in at least one
microorganism species 106 in response to challenge by known chemicals 108 of
respective known biological effects 110 in a single subspecies, species, genus, family,
order, class or phylum of multicellular animal 112, or in a plurality of different subspecies,
species, genus, family, order, class and/or phyla of multicellular animal. Microorganism
species 106 that may be utilized to generate the transcription fingerprint patterns 104
include, but are not limited to, £. coli, Acinetobacter sp., Bacillus sp., Bacteroides sp.,
Bordetella sp., Burkholderia sp., Candida sp., Clostridium sp., Corynebacterium sp.,
Cryptococcus sp., Enterobacter sp., Enterococcus sp., Klebsiella sp., Lactobacillus sp.,
Legionella sp., Listeria sp., Micrococcus sp., Morganella sp., Mycobacterium sp.,
Neisseria sp., Pasturella sp., Proteus sp., Pseudomonas sp., Rhizobium sp.,
Saccharomyces sp., Salmonella sp., Shigella sp., Staphylococcus sp., Streptococcus sp.,
Streptomyces sp., Vibrio sp., and Yersinia sp. As will be appreciated by one of skill in the
art, the known transcription fingerprint patterns 104 may vary with the selected
microorganism species 106. Transcription fingerprint patterns 104 are generally based on
promoter expression. Illustrative promoters include but are not limited to those regulating
biological processes: cell behavior, biological adhesion, biological phase, biological
regulation, biomineralization, carbohydrate utilization, carbon utilization, cellular
processes, detoxification, developmental processes, growth, immune system processes,
interspecies interaction between organisms, intraspecies interaction between organisms,
localization, metabolic processes, motility, multicellular organismal processes, multi-
organism processes, negative regulation of biological processes, nitrogen utilization,
phosphorus utilization, pigmentation, positive regulation of biological processes,
regulation of biological processes, reproduction, reproductive processes, response to

stimulus, rhythmic processes, signaling, or sulfur utilization.

11
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[0031] The training dataset 102 is fed 114 to a machine learning engine 116, which builds
118 a model 120 for determining a predicted biological effect 122 of a subject chemical
124, based on a transcription fingerprint pattern 126 for the subject chemical 124 in the
microorganism species 106. The gene expression reflected in the transcription fingerprint
pattern 126 for the subject chemical 124 is predictive of an expected biological effect of
the subject chemical 124. In some embodiments, the model 120 may, for example,
correlate transcription fingerprint patterns with chemical structure. In some embodiments,
the model 120 may be limited to a particular subspecies, species, genus, family, order,
class or phylum of multicellular animal 112. In other embodiments, the model 120 may
encompass a plurality of subspecies, species, genus, family, order, class and/or phyla of
multicellular animal 112. In such embodiments, for example, the method may determine a
predicted biological effect 122 of a subject chemical 124 within a particular subspecies,
species, genus, family, order, class or phylum of multicellular animal 112 (e.g. a particular
subject chemical 124 may be predicted to ameliorate a condition in one species but not in
another), or may predict the biological effect of a subject chemical 124 more generally.
Thus, the model 120 may be species-specific or species-agnostic, and may even be
organism-agnostic. One of skill in the art, now informed by the present disclosure, will
appreciate that “building” of the model includes training, tuning and other suitable steps,
depending on the nature of the machine learning methodology to be employed. The
machine learning engine 116 may be and/or may employ, for example and without
limitation, linear combinations of features explaining class separations, t-distributed
stochastic neighbor embedding, decision tree or support vector machine-based learning,
artificial neural network (deep leaming) predictions, or a classifier, among others. No
limitation whatsoever as to the nature of the machine learning engine is to be inferred, and
the present disclosure expressly contemplates and incorporates future developments in

machine learning technology.

[0032] The known biological effects 110 include, and preferably consist entirely or
substantially entirely of, biological effects 110 that are non-inhibitory in the at least one
microorganism species 106. The term “non-inhibitory”, as used in this context, means that
while the known chemicals 108 may have a genetic-level biological effect on the
microorganism species 106 by triggering expression of an array of promoters of the

microorganism, the known chemicals 108 will not substantially inhibit growth of the
12
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microorganism species 106, as defined by a minimum inhibitory concentration exceeding
128 pg/mL, preferably exceeding 200 pg/mL and more preferably exceeding 256 pg/mL.
In some embodiments, the known biological effects 110 include, and may consist entirely
or substantially entirely of, biological effects 110 that are not merely non-inhibitory but
are also phenotypically agnostic in the at least one microorganism species 106. The term
“phenotypically agnostic”, as used in this context, means that while the known chemicals
108 may have a genetic-level biological effect on the microorganism species 106 by
triggering expression of an array of promoters of the microorganism, the known chemicals
108 will not have any appreciable impact on the phenotypical characteristics of the
microorganism species 106. Phenotypical characteristics are an organism’s observable
physical or biochemical characteristics. For example, where the microorganism species
106 is one or more species of bacterium, phenotypical characteristics may include motility
(e.g. flagellum formation or function), quorum sensing, cell division, respiration, growth
properties, cell viability, energy production, biofilm formation, cell shape, cell behavior,
biological adhesion, biological phase, biological regulation, biomineralization,
carbohydrate utilization, carbon utilization, cellular processes, detoxification, division
processes, interspecies interaction between organisms, metabolic processes, nitrogen
utilization, phosphorus utilization, pigment production, positive regulation of biological
processes, negative regulation of biological processes, regulation of biological processes,
response to stimulus, signaling, or sulfur utilization and the known chemicals 108 will be
phenotypically agnostic where they do not have any appreciable impact on such
characteristics even while affecting promoter expression. It follows from this that the
known chemicals 108 (and also the subject chemical(s) 124) are preferably non-
antimicrobial and non-antibiotic; in general, the known chemicals 108 are preferably not
targeted toward the microorganism species 106. Thus, in preferred embodiments the
known chemicals 108 (and also the subject chemical(s) 124) will be classified within
therapeutic groups that are not applicable to the microorganism species 106 (i.e. known
drug targets of the known chemicals 108 (and also the subject chemical(s) 124) are not
present in the microorganism species 106). For example, where the microorganism
species 106 is a bacterium species, the known chemicals 108 and/or subject chemical(s)
124 may comprise one or more of anti-inflammatory, non-steroidal anti-inflammatory,

antiviral, antifungal, anticancer, antipsychotic, analgesic, anesthetic, anticonvulsant,
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antihemorroidal, cough suppressant, anti-acne, salicylate, vasodilator, antacid,
expectorant, antihistamine, or antigas medications, among others, but may exclude
antibiotics, specifically antibiotics effective against the microorganism species 106. The

foregoing list is merely illustrative and not intended to be exhaustive or limiting.

[0033] Of note, in a particularly preferred embodiment, the known transcription
fingerprint patterns 104 in the training dataset comprise, for each of the known chemicals
108, a series 128 of time-dependent 130 individual transcription fingerprints 132 in the
microorganism species 106. Accordingly, the model 120 will incorporate time-dependent
response by the microorganism species 106 in response to challenge by the known
chemicals 108. Thus, the model 120 is built on a plurality of series 128 of time-dependent
130 individual transcription fingerprints 132 in the microorganism species 106. By
incorporation in the model 120 of the time-dependent response, the model 120 can have a
feature set larger than the number of features associated with the physicochemical
properties of the known chemicals 108. The model 120 preferably has a feature set at least
twice as large, and more preferably at least five times as large, as the number of features
associated with the physicochemical properties of the known chemicals 108. In some
embodiments, the model 120 has a feature set that is at least one order of magnitude larger
than the number of features associated with the physicochemical properties of the known
chemicals 108, for example if a suitable yeast were used as the microorganism 106 and/or

another indicator method (e.g. RNA-seq) were used as a transcriptional determinant.

[0034] Once built, the model 120 can be used in implementing a method for predicting the
biological effect 122 of a subject chemical 124. As shown by dashed box 134, the method
comprises culturing the same microorganism species 106 as was used for the training
dataset 102 under suitable growth conditions and exposing the microorganism species 106
to the subject chemical 124, and then detecting expression of an array of promoters of the
microorganism species 106 to yield a sample transcription fingerprint pattern 126 for the
subject chemical 124. Preferably, the sample transcription fingerprint pattern 126
comprises a series 136 of time-dependent 138 individual transcription fingerprints 140 in
the at least one microorganism species 106. After obtaining the sample transcription
fingerprint pattern 126 for the subject chemical 124, based on expression of an array of

promoters of the microorganism species 106 when exposed to the subject chemical 124,
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the sample transcription fingerprint pattern 126 is then provided 142 to the model 120 (e.g.
a computer comprising at least one processor and memory containing instructions for
implementing the model 120, as described further below) and analyzed according to the
model 120. The model 120 generates 144 a prediction 146 comprising a predicted
biological effect 122 of the subject chemical 124, based on a transcription fingerprint
pattern 126 for the subject chemical 124 in the microorganism species 106. The prediction
146 may, in some embodiments, predict for a single subspecies, species, genus, family,
order, class or phylum of multicellular animal 112, or for a plurality of different
subspecies, species, genus, family, order, class and/or phyla of multicellular animal 112,
as described above. Thus, as shown, the prediction 146 may be associated with a
particular type of multicellular animal 112. In preferred embodiments, the model 120 is
constructed such that the prediction 146 is independent of the structure of the subject
chemical 124. The prediction 146 may be used, for example, to identify a potential

therapeutic area in which the subject chemical 124 may have application.

[0035] The machine learning, modeling and prediction technology may be embodied
within a system, a method, a computer program product or any combination thereof. The
computer program product may include a computer readable storage medium or media
having computer readable program instructions thereon for causing a processor to carry
out aspects of the present technology. The computer readable storage medium can be a
tangible device that can retain and store instructions for use by an instruction execution
device. The computer readable storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an optical storage device, an
electromagnetic storage device, a semiconductor storage device, or any suitable

combination of the foregoing.

[0036] A non-exhaustive list of more specific examples of the computer readable storage
medium includes the following: a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), a static random access memory (SRAM), a portable
compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory
stick, a floppy disk, a mechanically encoded device such as punch-cards or raised

structures in a groove having instructions recorded thereon, and any suitable combination
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of the foregoing. A computer readable storage medium, as used herein, is not to be
construed as being transitory signals per se, such as radio waves or other freely
propagating electromagnetic waves, electromagnetic waves propagating through a
waveguide or other transmission media (e.g., light pulses passing through a fiber-optic

cable), or electrical signals transmitted through a wire.

[0037] Computer readable program instructions described herein can be downloaded to
respective computing/processing devices from a computer readable storage medium or to
an external computer or external storage device via a network, for example, the Internet, a
local area network, a wide area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission fibers, wireless transmission,
routers, firewalls, switches, gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing device receives computer readable
program instructions from the network and forwards the computer readable program
instructions for storage in a computer readable storage medium within the respective

computing/processing device.

[0038] Computer readable program instructions for carrying out operations of the present
technology may be assembler instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions, microcode, firmware instructions,
state-setting data, or either source code or object code written in any combination of one
or more programming languages, including an object oriented programming language or a
conventional procedural programming language. The computer readable program
instructions may execute entirely on the user’s computer, partly on the user’s computer, as
a stand-alone software package, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through any type of network, including
a local area network (LAN) or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the Internet using an Internet Service
Provider). In some embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable

logic arrays (PLA) may execute the computer readable program instructions by utilizing
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state information of the computer readable program instructions to personalize the

electronic circuitry, in order to implement aspects of the present technology.

[0039] These computer readable program instructions may also be stored in a computer
readable storage medium that can direct a computer, other programmable data processing
apparatus, or other devices to function in a particular manner, such that the instructions
stored in the computer readable storage medium produce an article of manufacture
including instructions which implement aspects of the functions/acts specified. The
computer readable program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable apparatus or other devices to
produce a computer implemented process such that the instructions which execute on the
computer or other programmable apparatus provide processes for implementing the

functions/acts specified.

[0040] An illustrative computer system in respect of which the technology herein
described may be implemented is presented as a block diagram in Figure 1B. The
illustrative computer system is denoted generally by reference numeral 1000 and includes
a display 1002, input devices in the form of keyboard 1004A and pointing device 1004B,
computer 1006 and external devices 1008. While pointing device 1004B is depicted as a
mouse, it will be appreciated that other types of pointing device, or a touch screen, may

also be used.

[0041] The computer 1006 may contain one Or more processors or microprocessors, such
as a central processing unit (CPU) 1010. The CPU 1010 performs arithmetic calculations
and control functions to execute software stored in an internal memory 1012, preferably
random access memory (RAM) and/or read only memory (ROM), and possibly additional
memory 1014. The additional memory 1014 may include, for example, mass memory
storage, hard disk drives, optical disk drives (including CD and DVD drives), magnetic
disk drives, magnetic tape drives (including LTO, DLT, DAT and DCC), flash drives,
program cartridges and cartridge interfaces such as those found in video game devices,
removable memory chips such as EPROM or PROM, emerging storage media, such as

holographic storage, or similar storage media as known in the art. This additional memory
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1014 may be physically internal to the computer 1006, or external as shown in Figure 1B,
or both.

[0042] The computer system 1000 may also include other similar means for allowing
computer programs or other instructions to be loaded. Such means can include, for
example, a communications interface 1016 which allows software and data to be
transferred between the computer system 1000 and external systems and networks.
Examples of communications interface 1016 can include a modem, a network interface
such as an Ethernet card, a wireless communication interface, or a serial or parallel
communications port. Software and data transferred via communications interface 1016
are in the form of signals which can be electronic, acoustic, electromagnetic, optical or
other signals capable of being received by communications interface 1016. Multiple

interfaces, of course, can be provided on a single computer system 1000.

[0043] Input and output to and from the computer 1006 is administered by the
input/output (I/O) interface 1018. This I/O interface 1018 administers control of the
display 1002, keyboard 1004 A, external devices 1008 and other such components of the
computer system 1000. The computer 1006 also includes a graphical processing unit
(GPU) 1020. The latter may also be used for computational purposes as an adjunct to, or

instead of, the CPU 1010, for mathematical calculations.

[0044] The various components of the computer system 1000 are coupled to one another

either directly or by coupling to suitable buses.

[0045] The terms “computer system™, “data processing system™ and related terms, as used
herein, are not limited to any particular type of computer system and encompass servers,
desktop computers, laptop computers, networked mobile wireless telecommunication
computing devices such as smartphones, tablet computers, as well as other types of

computer systems.

[0046] Thus, computer readable program code for implementing aspects of the technology
described herein may be contained or stored in the memory 1012 of the computer 1006, or
on a computer usable or computer readable medium external to the computer 1006, or on

any combination thereof.
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[0047] The methodologies described above in the context of Figure 1A may be
implemented to support classification or re-classification of the therapeutic potential of
subject chemicals 124 based on transcription fingerprint patterns 126 representing the
response of the microorganism species 106 to chemical queries (challenge by subject
chemicals 124). The microorganism response fingerprints provide a platform to
investigate transcriptional activity through a promoter-based reporter system. The
microorganism species 106 is also referred to herein as a “microorganism reporter” or
“reporter” in that the transcription fingerprint patterns 104 (and 126) represent a “report™

on the known chemical 108 (and also the subject chemical 124).
Experimental Proof of Concept

[0048] As a proof of concept, the present disclosure describes application of the above
methodology where the microorganism species 106 is Escherichia coli K-12 (E. coli), by

way of illustration and not limitation.

[0049] E. coli was probed with more than 100 chemical stressors, and the transcriptional
responses were assessed using a promoter-GFP fusion library. Assayed with PFIboxes,
the output fluorescence images are temporally resolved and data rich. When quantified as
gene expression, these cellular responses are seemingly unique to each molecule tested,
and clear differences exist between assayed drug classes. Even within drug classes,
molecules that share a target and only differ by one or two functional groups still elicit
very different transcriptional responses. Further, when non-steroidal anti-inflammatory
drugs (NS AIDs) with no bacterial target were exposed to the reporter library, unique
responses were also obtained. The NSAIDs tested clustered away from the rest of the
antimicrobial classes in principal component space, indicating that even compounds that
did not result in any fitness defect in the microorganism species 106 can elicit unique
responses (transcription fingerprint patterns 104). The expression signatures generated by
these experiments were used to train a 10-layer convolutional neural network in Keras (an
illustrative, non-limiting example of a machine learning mechanism 116) for biological
effect predictions 146. This model (an illustrative, non-limiting example of a machine
learning model 120) was used to determine a predicted biological effect 122 of cinoxacin;
a molecule not in the original dataset and hence a subject chemical 124. The model 120

predicted the cinoxacin molecule would be similar to enoxacin, with ~80% confidence,
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illustrating the potential for the model 120 to effectively determine a predicted biological
effect 122 of unknown molecules (subject chemical 124) with a large training dataset 102.
This work illustrates that microbial reporter arrays generate unique patterns depending on
the chemical structure of the probe of interest (subject chemical 124), which can be
broadly applied to biological effect predictions 146 and drug repurposing for all

therapeutics, in an organism-agnostic manner.

[0050] E. coli was exposed to non-antimicrobial drugs with no bacterial target, and unique
transcription fingerprint patterns 104 were obtained. Drugs with specific therapeutic
targets uniquely clustered in LDA space, indicating that drugs that did not result in any
fitness defect in the microorganism species 106 can elicit unique responses (transcription
fingerprint patterns 104) at the biological resolution of protein target. There were few
structural similarities within the drugs with similar targets, revealing that groupings based
on transcription fingerprint patterns 104 were robust and independent of chemical
structure. The model 120 was used to predict the biological effect 122 of the NSAID
diclofenac (as subject chemical 124). Diclofenac was determined to be a kynurenine 3-
monooxygenase inhibitor, previously indicated in literature (indicated in
doi:10.1021/acsomega.7b02091). Next, the model 120 was used to predict the biological
effect 122 of ceftriaxone (as subject chemical 124). Ceftriaxone was determined to be a
STATS3 inhibitor, previously indicated in patents KR20070025135A, KR100697312B1.
This illustrates that biological effect predictions 146 and drug repurposing is indeed

possible for all therapeutics, in an organism-agnostic manner.

[0051] The gene expression changes in E. coli after challenge from a plurality of known
bioactive chemicals 108 were profiled, building transcriptional signatures (transcription
fingerprint patterns 104) for each compound. This provided a data rich training set for
creating a deep learning model 120, to predict 146 the biological effect 122 of unknown
chemical matter (subject chemical 124). The present disclosure also explores the
relationship between chemical structure and biological response, demonstrating that
bacteria can respond to traditionally non-bioactive chemicals (i.e. phenotypically agnostic
with respect to the bacteria), producing response fingerprints (transcription fingerprint
patterns 104) tied to chemical structure. This demonstrates the potential to expand this

technique to any therapeutic class, basing predictions on fluorescence patterns reacting to
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molecule chemistry, rather than physicochemical responses by the cell population.
Without being limited by theory, it is hypothesized that bacterial response to exogenous
chemicals is ultimately structure-dependent, and that even compounds that have no target
in bacteria (i.e. are non-inhibitory with respect to the bacteria, or even phenotypically
agnostic with respect to the bacteria) can still produce a unique pattern in gene expression
that is predictive of biological effect and therefore useful in identifying potential

therapeutic indications.

Materials and Methods

[0052] Strain library preparation and growth conditions. For a detailed description of the
experimental setup and analysis, refer to the protocol described by French et al*¢. The
GFP promoter collection®’ was grown from frozen stocks at 384 density onto Singer
PlusPlates (Singer Instruments, UK) filled with 25 mL of Lysogeny Broth (LB) agar
medium supplemented with 25 ug/mL of Kanamycin. These plates were grown at 37 °C
for 18 hours, then upscaled to 1536 density onto MOPS minimal media supplemented with
0.4% glucose (Teknova, US) and 25 pg/mL of Kanamycin using the Singer Rotor (Singer

Instruments, UK). These plates were grown at 37 °C for 24 hours.

[0053] Solid MIC determination. The minimum inhibitory concentration (MIC) for each
chemical in solid media was determined as described by French et al*’. The liquid MICs
were established for each compound to provide a reference point for the concentrations to
be used in the solid potency assay. A bed of 2% agarose was used to prepare a mold for
the media plugs. Empty plugs were filled with concentrations of the test compound until
leveled with the agarose bed. The agarose bed was removed and the agar plugs were
inoculated with E. coli K-12 MG165537, using the same Singer Rotor settings as those
used for the screening assay plates. These plates were grown at 37°C for 24 hours, then

MIC determined from the plugs containing no colonies.

[0054] Gene expression assays. The E. coli promoter-GFP fusion library was probed
against a panel of antibiotics at sub-inhibitory concentrations (1/2-1/8x MIC). MOPS
minimal media supplemented with 0.4% glucose and 25 pg/mL of kanamycin was poured
at 25 mL per Singer PlusPlate as per French et al*®. Plates were poured on the day of the

experiment and inoculated to 6144 density from prepared master reporter library plates.
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Plates were placed face down in PFIboxes and incubated at 37°C for 24 hours, imaging
every 5 minutes. A list of antibiotics tested, and their respective screening concentrations,

can be found in Table 1:
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Chemical Solid MIC (pg/mL)| Screening Concentrations (ug/mL)
Ampicillin 16 4,2
Apramycin 2 1,0.25
A22 >256 128,64, 32
Azidothymidine >256 256
Azithromycin 128 64,32,16
CHIR-090 0.125 0.031,0.016
Cefadroxil 1 0.25
Cefazolin 1 0.25
Cefmetazole 2 1,05
Cefoxime 1 0.25
Cefoxitin 4 1
Cerulenin 128 32,16
Carprofen >256 256
Chloramphenicol 16 8,4,2
Cinoxacin 32 16,8,4
Ciprofloxacin 0.25 0.0625,0.03
Colistin 16 8
D-cycloserine 0.5 0.25,0.125
Dapsone 256 64,32
Diclofenac >256 256
Dirithromycin >256 256,128
Doxycycline 16 8,4,2
EDTA >256 256
Enoxacin 8 4,2,1
Erythromycin >256 256, 64
5-fluoroanthranilic acid 4 2,1,05
5-fluorouracil 4 2
5-methyltryptophan 16 2
Fosfomycin 1 0.5
Furazolidone 8 4,1
Fusidic acid >256 128
Gentamicin 0.25 0.031
Glyphosate >256 64
Ibuprofen >256 256,128,64,32,16,8
Imipenem 1 0.5,0.25,0.125
L-norleucine 128 64,32
L-3-thienylalanine 128 16
Lincomycin >256 128
Linezolid >256 256, 64
MAC13772 >256 256
MAC168425 128 64,32,16
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MAC872 128 32
Mecillinam 256 128, 64
Meropenem 2 0.5,0.25
Metronidazole >256 256, 64
Minocycline 4 1,0.5
Mitomycin C 2 0.25
Nalidixic acid 32 16,8
Naproxen >256 256
Neomycin 8 4,1
Norfloxacin 2 1
Novobiocin >256 128, 64
Paraquat 16 4,2
Penicillin G 128 32,16
Pentamidine >256 64
PF 5081090 0.125 0.0625,0.0156
Piroxicam >256 256
Polymyxin B 2 1,05,0.25
Polymyxin B nonapeptide >256 50,25,12.5
Rifampicin 32 8
6-diazo-5-oxo-L-norleucine 0.063 0.031, 0.016, 0.008
6-mercaptopurine >256 256
6-aminoindole >256 128, 64
Sodium bicarbonate >50 mM 25 mM, 12.5 mM
Spectinomycin 64 16
SPR741 32 8
Streptomycin 2 1,0.5,0.25
Sulfadimethoxine 256 128, 64, 32
Sulfamethoxazine >256 256,128, 64
Sulfathiazole >256 256,128, 64
Sulfamethizole 256 64
Sulfamethoxazole 256 128, 64, 32
Sulfisoxazole >256 256,128, 64
Tetracycline 16 8,4,2
Triclosan 0.5 0.25,0.125, 0.0625
Trimethoprim 4 2,0.25
2 2'-bipyridyl 64 16, 8

Table 1: List of antibiotics tested and their respective screening

concentrations

[0055] Data preparations and class clustering. Cumulative fluorescence was calculated
for 24 hours of growth on MOPS minimal medium with sub-inhibitory concentrations for

each drug screened. This provided unique overall fingerprints of promoter activity across

24



10

15

20

25

30

WO 2022/006676 PCT/CA2021/050939

the duration of the experiment, for each drug tested. Fingerprints were compiled as a data
frame and used in a linear discriminant analysis, with known chemical classes as the
groupings. These groupings were visualized in component space, where the first 3

discriminants comprised about 75% of the variances observed.

[0056] Deep learning model and predictions. The deep learning model in the proof of
concept test utilized the fluorescence patterns at each individual time point, for each drug
tested. This method allows for a time course fingerprint (a series 128 of time-dependent
130 individual transcription fingerprints 132) to be captured for each drug, which provides
a voluminous amount of data features for downstream comparison in the model 120. This
multitude of features allows even compounds that are highly structurally similar to be
unique in the training set. Using these data, a deep learning network was built using the
Keras package in R, with Tensorflow as the backend. This is merely an illustrative, non-
limiting proof-of-concept model, and the model parameters may change as new data are
added. In the illustrative proof-of-concept model, a 10-layer model was constructed
consisting of: 2D convolution (64 filter, 5x5 kernel, rectified linear unit (relu) activation),
0.25 dropout, 2D convolution (128 filter, 3x3 kernel, relu activation), 0.25 dropout, 2D
pooling (pool size 4), 0.25 dropout, flattened layer, densely connected layer (50 unit, relu
activation), 0.25 dropout, densely connected layer (softmax activation). The input layer
had 6,144 neurons, the number of colonies in a 64 x 96 array, and the network was
compiled with the Adam optimizer with a binary cross-entropy loss function. Accuracy
was visualized alongside loss while the model was compiled, and both measures levelled
out after 10 epochs. Internal validations were done with an 80/20 split of the data,
randomizing the samples due to the software taking 20% of the training set in order. For
test purposes, sub-inhibitory concentrations of the antibiotic cinoxacin were used, to test
which compound it best matched with in the training set. Cinoxacin was not included in
the original training set, and was assayed on a different day, with a different frozen stock

of the library, with a different batch of media.

[0057] Drug Structural-Genomic Fingerprints and OSAR. To investigate the impacts of
modifying a single functional group on a pharmacophore core, the cephem class of [3-
lactam antibiotics was utilized as in the proof of concept test. Ceftazidime, cefadroxil,

cefazolin, cefmetazole, and cefoxitin treatments were subset from the fluorescence dataset
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collected earlier. The pharmacophore core was extracted from these drugs as a Murcko
core, and R-groups tabulated alongside variations in transcriptional activity. By
comparing the subtle differences in chemistry to variations in global gene expression, the
functional importance of these R-groups in the drug activity can be determined. Further,
atomic changes in each drug correspond to a much larger number of unique promoter
fluorescence. From a machine learning perspective, this enables feature detection that is
based on biological response to drug chemistry, rather than relying solely on the chemical
structure or associated physicochemical properties to generate (or be used directly as)

features in silico for model building.
Results

[0058] Data acquisition and QC. Images acquired using PFIboxes were analyzed using
Imagel to extract quantifiable values in the units of fluorescence intensity. An image

al.36-46:48 i5 able to extract and provide fluorescence

analysis pipeline written by French et
time-course data for every reporter strain in the library. These fluorescence data files are
then compiled and organized into matrices of raw data. Low-span (0.3) LOESS regression
is applied to the data to reduce small noise and jitters in the downstream calculations. The
edge effects were normalized using a method developed for high-density colony array
normalization, in which the colony fluorescence is divided by the interquartile means of
the rows and columns across the plate*’. This method will also standardize fluorescence
intensity values across plates. Technical and biological replicates of the same conditions
show a strong, linear correlation in terms of fluorescence intensity, indicating that the data
is reproducible. For detailed descriptions of the data acquisition and analysis pipeline,
refer to the protocol described by French et al.’® %, Figure 2 shows schematically how
genome-wide transcriptional regulation studies 202 can provide training data to support a
deep learning model 204, some structural-genomic analyses 206, and a unique look at the
response signatures 208 of chemicals that do not have antibiotic activity against £. coli
(i.e. are phenotypically agnostic toward E. coli) according to the present disclosure.
Genome-wide transcriptional regulation studies 202 using antibiotics from a diverse set of
biological mechanism of action classes provide the basis for, without limitation, a deep
learning model 204 built using the Keras package in R, with Tensorflow as the backend.

Structural-genomic analyses 206 using transcriptional responses with a reporter library
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returns unique signatures 208 even amongst structurally similar compounds. Chemicals
that do not have antibiotic activity against £. coli still result in differential regulation and

are distinct from that of antibiotics.

[0059] Compound clustering based on phenotypic fingerprint. To examine the variations
between the known classes of compound in the training set, a linear discriminant analysis
(LDA) was used, as shown in Figure 3A. Each biological mechanism of action class
occupies a unique place in the component space. As shown in Figure 3B, the first three
discriminant dimensions explained ~75% (44.5%, 18.5%, and 12.7% respectively) of the
variances between the classes. The drug classes were clearly separated based on
transcriptional signals from promoter-reporter strains, including the nutrient biosynthesis
inhibitors; a class of compounds with therapeutic potential that are conditionally
antimicrobial in nutrient-limited conditions. Each of these classes were separated by
variations in gene expression fingerprints based on colony fluorescence. Particularly,
promoters for dhaM, cspA, and ygbA were most important in explaining variations
between membrane depolarizing drugs and bacterial cell wall active drugs in LD1.
Conversely, promoters for yeiF, kdsB, and fhuC contributed to the separation of drugs
targeting folate metabolism, and protein translation inhibitors in LD2. The third
dimension, LD3, uniquely pulled the esoteric nutrient biosynthesis inhibitors away from
the more canonical bioactive drugs. The promoters for kdsB, proS, hscC, and ychW

contributed the most to this separation.

[0060] Model accuracy and predictions. Figure 4A illustrates aspects of the deep learning
model that was created for the proof of concept; this is merely illustrative of a model 120
and is not limiting. A deep learning network was built using the Keras package in R, with
Tensorflow as the backend. A 10-layer model was constructed consisting of: 2D
convolution, dropout, 2D convolution, dropout, 2D pooling, dropout, flattened layer,
densely (fully) connected layer, dropout, densely (fully) connected layer (softmax
activation), and loss layer. The network was compiled with the Adam optimizer with a
binary cross-entropy loss function. The model depicted in Figure 3A used an 80/20 split
for training and validation purposes. Network accuracy was about 98% (Fig. 4B) and loss
approaching 0.25% (Fig. 4C); both measures levelled out after 10 epochs. Internal

validations were done with an 80/20 split of the data. Predictions using this system were
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dependent on patterns of genetic response to each chemical in each agar plate (i.e. to the
unique chemical structures). This was further tested by taking new raw data for drugs not
in the training set whatsoever, processing it in the same manner, and predicting the
biological function using the model. To these ends, the fluroquinolone cinoxacin was
used as an ‘“unknown’ test molecule (subject chemical 124), to identify what it would
match with in the existing training data (Fig. 4D). Cinoxacin was not included in the
training set, and was assayed completely independently of the training set. As shown in
Figure 4D, cinoxacin was used as an “‘unknown’ test molecule and the best prediction for
the ‘unknown’ in this case was a sub-inhibitory concentration of enoxacin (~80%
prediction confidence), indicated by the darker bar. Indeed, the best prediction for the
‘unknown’ in this case was a sub-inhibitory concentration of enoxacin (~80% prediction

confidence); a structurally similar fluoroquinolone.

[0061] Chemical structure defines transcriptional responses. To examine the variations
in gene expression that arise as the functional groups of a molecule are modified, a
structure-genomic relationship (SGR) of cefam antibiotics was carried out. The cefams
include cefamycin and cephalosporin antibiotics, and target bacterial PBPs. Shown in
Figure S5A are a selection of ceftazidime, cefadroxil, cefazolin, cefmetazole, and cefoxitin,
broken down to their pharmacophore cores and side groups. Figure 5B shows that
transcriptional fingerprints, indicated by a heat map of the most active promoters, differ
despite the similarity in structure. The regions 550 indicate promoters that have increased
expression relative to the mean of all the cefam drugs, and the regions 560 indicate
promoters that have decreased expression. Despite structural similarities between the
various drugs, their transcriptional fingerprints (Fig. 5B) differ by a number of promoters.
Incidentally their PBP targets vary as well, but despite this, the physicochemical properties
for each cefam are quite similar. This indicates that while properties for cefam antibiotics
occupy a particular niche in chemical space, differentiating between the compounds would
be very challenging using a model trained with physicochemical properties. Alternatively,
using transcriptional responses with a reporter library returns unique signatures even

amongst structurally similar compounds.

[0062] Bacteria elicit unique responses to drugs without a bacterial target. Bacteria are

complex organisms, which are constantly changing with their environments. When in the
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presence of an excess of chemical matter, regardless of its cellular usage or purpose, the
population should respond. This hypothesis was tested with non-steroidal anti-
inflammatory drugs (NSAIDs), again using the E. coli promoter-GFP fusion library.
Transcriptional fingerprints were compiled and differences between classes visualized;
Figure 6A depicts linear discriminant analysis illustrating that the NSAID group of
chemicals cluster distinct from the other groups of antibiotics. The various antibiotic
classes cluster in a similar manner as seen in Figure 3A, with the addition of NSAIDs
clustering in a unique manner despite bacteria lacking cyclooxygenase (COX) enzymes.
Figure 6B shows Diclofenac, Carprofen, Naproxen, Ibuprofen, and Piroxicam, which were
used in this study; these had a minimum inhibitory concentration of more than 256 ng/mL
in MOPS minimal media supplemented with 0.4% glucose. The NSAIDs chosen are
somewhat structurally similar (Fig. 6B), particularly between the propionic acid
derivatives carprofen, ibuprofen, and naproxen. None of the NSAIDs tested, though, have
antimicrobial activity in £. coli at 256 pg/mL (which one of skill in the art of
microbiology will recognize as having no growth inhibitory activity) or below
concentrations, thus they are not targeted to £. coli and are non-inhibitory toward £. coli.
This is an important observation, as it indicates that £. coli will respond to chemicals that
are not directly targeting their cell processes, and are reporting on the chemical structures
themselves. Figure 6C shows a correlation matrix created using the most active promoters
of each NSAID chemical used in this study. A similarity score was calculated based on
gene expression variations between each compound. The squares 670 indicate a perfect
correlation between the compounds, while the square 680 depicts compounds that are the
most dissimilar. Further, the gene expression fingerprints resulting from each drug are
dissimilar, despite the common structural elements, as shown in Figure 6C. This is further
shown with a selection of non-antimicrobial drugs used to treat human diseases, using the
E. coli promoter-GFP fusion library. Transcriptional fingerprints were compiled and
differences between targets visualized; Figure 7A depicts linear discriminant analysis
illustrating clear separations between drug targets. Drugs with the same targets cluster
together, despite bacteria lacking most of these systems. Figure 7B shows chemical
structures of STAT3 inhibitors in the LDA which were used in this study. These
compounds are largely dissimilar in structure and had a minimum inhibitory concentration

of more than 256 pg/mL in MOPS minimal media supplemented with 0.4% glucose. The
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latter finding indicates that these compounds were not inhibitors of the growth of E. coli,
thus they are not targeted to £. coli and are non-inhibitory toward £. coli. This is an
important observation, as it indicates that £. coli will respond to chemicals that are not
directly targeting processes important for viability, but nevertheless are reporting on the
chemical structures themselves. Similarly, Figure 7C shows chemical structures of diverse
adenosine receptor inhibitors in the LDA, which lack antimicrobial activity against £. coli
(minimum inhibitory concentration was greater than 256 pg/mL), yet elicit fingerprints

that cluster together.

[0063] Al approaches can predict drug target of chemicals based on microbial
transcriptional signatures. Using a machine learning approach, transcriptional patterns of
any chemical can be matched to those in the training set. When populated with a diverse
set of therapeutics, testable hypotheses for biological target are produced from such a
learning model. Figure 8A illustrates the model prediction for the NSAID diclofenac: it is
predicted to mimick the anticancer molecule NLG919, a potent inhibitor of the enzyme
IDO (indoleamine-2,3-dioxygenase) of the kynurenine pathway. This prediction was
confirmed with a search of the literature that revealed Shave and coworkers
(doi:10.1021/acsomega.7b02091) had previously shown that diclofenac was a potent
inhibitor of KMO (kynurenine 3-monooxygenase) and the ICsp plot in Figure 8A is
adapted from doi:10.1021/acsomega. 7b602091. Indeed, IDO and KMO both bind
kynurenine compounds. An ICso plot adapted from that work is shown in the figure.
Figure 8B shows how the cephalosporin ceftriaxone is predicted by a deep neural network
to match closely to a STAT3 inhibitor. Here again, the prediction was confirmed with a
search of the literature that revealed findings of a patent document
(KR20070025135A/KR100697312B1) where ceftriaxone was shown to inhibit STAT3.
An ICso plot adapted from that patent document is shown in Figure 8B.
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Conclusion

[0064] The proof of concept research described herein demonstrates that bacterial
responses to exogenous chemicals are not dependent on those chemicals having a cellular
target in bacteria; chemicals which are phenotypically agnostic to the bacteria still elicit a
response. Examining reporter signatures for known antimicrobials resulted in clear
differences between classes. When probed with NSAIDs, the arrays again elicited unique
signatures despite COX enzymes not being present in £. coli. When probed with other
phenotypically agnostic drugs (anticancers, antidepressants, antidiarrheals, etc.), unique
transcriptional signatures were generated despite these targets being absent in £. coli.
These signatures were used to train a machine learning model to predict drug target from
transcriptional fingerprints. Exposing phenotypically agnostic drugs to the training set
predicted anticancer activity of the NSAID diclofenac and STAT3 activity of ceftriaxone.
As such, the machine learning methods described above in respect of Figure 1A, for
example training a neural network using kinetically-acquired fluorescence patterns for a
plurality of unique chemical structures (i.e. a series 128 of time-dependent 130 individual
transcription fingerprints 132 in the microorganism species 106) may enable the prediction
146 of any therapeutic class, as they all elicit a unique pattern. Even if compounds have
activity in more than one class, the output layer of the neural network reports on their
similarity to all classes in the training set, relying on indiscriminate fluorescence responses
from the reporter array. By design, this offers a unique potential for drug repurposing
across class, or even organism. Indeed, drugs approved by the U.S. Food and Drug
Administration or other regulatory bodies have undergone considerable medicinal
chemistry optimization with respect to their toxicity and metabolism; repurposing such
compounds is highly desirable. For example, 5-fluoruracil and 6-mercaptopurine are
FDA-approved therapeutics to treat cancer, yet are also potent inhibitors of nutrient
synthesis in bacteria®®. They cluster amongst other inhibitors of nutrient synthesis in
bacteria, such as BioA inhibitor MAC13772, and tryptophan derivative 5-
methyltryptophan. In one embodiment according to the present disclosure, screening a
large collection of therapeutics using the PFIbox pipeline may continue to build the dataset
used to train the deep-learning model, which can be used to predict biological effect of
subject (test) molecules based on their transcriptional fingerprints. The predicted

biological effect can support development of hypotheses for potential therapeutic use of
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the test molecules. PFIboxes are highly customizable*S, and are well-suited for robotics-
based upscaling to accommodate screening with larger chemical libraries. Moreover, the
transcriptional fingerprints acquired by PFIboxes have been validated with respect to their

36,46

reproducibility”®*, and are inexpensive to operate considering the wealth of data produced
by a single experiment. Ultimately, as demonstrated here microorganisms can respond to
chemical stimuli in their environments, which can be captured as unique and reproducible

signatures, and used to train deep-learning or other suitable machine learning models.

[0065] Deep-learning approaches have also been used in biological mechanism of action
prediction for bioactive chemical queries, typically utilizing imaging techniques®!-3%443,
These approaches implement high-content screening approaches to collect cell and
organelle features from fluorescent stains, to train neural networks. Feature acquisition is
generally limited by the fluorescent probes chosen to screen, and cells eliciting responses
to the chemical probes they are exposed to. Deep-learning models based on images do not
require the typical morphological or intensity calculations necessitated by past quantitative
imaging approaches, but rather jointly leamn features based on multidimensional
micrographs themselves®'. This is in contrast to the reporter library-based methods
described herein, which have features associated with every reporter, but also temporal
features when acquired kinetically. As noted above, preferably the training data 102
comprises a series 128 of time-dependent 130 individual transcription fingerprints 132 in
the microorganism species 106; the time-dependency adds a temporal dimension. The
temporal dimension effectively expands the data that can be associated with a chemical
structure, and the deep leaming model jointly identifies patterns in the data (co-
expression)*®. Where imaging methods may extract > 800 features® associated with a
chemical structure, kinetic transcriptional reporter methods are not as limited. Zoffmann

et al.®!

examined traditional morphological fingerprints after compound exposure in
bacteria, aiming to identify biological mechanism of action for compounds with unknown
target. A series of 15 boronate compounds were used as test compounds, and three of
these compounds were found to have a high similarity score (0.66-0.72) to Fabl inhibitor
triclosan. These three compounds were the only compounds of the series to contain a 2-
sulfonylated diazaborinine structural motif. However, a limitation to looking at diagnostic
morphological features is that some chemicals, such as nitroxoline, will not produce a

distinct morphological fingerprint. In fact, in their work, only five of the 15 borate
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t*1. Using

analogs demonstrated a fingerprint based on the morphology defect they elici
transcriptional information to complement the morphology, nitroxoline resulted in a
transcriptional response that is distinct from other biological mechanism of action classes.
Without promising any particular utility, it is contemplated that these combined datasets
can help guide hit-to-lead campaigns and can be applied to a broad range of biological
problems. Indeed, deep-learning approaches based on whole cell high-content screening
have developed a niche in the biotech sector, but compounds screened require (to date)
activity in an organism of interest to elicit an observable response. Conversely, according
to the present disclosure reporter systems can be agnostic to compound targets, and can

provide unique structure-dependent response patterns that can be used to train neural

networks.

[0066] Alternatively, cheminformatics approaches combine previously obtained
bioactivity with chemical structures, in order to predict activity of like-molecules. This

bioactivity information can be mined from repositories such as the PubChem project’?

or
ChEMBL?, or from other repositories. In the past decade, decision tree-based machine
learning approaches have been popular when coupling machine learning with
cheminformatics. These approaches typically use structure-derived physicochemical
properties information, and have been implemented in predictive toxicology>*, and
biological activity queries. When chemical structures are similar, though, the properties
corresponding to those structures tend to be similar also. This is problematic when
comparing chemical analogs, as the variations in functional group chemistry are not
always strongly reflected in variations in chemical properties. Molecules exist within a
vast chemical space defined by their structures and properties, and while compounds with
similar properties can be identified, they do not always share the same activity. This is
well-reflected in the cefam exploration described herein (Figs. SA and 5B), where despite
structural similarities, cefams listed bind different PBPs, and have different transcriptional
fingerprints. Deep-learning approaches to cheminformatics have attempted to query both
2D and 3D chemical structure inputs>>, but often struggle with data sparsity issues that can
result in data loss. Creative approaches have been proposed to counter the sparsity issues
by using data transforms in the network autoencoder to produce denser data®, a transform

not required by the use of denser transcriptional fingerprints described in the present
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disclosure. Biological signals are currently able to provide richer data for training

networks, and thus have higher predictive potential.

[0067] Overall, the present disclosure provides a methodology for classifying chemical
matter using microbial transcriptional response patterns. This has implications for drug
repurposing, particularly for compounds already approved by regulatory bodies and
optimized for toxicity and/or metabolism. Applications are likewise envisioned for new
chemical leads and entities where responses may be used to confirm or generate new
hypotheses for therapeutic indications. PFIboxes offer a unique means of capturing
detailed transcriptional fingerprints with high temporal resolution; increasing the
dimensionality of the transcriptional data and increasing the likelihood of obtaining unique

patterns for all chemical probes tested.

[0068] As can be seen from the above description, the machine learning and modeling
technology described herein represents significantly more than merely using categories to
organize, store and transmit information and organizing information through mathematical
correlations. The presently described machine learning and modeling technology is in fact
an improvement to the technology of pharmaceutical informatics, as it provides for
classification of subject chemicals according to transcription fingerprint patterns, rather
than according to their structure or physicochemical properties, which, especially when
time-dependent transcription fingerprint patterns are used, can increase the number of
available features for a machine learning model. This facilitates potentially improved
predictive accuracy. Moreover, the machine learning and modeling technology described

herein is confined to pharmaceutical informatics applications.

[0069] The terminology used herein is for the purpose of describing particular
embodiments only and is not intended to be limiting. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as well, unless the context
clearly indicates otherwise. It will be further understood that the terms “comprises™ and/or
“comprising,” when used in this specification, specify the presence of stated features,
integers, steps, operations, elements, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps, operations, elements,

components, and/or groups thereof.
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[0070] The corresponding structures, materials, acts, and equivalents of all means or step
plus function elements in the claims below are intended to include any structure, material,
or act for performing the function in combination with other claimed elements as
specifically claimed. The description has been presented for purposes of illustration and
description, but is not intended to be exhaustive or limited to the form disclosed. Many
modifications and variations will be apparent to those of ordinary skill in the art without
departing from the scope of the claims. The embodiment was chosen and described in
order to best explain the principles of the technology and the practical application, and to
enable others of ordinary skill in the art to understand the technology for various

embodiments with various modifications as are suited to the particular use contemplated.

[0071] One or more currently preferred embodiments have been described by way of
example. It will be apparent to persons skilled in the art that a number of variations and
modifications can be made without departing from the scope of the claims. In construing
the claims, it is to be understood that the use of a computer to implement the embodiments

described herein is essential.
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WHAT IS CLAIMED IS:

1. A computer-implemented method for building a machine learning predictive model

for predicting biological effect of a subject chemical, comprising:

feeding a training dataset to a machine learning engine, wherein the training dataset
comprises known transcription fingerprint patterns in at least one microorganism species
in response to challenge by known chemicals of respective known biological effects in at

least one multicellular animal; and

wherein the known biological effects include effects that are non-inhibitory in the at least

one microorganism species;

building, by the machine learning engine, a model for determining a predicted biological
effect of a subject chemical based on a transcription fingerprint pattern for the subject
chemical in the at least one microorganism species in response to challenge by the subject

chemical;

wherein gene expression reflected in the transcription fingerprint patterns is predictive of

the expected biological effect.

2. The method of claim 1, wherein the known transcription fingerprint patterns in the
training dataset comprise, for each of the known chemicals, a series of time-dependent

individual transcription fingerprints in the at least one microorganism species whereby the
model incorporates time-dependent response by the at least one microorganism species in

response to challenge by the known chemicals.

3. The method of claim 2, wherein, by incorporation in the model of the time-
dependent response, the model has a feature set larger than a number of features associated

with physicochemical properties of the known chemicals.

41



10

15

20

WO 2022/006676 PCT/CA2021/050939

4. The method of claim 3, wherein the model has a feature set larger than a number
of features associated with physicochemical properties of the known chemicals by at least

a factor of two.

5. The method of claim 1, wherein the known chemicals are non-antimicrobial.
6. The method of claim 1, wherein the subject chemicals are non-antimicrobial.
7. The method of claim 1, wherein the known chemicals are not targeted toward the

at least one microorganism species.

8. The method of claim 1, wherein the subject chemicals are not targeted toward the

at least one microorganism species.

9. The method of claim 1, wherein the model is organism-agnostic.

10. The method of claim 1, wherein the known biological effects include effects that

are phenotypically agnostic in the at least one microorganism species.

11. A computer-implemented method for predicting biological effect of a subject

chemical, the method comprising:

obtaining a sample transcription fingerprint pattern for the subject chemical based on
expression of an array of promoters of at least one microorganism species when exposed

to the subject chemical;
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determining a predicted biological effect of the subject chemical based on the transcription

fingerprint pattern for the subject chemical according to a model, wherein:

the model is a machine learning model derived from a training dataset comprising
known transcription fingerprint patterns in the at least one microorganism species
in response to challenge by known chemicals of respective known biological

effects in at least one multicellular animal; and

wherein the known biological effects include effects that are non-inhibitory in the

at least one microorganism species.

12. The method of claim 11, wherein:

the sample transcription fingerprint pattern comprises a series of time-dependent

individual transcription fingerprints in the at least one microorganism species; and

the known transcription fingerprint patterns in the training dataset comprise, for each of
the known chemicals, a series of time-dependent individual transcription fingerprints in

the at least one microorganism species;

whereby the model incorporates time-dependent response by the at least one

microorganism species in response to challenge by the known chemicals.

13. The method of claim 12, wherein, by incorporation in the model of the time-
dependent response, the model has a feature set larger than a number of features associated

with physicochemical properties of the known chemicals.

14. The method of claim 14, wherein the model has a feature set larger than a number
of features associated with physicochemical properties of the known chemicals by at least

a factor of two.
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15. The method of claim 11, wherein the known chemicals are non-antimicrobial.
16. The method of claim 11, wherein the subject chemicals are non-antimicrobial.
17. The method of claim 11, wherein the known chemicals are not targeted toward

the at least one microorganism species.

18. The method of claim 11, wherein the subject chemicals are not targeted toward

the at least one microorganism species.

19. The method of claim 11, wherein the model is organism-agnostic.

20. The method of claim 11, wherein the known biological effects include effects that

are phenotypically agnostic in the at least one microorganism species.

21.  Anything substantially as herein shown or described.
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