
US 20190146786A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0146786 A1

Rahman et al . (43) Pub . Date : May 16 , 2019

(54) DETERMINING THE AVAILABILITY OF
MEMORY OPTIMIZATIONS BY ANALYZING
A RUNNING BINARY

(52) U . S . CI .
CPC G06F 8 / 77 (2013 . 01) ; G06F 370673

(2013 . 01) ; G06F 3 / 0653 (2013 . 01) ; G06F
3 / 0604 (2013 . 01)

(71) Applicant : Facebook , Inc . , Menlo Park , CA (US)

(57) ABSTRACT (72) Inventors : Jason P . Rahman , Seattle , WA (US) ;
Daniel J . Reif , Mountain View , CA
(US)

(21) Appl . No . : 15 / 814 , 156
(22) Filed : Nov . 15 , 2017

Publication Classification
(51) Int . Ci .

G06F 8 / 77 (2006 . 01)
G06F 3 / 06 (2006 . 01)

A copy of memory data content in at least a portion of
computer memory utilized by a computer process during
execution is obtained . An entropy of at least a portion of the
obtained memory data content is determined . A memory
data entropy metric based at least in part on the determined
entropy of at least the portion of the obtained memory data
content is calculated and a computer code portion associated
with the memory data entropy metric is identified .

105

103

Manager Worker

1094
101 A Database

Entropy Scheduler
and Analyzer

Patent Application Publication May 16 , 2019 Sheet 1 of 7 US 2019 / 0146786 A1

Database
109

105

Worker
Figure 1

Entropy Scheduler and Analyzer

101

Manager
103

Patent Application Publication May 16 , 2019 Sheet 2 of 7 US 2019 / 0146786 A1

200

- 201
Processor (s) 210

209
Display

- 203
Memory

211 Network
Interface

w205 Fixed Mass
Storage Device

213 Keyboard
Input Device

- 207 Removable
Mass Storage

Device

215 Pointing Device

Figure 2

Patent Application Publication May 16 , 2019 Sheet 3 of 7 US 2019 / 0146786 A1

301
Perform Baseline

Entropy Evaluations

303 Determine Entropy
Results

305
Analyze Entropy Results

307
Provide Feedback

Figure 3

Patent Application Publication May 16 , 2019 Sheet 4 of 7 US 2019 / 0146786 A1

401
Set Up Entropy
Framework

403
Capture Memory Image

4057
Determine Entropy

407
Store Entropy Results

Figure 4

Patent Application Publication May 16 , 2019 Sheet 5 of 7 US 2019 / 0146786 A1

501 Compress Memory
Image

503 Calculate Entropy Metric

NO

505 Entropy Metric
Meets Criteria ?

YES

5074 Trace Memory
Inefficiency

509
Provide Feedback

Figure 5

Patent Application Publication May 16 , 2019 Sheet 6 of 7 US 2019 / 0146786 A1

601 Perform Baseline
Entropy Evaulation

603 Commit software
changes

605 Build and Perform
Traditional Testing

60

Perform Entropy Testing

6094
Provide Feedback

611
Deploy software

Figure 6

Patent Application Publication May 16 , 2019 Sheet 7 of 7 US 2019 / 0146786 A1

701
Deploy Software

703
Run Software

_ NO 705 Trigger Entropy
Testing ?

YES

707
Perform Entropy Testing
and Provide Feedback

Figure 7

US 2019 / 0146786 A1 May 16 , 2019

DETERMINING THE AVAILABILITY OF
MEMORY OPTIMIZATIONS BY ANALYZING

A RUNNING BINARY

BACKGROUND OF THE INVENTION
[0001] As software is written and developed , the complex
ity of the software typically grows . Each introduction of new
changes and features creates the possibility of breaking
existing features . In many situations , when changes to the
software code base are introduced , the new code base is
compiled and a series of tests are performed on the build .
These tests are run to confirm that the new changes do not
break existing features . New tests may also be introduced to
confirm that the newly introduced features function prop
erly . In some situations and in particular when many differ
ent software developers are working on the same code base ,
it is easy to introduce redundant or duplicative code or data .
In the event redundant or duplicative code or data is intro
duced , the size of the binary may increase significantly and
require additional resources such as more memory . In some
scenarios , a change to the existing code base magnifies an
existing problem associated with redundant or duplicative
code or data . Therefore , there exists a need to help identify
the availability of memory optimizations for a software
program .

BRIEF DESCRIPTION OF THE DRAWINGS
[0002] Various embodiments of the invention are dis
closed in the following detailed description and the accom
panying drawings .
10003] FIG . 1 is a block diagram illustrating an example of
a software development environment for identifying the
availability of memory optimizations .
10004] FIG . 2 is a functional diagram illustrating a pro
grammed computer system for identifying the availability of
memory optimizations .
[0005) FIG . 3 is a flow diagram illustrating an embodi
ment of a process for identifying the availability of memory
optimizations .
[0006] FIG . 4 is a flow diagram illustrating an embodi
ment of a process for determining the entropy of a running
binary .
[0007] FIG . 5 is a flow diagram illustrating an embodi
ment of a process for identifying the availability of memory
optimizations .
[0008] FIG . 6 is a flow diagram illustrating an embodi
ment of a process for identifying the availability of memory
optimizations in a continuous integration environment .
[0009] FIG . 7 is a flow diagram illustrating an embodi
ment of a process for identifying the availability of memory
optimizations for a running binary .

invention . Unless stated otherwise , a component such as a
processor or a memory described as being configured to
perform a task may be implemented as a general component
that is temporarily configured to perform the task at a given
time or a specific component that is manufactured to per
form the task . As used herein , the term ' processor ' refers to
one or more devices , circuits , and / or processing cores con
figured to process data , such as computer program instruc
tions .
[0011] A detailed description of one or more embodiments
of the invention is provided below along with accompanying
figures that illustrate the principles of the invention . The
invention is described in connection with such embodi
ments , but the invention is not limited to any embodiment .
The scope of the invention is limited only by the claims and
the invention encompasses numerous alternatives , modifi
cations and equivalents . Numerous specific details are set
forth in the following description in order to provide a
thorough understanding of the invention . These details are
provided for the purpose of example and the invention may
be practiced according to the claims without some or all of
these specific details . For the purpose of clarity , technical
material that is known in the technical fields related to the
invention has not been described in detail so that the
invention is not unnecessarily obscured .
[0012] Determining the availability of memory optimiza
tions for a running binary is disclosed . For example , an
entropy calculation is performed on a running binary to
determine an entropy metric . The entropy metric may be
calculated by performing an entropy calculation on a copy of
the memory data associated with the binary program and
comparing the result with baseline entropy evaluations . The
entropy metric , along with additional environmental set
tings , is stored and compared to baseline and historic
entropy evaluations . In the event the newly calculated
entropy metric exceeds a threshold based on baseline evalu
ations , a determination is made that there are likely available
memory optimizations . For example , in the event a new
change to a software code base introduces redundant or
duplicative code or data , the entropy calculation on the
running binary will return with a result that the entropy
decreased due to the repetitive characteristics of the newly
introduced code . A trace may be performed to map the areas
of potential memory optimizations back to the computer
code that introduced the memory inefficiency . In this man
ner , a software developer is made aware of the potential of
available memory optimizations and source code locations
where the optimizations may be addressed .
[0013] In some embodiments , a copy of the memory data
in at least a portion of computer memory utilized by a
computer process during execution is obtained . For
example , a running binary associated with a computer
process is associated with a portion of computer memory . A
copy of the portion of the computer memory associated with
the running binary is obtained , for example , by making a
copy of that portion of memory . The entropy of at least a
portion of the obtained memory data content is determined .
For example , an entropy determination is made on one or
more portions of the memory data associated with the
running binary . As one example , an entropy determination
may be performed on the memory data associated with the
text segment of the running binary . In various embodiments ,
an entropy determination may be performed on the memory
data associated with the data segment , stack segment , heap

DETAILED DESCRIPTION
[0010] The invention can be implemented in numerous
ways , including as a process ; an apparatus ; a system ; a
composition of matter ; a computer program product embod
ied on a computer readable storage medium ; and / or a
processor , such as a processor configured to execute instruc
tions stored on and / or provided by a memory coupled to the
processor . In this specification , these implementations , or
any other form that the invention may take , may be referred
to as techniques . In general , the order of the steps of
disclosed processes may be altered within the scope of the

US 2019 / 0146786 A1 May 16 , 2019

segment , or other available memory segment of the running
binary . In some embodiments , the entropy determination is
based on the entire running binary or one or more segments
of memory . In some embodiments , the entropy determina -
tion relies on a compression algorithm to determine the
entropy of the memory segment . For example , the higher the
compression ratio of the binary program the lower the
entropy of the binary program . Based at least in part on the
determined entropy of the obtained memory data content , a
memory data entropy metric is calculated . For example , the
entropy determination is utilized to create an entropy metric .
In various embodiments , an entropy metric is a form of the
entropy determination that is useful for utilizing the entropy
determination to provide feedback to software developers .
For example , the entropy metric may be utilized for com
parison to past entropy metrics . In some embodiments , the
entropy metric is based on the delta of the current entropy
determination with past or baseline entropy determinations .
[0014] In the event the memory data entropy metric meets
a criteria , a computer code portion associated with the
memory data entropy metric is identified . For example , in
the event new changes to the software decrease the entropy
of the binary , the memory data entropy metric may meet a
criteria , such as the current entropy of the running binary
may be less than the average past entropy by a certain
threshold . By not meeting the threshold associated with
average past entropy , a determination is made that a memory
optimization is available . In some embodiments , using a
source code object and / or data structure to memory map
ping , the location of the memory optimization is traced back
to the source code . One or more locations in the source code
and / or locations associated with certain objects or data
structures are identified as potential causes of memory
redundancy and / or duplication . By identifying a computer
code portion associated with the memory data entropy
metric , a software developer has the opportunity to review
specific source code portions for potential memory optimi
zations .
[0015] FIG . 1 is a block diagram illustrating an example of
a software development environment for identifying the
availability of memory optimizations . In various embodi
ments , the entropy metric may be calculated by integrating
an entropy determination into a continuous integration proj
ect and development environment . In some embodiments ,
the entropy calculation is performed on deployed running
binaries outside of a continuous integration environment . In
the example shown , Entropy Scheduler and Analyzer 101
communicates with Manager 103 with Worker 105 . In the
event a new source code check - in is made , Entropy Sched
uler and Analyzer 101 is triggered to measure the entropy of
the new binary associated with the code check - in . In some
embodiments , Entropy Scheduler and Analyzer 101 works
with or is part of a continuous integration environment . In
some embodiments , a continuous integration environment
may utilize Entropy Scheduler and Analyzer 101 to initiate
entropy testing . Once a determination is made to initiate
entropy testing , Entropy Scheduler and Analyzer 101 com
municates with Manager 103 . Manager 103 distributes the
compiled binary and associated tests , which may include
one or more entropy tests along with other traditional tests
such as unit and regression tests . The binary and entropy
tests are distributed by Manager 103 to Worker 105 . In
various embodiments , Worker 105 is a computer system
such as the programmed computer system of FIG . 2 . In some

embodiments , the computer system is a virtualized computer
system . Worker 105 runs the test distributed by Manager 103
on the binary it receives . In various embodiments , the newly
built binary is run on Worker 105 and the entropy of the
binary is measured utilizing Worker 105 . In some embodi
ments , Worker 105 runs a binary instrumented with the code
needed to initiate the execution of the entropy measurement .
In some embodiments , Worker 105 runs a kernel modified to
run the entropy measurement on the process associated with
the running binary . Database 109 is storage for storing the
entropy measurement and other associated results . For
example , the entropy measurement , the build name , the
build time and date , the commit information associated with
the build , and other appropriate data are stored in Database
109 . In some embodiments , identifying characteristics of the
running environment are stored in Database 109 and are part
of the entropy results . In some embodiments , Database 109
is a time series database .
[0016] In the example shown , Entropy Scheduler and
Analyzer 101 further communicates with Database 109 to
retrieve stored entropy measurements . In some embodi
ments , past entropy measurements including baseline
entropy evaluations are stored in Database 109 . Entropy
Scheduler and Analyzer 101 analyzes the entropy of the
running binary on Worker 105 and provides the appropriate
feedback . In the event a memory optimization is determined
to be available , Entropy Scheduler and Analyzer 101 iden
tifies the portion of computer code associated with a poten
tial memory optimization . In some embodiments , Entropy
Scheduler and Analyzer 101 identifies the portion of com
puter code by tracing the location of the memory where the
entropy metric meets a criteria using an object / data structure
to memory mapping . In various embodiments , the tech
niques for tracing the memory optimization to the source
code depend on the source language and environment of the
binary .
[0017] In various embodiments , the running environment
of the binary is stored so that it may be later retrieved and
used for a different binary . For example , the environment
used for a past binary may be restored and used for a new
binary to eliminate the running environment as a source for
memory inefficiencies . In some embodiments , old binaries
may be re - run in a modern environment to calculate an
entropy for the old binary using the different running envi
ronment .
0018] . In some embodiments , past results are viewed over
time to determine an entropy trend . In some scenarios , the
initial introduction of inefficient source code is difficult to
detect due to the small change in entropy . However , as the
inefficient source code is increasingly utilized , the magni
tude of the inefficiency often increases . By viewing the
change in entropy over time , an inflection point can be
determined that corresponds to the initial introduction of the
inefficient source code . Moreover , the inflection point is
used to identify the original commit corresponding to the
introduction of the inefficient source code . In some embodi
ments , feedback is provided to the software developer on the
location of the source code where the memory inefficiency
is introduced .
[0019] As shown in FIG . 1 , the software development
environment of FIG . 1 may include multiple managers such
as Manager 103 and multiple workers such as Worker 105 .
For example , additional instances of a worker may be
available for running one or more tests simultaneously .

US 2019 / 0146786 A1 May 16 , 2019

Similarly , one or more instances of a manager may be
available for distributing binaries and tests for multiple
workers . In some embodiments , Database 109 may be one or
multiple storage mediums such as multiple databases and / or
distributed databases .
[0020] FIG . 2 is a functional diagram illustrating a pro
grammed computer system for identifying the availability of
memory optimizations . As will be apparent , other computer
system architectures and configurations can be used for
determining the availability of memory optimizations by
analyzing a running binary . In some embodiments , computer
system 200 is a virtualized computer system providing the
functionality of a physical computer system . Computer
system 200 , which includes various subsystems as described
below , includes at least one microprocessor subsystem (also
referred to as a processor or a central processing unit (CPU))
201 . For example , processor 201 can be implemented by a
single - chip processor or by multiple processors . In some
embodiments , processor 201 is a general purpose digital
processor that controls the operation of the computer system
200 . Using instructions retrieved from memory 203 , the
processor 201 controls the reception and manipulation of
input data , and the output and display of data on output
devices (e . g . , display 209) . In some embodiments , processor
201 includes and / or is used to provide functionality for
determining an entropy of a running binary and identifying
available memory optimizations . In some embodiments ,
computer system 200 is used to provide elements 101 , 103 ,
and / or 105 of FIG . 1 . In some embodiments , processor 201
performs the processes described below with respect to
FIGS . 3 - 7 .
[0021] Processor 201 is coupled bi - directionally with
memory 203 , which can include a first primary storage ,
typically a random access memory (RAM) , and a second
primary storage area , typically a read - only memory (ROM) .
As is well known in the art , primary storage can be used as
a general storage area and as scratch - pad memory , and can
also be used to store input data and processed data . Primary
storage can also store programming instructions and data , in
the form of data objects and text objects , in addition to other
data and instructions for processes operating on processor
201 . Also as is well known in the art , primary storage
typically includes basic operating instructions , program
code , data , and objects used by the processor 201 to perform
its functions (e . g . , programmed instructions) . For example ,
memory 203 can include any suitable computer - readable
storage media , described below , depending on whether , for
example , data access needs to be bi - directional or uni
directional . For example , processor 201 can also directly and
very rapidly retrieve and store frequently needed data in a
cache memory (not shown) .
[0022] A removable mass storage device 207 provides
additional data storage capacity for the computer system
200 , and is coupled either bi - directionally (read / write) or
uni - directionally (read only) to processor 201 . For example ,
storage 207 can also include computer - readable media such
as flash memory , portable mass storage devices , magnetic
tape , PC - CARDS , holographic storage devices , and other
storage devices . A fixed mass storage 205 can also , for
example , provide additional data storage capacity . Common
examples of mass storage 205 include flash memory , a hard
disk drive , and an SSD drive . Mass storages 205 , 207
generally store additional programming instructions , data ,
and the like that typically are not in active use by the

processor 201 . Mass storages 205 , 207 may also be used to
store user - generated content and digital media for use by
computer system 200 . It will be appreciated that the infor
mation retained within mass storages 205 and 207 can be
incorporated , if needed , in standard fashion as part of
memory 203 (e . g . , RAM) as virtual memory .
[0023] In addition to providing processor 201 access to
storage subsystems , bus 210 can also be used to provide
access to other subsystems and devices . As shown , these can
include a display 209 , a network interface 211 , a keyboard
input device 213 , and pointing device 215 , as well as an
auxiliary input / output device interface , a sound card , speak
ers , additional pointing devices , and other subsystems as
needed . For example , the pointing device 215 can be a
mouse , stylus , track ball , or tablet , and is useful for inter
acting with a graphical user interface .
[0024] The network interface 211 allows processor 201 to
be coupled to another computer , computer network , or
telecommunications network using one or more network
connections as shown . For example , through the network
interface 211 , the processor 201 can receive information
(e . g . , data objects or program instructions) from another
network or output information to another network in the
course of performing method / process steps . Information ,
often represented as a sequence of instructions to be
executed on a processor , can be received from and outputted
to another network . An interface card or similar device and
appropriate software implemented by (e . g . , executed / per
formed on) processor 201 can be used to connect the
computer system 200 to an external network and transfer
data according to standard protocols . For example , various
process embodiments disclosed herein can be executed on
processor 201 , or can be performed across a network such as
the Internet , intranet networks , or local area networks , in
conjunction with a remote processor that shares a portion of
the processing . Additional mass storage devices (not shown)
can also be connected to processor 201 through network
interface 211 .
[0025] An auxiliary I / O device interface (not shown) can
be used in conjunction with computer system 200 . The
auxiliary I / O device interface can include general and cus
tomized interfaces that allow the processor 201 to send and ,
more typically , receive data from other devices such as
microphones , touch - sensitive displays , transducer card read
ers , tape readers , voice or handwriting recognizers , biomet
rics readers , cameras , portable mass storage devices , and
other computers .
10026] In addition , various embodiments disclosed herein
further relate to computer storage products with a computer
readable medium that includes program code for performing
various computer - implemented operations . The computer
readable medium is any data storage device that can store
data which can thereafter be read by a computer system .
Examples of computer - readable media include , but are not
limited to , all the media mentioned above and magnetic
media such as hard disks , floppy disks , and magnetic tape ;
optical media such as CD - ROM disks ; magneto - optical
media such as optical disks ; and specially configured hard
ware devices such as application - specific integrated circuits
(ASICs) , programmable logic devices (PLDs) , and ROM
and RAM devices . Examples of program code include both
machine code , as produced , for example , by a compiler , or
files containing higher level code (e . g . , script) that can be
executed using an interpreter .

US 2019 / 0146786 A1 May 16 , 2019

[0027] The computer system shown in FIG . 2 is but an
example of a computer system suitable for use with the
various embodiments disclosed herein . Other computer sys
tems suitable for such use can include additional or fewer
subsystems . In addition , bus 210 is illustrative of any
interconnection scheme serving to link the subsystems .
Other computer architectures having different configurations
of subsystems can also be utilized .
[0028] FIG . 3 is a flow diagram illustrating an embodi
ment of a process for identifying the availability of memory
optimizations . In some embodiments , the process of FIG . 3
is initiated by and / or implemented by Entropy Scheduler and
Analyzer 101 , Manager 103 , and Worker 105 of FIG . 1 . In
various embodiments , the process of FIG . 3 may be used to
identify the availability of memory optimizations by deter
mining the entropy of a running binary . By comparing the
entropy of a running binary to entropy results of past
binaries , a determination is made on whether memory opti
mizations are available . For example , a new binary with a
lower entropy than past binaries indicates that the new
binary is not as efficient in its use of memory and / or contains
more redundant or duplicative data . Feedback on whether
memory optimizations are available is provided to the
software developer to aid in identifying inefficient use of
memory .
0029 . In the example shown , at 301 , baseline entropy
evaluations are performed . In various embodiments , base
line entropy evaluations are performed to use as a baseline
for comparing new binaries . In some embodiments , one or
more binaries are used to create a baseline entropy evalua
tion . An ideal binary may be a program written in the same
programming language and targeted to run in the same
environment as new binaries . The ideal binary is a well
designed non - trivial binary created using similar design
principles as new binaries . In some embodiments , ideal
binaries are developed using the same software techniques ,
design patterns , and / or language as the new binaries to be
tested . In some embodiments , more than one ideal binary is
created . Once one or more ideal binaries are created , the
entropy of the binaries is calculated to determine a baseline
evaluation . In various embodiments , the baseline entropy
evaluations generate a range , instead of a specific entropy ,
that is appropriate for identifying available memory optimi
zations .
[0030] At 303 , entropy results are determined for a new
binary . For example , entropy results are determined for a
binary to identify potential memory optimizations . In some
embodiments , the binary is built when source code changes
are committed to a software project . For example , when a
software source code check - in is committed to a source code
repository , a continuous integration environment , such as the
software development environment of FIG . 1 , builds a
binary that reflects the new state of the source code reposi
tory . The binary is run and unit and regression tests are
performed . In various embodiments , as part of a continuous
integration environment , entropy testing is performed . In
various embodiments , the entropy results include both a
measurement of the entropy of the binary and additional
entropy results such as the running environment of the
binary and a source code commit identifier to map the binary
to source code changes . In some embodiments , the entropy
results are determined using the binary running on Worker
105 and stored in Database 109 of FIG . 1 .

[0031] At 305 , the entropy results are analyzed . For
example , the entropy of the binary calculated at 303 may be
compared to the baseline entropy evaluations performed at
301 . In some embodiments , an entropy metric is determined
based on the entropy results . For example , in some embodi
ments , an entropy metric is calculated that corresponds to
the change in entropy between the current binary and
baseline evaluations . In the event the metric meets a certain
criteria , a determination is made that memory optimizations
are available . In the event the metric does not meet a certain
criteria , a determination is made that the new changes to the
source code did not introduce and / or reveal inefficient use of
memory . In some embodiments , the criteria compares
whether the entropy of the new binary is lower by a
threshold amount from the baseline entropy evaluations . In
some embodiments , the criteria compares whether the
decrease in entropy between the new binary and baseline
entropy evaluations exceeds a threshold amount . In various
embodiments , depending on the entropy metric and thresh
olds utilized for the criteria determinations , the entropy
metric may be a measure of entropy of the binary and / or the
change in entropy of the binary from a baseline and / or past
evaluation . In some embodiments , the entropy results are
analyzed by Entropy Scheduler and Analyzer 101 of FIG . 1 .
[0032] At 307 , feedback is provided . In some embodi
ments , the feedback is provided directly to the software
developer . In some embodiments , the feedback may be first
written to a log associated with the source code check - in and
subsequent build and test results . In various embodiments ,
the feedback includes a determination of the entropy of the
source code and / or the availability of memory optimiza
tions . For example , in the event significant redundant source
code is introduced to a project , the entropy of the binary
would decrease significantly such that the binary of the
project meets the criteria that results in a determination that
the source code contains available memory optimizations .
The feedback provided at 307 may include a warning that
memory optimizations are available . In some embodiments ,
the entropy results , entropy analysis , and / or entropy feed
back is stored , for example , in a database , such as Database
109 of FIG . 1 .
[0033] In some embodiments , the process of FIG . 3 is
applied in the context of a core dump . For example , when a
binary dumps core , the core can be transported off the
working machine . In some embodiments , the core is trans
ported over a network and processed off - site from the
working machine . Once the core is transported , available
memory optimizations can be identified on the core using
the process of FIG . 3 . For example , entropy results can be
determined for the core , the results analyzed , and feedback
provided based on the results .
[0034] FIG . 4 is a flow diagram illustrating an embodi
ment of a process for determining the entropy of a running
binary . In some embodiments , the process of FIG . 4 is
initiated by and / or implemented by Entropy Scheduler and
Analyzer 101 , Manager 103 , and Worker 105 of FIG . 1 . In
some embodiments , the process of FIG . 4 is utilized by the
process of FIG . 3 to determine entropy results of a running
binary . In various embodiments , the process of FIG . 4
determines the entropy of a running binary by capturing and
running an entropy calculation on a memory image associ
ated with the running binary . In various embodiments , the
entropy results are stored in a database such as Database 109
of FIG . 1 .

US 2019 / 0146786 A1 May 16 , 2019

[0035] In the example shown , at 401 , the framework
necessary for determining the entropy of the binary is set up .
In some embodiments , the binary to be tested is instru
mented to run the entropy testing code . For example , the
new binary may contain hooks to call the entropy test code
similar to hooks for unit and regression testing . In some
embodiments , the entropy is measured from the perspective
of the kernel . For example , the new binary has an associated
process identifier . The kernel is able to capture the memory
image of the new binary to determine the entropy of the
binary . In some embodiments , the kernel identifies the
running binary using the process identifier of the binary . In
some embodiments , existing hooks for process startup ,
shutdown , and other key events are utilized for determining
the entropy of the binary .
[0036] In various embodiments , the entropy framework
includes settings for configuring the entropy testing . For
example , in some embodiments , settings exist for enabling
or disabling the inclusion of copy - on - write memory portions
in the entropy calculation . In some embodiments , shared
memory segments may be included or excluded . In some
embodiments , different memory segments , such as the text ,
heap , stack , and / or data segments , among others , may be
included or excluded . In some embodiments , different
memory segments may be configured to use different dic
tionaries for calculating entropy . In some embodiments ,
settings may be configured to include or exclude memory
mapped files . In some embodiments , the granularity of the
memory block size can be configured . For example , the
entropy calculation may be configured to use a 128 byte
block , a 4K byte block , or other appropriate block size and
the appropriate dictionary based on the block size . In various
embodiments , one or more shared libraries may be included
or excluded . For example , the analysis may be configured to
include one or more shared libraries in the binary being
analyzed .
[0037] In some embodiments , settings are used to config
ure the timing of when the entropy testing should be
performed . For example , the timing may be configured to
test the entropy of a running binary at a particular execution
point (i . e . , startup , shutdown , etc .) , at a specific time of the
day , based on processor utilization , based on user load , or
based on other appropriate timing or events . In various
embodiments , the settings may be configured on a test - by
test basis , based on the binary , and / or based on the run
environment . In various embodiments , the framework set
tings are stored with the entropy results in a database such
as Database 109 of FIG . 1 and may be retrieved later for
additional testing .
[0038] At 403 , a memory image of the running binary is
captured . In some embodiments , the entire memory image
associated with the binary is captured . In various embodi
ments , only certain segments of the running binary , such as
the text segment , are captured . In some embodiments , the
memory segment captured is based on the settings config
ured at 401 .
0039] At 405 , the entropy of the captured memory or a
portion of the captured memory is determined . For example ,
in the event the entire memory of the binary is captured , in
some embodiments , the entropy of only a portion of the
memory , such as the text segment , is measured . In some
embodiments , the entropy of one or more segments of
memory is measured separately . For example , a dictionary is
created for the text segment of the binary and used to

determine the entropy of the text segment by running a
compression algorithm using the text segment dictionary . A
separate dictionary may be created for a data segment and
used to run a compression algorithm on the data segment . By
utilizing different dictionaries for different segments , the
entropy of each segment may be compared to the past
entropy of the same segment without influence from other
memory segment types . In various embodiments , an entropy
measurement is calculated using an entropy algorithm . In
some embodiments , the entropy algorithm is a compression
algorithm . A high compression ratio for a memory segment
corresponds to the memory segment having low entropy .
Similarly , a low compression ratio corresponds to having
high entropy .
[0040] At 407 , the entropy results are stored . In some
embodiments , the results are stored in a database , such as a
time series database . In some embodiments , the results are
stored in a database such as Database 109 of FIG . 1 . In
various embodiments , the entropy results are not limited to
the entropy measurements and include information corre
sponding to the environment and build of the binary . For
example , the entropy results may include a commit identifier
associated with the binary , the author of the commit , the
build environment , and the running environment such as the
operating system and hardware specifications , among other
parameters . In some embodiments , the running environment
is stored such that the entropy of later binaries can be
calculated using the same environment . Moreover , the
entropy of the current environment may be compared to the
entropy of past binaries that used the same environment .
[0041] FIG . 5 is a flow diagram illustrating an embodi
ment of a process for identifying the availability of memory
optimizations . In some embodiments , the process of FIG . 5
is performed by the software development environment of
FIG . 1 . In some embodiments , the process of FIG . 5 relies
on the processes or portions of the processes of FIGS . 3 and
4 to determine the entropy of a binary and available memory
optimizations .

[0042] In the example shown , at 501 , a memory image is
compressed . In some embodiments , the memory image is
the memory image captured at 403 of FIG . 4 . In various
embodiments , a compression algorithm is used to determine
the entropy of the memory . For example , a compression
algorithm such as the one utilized by the gzip program may
be used to determine the entropy of a binary . The reliance on
a compression algorithm is based on the determination that
a higher compression ratio reflects a lower entropy . Simi
larly , a binary with a memory image that contains more
redundant and / or duplicative data has a lower entropy than
a binary with a memory image that contains no redundant
and / or duplicative data . In some embodiments , an entropy
algorithm may be used that is not a compression algorithm .
[0043] At 503 , an entropy metric is calculated . In some
embodiments , an entropy metric is based on the compres
sion ratio of the memory image compressed at 501 . In
various embodiments , the entropy metric is based on the
compression ratio and converted into an entropy metric . For
example , a high compression ratio results in a low entropy
while a low compression ratio results in a high entropy for
the binary image . In some embodiments , the entropy metric
is a delta , that is , a change in entropy , between the entropy
of the new binary and the baseline entropy . For example , the
change between the entropy of the new binary and one or
more past binaries is used to determine the entropy metric .

US 2019 / 0146786 A1 May 16 , 2019

In various embodiments , the baseline requires the entropy
must be determined from a past binary run in the same
environment . For example , the deltas between the entropy of
the binaries running in the same or similar environments are
used to remove the influence that different software and
hardware environmental variables may contribute to the
entropy measurements . In most scenarios , the ideal entropy
of the new binary , where no memory inefficiencies are
introduced , occurs when the new binary maintains the same
entropy of past binaries or has a greater entropy compared
to past binaries . In various embodiments , an entropy metric
is calculated that corresponds to the entropy of the memory
compressed at 501 .
[0044] At 505 , a determination is made on whether the
entropy metric meets a certain criteria . In the event that the
criteria is met , processing continues to 507 . In the event that
the criteria is not met , processing continues to 509 . In the
scenario where the entropy metric is a delta between current
and baseline entropies , the criteria compares the entropy
metric to a threshold . In the event the entropy metric , which
represents a change in entropy , is lower by a threshold
amount then the criteria of 505 is satisfied and a determi
nation is made that the memory image has available memory
optimizations and processing continues to 507 . This sce
nario represents the situation where the entropy of the new
binary is a threshold amount below the baseline . In the event
the entropy metric is not lower by a threshold amount then
the criteria is not satisfied and a determination is made that
the memory image does not have available memory opti
mizations and processing continues to 509 . This scenario
represents the situation where the entropy of the new binary
is similar or higher than the baseline evaluations . In various
embodiments , the threshold may be a range rather than a
specific cut off point . For example , the threshold may consist
of multiple ranges that represent : no memory optimizations ,
some memory optimizations may be available , and high
likelihood that memory optimizations are available . In vari
ous embodiments , the thresholds are calculated by using
past baseline evaluations and entropy calculations for well
designed non - trivial binaries created using similar design
principles as new binaries .
[0045] In various embodiments , the entropy metric may
represent an entropy of the memory and not a delta entropy
between the memory and baseline evaluation . In this sce
nario , the entropy metric may be compared to the baseline
entropy metric and in the event the entropy metric is lower
than the baseline entropy metric by a threshold amount , then
the criteria of 505 is met and a determination is made that
memory optimizations are available and processing contin
ues to 507 . In the event the entropy metric is not lower than
the baseline entropy metric by a threshold amount , then the
criteria of 505 is not met and a determination is made that
memory optimizations are not available and processing
continues to 509 .
[0046] In some embodiments , the entropy metric calcu
lated at 503 is the entropy of the memory image and the
baseline evaluations represent the entropy of a well - de
signed program . In this scenario , the criteria of 505 is met
when the entropy of the binary drops below a threshold
amount compared to baseline entropy . In various embodi
ments , different memory segments may have different asso
ciated criteria based on the properties and use of the memory
segment . For example , the text memory segment and heap

memory segment of a binary have different properties that
may result in different entropy baselines .
[0047] At 507 , a trace is performed to map one or more
memory inefficiencies to source code . Processing reaches
507 in the event that the criteria of 505 is met and a
determination is made that memory optimizations are avail
able . In some embodiments , the trace is performed by
leveraging a source code object and / or data structure to
memory mapping . For example , a trace may be performed
by traversing an object graph to determine the location of the
memory inefficiency . In various embodiments , different
memory block sizes are utilized for tracing a potential
memory optimization to source code . In various environ
ments and languages , different trace techniques are utilized
to map a low entropy memory area to source code . For
example , certain C + + applications include symbol data
and / or debug data for mapping the memory location to
source code . In some embodiments , a garbage collection
framework is utilized to trace back the memory inefficiency
to source code . By identifying the portion of source code
that is the cause of the memory inefficiency , a software
developer can inspect the source code to determine whether
the inefficiency is intentional and warranted . In the event the
inefficiency is not intended , the software developer is pro
vided with the location of the inefficiency and can imple
ment changes to address the issue .
[0048] At 509 , the feedback from the entropy analysis is
presented . For example , in the event that a trace is per
formed , the output includes trace information identifying the
source code portions associated with memory optimizations .
In the event that an entropy threshold is not exceeded , the
feedback may include the entropy of the binary and a
message that the binary has passed the entropy test . In
various embodiments , the amount and exact output of the
feedback may be configured . In various embodiments , the
feedback along with feedback results are stored in a database
such as Database 109 of FIG . 1 .
[0049] FIG . 6 is a flow diagram illustrating an embodi
ment of a process for identifying the availability of memory
optimizations in a continuous integration environment . In
some embodiments , the process of FIG . 6 relies on the
software development environment of FIG . 1 . In some
embodiments , the process of FIG . 6 utilizes the processes of
FIGS . 3 , 4 , and 5 to determine entropy results of a running
binary . In various embodiments , the process of FIG . 6 is
used to implement entropy testing in a continuous integra
tion environment . As software is developed and changes are
committed to the source code project , entropy tests are
performed to help identify the availability of memory opti
mizations . Moreover , results of each entropy test may be
stored to create a history of entropy results that may be used
to trace back the introduction of memory inefficiencies .
[0050] In the example shown , at 601 , a baseline entropy
evaluation is performed . In some embodiments , baseline
evaluations are performed as described with respect to 301
of FIG . 3 . At 603 , software changes are committed . For
example , a software developer checks in source code
changes to a software project . These changes may contain
additional code , which may introduce memory inefficien
cies . In some embodiments , the changes may not introduce
errors but instead magnify existing memory inefficiencies .
For example , in the event an existing data structure contains
duplicative or redundant code , new additional fields to the
data structure will magnify the inefficiencies . At 605 , the

US 2019 / 0146786 A1 May 16 , 2019

software project is built and traditional testing is performed .
For example , as part of the continuous integration process ,
a check - in triggers the compilation of the new source code .
The compiled binary is run against unit and regression tests .
At 607 , entropy testing is performed on the new binary . In
various embodiments , the binary is run and the entropy
associated with a memory segment of the binary is deter
mined . The entropy of the binary is compared to a baseline
entropy evaluation to determine whether an entropy metric
meets a certain criteria . In the event the criteria is met , a
determination is made that the new binary contains available
memory optimizations . In some embodiments , the memory
optimizations are traced back to a source code location . At
609 , feedback is provided . In various embodiments , feed
back on the entropy results is provided . For example , in the
event memory optimizations are available , feedback may
include a source code portion responsible for the memory
inefficiencies . In various embodiments , the entropy of the
binary is presented and / or the availability of memory opti
mizations is presented . In various embodiments , unlike
traditional unit and regression tests , the entropy test does not
fail and result in a failed deployment . Instead , the entropy
test indicates to the developer whether or not it may be
beneficial to investigate potential memory optimizations . At
611 , the software is deployed . For example , a binary that has
passed unit and regression testing and that has had entropy
testing performed on it is deployed . In various embodiments ,
a binary is deployed regardless of whether memory optimi
zations are available . In some embodiments , the binary is
deployed in stages . For example , the binary may be first
deployed to a small set of users to test functionality of the
binary with a smaller scale of users . In various embodi
ments , software may be deployed using other techniques as
appropriate .
[0051] FIG . 7 is a flow diagram illustrating an embodi
ment of a process for identifying the availability of memory
optimizations for a running binary . In some embodiments ,
the process of FIG . 7 utilizes the processes of FIGS . 3 , 4 , and
5 to determine entropy results of a running binary . In various
embodiments , the process of FIG . 7 is used to implement
entropy testing on a deployed running binary . For example ,
in some scenarios , an application may have a long extended
running life and is a good candidate for shutting down and
restarting . Although the entire application may not be shut
down , portions of the running application may be modified
and upgraded . The process of FIG . 7 may be utilized to test
a running binary for the availability of memory optimiza
tions . In some embodiments , the entropy of the binary is
measured from the perspective of the operating system
kernel .
[0052] In the example shown , at 701 , the software is
deployed . For example , a long running application , such as
a financial database for tracking all of a bank ' s transactions ,
is deployed . In various embodiments , the binary is deployed
to one or more servers . At 703 , the software is run . For
example , once the software is deployed , it is executed . In
some embodiments , the nature of the software does not
allow the software to be readily shutdown and thus the
entropy of the binary must be calculated while running .
[0053] At 705 , a determination is made as to whether
entropy testing is triggered . In the event entropy testing
should be triggered , processing continues to 707 . In the
event entropy testing should not be triggered , processing
continues to 703 and the binary continues to run without

interruption . In various embodiments , entropy testing is
triggered by key events . For example , key events may
include process startup and shutdown , prior to and / or after
garbage collection is performed , at a specific time of the day ,
based on processor utilization , based on user load , or based
on another appropriate time or event . As an example ,
entropy testing may be triggered when user load is below a
certain metric and testing would have minimal impact on
users . As another example , entropy testing may be triggered
when processor and / or memory utilization is minimized . In
some embodiments , an administrator triggers entropy test
ing . For example , the testing may be triggered after a key
administrative event is complete .
[0054] At 707 , entropy testing is performed based on the
triggering event at 705 and feedback is provided . In various
embodiments , entropy testing includes providing feedback
on the entropy results and / or storing the results in a database .
In some embodiments , entropy testing is performed and
feedback provided using the processes described with
respect to FIGS . 3 - 5 . Once entropy testing is complete and
feedback is provided , processing continues to 703 and the
binary continues to run without interruption .
[0055) Although the foregoing embodiments have been
described in some detail for purposes of clarity of under
standing , the invention is not limited to the details provided .
There are many alternative ways of implementing the inven
tion . The disclosed embodiments are illustrative and not
restrictive .
What is claimed is :
1 . A method , comprising :
obtaining a copy of memory data content in at least a

portion of computer memory utilized by a computer
process during execution ;

determining an entropy of at least a portion of the
obtained memory data content ;

calculating a memory data entropy metric based at least in
part on the determined entropy of at least the portion of
the obtained memory data content ;

determining that the memory data entropy metric indi
cates a potential memory optimization ; and

identifying a computer code portion associated with the
potential memory optimization .

2 . The method of claim 1 , wherein the computer code
portion associated with the potential memory optimization
was identified in response to a determination that the
memory data entropy metric meets a criterion .

3 . The method of claim 2 , wherein the criterion is based
on an entropy threshold range .

4 . The method of claim 1 , wherein the portion of the
obtained memory data content corresponds to a text seg
ment , a data segment , a stack segment , or a heap segment of
the computer process .

5 . The method of claim 1 , wherein calculating the
memory data entropy metric utilizes a compression algo
rithm .

6 . The method of claim 1 , wherein calculating the
memory data entropy metric is based on a configuration that
includes settings for enabling or disabling copy - on - write
memory portions , shared memory segments , or memory
mapped files .

7 . The method of claim 1 , wherein the calculating of the
memory data entropy metric is performed using a continu
ous integration environment .

ate

US 2019 / 0146786 A1 May 16 , 2019

8 . The method of claim 1 , wherein the calculating of the
memory data entropy metric is performed from a perspective
of an operating system kernel .

9 . The method of claim 1 , wherein the calculating of the
memory data entropy metric utilizes an operating system
kernel hook .

10 . The method of claim 1 , further comprising performing
a baseline entropy evaluation .

11 . The method of claim 10 , wherein the baseline entropy
evaluation utilizes a non - trivial binary created using similar
design principles as the computer process .

12 . The method of claim 10 , wherein the baseline entropy
evaluation utilizes a running environment matching the
computer process .

13 . The method of claim 10 , wherein calculating the
memory data entropy metric further comprises comparing
the memory data entropy metric to the baseline entropy
evaluation .

14 . The method of claim 1 , further comprising storing the
memory data entropy metric and a commit identifier corre
sponding to a source code change for the computer process
in a database .

15 . The method of claim 1 , wherein identifying the
computer code portion associated with the potential memory
optimization utilizes an object to memory mapping .

16 . The method of claim 1 , wherein identifying the
computer code portion associated with the potential memory
optimization utilizes a garbage collection data structure .

17 . The method of claim 1 , wherein calculating the
memory data entropy metric utilizes a dictionary based on a
memory segment type .

18 . The method of claim 17 , wherein the memory segment
type includes one of a text segment , a data segment , a stack
segment , or a heap segment .

19 . A system comprising :
a processor ; and
a memory coupled with the processor , wherein the
memory is configured to provide the processor with
instructions which when executed cause the processor
to :
obtain a copy of memory data content in at least a

portion of computer memory utilized by a computer
process during execution ;

determine an entropy of at least a portion of the
obtained memory data content ;

calculate a memory data entropy metric based at least
in part on the determined entropy of at least the
portion of the obtained memory data content ;

determine that the memory data entropy metric indi
cates a potential memory optimization ; and

identify a computer code portion associated with the
the potential memory optimization .

20 . A computer program product , the computer program
product being embodied in a non - transitory computer read
able storage medium and comprising computer instructions
for :

obtaining a copy of memory data content in at least a
portion of computer memory utilized by a computer
process during execution ;

determining an entropy of at least a portion of the
obtained memory data content ;

calculating a memory data entropy metric based at least in
part on the determined entropy of at least the portion of
the obtained memory data content ;

determining that the memory data entropy metric indi
cates a potential memory optimization ; and

identifying a computer code portion associated with the
the potential memory optimization .

* * * * *

