wO 2021/061820 A1 | NI 0000 KA 0000 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

>~

> 100 OO0 0

% (10) International Publication Number

WO 2021/061820 Al

01 April 2021 (01.04.2021) WIPOIPCT

(51) International Patent Classification:

(71) Applicant: AMAZON TECHNOLOGIES, INC.

GO6F 21/62 (2013.01) GOG6F 9/50 (2006.01) [US/US]; PO Box 81226, Seattle, Washington 98108-1226
GO6F 9/455 (2018.01) GO6F 16/182 (2019.01) (US).

(21) International Application Number:

(72) Inventors: DATTA, Ramyanshu; c/o Amazon Technolo-

PCT/US2020/052280 gies, Inc., 410 Terry Avenue North, Seattle, Washing-

(22) International Filing Date:

23 September 2020 (23.09.2020)

(25) Filing Language:

ton 98109-5210 (US). HARRIS, Timothy Lawrence; c/o
Amazon Technologies, Inc., 410 Terry Avenue North, Seat-
tle, Washington 98109-5210 (US). MILLER, Kevin C.; c/o

English Amazon Technologies, Inc., 410 Terry Avenue North, Seat-

tle, Washington 98109-5210 (US).

(26) Publication Language: English
L. (74) Agent: SEELIG, Melanie J.; Knobbe Martens Olson &
(30) Priority Data: Bear LLP, 2040 Main Street, Fourteenth Floor, [rvine, Cal-
16/586,816 27 September 2019 (27.09.2019) US ifornia 92614 (US).
16/586,818 27 September 2019 (27.09.2019) US
16/586,825 27 September 2019 (27.09.2019) US (81) Designated States (unless otherwise indicated, for every
i . . L. kind of national protection available). AE, AG, AL, AM,
(63) Related by ct.)ntlnuat.lon.(CON) or continuation-in-part AO, AT. AU, AZ. BA, BB, BG, BH. BN, BR, BW, BY, BZ.
(CIP) to earlier applications: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
US 16/586.816 (CON) DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT, HIN,
Filed on 27 September 2019 (27.09.2019) HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
Us 16/586,818 (CON) KP, KR, KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD,
Filed on 27 September 2019 (27.09.2019) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
us 16/586,825 (CON) NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
Filed on 27 September 2019 (27.09.2019) SA, SC, 8D, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,

TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(54) Title: ON-DEMAND CODE OBFUSCATION OF DATA IN INPUT PATH OF OBJECT STORAGE SERVICE

706
oy’ VO PATH IMPLEMENTATION '\
L ROUTINE)

792 l
N

OBTAIN REQUEST FOR APPLYING
VO METHQD T0 INPUT DATA

704 l

PN

DETERMINE MANTPULATIONS TN
YO PATIT

!

706 PASS INPUT DATA TO INITIAL
N DATA MANIPULATION OF /O
PATH

768 i

Ny
MORE
fzs—(@fll’lluﬂl()>v NO

e

PASS QUTPUT OF 710
PRIOR —

MANIPULATION TO 7iz

NEXT MANIPULATION APPLY CALLED YO

METHOGD TO QUIPUy
OF PRIOR
MANIFULATION

714

Fig. 7

END ROUTINE

(57) Abstract: Input and output (I/O) to an object storage service are modified
by implementing one or more owner-specified functions to I/O requests. A
function can implement a data manipulation, such as filtering out sensitive
data before reading or writing the data. The functions can be applied prior
to implementing a request method (e.g., GET or PUT) specified within the I/
O request, such that the data to which the method is applied my not match
the object specified within the request. For example, a user may request to
obtain (e.g., GET) a data set. The data set may be passed to a function that
filters sensitive data to the data set, and the GET request method may then
be applied to the output of the function. In this manner, owners of objects on
an object storage service are provided with greater control of objects stored
or retrieved from the service.

[Continued on next page]

WO 20217061820 A1 |10} 00 A0 00O O 0 O

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

WO 2021/061820 PCT/US2020/052280

ON-DEMAND CODE OBFUSCATION OF DATA IN INPUT PATH OF
OBIECT STORAGE SERVICE

BACKGROUND

{0001} Computing devices can utilize communication networks to exchange data.
Companies and organizations operate computer networks that interconnect a number of
computing devices to support operations or to provide services to third parties. The computing
devices can be located in a single geographic location or located in multiple, distinct
geographic locations (e g., iterconnected via private or public communication networks).
Specifically, data centers or data processing centers, herein generally referred to as a “data
center,” may include a number of interconnected computing systems to provide computing
resources to users of the data center. The data centers may be private data centers operated on
behalf of an organization or public data centers operated on behalf, or for the benefit of, the
general publhic.

[0002] To facilitate increased utilization of data center resources, virtualization
technologies allow a single physical computing device to host one or more instances of virtual
machines that appear and operate as independent computing devices to users of a data center.
With virtualization, the single physical computing device can create, mamntain, delete, or
otherwise manage virtual machines in a dynamuc manner. In turn, users can request computer
resources from a data center, including single computing devices or a configuration of
networked computing devices, and be provided with varyimg numbers of virtual machine
resources.

00031 In addition to computational resources, data centers provide a number of other
beneficial services to client devices. For example, data centers may provide data storage
services configured to store data submutted by client devices, and enable retrieval of that data
over a network. A variety of types of data storage services can be provided, often varying
according to theiwr input/output (/0) mechamisms. For example, database services may allow
1/0 based on a database query language, such as the Structured Query Language (SQL). Block
storage services may allow I/0 based on modification to one or more defined-length blocks, in
a manner similar to how an operating system interacts with local storage, and may thus

facilitate virtualized disk drives usable, for example, to store an operating system of a virtual

WO 2021/061820 PCT/US2020/052280

machine. Object storage services may allow /0 at the level of individual objects or resources,
such as individual files, which may vary in content and length. For example, an object storage
service may provide an interface compliant with the Representational State Transfer (REST)
architectural style, such as by allowing /O based on calls designating input data and a
hypertext transport protocol request method (e.g., GET, PUT, POST, DELETE, etc.) to be
applied to that data. By transmutting a call designating input data and a request method, a client
can thus retrieve the data from an object storage service, write the data to the object storage

service as a new object, modify an existing object, etc.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 15 a block diagram depicting an illustrative environment m which an
object storage service can operate m conjunction with an on-demand code execution system to
mmplement functions in connection with input/output (I/0) requests to the object storage
service,

[000S] FIG. 2 depicts a general architecture of a computing device providing a frontend
of the object storage service of FIG. 1;

[0006] FIG. 3 15 a flow diagram depicting illustrative interactions for enabling a client
device to modify an IO path for the object storage service by insertion of a function
mplemented by execution of a task on the on-demand code execution system;

[0007] FIG. 4 1s an illustrative visualization of a pipeline of functions to be apphied to
an I/0 path for the object storage service of FIG. 1;

[0008] FIGS. 5A-5B show a flow diagram depicting illustrative interactions for
handhing a request to store nput data as an object on the object storage service of FIG. 1,
including execution of an owner-specified task to the input data and storage of output of the
task as the object;

[0009] FIGS. 6A-6B show a flow diagram depicting illustrative interactions for
handling a request to retrieve data of an object on the object storage service of FIG. 1, including
execution of an owner-specified task to the object and transmussion of an output of the task to

a requesting device as the object;

WO 2021/061820 PCT/US2020/052280

[0010] FIG. 7 15 a flow chart depicting an illustrative routine for implementing owner-
defined functions in connection with an I/O request obtained at the object storage service of
Fi1(z. 1 over an /O path; and

{0011] FIG. 8 15 a flow chart depicting an illustrative routine for executing a task on
the on-demand code execution system of FIG 1 to enable data manipulations during
implementation of an owner-defined function.

[0012] FIG. 9 15 a flow chart depicting an tllustrative routine for executing a task on
the on-demand code execution system of FIG. 1 to execute first and second functions mn
response to store a data object provided in multiple portions.

{0013} FIG. 10 1s a system diagram of illustrative data flows and interactions between
various components of the service provider system in connection with the routine illustrated in
FIG. 9.

[0014] FIG. 11 15 a flow chart depicting an iHlustrative routine for executing a task on
the on~demand code execution system of FIG. 1 to dynamically obfuscate portions of input
data in response to store the mput data.

[0015] FIG. 12 15 a system diagram of illustrative data flows and nteractions between
various components of the service provider system in connection with the routine illustrated in
MG 11,

[0016] FIG. 13 15 a flow chart depicting an 1llustrative routine for executing a task on
the on-demand code execution system of FIG. 1 to dynamically determine and store an index
of the contents of mput data in response to a request to store the input data.

[0017] FIG. 14 15 a systemn diagram of ilustrative data flows and interactions between
various components of the service provider system in connection with the routine illustrated in

FIG 13,

DETAILED DESCRIPTION
{0018] Generally described, aspects of the present disclosure relate to handling
requests to read or write to data objects on an object storage system. More specifically, aspects
of the present disclosure relate to modification of an input/output (1/0) path for an object
storage service, such that one or more data manipulations can be inserted into the VO path to

modify the data to which a called request method 15 applied, without requiring a calling client

WO 2021/061820 PCT/US2020/052280

device to spectty such data manipulations. In one embodiment, data manipulations occur
through execution of user-submitted code, which may be provided for example by an owner
of a collection of data objects on an object storage system in order to control interactions with
that data object. For example, in cases where an owner of an object collection wishes to ensure
that end users do not submit objects to the collection including any personally identifying
mformation {to ensure end user’s privacy}, the owner may submut code executable to strip such
information from a data iput. The owner may further specify that such code should be
executed during each write of a data object to the collection. Accordingly, when an end user
attempts to write input data to the collection as a data object(e.g., via an HTTP PUT method),
the code may be first executed against the input data, and resulting output data may be written

to the collection as the data object. Notably, this may result in the operation requested by the

end user—such as a write operation—being applied not to the end user’s input data, but instead
to the data output by the data manipulation {(e.g., owner-submitted) code. In this way, owners
of data collections control /0 to those collections without relying on end users to comply with
owner requirements. Indeed, end users {or any other client device) may be unaware that
modifications to [/O are occurring. As such, emnbodiments of the present disclosure enable
modification of /O to an object storage service without modification of an interface to the
service, ensuring inter-compatibility with other pre-existing software utilizing the service.
[0019] In some embodiments of the present disclosure, data manipulations may occur
on an on-demand code execution system, sometimes referred to as a serverless execution
system. Generally described, on-demand code execution systems enable execution of arbitrary
user-designated code, without requuring the user to create, maintain, or configure an execution
environment {e.g., a physical or virtual machine) in which the code 1s executed. For example,
whereas conventional computing services often require a user to provision a specific device
(virtual or physical), install an operating system on the device, configure application, define
network interfaces, and the like, an on-demand code execution system may enable a user to
submit code and may provide to the user an application programming interface (API) that,
when used, enables the user to request execution of the code. On recetving a call through the
API, the on-demand code execution system may generate an execution environment for the
code, provision the environment with the code, execute the code, and provide a resuit. Thus,

an on-demand code execution system can remove a need for a user to handle configuration and

WO 2021/061820 PCT/US2020/052280

management of environments for code execution. Example techniques for implementing an
on-demand code execution system are disclosed, for example within US. Patent
No. 9,323,556, entitled “PROGRAMMATIC EVENT DETECTION AND MESSAGE
GENERATION FOR REGQUESTS TO EXECUTE PROGRAM CODE,” and filed September
30, 2014 (the “"556 Patent”), the entirety of which is hereby incorporated by reference.
{0020} Due to the flexibility of on-demand code execution system to execute arbitrary
code, such a system can be used to create a variety of network services. For example, such a
system could be used to create a “micro-service,” a network service that implements a small
number of functions {or only one function), and that interacts with other services to provide an
application. In the context of on-demand code execution systems, the code executed to create
such a service is often referred to as a “funciion” or a “task,” which can be executed to
implement the service. Accordingly, one technique for performing data manipulations within
the I/O path of an object storage service may be to create a task on an on-demand code
execution system that, when executed, performs the required data manipulation. Hustratively,
the task could provide an interface similar or identical to that of the object storage service, and
be operable to obtain input data in response to a request method call (e.g., HTTP PUT or GET
calls), execute the code of the task against the input data, and perform a call to the object
storage service for implementation of the request method on resulting output data. A downside
of this techmique 1s a complexity. For example, end users might be required under this scenarto
to submit IO requests to the on-demand code execution system, rather than the object storage
service, to ensure execution of the task. Should an end user submit a call directly to the object
storage service, task execution may not occur, and thus an owner would not be enabled to
enforce a desired data manipulation for an object collection. Tn addition, this techmque may
reguure that code of a task be authored to both provide an interface to end users that enables
handling of calls to implement request methods on input data, and an interface that enables
performance of calls from the task execution to the object storage service. Implementation of
these network interfaces may significantly increase the complexity of the required code, thus
disincentivizing owners of data collections from using this technique. Moreover, where user-
submitted code directly implements network communication, that code may need to be varied
according to the request method handled. For example, a first set of code may be reguired to

support GET operations, a second set of code may be required to support PUT operations, etc.

WO 2021/061820 PCT/US2020/052280

Because embodiments of the present disclosure rehieve the user-submitted code of the
requirement of handling network communications, one set of code may in some cases be
enabled to handle multiple request methods.

{0021} To address the above-noted problems, embodiments of the present disclosure
can enable strong integration of serverless task executions with interfaces of an object storage
service, such that the service itself is configured to invoke a task execution on receiving an I/O
request to a data collection. Moreover, generation of code to perform data manipulations may
be simplified by configuring the object storage service to facilitate data input and output from
a task execution, without requiring the task execution to itself implement network
communications for /O operations. Specifically, an object storage service and on-demand
code execution system can be configured in one embodiment to “stage” input data to a task
execution in the form of a handle (e.g., a POSIX-compliant descriptor) to an operating-system-
level input/output stream, such that code of a task can manipulate the input data via defined-
stream operations {e.g., as if the data existed within a local file system). This stream-level
access to input data can be contrasted, for example, with network-level access of input data,
which generally requires that code nuplement network communication to retrieve the input
data. Swumilarly, the object storage service and on-demand code execution system can be
configured to provide an output stream handle representing an output stream to which a task
execution may write output. On detecting writes to the output stream, the object storage service
and on-demand code execution system may handle such writes as output data of the task
execution, and apply a called request method to the output data. By enabling a task to
manipulate data based on mput and cutput streams passed to the task, as opposed to requiring
the code to handle data communications over a network, the code of the task can be greatly
simplified.

{0022} Another benefit of enabling a task to manipulate data based on input and output
handles 15 increased security. A general-use on-demand code execution system may operate
permissively with respect to network communications from a task execution, enabling any
network communication from the execution unless such communication 1s exphcitly demed.
This permissive model 15 reflective of the use of task executions as micro-services, which often
reguire interaction with a variety of other network services. However, this permissive model

also decreases security of the function, since potentially malicious network communications

WO 2021/061820 PCT/US2020/052280

can also reach the execution. In contrast to a permissive model, task executions used to
perform data manipulations on an object storage system’s /O path can utilize a restrictive
model, whereby only explicitly-allowed network communications can occur from an
environment executing a task. IHustratively, because data manipulation can occur via input
and output handles, it is envisioned that many or most tasks used to perform data manipulation
in embodiments of the present disclosure would require no network communications to occur
at all, greatly increasing security of such an execution. Where a task execution does require
some network communications, such as to contact an external service to assist with a data
manipulation, such communications can be explicitly aliowed, or “whitelisted,” thus exposing
the execution in only a strictly limited manner.

[0023] In some embodiments, a data collection owner may require only a single data
manipulation to occur with respect to /O to the collection. Accordingly, the object storage
service may detect /O to the collection, implement the data manipulation (e g., by executing
a serverless task within an environment provisioned with input and output handles), and apply
the called request method to the resulting output data. In other embodiments, an owner may
request multiple data manipulations occur with respect to an I/O path. For example, to increase
portability and reusability, an owner may author multiple serverless tasks, which may be
combined 1 different manners on different I/O paths. Thus, for each path, the owner may
define a series of serverless tasks to be executed on /0 to the path. Moreover, 1n some
configurations, an object storage system may natively provide one or more data manipulations.
For example, an object storage system may natively accept requests for only portions of an
object {e.g,, of a defined byte range}, or may natively enable execution of queries against data
of an object {e.g., SQL queries). In some embodiments, any combination of various native
manipulations and serverless task-based manipulations may be specified for a given VO path.
For example, an owner may specify that, for a particular request to read an object, a given SQL
query be executed against the object, the output of which 18 processed via a first task execution,
the output of which is processed via a second task execution, etc. The collection of data
manipulations (e.g., native manipulations, serveriess task-based manipulations, or a
combination thereof) applied to an I/0 path is generally referred to herein as a data processing

“pipeline” apphed to the VO path.

~3

WO 2021/061820 PCT/US2020/052280

[0024] In accordance with aspects of the present disclosure, a particular path
modification {e.g., the addition of a pipeline} applied to an /O path may vary according to
attributes of the path, such as a client device from which an /O request originates or an object
or collection of objects within the request. For example, pipelines may be applied to individual
objects, such that the pipeline 1s applied to all /O requests for the object, or a pipeline may be
selectively applied only when certain client devices access the object. In some instances, an
object storage service may provide multiple I/0 paths for an object or collection. For example,
the same object or colliection may be associated with multiple resource identifiers on the object
storage service, such that the object or collection can be accessed through the multiple
identifiers (e.g., uniform resource identifiers, or URIs), which tllustratively correspond to
different network-accessible endpoints. In one embodiment, different pipelines may be applied
to each I/O path for a given object. For example, a first /O path may be associated with
unprivileged access to a data set, and thus be subject to data manipulations that remove
confidential information from the data set prior during retrieval. A second /O path may be
assoctated with privileged access, and thus not be subject to those data manipulations. In some
mstances, pipelines may be selectively applied based on other criteria. For example, whether
a pipeline 1s applied may be based on time of day, a number or rate of accesses to an object or
collection, ete.

{0025} As will be appreciated by one of skill in the art in light of the present disclosure,
the embodiments disclosed herein improve the ability of computing systems, such as object
storage systems, to provide and enforce data mampulation functions against data objects.
Whereas prior techniques generally depend on external enforcement of data mampulation
functions {e.g., requesting that users strip personal mformation before uploading it),
embodiments of the present disclosure enable direct insertion of data manipulation into an V0
path for the object storage system. Moreover, embodiments of the present disclosure provide
a secure mechanism for implementing data mampulations, by providing for serverless
execution of manipulation functions within an isolated execution environment. Embodiments
of the present disclosure further improve operation of serverless functions, by enabling such
functions to operate on the basis of local stream {e.g., “file”) handles, rather than requiring that
functions act as network-accessible services. The presently disclosed embodiments therefore

address technical problems inherent within computing systems, such as the difficulty of

WO 2021/061820 PCT/US2020/052280

enforcing data manipulations at storage systems and the complexity of creating external
services to enforce such data manipulations. These technical problems are addressed by the
various technical solutions described herein, including the insertion of data processing
pipelines into an /0 path for an object or object collection, potentially without knowledge of
a requesting user, the use of serverless functions to perform aspects of such pipelines, and the
use of local stream handles to enable simplified creation of serverless functions. Thus, the
present disclosure represenis an improvement on existing data processing systems and
computing systems in general.

[0026] The general execution of tasks on the on-demand code execution system will
now be discussed. As described in detatl herein, the on-demand code execution system may
provide a network-accessible service enabling users to submit or designate computer-
executable source code to be executed by virtual machine instances on the on-demand code
execution system. Each set of code on the on-demand code execution system may define a
“task,” and wmplement specific functionality corresponding to that task when executed on a
virtual machine instance of the on-demand code execution system. Individual implementations
of the task on the on-demand code execution system may be referred to as an “execution” of
the task (or a “task execution”). In some cases, the on-demand code execution system may
enable users to directly trigger execution of a task based on a variety of potential events, such
as transmussion of an application programming mterface (“API”) call to the on-demand code
execution systern, or transmussion of a specially formatted hypertext transport protocol
{(“HTTP”} packet to the on-demand code execution system. In accordance with embodiments
of the present disclosure, the on-demand code execution system may further interact with an
object storage system, in order to execute tasks during application of a data manipulation
pipeline to an VO path. The on-demand code execution system can therefore execute any
specified executable code “on-demand,” without requiring configuration or maintenance of the
underlying hardware or infrastructure on which the code 1s executed. Further, the on-demand
code execution system may be configured to execute tasks in a rapid manner (e.g., in under
100 milliseconds [ms}]), thus enabling execution of tasks in “real-time” {(e.g., with hittle or no
perceptible delay to an end user}. To enable this rapid execution, the on-demand code
execution system can include one or more virtual machine instances that are “pre-warmed” or

pre-mnitialized {e.g., booted into an operating system and executing a complete or substantially

0.

WO 2021/061820 PCT/US2020/052280

complete runtime environment) and configured to enable execution of user-defined code, such
that the code may be rapidly executed in response to a request to execute the code, without
delay caused by inttializing the virtual machine instance. Thus, when an execution of a task 1s
triggered, the code corresponding to that task can be executed within a pre-initialized virtual
machine in a very short amount of time.

[00277 Specifically, to execute tasks, the on-demand code execution system described
herein may maintain a pool of executing virtual machine instances that are ready for use as
s00N as a request to execute a task 1s received. Due to the pre-initialized nature of these virtual
machines, delay (sometimes referred to as latency} associated with executing the task code
{e.g., instance and language runtime startup time) can be significantly reduced, often to
sub-100 milhisecond levels. Hlustratively, the on-demand code execution system may maintain
a pool of virtual machine instances on one or more physical computing devices, where each
virtual machine instance has one or more software components (e.g., operating systems,
language runtimes, hibraries, etc.) loaded thereon. When the on-demand code execution system
receives a request to execute program code (a “task”), the on-demand code execution system
may select a virtual machine instance for executing the program code of the user based on the
one or more computing constraints related to the task (e.g, a required operating system or
runtime) and cause the task to be executed on the selected virtual machine instance. The tasks
can be executed in 1s0lated containers that are created on the virtual machine mstances, or may
be executed within a virtual machine nstance 1solated from other virtual machine instances
acting as environments for other tasks. Since the virtual machine mstances in the pool have
already been booted and loaded with particular operating systems and language runtimes by
the time the requests are received, the delay associated with finding compute capacity that can
handle the requests {e.g., by executing the user code in one or more containers created on the
virtual machine instances) can be significantly reduced.

0028} As used herein, the term “virtual machine instance” 1s mtended to refer to an
execution of software or other executable code that emulates hardware to provide an
environment or platform on which software may execute (an example “execution
environment”). Virtual machine instances are generally executed by hardware devices, which
may differ from the physical hardware emulated by the virtual machine instance. For example,

a virtual machine may emulate a first type of processor and memory while being executed on

-10-

WO 2021/061820 PCT/US2020/052280

a second type of processor and memory. Thus, virtual machines can be utilized to execute
software intended for a first execution environment {e. g, a first operating system} on a physical
device that is executing a second execution environment (e.g., a second operating system). In
some instances, hardware emulated by a virtual machine instance may be the same or similar
to hardware of an underlying device. For example, a device with a first type of processor may
implement a plurality of virtual machine instances, each emulating an mnstance of that first type
of processor. Thus, virtual machine instances can be used to divide a device into a number of
logical sub-devices (each referred to as a “virtual machine instance”). While virtual machine
instances can generally provide a level of abstraction away from the hardware of an underlying
physical device, this abstraction is not required. For example, assume a device implements a
plurality of virtual machine instances, each of which emulate hardware identical to that
provided by the device. Under such a scenario, each virtual machine instance may allow a
software application to execute code on the underlying hardware without translation, while
maintaining a logical separation between software applications running on other virtual
machine instances. This process, which i1s generally referred to as “native execution,” may be
utilized to increase the speed or performance of virtual machine instances. Other techniques
that allow direct utilization of underlving hardware, such as hardware pass-through techniques,
may be used, as well.

[0029] While a virtual machine executing an operating system 1s described heretn as
one example of an execution environment, other execution environments are also possible. For
example, tasks or other processes may be executed within a software “contamer,” which
provides a runtime environment without itself providing virtualization of hardware.
Containers may be implemented within virtoal machines to provide additional security, or may
be run outside of a virtual machine instance.

{0030} The foregoing aspects and many of the attendant advantages of this disclosure
will become more readily appreciated as the same become better understood by reference to
the following description, when taken in conjunction with the accompanying drawings.

{0031} FIG. 115 a block diagram of an illustrative operating environment 100 in which
a service provider system 110 operates to enable client devices 102 to perform /O operations

on objects stored within an object storage service 160 and to apply path modifications to such

-11-

WO 2021/061820 PCT/US2020/052280

V(O operations, which modifications may include execution of user-defined code on an on-
demand code execution system 120

{00321 By way of illustration, various example client devices 102 are shown in
communication with the service provider system 110, including a desktop computer, laptop,
and a mobile phone. In general, the client devices 102 can be any computing device suchas a
desktop, laptop or tablet computer, personal computer, wearable computer, server, personal
digital assistant (PDA), hybrid PDA/mobile phone, mobile phone, electronic book reader,
set-top hox, voice command device, camera, digital media player, and the like.

[0033] Generally described, the object storage service 160 can operate to enable clients
to read, write, modify, and delete data objects, each of which represents a set of data associated
with an 1dentifier (an “object identifier” or “resource identifier”} that can be interacted with as
an individual resource. For example, an object may represent a single file submutted by a client
device 102 (though the object storage service 160 may or may not store such an object as a
single file). This object-level interaction can be contrasted with other types of storage services,
such as block-based storage services providing data manipulation at the level of ndividual
blocks or database storage services providing data manipulation at the level of tables {or parts
thereot) or the like.

[0034] The object storage service 160 idlustratively includes one or more
frontends 162, which provide an interface (8 command-line interface {(CLIs), application
programing interface {APIs), or other programmatic interface) through which chent
devices 102 can nterface with the service 160 to configure the service 160 on thew behalf and
to perform I/ operations on the service 160. For example, a client device 102 may mteract
with a frontend 162 to create a collection of data objects on the service 160 {e.g., a “bucket”
of objects} and to configure permissions for that collection. Chlient devices 102 may thereafier
create, read, update, or delete objects within the collection based on the mterfaces of the
frontends 162, In one embodiment, the frontend 162 provides a REST-compliant HTTP
interface supporting a variety of request methods, each of which corresponds to a requested
VO operation on the service 160, By way of non-limiting example, request methods may
include:

» a GET operation requesting retrieval of an object stored on the service 160 by

reference to an identifier of the object;

WO 2021/061820 PCT/US2020/052280

s a PUT operation requesting storage of an object to be stored on the service 160,
including an identifier of the object and input data to be stored as the object;
¢ a DELETE operation requesting deletion of an object stored on the service 160 by
reference to an identifier of the object; and
3 LIST operation requesting listing of objects within an object collection stored on the
service 160 by reference to an dentifier of the collection.
A variety of other operations may also be supported. For example, the service 160 may provide
a POST operation similar to a PUT operation but associated with a different upload mechanism
(e.g., a browser-based HTML upload), or a HEAD operation enabling retrieval of metadata for
an object without retrieving the object stself. In some embodiments, the service 160 may
enable operations that combine one or more of the above operations, or combining an operation
with 3 native data mamipulation. For example, the service 160 may provide a COPY operation
enabling copying of an object stored on the service 160 to another object, which operation
combines a GET operation with a PUT operation. As another example, the service 160 may
provide a SELECT operation enabling specification of an SQL query to be applied to an object
prior to returning the contents of that object, which combines an application of an SQL query
to a data object {a native data manipulation} with a GET operation. As vet another example,
the service 160 may provide a “byte range” GE'T, which enables a GET operation on only a
portion of a data object. In some instances, the operation requested by a client device 102 on
the service 160 may be transmitted to the service via an HTTP request, which itself may
include an HTTP method. In some cases, such as in the case of a GET operation, the HTTP
method specified within the request may match the operation requested at the service 160,
However, in other cases, the HTTP method of a request may not match the operation requested
at the service 160. For example, a request may utilize an HTTP POST method to transmit a
request to implement a SELECT operation at the service 160.

{0035} During general operation, frontends 162 may be configured to obtainacalltoa
request method, and apply that request method to 1nput data for the method. For example, a
frontend 162 can respond to a request to PUT input data into the service 160 as an object by
storing that input data as the object on the service 160. Objects may be stored, for example,
on object data stores 168, which correspond to any persistent or substantially persistent storage

(including hard disk drives (HDDs), solid state drives (85Ds), network accessible storage

-13-

WO 2021/061820 PCT/US2020/052280

(NAS), storage area networks {(SANs), non-volatile random access memory (NVRAM), or any
of a variety of storage devices known n the art). As a further example, the frontend 162 can
respond to a request to GET an object from the service 160 by reirieving the object from the
stores 168 (the object representing input data to the GET resource request), and returning the
object to a requesting client device 102.

[0036] In some cases, calls to a request method may invoke one or more native data
manipulations provided by the service 160. For example, a SELECT operation may provide
an SQL-formatted query to be applied to an object (also identified within the request), or a
GET operation may provide a specific range of bytes of an object to be returned. The
service 160 illustratively includes an object manipulation engine 170 configured to perform
native data manipulations, which illustratively corresponds to a device configured with
software executable to implement native data mamipulations on the service 160 {(e.g., by
stripping non-selected bytes from an object for a byte~-range GET, by applying an SQL query
to an object and returning results of the query, etc.).

[0037} In accordance with embodiments of the present disclosure, the service 160 can
further be configured to enable modification of an I/Q path for a given object or collection of
objects, such that a called request method 15 applied to an output of a data manipulation
function, rather than the resource 1dentified within the call. For example, the service 160 may
enable a client device 102 to specify that GET operations for a given object should be subject
to execution of a user-defined task on the on~-demand code execution system 120, such that the
data returned n response to the operation is the output of a task execution rather than the
requested object. Simularly, the service 160 may enable a client device 102 to specify that PUT
operations to store a given object should be subject to execution of a user-defined task on the
on-demand code execution system 120, such that the data stored in response to the operation
is the output of a task execution rather than the data provided for storage by a client device 102.
As will be discussed in more detail below, path modifications may include specification of a
pipeline of data manipulations, including native data manipulations, task-based manipulations,
or combinations thereof. Hlustratively, a client device 102 may specify a pipeline or other data
manipulation for an object or object collection through the frontend 162, which may store a
record of the pipeline or manipulation in the /0O path modification data store 164, which

store 164, like the object data stores 168, can represent any persistent or substantially persistent

-14-

WO 2021/061820 PCT/US2020/052280

storage. While shown as distinet in FIG. 1, in some instances the data stores 164 and 168 may
represent a single collection of data stores. For example, data modifications to objects or
collections may themselves be stored as objects on the service 160.

{0038} To enable data manipulation via execution of user-defined code, the system
further includes an on-demand code execution system 120, In one embodiment, the
system 120 is solely usable by the object storage service 160 in connection with data
manipulations of an VO path. In another embodiment, the system 120 s additionally
accessible by client devices 102 to directly implement serverless task executions. For example,
the on-demand code execution system 120 may provide the service 160 (and potentially client
devices 102} with one or more user interfaces, command-line interfaces (CLIs), application
progranmung interfaces {APIs), or other programmatic interfaces for generating and uploading
user-executable code (e.g., ncluding metadata identifying dependency code objects for the
uploaded code), invoking the user-provided code (e g., submitting a request to execute the user
codes on the on-demand code execution system 120}, scheduling event-based jobs or timed
jobs, tracking the user-provided code, or viewing other logging or monitoring information
related to their requests or user codes. Although one or more embodiments may be described
herein as using a user interface, it should be appreciated that such embodiments may,
additionally or alternatively, use any CLIs, APIs, or other programmatic interfaces.

[0039] The client devices 102, object storage service 160, and on-demand code
execution system 120 may communicate via a network 104, which may include any wired
network, wireless network, or combination thereof. For example, the network 104 may be a
personal area network, local area network, wide area network, over-the-air broadcast network
{e.g., for radio or television}, cable network, satellite network, cellular telephone network, or
combination thereof. As a further example, the network 104 may be a publicly accessible
network of linked networks, possibly operated by various distinct parties, such as the Internet.
In some embodiments, the network 104 may be a private or semi-private network, such as a
corporate or university intranet. The network 104 may inchude one or more wireless networks,
such as a Global System for Mobile Communications (GSM) network, a Code Division
Multiple Access (CDMA} network, a Long Term Evolution (LTE) network, or any other type
of wireless network. The network 104 can use protocols and components for communicating

via the Internet or any of the other aforementioned types of networks. For example, the

-15-

WO 2021/061820 PCT/US2020/052280

protocols used by the network 104 may include Hypertext Transfer Protocol (HTTP), HTTP
Secure (HTTPS), Message Queue Telemetry Transport (MQTT), Constrained Application
Protocol (CoAP), and the like. Protocols and components for commumicating via the Internet
or any of the other aforementioned types of communication networks are well known to those
skilled in the art and, thus, are not described in more detail herein.

{0040} To enable interaction with the on-demand code execution system 120, the
system 120 includes one or more frontends 130, which enable interaction with the on-demand
code execution system 120. In an tllustrative embodiment, the frontends 130 serve as a “front
door” to the other services provided by the on-demand code execution system 120, enabling
users {via client devices 102) or the service 160 to provide, request execution of, and view
results of computer executable code. The frontends 130 include a variety of components to
enable teraction between the on-demand code execution system 120 and other computing
devices. For example, each frontend 130 may include a request interface providing client
devices 102 and the service 160 with the ability to upload or otherwise communication user-
specified code to the on-demand code execution system 120 and to thereafier request execution
of that code. In one embodiment, the request interface communicates with external computing
devices (e.g., chient devices 102, frontend 162, etc.) via a graphical user interface (GUT), CLI,
or AP1. The frontends 130 process the requests and make sure that the requests are properly
authorized. For example, the frontends 130 may determine whether the user associated with
the request 1s authorized to access the user code specified 1o the request.

[0041] References to user code as used herein may refer to any program code {e.g., 3
program, routine, subroutine, thread, etc.} written in a specific program language. In the
present disclosure, the terms “code,” “user code,” and “program code,” may be used
interchangeably. Such user code may be executed to achieve a specific function, for example,
in connection with a particular data transformation developed by the user. As noted above,
individual collections of user code {e.g., to achieve a specific function) are referred to herein
as “tasks,” while specific executions of that code (including, e.g., compiling code, interpreting
code, or otherwise making the code executable) are referred to as “task executions” or simply
“executions.” Tasks may be written, by way of non-limiting example, in JavaScript (e.g.,

node js), Java, Python, or Ruby (or another programming language).

-16-

WO 2021/061820 PCT/US2020/052280

{00421 To manage requests for code execution, the frontend 130 can include an
execution queue, which can maintain a record of requested task executions. Iilustratively, the
number of simultaneous task executions by the on-demand code execution system 120 is
limited, and as such, new task executions mnitiated at the on-demand code execution system 120
(e.g., viaan API call, via a call from an executed or executing task, etc.} may be placed on the
execution queue and processed, e.g., in a first-in-first-out order. In some embodiments, the
on-demand code execution system 120 may include multiple execution queues, such as
individual execution queues for each user account. For example, users of the service provider
system 110 may desire to limit the rate of task executions on the on-demand code execution
system 120 (e.g., for cost reasons). Thus, the on-demand code execution system 120 may
utilize an account-specific execution queue to throttle the rate of simultaneous task executions
by a specific user account. In some instances, the on-demand code execution system 120 may
priorifize task executions, such that task executions of specific accounts or of specified
priorities bypass or are prioritized within the execution queue. In other instances, the on-
demand code execution systern 120 mayv execute tasks immediately or substantially
immediately after receiving a call for that task, and thus, the execution queue may be omiited.

[0043] The frontend 130 can further include an output mterface configured to output
information regarding the execution of tasks on the on-demand code execution system 120.
Hlustratively, the output mnterface may transmit data regarding task executions {e.g., results of
a task, errors related to the task execution, or details of the task execution, such as total time
required to complete the execution, total data processed via the execution, ete.) to the client
devices 102 or the object storage service 160.

[0044] In some embodiments, the on-demand code execution system 120 may include
multiple frontends 130. In such embodiments, a load balancer may be provided to distribute
the incoming calls to the multiple frontends 130, for example, in a round-robin fashion. In
some embodiments, the manner in which the load balancer distributes incoming calls to the
multiple frontends 130 may be based on the location or state of other components of the on-
demand code execution system 120. For example, a load balancer may distribute calls o a
geographically nearby frontend 130, or to a frontend with capacity to service the call. In
instances where each frontend 130 corresponds to an individual instance of another component

of the on-demand code execution system 120, such as the active pool 148 described below, the

-17-

WO 2021/061820 PCT/US2020/052280

load balancer may distribute calls according to the capacities or loads on those other
components. Calls mav in some instances be distributed between frontends 130
determunistically, such that a given call to execute a task will always (or almost alwavs} be
routed to the same frontend 130. This may, for example, assist in maintaining an accurate
execution record for a task, to ensure that the task executes only a desired number of times.
For example, calls may be distributed to load balance between frontends 130, Other
distribution techniques, such as anycast routing, will be apparent to those of skill in the art.

{0045} The on-demand code execution system 120 further includes one or more worker
managers 140 that manage the execution environments, such as virtual machine instances 150
{shown as VM instance 150A and 130B, generally referred to as a “VM”), used for servicing
mcoming calls to execute tasks. While the following will be described with reference to virtual
machine mstances 150 as examples of such enviromments, embodiments of the present
disclosure may utilize other environments, such as software containers. In the example
itlustrated 10 FIG. 1, each worker manager 140 manages an active pool 148, which is a group
{sometimes referred to as a pool) of virtual machine instances 150 executing on one or more
physical host computing devices that are utialized to execute a given task (e.g., by having the
code of the task and any dependency data objects loaded into the instance).

[0046] Although the virtual machine instances 150 are described here as being
assigned to a particular task, tn some embodiments, the instances may be assigned to a group
of tasks, such that the instance 1s tied to the group of tasks and any tasks of the group can be
executed within the instance. For example, the tasks in the same group may belong to the same
securtty group (e.g., based on their secunty credentials} such that executing one task i a
contaner on a particular instance 150 after another task has been executed n another container
on the same instance does not pose security risks. As discussed below, a task may be associated
with permissions encompassing a variety of aspects controlling how a task may execute. For
example, permissions of a task may define what network connections (if any) can be initiated
by an execution environment of the task. As another example, permissions of a task may define
what authentication information 15 passed to a task, controlling what network-accessible
resources are accessible to execution of a task (e.g., objects on the service 160). In one
embodiment, a securtty group of a task 1s based on one or more such permissions. For example,

a security group may be defined based on a combination of permissions to initiate network

18-

WO 2021/061820 PCT/US2020/052280

connections and permissions to access network resources. As another example, the tasks of
the group may share common dependencies, such that an environment used to execute one task
of the group can be rapidly modified to support execution of another task within the group.

{00477 Once a triggering event to execute a task has been successfully processed by a
frontend 130, the frontend 130 passes a request to a worker manager 140 to execute the task.
in one embodiment, each frontend 130 may be associated with a corresponding worker
manager 140 {e.g., a worker manager 140 co-located or geographically nearby to the
frontend 130} and thus, the frontend 130 may pass most or all requests to that worker
manager 140. In another embodiment, a frontend 130 may include a location selector
configured to determine a worker manager 140 to which to pass the execution request. In one
embodiment, the location selector may determine the worker manager 140 to receive a call
based on hashing the call, and distributing the call to a worker manager 140 selected based on
the hashed value {e.g., via a hash ring). Various other mechanisms for distributing calls
between worker managers 140 will be apparent to one of skill in the art.

[0048]} Thereafter, the worker manager 140 may modify a virtual machine instance 150
(if necessary) and execute the code of the task within the instance 150, As shown in FIG. 1,
respective instances 150 may have operating systems (OS) 152 (shown as OS5 152A and 132B),
language runtimes 154 (shown as runtime 154A and 154B), and user code 156 (shown as user
code 156A and 156B). The OS 152, runtime 154, and user code 156 may collectively enable
execution of the user code to implement the task. Thus, via operation of the on-demand code
execution system 120, tasks may be rapidly executed within an execution environment.

[0049] In accordance with aspects of the present disclosure, each VM 150 additionally
mcludes staging code 157 executable to facilitate staging of mput data on the VM 150 and
handling of sutput data written on the VM 150, as well as a VM data store 158 accessible
through a local file system of the VM 150, [Hustratively, the staging code 157 represents a
process executing on the VM 150 {or potentially a host device of the VM 150) and configured
to obtain data from the object storage service 160 and place that data into the VM data
store 158, The staging code 157 can further be configured to obtain data written to a file within
the VM data store 158, and to transmit that data to the object storage service 160. Because
such data is available at the VM data store 158, user code 156 18 not required o obtain data

over a network, simplifying user code 156 and enabling further restriction of network

-19-

WO 2021/061820 PCT/US2020/052280

communications by the user code 156, thus increasing security. Rather, as discussed above,
user code 156 may interact with mnput data and output data as files on the VM data store 158,
by use of file handles passed to the code 156 during an execution. In some embodiments, input
and output data may be stored as files within a kernel-space file system of the data store 158,
In other instances, the staging code 157 may provide a virtual file system, such as a filesystem
in userspace (FUSE) mterface, which provides an isolated file system accessible to the user
code 156, such that the user code’s access to the VM data store 158 1s restricted.

[0050} As used herein, the term “local file system” generally refers to a file system as
maintained within an execution environment, such that software executing within the
environment can access data as file, rather than via a network connection. In accordance with
aspects of the present disclosure, the data storage accessible via a local file system may itself
be local {e.g, local physical storage), or may be remote {e.g., accessed via a network protocol,
like NFS, or represented as a virtualized block device provided by a network-accessible
service). Thus, the term “local file system” 1s intended to describe a mechanism for software
to access data, rather than physical location of the data.

[0051] The VM data store 158 can include any persistent or non-persistent data storage
device. In one embodiment, the VM data store 158 1s physical storage of the host device, ora
virtual disk drive hosted on physical storage of the host device. In another embodiment, the
VM data store 158 1s represented as local storage, but 1s in fact a virtuahized storage device
provided by a network accessible service. For example, the VM data store 158 may be a
virtualized disk drnive provided by a network-accessible block storage service. In some
embodiments, the object storage service 160 may be configured to provide file-level access to
objects stored on the data stores 168, thus enabling the VM data store 158 to be virtualized
based on communications between the staging code 157 and the service 160. For example, the
object storage service 160 can include a file-level interface 166 providing network access to
objects within the data stores 168 as files. The file-level nterface 166 may, for example,

represent a network-based file system server {e.g., a network file system {(NFS)} providing

access to objects as files, and the staging code 157 may implement a client of that server, thus
providing file-level access to objects of the service 160.
00521 In some instances, the VM data store 158 may represent virtualized access to

another data store executing on the same host device of a VM mstance 150, For example, an

WO 2021/061820 PCT/US2020/052280

active pool 148 may include one or more data staging VM instances (not shown m FIG. 1),
which may be co-tenanted with VM mstances 150 on the same host device. A data staging
VM mstance may be configured to support retrieval and storage of data from the service 160
{e.g., data objects or portions thereof, input data passed by client devices 102, etc.}, and storage
of that data on a data store of the data staging VM instance. The data staging VM instance
may, for example, be designated as unavailable to support execution of user code 156, and thus
be associated with elevated permissions relative to instances 150 supporting execution of user
code. The data staging VM instance may make this data accessible to other VM instances 150
within its host device (or, potentially, on nearby host devices), such as by use of a network-
based file protocol, like NFS. Other VM instances 150 may then act as clienis to the data
staging VM instance, enabling creation of virtualized VM data stores 158 that, from the point
of view of user code 156A, appear as local data stores. Beneficially, network-based access to
data stored at a data staging VM can be expected to occur very quickly, given the co-location
of a data staging VM and a VM mstance 150 within a host device or on nearby host devices.
[0053] While some examples are provided herem with respect to use of 10 stream
handles to read from or write to a VM data store 158, [0 streams may additionally be used to
read from or write to other interfaces of a VM instance 150 (while still removing a need for
user code 156 to conduct operations other than stream-level operations, such as creating
network connections}. For example, staging code 157 may “pipe” input data to an execution
of user code 156 as an 1nput stream, the output of which may be “piped” to the staging code 157
as an output stream. As another example, a staging VM nstance or a hypervisor to a VM
mstance 150 may pass input data to a network port of the VM mnstance 150, which may be
read-from by staging code 157 and passed as an input stream to the user code 157, Sunularly,
data written to an output stream by the task code 156 may be written to a second network port
of the instance 150A for retrieval by the staging VM instance or hypervisor. In vet another
example, a hypervisor to the mstance 150 may pass input data as data written to a virtualized
hardware mput device {e.g., a keyboard) and staging code 157 may pass to the user code 156
a handle to the I{} stream corresponding to that input device. The hypervisor may similarly
pass to the user code 156 a handle for an 1O stream corresponding to a virtualized hardware
output device, and read data written to that stream as output data. Thus, the examples provided

herein with respect to file streams may generally be modified to relate to any 10 stream.

WO 2021/061820 PCT/US2020/052280

[0054] The object storage service 160 and on-demand code execution system 120 are
depicted in FIG 1 as operating n a distributed computing environment including several
computer systems that are interconnected using one or more computer networks (not shown in
FIG. 1). The object storage service 160 and on-demand code execution system 120 could also
operate within a computing environment having a fewer or greater number of devices than are
ittustrated in FIG. 1. Thus, the depiction of the object storage service 160 and on-demand code
execution system 120 in FIG. 1 should be taken as illustrative and not limiting to the present
disclosure. For example, the on-demand code execution system 120 or various constituents
thereof could implement various Web services components, hosted or “cloud” computing
environments, or peer to peer network configurations to implement at least a portion of the
processes described herein. In some instances, the object storage service 160 and on-demand
code execution system 120 may be combined into a single service. Further, the object storage
service 160 and on-demand code execution system 120 may be implemented directly in
hardware or software executed by hardware devices and may, for instance, include one or more
physical or virtual servers implemented on physical computer hardware configured to execute
computer executable instructions for performung various features that will be described heren.
The one or more servers may be geographically dispersed or geographically co-located, for
instance, in one or more data centers. In some mstances, the one or more servers may operate
as part of a system of rapidly provisioned and released computing resources, often referred to
as a “cloud computing environment.”

[0055] In the example of FIG. 1, the object storage service 160 and on-demand code
execution system 120 are illustrated as connected to the network 104, In some embodiments,
any of the components within the object storage service 160 and on-demand code execution
system 120 can commumicate with other components of the on-demand code execution
system 120 via the network 104, In other embodiments, not all components of the object
storage service 160 and on-demand code execution system 120 are capable of communicating
with other components of the virtual environment 100, In one example, only the frontends 130
and 162 (which may in some mstances represent multiple frontends) may be connected to the
network 104, and other components of the object storage service 160 and on-demand code
execution system 120 may communicate with other components of the environment 100 via

the respective frontends 130 and 162.

WO 2021/061820 PCT/US2020/052280

{00561 While some functionalities are generally described herein with reference to an
individual component of the object storage service 160 and on-demand code execution
system 120, other components or a combination of components may additionally or
alternatively 1mplement such functionalities. For example, while the object storage
service 160 is depicted in FIG. 1 as including an object manipulation engine 170, functions of
that engine 170 may additionally or alternatively be implemented as tasks on the on-demand
code execution system 120. Moreover, while the on-demand code execution system 120 1
described as an example system to apply data mamipulation tasks, other compute systems may
be used to execute user-defined tasks, which compute systems may include more, fewer or
different components than depicted as part of the on-demand code execution system 120. Ina
simplified example, the object storage service 160 may include a physical computing device
configured to execute user-defined tasks on demand, thus representing a compute system
usable in accordance with embodiments of the present disclosure. Thus, the specific
configuration of elements within FIG. 1 15 intended 1o be illustrative.

[0057} FIG. 2 depicis a general architecture of a frontend server 200 computing device
implementing a frontend 162 of FIG. 1. The general architecture of the frontend server 200
depicted 1n FIG. 2 includes an arrangement of computer hardware and software that may be
used to implement aspects of the present disclosure. The hardware may be implemented on
physical electronic devices, as discussed in greater detat] below. The frontend server 200 may
mclade many more {(or fewer) elements than those shown 1 FIG. 2. It 1s not necessary,
however, that all of these generally conventional elements be shown i order to provide an
enabling disclosure. Additionally, the general architecture illustrated in FIG. 2 may be used to
implement one or more of the other components illustrated 1n FIG. 1.

0058} As illustrated, the frontend server 200 includes a processing unit 290, a network
mterface 292, a computer readable medium drive 294, and an iput/output device interface
296, alf of which may communicate with one another by way of a communication bus. The
network nterface 292 may provide connectivity to one or more networks or computing
systems. The processing unit 290 may thus receive information and instructions from other
computing systems or services via the network 104, The processing unit 290 may also
communicate to and from primary memory 280 or secondary memory 298 and further provide

output information for an optional display (not shown) via the mput/output device interface

WO 2021/061820 PCT/US2020/052280

296. The input/output device interface 296 may also accept input from an optional input device
(not shown).

{0059} The primary memory 280 or secondary memory 298 may contain computer
program instructions {grouped as units in some embodiments} that the processing unit 290
executes 1n order to implement one or more aspects of the present disclosure. These program
mstructions are shown in FIG. 2 as included within the primary memory 280, but may
additionally or alternatively be stored within secondary memory 298, The primary
memory 280 and secondary memory 298 correspond to one or more tiers of memory devices,
ncluding (but not himited to) RAM, 3D XPOINT memory, flash memory, magnetic storage,
and the like. The primary memory 280 is assumed for the purposes of description to represent
a main working memory of the worker manager 140, with a higher speed but lower total
capacity than secondary memory 298,

[0060} The primary memory 280 may store an operating system 284 that provides
computer program instructions for use by the processing unit 290 in the general administration
and operation of the frontend server 200, The memory 280 may further include computer
program instructions and other mformation for implementing aspects of the present disclosure.
For example, 1n one embodiment, the memory 280 includes a user interface umit 282 that
generates user interfaces (or wstructions therefor} for display upon a computing device, e.g,,
via a navigation or browsing mnterface such as a browser or application mstalled on the
computing device.

[0061] In addition to or n combmation with the user interface unit 282, the
memory 280 may mclude a control plane unit 286 and data plane unit 288 each executable to
implement aspects of the present disclosure. Ilustratively, the control plane unit 286 may
include code executable to enable owners of data objects or collections of objects to attach
manmipulations, serverless functions, or data processing pipelines to an 1/0 path, in accordance
with embodiments of the present disclosure. For example, the control plane unit 286 may
enable the frontend 162 to implement the interactions of FIG. 3. The data plane unit 288 may
illustratively include code enabling handhling of /O operations on the object storage
service 100, including implementation of manipulations, serverless functions, or data
processing pipelines attached to an VO path {eg., via the interactions of FIGS. 5A-6B,

implementation of the routines of FIGS. 7-8, etc.).

WO 2021/061820 PCT/US2020/052280

{0062} The frontend server 200 of FIG. 2 15 one illustrative configuration of such a
device, of which others are possible. For example, while shown as a single device, a frontend
server 200 may in some embodiments be implemented as multiple physical host devices.
Hlustratively, a first device of such a frontend server 200 may implement the control plane
unit 286, while a second device may implement the data plane unit 288,

[0063} While described in FIG. 2 as a frontend server 200, similar components may be
utilized in some embodiments to implement other devices shown in the environment 100 of
FIG. 1. For example, a similar device may implement a worker manager 140, as described in
more detatl in U.S. Patent No. 9,323,556, entitled “PROGRAMMATIC EVENT DETECTION
AND MESSAGE GENERATION FOR REQUESTS TO EXECUTE PROGRAM CODE”
and filed September 30, 2014 (the **556 Patent”}, the entirety of which 1s hereby mcorporated
by reference.

[0064] With reference to FIG. 3, illustrative interactions are depicted for enabling a
client device 102A to modify an /O path for one or more objects on an object storage
service 160 by inserting a data manipulation mto the /O path, which manipulation is
implemented within a task executable on the on-demand code execution system 120

[0065] The interactions of FIG. 3 begin at (1), where the client device 102A authors
the stream manipulation code. The code can illustratively function to access an input file
handle provided on execution of the program (which may, for example, be represented by the
standard mput stream for a program, commonly “stdin”}, perform manipulations on data
obtained from that file handle, and write data to an output file handle provided on execution of
the program {which may, for example, by represented by the standard output stream for a
program, commonly “stdout”).

[0066] While examples are discussed herein with respect to a “file” handle,
embodiments of the present disclosure may utilize handles providing access to any operating-
system-level mput/output (10} stream, examples of which include byte streams, character
streams, file streams, and the hke As used herein, the term operating-system-level
input/output stream {or simply an “1O stream”) 15 intended to refer to a stream of data for which
an operating system provides a defined set of functions, such as seeking within the stream,
reading from a stream, and writing to a siream. Streams may be created in various manners.

For example, a programming language may generate a stream by use of a function library to

WO 2021/061820 PCT/US2020/052280

open a file on a local operating system, or a stream may be created by use of a “pipe” operator
{(e.g., within an operating system shell command language). As will be appreciated by one
skilled in the art, most general purpose programming languages include, as basic functionality
of the code, the ability to mteract with streams.

[0067} In accordance with embodiments of the present disclosure, task code may be
authored to accept, as a parameter of the code, an mput handle and an output handle, both
representing 10 streams {e.g., an input stream and an output stream, respectively}. The code
may then manipulate data of the input stream, and write an output to the output stream. Given
use of a general purpose programming language, any of a variety of functions may be
implemented according to the desires of the user. For example, a function may search for and
remove confidential mformation from the input stream. While some code may utilize only
mput and output handles, other code may implement additional interfaces, such as network
commmumnication interfaces. However, by providing the code with access to mput and output
streams {via respective handles) created outside of the code, the need for the code to create
such streams 1s removed. Moreover, because streams may be created outside of the code, and
potentially outside of an execution environment of the code, stream manipulation code need
not necessarily be trusted to conduct certain operations that mav be necessary to create a
stream. For example, a stream may represent mformation transmutted over a network
connection, without the code being provided with access to that network connection. Thus,
use of 10 streams to pass data nto and out of code executions can simphify code while
mereasing security.

[00G8] As noted above, the code may be authored in a variety of programming
languages. Authoring tools for such languages are known i the art and thus will not be
described herein. While authoring is described in FIG. 3 as occurring on the client
device 102A, the service 160 may in some instances provide interfaces {e.g., web Glls)
through which to author or select code.

[0069] At (2), the client device 102A submits the stream manipulation code to the
frontend 162 of the service 160, and requests that an execution of the code be inserted into an
1/G path for one or more objects. Ilustratively, the frontends 162 may provide one or more
interfaces to the device 102A enabling submission of the code {e.g., as a compressed file). The

frontends 162 may further provide interfaces enabling designation of one or more I/0 paths to

WO 2021/061820 PCT/US2020/052280

which an execution of the code should be applied. Each U/Q path may correspond, for example,
to an object or collection of objects {e.g., a “bucket” of objects). In some instances, an /O
path may further corresponding to a given way of accessing such object or collection {e.g., a
URI through which the object is created), to one or more accounts attempting to access the
object or collection, or to other path criteria. Designation of the path modification is then
stored in the VO path modification data store 164, at (3). Additionally, the stream manipulation
code 1s stored within the object data stores 166 at (4).

{0070} As such, when an /O request is recetved via the specified VO path, the
service 160 1s configured to execute the stream manipulation code against input data for the
request {e.g., data provided by the client device 10ZA or an object of the service 160,
depending on the VO request), before then applving the request to the output of the code
execution. In this manner, a chent device 102A (which in FIG. 3 illustratively represents an
owner of an object or object collection) can obtain greater control over data stored on and
retrieved from the object storage service 160,

[0071] The nteractions of FIG 3 generally relate to msertion of a single data
manipulation into the I/0 path of an object or collection on the service 160, However, in some
embodiments of the present disclosure an owner of an object or collection 15 enabled to insert
multiple data manipulations into such an /O path. Each data manipulation may correspond,
for example, to a serverless code-based mamipulation or a native manipulation of the
service 160. For example, assume an owner has submitted a data set to the service 160 as an
object, and that the owner wishes to provide an end user with a filtered view of a portion of
that data set. While the owner could store that filtered view of the portion as a separate object
and provide the end user with access to that separate object, this results n data duplication on
the service 160. In the case that the owner wishes to provide multiple end users with different
portions of the data set, potentially with customized filters, that data duplication grows,
resulting in sigmficant inefficiencies. Inaccordance with the present disclosure, ancther option
may be for the owner to author or obtain custom code to implement different filters on different
portions of the obiject, and to insert that code into the /O path for the object. However, this
approach may require the owner to duplicate some native functionality of the service 160 (e g,

an ability to retrieve a portion of a data set}. Moreover, this approach would inhibit modularity

WO 2021/061820 PCT/US2020/052280

and reusability of code, since a single set of code would be required to conduct two functions
{e.g., selecting a portion of the data and filtering that portion).

{0072} To address these shortcomings, embodiments of the present disclosure enable
an owner to create a pipeline of data manipulations to be applied to an V0 path, linking together
multiple data manipulations, each of which may also be inserted into other I/O paths. An
iltustrative visualization of such a pipeline is shown in FIG. 4 as pipeline 400, Specifically,
the pipeline 400 illustrates a series of data manipulations that an owner specifies are to occur
on calling of a request method against an object or object collection. As shown in FIG 4, the
pipeline beging with input data, specified within the call according to a called request method.
For example, a PUT call may generally include the input data as the data to be stored, while a
GET call may generally include the mput data by reference to a stored object. A LIST call
may spectfy a directory, a manifest of which is the mput data to the LIST request method.

[0073] Contrary to typical implementations of request methods, in the illustrative
pipeline 400, the called request method 1s not mitially apphed to the ioput data. Rather, the
mput data 15 mitially passed to an execution of “code A” 404, where code A represents a first
set of user-authored code. The output of that execution 15 then passed to “native function
A” 406, which illustratively represents a native function of the service 160, such as a
“SELECT” or byte-range function implemented by the object manipulation engine 170, The
output of that native function 406 15 then passed to an execution of “code B” 408, which
represents a second set of user-authored code. Thereafter, the output of that execution 408 1
passed to the called request method 410 {e.g., GET, PUT, LIST, etc.). Accordingly, rather
than the request method being applied to the input data as in conventional techniques, in the
ttustration of FIG. 4, the request method 15 applied to the output of the execution 408, which
itlustratively represents a transformation of the input data according to one or more owner-
specified manipulations 412, Notably, implementation of the pipeline 400 may not require any
action or imply any knowledge of the pipeline 400 on the part of a calling chient device 102,
As such, implementation of pipelines can be expected not to impact existing mechanisms of
interacting with the service 160 (other than altering the data stored on or retrieved from the
service 160 in accordance with the pipeline). For example, implementation of a pipeline can
be expected not to require reconfiguration of existing programs utilizing an API of the

service 160,

WO 2021/061820 PCT/US2020/052280

0074} While the pipeline 400 of FI(3. 4 15 linear, in some embodiments the service 160
may enable an owner to configure non-linear pipelines, such as by include conditional or
branching nodes within the pipeline. ustratively, as described in more detail below, data
manipulations (e.g., serverless-based functions) can be configured to include a return value,
such as an indication of successful execution, encountering an error, etc. In one example, the
return value of a data manipulation may be used to select a conditional branch within a
branched pipeline, such that a first return value causes the pipeline to proceed on a first branch,
while a second return value causes the pipeline to proceed on a second branch. In some
instances, pipelines may include parallel branches, such that data 15 copied or divided to
multiple data manipulations, the outputs of which are passed to a single data manipulation for
merging prior to executing the called method. The service 160 may illustratively provide a
graphical user interface through which owners can create pipelines, such as by specifying
nodes within the pipeline and linking those nodes together via logical connections. A variety
of flow-based development interfaces are known and may be utilized m conjunction with
aspects of the present disclosure.

[0075] Furthermore, 1n some embodiments, a pipeline apphied to a particular /O path
may be generated on-the-fly, at the time of a request, based on data manipulations applied to
the path according to different criteria. For example, an owner of a data collection may apply
a first data manipulation to all interactions with objects within a collection, and a second data
manipulation to all interactions obtained via a given URL Thus, when a request is received to
mteract with an object within the collection and via the given URI, the service 160 may
generate a pipeline combining the first and second data mampulations. The service 160 may
tHustratively implement a hierarchy of criteria, such that manipulations applied to objects are
placed within the pipeline prior to manipulations applied to a UR], etc.

{0076} In some embodiments, client devices 102 may be enabled to request inclusion
of a data manipulation within a pipeline. For example, within parameters of a GET request, a
chient device 102 may specify a particular data manipulation to be included within a pipehine
applied in connection with the request. Hlustratively, a collection owner may specify one or
more data manipulations allowed for the collection, and further specify identifiers for those
manipulations (e.g., function names}. Thus, when requesting to interact with the collection, a

clhient device 102 may specify the identifier to cause the manipulation to be included withina

-29-

WO 2021/061820 PCT/US2020/052280

pipeline applied to the VO path. In one embodiment, client-requested manipulations are
appended o the end of a pipeline subsequent to owner-specified data manipulations and prior
to implementing the requested request method. For example, where a client device 102
requests to GET a data set, and requests that a search function by applied to the data set before
the GET method 1s implemented, the search function can receive as input data the output of an
owner-specified data manipulations for the data set (e.g., manipulations to remove confidential
mnformation from the data set). In addition, requests may in some embodiments specify
parameters to be passed to one or more data manipulations {whether specified within the
request or not). Accordingly, while embodiments of the present disclosure can enable data
manipulations without knowledge of those manipulations on the part of client devices 102,
other embodiments may enable client devices 102 to pass information within an I/O request
for use in implementing data manipulations.

[0077} Moreover, while example embodiments of the present disclosure are discussed
with respect to mampulation of put data to a called method, embodiments of the present
disclosure may further be utilized to modify aspects of a request, including a called method.
For example, a serverless task execution may be passed the content of a request (including,
e.g., a called method and parameters) and be configured to modify and return, as a return value
to a frontend 162, a modified version of the method or parameters. [Hustratively, where a client
device 102 15 authenticated as a user with access to only a portion of a data object, a serveriess
task execution may be passed a call to “GET” that data object, and may transform parameters
of the GET request such that it applies only to a specific byte range of the data object
corresponding to the portion that the user may access. As a further example, tasks may be
utilized to implement customized parsing or restrictions on called methods, such as by limiting
the methods a user may call, the parameters to those methods, or the like. In some instances,
apphication of one or more functions to a request (e.g., to modify the method called or method
parameters) may be viewed as a “pre-data processing” pipeling, and may thus be implemented
prior to obtaming the input data within the pipeline 460 (which input data may change due to
changes in the request), or may be implemented independently of a data manipulation
pipeline 400.

{0078} Similarly, while example embodiments of the present disclosure are discussed

with respect to application of a called method to output data of one or more data manipulations,

-30-

WO 2021/061820 PCT/US2020/052280

in some embodiments manipulations can additionally or alternatively occur after application
of a calied method. For example, a data object may contain sensitive data that a data owner
desires to remove prior to providing the data to a client. The owner may further enable a client
to specify native manipulations to the data set, such as conducting a database query on the
dataset {e.g., via a SELECT resource method). While the owner may specify a pipeline for the
data set to cause filtering of sensitive data to be conducted prior to application of the SELECT
method, such an order of operations may be undesirable, as filtering may occur with respect to
the entire data object rather than solely the portion returned by the SELECT query.
Accordingly, additionally or alternatively to specifying manipulations that occur prior to
satisfying a request method, embodiments of the present disclosure can enable an owner to
specify manipulations to occur subsequent to application of a called method but prior to
conducting a final operation to satisfv a request. For example, in the case of a SELECT
operation, the service 160 may first conduct the SELECT operation against specified input data
{(e.g., a data object), and then pass the output of that SELECT operation to a data manipulation,
such as a serverless task execution. The output of that execution can then be returned to a
client device 102 to satisfy the request.

[0079} While FIG. 3 and FIG. 4 are generally described with reference to serverless
tasks authored by an owner of an object or collection, in some instances the service 160 may
enable code authors to share their tasks with other users of the service 160, such that code of a
first user 1s executed in the I/0 path of an object owned by a second user. The service 160
may also provide a library of tasks for use by each user. In some cases, the code of a shared
task may be provided to other users. In other cases, the code of the shared task may be hidden
from other users, such that the other users can execute the task but not view code of the task.
In these cases, other users may iHustratively be enabled to modify specific aspects of code
execution, such as the permissions under which the code will execute.

0080} With reference to FIGS. 5A and 5B, illustrative interactions will be discussed
for applving a modification to an 1/0 path for a request to store an object on the service 160,
which request is referred to in connection with these figures as a “PUT” request or “PUT object
call.” While shown in two figures, numbering of interactions is maintained across FIGS. SA

and 5B.

231-

WO 2021/061820 PCT/US2020/052280

0081} The interactions begin at (1), where a client device 102A submuts a PUT object
call to the storage service 160, corresponding to a request to store input data (e.g., included or
specified within the call) on the service 160. The mput data may correspond, for example, to
a file stored on the client device 102ZA. As shown in FIG. 5A, the call is directed to a
frontend 162 of the service 162 that, at (2), retrieves from the I/O path modification data
store 164 an indication of modifications to the I/O path for the call. The indication may reflect,
for example, a pipeline to be applied to calls received on the /O path. The 1/0 path for a call
may generally be specified with respect to a request method included within a call, an object
or collection of objects mdicated within the call, a specific mechanism of reaching the
service 160 {e.g., protocol, URT used, etc), an identity or authentication status of the client
device 102ZA, or a combination thereof For example, in FIG 5A, the VO path used can
correspond to use of a PUT request method directed to a particular URI (e.g., associated with
the frontend 162) to store an object 1n a particular logical location on the service 160 (e.g, a
specific bucket). In FIGS. SA and 3B, it 1s assumed that an owner of that logical location has
previously specified a modification to the /O path, and specifically, has specitied that a
serverless function should be applied to the input data before a result of that function is stored
n the service 160.

[0082] Accordingly, at (3), the frontend 162 detects within the modifications for the
1/0 path mnclosion of a serverless task execution. Thus, at (4}, the frontend 162 subnuts a call
to the on-demand code execution system 120 to execute the task specified within the
modifications against the input data specified within the call.

[0083] The on-demand code execution system 120, at (5), therefore generates an
execution environment 502 i which to execute code corresponding to the task. THuostratively,
the call may be directed to a frontend 130 of the system, which may distribute instructions to
a worker manager 140 to select or generate a VM instance 150 in which to execute the task,
which VM instance 150 illustratively represents the execution environment 502. During
generation of the execution environment 502, the system 120 further provisions the
environment with code 504 of the task indicated within the 1/ path modification (which may
be retrieved, for example, from the object data stores 166). While not shown in FIG. 5A, the
environment 502 further includes other dependencies of the code, such as access to an

operating system, a runtime required to execute the code, etc.

WO 2021/061820 PCT/US2020/052280

{0084} In some embodiments, generation of the execution environment 502 can
inciude configuring the environment 502 with security constraints limiting access to network
resources. Illustratively, where a task s intended to conduct data manipulation without
reference to network resources, the environment 502 can be configured with no ability to send
or receive information via a network. Where a task is intended to utilize network resources,
access to such resources can be provided on a “whitelist” basis, such that network
communications from the environment 502 are allowed only for specified domains, network
addresses, or the like. Network restrictions may be implemented, for example, by a host device
hosting the environment 502 {eg., by a hypervisor or host operating system). In some
instances, network access requirements may be utilized to assist in placement of the
environment 502, either logically or physically. For example, where a task requires no access
1o network resources, the environment 502 for the task mav be placed on a host device that 1s
distant from other network-accessible services of the service provider system 110, such as an
“edge” device with a lower-quality communication channel to those services. Where a task
requires access to otherwise private network services, such as services implemented within a
virtual private cloud (e.g, a local-area-network-like environment implemented on the
service 160 on behalf of a given user), the environment 502 may be created to exast logically
within that cloud, such that a task execution 502 accesses resources within the cloud. Insome
instances, a task may be configured to execute within a private cloud of a chent device 102
that submits an /0 request. In other mstances, a task may be configured to execute within a
private cloud of an owner of the object or collection referenced within the request.

[0085] In addition to generating the environment 502, at {6}, the system 120 provisions
the environment with stream-level access to an input file handle 506 and an ocutput file
handle 508, usable to read from and write to the input data and output data of the task
execution, respectively. In one embodiment, files handle 506 and 508 may point to a (physical
or virtual} block storage device (e.g., disk drive) attached to the environment 502, such that
the task can mnteract with a local file system to read input data and write output data. For
example, the environment 502 may represent a virtual machine with a virtual disk drive, and
the system 120 may obtain the input data from the service 160 and store the input data on the
virtual disk drive. Thereafter, on execution of the code, the system 120 may pass to the code

a handle of the input data as stored on the virtual disk drive, and a handle of a file on the drive

233

WO 2021/061820 PCT/US2020/052280

to which to write output data. In another embodiment, files handle 506 and 508 may point to
a network file system, such as an NFS-compatible file system, on which the mput data has
been stored. For example, the frontend 162 during processing of the call may store the input
data as an object on the object data stores 166, and the file-level interface 166 may provide
file-level access to the input data and to a file representing output data. In some cases, the file
handles 506 and 508 may point to files on a virtual file system, such as a file system in user
space. By providing handles 506 and 508, the task code 504 15 enabled to read the input data
and write output data using stream manipulations, as opposed to being required to implement
network transmissions. Creation of the handles 506 and 508 (or streams corresponding to the
handles} may itlustratively be achieved by execution of staging code 157 within or associated
with the environment 502.

[0086] The interactions of FIG. 5A are continued in FIG. 5B, where the system 120
executes the task code 504 As the task code 504 may be user-authored, any number of
functionalities may be implemented within the code 504, However, for the purposes of
description of FIGS. 5A and 5B, 1t will be assumed that the code 504, when executed, reads
iput data from the input file handle 506 (which may be passed as a commonly used input
strearn, such as stdin), manipulates the input data, and writes output data to the output file
handle 508 (which may be passed as a commonly used output stream, such as stdout).
Accordingly, at (8), the system 120 obtains data written to the output file {(e.g., the file
referenced in the output file handie} as output data of the execution. In addition, at (9}, the
system 120 obtains a return value of the code execution {e.g, a value passed i a final call of
the function}. For the purposes of description of FIGS. SA and 5B, it will be assumed that the
return value indicates success of the execution. At (10), the output data and the success return
value are then passed to the frontend 162.

{00871 While shown as a single interaction in FIG. 5B, in some embodiments output
data of a task execution and a return value of that execution may be returned separately. For
example, during execution, task code 504 may write to an output file through the handie 508,
and this data may be periodically or iteratively returned to the service 160. Hlustratively, where
the cutput file exists on a file svstem in user space implemented by staging code, the staging
code may detect and forward each write to the output file to the frontend 162. Where the output

file exists on a network file system, writes to the file may directly cause the written data to be

-34-

WO 2021/061820 PCT/US2020/052280

transmitted to the interface 166 and thus the service 160, In some mstances, transmitting
written data iteratively may reduce the amount of storage required locally to the
environment 502, since written data can, according to some embodiments, be deleted from
local storage of the environment 502

[0088] In addition, while a success return value 1s assumed i FIGS. 5A and 5B, other
types of return value are possible and contemplated. For example, an error return value may
be used to indicate to the frontend 162 that an error occurred during execution of task code 504
As another example, user-defined return values may be used to control how conditional
branching within a pipeline proceeds. In some cases, the return value may indicate to the
frontend 162 a request for further processing. For example, a task execution may return to the
frontend 162 a call to execute another serverless task (potentially not specified within a path
modification for the current VO path). Moreover, return values may specify to the frontend 162
what return value 15 to be returned to the client device 102A. For example, a typical PUT
request method called at the service 160 may be expected to return an HTTP 200 code ("OK™).
As such, a success return value from the task code may further indicate that the frontend 162
should return an HTTP 200 code to the client device 102A. An error return value may, for
example, indicate that the frontend 162 should return a 3XX HTTP redirection or 4XX HTTP
error code to the chient device 102A. Sull further, 10 some cases, return values may specify to
the frontend 162 content of a return message to the chient device 102A other than a return
value. For example, the frontend 162 may be configured to return a given HTTP code (e.g.,
200} for any request from the chent device 102A that 1s successfully retrieved at the
frontend 162 and mvokes a data processing pipeline. A task execution may then be configured
to specity, within s return value, data to be passed to the client device 102A 1 addition to
that HTTP code. Such data may itlustratively include structured data {e g., extensible markup
language (XML} data) providing information generated by the task execution, such as data
indicating success or failure of the task This approach may beneficially enable the
frontend 162 to quickly respond to requests {e.g., without awaiting execution of a task) while
still enabling a task execution to pass information to the client device 102

{0089} For purposes of the present illustration, it will be assumed that the success
return value of the task indicates that an HTTP 2XX success response should be passed to the

device 102A. Accordingly, on receiving output data, the frontend 162 stores the output data

-35-

WO 2021/061820 PCT/US2020/052280

as an object within the object data stores 166, (11}, Interaction (11} tllustratively corresponds
to implementation of the PUT request method, initially called for by the chient device 102A,
albeit by storing the output of the task execution rather than the provided input data. After
implementing the called PUT request method, the frontend 162, at (12}, returns to the client
device 102ZA the success indicator indicated by the success return value of the task (eg., an
HTTP 200 response code). Thus, from the perspective of the client device 1024, a call to PUT
an object on the storage service 160 resulted m creation of that object on the service 160.
However, rather than storing the input data provided by the device 102A, the object stored on
the service 160 corresponds to output data of an owner-specified task, thus enabling the owner
of the object greater control over the contents of that object. Insome use cases, the service 160
may additionally store the input data as an object {e.g, where the owner-specified task
corresponds to code executable to provide output data usable in conjunction with the mnput
data, such as checksum generated from the nput data).

[0090] With reference to FIGS. 6A and 6B, illustrative interactions will be discussed
for applying a modification to an I/ path for a request to retrieve an object on the service 160,
which request is referred to 1n connection with these figures as a “GET” request or “GET call”
While shown 1 two figures, numbering of interactions 15 maintained across FIGS. 6A and 6B.

[0091] The interactions begin at (1), where a client device 102A submits a GET call to
the storage service 160, corresponding to a request to obtamn data of an object (identified within
the call) stored on the service 160, As shown in FIG. 6A, the call 1s directed to a frontend 162
of the service 160 that, at (2}, retrieves from the VO path modification data store 164 an
mdication of modifications to the /0 path for the call. For example, in FIG. 6A, the I/0 path
used can correspond to use of a GET request method directed to a particular URI (eg.,
associated with the frontend 162) to retrieve an object in a particular logical location on the
service 100 {(e.g., a specific bucket}. In FIGS. 6A and 6B, 1t 13 assumed that an owner of that
logical location has previously specified a modification to the VO path, and specifically, has
specified that a serverless function should be applied to the object before a result of that
function 1s returned to the device 102A as the requested object.

{0092} Accordingly, at (3), the frontend 162 detects within the modifications for the
V(O path inclusion of a serverless task execution. Thus, at (4), the frontend 162 submits a call

to the on-demand code execution system 120 to execute the task specified within the

-36-

WO 2021/061820 PCT/US2020/052280

modifications against the object specified within the call. The on-demand code execution
system 120, at (5}, therefore generates an execution environment 502 in which to execute code
corresponding to the task. Ilustratively, the call may be directed to a frontend 130 of the
system, which may distribute instructions to a worker manager 140 to select or generate a VM
instance 150 in which to execute the task, which VM instance 150 llustratively represents the
execution environment 502, During generation of the execution environment 502, the
system 120 further provisions the environment with code 504 of the task mdicated within the
1/0 path modification {which may be retrieved, for example, from the object data stores 166).
While not shown 1n FIG. 6A, the environment 502 further includes other dependencies of the
code, such as access to an operating system, a runtime required to execute the code, etc.

[0093] In addition, at (6), the system 120 provisions the environment with file-level
access to an input file handle 506 and an output file handle 508, usable to read from and write
to the input data (the object) and output data of the task execution, respectively. As discussed
above, files handle 506 and SO8 may point to a {physical or virtual) block storage device {e.g,,
disk drive} attached to the environment S02, such that the task can interact with a local file
system to read input data and write output data. For example, the environment 502 may
represent a virtual machine with a virtual disk drive, and the system 120 may obtain the object
referenced within the call from the service 160, at ('), and store the object on the virtual disk
drive. Thereafter, on execution of the code, the system 120 may pass to the code a handle of
the object as stored on the virtual disk drive, and a handle of a file on the drive to which to
write output data. In another embodiment, files handle 506 and 508 may point to a network
file system, such as an NFS-compatible file system, on which the object has been stored. For
example, the file-level interface 166 may provide file-level access to the object as stored within
the object data stores, as well as to a file representing output data. By providing handles 506
and 508, the task code 504 is enabled to read the input data and write output data using stream
manipulations, as opposed to being required to implement network transmissions. Creation of
the handles 506 and 508 may tllustratively be achieved by execution of staging code 157 within
or associated with the environment 502

{0094} The interactions of FIG. 6A are continued in FIG. 6B, where the system 120
executes the task code 504 at (7). As the task code 504 may be user-authored, any number of

functionalities may be implemented within the code 504 However, for the purposes of

-37-

WO 2021/061820 PCT/US2020/052280

description of FIGS. 6A and 6B, 1t will be assumed that the code 504, when executed, reads
input data {corresponding to the object identified within the call) from the mput file handle 506
(which may be passed as a commonly used input stream, such as stdin}, manipulates the mput
data, and writes output data to the output file handle SO8 {which may be passed as a commonly
used output stream, such as stdout}. Accordingly, at (8}, the system 120 obtains data written
to the output file (e.g., the file referenced in the output file handle) as output data of the
execution. In addition, at (9), the system 120 obtains a return value of the code execution {e.g.,
a value passed 1n a final call of the function). For the purposes of description of FIGS. 6A
and 6B, 1t will be assumed that the return value indicates success of the execution. At (10),
the output data and the success return value are then passed to the frontend 162.

[0095] On receiving output data and the return value, the frontend 162 returns the
output data of the task execution as the requested object. Interaction (11} thus ilustratively
corresponds to implementation of the GET request method, mitially called for by the client
device 102A, albeit by returning the output of the task execution rather than the object
specified within the call. From the perspective of the client device 1024, a call to GET an
object from the storage service 160 therefore results 1n return of data to the client device 102A
as the object. However, rather than returning the object as stored on the service 160, the data
provided to the client device 102A corresponds to output data of an owner-specified task, thus
enabling the owner of the object greater control over the data returned to the chent
device 1024A.

[0096] Simlarly to as discussed above with respect to FIGS. 5A and 3B, while shown
as a single interaction in FIG. 6B, in some embodiments ocutput data of a task execution and a
return value of that execution may be returned separately. In addition, whule a success return
value 15 assumed in FIGS. 6A and 6B, other types of return value are possible and
contemplated, such as error values, pipeline-control values, or calls to execute other data
manipulations. Moreover, return values may indicate what return value is to be returned to the
clhient device 102A (e.g., as an HT'TP status code). In some instances, where output data s
iteratively returned from a task execution, the output data may also be tteratively provided by
the frontend 162 to the client device 102A. Where output data s large {(e.g., on the order of
hundreds of megabyies, gigabytes, etc.}, iteratively returning output data to the client

device 102A can enable that data to be provided as a stream, thus speeding delivery of the

-38-

WO 2021/061820 PCT/US2020/052280

content to the device 102A relative to delaying return of the data until execution of the task
completes.

00971 While tllustrative mteractions are described above with reference to FIGS. 5A-
6B, various modifications to these interactions are possible and contemplated herein. For
example, while the interactions described above relate to manipulation of input data, in some
embodiments a serverless task may be mserted into the /O path of the service 160 to perform
functions other than data manipulation. Hlustratively, a serverless task may be utilized to
perform validation or authorization with respect to a called request method, to verify that a
client device 102A is authorized to perform the method — Task-based wvalidation or
authorization may enable functions not provided natively by the service 160, For example,
consider a collection owner who wishes to limat certain client devices 102 to accessing only
objects 1n the collection created during a certain time range (e.g., the last 30 days, any time
excluding the last 30 days, etc.). While the service 160 may natively provide authorization on
a per-object or per-collection basis, the service 160 may in some cases not natively provide
authorization on a duration-since-creation basis. Accordingly, embodiments of the present
disclosure enable the owner to insert into an /O path to the collection (e.g., a GET path using
a given URT to the collection) a serverless task that determines whether the client 15 authorized
o retrieve a requested object based on a creation time of that object. Hlustratively, the return
value provided by an execution of the task may correspond to an “authorized” or
“unauthorized” response. In instances where a task does not perform data manipulation, it may
be unnecessary to provision an environment of the task execution with input and output stream
handles. Accordingly, the service 160 and system 120 can be configured to forego
provisioning the environment with such handles in these cases. Whether a task implements
data mantpulation may be specified, for example, on creation of the task and stored as metadata
for the task (e.g., within the object data stores 166}. The service 160 may thus determine from
that metadata whether data manipulation within the task should be supported by provisioning
of appropriate stream handles.

0098} While some embodiments may utilize return values without use of stream
handles, other embodiments may instead utilize stream handles without use of return values.
For example, while the interactions described above relate to providing a return value of a task

execution to the storage service 160, in some instances the system 120 may be configured to

-39-

WO 2021/061820 PCT/US2020/052280

detect completion of a function based on interaction with an output stream handle.
Hiustratively, staging code within an environment {e.g., providing a file system in user space
or network-based file system) may detect a call to deallocate the stream handle {e.g., by calling
a “file.close()” function or the like). The staging code may interpret such a call as successful
completion of the function, and notify the service 160 of successful completion without
requiring the task execution to explicitly provide return value.

[0099] While the interactions described above generally relate to passing of input data
to a task execution, additional or alternative information may be passed to the execution. By
way of non-limiting example, such mformation may include the content of the request from
the client device 102 {e.g., the HTTP data transmitted), metadata regarding the request {(e.g, a
network address from which the request was received or a time of the request), metadata
regarding the chient device 102 {e.g., an authentication status of the device, account timae, or
request history), or metadata regarding the requested object or collection {e.g., size, storage
location, permissions, or time created, modified, or accessed). Moreover, 1n addition or as an
alternative to manipulation of input data, task executions may be configured to modify
metadata regarding input data, which may be stored together with the mput data (e.g., within
the object) and thus written by way of an output stream handle, or which may be separately
stored and thus modified by way of a metadata stream handle, inclusion of metadata in a return
value, or separate network transmission to the service 160,

[0100] With reference to FIG. 7, an illustrative routine 700 for implementing owner-
defined functions 1n connection with an I/0 request obtamed at the object storage service of
FIG 1 over an 1/O path will be described. The routine 700 may illustratively be implemented
subsequent to association of an /O path (e.g., defined in terms of an object or collection, a
mechanism of access to the object or collection, such as a URI, an account transmiiting an 10
request, etc.) with a pipeling of data manipulations. For example, the routine 700 may be
implemented prior to the interactions of FIG. 3, discussed above. The routine 700 15
ittustratively implemented by a frontend 162.

{0101} The routine 700 begins at block 702, where the frontend 162 obtains a request
to apply an VO method to input data. The request lustratively corresponds to a client device
(e.g., an end user device). The 1/0 method may correspond, for example, to an HTTP request

method, such as GET, PUT, LIST, DELETE, etc. The input data may be included within the

-40-

WO 2021/061820 PCT/US2020/052280

request (e.g., within a PUT request), or referenced in the request {e.g., as an existing object on
the object storage service 160.

0102} At block 704, the frontend 162 determines one or more data manipulations in
the 1/0 path for the request. As noted above, the /O path may be defined based on a variety
of criteria {or combinations thereof), such as the object or collection referenced in the request,
a URI through which the request was transmitted, an account associated with the request, etc.
Manipulations for each defined /O path may illustratively be stored at the object storage
service 160. Accordingly, at block 704, the frontend 162 may compare parameters of the VO
path for the request to stored data manipulations at the object storage service 160to determine
data manmipulations inserted into the I/O path. In one embodiment, the manipulations form a
pipeline, such as the pipeline 400 of FIG. 4, which may be previously stored or constructed by
the frontend 162 at block 704 (e g., by combining multiple manipulations that apply to the /O
path). In some instances, an additional data manipulation may be specified within the request,
which data mamipulation may be mserted, for example, prior to pre-specified data
manipulations {e.g, not specified within the request). In other instances, the request may
exclude reference to any data manipulation.

[0103] At block 706, the frontend 162 passes input data of the /O request to an imitial
data manipulation for the I/0 path. The initial data mampulation may inchude, for example, a
native manipulation of the object storage service 160 or a serverless task defined by an owner
of the object or collection referenced 1 the calll Ilustratively, where the nutial data
mamipulation 13 a native manipulation, the frontend 162 may pass the input to the object
manipulation engine 170 of FIG. 1. Where the mitial data manipulation 13 a serverless task,
the frontend 162 can pass the input to the on-demand code execution system 120 of FIG. 1 for
processing via an execution of the task. An illustrative routine for implementing a serverless
task 1s described below with reference to FIG. 8.

[0104] While FIG 7 illustratively describes data manipulations, in some instances
other processing may be applied to an /O path by an owner. For example, an owner may insert
into an /O path for an object or collection a serverless task that provides authentication
independent of data manipulation. Accordingly, in some embodiments block 706 may be
modified such that other data, such as metadata regarding a request or an object specified in

the request, 1s passed to an authentication function or other path manipulation.

41-

WO 2021/061820 PCT/US2020/052280

{0105} Thereafter, the routine 700 proceeds to block 708, where the implementation of
the routine 700 varies according to whether additional data manipulations have been associated
with the I/O path. If so, the routine 700 proceeds to block 710, where an output of a prior
manipulation is passed to a next manipulation associated with the I/0 path {e.g., a subsequent
stage of a pipeline).

[0106] Subsequent to block 710, the routine 700 then returns to block 708, until no
additional manipulations exist to be implemented. The routine 700 then proceeds to block 712,
where the frontend 162 applies the called I/0 method (e g, GET, PUT, POST, LIST, DELETE,
etc.} to the output of the prior manipulation. For example, the frontend 162 may provide the
output as a result of a GET or LIST request, or may store the output as a new object as a result
of a PUT or POST request. The frontend 162 may further provide a response to the request to
a requesting device, such as an ndication of success of the routine 700 {or, in cases of failure,
failure of the routine}. In one embodiment, the response may be determined by a return value
provided by a data manipulation implemented at blocks 706 or 710 (e.g., the final manipulation
mmplemented before error or success). For example, a manipulation that indicates an error
(e.g. lack of authorization) may specify an HTTP code indicating that error, while a
manipulation that proceeds successfully may instruct the frontend 162 to return an HTTP code
mdicating success, or may instruct the frontend 162 to return a code otherwise associated with
application of the I/0 method {e.g., in the absence of data manipulations). The routine 700
thereafter ends at block 714,

[0107] Notably, application of the called method to that output, as opposed to input
specified 1 an mutial request, may alter data stored in or retrieved from the object storage
service 160, For example, data stored on the service 160as an object may differ from the data
submitted within a request to store such data. Similarly, data retrieved from the system as an
object may not maich the object as stored on the system. Accordingly, implementation of
routine 700 enables an owner of data objects to assert greater control over /(O to an object or
collection stored on the object storage service 160 on behalf of the owner.

0108} In some nstances, additional or alternative blocks may be included within the
routine 700, or implementation of such blocks may include additional or alternative operations.
For example, as discussed above, in addition to or as an alternative to providing output data,

serverless task executions may provide a return value. Insome instances, this return value may

WO 2021/061820 PCT/US2020/052280

instruct a frontend 162 as to further actions to take in implementing the manipulation. For
example, an error return value may instruct the frontend 162 to halt mmplementation of
manipulations, and provide a specified error value (e.g., an HTTP error code} to a requesting
device. Another return value may instruct the frontend 162 to implement an additional
serverless task or manipulation. Thus, the routine 700 may in some cases be modified to
include, subsequent to blocks 706 and 710 for example, handling of the return value of a prior
manipulation (or block 708 may be modified to include handling of such a value}. Thus, the
routine 700 1s intended to be illustrative in nature.

[0109] With reference to FIG. 8, an illustrative routine 800 will be described for
executing a task on the on-demand code execution system of FIG. 1 to enable data
manipulations during implementation of an owner-defined function. The routine 800 1s
illustratively implemented by the on-demand code execution system 120 of FIG. 1.

[0110] The routine 800 begins at block 802, where the system 120 obtains a call to
implement a stream manipulation task {e.g., a task that manipulations data provided as an input
10 stream handle). The call may be obtained, for example, in conjunction with blocks 706
or 710 of the routine 700 of FIG. 7. The call may include mput data for the task, as well as
other metadata, such as metadata of a request that preceded the call, metadata of an object
referenced within the call, or the like.

{0111} At block 804, the system 120 generates an execution environment for the task.
Generation of an environment may include, for example, generation of a container or virtual
machmne mstance m which the task may execute and provisioning of the environment with
code of the task, as well as any dependencies of the code {e.g., runtimes, hibraries, etc.). Inone
embodiment, the envuonment is generated with network permissions corresponding to
pernussions specified for the task. As discussed above, such permissions may be restrictively
{(as opposed to permissively} set, according to a whitelist for example. As such, absent
specification of permussions by an owner of an /O path, the environment may lack network
access. Because the task operates to manipulate streams, rather than network data, this
restrictive model can increase security without detrimental effect on functionality. In some
embodiments, the environment may be generated at a logical network location providing

access to otherwise restricted network resources. For example, the environment may be

-43-

WO 2021/061820 PCT/US2020/052280

generated within a virtual private local area network {e.g., a virtual private cloud environment})
associated with a calling device.

[0112] At block 806, the system 120 stages the environment with an IO stream
representing to mput data. [Hustratively, the system 120 may configure the environment with
a file system that includes the input data, and pass to the task code a handle enabling access of
the input data as a file stream. For example, the system 120 may configure the environment
with a network file system, providing network-based access to the input data (e.g., as stored
on the object storage system). In another example, the system 120 may configure the
environment with a “local” file system {e g., from the point of view of an operating system
providing the file system}, and copy the input data to the local file system. The local file system
may, for example, be a filesystem in user space (FUSE). In some instances, the local file
system may be implemented on a virtualized disk drive, provided by the host device of the
environment or by a network-based device (e g., as a network-accessible block storage device).
In other embodiments, the system 120 may provide the 10 stream by “piping” the input data
to the execution enviromment, by writing the 1oput data to a network socket of the environment
{(which may not provide access to an external network), etc. The system 120 further configures
the enviromment with stream-level access to an output stream, such as by creating a file on the
file system for the output data, enabling an execution of the task to create such a file, piping a
handle of the environment {e.g., stdout) to a location on another VM 1nstance colocated with
the environment or a hypervisor of the environment, etc.

[0113] At block 808, the task 15 executed within the environment. Execution of the
task may mclude executing code of the task, and passing to the execution handles or handles
of the input stream and output stream. For example, the system 120 may pass to the execution
a handle for the input data, as stored on the file system, as a “stdin” variable. The system may
further pass to the execution a handle for the output data stream, e.g., as a “stdout” variable.
In addition, the system 120 may pass other information, such as metadata of the request or an
object or collection specified within the request, as parameters to the execution. The code of
the task may thus execute to conduct stream manipulations on the input data according to
functions of the code, and to write an output of the execution to the output stream using O8-

level stream operations.

-44-

WO 2021/061820 PCT/US2020/052280

{0114} The routine 800 then proceeds to block 810, where the system 120 returns data
written to the output stream as output data of the task {e.g., to the frontend 162 of the object
storage system}. In one embodiment, block 810 may occur subsequent to the execution of the
task completing, and as such, the system 120 may return the data written as the complete output
data of the task. In other instances, block 810 may occur during execution of the task. For
example, the system 120 may detect new data written to the output stream and return that data
immediately, without awaiting execution of the task. Hlustratively, where the output stream 1s
written to an output file, the system 120 may delete data of the output file after writing, suc
that sending of new data immediately obviates a need for the file system to maintain sufficient
storage to store all output data of the task execution. Still further, in some embodiments,
block 810 may occur on detecting a close of the output stream handle describing the output
streant.

[0115} In addition, at block 812, subsequent to the execution completing, the
system 120 returns a return value provided by the execution {(e.g., to the frontend 162 of the
object storage system). The return value may specify an cutcome of the execution, such as
success or fallure. In some instances, the return value may specify a next action to be
undertaken, such as implementation an additional data manipulation. Moreover, the return
value may specify data to be provided to a calling device requesting an I/O operation on a data
object, such as an HTTP code to be returned. As discussed above, the frontend 162 may obtamn
such return value and undertake appropriate action, such as returning an error or HTTP code
to a calling device, implementing an additional data manipulation, performing an /O operation
on cutput data, etc. In some mstances, a return value may be exphicitly specified within code
of the task. In other instances, such as where no return value 1s specified within the code, a
default return value may be returned (e.g., a *1” indicating success). The routine 800 then ends
at block 814.

[0116] Customers typically desire the ability to determine process data (such as
determining a checksum value of a file, or perform some other function) once 1t has been
uploaded to an object storage service m order to confirm the integrity of the uploaded data.
However, current techmiques often require waiting until the complete file is uploaded, even
when the file is split into separate portions and the individual portions are uploaded in paraliel

{e.g., using a multi-part upload procedure, which is a term used to refer to any procedure where

-45.

WO 2021/061820 PCT/US2020/052280

multiple parts or sub-objects are individually uploaded and later combined into a complete,
reassembled, or sometimes referred to as umified, file or object), before processing of the
reassembled {or sometimes referred to as unified}, complete file can be determined. Where
multi-part upload is supported, embodiments enable insertion of a processing function into the
nput/output path of each portion, such that individual intermediate or mitial (or first} functions
can be executed on each portion. In addition, embodiments also enable imsertion of a
processing function that combines the individual intermediate or initial function outputs (e.g.,
the checksum values of each portion of the nput file, etc.} to determine a final {or second)
function output associated with the reassembled nput file {e.g, such as determining a
checksum value of the reassembled file, or determining some other function output based on
the reassembled file). Where multi-part upload enables parallel upload, intermediate function
outputs can also be calculated in parallel. Pre-calculation of an imtermediate function output
{such as a checksum), either in parallel or iteratively during upload of portions, enables the
function output {(e.g., the checksum) for a complete file to be calculated much more rapidly
after uploading s complete, as compared to calculating the function output of the complete,
reassembled file only after the uploading and reassernbling of the input file s complete. The
term “reassembled” may also be referred to as “unified” For example, a reassembled file,
object, or data may also be referred to as a unified file, object, or data.

[0117] Multi-part upload enables a client to split a file mto separate portions and the
upload the separate portions n parallel. Once all portions have been successfully uploaded,
the client may submit a call to merge, or reassemble the separate portions to form the crnigmal
file. The chent may also submit a manifest with the call that indicates which portions are to
be merged, and the order in which the portions are to be merged.

[0118] One particularly useful apphication of such processing is to determine a
checksum of a large file based upon individual checksum values of file parts, each of which
may be uploaded in parallel. A checksum value is an error-detecting code determined from a
set of data and used to detect changes to the set of data. One such checksum value 1s determined
using a cyclical redundancy check {e.g., CRC-32, which 1s a 32-bit cyclical redundancy check).
A checksum algorithm enables calculation of a value, or a checksum, for an object, where the
value 1s smaller than the object, but 1s would significantly change if even minor changes to the

object occur. Therefore, checksums can be used to detect errors associated with the transfer

46~

WO 2021/061820 PCT/US2020/052280

of the object from one location to another. The routine tllustrated in FIG. 9 may be used to
compute the checksum {or other value) of an mput file from mdividual checksums {or other
values) determined from mndividual portions of the mput file.

{0119} FIG. 915 a flow diagram of an illustrative routine 900 that may be executed by
an object storage service, such as object storage service 160, a code execution service {or a
function running within the code execution service), such as the on-demand code execution
system 120, or both. The routine 900 may be used to dynamically process mput data portions
{sometimes referred to as chunks, parts, or data sub-objects) of input data at run time (“on-the-
fly”). Such processing may occur as the input data portions are uploaded to and stored as data
object portions in an object storage service (such as, for example, object storage service 160)
and in response to a request to merge the data object portions into a data object stored on the
object storage service. Although routine 900 is described with respect to calculating a
checksum value of an input file based upon mdividual checksum wvalues of certain
independently-uploaded input file portions, the routine may be used to determine a function
output based upon any mitial, or mtermediate function outputs.

[0120] In some embodiments, the routine 900 may be used to automatically determine
a checksum value of {or perform a first function on) each individual input data portion as 1t 13
uploaded and prior to reassembling the mdividual data object portions into the data object
representing the complete input data. Determining a checksum value of each individual input
data portion as it 13 uploaded and prior to reassembling the mput data can advantageously
reduce the amount of time before the stored mput data s ready for further processing or
retrieval. For example, if errors occur during mput data portion upload, the error may be
detected as soon as the mput data portion upload 15 completed, instead of after the complete
input data 1s reassembled. Such error detection can result in the re-uploading of just the input
data portion having such errors. Alternatively, first values determined from each input data
portion as they uploaded may be used to detect a first condition, instead of determining the
first condition after the complete input data is reassembled. Additional processing may be
performed with respect to each input data portion based on 1ts corresponding first value, as
well. In addition, a checksum value of the complete mput data may be determined from the
checksum values of each of the individual input data portion checksum values instead of from

the reassembled input data (e.g, after reassembling the portions into the data object).

-477-

WO 2021/061820 PCT/US2020/052280

Simlarly, a second or final value associated with the complete input data may be determined
from the first values of the individual data portions instead of from the reassembled input data
by applying a second function to the first values. Determining the checksum (or second value)
of the input data from the checksums {or first values) of its input data portions advantageously
reduces latency and computing resource requirements. Aspects of the routine 900 will be
described with additional reference to FIG. 10, which is a system diagram of illustrative data
flows and mteractions between various components of the service provider system 110,

{0121} The routine 900 may begin in response to an event, such as submission of a
request from a client device 102 to upload input data to the object storage service 160.
flustratively, an owner of a collection of data objects to which the input data s to be added as
a new data object may have previously specified that, on uploading of an object to the
collection using multi-part upload, a first task should be executed to process each portion of
the data object uploaded, and that a second task should be executed on a request to reassemble
the portions into the data object. In some embodiments, the routine 200 or portions thereof
may be implemented on multiple processors, serially or in parallel.

[0122] At block 902, the object storage service 160 can receive a request to store input
data submiited via multi-part upload. FIG. 10 dlustrates the object storage service 160
receiving the request at (1). The request tllustratively includes parameters, such as an wdentifier
of the input data to be stored by the object storage service 160 as a data object, a location to
store the data object; context data regarding the request; other data; or some combination
thereof. For example, the request may be a resource request, such as a PUT request, for
particular input data to be stored in the object data store 166 of the object storage service 160,
which input data 15 to be provided via multi-part upload.

[0123] At block 902, the object storage service 160 can also determine that function
output is to be generated using portions of the input data to be stored in the object storage
service 160. In some embodiments, the determination may be based on context data and/or
the input data itself For example, the object storage service 160 may receive an indication
that the client will transfer the input data to the storage service 160 using a multi-part file
transfer protocol, or the input data may be required to be uploaded to the object storage service
160 using a multi-part file transfer protocol. In such case, the object storage service 160 will

determine an object identifier (e.g., an object ID) for the multi-part mput data to be transferred.

-48-

WO 2021/061820 PCT/US2020/052280

The object storage service 160 will provide the object ID to the client. In some embodiments,
the input data 1s not transferred using a multi-part file transfer protocol. Instead, the mnput data
is transferred in portions {e.g., objects, sub-objects, files, delineated elements, etc.}, but not
necessarily according to a multi-part file transfer protocol. A manifest or list may be provided
to wdentify the portions that are to be subsequently joined together, and the order in which they
are to be joined together, to reassemble the complete input data from its portions.

[0124] At block 904, the object storage service 160 may receive a portion of the input
data from the client. In one specific, non-limiting embodiment, the input data may be a file, a
composite file {e.g., a compressed file, such as a filed compressed according to a .zip, tar or
other compressed file format}, a composable object, or a super-composable object composed
of individual objects or sub-objects. Fach input data portion is received with associated
metadata, which can include the object ID and an indication of one or more functions to be
performed on the input data portion, the complete input data, or both. For example, the
metadata can include a checksum value associated with the data object portion (the “received
CV”). The received input data portion, object ID, and metadata (e.g., the received CV) may
be stored by the object storage service 160 in one or more staging areas. Staging areas are data
storage locations, and include data storage accessible via a block storage service, a local disk,
the object data store 166 of the object storage service 160, or other data storage location. The
received mput data portion, object 1D, and metadata may be stored i the same or different
staging areas. In addition, multiple 1nput data portions may be received by the object storage
system 160 mn parallel, during at least partially overlapping time periods. Furthermore, the
mput data portions may be received 1n a different order than the order in which the mput data
portions are to be assembled into the complete data object. Therefore, the metadata can include
an wnput data portion identifier (input data portion 1D} that can be used to designate the mput
data portions to be used, and the order in which the input data portions are to be arranged, to
assemble the complete nput data. Furthermore, the mput data portions may be the same size
ot have different sizes than one another.

[0125] The indications of one or more functions to be performed on the input data
portion, the complete input data, or both, can include an indication to manipulate and/or
validate the input data portion, the input data, or both, prior to storing the input data within the

object storage service 160 object data store 166. For example, the indication can indicate that

-49-

WO 2021/061820 PCT/US2020/052280

the input data portion, the complete input data, or both, are to be compressed, decompressed,
encrypted, decrypted, or a combination thereof, prior to being stored within the object storage
service 160 object data store 160. In addition, the indication can indicate that the mput data
portion, the complete input data, or both, are to be error checked prior to subseguent
manipulation. For example, the input data portions may be individually error checked, or
checksum checked prior to being reassembled to the complete mput data. Additionally, the
reassembled mput data may be checksum checked prior to being stored in the object data store
storage 166. In some embodiments, the object storage service 160 may automatically error
check each input data portion and/or the complete input data without receiving an indication
mstructing the object storage service 160 to do so. The object storage service 160 may initiate
error detection of each iput data portion as soon as it 15 completely recetved, without waiting
to reassemble the complete input data. FIG 10 dlustrates the object storage service 160
recetving and storing portion(s) of the input data at (2).

[0126] At block 906, the object storage service 160 can make a call to the execution
environment 302 to execute a function (e.g., a first function) to determine a checksum value of
{or perform a different calculation or determination using) the nput data portion. FIG. 10
tHustrates the object storage service 160 making a call to the execution environment 5302, and
the execution environment 502 {or the function running within the execution environment 502)
returning a result at (33, In response to the call, the VM instance 150 or other execution
environment 502 can execute the function by using the mput data portion. For example, the

/M nstance 150 or other execution environment 502 (or the function runming within the
execution environment 502} may determune a checksum value (a “determined CV7) associated
with the input data portion. The execution environment 502 {or the function running within
the execution environment 502) may perform any of a variety of error detection operations on
the mput data portion, including a cyclical redundancy check (e.g., CRC-32) or any other
parallelizable error detection operation. A parallelizable error detection operation 1s an error
detection operation that may be performed on portions of input data, and the individual outputs
of the error detection operation may be combined or otherwise used to determine a checksum
or other data integrity indication associated with the complete input data. Each determined CV

may be stored 1 any of a variety of ways, including storing it as metadata with the input data

-50-

WO 2021/061820 PCT/US2020/052280

portion, with a relational or non-relational database service, using a relational or non-relational
database management system, or storing it with the object storage service.

[01271 At block 908, the object storage service 160 can process the sutput of the
function recetved from the execution environment 502 {or the function running within the
execution environment 502} For example, the object storage service can perform error
detection for (or perform some other calculation or determination using) the mput data portion
using the output data, such as the determined CV, received from the execution
environment 502 (or the function running within the execution environment 502). FError
detection may include comparing the determined CV to the stored, received CV. If the two
values are different, the object storage service 160 may determine that an error has occurred
during upload of the input data portion, and the client may be requested to re-send the
associated input data portion. FIG. 10 lustrates the object storage service 160 processing the
output(s) of the function(s) at (4).

[0128] In some embodiments, the object storage service 160 may provide the
determined CV (or first values) associated with the mput data portion to the client. The client
may receive the determined CV and compare it to a chient-determined checksum value of the
mput data portion {or otherwise process the first values). If the two values are different, the
client may determine that it needs 1o re-send the associated input data portion to the object
storage service 160, In such case, the client will instruct the object storage service 160 that the
mput data portion s bemng re-uploaded.

[0129] In some embodiments, instead of performing a checksum determination
function on each mput data portion that 18 received by the object storage service 160, the
execution environment S02 {or the function running within the execution environment 502) 1s
configured to perform the function on a fixed-sized portion of the input data (or input data
portion}. The size of the fixed-sized portion may be configured by the client. For example,
the size may be designated using a parameter send to the object storage service 160 m
connection with the mitiation of the input data multi-part upload process. In some
embodiments, the size is predetermined by the object storage service 160 or execution
environment 502 {or the function runming within the execution environment 502).

[0130] For example, the client may wish to upload a 10 GB file as input data using a

multi-part upload process. The client may upload the input data in multiple portions, each

-51-

WO 2021/061820 PCT/US2020/052280

having the same or different size. For example, the chent may upload the input data in ten 1
(3B data object portions. The execution environment 502 may process each portion as it s
received (as discussed above), or it may process a fixed-sized portion of each portion, instead.
For example, the execution environment 502 may process each 106 MB (or other
predetermined, fixed size) of each 1 GB data object as 1t is recetved.

[0131] Such fixed-sized portion processing can advantageously enable the execution
environment 502 to operate on a known fixed sized input. Such configuration would greatly
simphify and improve the efficiency of the provisioning the staging area storage used to process
each fixed-sized portion of the mput data portion. In some embodiments, fixed-sized portion
processing 1s used automatically if the complete input data size, or if an input data portion size
exceeds a threshold value.

[0132] Blocks 904 to 908 define a paraliehizable block 909 that may be terated
multiple times in parallel or sequentially, or both. For example, the blocks of block 909 may
be performed for each input data portion received from the client, and 1n parallel (e.g., during
at least partially overlapping time periods).

[0133] At block 910, the object storage service 160 {or VM mstance 150, other
execution environment 302, or the function running within the execution environment 502)
can receive a request to perform a second function based on at least a portion of the first
outputs. For example, the object storage service 160 can receive a request to determine a
checksum of the reassembled mput data from the stored mput data portions, submitted via
multi-part upload, or a request to reassermble the input data from the stored input data portions.
FIG. 10 illustrates the object storage service 160 receiving the request at (5). The request
tlustratively includes parameters, such as an identifier of the mput data portions to be
reassembled and stored by the object storage service 160 as a data object, a location to store
the data object; context data regarding the request; other data; or some combination thereof.
For example, the request may be a resource request, such as a PUT request.

{0134} At block 910, the object storage service 160 can also determune that function
output is to be generated using portions of the input data stored in the object storage service
160. In some embodiments, the determination may be based on context data and/or the input
data itself. For example, the object storage service 160 may receive an indication that

previously received input data portions are to be combined together. A manifest or list may be

WO 2021/061820 PCT/US2020/052280

provided to identify the portions that are to be joined together, and the order in which they are
to be joined together, to reassemble the complete input data from previously uploaded portions.

[0135] At block 912, the object storage service 160 may execuie a call to the execution
environment 502 {(or the function running within the execution environment 502) to determine
a checksum of the reassembled input data by {or perform a second function) using the
mdividual checksums {or first values) of each of the input data portion checksums. FIG. 10
lfustrates object storage service 160 executing the call to the execution environment 502 (or
the function running within the execution environment 502) to determine a checksum of the
reassembled input data at {6). In one embodiment, the object storage service 160 receives a
manifest from the client that identifies the nput data portions that are to be reassembled into
the complete input data. In addition, the manifest also identifies the order in which the mput
data portions are to be reassembled into the complete input data. For example, individual input
data portions may have been received out of order and the manifest may be used to determine
the correct ordering of the mnput data portions within the complete input data. The checksum
values of each of the input data portions identified in the manifest are provided to the execution
environment 502 with the call to determine the checksum of the reassembled input data. The
execution environment 502 may execute the function to determine the checksum of the
reassembled input data by combinung the individual checksums, or by determining a checksum
of the mndividual checksum values. The execution environment 502 {or the function running
within the execution environment 502) may return the checksum of the reassembled input data
to the object storage service, as shown in FIG. 10 at (6).

[0136] At decision block 914, the object storage service 160 processes the output of
the function. For example, the object storage service 160 may perform error detection using
the checksum of the reassembled input data, or it may provide the output to the client to enable
the client to perform error detection. In some embodiments, the object storage service 160
may process the output of the function by storing the output as an object within the object data
store 166. If an error is detected, the client may re-upload one or more portions of the input
data. If no error is detected, the object storage service 160 reassembles the complete input data
from the stored input data portions based upon the contents of the manifest. FIG. 10 illustrates
the object storage service processing the output of the function and reassembling the complete

mnput data from the stored input data portions at (7).

-53-

WO 2021/061820 PCT/US2020/052280

[0137] At block 916, the object storage service 160 can store the reassembled input
data as a data object in the object data store 166. FIG. 10 illustrates the object storage service
storing the reassembled input data as a data object at (8).

{0138] Blocks 912 through 916 are illustrated as occurring in sequence. However, the
order in which these blocks occur may vary. In some embodiments, the ordering may be
different, or two or more block may be performed at the same time, or during at least partially
overlapping time periods. For example, in some embodiments, block 912 can be performed
concurrently {or partially concurrently) with block 914 and/or block 916, In some
embodiments, blocks 914 and 916 may occur before block 912, as well.

{0139} The routine may terminate at block 918,

[0140} Insome embodiments, a client sends a request to an object storage service (such
as object storage service 160) to write nput data or a file as a data object to a storage location,
such as an object data store (including object data store 166). For example, the client may wish
to store a collection of customer records that include personal customer information (e.g.,
customer government-issued wdentification numbers, social security numbers, etc.). The client
may wish to obfuscate the customer records prior to storage so that users may only retrieve
versions of the customer records where the personal customer information bhas been obfuscated.
The client may wish to allow only a small number of users with superior security credentials
to have access to the un-obfuscated personal customer information. In another example, the
mput data may mclude medical images (e.g., photograph, x-ray, sonogram, ultrasound images,
etc.}, where a portion of the image includes personally identifiable mmformation, such as the
patients’ names. The client may wish to obfuscate the personally-identifiable information from
the medical image. The client request may include the input data, or information usable by the
object storage service 160 to obtain the input data. In response to the request, the object storage
service 160 may stage the input data in a staging area, such as any of the staging areas discussed
above. OUnce the mput data has been staged, a routine to obfuscate the input data may be
mitiated, such as routine 1100 of FIG. 11.

[0141] FIG. 11 15 a flow diagram of an tllustrative routine 1100 that may be executed
by a code execution service {or a function running within the execution environment S02),
such as the on-demand code execution system 120, to dynamically tokenize, mask, scramble,

obscure, encrypt, or otherwise render unmtelligible (collectively referred to herein as

-54-

WO 2021/061820 PCT/US2020/052280

“obfuscate” for convenience) portions of input data at run time in response to a request to store
or write the input data. Obfuscation also inchudes replacement (e.g., selective replacement) of
one or more portions of input data with different, unique data, such as a token. The token for
each instance of replaced data (e.g., each mstance of private information} is different from
every other token. In other words, there may be provided a one-to-one mapping of tokens to
each instance of private information. The routine may be implemented as a function of the on-
demand code execution system 120, and a user may attach the function to, or mnsert the function
within, an input-output path for a given collection of objects. A request fo write input data
includes request to write or store the input data as a data object in a storage location, such as
an object data store, including object data store 166. A client may wish to store a data set that
includes both private and non-private information. However, the client may wish to store the
data set in a manner in which the private information s separated from the non-private
mformation, and in which the private information, and a mapping between tokens and private
mformation, are stored m a secure location with access to only a linited number of authorized
mdividuals or resources. The client may also wish to provide access to the non-private
information to a larger group of individual or resource, or store the non-private information in
a less secure location. Aspects of the routine 1100 will be described with reference to FIG. 12,
which 1s a system diagram of illustrative data flows and interactions between various
components of the service provider system 110.

[0142] The routine 1100 may begin n response to an event, such as when the routine
tustrated 1m FIG. 8 reaches block 808, For example, the routine 1100 may be an owner-
defined function, also referred to as a user-defined task, that s performed by a VM mstance 150
or other execution environment 502 generated during the routine lustrated m FIG. 8. In some
embodiments, the routine 1100 or portions thereof may be implemented on multiple
processors, serially or in parallel.

[0143] At block 1102, the VM instance 150 or other execution environment 502 (or
the function running within the execution environment 502} ¢an receive parameters associated
with a request to write input data. FIG. 12 illustrates the execution environment 502 {or the
function runming within the execution environment 502) recetving the parameters associated
with the request at {(1). In some embodiments, the parameters may include: reference data

comprising a reference to input data to be stored as a data object; a reference to an output

-55-

WO 2021/061820 PCT/US2020/052280

location of the data object; context data regarding the request; other data or metadata; or some
combination thereof For example, the request may be a resource request, such as a PUT
request, to store input data as a particular data object in the object storage service 160, The
reference to the input data may be data that can be used by the execution environment 502 {or
the function running within the execution environment 502) to access the input data, such as:
a file descriptor; a file handle; a pointer; or some other data representing an address or identifier
of the input data. The reference to the output location may be data that can be used by the
execution environment 502 {or the function running within the execution environment 502} to
write, store, or otherwise persist output data, such as: a file descriptor; a file handle; a pointer;
or some other data representing an address or identifier of a location for providing output of
the function. The context data or metadata may include data or metadata regarding the context
of the request, such as: an identifier of a user, account or other source of the request; an
wdentifier of an access or security profile under which the request is being make; data
representing the access or security rights under which the request is to be processed; an
wdentifier of a location associated with the request; an wdentifier of a language associated with
the request; or data representing preferences or tendencies of a source of the request. While
FIG. 12 depicts the object storage service providing parameters such as a reference to a
requested data object or reference to an output location to the execution environment SO2 (or
the function running within the execution environment 502}, in other mstances these references
may be provided by elements of the execution system 120, such as staging code 157,

[0144] At block 1104, the VM instance 150 or other execution environment S02 {or
the function running within the execution environment 502} can obtain the mnput data to be
stored as a data object using the reference data. The input data may be obtamed in un-
obfuscated or substantially un-obfuscated form. FIG 12 illustrates the execution
environment 502 {(or the function running within the execution environment 502) obtaining the
input data at (2). In some embodiments, the input data may not be obtained from the object
storage service 160 at block 1104, but may be provided to the execution environment 502 {or
the function running within the execution environment 502) previously. For example, during
staging of the execution environment, the input data may be obtained and stored on a
computing device of the execution environment 502 at a location indicated by the reference

data.

-85~

WO 2021/061820 PCT/US2020/052280

[0145] At block 1106, the VM instance 150 or other execution environment 502 (or
the function running within the execution environment 502} can determine that one or more
portions of the input data are to be obfuscated. In some embodiments, the determination may
be based on context data and/or the input data. For example, if a portion of the input data looks
like, or is determined to be or to likely be a form of private or personally-identifiable
information, the execution environment 502 (or the function running within the execution
environment 502} can determine that such portion 1s to be obfuscated The execution
environment 502 {(or the function running within the execution environment S02) may test one
or more items of context data against one or more criteria to determine whether to perform an
obfuscation and which portion{s) of the mnput data to obfuscate. If an item of context data
satisfies one or more criteria, then the execution environment 502 {(or the function running
within the execution environment 502) can determine that one or more portions of the input
data are to be obfuscated such that the obfuscated portion{s} render the portions of the nput
data as unable to be understood by a recipient. FIG. 12 illustrates the execution
environment 502 (or the function running within the execution environment 302) determining
to obfuscate portions of the input data at (3).

[0146] Testing the context data against the criteria may include: determining that the
mput data includes private, or personally identifiable information (including, but not limited
to. an mdividual’s name, address, age, government-issued identification number, social
security number, date of birth, place of birth, mother’s maiden name, biometric information,
health information, a vehicle identification number (VIN), etc.}; or determining that the input
data mcludes information that has been designated confidential.

[0147] In one specific, non-limuting embodiment, the nput data may be a data file,
such as a spreadsheet, delimited file, or other collection of data records. Some portions of the
data file, such as collections of records, collections of columns or data fields, or the like are f0
be stored in obfuscated form if the request satisfies one or more criteria. The execution
environment 502 (or the function running within the execution environment 502) may
determine that properties of the request indicated by the context data or otherwise associated
with the request satisfy the criteria for particular records, columns, and/or fields of the
requested data object. The execution environment 502 (or the function running within the

execution environment 502) may determine, based on this criteria that the particular records,

-57-

WO 2021/061820 PCT/US2020/052280

columns, and/or fields of the requested input data are to be obfuscated prior to being output by
the function (e.g., for storage as a data object).

[0148] At block 1108, the VM 1nstance 150 or other execution environment 502 can
selectively apply obfuscation to portions of the input data determined above FIG. 12
lfustrates the execution environment 502 {or the function running within the execution
environment 502} obfuscating portions of the input data at (4). Obfuscating the content of a
portion of the mput data may involve the use of one or more obfuscation methods, such as
scrambling the content in a pseudo random method, generating a hash of the content, replacing
the content with a token mapped to the content in a data store (such as the object storage service
160}, encrypting the portion, or the like. In some embodiments, encryption ts performed using
a kev under the control of the data object owner and is managed using a key management
service. In some embodiments, different obfuscation methods may be used for different
portions of a data object, different data objects, different context data criteria, or the hike.

[0149] For example, in one embodiment, the obfuscation method may include
replacing a portion of the imput data with a token that 1s mapped to a key-value pair secured
a secure location, such as an external database. For example, a social security number
“909-09-0909” may be replaced with a globally unique identifier, such as “001.,” and a distinct
database may store a key-value pair mapping key “001” to “909-09-0909”

[0150] In some embodiments, the obfuscation method may be specified by an entity
that owns or is responsible for the data object requested to be stored {e.g., as part of the request
to store the mput data as the data object). For example, an entity may specify that particular
type of obfuscation {e.g., an mdustry standard obfuscation method in the medical field) 15 to
be used for a data object or bucket of data objects, while another entity may specify that a
different type of obfuscation (e.g., tokenization using a mapping of tokens to data) is to be used
for a different data object or bucket of data objects. If no obfuscation method is specified, the
execution environment 502 {or the function running within the execution environment 502}
may apply a defauvlt obfuscation method.

[0151] At block 1110, the VM instance 150 or other execution environment 502 {or
the function running within the execution environment 5302) can provide the selectively-
obfuscated input data as output of the function. For example, the execution environment 502

{or the function running within the execution environment 502} can place the selectively-

-58-

WO 2021/061820 PCT/US2020/052280

obfuscated mput data at the output location indicated by the reference data, and finalize the
output. Finalizing output of the function may include closing the output stream or file
identified by the reference to the output location and/or providing a return value (eg.,
indicating success, failure, or some other characteristics of function execution) to the object
storage service 160. In addition, at block 1110, the VM instance 150 or other execution
environment 502, or the function running within the execution environment 502, can also
provide an index as second output data. The index may include a mapping between tokens and
obfuscated private information. The index may be subsequently stored using the object storage
service, a different object storage service, or a different storage service, such as a database
storage service, or any other storage service. FIG. 12 illustrates the execution environment
502 (or the function running within the execution environment 502) providing the selectively-
obfuscated input data as output at (5). The routine 1100 may ternunate at block 1112,

[0152] Obfuscation of data object portions at write provides certain data management
advantages. For example, if input data includes customer records, such as purchase history,
personally identifiable information, and other private and non-private information, a data
object including obfuscated versions of that information may be more easily updated if a
particular customer deletes her account. For example, instead of having to scan through an
entire data object to locate and remove all of the deleted customer’s private information, the
system can instead delete the mapping of tokens associated with the deleted customer from the
token mapping table (or mapping of tokens to kev-value patrs, as discussed above) or delete
the customer’s private information from the location m which such private mformation s
stored.

[0153] FIG. 13 15 a flow diagram of an illustrative routine 1300 that may be executed
by a code execution service, such as the on-demand code execution system 120, to dynamically
determine and store, at run time, an index of the contents of input data in response {0 a request
to store the nput data as a data object. A client may wish to retrieve only a portion of a
composite file stored as a data object in an object storage service. By providing an index that
identifies the different files or data sets or items within the composite file and their locations,
the object storage service is able to retrieve and provide to the client only the desired portions.

Aspects of the routine 1300 will be described with reference to FIG. 14, which is a system

-59-

WO 2021/061820 PCT/US2020/052280

diagram of illustrative data flows and interactions between various components of the service
provider system 110.

[0154] In some embodiments, a client sends a request to an object storage service {such
as object storage service 160) to write mput data as a data object at a storage location, such as
an object data store (including object data store 166). For example, the client may wish to
store input data that includes a composite file, such as a compressed file, sometimes referred
to as a .zip archive, a tar archive, or a compressed file, or other file made up of a collection of
individual data elements. The composite file may include one or more individual files, each
of which is compressed. The composite file may also include an index of the contents of the
composite file. The index may include the names of each of the individual files within the
composite file, as well as other metadata regarding the composite file’s contents. The index
may also provide a mapping between the contents of the composite file and the byte-range
location of each of the contents. There index, therefore, enables a user to use a “byte-range
GET” to request only the bytes for a certain desired file, or other content of the composite file.
In other examples, the composite file does not include an mdex of the composite file’s contents.
In yet other examples, the input data is not a composite file, but the object storage service 160
15 configured to generate a storable data object that corresponds to a compressed version of the
mput data, and to store the compressed version within the object storage service. The chient
request may include the input data, or information usable by the object storage service 160 to
obtain the wput data. In response to the request, the object storage service 160 may stage the
mput data 10 a staging area, such as any of the staging areas discussed above. Once the object
has been staged, a routine to index the mnput data may be imtiated, such as routing 1100 of
FIG. 13,

[0155] The routine 1300 may begin in response to an event, such as when the routine
itlustrated in FIG. 8 reaches block 808, For example, the routine 1300 may be an owner-
defined function, also referred to as a user-defined task, that is performed by a VM instance 150
or other execution environment 502 generated during the routine illustrated in FIG. 8. In some
embodiments, the routine 1300 or portions thereof may be implemented on multiple
processors, serially or in parallel.

[0156] At block 1302, the VM instance 150 or other execution environment 502 {or a

function running within the execution environment 502) can receive parameters associated

-60-

WO 2021/061820 PCT/US2020/052280

with a request to store input data as a data object. FI{. 14 1llustrates the execution environment
502 {or the function running within the execution environment 502} receiving the parameters
associated with the request at (1), In some embodiments, the parameters may include:
reference data comprising a reference input data to be stored as a data object; a reference to an
output location of the data object; context data regarding the request; other data or metadata;
or some combination thereof. For example, the request may be a resource request, such as a
PUT request, to store input data as a particular data object in the object storage service 160.
The reference to the input data may be data that can be used by the execution environment 502
(or the function running within the execution environment 502} to access the mput data, such
as: a file descriptor; a file handle; a pointer; or some other data representing an address or
identifier of the input data. The reference to the output location may be data that can be used
by the execution environment 502 {or the function running within the execution environment
302) to write, store, or otherwise persist output data, such as: a file descriptor; a file handle; a
pointer; or some other data representing an address or identifier of a location for providing
output of the function. The context data or metadata may include data or metadata regarding
the context of the request, such as: an 1dentifier of a user, account or other source of the request;
an wdentifier of an access or security profile under which the request 15 being make; data
representing the access or security rights under which the request is to be processed; an
wdentifier of a location associated with the request; an identifier of a language associated with
the request; or data representing preferences or tendencies of a source of the request. While
FIG. 14 depicts the object storage service providing parameters such as a reference to a
requested data object or reference to an output location to the execution environment 502 (or
the function running within the execution environment 502}, in other mstances these references
may be provided by elements of the execution system 120, such as staging code 157.

{01577 At block 1304, the VM instance 150 or other execution environment 502 {or
the function running within the execution environment 502) can obtain the input data using the
reference data. FIG. 14 illustrates the execution environment 502 obtaining the input data at
(2}. Insome embodiments, the input data may not be obtained from the object storage service
160 at block 1104, but may be provided to the execution environment 502 {or the function

running within the execution environment 502) previcusly. For example, during staging of the

-61-

WO 2021/061820 PCT/US2020/052280

execution environment, the input data may be obtained and stored on a computing device of
the execution environment 502 at a location indicated by the reference data.

[0158] At block 1306, the VM instance 150 or other execution environment 502 {or
the function running within the execution environment 502) generates an index of the mput
data’s contents. In some embodiments, the index is generated by obtaining the names of the
individual files stored within the input data. For example, the input data may include an index
of the data object’s contents. If not, the execution environment 502 (or the function running
within the execution environment 502) can read and store the names of each file within the
input data. In some embodiments, the files within the input data are extracted or decompressed
so the file names and/or file contents may be determined. In some embodiments, the execution
environment 502 (or the function running within the execution environment 502) generates an
mdex of the input data’s contents using metadata or headers stored within the mput data. In
some embodiments, the VM mstance 150 or other execution environment 502 (or the function
running within the execution environment 502) 15 configured to un-pack, or recursively un-
pack the input data to determine tis contents (e.g., identifiers of delineated elements within the
mput data, and the byte-range locations of the delineated elements within the input data, the
delineated elements being files, or any other delineated element described herein). Recursive
unpacking can mclude analyzing a second composite file that 15 located within a first file. The
VM mstance 150 or other execution environment 502 {(or the function ronning within the
execution environment 502) can unpack the first file to wdentify the second file {or second
files), and then unpack the second file to determine 1dentifiers of delimeated elernents and byte-
range {or other) locations within the second file. In some embodiments, the execution
environment 502 {or the function running within the execution environment 502) generates an
index of the input data’s contents by analyzing the text within the input data. The index
inciudes content identifiers (e.g., file names, text fields, header information, metadata, etc.) as
well as location information associated with each identifier. For example, the index can
inciude a hist of all files within the input data, as well as the location {e.g., byte range, etc.} of
each file within the input data. In another example, the index can include a list of all the
headers of the data sets within the input data {e.g., the sales data for various geographic
regions), as well as the location of each data set within the mput data (e.g., byte range, eic.).

in addition, when the input file comprises a composite file, the VM instance 150 or other

WO 2021/061820 PCT/US2020/052280

execution environment 502 (or the function running within the execution environment 502)
can determine a file aggregation technique used to form the composite file. For example, the
VM mstance 150 or other execution environment 502 {or the function running within the
execution environment 502} may determine whether the composite file i1s a .zip, .tar, or other
format by analyzing bytes within the file. For example, some aggregations techniques generate
files having known header formats. Therefore, the VM instance 150 or other execution
environment 502 (or the function running within the execution environment 502} can
dynamically evaluate the input data based upon the bytes (sometimes referred to as file
aggregation technique mformation), and use that information to determine how to further read
and interpret the rest of the input data. For example, the file aggregation technique information
may be used to determine whether to perform recursive unpacking of a file, such as discussed
above. FIG. 14 illustrates the execution environment 502 {or the function running within the
execution environment 502) determining an index of the input data contents at (3).

[0159] At block 1308, the VM instance 150 or other execution environment 302 (or
the function running within the execution environment 502} can provide the index as output of
the function. For example, the execution environment 502 (or the function running within the
execution environment S02) can may return the index to the object storage service 160, In
some embodiments, the VM instance 1350 or other execution environroent 302 (or the function
running within the execution environment 502} can retarn the input data instead of, m addition
to {as second output data), or combined with the ndex. FIG 14 illustrates the execution
environment 502 {or the function ranning within the execution environment 502} providing
the 1ndex as output at (4).

[0160] At block 1310, the object storage service 160 can process the function output.
For example, the object storage service 160 (or a different service) may store the index. FIG.
14 tilustrates the object storage service 160 storing the index at (5). The index may be stored
at any of a variety of locations. For example, the object storage service 160 may store the
index in an object data store, such as the object data store 166 of the object storage service 160,
In another example, the object storage service 160 may store the index as a table using a
relational or non-relational data storage service or database management system. In yet
another example, the index may be appended to or otherwise added to the mput data, and the

updated mput data (with index) may be stored by the object storage service 160

-63-

WO 2021/061820 PCT/US2020/052280

[0161] In some embodiments, at block 1310, the object storage service 160 may create
a data object corresponding to the input data and to add metadata to the data object that includes
a reference to the index. The reference can include an indication that there is an index
assoctated with the data object. In another embodiment, the data object corresponding to the
input data and the index may be assoctated with each other via a naming convention. For
example, the data object and the index may have similar identifier or name portions, such as a
prefix, suffix, or other identifier. The reference may be used by a subsequent user of the data
object to obtain a desired portion of the data object. For example, a user may retrieve the index
and select a desired portion of the data object. The object storage service 160 and execution
environment 502 {or the function running within the execution environment 502) may use the
desired portion indicated by the user and the index to identify the location within the data object
{e.g., byte range) of the desired portion of the data object. The object storage service 160 and
execution environment 502 (or the function running within the execution environment 502)
may use the location to retrieve, e.g., extract or decompress, the desired portion of the data
object {e.g., via executing a bvte-range query or GET, etc. on the stored data object) and
provide it to the user.

[0162] The routine may terminate at block 1312,

[0163] FIG. 14 illustrates the execution environment S02 (or the function running
within the execution environment 502} indexing a data object for storage in the object storage
service 160 1n response to receiving a request to store the data object. Although the just-in-
time transformation 1s shown as occurning in connection with operations of routing 1300 for
mdexing the data object, just-in-time transformations may be performed in connection with
any of the other routines described herein, with any other owner-defined function or user-

defined task, in a pipeline with multiple functions, etc.

-64-

WO 2021/061820 PCT/US2020/052280

Example Embodiments

[0164] Examples of the embodiments of the present disclosure can be described in
view of the following clauses:
Clause 1. A system comprising:
an object storage service comprising one or more computing devices, wherein the
object storage service is configured to store a plurality of data objects within an object data
store; and
a code execution service comprising one or more computing devices for on-demand
execution of functions in an input/output (1/0) path of the object storage service;
wherein the object storage service 1s configured to at least:
receive input data and a request to store the input data as a data object within
the object data store;
determine that a function to obfuscate a portion of the input data, associated
with the request to store the input data, 15 to be executed prior to storing the input data
as the data object; and
transmuit a call to the code execution service to execute the function against the
input data; and
wherein the code execution service 1s configured to at least:
receive, from the object storage service, the call to execute the function, the call
mcluding the mnput data; and
execute the function, wherein executing the function causes the service to:
identify, within the input data, one or more instances of private mformation that
ts to be obfuscated prior to storing the input data as the data object within the object
data store;
generate output data comprising the one or more instances of the private
information of the input data in obfuscated form and a remaining portion of the mput
data in un-obfuscated form; and
return the output data to the object storage service;
wherein the object storage service is further configured to store the ouiput data in the

object data store as the data object.

-65-

WO 2021/061820 PCT/US2020/052280

Clause 2. The system of Clause 1, wherein the input data does not remain stored
in the object storage service in un-obfuscated form after the object storage service stores the
output data.

Clause 3. The system of Clause I, wherein the code execution service is
configured to generate the output data by:

determining a unique token for each instance of the private information,
wherein each unique token s different from every other unique token;

storing the instances of the private mformation and a mapping of the unique
tokens to the instances of the private information; and

replacing each instance of the private information with the corresponding
unique token.

Clause 4. The systern of Clause 1, wherein the code execution service is
configured to generate the obfuscated form of the private information by encrypting the private
information.

Clause 5. A computer-implemented method comprising:

under control of a computing system comprising one of more computer
processors configured to execute specific instructions,
recerving a request to store input data as a data object within a data store;
determining, based at least partly on the request, to execute a function
to obfuscate a portion of the mput data prior to storing the imput data as the data
object;
configuring a code execution system to execute the function, wheremn
the code execution system 1s configured to provide on-demand execution of
functions in an input/output {I/O) path of the data store;
executing the function using the code execution system prior to storing
the mput data as the data object, wherein executing the function comprises:
obtaining the mnput data;
determining to obfuscate a first portion of the input data;
generating a first obfuscated portion comprising the first portion

in obfuscated form; and

WO 2021/061820 PCT/US2020/052280

generating a output data comprising the first obfuscated portion,
wherein the output data does not include the first portion n un-
obfuscated form; and
storing the output data as the data object m the data store.

Clause ©. The computer-implemented method of Clause 5, wherein determining
to obfuscate a first portion of the input data comprises determining that the first portion
includes private information.

Clause 7. The computer-implemented method of Clause 6, wherein the private
information represents one or more of: personally identifiable information, a name, an address,
an age, a government-issued identification number, a date of birth, a place of birth, a mother’s
maiden name, an account number, or a biometric record.

Clause 8. The computer-implemented method of Clause S, wherein generating the
first obfuscated portion comprises:

determining a unigque token corresponding to the first portion;
storing a mapping of the token to the first portion; and
replacing the first portion with the unique token.

Clause 9. The computer-implemented method of Clause 8, wherein storing the
mapping of the token to the first portion comprises storing the mapping of the token to the first
portion in a storage location having different access permissions than a location in the data
store in which the data object 1s stored.

Clause 10. The computer-implemented method of Clause 5, wherein generating the
first obfuscated portion comprises encrypting the first portion of the mput data using an
encryption key.

Clause 11, The computer-implemented method of Clause 10, further comprising
storing the encryption key and a mapping of the encryption key to the first obfuscated portion.

Clause 12. The computer-implemented method of Clause 5, wherein determining
to obfuscate the first portion of the input data is based at least in part upon a portion of the
input data.

Clause 13. A system comprising:

a data store storing plurality of data objects; and

-7 -

WO 2021/061820 PCT/US2020/052280

one or more computing devices in communication with the data store and
configured to at least:
recetve a request to store input data as a data object within a data store;
determine, based at least partly on the request, to execute a function to
obfuscate a portion of the mput data prior to storing the input data as the data
object;
configure a code execution system 1o execute the function, wherein the
code execution system 1is configured to provide on-demand execution of
functions in an input/output {I/O) path of the data store;
execute the function using the code execution system prior to storing the
input data as the data object, wherein executing the function comprises:
obtairung the input data;
determining to obtuscate a first portion of the input data;
generating a first obfuscated portion comprising the first portion
in obfuscated formy; and
generating a output data comprising the first obfuscated portion,
wherein the output data does not include the first portion in un-
obfuscated form; and
store the output data as the data object in the data store.

Clause 14, The system of Clause 13, wherein the one or more computing devices
are further configured to determune to obfuscate the furst portion of the mput data by
determuning that the first portion includes private information.

Clause 15, The systermn of Clause 14, wherein the private information represents one
or more of’ personally identifiable information, a name, an address, an age, a government-
issued identification number, a date of birth, a place of birth, a mother’s maiden name, an
account number, or a biometric record.

Clause 16. The system of Clause 13, wherein the one or more computing devices
are further configured to generate the first obfuscated portion by:

determining a unique token corresponding to the first portion;
storing a mapping of the token to the first portion; and

replacing the first portion with the unique token.

-68-

WO 2021/061820 PCT/US2020/052280

Clause 17. The system of Clause 16, wherein the one or more computing devices
are further configured to generate the first obfuscated portion by storing the mapping of the
token to the first portion in a storage location having different access permissions than a
location in the data store in which the data object is stored.

Clause 18. The system of Clause 13, wherein the one or more computing devices
are further configured to generate the first obfuscated portion by encrypting the first portion of
the input data using an encryption key.

Clause 19. The system of Clause 18, wherein the one or more computing devices
are further configured to store the encryption key and a mapping of the encryption key to the
first obfuscated portion.

Clause 20. The system of Clause 13, wherein the one or more computing devices
are further configured to determine to obfuscate the first portion of the mput data based at least

n part upon a portion of the input data.

[0165] Further examples of the embodiments of the present disclosure can be described
in view of the following clauses:
Clause 1. A system comprising:
an object storage service comprising one or more computing devices, wherein the
object storage service 1s configured to store a plurality of data objects within an object data
store; and
a code execution service comprising one or more computing devices for on-demand
execution of functions in an input/output (1/0) path of the object storage service;
wherein the object storage service 1s configured to at least:
receive from a chient: (1) input data as a plurality of input data portions,
and {2} a request to store the input data portions as data object portions within
the object data store;
determine that a first function to generate a checksum value for an input
data portion, associated with the request to store the input data portion, is to be
executed for each input data portion; and
transmit a first call to the code execution service to execute the first

function against the input data portion for each of the mnput data portions; and

-69-

WO 2021/061820 PCT/US2020/052280

wherein the code execution service is configured to at least:
receive, from the object storage service, the first call to execute the first
function on the mput data portion; and
execute the first function, wherein executing the first function causes
the code execution service to:
generate an individual checksum wvalue for the mput data
portion; and
return the individual checksum value as first output data; and
wherein the object storage service 1s further configured to:
store the first output data for each of the input data portions as individual
checksum data objects;
reassemble the nput data using at least some of the input data portions;
determine that a second function to generate a checksum value for the
reassembled 1oput data is to be executed; and
transmatt a second call to the code execution service to execute the
second function against the individual checksum data objects; and
wherein the code execution service 1s configured fo at least:
recerve, from the object storage service, the second call to execute the
second function; and
execute the second function, wherein executing the second function
causes the code execution service o
generate a checksum value for the reassembled input data based
on the individual checksum data objects; and
return the checksum value for the reassembied input data as
second output data; and
wherein the object storage service is further configured to:
store the second output data as an input data checksum data object;
perform error detection using the second output data to determine
whether the input data has been recetved without error;

reassemble the input data using the mput data portions; and

=70-

WO 2021/061820 PCT/US2020/052280

store the reassembled input data as a data object within the object data
store.

Clause 2. The system of Clause 1, wherein executing the first function causes the
code execution service to generate the individual checksum value for the input data portion by
performing a cyclical redundancy check using the input data portion, and wherein executing
the second function causes the code execution service 1o generate the checksum value for the
reassembled input data by performing a cyclical redundancy check using the ndividual
checksum data objects.

Clause 3. The system of Clause 1, wherein the object storage service is further
configured to store the second output data as metadata to the data object.

Clause 4. The system of Clause 1, wherein the object storage service is further
configured to determine that one or more nput data portions have been received with errors,
based on the individual checksum data objects and provide information to the client regarding
whether one or more mput data portions have been received with errors.

Clause 5. A computer-implemented method comprising:

under control of a computing system comprising one of more computer
processors configured to execute specific instructions,
recerving input data from a chient as a plurality of input data portions
via mdividual upload processes, and a request to store the mput data portions
as data object portions within a data store;
determining, based at least partly on the request, to execute a furst
function for each input data portion prior to confirnung storage of the wnput data
portion as the data object portion,
executing the first function using a code execution system for each of
the input data portions, wherein the code execution system provides on-demand
execution of functions designated 1n an mput/ouvtput (I/0} path of the data store,
wheretn executing the first function comprises:
obtaining the input data portion;
performing the first function to generate a first function value
for the mput data portion; and

returning the first function value;

-71-

WO 2021/061820 PCT/US2020/052280

storing the first function value;
receiving a request to assemble at least some of the input data portions
into reassembled input data;
determining, based at least partly on the request, to execute a second
function for the reassembled input data;
executing the second function using the code execution system, wherein
executing the second function comprises:
obtaining the individual first function values for the at least some
of the input data portions;
performing the second function to generate a second function
value for the reassembled input data using the individual first function
values; and
returning the second function value for the reassembled mput
data as second output data; and
storing the second output data.

Clause 6. The computer-implemented method of Clause S, further comprising
determining that a particular ioput data portion was received with errors by using the first
function value, and providing formation to the client regarding whether one or more input
data portions have been received with errors.

Clause 7. The computer-implemented method of Clause S, further comprising
providing the first function value to the client to enable the chient to perform error detection on
the 1nput data portions,

Clause 8. The computer-implemented method of Clause 5, wherein performing
the first function comprises generating an individual checksum value by performing a cyclical
redundancy check using the input data portion, and wherein performing the second function
comprises generating a checksum value for the reassembled input data by performing a cyclical
redundancy check using at least some of the mmdividual checksum values.

Clause 9. The computer-implemented method of Clause 5, further comprising
reassembling the input data using the input data portions and storing the reassembled nput

data in the data store as a data object.

WO 2021/061820 PCT/US2020/052280

Clause 10. The computer-implemented method of Clause 9, wherein storing the
second output data comprises storing the second output data as metadata to the data object.

Clause 11. The computer-implemented method of Clause 9, wherein determining,
based at least partly on the request, to execute the second function for the reassembled nput
data portion comprises determining, based at least partly on the request, to execute the second
function for the reassembled data portion prior to reassembling the data input.

Clause 12. The computer-implemented method of Clause 5, wherein each input
data portion comprises a plurality of input data parts, each input data part having a fixed size,
and wherein executing the first function for each of the input data portions comprises executing
the first function for each input data part of each input data portion.

Clause 13, A system comprising;

a data store configured to store a plurality of data objects; and
one or more computing devices in communication with the data store and
configured to at least:
receive input data from a client as a plurahity of input data portions via
individual upload processes, and a request to store the nput data portions as
data object portions within a data store;
determine, based at least partly on the request, to execute a first function
for each mput data portion prior to storing the mput data portion as the data
object portion;
execute the first function using a code execution system for each of the
mput data portions, wherein the code execution system provides on-demand
execution of functions designated in an input/cutput {I/0) path of the data store,
wherein executing the first function comprises:
obtaming the input data portion;
performing the first function to generate a first function value
tor the input data portion; and
returning the first function value;
storing the first function value;
recetve a request to assemble at least some of the input data portions

nto reassembled input data;

=73

WO 2021/061820 PCT/US2020/052280

determine, based at least partly on the request, to execute a second
function for the reassembled mnput data;
execute the second function using the code execution system, wherein
executing the second function comprises:
obtaining the individual first function values for the at least some
of the input data portions;
performing the second function to generate a second function
value for the reassembled input data using the individual first function
values; and
returning the second function value for the reassembled mput
data as second output data; and
store the second output data.

Clause 14, The system of Clause 13, wherein the code execution system is further
configured to deternune that a particular input data portion was received with errors by using
the first function value, and provide information to the client regarding whether one or more
input data portions have been received with errors.

Clause 15, The system of Clause 13, wherein the code execution service is
configured to provide the first function value to the client to enable the client to perform error
detection on the input data portions.

Clause 16. The systermn of Clause 13, wherein the code execution service 1s further
configured to perform the first function to generate an ndividual checksum value by
performing a cyclical redundancy check using the input data portion, and perform the second
function to generate a checksum value for the reassembled mput data by performing a cyclical
redundancy check using at least some of the individual checksum values.

Clause 17. The system of Clause 13, wherein the one or more computing devices
is further configured to reassemble the mmput data using the input data portions and store the
reassembled input data in the data store as a data object.

Clause 18. The system of Clause 17, wherein the one or more computing devices
is further configured to store the second output data as metadata to the data object.

Clause 19, The system of Clause 17, wherein the code execution service 1s further

configured to determine, based at least partly on the request, to execute the second function for

=74

WO 2021/061820 PCT/US2020/052280

the reassembled input data portion by determining, based at least partly on the request, to
execute the second function for the reassembled data portion prior to reassembling the data
nput.

Clause 20. The system of Clause 13, wherein each nput data portion comprises a
plurality of nput data parts, each nput data part having a fixed size, and wherein the code
execution service is configured to execute the first function for each of the mput data portions

by executing the first function for each input data part of each input data portion.

[0166] Further examples of the embodiments of the present disclosure can be described
in view of the following clauses:
Clause 1. A system comprising:
an object storage service comprising one or more computing devices, wherein the
object storage service s configured to store a plurality of data objects; and
a code execution service comprising one or more computing devices for on-demand
execution of functions in an input/output (I/0) path of the object storage service;
wherein the object storage service 1s configured to at least:
receive input data and a request to store the imput data as a data object
within the object data store, the input data comprising a composite file, wherein
the composite file comprises a plurality of mdividual files and, for each of the
mdividual files, a file identifier and byte range location mformation identifying
a byte range location of the individual file within the composite file;
determine that a function to create an index by extracting the file
identifiers and byte range location mformation from the nput data, associated
with the request to store the input data, 1s to be executed prior to storing the
input data as the data object; and
transmit a call to the code execution service to execute the function
against the input data; and
wherein the code execution service is configured to at least:
receive, from the object storage service, the call to execute the function,

the call including the input data; and

=75

WO 2021/061820 PCT/US2020/052280

execute the function, wherein executing the function causes the code
execution service o
generate an index by extracting the file identifiers and byte range
location information from the input data, the index mapping the file
identifiers to corresponding byte range location information; and
return the index as output data; and

wherein the object storage service is further configured to store the input data in the
object data store as a first data object and wherein the output data may be stored in an index
data store associated with the first data object.

Clause 2. The system of Clause 1, wherein the code execution service 1s further
configured to determine file aggregation technique information associated with the composite
file, and extract the file identifiers and byte range location information from the 1nput data
using the file aggregation technuque information.

Clause 3. The system of Clause 1, wherein the first data object 1s associated with
the output data via a naming conveniion, or by mcluding metadata with the first data object
that references the second data object.

Clause 4. The system of Clause 1, wherem the index enables the chient to retrieve
a desired portion of the composite file from the data store without having to retrieve the entire
data object from the object data store.

Clause 5. A computer-implemented method comprising:

under control of a computing system comprising one Of more computer
processors configured to execute specific instructions,
receiving a request {0 store imput data as a data object within m a data
store, the mput data comprising a collection of delineated elements;
determining, based at least parily on the request, to execute a function
to generate an index mapping element identifiers and element locations for each
delineated element prior to storing the input data as the data object;
configuring a code execution system to execute the function, wherein
the code execution system provides on-demand execution of functions in an

mput/output (1/0} path of the data store;

=76

WO 2021/061820 PCT/US2020/052280

executing the function using the code execution system prior to storing
the input data as the data object, wherein executing the function comprises:
obtaining the mput data;
generating an index mapping the element identifiers and element
locations within the input data; and
returning the index as output data; and
storing the output data separately from and associated with the data
object.

Clause 6. The computer-implemented method of Clause 5, further comprising
decompressing the input data prior to generating the index.

Clause 7. The computer-implemented method of Clause 5, wherein generating the
index comprises extracting the element dentifiers and element locations from the input data.

Clause 8. The computer-implemented method of Clause 5, further comprising
generating the element identifiers, the element locations, or both, using the delineated
elements.

Clause 9. The computer-implemented method of Clause 5, wherein storing the
output data separately from the data object comprises storing the output data as a second data
object that may be independently accessed from within the data store.

Clause 10. The computer-implemented method of Clause §, wheremn storing the
output data comprises storing the output data within a database using a data storage service.

Clause 11. The computer-implemented method of Clause 5, wherem the delineated
elements mclude one or more of rows, lines, files, comma separated values, or columns of data.

Clause 12 The computer-implemented method of Clause 5, further comprising
compressing the input data and storing the compressed input data as the data object.

Clause 13. A system comprising:

a data store configured to store a plurality of data objects; and
one of more computing devices in communication with the data store and
configured to at least:
receive a request to store input data as a data object within the data store,

the mput data comprising a collection of delineated elements;

=77

WO 2021/061820 PCT/US2020/052280

determine, based at least partly on the request, to execute a function to
generate an index mapping element identifiers and element locations for each
delineated element prior to storing the input data as the data object;
configure a code execution service to execute the function, wherein the
code execution service is thereby configured to:
obtain the input data;
generate an index mapping the element identifiers and element
locations within the input data; and
return the index as output data; and
store the output data separately from and associated with the data object.

Clause 14, The system of Clause 13, wherein the code execution system is further
configured to decompress the input data prior to generating the index.

Clause 15. The system of Clause 13, wherein the code execution service is
configured to generate the index by extracting the element identifiers and element locations
from the nput data.

Clause 16. The system of Clause 13, wherein the code execution service 1s further
configured to generate the element wdentifiers, the element locations, or both, using the
delineated elements.

Clause 17. The system of Clause 13, wheremn the one or more computing devices
1s further configured to store the output data separately from the data object by storing the
output data as a second data object that may be independently accessed from within the data
store,

Clause 18. The system of Clause 13, wheremn the one or more computing devices
is further configured to store the output data by storing the output data within a database using
a data storage service.

Clause 19. The system of Clause 13, wheremn the delineated elements include one
or more of rows, lines, files, comma separated values, or columns of data.

Clause 20. The system of Clause 13, wherein the one or more computing devices
is further configured to compress the input data and store the compressed input data as the data

object.

=78

WO 2021/061820 PCT/US2020/052280

(01671 All of the methods and processes described above may be embodied in, and
fully automated via, software code modules executed by one or more computers or processors.
The code modules may be stored in any type of non-transitory computer-readable medium or
other computer storage device. Some or all of the methods may alternatively be embodied in

specialized computer hardware.

won W -

[0168] Conditional language such as, among others, "can," "could,” "might" or "may,
unless specifically stated otherwise, are otherwise understood within the context as used in
general to present that certain embodiments include, while other embodiments do not include,
certain features, elements or steps. Thus, such conditional language is not generally intended
to imply that features, elements or steps are in any way required for one or more embodiments
or that one or more embodiments necessarily include logic for deciding, with or without user
imput or prompting, whether these features, elements or steps are included or are to be
performed 1n any particular embodiment.

[0169] Disjunctive language such as the phrase “at least one of X, Y or Z,” unless
specifically stated otherwise, 1s otherwise understood with the context as used 1o general to
present that an item, term, ete., may be either X, Y or Z, or any combination thereof {(e.g., X,
Y or 7). Thus, such disjunctive language 15 not generally intended to, and should not, imply
that certain embodiments require at least one of X, at least one of Y or at least one of Z to each
be present.

[0170] Unless otherwise explicitly stated, articles such as “a” or ‘an’ should generally
be mterpreted to include one or more described stems. Accordingly, phrases such as “a device
configured to” are intended to inchude one or more recited devices. Such one or more recited
devices can also be coliectively configured to carry out the stated recitations. For example, “a
processor configured to carry out recitations A, B and 7 can include a first processor
configured to carry out recitation A working n conjunction with a second processor configured
to carry out recitations B and C.

{0171} The term “or” should generally be understood to be inclusive, rather than
exclusive. Accordingly, a set containing “a, b, or ¢” should be construed to encompass a set
mcluding a combination of a, b, and ¢.

[01721 Any routine descriptions, elements or blocks in the flow diagrams described

herein or depicted in the attached figures should be understood as potentially representing

-79-

WO 2021/061820 PCT/US2020/052280

modules, segments, or portions of code which include one or more executable instructions for
implementing specific iogical functions or elements in the routine. Alternate implementations
are included within the scope of the embodiments described herein in which elements or
functions may be deleted, or executed out of order from that shown or discussed, including
substantially synchronously or in reverse order, depending on the functionality involved as
would be understood by those skilled in the art.

[0173] 1t should be emphasized that many variations and modifications may be made
to the above-described embodiments, the elements of which are to be understood as being
among other acceptable examples. All such modifications and variations are intended to be

included herein within the scope of this disclosure and protected by the following claims.

-80-

WO 2021/061820 PCT/US2020/052280

CLAIMS
WHATIS CLAIMED IS:

1. A computer-implemented method comprising:
under control of a computing system comprising one Of more computer
processors configured to execute specific instructions,
receiving a request to store input data as a data object within a data store;
determining, based at least partly on the request, to execute a function
to obfuscate a portion of the input data prior to storing the input data as the data
object;
configuring a code execution system to execute the function, wherein
the code execution system is configured to provide on-demand execution of
functions in an input/output (I/0) path of the data store;
executing the function using the code execution system prior to storing
the input data as the data object, wherein executing the function comprises:
obtaining the input data;
determining to obfuscate a first portion of the input data;
generating a first obfuscated portion comprising the first portion
in obfuscated form; and
generating a output data comprising the first obfuscated portion,
wherein the output data does not include the first portion n un-
obfuscated form; and
storing the output data as the data object m the data store.

2. The computer-implemented method of claim 1, wherein determining to
obfuscate a first portion of the input data comprises determining that the first portion includes
private information.

3. The computer-implemented method of claim 2, wherein the private information
represents one or more of! personally identifiable information, a name, an address, an age, a
government-issued identification number, a date of birth, a place of birth, a mother’s maiden

name, an account number, or a biometric record.

-81-

WO 2021/061820 PCT/US2020/052280

4. The computer-implemented method of claim 1, wherein generating the first

obfuscated portion comprises:

determining a unique token corresponding to the first portion;

storing a mapping of the token to the first portion; and

replacing the first portion with the unique token.
5. The computer-implemented method of claim 4, wherein storing the mapping of
the token to the first portion comprises storing the mapping of the token to the first portion in
a storage location having different access permissions than a location in the data store in which
the data object 15 stored.

6. The computer-implemented method of claim 1, wherein generating the first
obfuscated portion comprises encrypting the first portion of the input data using an encryption
key.

7. The computer-implemented method of claim 6, further comprising storing the
encryption key and a mapping of the encryption key to the first obfuscated portion.

8. The computer-implemented method of claim 1, wherein determining to
obfuscate the first portion of the 1nput data s based at least in part upon a portion of the input
data.

9. A system comprising;

a data store storing plurality of data objects; and
one or more computing devices in communication with the data store and
configured to at least:

receive a request to store input data as a data object within a data store;

determine, based at least partly on the request, to execute a function to
obfuscate a portion of the mput data prior to storing the input data as the data
object;

configure a code execution system to execute the function, wherein the
code execution system is configured to provide on-demand execution of
functions in an input/output {I/O) path of the data store;

execute the function using the code execution system prior to storing the
input data as the data object, wherein executing the function comprises:

obtaining the input data;

WO 2021/061820 PCT/US2020/052280

determining to obfuscate a first portion of the input data;

generating a first obfuscated portion comprising the first portion
in obfuscated form; and

generating a output data comprising the first obfuscated portion,
wherein the output data does not include the first portion in un-
obfuscated form; and
store the output data as the data object in the data store.

10. The system of claim 9, wherein the one or more computing devices are further
configured to determine to obfuscate the first portion of the input data by determining that the
first portion includes private information.

11 The system of claim 10, wherein the private information represents one or more
of. personally identifiable information, a name, an address, an age, a government-issued
wdentification number, a date of birth, a place of birth, a mother’s maiden name, an account
number, or a biometric record.

12, The system of claim 9, wherein the one or more computing devices are further
configured to generate the first obfuscated portion by:

determining a unique token corresponding to the first portion;
storing a mapping of the token to the first portion; and
replacing the first portion with the unique token.

3. The system of claim 12, wherein the one or more computing devices are further
configured to generate the first obfuscated portion by storing the mapping of the token to the
first portion in a storage location having different access permissions than a location 1n the data
store in which the data object 1s stored.

14. The system of claim 9, wherein the one or more computing devices are further
configured to generate the first obfuscated portion by encrypting the first portion of the input
data using an encryption key.

15, The system of claim 9, wherein the one or more computing devices are further
configured to determune to obfuscate the first portion of the input data based at least in part

upon a portion of the input data.

-83-

PCT/US2020/052280

WO 2021/061820

071
INIONT
NOHYIRdINVIV
103480

SITL (S)THOIS
E«Q Stm@

(e

POLFHOGILIS VIVA

NOILIVIIFIGOW
\\,w@‘mm‘,@mm/

991
ADVAAILINI
TIATT-TTH

291
(S)ANFINQHI

G91 ADIANAS ADVYOLS 10380

m L
m
| M,aaalalassaasaasaaasaam
m | | [FHOISVIVA WA |
b L mse — Ny
N — 1 L3
FHih £51 VZGT I
i FAOD ONIDVIS 3ao39oNOVIS | |1 | g
! p— | N
m M g9CT 3300 HIsN vasT zao0uasn | |y 1 3
1 B
M M TFCT ANLINDY VRSIawuNny | |y | N
............ | o
< M | g751 S0 VZTI SO B
M m M GOTT IONVISNI WA vogt Ionvasnrma |1 | 7
ELii FFL 100d JALLDY ._w
by — 77 S
(|- TFL (S)MIOVNVIN HIIYOM
| 07T WILSAS NOILNDIXT 3000 ANVINIA-NO
m

oL
SHMOMLAN

\hﬂ: Af\\\ INAIT)

GLL WILSAS HFTIACHd IDIAYIS

WWI{%E

PCT/US2020/052280

WO 2021/061820

216

LIND INVId VIVA

%mmx\

JLINIT ANVEE TOHINOD

@@N\\

WHLSAS ONIIVIIJO

W%N\\

JINIT AOVIMALINT ¥3s5I

257~ XAOWIAN XIVINTEd
S/

08¢

B AHOWIN AAVANO IS
867 \\
> FOVIYAINT ADIAZA INJAINO/INANI
967 /
it JATH WOTAIW FTaVAvVII ¥AINJdWO0D
N 767 .\\
B ADVIAIINI XRIOMIIN
67 \\.
N JINIT ONISSIOOHd
067 /

HIAUIFS UNFINOHT

%N\\

PCT/US2020/052280

WO 2021/061820

3/16

£ SLf

e ———— @.N.M
T R FNIONT
5T (S)THOLS | zah‘.wwwwmwz« W
VIVA L300 =
T
— . \\\\1 / JE—
,,,,,,,,,,,,, — ot 991
FA00 T
o . FOVIHIING
N o
H4OLS _,@ TAAIT-A T4
//
//
,\“\l\“ wwwwwwwwwwwwwwwwwwww T // :
PO IHOLS VIV HIVI
 NOLLVOHIIdOW | oA 12390 791
\\‘@HW‘EWE// - QriIqod (S)ANTLNONA
_ 0 NOLL¥ISNI

FH0IS (€

G091 IDIANTES IOVHOILS 12340

HIVI O/
ID3f90 OINT
I¥ASNI 3A0S 1sIng Iy
NV
FACI NOLLVINIINVIN

WVIMIS LINGns

.

,,/,

YOI IDAFA
ANAVID
\\ @/
|)
A0 NOILIVIDJINYVIN
WVIHIS HOHINV (1

PCT/US2020/052280

WO 2021/061820

4/16

p 8Ly

457

0\ /s O\ v / , viva
- ETAT AT - .w...n - { - . ; r” ..m ...m i
QOHIIN NOLINDIXT NOLLONI NOLINOAX s

\ qd1Ivo 43400 /

NJALLVYN /

w/,‘{ oar

PCT/US2020/052280

WO 2021/061820

5/16

VS Sy

SHOLIINISIA
FH4 INdINC
0T e L ANV INdNI
TIANVH TIANVH raonsyevy | | OLSS1OV THALT
AT ANdINO| | 3T LNdNI AR AL o TWVINLS HLIM
| | INTWNOYIANT
e N NOISIAQ¥d (9
T0% INIWNOMIANT NOLLNOIXd INTINOSIANT
. T
02T WILSAS NOLINJIXE 3000 ANYINIA-NO . NOLO3X3
. AIVIINID
VIV INdNT
T Vo ISNIVOV SV
TR INTONT | dO NOLIND3IXd
BOL(S)TAOLS NOILLVINdINVIN / JO4 TIVD
VIVd L3340 J0380
— 90T \\
e FOVIHIINI 14
| FOT JUCLS VIVA | TIAIT3TH /
| NOILVDIFIGOW | Vi HIV] E—
- Hwvdon k " O/I NI NOLIDNNA |V A
C N o s wIsniozraace L
e o B 291 , ~ e
SNOLLVOIHAIGOW (SIANTINOHI ér 7
09T 3DIAHIS IDVHOLS 12330 L2390 Ind 1INans

PCT/US2020/052280

WO 2021/061820

6/16

S B

50C 50S i 4
FIGNVH FIGNVH IR
A1 INdino A1 LNdNT AAQI ALY ;

OS5 AINFWNOYIANT NOILNDIXH

G071 WAISAS NOIINJIXI 3000 GNYINIG-NG

AIVIVA NADLTY
SSIDONS NIVIIO 6
VIVA Indino
SV ITANVH

\ I INAING O
/ ALINM NIVISO (8

d3oo
NSYEJINOIXT L

BOL ()TAOIS
VIV{ 123490

ID3g0 sy

~ T VIEVALIRdING
POLACLSVIVA FAOLS (IT
NOILYDIIAOW | N
CHIVdOA L
- .)

FNTONT
NOIIVINJINVIN
123180

JOVIHIEINI
TIATFT-FHI

(SIANTINOHT

09T IDIANIS IOVHOIS ID3H0

JNTVA NMINETY
S§SIDIIS ANV VIVd
INdINo ssvd Ot

Vbl IDIAIA
ANAEID

HOLVOIANI
S5330118

S - NANLFY 1

PCT/US2020/052280

WO 2021/061820

7/16

VIVA 12340
o o - Qm..\wma(iw TIATT
ITANVH FTANVH 10073 NSV b 4 m\mﬁw HLLIM
I INLIN0| | amdangny | | FHET AV \ENIANOFIANT
/ NOISIAOYd 9
e . INFWNOYIANT
04 INTFWNONIANT NOIIR33IX3 NOLINDIXT
OFL MAOVNVIN ¥DINOM T ALVHEND @
A N
/ N\
\\ //
\ Io3{a0
/ 77T | QI¥O0IS ISNIVOV
1233[90 ANIONT | NOLLONRd
HAFIHEAY (9| SIL(S)FHOLS NOILVININVIA J HASIAOITIVD &
viva 10380 124140 /
— e 95T \\
P — FOVANTING b
FOL IU0OIS VIV , TIAFT-FTId \\
NOILVDIIIIOW | ya HIVd i)
 HIVAOA h = O/f NI NOLLONINI | e aIAIa
DR e - Isn IDAIIA € ya B
— p— 791 x P
P . -
HIV O/f IATFLLTY (@ SANLINOUA | |
= IDFE0 ISNIVOY
057 30IA¥3S IOVIOLS 103180 TIVD LD LINGNS (T

PCT/US2020/052280

WO 2021/061820

8/16

Vbl IDIAIA
ANAEID

HIVTVA NYNLLT
SSIDONS NIVIFO 6
VIV INIINO
ol ol 208 Foo ﬂww Mmmw%@ I
| JIANVH AIANVH 4 aq00 sy | AITM NIVIHO 6
AT INILINO AT LNdNT S £ .
— 100
e o MSYL ALNDAXI ¢
Z0% INFWNOYIANT NOILNOIX
TFL ¥IOVNVIN AIXHOM
N
/
, 3 2@%& .)mb Iva NATLLTY
ST (S)AHOLS | NOLLVINJINVIV S5AIINS NV VIV
VIVAIOIA0 153190 INdINO ssvd ©1
T T /
— S L J/
T - 991 J
FOVAHAINI ya
T TIAFT-TTS n
FIL IHOLS VIVd
NOILYIIHIGOW o
CHIVA O/ » ¥
- o 1 Ao sy
T - (SIANTINONS VIVA INdIno
R NYNLIY (1

09T ADIANIS IDVHOLS 103 H0

WO 2021/061820 PCT/US2020/052280

916

700

VO PATH IMPLEMENTATION
ROUTINE
702 L

OBTAIN REQUEST FOR APPLYING
YO METHOD TO INPUT DATA

704 £

N~ DETERMINE MANTPULATIONS IN
/O PATH
206 PASS INPUT DATA TO INITIAL
o DATA MANTPULATION OF /O
PATH

MORE

fE ~MANIPULATIONS? ~ NO
PASS OUTPUT OF
PRIOR

MANIPULATION TO 719)

NEXT MANIPULATION] APPLYCALLED VO
METHOD TO OUTPUT

OF PRIOR
MANIPULATION
714
(END ROUTINE)=

Fig. 7

WO 2021/061820 PCT/US2020/052280

10/i6

800

FILE MANIPULATION TASK
IMPLEMENTATION ROUTINE

802 é

M

OBTAIN CALL TO IMPLEMENT FILE
MANIPULATION TASK

804 $

N GENERATE EXECUTION
ENVIRONMENT FOR FILE
MANIPULATION TASK

806 i

N STAGE ENVIRONMENT WITH IO
STREAM OF INPUT DATA AND AN
OQUTPUT IO STREAM

!

8{25_/\ EXECUTE TASK WITHIN
ENVIRONMENT
810 RETURN DATA WRITTEN TCG
. OUTPUT STREAM AS OUTPUT
DATA
Si\if\ RETURN EXECUTION RETURN
VALUE

814 $
\‘/\(END RO H‘TIN;E")

Fig. 8

WO 2021/061820

11776

900 INPUT DATA
PORTION PROCESSING ROUTINE

948

906 -

RECEIVEREQUESTTO STORE INPUT DATA

e (E£.G., SUBMITTED VIA MULTI-PART

UPLOAD)

RECEIVE AND STORE INPUT DATA
PORTION

,

EXECUTE CHECKSUM FUNCTION ON
PORTION

PROCESS QUTPUT OF FUNCTION

RECEIVE REQUEST TO REASSEMBLE INPUT
DATA FROM INPUT DATA PORTIONS

v

a12

EXECUTE FUNCTION TO DETERMINE
CHECKSUM OF REASSEMBLED INPUT DATA

9i4
Ve

PROCESS QUTPUT OF FUNCTION;
REASSEMBLE INPUT DATA FROM DATA
INPUT DATA PORTIONS

916

|

STORE THE REASSEMBILED INPUT DATA
AS A DATA OBJECT

913\/< END ROUTINE)
Fig. 9

PCT/US2020/052280

PCT/US2020/052280

WO 2021/061820

1216

ID3fa0
VIVA VSV VIVA INJNT
JITEWISSVIN IH0OIS 8

VAVU LNdNI

FIFNISSYIH ‘NOLIONINT

F0O INdIN0 $83308d (£

(SINCIIONIT

d0{(SINdING 553204d

o1

INFWNOHIANT NOILNOIX3

7 5
\ /
VIV S
NN GTIGNISSYIY (SINOLLIOJ
2SS VIV INANT
10 WRSIDTHD vlvalind
o NO (SINOLIINI
INTWHAIAA INOLLI
WAL WNSIOTHD
0L NOILIDNDI ot e
FINDINT (9 02X
// \\\
3 P a
4///1/
- IDIAYIS ADVHOILS 100
//
\,
\
\,

VIV LNdNT

T FIGWISSVIN OF

E8INCTY FAIFDTA G

(SINOILYOL
ViVad
INRINTFHOIS A

ANV JAHEDIN(T

VL ADIAHG
ANFTID

Viva }

ININTTHOLS OF
ISIN0CTH FAEDTY (1

WO 2021/061820

13/16
1100
INPUT DATA
OBFUSCATION ROUTINE
1102 é
NI

RECEIVE PARAMETERS FOR
STORING INPUT DATA

1104 $

OBTAIN INPUT DATA

1106 i

DATATO OBFUSCATE

DETERMINE PORTION(S) OF INPUT

:

1108 SELECTIVELY APPLY

N OBFUSCATION TO PORTION(S)
1110 PROVIDE SELECTIVELY-
"] OBFUSCATED INPUT DATA AS
FUNCTION QUTPUT

1112 l

\/{E ND ROU 'I'IN"E)

Fig. 11

PCT/US2020/052280

WO 2021/061820

PCT/US2020/052280

i14/16

ZI 81

<§ PIoyfanBacs Piatls
<T PIH/S#hEE<T PIOY>
<1 peyfoampacy prayfs

VIVU LNdNI 40
(SINGLLNOd JLYISHIFE0 &

<g Poiffoonppa<g piotls
<T PIaYS>anpacy Pl
<[PRHffoonpuacy plarh>

b

iy INFWNOHIANI NOLINOIX3

/
: %
/
/
/
/

ADIANAS ADVHOIS 12340

/ VIVa |
INENINIVISO \
INdIno ,/
NOLIONI SV ViVa INdNT L
AIIVISNISO SAFTITWNVHVA
~ATIALEDTTAS 3CAQUL (5 any mmﬁmwmm
ERVERELE()
1
G971

FLVISNIE0
OIL VIVvA INdNIJIO

_ (SINOCIIYOd INTWYIIIA (€

WO 2021/061820 PCT/US2020/052280

15716

1300

INPUT DATA
INDEXING ROUTINE

1302 $

\"/m\ - — — S - - —
RECEIVE PARAMETERS FOR
INPUT DATA INDEXING

1304 $

\J"‘\

OBTAIN INPUT DATA
e |
GENERATE INDEX OF INPUT DATA
CONTENTS
13& PROVIDE INDEX AS FUNCTION
OUTPUT

1310

S PROCESS FUNCTION OQUTPUT

1312 l

kf\(END R.OHHNE)

Fig. 13

PCT/US2020/052280

WO 2021/061820

16/16

pI 3t

SINFINOD VIVU INdNI
FO XAANT FLIVIINFD (&

ANFWNOHIANT NOILNOIX3

\ WG
/ \
/ /
| 1ndino NowONnd SHALIWVAVd ANV
[SV X3aNI JGIAOYA & ISANOTH FIAIIIIN (1
|
INdINO NOLIDNAE | \W
55330 ¥d (S viva /
. | HdNINIVIZO (T
\ | |
\ / /
4 v Y ;
[1E]

ADIANAS OVHOLS 10340

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2020/052280

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/62 GO6F9/455
ADD.

GO6F9/50

GO6F16/182

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

paragraphs [0002],
figures 1-4

paragraphs [0017], [0064]

Y US 2012/278621 Al (WOLOSZYN TERRENCE PETER
[CA]) 1 November 2012 (2012-11-01)
[0093] - [0096];

paragraph [0150] - paragraph [0157]

Y US 2016/092251 Al (WAGNER TIMOTHY ALLEN
[US]) 31 March 2016 (2016-03-31)

1-15

1-15

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

10 December 2020

Date of mailing of the international search report

17/12/2020

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Maenpaa, Jari

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2020/052280

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

Shri Rk Bigensana Singh ET AL: "Enhancing
Cloud Data Security with Data Encryption &
Tokenization",

International Journal of Current Trends in
Engineering & Research Scientific Journal
Impact Factor,

1 May 2016 (2016-05-01), pages 191-196,
XP055334669,

Retrieved from the Internet:
URL:http://www.ijcter.com/papers/volume-2/
issue-5/eancing-cloud-data-security-with-d
ata-encryption-tokenization.pdf

[retrieved on 2017-01-12]

the whole document

1-15

Form PCT/ISA/210 (col

ntinuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2020/052280
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2012278621 Al 01-11-2012 CA 2775206 Al 27-10-2012
CA 2775237 Al 27-10-2012
CA 2775245 Al 27-10-2012
CA 2775247 Al 27-10-2012
CA 2775427 Al 27-10-2012
EP 2702726 Al 05-03-2014
US 2012278487 Al 01-11-2012
US 2012278504 Al 01-11-2012
US 2012278621 Al 01-11-2012
US 2012278872 Al 01-11-2012
US 2012278897 Al 01-11-2012
WO 2012145827 Al 01-11-2012

US 2016092251 Al 31-03-2016 CA 2962633 Al 07-04-2016
CN 107111508 A 29-08-2017
EP 3201768 Al 09-08-2017
EP 3633506 Al 08-04-2020
JP 6352535 B2 04-07-2018
JP 2017534967 A 24-11-2017
us 9652306 Bl 16-05-2017
US 2016092251 Al 31-03-2016
US 2016239318 Al 18-08-2016
US 2017371724 Al 28-12-2017
WO 2016053973 Al 07-04-2016

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - claims
	Page 84 - claims
	Page 85 - claims
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - wo-search-report
	Page 103 - wo-search-report
	Page 104 - wo-search-report

