wo 2010/020828 A1 I 10KV 0 VPO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

19) World Intellectual Property Organization /5% o
(19) ual Property Organization /g5 | |}IAININVF 000 0 O T A
International Bureau S,/ 0
3\ i 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
25 February 2010 (25.02.2010) PCT WO 2010/020828 Al
(51) International Patent Classification: EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT, HN,
GO6F 9/50 (2006.01) GO6F 9/48 (2006.01) HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
GO6F 9/46 (2006.01) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
. o . MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
(21) International Application Number: PCT/BA008/002 NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
C 160 SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
(22) International Filing Date: UG, US,UZ, VC, VN, ZA, ZM, ZW.
18 August 2008 (18.08.2008) (84) Designated States (unless otherwise indicated, for every
(25) Filing Language: English kind of regional protection available). ARIPO (BW, GH,
Lo . GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
(26) Publication Language: English ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
(71) Applicant (for all designated States except US): TELE- TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
FONAKTIEBOLAGET L M ERICSSON (PUBL) [SE/ ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
SE]: SE-164 83 Stockholm (SE). MC, MT, NL, NO, PL, PT, RO, SE, SL SK, TR), OAPI
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
(72) Inventor; and NE, SN, TD, TG).
(75) Inventor/Applicant (for US only): VAJDA, Andreas .
[RO/FI]; Hulluksentie 3 C 12, 02430 Masala (FI). Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(i1))

(81) Designated States (unless otherwise indicated, for every of inventorship (Rule 4.17(1v))
kind of national protection available): AE, AG, AL, AM, Published:
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,

(74) Agent: DUBOIS, Steven, M.; Potomac Patent Group
PLLC, P.O. Box 270, Fredericksburg, VA 22404 (US).

— with international search report (Art. 21(3))

(54) Title: DATA SHARING IN CHIP MULTI-PROCESSOR SYSTEMS

(57) Abstract: System, computer readable
medium and method for providing transparent
access to shared data (16) in a chip multi-pro-
cessor system (900), without using locks or

12 12 / 12
transactional memory constructs, where a first
UPE 1 UPE2 UPEN set of processing entities (12) communicate
18

10

with a second set of processing entities (14)

via a task queue (20) for executing a code that

/ necessitates access to the shared data (16). The
method includes receiving at the second set of

e processing entities (14) a task (21) from the
task queue (20), the task (21) including a re-
T 14 14 quest from the first set of processing entities

/ / / | (12) for accessing the shared data (16); estab-

' DOPE 1 DOPE2 DOPE I lishing a communication link (15) between the
1 / | second set of processing entities (14) and the

shared data (16) such that requests for access-

ing the shared data (16) from the first set of

15)\ 15 15/ processing entities (12) are routed through the

communication link (15) to the shared data

stoat snpA2 |16 (16); transparently migrating the execution of

the code from the first set of processing enti-

FIG. 1 ties (12) to at least one processing entity (14)

of the second set of processing entities (14), to

execute the task (21) by accessing the shared

data (16) via the communication link (15); and

sending a completion message from the at least one processing entity (14) of the second set of processing entities (14) to the first
set of processing entities (12) indicating a status of the executed task.

WO 2010/020828 PCT/1IB2008/002160

DATA SHARING IN CHIP MULTI-PROCESSOR SYSTEMS

TECHNICAL FIELD

[0001] The present invention generally relates to chip multi-processor
systems, software and methods and, more particularly, to mechanisms and

techniques for reliable data sharing.

BACKGROUND

[0002] During the past years, the computational systems (personal computers,
devices configured to display content, clusters, etc.) are using chip multi-processor
systems in an effort to increase the efficiency and speed of the device and also to
offer to the user an enhanced media based experience, for example, games, movies,
etc. However, there is a general problem affecting the chip muiti-processor systems.
It is known that each individual processor of the system may try to access the same
data (shared data) from a same location (of a memory) at the same time with other
individual processors of the system, which is know as the share state problem.

Thus, for example, if two different processors of the system are allowed to access
the same data at the same time, the consistency of that data may be compromised,
which results in an unreliable device.

[0003] Securing (shared) data consistency in a case of concurrent access by

multiple processing elements or threads to the same piece of information stored, for

CONFIRMATION COPY

WO 2010/020828 PCT/1IB2008/002160

example, in a volatile memory (RAM), is thus a problem for the chip multi-processor
systems.

[0004] There has been intensive work addressing the problem of shared state
(or shared memory) in chip multi-processor systems, especially in chip
multiprocessors (CMP). There are two approaches o mitigate the problem of
accessing the shared state, (i) using locks and (ii) using hardware or software
transactional memory. Both concepts are briefly discussed next. Locks are
resources that may be owned by only one processing instance (processor or thread).
If a processing instance acquires the ownership of a lock, it is guaranteed exclusive
access to the underlying resources (such as data). In other words, a lock locks out
the access of all the other processors to the shared data except the processor
owning the lock. In the software transactional memory (TM) approach, concurrent
access to data is allowed. However, in case a conflict arises between first and
second accessing entities that try to access the same data at the same time, the first
accessing entity is stopped and all the changes performed by that entity are rolled
back to a safe state. Then, only the second accessing entity is allowed to act on the
shared data. After the second accessing entity has finishing acting on the shared
data, the first accessing entity is allowed fo act on th(e shared data.

[0005] However, both of these approaches have a number of limitations that
are discussed next. With regard to locks, they are non-composable, i.e., two pieces
of corréct program code, when combined, may not perform correctly, leading to hard-
to-detect deadlock or live-lock situations. The transactional memory approach, while

composable, has a large processing overhead, usually requiring hardware support.

WO 2010/020828 PCT/1IB2008/002160

In addition, the transactional memory approach is not scalable, i.e., an expansion of
the chip multi-processor system (adding more précessors to the existing system) is
not easily implemented. Thus, the chip multi-processor system may perform
increasingly inefficient in case that the number of processing elements trying to
access the same data is increased.

[0006] In addition, neither locks nor TM are predictable and deterministic, i.e.,
it is difficult, and in some cases impossible, to calculate a reliable upper-bound for an
execution time required by the accessing entities. This behavior is not suitable for at
least, for example, the real-time applications.

[0007] Accordingly, it would be desirable to provide devices, systems and

methods for sharing data that avoid the afore-described problems and drawbacks.

SUMMARY
[0008] According to one exemplary embodiment, there is a method for
providing transparent access to shared data in a chip multi-processor system,
without using locks or transactional memory constructs, where a first set of
processing entities communicate with a second set of processing entities via a task
queue for executing a code that necessitates access to the shared data. The
method includes receiving at the second set of processing entities a task from the
task queue, the task including a request from the first sét of processing entities for
accessing the shared data; establishing a communication link between the second
set of processing entities and the shared data such that requests for accessing the

shared data from the first set of processing entities are routed through the

WO 2010/020828 PCT/1IB2008/002160

communication link to the shared data; transparently migrating the execution of the
code from the first set of processing entities to at least one processing entity of the
second set of processing entities, to execute the task by accessing the shared data
via the communication link; and sending a completion message from the at least one
processing entity of the second set of processing entities to the first set of processing
entities indicating a status of the executed task.

[0009] According to another exemplary embodiment, there is a chip multi-
processor system for providing access of a first set of processing entities to shared
data without using locks or transactional memory constructs. The system includes a
second set of processing entities configured to receive a task from a task queue, the
task including a request from the first set of processing entities for accessing the
shared data; the shared data being connected via a communication link to the
second set of processing entities such that requests for accessing the shared data
from a code executed on the first set of processing entities are routed through the
communication link to the shared data; and at least one processing entity of the
second set of processing entities being configured to execute a part of the code from
the first set of processing entities to access the shared data via the communication
link such that the execution of the code transparently migrates from the first sét of
processing entities to the at least one processing entity, and to send a completion
message to the first set of processing entities indicating a status of the executed
task.

[0010] According to another exemplary embodiment, there is method for

facilitating safe access to shared data in a chip multi-processor system, where a first

WO 2010/020828 PCT/1IB2008/002160

set of processing entities communicate with a second set of processing entities via a
task queue for accessing the shared data, which is owned by the second set of
processing entities, the communication being assisted by a runtime system. The
method includes invoking a first primitive of the runtime system when access to at
least one shared data area of the shared data is requested by at least one first
processing entity of the first set of processing entities, the at least one first
processing entity executing a code that includes a critical section that necessitates
the access to the shared data area; blocking an activity of the at least one first
processing entity, when an indicator is detected by the first primitive in the request,
until the access to the shared data area is completed; selecting from the second set
of processing entities at least one second processing entity via a second primitive of
the runtime system; dispatching via a third primitive the request to the selected at
least one second processing entity of the second set of processing entities while the
code is executed on the at least one first processing entity; and suspending, by a
forth primitive of the runtime system, the execution of the code on the at least one
first processing identity when a result of the éxecution of the critical section is

needed by the code.

WO 2010/020828 PCT/1IB2008/002160

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The accompanying drawings, which are incorporated in and constitute
a part of the specification, illustrate one or more embodiments and, together with the
description, explain these embodiments. In the drawings:

[0012] Figure 1 is a schematic diagram of a chip multi-processor system
according to an exemplary embodiment;

[0013] Figure 2 is a schematic diagram showing interactions of various entities
of the chip multi-processor system according to an exemplary embodiment;

[0014] Figure 3 is a flow chart illustrating various steps performed for sharing
data according to an exemplary embediment; | |

[0015] Figure 4 is a schematic diagram of an operating system for accessing
Netware data; |

[0016] Figure 5 is a flow chart illustrating various steps performed by a user
perferming entity according to an exemplary embodiment;

[0017] ‘Figure 6 is a flow chart illustrating various steps performed by a data
owner processing entity according to an exemplary empodiment;

[601 8] Fi lgure 7 is a flow chart (Ilustratlng steps performed by a plurahty of
processmg entltles accordmg to an exemplary embodxment

[0019] Flgure 8 is a flow chart illustrating steps performed by a runtime system
accordmg to an exemplary embodiment; and

[0020] Figure 9 is a schematic diagram of a processing entity acc_ording to an

exemplary embodiment.

WO 2010/020828 PCT/1IB2008/002160

DETAILED DESCRIPTION

[0021] The following description of the exemplary embodiments refers to the
accompanying drawings. The same reference numbers in different drawings identify
the same or similar elements. The following detailed description does not limit the
invention. Instead, the scope of the invention is defined by the appended claims. The
following exemplary embodiments are discussed, for simplicity, with regard to the
terminology and structure of a chip multi-processor system. However, the
embodiments to be discussed next are not limited to these systems but may be‘applied
to other existing systems.

[QOZZ] Reference throughout the specification to “one embodiment” or “an
embodiment” means that a particular feature, structure, or characteristic described in
connection with an embodiment is included in at least one embodiment of the present
invention. Thus, the appearance of the phrases “in one embodimént" or ‘;in an
embodirﬁent”r in various places throughout the specification is not necessarily all
referring to the same embodiment. Further, the particular féatureé, structures or
characteristics may be combined in any suitable manner in one or more embodiments.
[0023] | Acéording to an exemplary embod.iment, to mitigate the problems
noted in thé Backgfound section, a configuration ofa chip multi-processor system
that Will be discﬁssedl next addresses allithose issues, leveraging on new
poséibilities provided!by CMP systems. Furthermo‘re, the configuration)of the chip
multi-brocessor system to be discussed may lead to an improvement in the utiliiation
of the memory bandwidth to the CMP, hence enhancing further the usability of this

system. One or more of the systems of the exemplary embodiments may provide a

WO 2010/020828 PCT/1IB2008/002160

predictable, scalable, composable and simple approach to handling shared states in
CMPs.

[0024] Before discussing more specifically some of the exempiary
embodiments, it is noted that one way to avoid shared state access conflicts may be
to enforce that there is only one set of processing entities, and the same set of
processing entities, having access to the shared state (i.e., in real terms, there is no
shared state from the point of view of the one set of processing entities that own the
shared data as no other set of processing entities have direct access to the shared
data).

[0025] Also, it is noted that in future CMPs, which may include several
hundreds cores, memory bandwidth and on-chip cache capacity will be likely the
bottlenecks of processing, while sheer processing power is likely to be a plentiful
resource where limited waste is acceptable

[0026] Based in part on these observations, according to an exemplary
embodiment, there is a system in which access to the shared data (e.g., shared
memory space) is always performed by one predetermined set (and always thé
same) of processing entities (cores, processors, etc.), which may perform the
requested operations according to a configurable policy. This policy may be, for
example, a time-based order or some other mechanism (such as priorities) for
gllowing that plural tasks stored in a task queue are processed according to their
urgency or another suitable criterion. A task may include any number of actions
(e.g., a piece of program code) and the task may access any number of shared data

instances.

WO 2010/020828 PCT/1IB2008/002160

[0027] This way, a strict serialization of accesses to the shared data may be
achieved with only hardware constructs (i.e., no locks or TM), and also, it is
guaranteed that there are no race conditions when using the hardware constructs
(i.e., predetermined processing entities are configured to own the shared data). The
system of this exemplary embodiment may achieve the earliest possible execution of
the access to the shared data that complies with the set policy. In addition, this
system may be scaled arbitrarily with regards to the number of concurrent accesses
to a shared state. Another characteristic of this system is that the access to the
shared data may be performed in the context of the program requiring the access
(first set of processing entities), hence securing, at the application level, a
transparent solution for accessing shared memory locations. More specifically, from
the application point of view, it may be completely invisible that the access to the
shared data, i.e., the execution of the code performing the access, is performed on a
different core/processing element. This means that the critical section may be
written so that it has access to all the local data of the calling thread, i.e., it is
performed in the same context. In other words, the execution of the code associated
with the application is transparently migrated from one processing element to
another processing element when the critical section of the code needs access to
the shared data.

[0028] Other characteristics of one or more of the exemplary embodiments to
be discussed are related to enforcing data locality, i.e., securing that only a limited
number of accessing entities (one or more) but the same processing entities

(processor(s) or thread(s)) have access to the shared data area during data

WO 2010/020828 PCT/1IB2008/002160
10

processing. In addition, one or more of the embodiments to be discussed may float
the execution of threads accessing shared data to the processing entities that own
the data (second set of processing entities).

[0029] Thus, when a processing entity (first processing entity) needs access
to one or more areas of the shared data, the processing entity may dispatch a
request, containing the updates to be performed, to the data-owner processing
entities (second processing entity), which may be a thread, processor, core of a
processor, etc., and the requesting processing entity may enter a wait state,
immediately or at a later moment, until the updates to be performed by the data-
owner processing entities are terminated. The updated are physically performed, in
the context of the original processing entity, by the data owner (data-owner
processing entities). This way, accesses to shared data areas are implicitly
serialized, and the updates are happening in the shortest possible.time, without the
need to use locks or try-fail-retry mechanisms. In addition, it is noted that this novel
configuration allows for parallel processing, i.e., first processing entity performs the
code while the second processing entity (that owns part of the shared data)
simultaneously executes the critical section of the code

[0030] As shown in Figure 1, according to an exemplary embodiment, a chip
multi-processor system 10 includes User Processing Entities (UPE 1 to n, first set of
processing entities) 12, which may be processing entities (processors, cores, or
threads) executing applications that require access to shared data, which is
accessed concurrently by other processing entities 12 as well. The system 10 may

also include Data Owner Processing Entity (DOPE 1 to m, second set of processing

WO 2010/020828 PCT/1IB2008/002160
11

entities) 14, which may be processing entities (processors, cores or threads) owning
and having exclusive access to certain shared data. Optionally, the system 10 may
include one or more Shared Data Areas (ShDA) 16, which may part of one or more
shared data, i.e., a memory or a disk area to which access is required concurrently
by more than one UPE 12. The system 10 also may include a Request Queue (RQ,
or task queue) 18, which may include one or more access requests R1 to Rk from
UPE 12 to ShDA 16. The requests are outstanding requests from UPE 12 to ShDAs
16. An outstanding request may identify, according to an exemplary embodiment,
the ShDA that will be accessed, an identification of the program code that may be
executed (e.g., a function name), as well as the identity of the UPE issuing the
request, i.e., the context in which the request shall be executed. The DOPEs 14 are
linked (communication links) to the ShDAs 1é such that requests from UPEs for
accessing ShDAs 16 are routed through the communication links 15. The
communication link 15 may be considered a direct communication link between
DOPE and ShDA because no UPE is present betweén these two elements. In one
exemplary embodiment, each DOPE 14 is directly linked to a corresponding ShDA
16, with more than one DOPE 16 being connected to a same ShDA 16. These
possible elements of the chip multi-processor system are described in more details
later, with regard to a possible hardware implementation, as shown in Figure 9.
[0031] The above noted elements of system 10 are discussed now with regard
to Figure 2, which also shows a functional interaction between these elements. The
ShDAs 16, which may be a memory location that is accessed by more than one

processing entity, may need to be identified by the DOPE 14. One way for providing

WO 2010/020828 PCT/1IB2008/002160
12

this identification is to use a Shared Data Area Id (SDAI), which is an identifier (e.g.,
an integer) uniquely identifying the ShDA 16.

[0032] A Processing Entity (PE, either UPE 12 or DOPE 14) may be an entity,
such as a processor, core or thread, that executes a software program. A Task
Queue (TQ, which may be identical to RQ 18 shown in Figure 1) 20 is configured to
store various tasks 21. In one exemplary embodiment, the task queue 20 stores
requests (tasks 21) to execute critical sections, which are discussed later. Each task
21 may include an identification of the calling thread and PE, a list of SDAIs that will
be accessed, a location of a critical section that needs to be executed, etc. In one
embodiment, there may be multiple task queues per DOPE, one for each priority
level 23, as shown for example in Figure 2. Figure 2 shows that multiple task
queues may be stored according to a priority level 23, to be executed by DOPE in an
order dependent on the highest priority level. The highest priority level may be
determined by a parameter, which is for example, an integer number.

[0033] A Critical Section (CS) 22 may include code segments that
provide/require access to the ShDAs 16. The CS 22 may be characterized by a
name, a unique identifier (used in a case that several instances of the critical
sections are executed at the same time), an optional priority level, a list of SDAls
(SDAIi1, SDAIi2, ..., SDAIin) that the CS accesses, and a blocking indicator. The
blocking indicator- may indicate whether the critical sections’ execution is blocking or
non-blocking, i.e., the current thread may or may not continue to execute the code as

will be explained later.

WO 2010/020828 PCT/1IB2008/002160
13

[0034] Another feature, which may be used in the following exemplary
embodiments to explain how the chip multi-processor system is configured to read
the shared data, is the Critical Section Group (CS-G). CS-G is a group of CS with
the property that any ShDA used by any of the CS belonging to the group is used by
at least one other CS. In other words, CSs in a group are depending on a shared set
of ShDA and thus, the CSs may have an execution order dependency on each other.
[0035] In one exemplary embodiment, the code segments of the critical
sections that require access to ShDAs are marked explicitly. For example, the
primitive below may mark this critical section:

[0036] CRITICAL_SECTION (name, id, priority_level, blocking_indicator,
list_of SDAI)

{

/I code

%

This code segment may be part of CS1 or CS2 shown in Figure 2. The CS1 and
CS2 may be part of a code that is executed by an UPE.

[0037] In addition, in case that the critical section is non-blocking, there may
be a need for a synchronization primitive in the runtime system, i.e., a primitive that
informs the program (code) including the critical section to wait for the critical section
to finish. One such example may be the following primitive:

[0038] SYNCH ({CS_Name, CS_lId}, ...).

[0039] By declaring a SDAI as being used in a critical section does not

automatically mean any action on those specific shared resources. Actually,

WO 2010/020828 PCT/1IB2008/002160
14

according to an exemplary embodiment, the configuration does not even require an
explicit mapping of the SDAI to the ShDAs, though such approach would allow cache
usage optimizations, as discussed later.

[0040] According to an exemplary embodiment, Figure 3 shows the steps of a
method that may be followed for performing data sharing in the chip multi-processor
system 10, from the runtime system point of view. Some of the steps are optional.
In step 300, each shared data area is assigned a unique identifier (this step may be
performed in the design phase of the system).

[0041] In step 310, a primitive of the runtime system (the runtime system is
software that provides services for a running program but is itself not necessarily
considered to be part of the operating system) is invoked when one or several of the
ShDA are to be accessed or the beginning of a critical section is reached within a
code that is run on one of the UPEs 12.

[0042] The underlying run-time system notices this point in the execution of
the code either through hardware or through software generated by a compiler. At
this point, the run-time system may block the original code (which includes the
critical section) or may let the original code run in parallel with the critical section,
depending on how the critical section was defined. However, in both cases, the
runtime system may run the step 320 and 330 in parallel with the UPE running the
original code.

[0043] The invocation step 310 may include the identities of all ShDA that will
be accessed as well as the identification (e.g., the address) of the program code that

will perform the access. Another possibility is to explicitly mark the start of such

WO 2010/020828 PCT/1IB2008/002160
15

critical sections in the code. In this case, the compiler and/or the runtime system
may perform execution order re-arrangements so that the execution of the access to
ShDA is performed as soon as possible.

[0044] The invocation of the runtime primitive may be blocking or non-
blocking, as discussed above. A blocking primitive suspends the current processing
entity (the execution of the original code) until the access to ShDA is completed. A
non-blocking primitive allows the processing entity to continue executing the code
unconditionally (e.g., in case the access is about updating a global counter) or until
the primitive needs to synchronize with the access entity. Tﬁus, this approach
covers the possibility of splitting the execution of the application thread, since the
critical section will execute in the same context as the original PE was executing the
original code.

[0045] In step 320, the runtime system may generate another primitive that
dispatches the request for accessing the shared data from the UPE to one of the
DOPEs for effectively accessing the shared data. One possible algorithm for
selecting which DOPE processes the request is described below with regard to step
330. In certain implementations, the DOPE may inherit the execution context (e.g.,
access to local/private data) of the invoking UPE. Thus, from the application point of
view, it may be completely invisible that the critical section is executed on another
PE (DOPE). Also, from the application point of view, it may be advantageous that (i)
the application is executed within the same context, and (ii) the access to the shared
data does not collide with other concurrent accesses (i.e., the application is executed

in a consistent way).

WO 2010/020828 PCT/1IB2008/002160
16

[0046] In step 330, the DOPE may be selected based on usage of (i) locks
among varioué DOPEs, i.e., any DOPE may run any request and thus there may be
a lock for each ShDA identity and ownership of all may be done as an atomic
operation; (ii) TM techniques; and/or (iii) distribution of requests to DOPEs based on
groups of ShDA, with the characteristic that no two groups of ShDA contain the
same ShDA. However, it is noted that the locks or TM are used to select a DOPE
and not to access the shared data. As discussed above, no locks or TM are used for
accessing the shared data in this exemplary embodiment.

[0047] In step 340, the runtime system may provide a primitive that may be
invoked to block the execution of the original code in the UPE and wait for the
request dispatched in step 320 to be processed. This step may be needed in case
the critical section is marked as non-blocking but the UPE still needs, at a later
stage, to wait for the execution of the request to complete.

[0048] For illustrative purposes only, the following example is provided for a
better understanding of the method illustrated in Figure 3. Suppose that the code
executed by UPE includes the following critical section that includes a non-blocking
parameter, i.e., the critical section would be executed by the DOPE (migrates to the

DOPE) while the code continues to be executed by the UPE:

[0049] CRITICAL_SECTION (CSNAME, ..., non-blocking)
[0050] {

[0051] This code is executed on the DOPE

[0052] }

[0053] /Il The original code continues to be executed on UPE

PCT/1IB2008/002160

WO 2010/020828
17
[o054] ...
[0055] /I here the original code executed on UPE needs the result from the

critical section, thus the following construct provided by the runtime system is

executed:
[0056] SYNCH(CSNAME)
[0057] // the run-time system will only return from the SYNCH statement when

the execution of the critical section was completed on one of the DOPEs.

[0058] According to another exemplary embodiment, a chip multi-processor
system is configured to share data in a novel way, as discussed next. In this
exemplary embodiment, the available PE resources may be grouped in two classes:
(i) UPE (first set of processing entities), running user applications that do not require
access to shared data areas (ShDA), and (i) DOPE (second set of processing
entities), dedicated to executing critical section codes and having access to ShDA
instances and in fact owning the shared data. According to this exemplary
embodiment, no locks or TM are used to enforce that the DOPEs act on the ShDAs
while the UPEs are not allowed to act directly on the ShDAs. The lack of locks and
TM is compensated by the usage of hardware constructs, i.e., the hardware
configuration of the system is such that the sequential access to ShDAs is achieved
based on the arrangement of DOPESs to access the ShDAs. Thé lack of locks and
TM provides this embodiment with the advantage that all problems associated with
locks and TM are eliminated.

[0059] In this exemplary embodiment, the number of DOPEs may be from one

to n, where n is a positive integer. The UPEs are not allowed to access the shared

WO 2010/020828 PCT/1IB2008/002160
18

data, i.e., any need to access the shared data is transmitted from the UPEs to
corresponding DOPEs and only the predetermined DOPE may access the shared
data based on the communication links existent between the DOPEs and ShDAs.
Thus, the UPEs and DOPESs are configured to act together such that the UPEs do
not directly access the shared data, preventing corruption of this data. The number
of DOPE instances may be arbitrary, but there may be one instance for each critical
section group required by tHe application under execution.
[0060] It is noted, for this exemplary embodiment, that a user application is
different from a rUntime application in the sense that the runtime application is
concerned about the operation system (OS) of the system while the user application
is concerned about a particular application that is running on the system. Also, itis
noted that the handling and management of shared data with respect to the
operation system and with respect to the user applications are different and distinct
from each other.
[0061] It is the understanding of the inventor that handling user applications
(in view of accessing shared data) is treated differently in the industry, at the time of
this invention, from the handling of shared data related to the operating system. In
other words, the industry does not provide lock-free and TM-free solutions for shared
data handling as discussed above in some exemplary embodiments. In this regard,
itis known that, within a uniprocessing environment, NetWare data (which is a
network operating system developed by Novell, Inc., Waltham, MA 02451, USA)
does not need to be protected against corruption because there is no possibility that

more than one process will access the data at a given time. However, in a

WO 2010/020828 PCT/1IB2008/002160
19

multiprocessing environment, multiple threads running on multiple processors need
to access the unprotected NetWare data. |f multiple threads were to access the
same data at the same time, the data could become corrupted.

[0062] To avoid corrupting the unprotected NetWare data, Net\Ware
Symmetric MultiProcessing (SMP) uses a mechanism called thread migration.
Thread migration forces all threads that need access to NetWare data to go through
a native NetWare kernel. The native NetWare kernel can process only one thread at
a time (because it has access to only one processor, processor 0 in Figure 4).
Therefore, no multiple threads are accessing the NetWare data simultaneously. The
native NetWare kernel acts in a similar way as a gateway that allows only one thread
at a time to access the NetWare data. Figure 4 shows the SMP NetWare kernel
migrating a thread to the native NetWare kernel so the thread can access NetWare
data. However, this system is designéd for a network operating system and
achieves the goal of maintaining the Netware data free of corruption by having only
one processor (processor 0) that can access this data. No similar solutions are
available for data that is shared between application threads. To the contrary, the
exemplary embodiments discussed herein provide a consistent approach to
accessing shared data by any application without using locks or TM.

[0063] Returning to the exemplary embodiment, the execution of user
applications on the UPE is discussed next with regard to Figure 5. In step 500,
UPEs execute user applications. When the start of a critical section is reached in
step 502, the execution of the user application may be halted. At this point, the UPE

may generate in step 504 a message, which may be sent as a request in step 508,

WO 2010/020828 PCT/1IB2008/002160

20

to the task queue of the DOPE(s) dedicated to the CS-G to which the current critical
section belongs. After this message is generated and dispatched in steps 504 and
506, for example, over the on-chip communication network 24 shown in Figure 2, the
UPE has one of the two following choices:

[0064] (i) if step 508 determines that the critical section is marked as blocking,
the UPE may execute a SYNCH construct in step 510 and wait in step 512 for the
critical section’s execution to complete on the DOPE(s), or

[0065] (i) if step 508 qletermines that the critical section is marked as non-
blocking, the UPE may continue the execution of the program in step 514, right after
the detection of the critical section in step 502 while the critical section is executed in
parallel on DOPE.

[0066] The execution of the application on the DOPE side is discussed next.
In order to prevent the occurrence of a dead-lock, there may be exactly one DOPE
for each critical section group, and there may be a message queue per priority level
for each DOPE. The execution on DOPE, according to an exemplary embodiment,
is as shown in Figure 6. In step 600, the DOPE selects a next task from the queue.
The selected task is determined based on the highest priority request in the task,
which is verified in step 610. If no task is found in steps 600 and 610, the DOPE
idles until a task with these characteristics becomes available. Once the task is
selected, the DOPE executes the critical section in step 620, i.e., accesses the
shared data area and performs the operation requested by the UPE and expressed

in the task. Upon completion of the task, the DOPE informs UPE in step 630 about

WO 2010/020828 PCT/1IB2008/002160
21

the result of the operation, i.e., successful completion of the operation or not. The
case of nested critical sections is discussed later.

[0067] According to an exemplary embodiment, there is a method, as shown
in Figure 7, for providing transparent access to shared data in a chip multi-processor
system, without using locks or transactional memory constructs, where a first set of
processing entities communicate with a second set of processing entities via a task
queue for executing a code that necessitates access to the shared data. The
method includes a step 700 of receiving at the second set of processing entities a
task from the task queue, the task including a request from the first set of processing
entities for accessing the shared data, a step 702 of establishing a communication
link between the second set of processing entities and the shared data such that
requests for accessing the shared data from the first set of processing entities are
routed through the communibation link to the shared data, a step 704 of
transparently migrating the execution of the code from the first set of processing
entities to at least one processing entity of the second set of processing entities, to
execute the task by accessing the shared data via the communication link, and a
step 706 of sending a completion message from the at least one processing entity of
the second set of processing entities to the first set of processing énﬁties indicating a
status of the executed task.

[0068] According to another exemplary embodiment, the runtime system may
provide various primitives for supporting the access to shared data. Figure 8 shows
in this respect steps to be performed by a method to be implemented in the runtime

system. The method may facilitate safe access to shared data in a chip multi-

WO 2010/020828 PCT/1IB2008/002160
22

processor system, where a first set of processing entities communicate with a .
second set of processing entities via a task queue for accessing the shared data,
which is owned by the second set of processing entities, the communication being
assisted by a runtime system. The method includes a step 800 of invoking a first
primitive of the runtime system when access to at least one shared data area of the
shared data is requested by at least one first processing entity of the first set of
processing entities, the at least one first processing entity executing a code that
includes a critical section that necessitates the access to the shared data area, a
step 802 of blocking an activity of the at least one first processing entity, when an
indicator is detected by the first primitive in the request, until the access to the
shared data area is completed, a step 804 of selecting from the second set of
processing entities at least one second processing entity via a second primitive of
the runtime system, a step 806 of dispatching via a third primitive the request to the
at least one second processing entity of the second set of processing entities while
the code is executed on the at least one first processing entity, and a step 808 of
suspending, by a forth primitive of the runtime system, the execution of the code on
the at least one first processing identity when a result of the execution of the critical
section is needed by the code. Optionally, the method may include a step of
executing in parallel the code on the at least one first processing entity and the
critical section of the code on the at least one second processing entity that owns
part of the shared data.

[0069] Various optional steps may be performed with this method. For

example, it may be added an HW mechanism, such as a processor instruction or set

WO 2010/020828 PCT/1IB2008/002160
23

of instructions which would trigger automatic generation of dispatch message to the
DOPE as well as instruction(s) that would trigger transferring of thread context from
one core to another. In another words, it may be possible to provide a hardware
mechanism that includes generating at least one processor instruction that -
automatically dispatches the task to the second set of processing entities. In
addition, a step of transferring a thread context from the first set of processing
entities to the second set of processing entities based on the hardware mechanism
may be performed.

[0070] According to an exemplary embodiment, the DOPE may execute the
critical section code in the context of the UPE thread that issued the request, hence
allowing access to thread local memory. In case of a non-blocking invocation of the
critical section, precaution may be taken to avoid concurrent accesses to thread local
resources (i.e., concurrently accesses from the critical section and the main thread
executing on the UPE). One way to mitigate this problem is to make all critical
sections functions with no access to global memory areas (other than the ShDA).
However, the code on application level may still be desighed and written as if it
would be a sequential, single-threaded code.

[0071] According to an exemplary embodiment, there may be a problem if
nested critical sections are present inside other critical sections. In other words, it is
possible that a critical section invokes another critical section. In this cése, there are
at least two options to deal with this problem. According to one approach, if the
nested critical section is a member of the same CS-G, the nested critical section may

be executed immediately. According to another approach, the task of executing the

WO 2010/020828 PCT/1IB2008/002160
24

nested critical section is dispatched to the corresponding DOPE task queue and may
be executed later, after which the execution of the nesting critical section resumes.
[0072] The execution of tasks discussed about with regard to UPE and DOPE
may be implemented in software, hardware or a combination thereof, as will be
discussed next.

[0073] In a software implementation, with no compiler support, the services for
off-loading the critical-section execution to specialized processing elements may be
part of a runtime system library. For example, CRITICAL_SECTION and SYNCH
constructs may be translated to blocking or non-blocking library calls and the runtime
system may generate, in response to these constructs, corresponding messages to
the DOPE(s). The runtime system may dynamically detect (or be explicitly informed
about) the CS groups to which various critical sections belong.

[0074] in order to allow access to thread-local data on UPEs, all threads,
whether executing on UPE or DOPE, may be part of the same process, i.e., shared
memory construct. In general OS theory, only threads belonging to the saﬁwe

process can share the memory.

[0075] Potential improvements of this exemplary embodiment may include
pre—declaring the messages that are sent to and from DOPE(s), and thus the
sending of these messages may use less cycles; and coding the
CRITICAL_SECTION and SYNCH may be in-lined, e.g., instead of executing a
function call, the whole content of the function is copied to the place where the

function is called resulting in a longer but faster code, to enhance performance.

WO 2010/020828 PCT/1IB2008/002160

25

[0076] In a software or hardware realization with compiler support, the
compiler may perform a re-arrangement of the code so that the tasks are sent to the
DOPE as soon as possible while the UPE executes other code, hence reducing the
latency of the system. Also, dispatching of the tasks may be reduced in this
exemplary embodiment to just a few machine instructions by, for example, allocating
a unique identification to each possible critical section invocation and dispatching
only that singe value over the on-chip network. The compiler and a linker (which is a
program that takes one or more objects generated by compilers and assembles
them into a single executable program) may also determine statically the critical
section groups and generate a target code accordingly.

[0077] Further improvements of this exemplary embodiment may be achieved
by hardware support for pre-firing tasks, for example, in an out-of-order execution
fashion. Also, locking critical section code and shared resources (memory) to the
local cache of the DOPE(s) may further improve performance by mitigating memory
access Ia“tencies and reducing the need for memory bandwidth. |

[0078] One or more advantages of the exempléry embodiments described
above are discussed next in comparison to the conventional locks and TM. One
advantage of the exemplary embodiments is that é mechanism for implementing
shared memory constructs in a parallel, many-core, system on chip environment is
achieved without the need to rely on locks or transactional memory solutions. This
advantage is achieved by dedicating certain hardware resources (for example
processing entities) to be exclusive data owners (DOPESs) of the shared data and by

implementing a mechanism through which execution of an application thread may be

WO 2010/020828 PCT/1IB2008/002160
26

moved between processing entities (which may be implemented either in software or
a combination of hardware and software), i.e., from UPE to DOPE.

[0079] Another advantage is the execution of the application code both on the
UPE and DOPE, thus achieving more parallelism than existing systems. This
advantage is amplified when the UPE performs the offloading earlier than indicated
in the source code, when the UPE detects that the execution of ’ghe code may safely
be performed. Such advantages are not possible with TM or lock based approaches
due to the use of only one processor core in these techniques.

[0080] Another advantage is the constant overhead for the UPE in case there
are no data races, equal to the cost of passing a message from PE to another one.
This advantage may be hardware architecture dependent. However, the cost of this
feature is less or equal to the cost of acquiring a number of locks or initializing
transactions.

[0081] Still another advantage is enforcing the data locality (at the DOPEs that
own the shared data), which allows ShDA to be stored in a local cache, near the
DOPE, thus reducing memory access penalties.

[0082] Another advantage is the composability of the system, i.e., the correct
execution of the codes in all cases, irrespective of the number of processing
elements (cores). In this regard, it is known that two pieces of correct program code
using locks, when combined, may not perform correctly, leading to hard-to-detect
deadlock or live-lock situations.

[0083] According to another advantage, the configuration of the chip multi-

processors is used to boost performance (execution speed) of the system, for

WO 2010/020828 PCT/1IB2008/002160
27

example, by offloading the UPE in case the UPE does not need the results of the
access to the ShDA.

[0084] The solutions provided by the above exemplary embodiments are
suitable for real-time applications. Thus, these solutions may make the real-time
applications predictable in terms of delay, latency and processing overhead. Also,
the provided solutions are scalable, i.e., they only depend on the amount of ShDA.
In other words, with the amount of ShDA fixed, it guarantees the earliest possible
execution of access to ShDA, immediately after all previously triggered competing
accesses are completed, contrary to the dead-lock and infinite retries cases of
locking or TM solutions. Thus, there are no wasted executions of the program (as in
TM case) and no dead-lock situations.

[0085] These advantages may be realized by hardware implementaﬁons such
as automatic prediction and execution of offloading to DOPEs.

[0086] For purposes of illustration and not of limitation, an example of a
representative chip multi-processor system capable of carrying out operations in
accordance with the exemplary embodiments is illustrated in Figure 9. It should be
recognized, however, that the principles of the present exemplary embodiments are
equally applicable to standérd chip multi-processor systems.

[0087] The exemplary chip multi-processor system arrangement 900 may
include a processing/control unit 902, such as a microprocessor, reduced instruction
set computer (RISC), or other central processing module. The processing unit 902

may include a set of processors. For example, the processing unit 902 may include

WO 2010/020828 PCT/1IB2008/002160
28

a master processor and associated slave processors coupled to communicate with
the master processor.

[0088] The processing unit 902 may control the basic functions of the system
900, as dictated by programs available in the storage/memory 904. Thus, the
processing unit 902 may execute the functions described in Figures 7 and 8. More
particularly, the storage/memory 904 may include an operating system and program
modules for carrying out functions and applications on the system. For example, the
program storage may include one or more of read-only memory (ROM), flash ROM,
programmable and/or erasable ROM, random access memory (RAM), subscriber
interface module (SIM), wireless interface module (WIM), smart card, or other
removable memory device, etc. The program modules and associated features may
also be transmitted to the system 900 via data signals, such as being downloaded
electronically via a network, such as the Internet.

[0089] One of the programs that may be stored in the storage/memory 904 is
a specific program 906. The specific program 906 may interact with an accessing
entity to fetch and/or subscribe to information from the shared datg. For example,
the specific program 906 may be the run‘time system that uses various primitives for
interacting and controlling the processing entities. The program 906 and associated
features may be implemented in software and/or firmware operable by way of the
processor 902. The program storage/memory 904 may also be used to store data
908, such as data associated with the present exemplary embodiments. In one

exemplary embodiment, the programs 906 and data 908 are stored in non-volatile

WO 2010/020828 PCT/1IB2008/002160
29

electrically-erasable, programmable ROM (EEPROM), flash ROM, etc. so that the
information is not lost upon power down of the system 900.

[0090] The processor 902 may also be coupled to user interface 910 elements
associated with the system. The user interface 910 of the system 900 may include,
for example, a display 912 such as a liquid crystal display, a keypad 914, speaker
916, and a microphone 918. These and other user interface components are
coupled to the processor 802 as is known in the art. The keypad 914 may include
alpha-numeric keys for performing a variety of functions, including executing
operations assigned to one or more keys. Alternatively, other user interface
mechanisms may be employed, such as voice commands, switches, touch
pad/screen, graphical user interface using a pointing device, trackball, joystick, or
any other user interface mechanism.

[0091] The system 900 may also include a digital signal processor (DSP) 920.
The DSP 920 may perform a variety of functions, including analog-to-digital (A/D)
conversion, digital-tn—analog (D/A) conversion, speech coding/decoding,
encryption/decryption, error detection and correction, bit stream translation, filtering,
etc. The transceiver 922, generally coupled to an antenna 924, may transmit and
receive the radio signals associated with a wireless device.

[0092] The’system 900 of Figure 9 is provided as a representative example of
a computing environment in which the principles of the present exemplary
embodiments may be applied. From the description provided herein, those skilled in
the art will appreciate that the present invention is equally applicable in a variety of

other currently known and future mobile and fixed computing environments. For

WO 2010/020828 PCT/1IB2008/002160
30

example, the specific application 906 and associated features, and data 908, may be
stored in a variety of manners, may be operable on a variety of processing devices,
and may be operable in mobile devices having additional, fewer, or different
supporting circuitry and user interface mechanisms. It is noted that the principles of
the present exemplary embodiments are equally applicable to non-mobile terminals,
i.e., landline computing systems.

[0093] The disclosed exemplary embodiments provide a chip multi-processor
system, a method and a computer program product for sharing data in a safe way in
the system. It should be understood that this description is not intended to limit the
invention. On the contrary, the exemplary embodiments are intended to cover
alternatives, modifications and equivalents, which are included in the spirit and
scope of the invention as defined by the appended claims. Further, in the detailed
description of the exemplary embodiments, numerous specific details are set forth in
order to provide a comprehensive understanding of the claimed invention. However,
one skilled in the art would understand that various embodiments may be practiced
without such specific details.

[0094] As also will be appreciated by one skilled in the art, the exemplary
embodiments may be embodied in system, as a method or in a computer program
product. Accordingly, the exemplary embodiments may take the form of an entirely
hardware embodiment or an embodiment combining hardware and software aspects.
Further, the exemplary embodiments may take the form of a computer program product
stored on a computer-readable storage medium having computer-readable instructions

embodied in the medium. Any suitable computer readable medium may be utilized

WO 2010/020828 PCT/1IB2008/002160
31

including hard disks, CD-ROMs, digital versatile disc (DVD), optical storage devices, or
magnetic storage devices such a floppy disk or magnetic tape. Other non-limiting
examples of computer readable media include flash-type memories or other known
memories.

[0095] Although the features and elements of the present exemplary
embodiments are described in the embodiments in particular combinations, each
feature or element can be used alone without the other features and elements of the
embodiments or in various combinations with or without other features and elements
disclosed herein. The methods or flow charts provided in the present application may
be implemented in a computer program, software, or firmware tangibly embodied in a
computer-readable storage medium for execution by a general purpose computer or a

Processor.

WO 2010/020828 PCT/1IB2008/002160
32

WHAT IS CLAIMED IS:

1. A method for providing transparent access to shared data (16) in a chip
multi-processor system (900), without using locks or transactional memory
constructs, wherein a first set of processing entities (12) communicate with a second
set of processing entities (14) via a task queue (20) for executing a code that
necessitates access to the shared data (16), the method comprising:

receiving at the second set of processing entities (14) a task (21) from the
task queue (20), the task (21) including a request from the first set of processing
entities (12) for accessing the shared data (16);

establishing a communication link (15) between the second set of processing
entities (14) and the shared data (16) such that requests for accessing the shared
data (16) from the first set of processing entities (12) are routed through the
communication link (15) to the shared data (16);

transparently migrating the execution of the code from the first set of
processing entities (12) to at least one processing entity (14) of the second set of
processing entities (14), to execute the task (21) by accessing the shared data (16)
via the communication link (15); and

sending a completion message from the at least one processing entity (14) of
the second set of processing entities (14) to the first set of processing entities (12)

indicating a status of the executed task.

2. The method of Claim 1, further comprising:

WO 2010/020828 PCT/1IB2008/002160
33

configuring the second set of processing entities to entirely own the shared
data such that no other processing entity can access a portion of the shared data

without the second set of processing entities.

3. The method of Claim 1, further comprising:
executing the code, after being migrated to the at least one processing entity
of the second set of processing entities, locally at the at least one processing entity

that owns part of the shared data.

4. Thé method of Claim 1, further comprising:
performing the migration of the execution of the code from the first set of
processing entities to the at least one processing entity of the second set of

processing entities without changing the code.

5. The method of Claim 3, further comprising:

marking a section of the code that requires access to the shared data.

6. The method of Claim 1, wherein the receiving step comprises:

selecting the task based on a value of a priority indicator included in the task.

7. The method of Claim 1, further comprising:
executing a user application on the first set of processing entities to generate

the task.

WO 2010/020828 PCT/1IB2008/002160

34

8. The method of Claim 7, wherein the user application includes a critical

section that requires access to the shared data.

9. The method of Claim 8, further comprising:
executing the critical section in a same thread context in the at least one
processing entity of the second set of processing entities as the first set of

processing entity executes the critical section.

10. The method of Claim 8, further comprising:

halting an execution of the user application if a blocking indicator is present in

the critical section.

11. The method of Claim 1, wherein the task includes a critical section of the

code that necessitates the access to the shared data.

12. The method of Claim 1, further comprising:

establishing direct communication links between each processing entity of the
second set of processing entities and corresponding shared data areas of the shared
data such that only the second set of processing entities own and have access to the

shared data.

13. The method of Claim 12, further comprising:

WO 2010/020828 PCT/1IB2008/002160
35

selecting the at least one processing entity of the second set of processing
entities to execute the task based on (i) information stored in the task and (i) a
selected direct communication link between the at least one processing entity and

the corresponding shared data area.

14, The method of Claim 1, further comprising:

providing one or more processing entities of the second set of processing
entities for each group of critical sections, wherein the critical section is a code that
needs access to the shared data and the group of critical sections includes two or

more critical sections that share a same shared data area of the shared data.

15. A chip multi-processor system (900) for providing access of a first set of
processing entities (12) to shared data (16) without using locks or transactional
memory constructs, the system comprising:

a second set of processing entities (14) configured to receive a task (21) from
a task queue (20), the task (21) including a request from the first set of processing
entities (12) for accessing the shared data (16);

the shared data (16) being connected via a communication link (15) to the
second set of processing entities (14) such that requests for accessing the shared
data (16) from a code executed on the first set of processing entities (12) are routed
through the communication link (15) to the shared data (16); and

at least one processing entity (14) of the second set of processing entities

(14) being configured to execute a part of the code from the first set of processing

WO 2010/020828 PCT/1IB2008/002160
36

entities (12) to access the shared data (16) via the communication fink (1 5) such that
the execution of the code transparently migrates from the first set of processing
entities (12) to the at least one processing entity (14), and to send a completion
message to the first set of processing entities (12) indicating a status of the executed

fask.

16. The system of Claim 15, wherein the second set of processing entities are
configured to entirely own the shared data such that no other processing entity can

access a portion of the shared data without the second set of processing entities.

17. The system of Claim 15, wherein the at least one processing entity of the
second set of processing entities is configured to execute the migrated code locally

and the at least one processing entity is configured to own part of the shared data.

18. The system of Claim 15, wherein the migration of the execution of the
code from the first set of processing entities to the at least one processing entity of

the second set of processing entities is performed without changing the code.

19. The system of Claim 15, wherein the at least one processing entity is
configured to select the task based on a value of a priority indicator included in the

task.

WO 2010/020828 PCT/1IB2008/002160

37

20. The system of Claim 15, wherein the first set of processing entities is

executing a user application to generate the task.

21. The system of Claim 20, wherein the user application includes a critical

section that requires access to the shared data.

22. The system of Claim 21, wherein the critical section is executed in a same
thread context in the at least one processing entity of the second set of processors

as the first set of processing entities executes the critical section.

23. The system of Claim 15, further comprising:
direct communication links between each processing entity of the second set

of processing entities and corresponding shared data areas of the shared data.

24. The system of Claim 15, wherein the second set of processing entities,
that own the shared data, are configured to receive the task based only on hardware

constructs, which exclude locks and transactional memory constructs.

25. The system of Claim 15, wherein the second set of processing entities are
configured to establish direct communication links between each processing entity of
the second set of processing entities and corresponding shared data areas of the
shared data such that only the second set of processing entities own and have

access to the shared data.

WO 2010/020828 PCT/1IB2008/002160
38

26. The system of Claim 15, wherein one or more processing entities of the
second set of processing entities is provided for each group of critical sections,
wherein a critical section is a portion of the code that needs access to the shared

data and the group of critical sections includes two or more critical sections that

share a same shared data area of the shared data.

27. The system of Claim 15, further comprising:

the first set of processing entities.

28. The system of Claim 27, further comprising:

the task queue.

29. A computer readable medium including computer executable instructions,
wherein the instructions, when executed by a chip multi-processor system (900),
cause the chip multi-processor system (900) to access shared data (18), without
using locks or transactional memory constructs, wherein a first set of processing
entities (12) communicate with a second set of processing entities (14) via a task
gueue (20) for executing a code that necessitates accessing the shared data (16),
the instructions comprising:

receiving at the second set of processing entities (14) a task (21) from the
task queue (20), the task (21) including a request from the first set of processing

entities (12) for accessing the shared data (16);

WO 2010/020828 PCT/1IB2008/002160
39

establishing a communication link (15) between the second set of processing
entities (14) and the shared data (16) such that requests for accessing the shared
data (16) from the first set of processing entities (12) are routed through the
communication link (12) to the shared data (16);

transparently migrating the execution of the code from the first set of
processing entities (12) to at least one processing entity (14) of the second set of
processing entities (14), to execute the task (21) by accessing the shared data (16)
via the communication link (15); and

sending a completion meésage from the at least one processing entity (14) of
the second set of processing entities (14) to the first set of processing entities (12)

indicating a status of the executed task.

30. A method for facilitating safe access to shared data (16) in a chip muilti-
processor system (900), wherein a first set 6f processing entities (12) communicate
with a second set of processing entities (14) via a task queue (20) for accessing the
shared data (16), which is owned by the second set of processing entities (14), the
communication being assisted by a runtime system (906), the method comprising:

invoking a first primitive of the runtime system (906) when access to at least
one shared data area (16) of the shared data (16) is requested by at least one first
processing entity (12) of the first set of processing entities (12), the at least one first
processing entity (12) executing a code that includes a critical section (22) that

necessitates the access to the shared data area (16);

WO 2010/020828 PCT/1IB2008/002160
40

blocking an activity of the at least one first processing entity (12), when an
indicator is detected by the first primitive in the request, until the access to the

shared data area (16) is completed,;

selecting from the second set of processing entities (14) at least one second
processing entity (14) via a second primitive of the runtime system (906);

dispatching via a third primitive the request to the at least one second
processing entity (14) of the second set of processing entities (14) while the code is
executed on the at least one first processing entity (12); and

suspending, by a forth primitive of the runtime system (906), the execution of
the code on the at least one first processing entity (12) when a result of the

execution of the critical section (22) is needed by the code.

31. The method of Claim 30, further comprising:
executing in parallel the code on the at least one first processing entity and
the critical section of the code on the at least one second processing entity that owns

part of the shared data.

32. The method of Claim 30, further comprising:
providing a hardware mechanism that includes generating at least one
processor instruction that automatically dispatches the task to the second set of

processing entities.

33. The method of Claim 32, further comprising:

WO 2010/020828 PCT/1IB2008/002160
41

transferring a thread context from the first set of processing entities to the

second set of processing entities based on the hardware mechanism.

PCT/1IB2008/002160

WO 2010/020828

119

g1 V048 o] 410U
) gl G
W3d0a 2300 13400
/ / /
7l 7} 7
Ny 2u | val | oy
/
9)
N 3dN 23dN 1 3dN
/ / /
U \, U 7

WO 2010/020828

2
/

CS1

UPE 1

TASK(S) TO DOPE TASK(S) TO DOPE

E 10 E\ WK N,
\ -

22/<:s1,\

2/9

20

PCT/1IB2008/002160

2
/
082

UPE 2

DOPE

14

99— 082

FIG. 2

WO 2010/020828

3/9

START

\i

ASSIGN ID TO ShDA 300
.v

INVOKE PRIMITIVE 310
Y

DISPATCH REQUEST 320
B

SELECT DOPE 330
Y

SELECT BLOCKING 340

\ /

STOP

FIG. 3

PCT/1IB2008/002160

WO 2010/020828 PCT/1IB2008/002160

409
=)~ MGRATED THREAD
NATIVE
NETWARE [R J
KERNEL _
0 1 2 3

i7 =7 7
NETWARE PROTECTED
DATA \ SMP DATA

FIG. 4

WO 2010/020828 PCT/1IB2008/002160

5/9

START

Y

UPE EXECUTES APPLICATION

500

\

CRITICAL SECTION IS REACHED

502

Y

GENERATE REQUEST

504

\

SEND REQUEST TO DOPE

506

508

cs
MARKED EXECUTE |_-510
BLOCKING SYNCH
‘V
WATCSS |
UPE CONTINUES | 514 EXECUTION
EXECUTION ON DOPE

FIG. 5

WO 2010/020828 PCT/1IB2008/002160

6/9

START

Y

SELECTTASK FROMQUEVE |00

A\

DETERMINE HighesTPRIRITY 810

Y

EXECUTE CRITICAL SECTION |-6%0

Y

INFORM UPE ABOUTRESULT -8

Y

STOP

FIG. 6

WO 2010/020828 PCT/1IB2008/002160

719

RECEIVING AT THE SECOND SET OF PROCESSING ENTITIES A

TASK FROM THE TASK QUEUE, THE TASK INCLUDING AREQUEST | 700

FROM THE FIRST SET OF PROCESSING ENTITIES FOR ACCESSING
THE SHARED DATA

Y

ESTABLISHING A COMMUNICATION LINK BETWEEN THE
SECOND SET OF PROCESSING ENTITIES AND THE SHARED DATA 709
SUCH THAT REQUESTS FORACCESSING THE SHAREDDATA
FROM THE FIRST SET OF PRQCESSING ENTITIES ARE ROUTED
THROUGH THE COMMUNICATION LINK TO THE SHARED DATA

Y

TRANSPARENTLY MIGRATING THE EXECUTION OF THE CODE FROM 704
THE FIRST SET OF PROCESSING ENTITIES TOAT LEASTONE
PROGESSING ENTITY OF THE SECOND SET OF PROCESSING

ENTITIES, TO EXECUTE THE TASK BY ACCESSING THE SHARED
DATA VIA THE COMMUNICATION LINK

Y

SENDING A COMPLETION MESSAGE FROM THE AT LEAST ONE

PROCESSING ENTITY OF THE SECOND SET OF PROCESSING | _-706

ENTITIES TO THE FIRST SET OF PROCESSING ENTITIES INDICATING
A STATUS OF THE EXECUTED TASK

FIG. 7

WO 2010/020828 PCT/1IB2008/002160

8/9

INVOKING A FIRST PRIMITIVE OF THE RUNTIME SYSTEM WHEN
ACCESS TO AT LEAST ONE SHARED DATA AREA OF THE
SHARED DATA IS REQUESTED BY AT LEAST ONE FIRST
PROCESSING ENTITY OF THE FIRST SET OF PROCESSING ENTITIES, |80
THE AT LEAST ONE FIRST PROCESSING ENTITY EXECUTING A
CODE THAT INCLUDES A CRITICAL SECTION THAT NECESSITATES
THE ACCESS TO THE SHARED DATAAREA

Y

BLOCKING ANACTIVITY OF THE AT LEAST ONE FIRST PROCESSING

ENTITY, WHEN AN INDICATOR IS DETECTED BY THE FIRST | _-802

PRIMITIVE IN THE REQUEST, UNTIL THE ACCESS TO THE SHARED
DATA AREAIS COMPLETED

Y

SELECTING FROM THE SECOND SET OF PROCESSING ENTITIES AT
LEAST ONE SECOND PROCESSING ENTITY VIAA 804
SECOND PRIMITIVE OF THE RUNTIME SYSTEM

\

DISPATCHING VIAATHIRD PRIMITIVE THE REQUEST TO THE AT LEAST| 806
ONE SECOND PROCESSING ENTITY OF THE SECOND SET OF
PROCESSING ENTITIES WHILE THE CODE S EXECUTED ON THE
AT LEAST ONE FIRST PROCESSING ENTITY

Y

SUSPENDING, BY AFORTH PRIMITIVE OF THE RUNTIME SYSTEM, THE| 808
EXECUTION OF THE CODE ON THE AT LEAST ONE FIRST PROCESSING
IDENTITY WHEN ARESULT OF THE EXECUTION OF THE CRITICAL
SECTION IS NEEDED BY THE CODE

FIG. 8

PCT/1IB2008/002160

WO 2010/020828

919

6 Ol4

e N
AHONIW
716
NOLEYOITddY b J oo L T T
DIh)3d3 ' JONISSIV0Yd "
7 wiva | — N AdSIa
906 /
[806 @y TNy
06 <0 NENLERS
\ A
026 /7 30V443 NI 439N
Y 06
NINTOSNYAL
/ 175
s

006

INTERNATIONAL SEARCH REPORT

International application No

PCT/1B2008/002160

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/50
ADD. GO6F9/46 - GO6F9/48

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED'

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Servers"

XP010785788
ISBN: 978-0-7695-2312-5
abstract; figure 2

PARALLEL AND DISTRIBUTED PROCESSING
SYMPOSIUM, 2005. PROCEEDINGS. 19TH IEEE -
INTERNATIONAL DENVER, CO, USA 04-08 APRIL
2005, PISCATAWAY, NJ, USA,IEEE,

4 April 2005 (2005-04-04), pages 1-7,

X FOONG A ET AL: "An Architecture for : | 1-33
Software—Based»iSCSI on Multiprocessor

page 1, left-hand column, line 5 -
right-hand column, line 31
page 2, left-hand column, line 7 -
right-hand column, line 24

10
page 6, left-hand column,

page 3, right-hand column, 1ine 2 - line

line 1 -
right-hand column, last line

m Further documents are listed in the continuation of Box C.

E See patent family annex.

* Special categories of cited documents :

*A" document defining the general state of the .art which is not
‘considered 1o be of particular relevance

‘E* earlier document but published on or after the international
filing date .

‘L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

‘0" document referring to an orali disclosure, use, exhibition or
other means

"P* document published prior to the international filing date but
_later than the priority date claimed

*T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered 1o involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of the international search

28 April 2009

Date of mailing of the intemational search report

07/05/2009

Name and mailing address of the ISA/ .
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Carciofi, Andrea

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/1B2008/002160

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where approp.riate, of the relevant passages

. | Relevant to claim No.

X B. AMUNDSON: "Introduction to NetWare SMP
Architecture and SMP NLM Development™
NOVELL SUPPORT ARTICLES AND TIPS, [Online]
1 January 1997 (1997-01-01), XP007908334
Retrieved from the Internet:
URL :http://support.novell.com/techcenter/a
rticles/dnd19970105.htm1>
[retrieved on 2009-04-28]
the whole document
X EP 0 668 560 A (IBM [US])
- 23 August 1995 (1995-08-23) -
column 3, 1ine 10 - column 4, line 55
. column 6, line 6 = line 50
column 10, 1ine 18 - column 12, line 38
A MUIR S ET AL: "AsyMOS-an asymmetric
multiprocessor operating system”
OPEN ARCHITECTURES AND NETWORK
PROGRAMMING, 1998 IEEE SAN FRANCISCO, CA,
USA 3-4 APRIL 1998, NEW YORK, NY,
USA,IEEE, US, 3 Apr11 1998 (1998 04 -03),
pages 25-34, XP010272573
ISBN: 978-0-7803-4783-0
page 25, right-hand column, line 10 - line
18; figures 2,3
page 26, right-hand column, line 3 - page
28, left-hand column, line 6
page 29, left-hand column, line 8 -
right-hand column, line 2
A US 6 058 414 A (MANIKUNDALAM RAVINDRANATH
' KASI [US] ET AL) 2 May 2000 (2000-05-02)
abstract '
column 1, line 34 - line 63

column 2, line 31 - line 65
column 3, line 44 - column 4, line 56
column 5, line 42 - line b2

-1-33

1,15,29

1-33

1-33

Fom PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

lntematlona_l application No

PCT/1B2008/002160
Patent document Publication Patent family Publication
cited in search report date . member(s)) date
EP 0668560 A 23-08-1995 CA 2137488 Al 19-08-1995
o - JP 2633488 B2 23-07-1997
JP 7239783 A 12-09-1995
US 6058414 ~ A 02-05-2000 NONE

Form PCT/tSA/210 {patent family annex) (April 2005}

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - wo-search-report
	Page 53 - wo-search-report
	Page 54 - wo-search-report

