(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
26 October 2017 (26.10.2017)

(10) International Publication Number

WO 2017/181866 A1l

WIPO I PCT

(51) International Patent Classification:
GO6F 17/30 (2006.01)

(21) International Application Number:
PCT/CN2017/079970

(22) International Filing Date:
10 April 2017 (10.04.2017)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

15/135,046 21 April 2016 (21.04.2016) US

(71) Applicant: HUAWEI TECHNOLOGIES CO., LTD.
[CN/CN]; Huawei Administration Building, Bantian, Long-
gang District, Shenzhen, Guangdong 518129 (CN).

(72) Imventors: CAO, Yang; 5340 Legacy Drive, Suite 175,
Plano, TX 75024 (US). FAN, Wenfei; 5340 Legacy Drive,
Suite 175, Plano, TX 75024 (US). HUAL Jinpeng; 5340
Legacy Drive, Suite 175, Plano, TX 75024 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR,
KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

(54) Title: MAKING GRAPH PATTERN QUERIES BOUNDED IN BIG GRAPHS

1100~

101

Receiving a pattern query for a graph

Y

1102

Determining a set of access constraints corresponding to
the pattern query

v

1103

Determining whether the pattern quary is effectively
bounded under the set of access constrainis

!

-~ 1104

Forming a query plan fo retrieve a subgraph of the graph
when the pattern query is effectively bounded under the
set of aceess constraints

'

L~ 1105

Retrieving an answer fo the pattern query by accessing
the subgraph in response to the query plan

Fig. 11

wo 2017/181866 A1 | 0K 00 00O

(57) Abstract: A processor executes instructions stored in non-transitory memory storage to receive a pattern query for a graph and
determine a set of access constraints corresponding to the pattern query. A determination is made whether the pattern query is eftectively
bounded under the set of access constraints. A query plan is formed to retrieve a subgraph of the graph when the pattern query is
effectively bounded under the set of access constraints. The answer to the pattern query is obtained by accessing the at least one subgraph
in response to the query plan.

[Continued on next page]

WO 20177181866 A1 || 10000 0 A O

Declarations under Rule 4.17:
— as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

WO 2017/181866 PCT/CN2017/079970

MAKING GRAPH PATTERN QUERIES BOUNDED
IN BIG GRAPHS

[0001] This application claims priority to U.S. non-provisional patent application Serial No.
15/135,046, filed on April 21, 2016 and entitled “Making Graph Pattern Queries Bounded in Big

Graphs”, which is incorporated herein by reference as if reproduced in its entirety.
BACKGROUND

[0002] Graph pattern matching includes finding a set of matches to a pattern query of a
big graph that may stored in a graph database. Graph pattern matching may be used in
social marketing, knowledge discovery, mobile network analysis, intelligence analysis for

identifiying terrorist organizations and the study of adolescent drug use.

[0003] Querying a big graph to obtain an answer, or requesting particular information
from a graph having a very large number of nodes and edges, may require a relatively fast
device and still may take a relatively long amount of time. A big social graph may have

about 1.26 billion nodes and 140 billion links (or edges). When a size of a big graph is

about 1 petabyte (PB) (10° bytes), a linear scan of the big graph may take about 1.9 days
using a solid state drive processor with a read speed of about 6 GB/s (Gigabytes/second).
Moreover, graph pattern matching of a big graph may be intractable under certain

circumstances.

[0004] Reducing an amount of time to obtain an answer to a query of big graph while not

increasing read speed of a solid state drive processor may result in search efficiency.
SUMMARY

[0005] A processor executes instructions stored in non-transitory memory storage to
receive a pattern query for a big graph and determine a set of access constraints
corresponding to the pattern query. Access contraints may include cardinality contraints
and indices. A determination is made whether the pattern query is effectively bounded
under the set of access constraints. A query plan is formed to retrieve at least one matching

subgraph of the big graph when the pattern query is effectively bounded under the set of

WO 2017/181866 PCT/CN2017/079970

access constraints. The answer to the pattern query is obtained by accessing the at least
one subgraph in response to the query plan. A pattern query that is not effectively bounded
may be made bounded by adding a constraint, such as a natural number, to the set of
constraints. A graph patten query may be localized, such as via subgraph isomorphism, or

non-localized, such as simulation pattern graphs.

[0006] In one embodiment, the present technology relates to a device comprising a non-
transitory memory storage having instructions and one or more processors in
communication with the memory. The one or more processors execute the instructions to:
receive a pattern query for a graph and determine a set of access constraints
corresponding to the pattern query. A determination is made whether the pattern query is
effectively bounded under the set of access constraints. A query plan is formed to retrieve a
subgraph of the graph when the pattern query is effectively bounded under the set of
access constraints. An answer to the pattern query is obtained by accessing the subgraph in

response to the query plan.

[0007] A device according to any of the preceding embodiments, wherein an amount of
time to retrieve the answer is dependent on the pattern query and the set of access

constraints and is not dependent on a size of the graph.

[0008] A device according to any of the preceding embodiments, wherein the set of
access constraints includes an access constraint that is a cardinality constraint on a node
having a first label in the pattern query and an index on a neighbor node having a second

label.

[0009] A device according to any of the preceding embodiments, comprising the one or
more processors execute the instructions to make the pattern query effectively bounded
under the set of access constraints when the pattern query is not effectively bounded under

the set of access constraints.

[0010] A device according to any of the preceding embodiments, wherein the one or
more processors execute the instructions to add another access constraint to the set of
access constraints and therefore make the pattern query effectively bounded under the set

of access constraints when the pattern query is not effectively bounded.

WO 2017/181866 PCT/CN2017/079970

[0011] A device according to any of the preceding embodiments, wherein the one or
more processors execute the instructions to determine whether the pattern query is
effectively bounded under the set of access constraints includes the one or more
processors execute the instructions to determine at least one actualized constraint of the

set of access constraints (A) on the pattern query (Q) and compute VCov (Q,A).

[0012] A device according to any of the preceding embodiments, wherein the graph
includes a plurality of nodes and edges, wherein the one or more processors execute the
instructions to form the query plan to retrieve the subgraph of the graph when the pattern
query is effectively bounded under the set of access constraints includes the one or more
processors execute the instructions to complete a sequence of fetch operations, wherein a
fetch operation in the sequence of fetch operations includes retrieving information from a

set of nodes or edges in the graph that correspond to a node or edge in the pattern query.

[0013] A device according to any of the preceding embodiments, wherein the subgraph
is isomorphic to the pattern query.

[0014] A device according to any of the preceding embodiments, wherein the pattern

query is a simulation pattern query.

[0015] In another embodiment, the present technology relates to a computer-
implemented method for retrieving data from a dataset. The computer-implemented
method comprises receiving, with one or more processors, a pattern query for a graph
database having a plurality of nodes and edges. A plurality of access constraints
corresponding to the pattern query is determined as well as whether the pattern query is
effectively bounded under the plurality of access constraints. The pattern query is made
into a bounded pattern query when the pattern query is not effectively bounded under the
plurality of access constraints. A query plan is formed based on the bounded pattern query
or pattern query to retrieve a plurality of subgraphs from the graph database. The plurality
of subgraphs is obtained from the graph database by executing the query plan and an

answer to the pattern query is retrieved by accessing the plurality of subgraphs.

WO 2017/181866 PCT/CN2017/079970

[0016] A method according to any of the preceding emobidments, comprising
determining, with one or more processors, whether the pattern query is localized or non-

localized.

[0017] A method according to any of the preceding emobidments, wherein the pattern
query includes a set of labeled nodes and edges, and wherein the plurality of access
constraints have at least two types of access constraints including a first cardinality
constraint on a first labeled node in the set of labeled nodes and edges and a second
cardinality constraint that includes an index on neighboring nodes of each labeled node in

the set of labeled nodes and edges.

[0018] A method according to any of the preceding emobidments, wherein forming, with
one or more processors, the query plan based on the bounded pattern query or the pattern
query to retrieve the plurality of subgraphs from the graph database comprises: inspecting
each labeled node in the set of labeled nodes and edges, determining an access constraint in
the plurality of access constraints so that an index is used to retrieve a set of candidate
nodes for each labeled node, generating a node fetching operation using the index, and

storing the node fetching operation in the query plan.

[0019] A method according to any of the preceding emobidments, wherein making, with
one or more processors, the pattern query into the bounded pattern query when the
pattern query is not effectively bounded under the plurality of access constraints
comprises determining a natural number that may be used with a first access constraint in

the plurality of access constraints.

[0020] A method according to any of the preceding emobidments, wherein retrieving,
with one or more processors, the answer to the pattern query by accessing the plurality of
subgraphs from the graph database takes an amount of time that is dependent on the

pattern query and the plurality of access constraints.

[0021] In a further embodiment, the present technology relates to a non-transitory
computer-readable medium storing computer instructions, that when executed by one or
more processors, cause the one or more processors to perform steps. The steps include

receiving a request for information and parsing the request for information into a pattern

WO 2017/181866 PCT/CN2017/079970

query for a graph database. A set of accesses constraints of the pattern query is determined
for the graph database. A determination is made as to whether an amount of time to
answer the request for information is not dependent on a size of the graph database. A
query plan is formed based on the pattern query to retrieve a plurality of subgraphs from
the graph database that match the pattern query. The plurality of subgraphs is obtained
from the graph database by executing the query plan. An answer to the request for
information is retrieved by accessing the plurality of subgraphs from the graph database.

The answer to the request for information is then outputted.

[0022] A non-transitory computer-readable medium storing instructions according to
any of the preceding embodiments, that when executed by one or more processors, cause
the one or more processors to: receive a request for information; parse the request into a
pattern query for a graph database; determine a set of access constraints of the pattern
query for the graph database; determine whether an amount of time to answer the request
for information is not dependent on a size of the graph database; form a query plan based
on the pattern query to retrieve a plurality of subgraphs from the graph database that
match the pattern query; obtain the plurality of subgraphs from the graph database by
executing the query plan; retrieve an answer to the request for information by accessing
the plurality of subgraphs from the graph database; and output the answer to the request

for information.

[0023] A non-transitory computer-readable medium storing instructions according to
any of the preceding embodiments, wherein determining whether the amount of time to
answer the request for information includes determining whether the pattern query is

effectively bounded under the set of access constraints.

[0024] A non-transitory computer-readable medium storing instructions according to
any of the preceding embodiments, wherein the pattern query includes a plurality of nodes
and edges, wherein the set of access constraints includes an access constraint that is a
cardinality constraint on a node having a first label in the pattern query and an index on a

neighbor node having a second label.

WO 2017/181866 PCT/CN2017/079970

[0025] A non-transitory computer-readable medium storing instructions according to
any of the preceding embodiments, that when executed by one or more processors, cause
the one or more processors to: extend the set of access constraints by adding a natural
number to one or more access constraints in the set of access constraints when the pattern

query is not effectively bounded under the set of access constraints.

[0026] A non-transitory computer-readable medium storing instructions according to
any of the preceding embodiments, wherein forming a query plan includes forming a
plurality of fetch operations, wherein a fetch operation in the plurality of fetch operations
includes a retrieve information operation from a set of nodes or edges in the graph
database that correspond to a node or an edge in the plurality of nodes and edges of the

pattern query.

[0027] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary and/or
headings are not intended to identify key features or essential features of the claimed
subject matter, nor is it intended to be used as an aid in determining the scope of the
claimed subject matter. The claimed subject matter is not limited to implementations that

solve any or all disadvantages noted in the Background.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] Fig. 1 is a diagram illustrating determining matches of a pattern query in a graph

database stored in memory storage according to embodiments of the present technology.

[0029] Fig. 2 illustrates a pattern query according to embodiments of the present
technology.

[0030] Fig. 3 is a flowchat that illustrates a method to determine types of access

constraints according to embodiments of the present technology.

[0031] Fig. 4 illustrates a simulation pattern query and graph according to embodiments
of the present technology.

[0032] Figs. 5a-b illustrates a method to determine whether a subgraph query is

effectively bounded according to embodiment of the present technology.

WO 2017/181866 PCT/CN2017/079970

[0033] Fig. 6 is a flowchart that illustrates a method to determine whether a subgraph

query is effectively bounded according to embodiments of the present technology.

[0034] Fig. 7 illustrates a method to determine a query plan according to embodiments
of the present technology.

[0035] Fig. 8 is a flowchart that illustrates a method to determine whether pattern
queries may be made instance-bounded according to embodiments of the present

technology.

[0036] Figs. 9a-9l illustrate effectiveness of effectively bounded query evaluations

according to embodiments of the present technology.

[0037] Fig. 10a-10b illustrate effectiveness of instance-boundedness accoding to

embodiments of the present technology.

[0038] Figs. 11-13 are flowcharts that illustrate methods to obtain information, such as
an anwer to a pattern query, from a graph according to embodiments of the present

technology.

[0039] Fig. 14 is a block diagram that illustrates a system architecture to retrieve

information from a graph database according to embodiments of the present technology.

[0040] Fig. 15 is a block diagram that illustrates a computing device architecture to
retrieve information from a graph database according to embodiments of the present

technology.

[0041] Fig. 16 is a block diagram that illustrates a software architecture to retrieve

information from a graph database according to embodiments of the present technology.

[0042] Corresponding numerals and symbols in the different figures generally refer to
corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate

the relevant aspects of the embodiments and are not necessarily drawn to scale.

DETAILED DESCRIPTION

[0043] The present technology, roughly described, relates to retrieving information from

big graphs, or graph datasets that are very large and/or complex . A big graph may contain

WO 2017/181866 PCT/CN2017/079970

a very large number of nodes and edges stored in a graph databse. Information, or an
answer to a pattern query, may be obtained from the big graph by determining one or more

subgraphs of the big graph that match an effectively bounded pattern query.

[0044] [n an embodiment, a processor executes instructions stored in non-transitory
memory storage to to receive a pattern query for a big graph and determine a set of access
constraints corresponding to the pattern query. Access contraints may include cardinality
constraints and indices. A determination is made whether the pattern query is effectively
bounded under the set of access constraints. A query plan is formed to retrieve at least one
matching subgraph of the big graph when the pattern query is effectively bounded under
the set of access constraints. The answer to the pattern query is obtained by accessing the

at least one subgraph in response to the query plan.

[0045] A pattern query that is not effectively bounded may be made bounded by adding
a constraint, such as a natural number, to the set of constraints. A pattern query may be
localized, such as via subgraph isomorphism, or non-localized, such as simulation pattern
queries. Experimental results are provided to show the effectiveness of the technology

described herein.

[0046] [t is understood that the present technology may be embodied in many different
forms and should not be construed as being limited to the embodiments set forth herein.
Rather, these embodiments are provided so that this disclosure will be thoroughly and
completely understood. Indeed, the disclosure is intended to cover alternatives,
modifications and equivalents of these embodiments, which are included within the scope
and spirit of the disclosure as defined by the appended claims. Furthermore, in the
following detailed description, numerous specific details are set forth in order to provide a
thorough understanding of the technology. However, it will be clear that the technology

may be practiced without such specific details.

[0047] In an embodiment, big graph is a broad term for graph datasets so large and/or
complex that traditional data processing applications are inadequate. Challenges include
analysis, capture, data curation, search, sharing, storage, transfer, visualization, querying

and information privacy. Accuracy in obtaining information from big graphs may lead to

WO 2017/181866 PCT/CN2017/079970

more confident decision making, and better decisions can result in greater operational

efficiency, cost reduction and reduced risk.

[0048] Fig. 1 is a diagram illustrating retrieving one or more subgraphs 102 of big
graph G, stored in memory as a graph database, by determining whether a query (@) 100 to
big graph ¢ is an effectively bounded query Qgg according to an embodiment. A set 4 of
access constraints of big graph ¢, including a combination of indices and cardinality
constraints, may be used to determine whether query 100 is an effectively bounded query
Qes. When a query 100 is an effectively bounded query Qgg, a query plan 110 having one or
more fetch operations may be formed to access a one of more subgraphs 102 at a far lower
cost or amount of time as compared to using query 100. The one or more subgraphs 102

may then be accessed to answer pattern query @.

[0049] Rather than determining matches Q(G) of a pattern query Q in a graph G,
which may be cost-prohibitive, one or more small subgraphs G, of graph G are identifed,
such that Q(G,) = Q(G). In embodiments, pattern queries are effectively bounded under
access constraints A, such that subgraph G, may be identified in time determined by

pattern query Q and A only, independent of the size |G| of graph G in an embodiment.

Pattern queries may be localized (e.g, via subgraph isomorphism) or non-localized (graph

simulation). Methods are described herein to determine whether a pattern query Q is
effectively bounded, and when so, to generate a query plan that computes Q(G) by
accessing subgraph G,, in time independent of IGl. When pattern query Q is not

effectively bounded, methods are described herein to extend access constraints and make

pattern query Q bounded in graph G . Experimental results verify the effectiveness of the
technology described herein, e.g, about 60% of queries are effectively bounded for
subgraph isomorphism, and for such queries, embodiments described herein outperform
typical methods by 4 orders of magnitude.

[0050] In particular, for a pattern query Q and a graph G, graph pattern matching
determines a set Q(G) of matches of pattern query Q in graph G . Graph pattern matching,

a form of data mining, may be used in social marketing, knowledge discovery, mobile

WO 2017/181866 PCT/CN2017/079970

network analysis, intelligence analysis for identifying terrorist organizations, and the study

of adolescent drug use, for example.

[0051] When graph G is big, graph pattern matching may be cost-prohibitive. A social
network may have 1.26 billion nodes and 140 billion links in its social graph, about 300 PB
of user data. When a size | G| of graph G is 1PB, a linear scan of graph G takes 1.9 days

using a solid state device (SSD) with scanning speed of 6GB(Gigabytes)/ s (sec). Graph
pattern matching may be intractable when it is defined with subgraph isomorphism, and it

takes O((IVI+IV,IEI+IE,l)) -time when graph simulation are used, where

|GI=lVI+|El and [Q1=IV, | +1E, .

[0052] Exact answers to Q(G) may be efficiently computed when graph G is big while

constrained resources are used, such as a single processor. Making big graphs small may
be used, capitalizing on a set A of access constraints, with the set A of access constraints

comprising a combination of indices and cardinality constraints defined on the labels of
neighboring nodes of graph G. A determination is made whether pattern query Q is
effectively bounded under A, i.e, for all graphs G that satisfy A, there exists a subgraph

GQ c G, such that:

[0053] Q(Gp)=Q(G),and
[0054] the size |G, | of G, and the time for identifying G, are both determined by A

and pattern query Q only, independent of | G| in an embodiment.

[0055] When pattern query Q is effectively bounded, a query plan may be generated
that for all graph G satisfying A, computes Q(G) by accessing (visiting/identifing and
fetching) a small G, in time independent of |G|, no matter how big graph G is in an

embodiment. Otherwise, additional access constraints are identified on an input graph G

to make pattern query Q bounded in graph G .

[0056] In an embodiment, graph pattern queries may be effectively bounded under

access constraints, as illustrated in Fig. 2 and described in a first example below.

10

WO 2017/181866 PCT/CN2017/079970

[0057] In a first example, consider an internet movie database (IMDb) as a graph G, in

which nodes represent movies, casts, and awards from 1880 to 2014, and edges denote
various relationships between the nodes. An example search on IMDB may be the following
natural language query or request for information: “find pairs of first-billed actor and
actress (main characters) from the same country who co-starred in a award-winning film

released in 2011-2013".

[0058] The search can be represented as a pattern query Q, as shown in Fig. 2. Graph
pattern matching performed here is done to determine a set Q,(G,)of matches, ‘e,
subgraphs G’ of graph G, that are isomorphic to pattern query (J,. Actor-actress pairs
may be extracted and returned from each match subgraphs G’. Graph G, is a big graph in
an embodiment. For example, graph G, may have 5.1 million nodes and 19.5 million edges.

Also, subgraph isomorphism is NP -complete.

[0059] Aggregate queries may obtain the following cardinality constraints on a movie
dataset from 1880-2014: (1) in each year, every award is presented to no more than 4
movies (C1); (2) each movie has at most 30 first-billed actors and actresses (C2), and each
person has only one country of origin (C3); and (3) there are no more than 135 years (C4),
ie, 1880-2014), 24 major movie awards (C5) and 196 countries (C6) in total. An index

may be built on the labels and nodes of graph G, for each of the constraints, yielding a set

A, of eight access constraints, for example.

[0060] Under Aj, pattern query Q, is effectively bounded. Q,(G,) may be determined
by accessing at most 17,923 nodes and 35,136 edges in graph G, regardless of the size of

graph G,, by the following query plan:

[0061] (a) identify a set V| of 135 year nodes, 24award nodes, and 196 country nodes, by

using the indices for constraints C4-Cé6;

11

WO 2017/181866 PCT/CN2017/079970

[0062] (b) fetch a set V, of at most 24 x3x 4 = 288 award-winning movies released in

2011-2013, with no more than 288x 2 =576 edges connecting movies to awards and years,

by using those award and year nodes in V| and the index for C1;

[0063] (c) fetch a setV, of at most (30+30)*288 =17280 actors and actresses with

17280 edges, using V, and the index for C2;

[0064] (d) connect the actors and actresses in V, to country nodes in V|, with at most
17280 edges, by using the index for C3. Output (actor, actress) pairs connected to the same
country in V.

[0065] The query plan visits at most 135 + 24 + 196 + 288 + 17,280 = 17,923 nodes,
and 576 + 17,280 + 17,280 = 35,136 edges, using the cardinality constraints and indices in

A,, as opposed to tens of millions of nodes and edges in IMDb.

[0066] The first example indicates that graph pattern matching is feasible in big graphs

within constrained resources, by making use of effectively bounded graph pattern queries.

The following embodiments are described: (1) For a pattern query and a set A of access
constraints, a determination is made whether pattern query Q is effectively bounded
under A, (2) when pattern query Q is effectively bounded, a query plan is generated to
compute (G) in graph G by accessing a bounded graph G,, (3) When pattern query Q

is not bounded, pattern query ¢ may be made “bounded” in graph G by adding additional
constraints, and (4) Localized queries (e.g, via subgraph isomorphism) and non-localized

queries (via graph simulation) may be used.
[0067] In particular, the following is described in detail below:

[0068] (1) Effective boundedness for graph pattern queries is described below. Access
constraints on graphs and effectively bounded graph pattern queries are described. Access

constraints obtained from from typical data is also described.

[0069] (2) Effectively bounded subgraph pattern queries Q are described, ie, patterns

defined by subgraph isomorphism. Sufficient and necessary conditions are described to

12

WO 2017/181866 PCT/CN2017/079970

determine whether a pattern query Q is effectively bounded under a set A of access
constraints. Using the condition, a method is described in O(IAIIEQ I+IIAIIIVQ I*) time,
where |Q|=IV, |+1E, |, and ll All is the number of constraints in A. Cost is independent of
a size of graph G, and pattern query Q is typically small in an embodiment.

[0070] (3) Amethod to generate query plans for effectively bounded subgraph queries is

described in an embodiment. After a pattern query Q is determined effectively bounded

under a set A of access constraints, a method generates a query plan that, for a graph G

that satisfies setA of access constraints, accesses a subgraph G, of size independent of
|G|, in O(V, I E, Il Al) time. Moreover, a query plan is worst-case-optimal, i.e., for each

input pattern query Q and set A of access constraints, the largest subgraph G,

determined from all graphs G that satisfy a setA of access constraints is a minimum

among all worst-case subgraphs G,, identified by all other query plans in an embodiment.

[0071] (4) When pattern query Q is not bounded under a set A of access constraints,
pattern query Q is made instance-bounded. In other words, for a particular graph G that
satisfies a set of A access constraints, an extension set A,, of access constrains of the setA
of access constraints is determined such that under the extension set A, of access
constraints, G, G in time decided by extension set A,, of access constraints and
pattern query Q is determined as well as Q(G,)=Q(G). When a size of indices in
extension setA,, of access constraints is predetermined, a problem for determining an
existence of extension set A,, of access constraints is in low polynomial time (PTIME), but
it is log- APX-hard to find a minimum extension setA,, of access constraints. When
extension set A,, of access contraints is unbounded, all query loads may be made instance-

bounded by adding access constraints in an embodiment.

[0072] (5) Simulation pattern queries, ie., query patterns interpreted by graph

simulation, are similarly described. In particular, the non-localized and recursive nature of

13

WO 2017/181866 PCT/CN2017/079970

simulation pattern queries are described. A characterization of effectively bounded
simulation pattern queries is described. Methods for determining effective boundedness,
generating query plans, and for making simulation pattern queries instance-bounded for

simulation pattern queries, with the same complexity, are provided.

[0073] (6) Methods are experimentally evaluated using typical data. In embodiments,
methods described herein are effective for both localized and non-localized pattern queries:

(a) on graphs G of billions of nodes and edges, query plans may outperform, by 4 and 3
orders of magnitude on average, typical methods that compute Q(G) directly for subgraph
and simulation pattern queries, accessing at most 0.0032% of the data in graph G ; (b) 60%
(resp. 33%) of subgraph (resp. simulation) queries are effectively bounded under access
constraints; and (c) pattern queries may be made instance-bounded in graph G by
extending constraints and accessing 0.016% of extra data in graph G ; and 95% become
instance-bounded by accessing at most 0.009% extra data. In tested embodiments,
methods described herein may take upto 37ms to determine whether pattern query Q is
effectively bounded and generate an optimal query plan for pattern query Q and

constraints.

[0074] In an embodiment, querying graph G with a pattern query @ includes: (1) making
a determination whether the pattern query Q is effectively bounded under a set A of
access constraints. (2) When the pattern query Q is effectively bounded, a query plan for
the particular graph G satisfying the set of A access constraints computes Q(G) by
accessing subgraph G, of size independent of | G|, no matter how big graph G grows in an

embodiment. (3) When the pattern query Q is not effectively bounded, pattern query Q is

made instance-bounded in graph G with additional constraints. In an embodiment, both

localized subgraph queries and non-localized simulation pattern queries may be used.
EFFECTIVELY BOUNDED GRAPH PATTERN QUERIES

[0075] An access schema on graphs and effectively bounded graph pattern queries are

described below.

14

WO 2017/181866 PCT/CN2017/079970

[0076] Graphs. In an embodiment, A data graph (or graph) is a node-labeled directed
graph G = (V,E, f,v), where (1) V is a finite set of nodes; (2) E cV xV is a set of edges,

in which (v,V") denotes the edge from v to v'; (3) f() is a function such that for each node
vinVv, f(v)is a label in X, eg, year; and (4) v(v) is the attribute value of f(v), eg,
year = 2011.

[0077] A graph G may be denoted as (V,E) or (V,E, f), in an embodiment, when it is
clear from the context. A size of graph G, denoted by | G|, is defined to be a total number of
nodes and edges in graph G, ie, |G| =1V | + | El, in an embodiment. A graph G may also

be referred to as a big graph G unless the context indicates otherwise.

[0078] Edge labels are not explicitly defined in an embodiment. Nonetheless, similar
techniques may be adapted to edge labels. For example, for each labeled edge e, a “dummy”

node may be inserted to represent e, carrying e ’s label.

[0079] Labeled set. For a set S X of labels, V; cV is a § -labeled set of graph G when
(a) 1V5 1=l S'1, and (b) for each label [in set §, there exists a node v in V; such that f(v)
= [,.In particular, whenset § = &, the § -labeled setin graph G is &.

[0080] Common neighbors. A node v is called a neighbor of another node v' in graph G

when either (v,V') or (/,v) is an edge in graph G . The node v is a common neighbor of a
set V; of nodes in graph G when for all nodes v' in V;, v is a neighbor of v'. In particular,
when V; is &, all nodes of graph G are common neighbors of V;.

[0081] Subgraphs. Graph Gs = (Vs £ £ vs) is a subgraph of graph G when VsC€ V] E,C
£ and for each (v,v) € £, v€ Vsand vE V; and for each ve Vs, £(v) = f(v) and vs (V)= v
().

[0082] Pattern queries. A pattern query Q is a directed graph (V,,E,, f,,g,), where (1)
V,, E, and f, are analogous to their counterparts in data graphs; and (2) for each node

inV,, g,(u) is the predicate of u, defined as a conjunction of atomic formulas of the form

15

WO 2017/181866 PCT/CN2017/079970

Jfow)opc, where ¢ is a constant and op is one of =, >, <, < and >. For instance, in
pattern query Q, of Fig. 2, g (year) = year 22011 A year <2013. A pattern query ¢ may
be denoted as (V,,E,) or (V,,E,, f,). Pattern queries may also be referred to as graph
pattern queries unless the contextindicates otherwise.

[0083] Two semantics of graph pattern matching are described below.

[0084] Subgraph queries. A match of pattern query Q in graph G via subgraph
isomorphism is a subgraph G'(V',E’, f') of graph G that is isomorphic to pattern query
Q, ie,there exists a bijective function # from vV, to Vv’ such that: (a) (u,u') is in E, when
and only when (A(u),h(u')) € E', and (b) for each ueV,, f,(u)= f'(h(w)) and g, (v(h(u)))
evaluates to true, where g,(v(h(u))) substitutes v(i(u)) for f,(u) in g,(u). In an

embodiment, Q(G) is a set of all matches of pattern query Q in graph G .

[0085] Simulation gueries. A match of pattern query QJ in graph G via graph simulation
is a binary match relation RV, xV such that: (a) for each (u,v)€R, f,(u)= f(v) and
g, (v(v)) evaluates to true, where g,(v(v)) substitutes v(v) for f,(u) in g,(u); (b) for
each node u in V,,, there exists a node v in V such that (i) (u,v) € R, and (ii) for any edge
(u,u’) in pattern query Q, there exists an edge (v,V') in graph G such that (1',v)eR.

Simulation queries may also be referred to as simulation pattern queries unless the context

indicates otherwise.

[0086] For any pattern query Q and graph G, there exists a unique maximum match
relation R,, via graph simulation (possibly empty). In an embodiment, Q(G) is defined to
be R,,.Simulation queries amay be used in social community analysis and social marketing

in embodiments.

[0087] Data locality. A pattern query Q is localized when for any graph G that matches
pattern query Q, any node u and neighbor »' of u in pattern query @, and for any match

v of u in graph G, there must exist a match v’ of ¥’ in graph G such that v' is a neighbor

16

WO 2017/181866 PCT/CN2017/079970

of v in graph G . Subgraph queries are localized in an embodiment. Simulation queries are

non-localized in an embodiment.

[0088] In a second example, consider a simulation pattern query Q, and graph G
shown in Fig. 4, where graph G, matches simulation pattern query ¢,. Then simulation
pattern query Q, is not localized: u, matches v,,...,v,, , and v, , but for all k €[2,n], v,, ,
has no neighbor in graph G that matches the neighbor u, of u, in Q1. To decide whether

u, matches v,, all the nodes have to be inspected on an unbounded cycle in graph G,.

[0089] Effective boundedness for subgraph queries as well as non-localized simulation
queries are described below. To formalize effectively bounded patterns, access constraints

on graphs are defined below in an embodiment.

[0090] Access schema on graphs. An access schema A is a set of access constraints of the

following form in an embodiment:
[0091] S—=(N)

[0092] where Sc X is a (possibly empty) set of labels, /is a label in X, and N is a

natural number.
[0093] Agraph G(V,E, f) satisfies the access constraint when

[0094] for any S -labeled set V; of nodes in V, there existat most N common neighbors

of V; with label /; and

[0095] there exists an index on S for / such that for any S -labeled set V; in graph G, it

finds all common neighbors of V, labeled with 7 in O(N) -time, independent of |G |.

[0096] Graph G satisfies access schema A, denoted by G]=4, when graph G satisfies all

the access constraints in A in an embodiment.

[0097] An access constraint is a combination of: (a) a cardinality constraint, and (b) an

index on the labels of neighboring nodes in an embodiment. Access constraints indicate

17

WO 2017/181866 PCT/CN2017/079970

that for any S -node labeled set V, there exist a bounded number of common neighbors V,

labeled with /, and moreover, V, can be efficiently retrieved with the index.

[0098] [nan embodiment, two special types of access constraints are as follows:

[0099] (1) ISI=0 (ie, @—(,N)): for any graph G that satisfies the constraint, there

existat most N nodes in graph G labeled /; and

[00100] (2)ISI=1(ie, I —(I',N)): for any graph G that satisfies the access constraint

and for each node v labeled with / in graph G, at most N neighbors of v are labeled with

.

[00101] In other words, constraints of type (1) are global cardinality constraints on all
nodes labeled 7, and those of type (2) state cardinality constraints on [’ -neighbors of each /
-labeled node.

[00102] In athird example, constraints C1-C6 on IMDb described in the first example may

be expressed as access constraints ¢, (for i €[1,6]):

[00103] ¢1: (year, award) — (movie, 4); @4 @ — (year, 135);

[00104] ¢2: movie — (actors/actress, 30); ¢s: @ — (award, 24);

[00105] ¢s3: actor/actress — (country,1); @e: @ — (country, 196).

[00106] In particular, ¢, denotes a pair movie — (actors,30) and movie — (actress, 30) of
access constraints; similarly for ¢,. Note that ¢, —¢, are constraints of type (1); ¢, — ¢,

are of type (2); and ¢, has the general form: for any pair of year and award nodes, there are
at most 4 movie nodes connected to both, ie, an award is given to at most 4 movies each

year. A, is used to denote the set of these access constraints.

[00107] Effectively bounded patterns. In an embodiment, a pattern query Q is effectively

bounded under an access schema A when for all graphs G that satisfy A, there exists a

subgraph G, of graph G such that:

[00108] (a) Q(Go)=Q(G); and

18

WO 2017/181866 PCT/CN2017/079970

[00109] (b) subgraph G, can be identified in time that is determined by pattern query Q

and A only, notby |G| in an embodiment.

[00110] By (b), IG, | is also independent of the size | G| of graph G in an embodiment. In
other words, pattern query Q is effectively bounded under A when for all graphs G that
satisfy A, Q(G) can be computed by accessing a bounded subgraph G, rather than the
entire graph G, and moreover, subgraph G, can be efficiently accessed by using access

constraints of A. For instance, as shown in the first example, pattern query Q, is

effectively bounded under the access schema A, in the second example.

[00111] Determining access constraints. From experiments, many practical pattern
queries are effectively bounded under access constraints S — (I, N) when | S| is at most 3.

In an embodiment, access constraints may be determined as follows.

[00112] (1) Degree bounds: when each node with label / has degree at most N, then for

any label /', [= (I',N) is an access constraint.

[00113] (2) Constraints of type (1): such global constraints are common in embodiments,

e.g, @, on IMDb : J — (country,196).

[00114] (3) Functional dependencies (FD s): our familiar FD s X — A are access

constraints of the form X —(A,1), eg, movie = year is an access constraint of type (2):
movie —> (year,1). Such constraints can be determined by shredding a graph into relations
and then using available FD discovery tools in embodiments.

[00115] (4) Aggregate queries: such queries enable determination of semantics of the
data, eg, grouping by (year , country , genre) indicates
(year, country, genre) — (movie,1800), ie, each country releases at most 1800 movies per

year in each genre.

[00116] Fig. 3 is a flowchart that illustrates a method 300 to determine types of access

constraints according to embodiments of the present technology. In an embodiment,

19

WO 2017/181866 PCT/CN2017/079970

determine access constraints 1602 in Fig. 16, executed by one or more processors, such as

processor 1510 shown in Fig. 15, performs at least a portion of method 300.

[00117] Logic block 301 illustrates determining, for each labeled node in a pattern query,
whether a global constraint exists for all nodes having that label. In an embodiment, logic

block 301 determines whether a pattern query has one or more access constraints of type 1.

[00118] Logic block 302 illustrates determining whether cardinality constraints exist for
neighbor nodes of each labled node in the pattern query. In an embodiment, logic block 302

determines whether a pattern query has one or more access constraints of type 2.

[00119] Maintaining access constraints. The indices in an access schema can be

incrementally and locally maintained in response to changes to the underlying graph G . It

suffices to inspect AG UNDb.(AG), where AG is the set of nodes and edges deleted or
inserted, and Nb_(AG) is the set of neighbors of those nodes in AG, regardless of how big
graph G is.

EFFECTIVE BOUNDEDNESS OF SUBGRAPH QUERIES

[00120] Effective boundedness, denoted by EBnd(Q,A), is described below:

[00121] Input: A pattern query Q(V,,, E,), an access schema A.
[00122] Question: s pattern query Q(V,, E,) effectively bounded under A?

[00123] In particular, subgraph queries are described below in that:

[00124] (a) there exists a sufficient and necessary condition, i.e., a characterization, for
deciding whether a subgraph query Q is effectively bounded under A; and
[00125] (b) EBnd(Q,A) is decidable in low polynomial time in the size of pattern query Q

and A, independent of any data graph.

[00126] Characterizing the Effective Boundness. An effective boundedness of subgraph

queries is characterized in terms of coverage, as follows.

20

WO 2017/181866 PCT/CN2017/079970

[00127] A node cover of A on subgraph query Q, denoted by VCov(Q, A), is a set of

nodes in subgraph query Q computed inductively as follows:

[00128] (a) when ¥ —(/,N) is in A, then for each node u in subgraph query Q with
label I, u € VCov(Q, A) ; and

[00129] (b) when S —(/,N) isin A, then for each § -labeled set V, in subgraph query Q,
when V, € VCov(Q, A), then all common neighbors of V; in subgraph query Q that are
labeled with [are also in VCov(Q, A).

[00130] In other words, a node u is covered by A when in any graph G satisfying A,
there exist a bounded number of candidate matches of u, and the candidates may be

retrieved by using indices in A. In (a) above, u is covered when its candidates are

bounded by type (1) constraints. In (b), when for some @ =5 = (,N) in A, u is labeled
with / and is a common neighbor of V; that is covered by A, then u is covered by A, since
its candidates are bounded (by N and the bounds on candidate matches of V{), and can be

retrieved by using the index of ¢.

[00131] Edge cover of A on subgraph query Q, denoted by ECov(Q, A), is a set of edges
in subgraph query Q defined as follows: (,,u,) is in ECov(Q, A) when and only when
there exist an access constraint S —(/,N) in A and a S -labeled set V; in subgraph query
O such that (1) u (resp. u,) is in V; and V; c VCov(Q,A) and (2) f,(u,)=1 (resp.

folu) = [) in an embodiment.

[00132] In other words, (u,,u,) is in ECov(Q, A) when one of , and u, is covered by A

and the other has a bounded number of candidate matches by S — (I, N). Their matches in

a graph G may be verified by accessing a bounded number of edges in an embodiment.

[00133] In an embodiment, VCov(Q A) € Vyand ECov((, A) € Ep.

21

WO 2017/181866 PCT/CN2017/079970

[00134] The node and edge covers characterize effectively bounded subgraph queries. In

particular, a subgraph query Q is effectively bounded under an access schema A when and

only when VCov(Q,A) =V, and ECov(Q,A)=E,.

[00135] In a fourth example, for pattern query Q,(V,.E,) of Fig. 2 and access schema A,
of the second example, VCov(Q,,A,) =V, and ECov(Q,, A,) = E, may be verified. From this
and above, it follows that pattern query Q, is effectively bounded under A, .

[00136] Determining whether Subgraph Queries are Effectively Bounded. Using the above

characterization, a determination as to whether a subgraph query Q is effectively bounded

under A is described below.

[00137] In particular, for subgraph queries Q, EBnd(Q, A) is in:
[00138] (1) O(ANE,I+IIANV, I*) time in general; and
[00139] (2) O(ANE,|I+1V, I*) time when either

[00140] for each node in subgraph query Q, its parents have distinct labels; or

[00141] all access constraints in A are of type (1) or (2).

[00142] |Al denotes a total length of access constraints in A, Il All is a number of
constraints in A, and anode u’ isa parentof 1 in subgraph query Q when there exists an
edge from ' to u in subgraph query Q.

[00143] Fig. 5 illustrates a method 500 that determines whether a subgraph query Q with
an access schema A is effectively bounded. Method 500 is also referred to as method EBChk
unless the contents indicates otherwise. In an embodiment, method 500 is represented by

psuedocode that may represent non-transitory instructions executed by one or more

processors in an embodiment. For example, for a particular subgraph query Q(V,,E,) and
an access schema A, method 500 determines whether: (a) V, € VCov(Q,A), and (b)
E, c ECov(Q,A); and returns “yes” when the conditions are met. To check these

conditions, A on subgraph gery Q is actualized. For each S —>(/,N) in A (§=@), and

22

WO 2017/181866 PCT/CN2017/079970

each node u in subgraph query Q with f,(u)=1, the actualized constraint is Vi s (u,N),
where V. is the maximum set of neighbors of 1 in subgraph query Q such that: (a) there

exists a § -labeled set V; <V, and (b) foreach u’ in V', f,(u)€S.

[00144] Actualized constraints aid in deducing VCov(Q, A). A node u of subgraph query
Q isin VCov(Q, A) when and only when either:

[00145] there exists ©@—>(/,N) in A and fow)=1;or

[00146] V! > (u,N) and there exists a § -labeled set of subgraph query Q thatis a subset

of V' nVCov(Q, A).

[00147] When VCov(Q,A) is determined, E, c ECov(Q,A) is determined by definition

and using the actualized constraints, without explicitly computing ECov(Q, A), in an

embodiment.
[00148] Futher details of method 500 are described below.

[00149] Auxiliary structures. Method 500 uses three auxiliary structures in an
embodiment.

[00150] (1) Method 500 maintains a set B of nodes in subgraph query Q that are in
VCov(Q, A) but it remains to be determined whether other nodes can be deduced from

them. Initially, set B of nodes includes nodes whose labels are covered by type (1)

constraints in A (line 3). Method 500 uses set B of nodes to control the while loop (lines
5-10). Method 500 terminates when B=@, /e, all candidates for VCov(Q,A) are
determined.

[00151] (2) For each node v, method 500 uses an inverted index L[v] to store all
actualized constraints V,* - (u, N) such that veV;. In other words, L[v] indexes these

constraints that can be used on node v .

23

WO 2017/181866 PCT/CN2017/079970

[00152] (3) For each actualized constraint ¢ = \7;‘ — (u, N), method 500 maintains a set
ctld] to keep track of those labels of § that are not covered by nodes in V" ~ VCov(Q, A)
yet. Initially, cf{@] = §. When cf[@] is empty, method 500 concludes that there is a S -
labeled subset of X7S” covered by VCov(Q, A), and thus deduces that node u# should also be
in VCov(Q, A) (line 10).

[00153] Using these auxilary structures, method 500 includes the following two steps in

an embodiment.
[00154] (1) Computing T" finds all actualized constraints of A on subgraph query Q and

puts them in I (lines 1-2). In an embodiment, this is accomplished by scanning or

inspecting all nodes of subgraph query Q and their neighbors for each access constraint in

A. In an embodment, there are at most II AlllV, | actualized constraints in I', ie., I' is

bounded by Ol AIIE, I).

[00155] (2) Computing VCov(Q, A), stored in a variable C. After initializing auxiliary

structures as described above via procedure or functionInitAuxi (lines 3-5 in Fig. 5a and

Fig. 5b in an embodiment), method 500 processes nodes in B one by one (lines 6-11). For

each u e B and each actualized constraint ¢ = VSV — (v, N) in L[u], it updates the set ct[@]
by removing label f,(u) by procedure or function Update (line 9 in Fig. 5a and Fig. 5b in an
embodiment). When ct[¢] =, ie, there exists a § -labeled subset in X7SV that is covered
by C, method method 500 adds # to C and B (lines 10-11). When B is empty, ie, all

nodes have been inspected, method 500 determines whether V, c VCov(Q,A) and

whether all edges are covered by ECov(Q, A). It returns “yes” when so (lines 12-13).

[00156] Fig. 6 is a flowchart that illustrates a method 600 to determine whether a
subgraph query is effectively bounded according to embodiments of the present technology.
In an embodiment, determine effectively bounded 1603, as shown in Fig. 16, executed by
one or more processors, such as processor 1510 shown in Fig. 15, performs at least a

portion method 600 in an embodiment.

24

WO 2017/181866 PCT/CN2017/079970

[00157] Logic block 601 illustrates inspecting all nodes of a subgraph query Q and their

neighbors for access constraints in access schema A to determine actualized constraints. In
an embodiment, logic block 601 determines actualized constraints and stores them in a set

of actualized constraints.

[00158] Logic block 602 illustrates computing Vcov (@, A4) . In an embodiment, logic block
602 processess nodes one by one and uses each access constrain in the set of stored

actualized constraints to determined covered nodes.

[00159] In a fifth example, for a subgraph query Q, of Fig. 2 and access schema A4, in the
second example, method 500 first computes the set I' of actualized constraints: ¢ =
(u, uy) = W3, 4), ¢, = u; > (u, /u,30), and ¢, =u, /u, —(u,.1). Method 500 then sets
both B and C to be {u, u,, u,}, and initializes cf[d], .., ct[¢,] and lists Llu], .., Lu,]
accordingly. Method 500 then pops nodes u, and u, off from setB and finds that u, can
be deduced. Method 500 then adds node u, to sets B and C. Method 500 then pops node

u, off from set B, processes nodes u, and u,, and confirms that nodes u, and u. should be

included in set C. At this point, method 500 finds that set C contains all the nodes in
subgraph query (vand moreover, each edge in subgraph query (b is also covered by at

least one access constraint in A,. Thus it returns “yes”.

[00160] Correctness & Complexity. The correctness of method 500 follows from above
and the properties of actualized constraints stated above. Time complexity of method 500

is described below.
[00161] (1) General case. (a) Computing I" is in O(IAll E, I) time, since for each ¢ in A,

all actualized constraints of ¢ may be found in O(Zvevgdeg(v) lpl)=0(¢l E,) time, where

deg(v) is the number of neighbors of v. (b) Computing VCov(Q, A) takes O(ll AlllV, *)
time. For each ¢ in A, the sets ct(¢) for all corresponding actualized constraints ¢ in T’

are updated in time O(ZVGVQ (deg(v)*) =0 v, I’). As each ¢ in I' is processed once, the

total time is bounded by O(IAIllV,). (c) The checking of lines 12-13 takes

25

WO 2017/181866 PCT/CN2017/079970

O ANE,1+1V, ") time. Thus, method 500 takes

2 2 2 .
O AIE, 1+l AV, P +1V, P)=O(Al E, | +1l AllV, I*) time.

[00162] (2) Special cases. Method 500 may be optimized to O(IAIE,|+1V, I*) time for

each of the two special cases provided above in an embodiment. A counter #n[@] is used
instead of cf[¢] in method 500 such that n[¢] always equals | cf[¢]] in an embodiment.
Correctness is not affected since in the special cases, each time when ct[d] is updated, a

distinct label is removed. With an additional auxiliary structure, step (b) described above is

in O(IAIIE,l) time in total since the counters are updated

Ol All(Z,., deg(v)))=O(l All E, |) times in total, and each updates takes O(1) time: it just

veVQ

decreases n[¢@] by 1.

GENERATING QUERY PLANS
[00163] After a pattern query Q(V,,E,) is determined effectively bounded under an
access schema A, a “good” query plan for pattern query Q is generated that, for any graph
G, computes Q(G) by fetching a small subgraphG, such that Q(G) =Q(G,) and |G, | is
determined by pattern query Q and A, independent of | G1.
[00164] The following are described below:
[00165] a worst-case optimality for query plans; and

[00166] a method to generate worst-case-optimal query plansin O(1V, Il E, Il Al) time.

[00167] Query plans are formalized and worst-case optimality described in detail below.

[00168] Query plans. In an embodiment, a query plan P for pattern query Q under A is

a sequence of node fetching operations of the form ft(u,V;, 9, g,(u)), where u is a I-

labeled node in pattern query Q, V, denotes a S -labeled set of pattern query Q, ¢ is a

constraint =S —> ([, N) in A, and g,(u) is the predicate of node u .

26

WO 2017/181866 PCT/CN2017/079970

[00169] On a graph G, the operation is to retrieve a set cmat(u) of candidate matches for
node u from graph G . For V, that was retrieved from graph G earlier, it fetches common
neighbors of V; from graph G that: (i) are labeled with /, and (ii) satisfy the predicate
g,) of node u. These nodes are fetched by using the index of ¢ and are stored in
cmat(u). In particular, when § = &, the operation fetches all /-labeled nodes in graph G as

cmat(u) for node u .

[00170] In an embodiment, operations ft,ft,---ft, in query plan P are executed one by

one, in this order. There may be multiple operations for the same node » in query pattern

Q, each fetching a set V" of candidates for node « from graph G . To ensure that for ft,
and ft]. for node u, Vj” has less nodes than V* when i< j, and ft]. reduces cmat()
fetched by ft,. V" is denoted by V,, where {t, is the last operation for node u in query

plan P, ie, it fetches the smallest cmat(u) for node u .

[00171] Building subgraph Gg. In other words, query plan P indicates what nodes to
retrieve from graph G in an embodiment. From the data fetched by query planP, a

subgraph G,(V,,E,) is built and used to compute Q(G) in an embodiment. More
specifically, (a) V, = UMGQVM, Ie, it contains maximally reduced cmat(u) for each node u in
pattern query Q; and (b) E, consists of the following: for each node pairs (v,v') in V, xV,
when (u,1) is an edge in pattern query Q, a determination is made whether (v,V') is an
edge in G and when so, include it in E,. This is done by accessing a bounded amount of
data: ¢, =S — (f,(u'),N) in A and a § -labeled set V, such that v eV is first determined.
Common neighbors of V; are fetched by using the index of ¢, and determine whether v’ is
one of them. As pattern query Q is effectively bounded under A (ie, ECov(Q,A)=E,),
when (v,V) is an edge in graph G then such ¢, and V; exist.

[00172] Bounded query plans. A query plan P for pattern query Q under A is effectively
bounded when for all G]=4, query plan Pbuilds a subgraph G, of graph G such that: (a)

27

WO 2017/181866 PCT/CN2017/079970

Q(G,) = Q(G), and (b) the time for fetching data from graph G by all operations in query
plan P depends on A and pattern query Q only in an embodiment. In other words, query

plan P fetches a bounded amount of data from graph G and builds subgraph G, from

graph G. By (b),1G, | is independent of | G| in an embodiment.

[00173] Optimality. An optimal query plan P that determines a minimum subgraph G,
may be preferred, ie, for each graph G]=4, subgraph G, identified by query plan P has

the smallest size among all subgraphs identified by any effectively bounded query plans.

However, in an embodiment, there exists no query plan that is both effectively bounded

and optimal for all graphs G]=A.

[00174] Accordingly, an effectively-bounded query plan P for pattern query Q under A

is worst-case optimal when for any other effectively bounded query plan P' for pattern
max [l < max (G

query @ under i Gt A, , Where G, and G'p are subgraphs

identified by P and P', respectively.

[00175] In other words, for any pattern query Q and A, for all G]=4, the largest
subgraph G, identified by query plan P is no larger than the worst-case subgraphs
identified by any other effectively bounded query plans.

[00176] Worst-case optimal query plans are described in detail below.

[00177] In an embodiment, there exists a method that, for any effectively bounded
subgraph query Q under an access schema A, determines a query plan that is both

effectively bounded and worst-case optimal for subgraph query Q under A, in

OV, IIE, Il A1) time.

[00178] Fig. 7 is a flowchart that illustrates a method 700 to determine a worst-case
optimal query plan according to embodiments of the present technology. Method 700 is
also referred to as method QPlan unless the contents indicates otherwise. In an
embodiment, method 700 is represented by psuedocode that may represent non-transitory

instructions executed by one or more processors in an embodiment

28

WO 2017/181866 PCT/CN2017/079970

[00179] In an embodiment, method 700 inspects each node u of a pattern query(J,

determines an access constraint ¢ in A such that an index in the access constrain enables
retrieval of candidates cmat(x) for node » from an input graph G, generates a fetching

operation accordingly, and stores the fetching operation in a list of query plan P. Method

700 then iteratively reduces cmat(u) for each node u in pattern query Q to optimize

query plan P, until query plan P cannot be further improved.
[00180] In an embodiment, method 700 may use the following structures:
[00181] (1) An actualized graph Q,.(V;..E}), which is a directed graph constructed from

pattern query Q and the set I' of all actualized constraints of A on pattern query Q as

described herein. In particular, (a) V. =V,; and (b) for any two nodes u, and u, in V,,
(u,,u,) is in E. when there exists a constraint V, - (u,, N) in ' such that u, is in V,. In
other words, Q. represents deduction relations for nodes in V,, and guides to extract

candidate matches for pattern query Q.

[00182] (2) For each node u in patten query Q, a counter size[u] to store the cardinality
of cmat(#), and a Boolean flag sn[u] to indicate whether the fetching operations in a

current query plan P may determine cmat().

[00183] In an embodiment, method 700 first builds actualized graph Q. (line 1), and
initializes size[u] = +o and sn[u] = false for all the nodes « in Q. (lines 2-3). Method 700
then determines nodes u, for which cmat(#) may be retrieved by using the index specified
in some type (1) constraints & —(/,N) in A (lines 4-6). For each node u,, method 700
adds a fetching operation to query plan P and sets sn[y,] = frueand size[u,] = N.

[00184] After the initialization, method 700 recursively processes nodes u of pattern

query Q to retrieve or reduce their cmat(u) (lines 7-9), starting from those nodes ,

identified in line 4. Method 700 picks the next node u by a function check. In particular,

check(u) does the following in an embodiment: (i) determines the set V.? of parents of

29

WO 2017/181866 PCT/CN2017/079970

node u in Q. such that sn[v]=true for all veV/?, (ii) selects a subset V, of V.7 such that
V, forms a §-labeled set for some constraint ¢, = S — (f,(«),N) in A, and moreover,

N*I1 _, size[v] is minimum among all such § -labeled sets of nodeu ; and (iii) returns true
when N*IT _, size[v]<size[u] . When check(u) = frue , method 700 sets size[u] =

N*II ., size[v] and sn(u) = true by function ocheck, and adds a fetching operation to

veV,
query plan P for node u using ¢, and V,. Method proceeds until for no node « in pattern
query Q, check(u) = true (line 7). At this point, method 700 returns query plan P (line
10).
[00185] In a sixth example, for a pattern query Q, of Fig. 2 and access schema A, of the

second example, method 700 determines a query plan P as follows in an embodiment.

Using the actualized constraints I of A; on pattern query @, (see third example), method
700 first builds Q, which is the same as pattern query @, except the directions of the

edges (u;,u,) and (u;,u,) are reversed. Using type (1) constraints in A,, method 700 adds

ft1(uy, nil, @s, true), fta (uz, nil, @4, year = 2011 A year < 2013) and fts (ug, nil, s, true) to
query plan P. In the while loop, method 700 determines check (u3) = true and adds fty
(us,{ u1, uz}, @1, true) to query plan P. As a consequence of ft;, method 700 determines that
check (u4) and check (us) become true and thus adds fts(u4,{us}, @2, true) and fte(us,{us}, @2,
true) to query plan P. Query plan P cannot be further improved in an embodiment, and

method 700 returns query plan P with 6 fetching operations.

[00186] How query plan P identifies subgraph G, from the IMDb graph G of the first
example for pattern query Q, is described. (a) Query plan P executes its fetching

operations one by one, and retrieves cmat(#) from graph G, for u ranging over u,-u,,

with at most 24, 3, 288, 8640, 8640 and 196 nodes, respectively. These are treated as the

nodes of subgraph G,, no more than 17791 in total. (b) Query plan P then adds edges to
subgraph G, . For each (v;,v) € cmat(u;) xcmat(y,), query plan P determines whether

(v5,v,) is an edge in graph G, by using cmat(x,), cmat(x,) and cmat(u,), and the index of

30

WO 2017/181866 PCT/CN2017/079970

@, of A, as suggested by fetching operation ft, for node u, as described above. When so,
(v;,v) is included in subraph G, . This determines 24 x3x 4 neighbors of cmat(u;) in the
worst case. Similarly, it examines at most 288, 8640, 8640, 8640 and 8640 candidates
matches in graph G, for edges (u,.u,), (u;,u,), (u;.us), (u,.uy) and (u,,u,) in pattern
query 0, respectively. This yields at most 34,848 edges in subgraph G, in total in an

embodiment. In an embodiment, query plan P is the one described in the first example,
and accesses at most 17,923 nodes and 35,136 edges in total. In an embodiment, only part
of the data accessed by query plan P is included in subgraph G, for answering pattern
query (.

[00187] Correctness & Complexity. For the correctness of method 700, the following may
be observed about the query plan P generated for pattern query Q and A. (1) Query plan
P is effectively bounded: in particular, (a) the total amount of data fetched by query plan

P is decided by A and pattern query (Q since query plan P only uses indices in A to

retrieve data in an embodiment; and (b) Q(G,)=Q(G) since subgraph G, includes all

candidate matches from graph G for nodes and edges in pattern query (). By the data
locality of subgraph queries, when a node v in graph G matches a node u in pattern query

@, then for any neighbor ' of 1 in pattern query (J, matches of ' must be neighbors of

v in graph G . That is why cmat(u) collects candidate node matches from neighbors;
similarly for edges in an embodiment. (2) query plan P is worst-case optimal in an

embodiment: since the while loop in method 700 reduces | cmat(u#) | to be the minimum.

[00188] To see that method 700 is in O(l Vo, ILE, Il Al) time, observe the following. (1)
Line 1 is in O(AllE, |) time. (2) The for loop (lines 2-6) is in O(IV, |) time by using the
inverted indices. (3) The while loop (lines 7-9) iterates |V, > times, since for each node u

in pattern query Q, (a) cmat(x) is reduced only when cmat(«") is reduced for its “ancestors”
u' in Qp, 1V, 1-1 times at most, by the definition of size[u] and check (Ze, size[u] remains

larger than size[u']), and (b) each reduction to cmat(i’) requires determination whether

31

WO 2017/181866 PCT/CN2017/079970

cmat(u) is also reduced as a consequence in an embodiment. In each iteration, check(u)

and ocheck(u) take O(deg(u)| Al) time. As O(1V,, I*ZueVQdeg(u) lAD) = O(V, Il E, Il Al), the
while loop takes O(IV, Il E,, Il Al) time in total.

[00189] MAKING PATTERN QUERIES INSTANCE-BOUNDED

[00190] A frequent query load @, such as a finite set of parameterized pattern queries,

may be used in recommendation systems in an embodiment. When some pattern queries
Q in query load Q are not effectively bounded under an access schema A, Q(G) in a graph

G may still be computed. Often, as described below, some pattern queries in query load Q
may be made instance-bounded in graph G and an answer may be provided from graph G

by accessing a bounded amount of graph data.

[00191] Extending access schemas. Access schema A is extended such that indices of the

access schema A suffice to aid in fetching bounded subgraphs of graph G for answering a
query load Q. For example, consider a constant M. An M -bounded extension A,, of A

includes all access constraints in A and additional access constraints of types (1) and (2)

as described above:
[00192] Type(1): 0 - (I, V) Type (2): /- (I, V)
[00193] suchthat N <M . Note that 4,, is also an access schema in an embodiment.

[00194] Instance-bounded pattern querys. In particular, G]=Am In an embodiment, a set

of pattern queries or query load @ is instance-bounded in graph G under A,, when for all

@ € Q, there exists a subgraph G, of graph G such that:

[00195] (a) Q(Go)=Q(G); and

[00196] (b) G, can be found in time determined by A,, and Q only.

[00197] As a result of (b) and the use of constant M , 1G,1is a function of A, pattern

query Q and natural number M . As opposed to effective boundedness, instance-

32

WO 2017/181866 PCT/CN2017/079970

boundedness aims to process a finite set of pattern queries in query load @ on a particular

instance of graph G by accessing a bounded amount of data.

[00198] In other words, an answer to a query load Q in a graph G is obtained as follows.
When some queries in query load @ are not effectively bounded under A, A is extend to

A,, by adding access constraints such that all queries in query load @ are instance-bounded
in graph G under 4,,.
[00199] Bounded extension proposition: For any query load @ including a finite set of

subgraph queries, access schema A and graph G]=4, there exist M and an M -bounded

extension A,, under which query load @ is instance-bounded in graph G .

[00200] In other words, additional access constraints of types (1) and (2) suffice to make

a query load @ instance-bounded in graph G . In an embodiment, A,, extends A with at

Ly(L,+1)

most —2 additional constraints, where L, is the total number of labels in query

load Q.

[00201] Resource-bounded extensions. Bounded extension proposition above always
holds when M is sufficiently large in an embodiment. When M is a small predefined
bound indicating constrained resources, the following question, denoted by EEP(Q, A, M, G),

is answered:

[00202] Input: Query load @ including finite set of subgraph queries, an access schema A,
a natural number M , and a graph G]=A4.

[00203] Question: Does there exist a M -bounded extension A,, of A such that query
load @ is instance-bounded in graph G under A,,?

[00204] This problem is decidable in PTIME in an embodiment.

[00205] EEP(Q, 4 M G) isin O(|G + (14] + | QD) |£o | + (1|1All+] QDI Ve |?) time, where

|G/ =V + | B, | B | = Lgeo | ol |Vo | = Zoeo | Vol and | Q| = | Bo | + | Vo |.

33

WO 2017/181866 PCT/CN2017/079970

[00206] For a frequent query load Q,, 4,, is identified. When A,, exists, additional indices

on graph G are built and make G|=Apm as preprocessing offline. Query templates of
frequent query load @ are repeatedly instantiated and processed by accessing a bounded

amount of data in graph G, and indices are incrementally processed in response to
changes to graph ¢ . Pattern queries @ in frequent query load Q may be small in
embodiments.

[00207] Fig. 8 illustrates a method 800 to determine whether there exist a M-bounded
extension Am of A such that query load Q is instance-bounded in graph G under Awm
according to embodiments of the present technology. Method 800 is also referred to as
method EEChk unless the contents indicates otherwise. In an embodiment, make pattern

query bounded, as shown in Fig. 16, executed by one or more processors, such as processor

1510 shown in Fig. 15, performs at least a portion method 800 in an embodiment.

[00208] In particular, logic block 801 illustates (Maximum M-bounded extension):
Determine all types (1) and (2) access constraints & — (I’, N) and [—(I',N) on graph G
for all labels / and (/,') that are in both query pattern Q and graph G, such that N <M
and graph G satisfies their corresponding cardinality constraints. A,, include all these
constraints and all those in 4 in an embodiment.

[00209] Logic block 802 illustrates (Determine): Determine whether query load @ is
instance-bounded in graph G under A,, by using a version of method 500 in which A is

replaced with Ay for each Q € Q; return “yes” when method 500 returns “yes” for all

pattern queries Q in query load @, and “no” otherwise.

[00210] In a seventh example, consider a particular bound M = 150, the IMDb graph
G, of the first example, query load @ with only pattern query Q, of Fig. 2, and an access
schema A consisting of all access constraints in A, of the second example except ¢, and ¢;.

In the seventh example, method 800 determines a M -bounded extension A,, of A. (1) As

illustrated by logic block 801, method 800 determines, among other functions, that graph

G satisfies the cardinality constraints of two type 1 access constraints ¢, =

34

WO 2017/181866 PCT/CN2017/079970

(J—(year,135) and ¢, = D —>(award,24), and 135<M and 24 <M . As illustrated by

logic block 801, method 800 extends A by including ¢, and ¢,, yielding A,,. (2) Method
800, in particular logic block 802, then invokes method 500 replacing 4 with Ay and

confirms that query load @ with only pattern query (,is instance-bounded in graph G

under 4, .

[00211] Correctness & Complexity. A correctness of method 800 (or method EEChk) may
be ensured by the following. (1) When there exists Ay such that query load @ is instance-
bounded in graph G under A’y then query load @ is instance-bounded in graph G under

A,, for Am S An; hence it suffices to consider the maximum M -bounded extension A,, of
A. (2) Determining instance-boundedness is a version of method 500 with replacing A
with Ay, with the same complexity as described above.

[00212] For the complexity, observe that step (1) or logic block 801 of method 800 is in
O(Gl) time, | A, | and Il A,, Il are bounded by | 4| + |Q| and ||4|| + |Q|, respectively. Step (2)
or logic block 802 takes O((14] + |QD1£ol + (J|All + 12| Vo|?) time by the complexity of
method 500.

[00213] A minimum M -extension A,, of A such that query load @ is instance-bounded
under A,,, and A,, has the least number of access constraints among all M -extensions of

A that make query load Q instance-bounded in graph G may be difficult to determine. In

an embodiment, it is log APX-hard to determine such a minimum M -extension for a
particular set of query load Q, A, M and G. Here log APX -hard problems are NP

optimization problems for which noPTIME methods have approximation ratio below

clogn, where ¢ is some constantand # is the input size.

EFFECTIVELY BOUNDED SIMULATION PATTERN QUERIES

[00214] Effective boundedness aids in answering subgraph queries in big graphs within
constrained resources as well as simulation pattern queries, which may be non-localized

and recursive.

35

WO 2017/181866 PCT/CN2017/079970

[00215] The following description of effectively bounded simulation pattern queries
includes (1) a characterization; (2) a determination method; and (3) a method for
generating effectively bounded and worst-case optimal query plans, all with the same
complexity as their counterparts for subgraph pattern queries. The following description
also includes (4) a method for making a finite set of unbounded simulation pattern queries
instance-bounded. In an embodiment, effective-boundedness, as described below, operates

with general pattern queries, localized or non-localized in an embodiment.

[00216] Characterization for Simulation Pattern Queries. Determining answers to
simulation pattern queries may require slightly different methods than used with pattern

queries.

[00217] In an eighth example, a simulation pattern query Q,(V,.E,) of the second
example is used along with an access schema A, with ¢, = B—>(4A,2), ¢, = CD—(B,2),
o, = O—>(C1), and ¢, = G—>(D,1). VCov(Q.A) = V, and ECov(Q,,A) = E, are
verified. However, simulation pattern query Q, is not effectively bounded. In particular,
graph G, of Fig. 4 matches simulation pattern query @), and the maximum match relation
Q,(G,) “covers” a cycle in graph G, with length proportional to | G, |. In other words, while
A, constrains the neighbors of each node in simulation pattern query @, it does not suffice.
As shown in the second example, to determine whether node v, of graph G, matches node
u, of simulation pattern query (,, nodes of graph G, need to be inspected far beyond the
neighbors of node v,, due to the non-localized and recursive nature of simulation pattern

queries in embodiments.

[00218] Accordingly, a stronger method of node covers may be used in an embodiment.

The node cover of an access schema A on a simulation pattern query , denoted by

sVCov(Q, A), is the set of nodes in simulation pattern query Q computed as follows:

[00219] (a) when a type (1) constraint @— ([, N) is in A, then for each node u in

simulation pattern query Q with label /, 1 € sVCov(Q, A); and

36

WO 2017/181866 PCT/CN2017/079970

[00220] (b) when S —(/,N) isin A, then for each § -labeled set V; in simulation pattern
query Q, a common neighbor node u of V; in simulation pattern query Q is in
sVCov(Q,A) when (i) node u is labeled with /, (ii) V; = sVCov(Q,A) and (iii) for each

node u, in V,, (u,uy) is an edge of simulation pattern query Q.

[00221] As opposed to VCov for subgraph queries, a node u is in sVCov(Q, A) when in
any graph G]=4, the number of candidate matches of node « is bounded in graph G, no
matter whether these nodes are in the same neighborhood or not. Node « is included in

sVCov(Q,A) only when some of its children are covered by A and they bound the

candidate matches of node u by an access constraint. When V,, =sVCov(Q, A) is enforced

as described below, this ensures that all children of node # have a bounded number of
candidates in graph G . This rules out unbounded matches when retrieving maximum

matches by using the indices of A.

[00222] The edge cover of A on simulated pattern query @, denoted by sECov(Q, A), is

defined in the same way as ECov(Q, A) for subgraph queries as described above, using

sVCov(Q, A) instead of VCov(Q,A).

[00223] Covers for simulation pattern queries are more restrictive than their

counterparts for subgraph queries: sVCov(Q,A)c VCov(Q,A) CV, and

sECov(Q,A) c ECov(Q,A) C E,,.
[00224] A simulation pattern query Q(V,,E,) is effectively bounded under an access

schema A when and only when V, =sVCov(Q, A) and E, = sECov(Q, A) in an embodiment.

[00225] In a ninth example, recall simulation pattern query ¢, and A, from the eighth
example above. Neither node u, nor node u, in simulation pattern query @, is in

sVCov(Q,,4)) and hence, simulation pattern query ¢, is not effectively bounded under A,.

[00226] Now define @ (V2 £2) by reversing the directions of (us, w2) and (w4, w2) in
simulation pattern query Q1. Then sVCov (@, A1) = V2 and sECOV(@:, A1) = E>. Accordingly,

37

WO 2017/181866 PCT/CN2017/079970

simulation pattern query @ is effectively bounded under Ai. For graph G of Fig. 4, (»(G1)
= (J may be determined without fetching the unbounded cycle of graph Gi.

[00227] Deciding Effective Boundedness of Simulation Pattern Queries. As described below,
EBnd(Q, A) has the same complexity as for subgraph queries, in both the general case and

the two special cases described above.

[00228] In particular, a method to determine whether a simulated pattern query is
effectively bounded under A is denoted as an sEBChk method. In an embodiment, a sEBChk
method is the same as method 500 (EBChk method) of Fig. 5 except that SEBChk method

uses a revised use of actualized constraints. For each S —(/,N) in A with § = &, and each
node u in simulation pattern query Q with f,(u)=1, its actualized constraint for
simulation is V' > (4, N), where V is the maximum set of neighbors of node u in
simulation pattern query Q such that (a) there exists a § -labeled set V, <V, and (b) for
each u' eV/, (i) f,(w'y€S; and (ii) (u,u’) is an edge of simulation pattern query Q. In
contrast to actualized constraints for pattern queries, simulated pattern queries requires
condition (ii) to cope with sVCov(Q, A).

[00229] In a tenth example, for simulation pattern query Q,(V,,E,) and A4, in the ninth
example above, sEBChk method first computes the set I' of actualized constraints for A
on simulation pattern query Q,: ¢ = (u;u,) = u,.2), ¢, =u, —(u,,2). The sEBChk
method then initializes both B and C to be {u,, u,}, sets ct[]=2, ct[§,]=1, and
initializes lists L[y,], .., Lu,] accordingly as shown in Fig. 5. As in the fifth example, sEBChk
method determines that V, € C and that each edge of E, is covered by some constraint in
A,. Thusitreturns “yes”, Le, simulation pattern query Q, is effectively bounded under A,.
[00230] The correctness of a sEBChk method follows from the above characterization.
Along the same lines as the correctness of a EBChk method, the following property of

sVCov(Q, A) is used: a node u of simulation pattern query Q is in sVCov(Q, A) when and

only when either:

38

WO 2017/181866 PCT/CN2017/079970

[00231] there exists @—>(,N) in A and f,(u)=1; or

[00232] V!> (u,N) and there exists a § -labeled set of simulation pattery query Q that
is a subset of V* ~sVCov(Q, A).

[00233] A sEBChk method has the same complexity as a EBChk method. The sEBChk
method is the same as EBChk method except the computation of the set I" of all actualized

constraints (lines 1-2 of Fig. 5), which remains in O(IAIIEQ [) time, the same as for
subgraph queries.

[00234] Generating Effectively Bounded Query Plans. For effectively bounded simulation
pattern queries Q under an access schema A, query plans P may be generated such that

in any graph G, query plan P computes Q(G) by accessing a bounded subgraph G, of

simulation pattern query Q, leveraging the indices of A, such that J(G)=0Q(G,). In

particular, forming query plans for subgraph queries may be used for simulation pattern

queries.
[00235] There exists a method that, for any effectively bounded simulation pattern query
Q under an access schema A, generates an effectively bounded and worst-case optimal

query planin O(IV, Il E, Il Al) time in an embodiment.

[00236] A method sQPlan, similar to the method QPlan shown in Fig. 7, determines a

query plan for effectively bounded simulation pattern queries. In an embodiment, method

sQPlan retains the same complexity as methodQPlan. In an embodiment, the only
difference between method sQPlan and method QPlan includes using actualized constraints
for simulation as described above, and a stronger use of node covers is used instead of data
locality.

[00237] In an eleventh example, for simulation pattern query Q,(V,,E,) of the ninth
example and A, of eighth example, method sQPlan generates a query plan P. Using the set
I' of actualized constraints of A, on simulated pattern query Q, (see tenth example),

method sQPlan builds Q. (V,,E.), where V. =V,, and E| contains (u;,u,), (u,,u,) and

39

WO 2017/181866 PCT/CN2017/079970

(u,,u,). Initially, method sQPlan adds ft(u,, nil, ¢, true) and ft(u,, nil, ¢,,, true) to query
plan P. Method sQPlan then determines that u, and u, can be deduced from u, and u, by

using Q., and thus adds ft(u,,{u,,u,},9,, true) and ft(u,,{u,}, ¢,, true) to query plan P.

[00238] For any graph G]=4, simulation pattern query @,(G) is computed by using

query plan P. Query plan P retrieves eight candidate matches for nodes in simulation

pattern query Q,, Le, four for u,, two for u,, and one for each of u, and u,. Query plan P

then determines at most twelve edges between these candidates that are possible edge

matches by using the indices of A,: four for each of (u,u,) and (u,,u,), and two for each of

(u,,u,) and (u,,u,). In other words, query plan P fetches a subgraph Gy, of simulation

pattern query Q,, by accessing eight nodes and twelve edges.

[00239] Making Simulation Pattern Queries Instance-bounded. Making finite sets @ of
simulation pattern queries effectively bounded under an access schema Ais described

below. As described above, for any graph G]=4, there exists an M -bounded extension A,

of A under which set Q of simulation pattern queries is instance-bounded in graph G for

some bound M .

[00240] For a predefined and small M, EEP(Q, 4, M, G), as described above, decides
whether there exists an M -bounded extension A,, of A that makes sets @ of simulation
pattern queries instance-bounded in graph G .

[00241] For simulation pattern queries, EEP(Q, 4, M, G) is in O(|G] + (|4] + |9])|£o] +
(114l + 12D Vel?) time.

[00242] A minor revision of method sEEChk of method EEChk determines EEP for

simulation pattern queries, with the same complexity as EEChk.
EXPERIMENTS

[00243] Using typical graph databases, three sets of experiments were conducted to
evaluate: (1) effectiveness of a query based on effective boundedness, (2) effectiveness of

instance-boundedness, and (3) efficiency of methods described herein.

40

WO 2017/181866 PCT/CN2017/079970

[00244] Experiment settings. Three graph databases were used in the experiments:

[00245] (1) Internet Movie Data Graph (IMDbG) was generated from the Internet Movie
Database (IMDb) (http://www.imdb.com/stats/search/) having approximately 5.1 million
nodes and 19.5 million edges with 168 labels in IMDbG ;

[00246] (2) Knowledge graph (DBpediaG) was taken from DBpedia 3.9
(http://wiki.dbpedia.org/Downloads39) having approximately 4.1 million nodes and 19.5
million edges with 1434 labels; and

[00247] (3) Webbase-2001 (WebBG) includes recorded Web pages produced in 2001
(http://law.di.unimi.it/webdata/webbase-2001/), in which nodes are URLs, edges are
directed links between them, and labels are domain names of the URLs that includes

approxmitally 118 million nodes and 1 billion edges with 0.18 million labels.

[00248] Access schema. 168, 315 and 204 access constraints were determined from
IMDbG, DBpediaGand WebBG graph databases, respectively, by using degree bounds,
label frequencies and data semantics. For example, (actress, year) — (feature_film, 104)
is a constraint on IMDbG graph database, stating that each actress starred in no more than
104 feature films per year. While access constraints from typical graph databases may be
extracted as described herein, other access constraints may be used in other embodiments.
[00249] For each access constraint S — (/,N), an index is formed by (a) creating a table
in which each tuple encodes an actualized constraint V; + (u#, N); and (b) forming an index

on the attributes for V; in the new table, using MyS 5.5.35 in an embodiment.

[00250] Graph Pattern queries. For each graph database, approximately 100 pattern

queries were randomly generated using labels of the pattern queries, controlled by #n, #e
and #p, the number of nodes, number of edges, and matches predicates in the ranges [3, 7],

[#n-1, 1.5*#n] and [2, 8], respectively. Graph pattern queries that are relatively large were

not used so as to favor typical VF2 and optVF2 methods , which may not operate on

pattern queries that are relatively large.

41

WO 2017/181866 PCT/CN2017/079970

[00251] Methods. The following methods were implemented in C++: (1) EBChk ,
QPlan, abd EEChk methods for subgraph queries, and sEBChk, sQPlan, sEEChk methods
for simulation pattern queries; (2) pattern matching for bVF2 and bSim methods for

subgraph and simulation pattern queries, by using query plans generated by QPlan and
sQPlan methods, respectively; (3) typical matching methods gsim and VF2 (using C++

Boost Graph Library) for simulation pattern and subgraph queries, respectively, and their

optimized versions optgsim and optVF2 by using indices in the access constraints.

[00252] Experiments were conducted on an Amazon EC2Z memory optimized instance
r3.4xlarge with 122GB memory and 52 EC2 compute units. Experiments were run 3 times

with the average described herein.
EXPERIMENTAL RESULTS
[00253] First Experiment: Effectiveness of effective boundedness.

[00254] (1) Percentage of effectively bounded queries. Randomly generatated pattern
queries were determined to be effectively bounded using EBChk and sEBChk methods: (1)
approximately 61%, 67% and 58% of subgraph queries on IMDbG, DBpediaG and
WebBG graph databases are effectively bounded under the access constraints described
above, and (2) approximately 32%, 41% and 33% for simulation pattern queries,
respectively. This may indicate that (a) by using a relatively small number of access
constraints, many subgraph and simulation pattern queries are effectively bounded; and (b)
more subgraph queries are bounded than simulation queries under the same constraints,

due to their locality.

[00255] (2) Effectiveness of bounded queries. To evaluate the impact of effectively
bounded queries, running time by bVF2 and bSim methods (with query plans generated by
QPlan and sQPlan methods) were compared to VF2, optVF2 and gsim, optgsim methods.

As VF2 and optVF2 methods are relatively slow, performance is reported when they ran

to completion. Unless stated otherwise, all access constraints and full-size graph databases

were used.

42

WO 2017/181866 PCT/CN2017/079970

[00256] (@) Impact of | G|. Varying the size | G| by using scale factors from 0.1 to 1, the

results on the three graph databases are shown in Figs. 9(a), 9(e) and 9(i). The results may

indicate: (1) The evaluation time of effectively bounded queries is independent of |G . In

particular, bVF2and bSim methods consistently took approximately 4.45s, 2.02s, 5.8s and
0.25s, 0.23s, 0.34s on all subgraphs of IMDbG, DBpediaG and WebBG graph databases,

respectively. (2) VF2 and optVF2 methods could not run to completion within 40,000s on
all subgraphs of WebBG graph datbase and on subgraphs of IMDbG and DBpediaG graph

databases with scale factors above approximately 0.3. On a full-size WebBG graph
database, bVF2 methods took approximately 0.9s as opposed to approximately 25,729s by

optVF2 method for pattern queries that optVF2 method could process within reasonable
amount of time, at least 28,587 times faster. (3) Optgsim and gsim methods appear to be
sensitive to | G| (note the logarithmic scale of the y-axis), and are much slower thanbSim

method. For example, on the full-size WebBG graph database, bSimmethod took 0.34s vs.
1,630s by optgsim method, 4793 times faster. An improvement of bVF2 method over

optVF2 method is bigger than that of bSimmethod over optgsim method as optVF2

method has a higher complexity and thus, may be more sensitive to | G .

[00257] (b) Impact of Q. To evaluate an impact of pattern queries, #n of patten query Q

were varied from 3 to 7. The results, as shown in Figs. 9(b), 9(f) and 9(j), that may indicate
the following. (1) The smaller pattern query Q is, the faster all the methods are. (2) For all

pattern queries, bVF2 and bSim methods are efficient: they return answers within

approximately 12.7s on all three graph databases. (3) VF2 and optVF2 methods do not
scale with a pattern query Q. When #n >4, none of them could run to completion within
40,000s, on all three graph databases. (4) Gsim and optgsim methods are much slower

than bSim method for all pattern queries.

[00258] (c) Impact of Il All. To evaluate the impact of access constraints on bVF2 and
bSim methods, Il All was varied from 12 to 20 and processed effectively bounded queries

using the varied indices in A. As shown in Figs. 9(d), 9(g) and 9(k), more access

constraints aid QPlan and sQPlan methods to form better query plans. For example, on

43

WO 2017/181866 PCT/CN2017/079970

WebBG graph database when 20 access constraints were used, bSimand bVF2 methods

took approximately 0.36s and 5.6s, respectively, while they were 9.3s and 75.1s when Il Al
=12.

[00259] (3) Size of accessed data. In the same setting as the First Experiment (2)(b) as
above, the size of data accessed by bVF2 and bSimmethods are examined. For each

effectively bounded pattern query Q, the following was examined: (a) | accessed,, |, the size

of data accessed, and (b) IindeXQ [, the size of indices in those access constraints used, by

bVF2and bSim methods for answering pattern query Q. The average is reported in Fig.

9(d), 9(h) and 9(1). The results may indicate that the query plans accessed no more than

approximately 0.13% of | G| for all subgraph and simulation pattern queries on all graph
databases, with indices approximately less than 8% of | G|. These results further indicate

the effectiveness of our technology.

[00260] Second Experiment: Effectiveness of instance-boundedness. Varying x, the
minimum M that makes x% of queries instance-bounded under M -bounded extensions
on IMDbG, DBpediaGand WebBG graph databases, via EEChk and sEEChk methods,
are examined. As Figs. 10a and 10b show, a small M (compared to | G) suffices to make a
large percentage of the queries instance-bounded. For instance, when M is 14,113, 25,218
and 70,916 (resp. 77,873, 89,068, 101,134), over 95% of all subgraph (resp. simulation)
queries which are randomly generated are instance-bounded in IMDbG, DBpediaG and
WebBG graph databases, respectively. That is, M is approximately 0.057%, 0.107% and
0.006% of |G| (resp. 0.32%, 0.38% and 0.009%). When M is 181,448 (approximatly 0.016%

of WebBG graph database), all subgraph and simulation pattern queries become instance-

bounded in all graph databases.

[00261] Third Experiment: Efficiency. Efficiency of methods described herein are
evaluated. EBChk, QPlan, sEBChkand sQPlan methods took at most 7 milliseconds (ms),

37ms, 6ms and 32ms, respectively, for all pattern queries on the three graph databases

with all the access constraints.

44

WO 2017/181866 PCT/CN2017/079970

[00262] Figs. 11-13 are flowcharts that illustrate methods for querying a big graph to
obtain an answer to a pattern query according to embodiments of the present technology.
In embodiments, flowcharts in Figs. 11-14 are computer-implemented methods performed,
at least partly, by hardware and software components illustrated in Figs. 14-16 and as

described below.

[00263] Fig. 11 illustrates a method 1100 where logic block 1101 shows receiving a
pattern query for a graph. In an embodiment, [/O 1601 in Fig. 16 performs at least a
portion of this function.

[00264] Logic block 1102 illustrates determining a set of access constraints
corresponding to the pattern query. In an embodiment, determine access constraints 1602

in Fig. 16 performs at least a portion of this function.

[00265] Logic block 1103 illustrates determining whether the pattern query is effectively
bounded under the set of access constraints. In an embodiment, determine effectively

bounded 1603 in Fig. 16 performs at least a portion of this function.

[00266] Logic block 1104 illustrates forming a query plan to retrieve a subgraph of the
graph when the pattern query is effectively bounded under the set of access constraints. In

an embodiment, query plan 1604 in Fig. 16 performs atleast a portion of this function.

[00267] Logic block 1105 illustrates retrieving an answer to the pattern query by
accessing the subgraph in response to the query plan. In an embodiment, retrieve answer

1607 in Fig. 16 performs at least a portion of this function.

[00268] Fig. 12 illustrates a method 1200 where logic block 1201 illustrates receiving a
pattern query for a graph database having a plurality of nodes and edges. In an

embodiment, [/O 1601 in Fig. 16 performs at least a portion of this function.

[00269] Logic block 1202 illustrates determining a plurality of access constraints
corresponding to the pattern query. In an embodiment, determine access constraints 1602

in Fig. 16 performs at least a portion of this function.

45

WO 2017/181866 PCT/CN2017/079970

[00270] Logic block 1203 illustrates determining whether the pattern query is effectively
bounded under the plurality of access constraints. In an embodiment, determine effectively

bounded 1603 in Fig. 16 performs at least a portion of this function.

[00271] Logic block 1204 illustrates making the pattern query into a bounded pattern
query when the pattern query is not effectively bounded under the plurality of access
constraints. In an embodiment, make pattern query bounded 1605 in Fig. 16 performs at

least a portion of this function.

[00272] Logic block 1205 illustrates forming a query plan based on the bounded pattern
query or pattern query to retrieve a plurality of subgraphs from the graph database. In an

embodiment, query plan 1604 in Fig. 16 performs at least a portion of this function.

[00273] Logic block 1206 illustrates obtaining the plurality of subgraphs from the graph
database by executing the query plan. In an embodiment, obtain subgraphs 1606 in Fig. 16

performs at least a portion of this function.

[00274] Logic block 1207 illustrates retrieving an answer to the pattern query by
accessing the plurality of subgraphs from the graph database. In an embodiment, retrieve

answer 1607 in Fig. 16 performs at least a portion of this function.

[00275] Fig. 13 illustrates a method 1300 where logic block 1301 illustrates receiving a
request for information. In an embodiment, [/0O 1601 in Fig. 16 performs at least a portion

of this function.

[00276] Logic block 1302 illustrates parsing the request for information into a pattern
query for a graph database. In an embodiment, parse 1601a in Fig. 16 performs at least a
portion of this function. In an embodiment, a request for information may be a question or

a natural language query.

[00277] Logic block 1303 illustrates determining a set of cardinality constraints of the
pattern query for the graph database. In an embodiment, determine access constraints

1602 in Fig. 16 performs at least a portion of this function.

[00278] Logic block 1304 illustrates determining whether an amount of time to answer

the request for information is not dependent on a size of the graph database. In an

46

WO 2017/181866 PCT/CN2017/079970

embodiment, determine effectively bounded 1603 in Fig. 16 performs at least a portion of

this function.

[00279] Logic block 1305 illustrates forming a query plan based on the pattern query to
retrieve a plurality of subgraphs from the graph database that match the pattern query. In

an embodiment, query plan 1604 in Fig. 16 performs atleast a portion of this function.

[00280] Logic block 1306 illustrates obtaining the plurality of subgraphs from the graph
database by executing the query plan. In an embodiment, obtain subgraphs 1606 in Fig. 16

performs at least a portion of this function.

[00281] Logic block 1307 illustrates retrieving an answer to the request for information
by accessing the plurality of subgraphs from the graph database. In an embodiment,

retrieve answer 1607 in Fig. 16 performs at least a portion of this function.

[00282] Logic block 1308 illustrates outputting the answer to the request for information.
In an embodiment, I/0 1601 in Fig. 16 performs at least a portion of this function.

[00283] Fig. 14 is a high-level block diagram of a system (or apparatus) 1400 for
retrieving information (or answer) 1431, in response to pattern query 1430, from a graph
database (or graph) 1403 that may include a big graph. System 1400 includes both
hardware and software components in an embodiment. In an embodiment, system 1400
includes a plurality of computing devices (such as computers) 1410-1412 that are coupled
to a network 1420. In embodiments, computing device 1410 is a laptop computing device
and computing device 1411 is a cellular telephone (or smartphone). In an embodiment,
computing device 1412 is embodied as a server. In other embodiments, more or fewer
types of computing devices may be used. Types of computing device may include, but not
limited to, wearable, personal digital assistant, cellular telephones, tablet, netbook, laptop,

desktop, embedded and/or mainframe.

[00284] A user 1421 may use a computing device, such as computing devices 1410 and
1411, to submit a pattern query 1430 to computing device 1412 via network 1420 in order
to retrieve information 1431 from graph database 1403. In an embodiment, graph
database 1403 is a software component that stores a big graph that may be in the form of a

database or dataset. In an embodiment, information 1431 is information obtained from one

47

WO 2017/181866 PCT/CN2017/079970

or more subgraphs of a big graph. In an embodiment, effectively bounded 1402 is a
software component having computer instructions executed by computing device 1412 to
retrieve information 1431 in response to pattern query 1430. In embodiments, effectively
bounded 1402, among other functions as described herein, determines whether pattern
query 1430 is effectively bounded under a set of access constraints and forms a query plan
to obtain information 1431. Effectively bounded 1402 may also make pattern query 1430
bounded. Information 1431 is provided to computing device 1410 via network 1420 in
response to computing device 1412 receiving a pattern query 1430 that may be localized

or non-localized.

[00285] In embodiments, functions described herein are distributed to other or more
computing devices. In an embodiment, graph database 1403 may be included in a separate
computing device than computing device 1412 and may be accessible by computing device
1412 via network 1420. In an embodiment, graph database 1403 may be included in
multiple computing devices. In embodiments, one or more computing device illustrated in
Fig. 14 may act as a server that provides a service while one or more computing devices
may act as a client. In an embodiment, one or more computing devices may actas peers in a

peer-to-peer (P2P) relationship.

[00286] In embodiments, computing devices 1410-1412 may include one or more
processors to read and/or execute computer instructions stored on a non-transitory
computer-readable storage medium to provide at least some of the functions describe
herein. For example, computing devices 1410-1412 may have user interfaces as described
herein to communicate with the respective computing devices. Further, computing devices
1410-1411 may submit pattern queries to computing device 1412 while computing device
1412 responds to the submitted pattern queries with information from graph database
1403. In an embodiment, computing device 1412 recieves a pattern query in the form of a

natural language questions and parses the natural langurage questions into a pattern query.

[00287] Computing devices 1410-1412 communicate or transfer information by way of
network 1420. In an embodiment, network 1420 may be wired or wireless, singly or in
combination. In an embodiment, network 1420 may be the Internet, a wide area network

(WAN) or a local area network (LAN), singly or in combination. In an embodiment,

48

WO 2017/181866 PCT/CN2017/079970

network 1420 may include a High Speed Packet Access (HSPA) network, or other suitable
wireless systems, such as for example Wireless Local Area Network (WLAN) or Wi-Fi
(Institute of Electrical and Electronics Engineers' (IEEE) 802.11x). In an embodiment,
computing devices 1410-1412 use one or more protocols to transfer information or
packets, such as Transmission Control Protocol/Internet Protocol (TCP/IP). In
embodiments, computing devices 1410-1412 include input/output (I/0) computer-
readable instructions as well as hardware components, such as [/0 circuits to receive and
output information from and to other computing devices, via network 1420. In an

embodiment, an [/0 circuit may include at least a transmitter and receiver circuit.

[00288] Fig. 15 illustrates a hardware architecture 1500 for executing effectively bounded
1402. In particular, hardware architecture 1500 illustrates a computing device 1412 that
may be a server to provide information 1431 in response to a pattern query 1430 in an
embodiment. Computing device 1412 may be implemented in various embodiments.
Computing devices may utilize all of the hardware and software components shown, or a
subset of the components in embodiments. Levels of integration may vary depending on an
embodiment. For example, memories 1520 and 1530 may be combined into a single
memory or divided into many more memories. Furthermore, a computing device 1412 may
contain multiple instances of a component, such as multiple processors (cores), memories,
databases, transmitters, receivers, etc. Computing device 1412 may comprise a processor
equipped with one or more input/output devices, such as network interfaces, storage
interfaces, and the like. Computing device 1412 may include a processor 1510, a memory
1520 to store effectively bounded 1402, a memory 1530 to store graph database 1403, a
user interface 1560 and network interface 1550 coupled by a interconnect 1570.
Interconnect 1570 may include a bus for transferring signals having one or more type of

architectures, such as a memory bus, memory controller, a peripheral bus or the like.

[00289] In an embodiment, processor 1510 may include one or more types of electronic
processors having one or more cores. In an embodiment, processor 1510 is an integrated
circuit processor that executes (or reads) computer instructions that may be included in

code and/or software programs. In an embodiment, processor 1510 is a digital signal

49

WO 2017/181866 PCT/CN2017/079970

processor, baseband circuit, field programmable gate array, digital logic circuit and/or

equivalent.

[00290] [n embodiments, memories 1520 and 1530 may include non-transitory memory

storage to store instructions.

[00291] For example, memory 1520 may comprise any type of system memory such as
static random access memory (SRAM), dynamic random access memory (DRAM),
synchronous DRAM (SDRAM), read-only memory (ROM), a combination thereof, or the like.
In an embodiment, a memory 1520 may include ROM for use at boot-up, and DRAM for
program and data storage for use while executing instructions, such as effectively bounded
1402. In embodiments, memory 1520 is non-transitory or non-volatile integrated circuit

memory storage.

[00292] Memory 1530 may comprise any type of memory storage device configured to
store data, software programs including instructions, and other information and to make
the data, software programs, and other information accessible via interconnect 1570.
Memory 1530 may comprise, for example, one or more of a solid state drive, hard disk
drive, magnetic disk drive, optical disk drive, or the like. In an embodiment, memory 1530
stores graph database 1403 that may include a big graph. In embodiments, memory 1530 is

non-transitory or non-volatile integrated circuit memory storage.

[00293] Computing device 1412 also includes one or more network interfaces 1550,
which may comprise wired links, such as an Ethernet cable or the like, and/or wireless
links to access network 1420. A network interface 1550 allows computing device 1412 to
communicate with remote computing devices via the networks 1420. For example, a
network interface 1550 may provide wireless communication via one or more

transmitters/transmit antennas and one or more receivers/receive antennas.

[00294] User interface 1560 may include computer instructions as well as hardware
components in embodiments. A user interface 1560 may include input devices such as a
touchscreen, microphone, camera, keyboard, mouse, pointing device and/or position
sensors. Similarly, a user interface 1560 may include output devices, such as a display,

vibrator and/or speaker, to output images, characters, vibrations, speech and/or video as

50

WO 2017/181866 PCT/CN2017/079970

an output. A user interface 1560 may also include a natural user interface where a user

may speak, touch or gesture to provide input.

[00295] Fig. 16 illustrates a software architecture 1600 of effectively bounded 1402.
Software architecture 1600 illustrates software components having computer instructions
to at least provide information or an answer from a graph in response to a pattern query. In
embodiments, software components illustrated in Fig. 16 may be embodied as a software
program, software object, software function, software subroutine, software method,
software instance, script and/or a code fragment, singly or in combination. In order to
clearly describe the technology, software components shown in Fig. 16 are described as
individual components. In embodiments, the software components illustrated in Fig. 16,
singly or in combination, may be stored (in single or distributed computer-readable
storage medium(s)) and/or executed by a single or distributed computing device
(processor) architecture. Functions performed by the various software components
described herein are exemplary. In other embodiments, software components identified
herein may perform more or less functions. In embodiments, software components may be

combined or futher separated.

[00296] In an embodiments, effectively bounded 1402 is a software component that
includes or communicates with the following software components: Input/output (1/0)
1601 including parse 1601a, determine access constraints 1602, determine effectively
bounded 1603, query plan 1604, make pattern query bounded 1605, obtain subgraphs

1606 and retrieve answer 1607.

[00297] [/0 1601 is responsible for, among other functions, receiving a query, such as
pattern query 1430 and outputting information from a graph database, such as information
1431 shown in Fig. 14 in an embodiment. In an embodiment, [/0 1601 includes parse 1601
that may parse a received natural language question or query into a pattern query. In
embodiments, [/0 1601 may output other information, such as indicating that a “Query is

not effectively bounded,” or a query plan that may be used to obtain information 1431.

[00298] Determine access constraints 1602 is responsible for, among other functions,

determining acccess constraints of a pattern query 1430 in an embodiment. In an

51

WO 2017/181866 PCT/CN2017/079970

embodiment, determine access contraints 1602 determines a type of access constraints in a
pattern query 1430 that is received by [/0 1601. In an embodiment, determine access
constraints 1602 determines cardinality contraints and indices of a patern query 1430 or a

simulation pattern query.

[00299] Determine effectively bounded 1603 is responsible for, among other functions,
determining whether a pattern query is effectively bounded in an embodiment. In an
embodiment, determine effectively bounded 1603 receives a pattern query to be evaluated
or analyzed from I/0 1601. In an embodiment, determine effectively bounded 1603
determines whether a pattern query is effectively bounded. In an embodiment, determine
effectively bounded 1603 determines whether the received pattern query or simulation

pattern query is covered by a particular access schema A or extended access schema Au.

[00300] Query plan 1604 is responsible for, among other functions, forming a query plan
for a received pattern query in an embodiment. In an embodiment, query plan 1604 forms
a query plan when determine effectively bounded 1603 indicates that a received pattern
query is effectively bounded. In an embodiment, query plan 1604 provides a query plan to
obtain subgraphs 1606. In an embodiment, query plan 1604 provides a query plan to
obtain subgraphs 1606 for retrieving matching subgraphs from graph database 1403 In an
embodiment, query plan 1604 includes a sequence of fetching operations for a pattern

query or simulation pattern query.

[00301] Make pattern query bounded 1605 is responsible for, among other functions,
making a pattern query that is not effectively bounded into pattern query that is instance-
bounded. In an embodiment, make pattern query bounded 1605 makes a pattern query
instance-bounded by adding one or more additional constraints. In an embodiment, make
query bounded 1605 uses a large natural number to extend types of access constraints in
order to make a pattern query or simulation pattern query instance-bounded. In an
embodiment, make pattern query bounded 1605 provides one or more pattern queries that

are instance-bounded to query plan 1604 so that a query plan may be formed.

[00302] Obtain subgraphs 1606 is responsible for, among other functions, obtaining one

or more subgraphs that match a received pattern query by executing a query plan from

52

WO 2017/181866 PCT/CN2017/079970

query plan 1604 in an embodiment. In an embodiment, obtain subgraphs 1606 identifies or
obtains a plurality of subgraphs. In an embodiment, obtain subgraphs 1606 stores the

plurality of matched subgraphs in non-transitory memory, such as memory 1520.

[00303] Retrieve answer 1607 retrieves requested information or an answer to a pattern
query by accessing a plurality of subgraphs identified or stored by obtain subgraphs 1606.
In an embodiment, retrieve answer 1607 forwards an answer or requested information to

[/0 1601 that outputs the requested information.

[00304] The flowcharts and block diagrams in the figures illustrate the architecture,
functionality, and operation of possible implementations of a device, apparatus, system,
computer-readable medium and method according to various aspects of the present
disclosure. In this regard, each block (or arrow) in the flowcharts or block diagrams may
represent operations of a system component, software component or hardware component
for implementing the specified logical function(s). It should also be noted that, in some
alternative implementations, the functions noted in the block may occur out of the order
noted in the figures. For example, two blocks (or arrows) shown in succession may, in fact,
be executed substantially concurrently, or the blocks (or arrows) may sometimes be
executed in the reverse order, depending upon the functionality involved. It will also be
noted that each block (or arrow) of the block diagrams and/or flowchart illustration, and
combinations of blocks (or arrows) in the block diagram and/or flowchart illustration, can
be implemented by special purpose hardware-based systems that perform the specified

functions or acts, or combinations of special purpose hardware and computer instructions.

[00305] It will be understood that each block (or arrow) of the flowchart illustrations
and/or block diagrams, and combinations of blocks (or arrows) in the flowchart
illustrations and/or block diagrams, may be implemented by non-transitory computer
instructions. These computer instructions may be provided to and executed (or read) by a
processor of a general purpose computer (or computing device), special purpose computer,
or other programmable data processing apparatus to produce a machine, such that the
instructions executed via the processor, create a mechanism for implementing the

functions/acts specified in the flowcharts and/or block diagrams.

53

WO 2017/181866 PCT/CN2017/079970

[00306] As described herein, aspects of the present disclosure may take the form of at
least a device having one or more processors executing instructions stored in non-
transitory memory storage, a computer-implemented method, and/or non-transitory

computer-readable storage medium storing computer instructions.

[00307] Non-transitory computer-readable media includes all types of computer readable
media, including magnetic storage media, optical storage media, and solid state storage
media and specifically excludes signals. [t should be understood that software including
computer instructions can be installed in and sold with a computing device having
computer-readable storage media. Alternatively, software can be obtained and loaded into
a computing device, including obtaining the software via a disc medium or from any
manner of network or distribution system, including, for example, from a server owned by
a software creator or from a server not owned but used by the software creator. The

software can be stored on a server for distribution over the Internet, for example.

[00308] More specific examples of the computer-readable storage medium include the
following: a portable computer diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash
memory), an appropriate optical fiber with a repeater, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable

combination of the foregoing.

[00309] Non-transitory computer instructions for carrying out operations for aspects of
the present disclosure may be written in any combination of one or more programming
languages, including an object oriented programming language such as Java, Scala,
Smalltalk, Eiffel, JADE, Emerald, C+4, CII, VB.NET, Python or the like, conventional
procedural programming languages, such as the "c" programming language, Visual Basic,
Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as
Python, Ruby and Groovy, or other programming languages. The computer instructions
may execute entirely on the user's computer (or computing device), partly on the user's
computer, as a stand-alone software package, partly on the user's computer and partly on a

remote computer, or entirely on the remote computer or server. In the latter scenario, the

remote computer may be connected to the user's computer through any type of network,

54

WO 2017/181866 PCT/CN2017/079970

or the connection may be made to an external computer (for example, through the Internet
using an Internet Service Provider) or in a cloud computing environment or offered as a

service such as a Software as a Service (SaaS).

[00310] The description of the present disclosure has been presented for purposes of
illustration and description, but is not intended to be exhaustive or limited to the
disclosure in the form disclosed. Many modifications and variations will be apparent
without departing from the scope and spirit of the disclosure. The aspects of the disclosure
herein were chosen and described in order to best explain the principles of the disclosure
and the practical application, and to enable others to understand the disclosure with

various modifications as are suited to the particular use contemplated.

[00311] Although the subject matter has been described in language specific to structural
features and/or methodological acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the specific features or acts described
above. Rather, the specific features and acts described above are disclosed as example

forms of implementing the claims.

55

WO 2017/181866 PCT/CN2017/079970

CLAIMS

What is claimed 1is:

L. A device, comprising:
a non-transitory memory storing instructions; and
one Oor more processors in communication with the non-transitory memory storage,

wherein the one or more processors execute the instructions to:

receive a pattern query for a graph,

determine a set of access constraints corresponding to the pattern query,

determine whether the pattern query is effectively bounded under the set of access
constraints,

form a query plan to retrieve a subgraph of the graph when the pattern query is
effectively bounded under the set of access constraints, and

retrieve an answer to the pattern query by accessing the subgraph in response to

the query plan.

2. The device of claim 1, wherein an amount of time to retrieve the answer is dependent on

the pattern query and the set of access constraints and is not dependent on a size of the graph.

3. The device of claim 1, wherein the set of access constraints includes an access constraint
that is a cardinality constraint on a node having a first label in the pattern query and an index on

a neighbor node having a second label.

4. The device of claim 3, comprising the one or more processors execute the instructions to
make the pattern query effectively bounded under the set of access constraints when the pattern

query is not effectively bounded under the set of access constraints.

56

WO 2017/181866 PCT/CN2017/079970

5. The device of claim 4, wherein the one or more processors execute the instructions to add
another access constraint to the set of access constraints and therefore make the pattern query
effectively bounded under the set of access constraints when the pattern query is not effectively

bounded.

6. The device of claim 1, wherein the one or more processors execute the instructions to
determine whether the pattern query is effectively bounded under the set of access constraints
includes the one or more processors execute the instructions to determine at least one actualized

constraint of the set of access constraints (A) on the pattern query (Q) and compute VCov (Q,A).

7. The device of claim 1, wherein the graph includes a plurality of nodes and edges, wherein
the one or more processors execute the instructions to form the query plan to retrieve the
subgraph of the graph when the pattern query is effectively bounded under the set of access
constraints includes the one or more processors execute the instructions to complete a sequence
of fetch operations, wherein a fetch operation in the sequence of fetch operations includes
retrieving information from a set of nodes or edges in the graph that correspond to a node or edge

in the pattern query.

8. The device of claim 1, wherein the subgraph is isomorphic to the pattern query.
9. The device of claim 1, wherein the pattern query is a simulation pattern query.
10. A computer-implemented method comprising:

receiving, with one or more processors, a pattern query for a graph database having a
plurality of nodes and edges;

determining, with one or more processors, a plurality of access constraints corresponding
to the pattern query;

determining, with one or more processors, whether the pattern query is effectively

bounded under the plurality of access constraints;

57

WO 2017/181866 PCT/CN2017/079970

making, with one or more processors, the pattern query into a bounded pattern query
when the pattern query is not effectively bounded under the plurality of access constraints;

forming, with one or more processors, a query plan based on the bounded pattern query
or the pattern query to retrieve a plurality of subgraphs from the graph database;

obtaining, with one or more processors, the plurality of subgraphs from the graph
database by executing the query plan; and

retrieving, with one or more processors, an answer to the pattern query by accessing the

plurality of subgraphs from the graph database.

11. The computer-implemented method of claim 10, comprising determining, with one or

more processors, whether the pattern query is localized or non-localized.

12. The computer-implemented method of claim 10, wherein the pattern query includes a set
of labeled nodes and edges, and wherein the plurality of access constraints have at least two
types of access constraints including a first cardinality constraint on a first labeled node in the set
of labeled nodes and edges and a second cardinality constraint that includes an index on

neighboring nodes of each labeled node in the set of labeled nodes and edges.

13. The computer-implemented method of claim 12, wherein forming, with one or more
processors, the query plan based on the bounded pattern query or the pattern query to retrieve the
plurality of subgraphs from the graph database comprises:

inspecting each labeled node in the set of labeled nodes and edges,

determining an access constraint in the plurality of access constraints so that an index is
used to retrieve a set of candidate nodes for each labeled node,

generating a node fetching operation using the index, and

storing the node fetching operation in the query plan.

14. The computer-implemented method of claim 10, wherein making, with one or more
processors, the pattern query into the bounded pattern query when the pattern query is not
effectively bounded under the plurality of access constraints comprises determining a natural

number that may be used with a first access constraint in the plurality of access constraints.

58

WO 2017/181866 PCT/CN2017/079970

15. The computer-implemented method of claim 10, wherein retrieving, with one or more
processors, the answer to the pattern query by accessing the plurality of subgraphs from the
graph database takes an amount of time that is dependent on the pattern query and the plurality

of access constraints.

16. A non-transitory computer-readable medium storing computer instructions, that when
executed by one or more processors, cause the one or more processors to:

receive a request for information;

parse the request into a pattern query for a graph database;

determine a set of access constraints of the pattern query for the graph database;

determine whether an amount of time to answer the request for information is not
dependent on a size of the graph database;

form a query plan based on the pattern query to retrieve a plurality of subgraphs from the
graph database that match the pattern query;

obtain the plurality of subgraphs from the graph database by executing the query plan;

retrieve an answer to the request for information by accessing the plurality of subgraphs
from the graph database; and

output the answer to the request for information.

17. The non-transitory computer-readable medium of claim 16, wherein determining whether
the amount of time to answer the request for information includes determining whether the

pattern query is effectively bounded under the set of access constraints.

18. The non-transitory computer-readable medium of claim 17, wherein the pattem query
includes a plurality of nodes and edges, wherein the set of access constraints includes an access
constraint that is a cardinality constraint on a node having a first label in the pattern query and an

index on a neighbor node having a second label.

19. The non-transitory computer-readable medium of claim 18, further comprising extend the

set of access constraints by adding a natural number to one or more access constraints in the set

59

WO 2017/181866 PCT/CN2017/079970

of access constraints when the pattern query is not effectively bounded under the set of access

constraints.

20. The non-transitory computer-readable medium of claim 18, wherein forming a query plan
includes forming a plurality of fetch operations, wherein a fetch operation in the plurality of
fetch operations includes a retrieve information operation from a set of nodes or edges in the
graph database that correspond to a node or an edge in the plurality of nodes and edges of the

pattern query.

60

WO 2017/181866 PCT/CN2017/079970
1/17

100 ~

A = Set of Access Constraints of Big Graph
(G) 101

Q 100= Pattern Query of G

Qee = Effectively Bounded Pattern Query of G

— ™~
I 40
Ow-
Q100 | --- 04;{"0 :>QEBE<:|
~—) — Subgraph {Ga)
Big Graph (G) 101 102

Subgraph (Ga)

Plan 110 =——> 109

Subgraph (Ge) (or an answer to Pattern Query Q) may be
obtained by using Pattern Query Qs that takes an amount of time
determined by Pattern Query Q and Set of Access Constraints A
Independent of the size of Big Graph (G)

Fig. 1

WO 2017/181866

Pattern

Que
Q@W\

award

PCT/CN2017/079970
2/17

2011-2013

aclress

country FEQ 2

301

Determining for each labeled node in a pattern query
whether a giobal constraint exists for all nodes having that

label

¢ 302

Determine when all CQ sub-query of Q and its A-
instances are checked by logic block 603, then return “no”

WO 2017/181866

500 ~

PCT/CN2017/079970
3/17

lnput: A subgraph query (and an access schema 4.
OCutput: “ves” if O is effectively bounded and “no” otherwise.

1. foreach S — (L Nyind{(S+ @) do

2, find all = (u, N) in O and add them to T; /* £ (1) = 1/
3. Bri={ve V| B—(fo{e), N)isin A};

4. C:=F: {*Initalize VCov (O, 4)*/

5. fnitAuwxd (L, or); /FInitialize auxiliary structures™/

6. while 7 is not empty do

7. v= F.pop(};

8. foreach @ in Ziv] do

9. Update (ct { @1); /* Update counter o [@/

10. if ot [@]=@andu ¢ Cdo /Fsuppose @: — (u, NY*/
il Fo=BU{uh = CU {u}

12, ¥V, & Cand all edgesin Qare in ECov ({, 4) then

13. return “yes’;

14, return “no”;

Fig. 5a

Functon InitAuxi

1 for eachvin Vy do

2 Livli=g,

3. for each @ = — (u, NYin T'do
4. if € themadd @to Lfv];

5. for each @ = v (u, N} in 7 do

6. ctf @1=8;

Fanction Update
1. ct{ @l =atf QYN Afp (uyy; Flet @ = v (u, N)¥/

Fig. 5b

WO 2017/181866

600~y

PCT/CN2017/079970
4/17

601

inspecting ali nodes of a subgraph query (2 and their
neighbors for access constraints in access schema A fo
determine actualized constrainis

+ 602

Computing Veov (Q, A)

Fig. 6

Input: An effectively bounded subgraph query (J, access schema 4.

Outpot: A worst-case optimal and effectively bounded query plan P,

1
2
3
4.
5
6

7

o

Build actualized graph @, (V,, £,) from @ and [;
foreachuin I, do

if there exists @ = @ — (L, N) in 4 with £, () =/ de
append ft {u, nil, @, go (W) to P

while there exists « in V. such that check (i) = true do

{(V,, @, sizefu], snful) 1 = ocheck (i);
append 1t (o, Vi, @4 go (1)) to P

refurn ,79 ;
Fig. 7

801

Determining all types of access constraints on graph G for
all labels that are in both in both patiern query Q and
graph G, such that N is less than or equal to M and graph
(3 satisfies their corresponding cardinality constraints.

+ 802

Determining whether query load () is instance-bounded in
graph G under Ay by using a version of method 500 in
which A is replaced with Ay for each pattern query G in

guery load Q.

Fig. 8

WO 2017/181866

PCT/CN2017/079970
5/17

JREE YO

¥

4

SRR

RIER

scaled, sec)

G

47
o

Time (Lo

\\\~\-\>..§‘.‘\-@“-\\

K

22

o n

0.4

\\}\§m\\&\\\

.
e .
OV SV ¥ SRR ¥ SN SR S, ¥

2 3 3 3 3
oo seraavaors 0vv§hoﬂv\w*\\h+\~h.\wnv\wvx

,-,.~.~M“w.,.§‘w.v.mm-.-

.«.-.«m“szg{“\w.“w.

A -

0.3

ZPFNE

3

oA

a1 8

ot
Sy

4 4% e 47

G|

9a

N

30000

S

9

1

%

3000

2, 5¢

5

¢ty

%
v

}

X

)

%

N
& s
}{ s
A
Ny
LR

Time (v

&
b
e
e
X
e
3 ¥

LN AN
e

At
. ‘<.~~\":'\.'A\
&

) X
NGRS NN
x

&
SVESPURERRP SRS
SN
S
................ R
3
SR

g

R
R
?ﬁ\\\&

sy
N

FECTETETere. JEve: sevrerereey
3

X e, AT %
oS o N R
B A\§\\\:
SN .\“\}\ 3

AN
4 3 o N N
ﬁw‘._._‘w,mw“\ R

<

%
) nipavane st
x AR R
TR

RS
. - SRR
I

AR
R

N NS X 2

R R
B NSRS NS 3
: A AN TR R

3 < AR e '

IR

L

RS

o™

{03

”fm;}:

(44

G

#ol(

Fig. 9b

WO 2017/181866

G

A

,
H
z
x

Undex

 {lopscaled)

6/17

PCT/CN2017/079970

e

beim

b2

N,
.
NN

¥
sassans AT
¥

““““\“}\\“““\\“

My
R o K
X \“\\““w,\,\\‘,.“m“,.\.‘.“33{

e N 3

o,
Y
H

P

S,

L]

o,
N
4

ot

H

H
P

Hy

E3 X

el

5 mw.\\\\“x

=S

NN AN A
W

AR

2%
e

2

]
Index size

Fig. 9d

WO 2017/181866
717

PCT/CN2017/079970

20000

Wy
A .

i r 5

\N\ ‘\ X

DAY RS

m§§\~ L3

e
i
R

200

»

- % “\,_;‘_\““&\.‘;,\.\ \\\\\ w \\\1-\

e

e
R A
B

N
3
-.\\‘.\\\x\\‘}\\\\\\\\\\-

S
rvaaralifiaseans

Yok

SYPIN

Time {logscaled, sec)

- B 3 3 3 i R N
g B adrasvoavoadaasvassoadinane s \},\\Q“ IR AP ST TR: SRR
Y E T ¥ ? ¥ ¥ ¥ $ 3 ¥

RV

#
fas

ol a2

R3S s Q—

e
e RS

OO0 L e

NN ;“_‘3%*""\'“ -
R R

SN

7

aled,

2

: sennnt R A AN
o 3 \\\“,.,\.v.\-\.\“\-.o.\\M“.... \&\
Y L SN

05

[
b

et

4

Pooand

= D2

4

T

RO ¥ e

\»,ww%.,.. ESUVRVRERRIE RIS S

o)

#olQ

Fig. of

3
3

&

WO 2017/181866
8/17

PCT/CN2017/079970

£ ST

.
o
T .
S o,

35 W

= .

: TR
v

A

AN e s e
AN s A A e At v

s

16 1
A

Fig. 9g

e

%
7
3

E

pO

Index size

Fig. 9h

WO 2017/181866

PCT/CN2017/079970
9/17

»
7%
)4
#,
‘it

SE1

S ROD

%

1

7.4

< & : s s . .

ﬁ A .X\\\\\\\{'_.V.N\MM\.S\\'\:;Y
T

yesciler

Sl Y

5
e X
TN o~

¢

Time

{ 3 ‘3:\ v i o s v s s v s s v s s e

JCHNHY

S0

4
£

HEX)
¥

2

aled,

¢ {logsc

[£ y
i

i,

fecd

]

€G3 g % G 07 38 09 10

L

S
X BSOSOSCS SO MR ANA R Y
N

AR

iy
fretd

& AR AR AR
JUEELSS

o

3 N SeeaE
& SRPEECEVINS
> .r%us}\-w)v.w.- S

\'%e: AR
AR

e

TR

AR

\a&“

i A AR AN R A -~§-
O ‘“‘\“\‘t\“ s

R e i R AR AR
-
. e AN wgm

~
U SRR
FERCEE Dt
R

R
e

“§\~

%
K
e

Lpk
éw
L
7,

WO 2017/181866

PCT/CN2017/079970
10/17

s i Sanaay

awirn

e B2

T
: TNIINA A S e

i3 16

[lA]

Fig. 9k

R
UTUIE FEVRRRC:
oA

Index size

Fig. 9l

WO 2017/181866 PCT/CN2017/079970
11/17

LR 0T

%

¥ TR B0 S & FE

B ERATINF e
ot 5

NN PO
—

RSN

s o™

saxro®

TS

EWE WS D

WO 2017/181866 PCT/CN2017/079970
12/17

Receiving a pattern query for a graph

¢ 102

Determining a set of access constraints corresponding to
the pattern query

+ ~ 1103

Determining whether the pattern query is effectively
bounded under the set of access constraints

* 1104

Forming a guery plan to retrieve a subgraph of the graph
when the pattern query is effectively bounded under the
set of access constraints

+ 1105

Retrigving an answer {0 the pattern query by accessing
the subgraph in response to the query plan

Fig. 11

WO 2017/181866 PCT/CN2017/079970
13/17

1290\

Receiving a pattern query for a graph database having a
plurality of nodes and edges

! 1202

Determining a plurality of access constrainis
corresponding to the patiern query

! 103

Determining whether the patiern query is effectively
bounded under the plurality of access constraints

* ~ 1204

Making the pattern query into a bounded pattern query
when the pattern query is not effectively bounded under
the plurality of access constraints

v 1205

Forming a query plan based on the bounded pattern

query or the pattern query to retrieve a plurality of
subgraphs from the graph database

* 1206
Obtaining the plurality of subgraphs from the graph
database by executing the query plan

! 1207

Retrieving an answer to the pattern query by accessing
the plurality of subgraphs from the graph database

Fig. 12

WO 2017/181866 PCT/CN2017/079970
14/17

1300 ~
L~ 1301

Receiving a request for information

1302

Parsing the request for information into a pattern query for
a graph database

! - 1303

Determining a set of access constraints of the pattern
query for the graph database

* 1304

Determining whether an amount of time to answer the
request for information is not dependent on a size of the
graph database

* 1305

Forming a query plan based on the pattern query o
retrieve a plurality of subgraphs from the graph database
that match the pattern query

v 1306

Obtaining the plurality of subgraphs from the graph
database by executing the query plan

* ~ 1307

Retriaving an answer to the request for information by
accessing the plurality of subgraphs from the graph
database

* 1308

Outputting the answer to the request for information

Fig. 13

WO 2017/181866 PCT/CN2017/079970
15/17

140‘3\

1410 \/
Pattern Query N<

1430 Information

1431
information Pattern Query
{Answer) 1430
U 1431 Network Graph
el 1420 Database
1421 §L71Y ,
— Information 1403
(Answer)
& Effectively
Bounded
1402

Computing Device
(Server)
1412

Fig. 14

WO 2017/181866 PCT/CN2017/079970
16/17

1500 ~
Computing Device
1412
1570
Frocessor /
1510
Effectively
Bounded
Graph 1402
Database
1403 Memory
1520
Memory
1530
User
Network interface
Interface 1560
1550
Network
1420

Fig. 15

WO 2017/181866

Fig. 16

1600 ~g

17/17

PCT/CN2017/079970

Parse 1601a

input/output (/O) 1601

Determine Access Constraints
1602

Determine Effectively Bounded
1603

Query Plan 1604

Make Pattern Query Bounded
1605

Obtain Subgraphs 1606

Relrieve Answer 1607

Effectively Bounded 1402

INTERNATIONAL SEARCH REPORT International application No.
PCT/CN2017/079970

A.

CLASSIFICATION OF SUBJECT MATTER
GO6F 17/30(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B.

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F; HO4L; HOAW

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT; CNKI; EPODOC; WPI, IEEE: graph, pattern, query, bound, contrain, subgraph, plan, answer, response, set, index

C.

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2012293541 Al (INTERNATIONAL BUSINESS MACHINES CORPORATION) 22 1-20
November 2012 (2012-11-22)
description, paragraphs [0066]-[0098], figures 3-4

A US 2016092509 A1 (BITNINE CO., LTD.) 31 March 2016 (2016-03-31) 1-20
the whole document

A US 2011119245 A1 (SARGEANT, DANIEL ET AL.) 19 May 2011 (2011-05-19) 1-20
the whole document

A CN 104834754 A (UNIVERSITY WUHAN) 12 August 2015 (2015-08-12) 1-20
the whole document

DFurther documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents: “1 later docume_nt publi_shed_ after the ir}terpational _filing date or priority
wan definine th | fth hichi idered date and not in conflict with the application but cited to understand the
A ocument defining the general state of the art which 1s not considere principle or theory underlying the invention
to be of particular relevance g . . .
. . - . . . “X” document of particular relevance; the claimed invention cannot be
E” ecarlier application or patent but published on or after the international considered novel or cannot be considered to involve an inventive step
filing date) o) o when the document is taken alone
“L” document which may throw doubts on priority claim(s) or which is «y* document of particular relevance; the claimed invention cannot be
cited to establish the publication date of another citation or other considered to involve an inventive step when the document is
special reason (as specified) combined with one or more other such documents, such combination
«“0” document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the art
means «&” document member of the same patent family

«p” document published prior to the international filing date but later than

the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
12 June 2017 30 June 2017
Name and mailing address of the ISA/CN Authorized officer
STATE INTELLECTUAL PROPERTY OFFICE OF THE
P.R.CHINA
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing ZHANG,Cuiling
100088
China
Facsimile No. (86-10)62019451 Telephone No. (86-10)62413373

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members

PCT/CN2017/079970

. Patc.ant document Publication date Patent family member(s) Publication date
cited in search report (day/month/year) (day/month/year)
us 2012293541 Al 22 November 2012 us 2012293542 Al 22 November 2012
Jp 2012243127 A 10 December 2012

us 2016092509 Al 31 March 2016 KR 101489371 Bl 09 February 2015

us 2011119245 Al 19 May 2011 us 2013226893 Al 29 August 2013

CN 104834754 A 12 August 2015 None

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - wo-search-report
	Page 81 - wo-search-report

