UK Patent Application .,GB ,2583415

(21) Application No: 2007409.2
(22) Date of Filing: 12.06.2013
Date Lodged: 19.05.2020
(30) Priority Data:
(31) 13630247 (32) 28.09.2012 (33) US

(62) Divided from Application No
1500822.0 under section 15(9) of the Patents Act 1977

(71) Applicant(s):
Intel Corporation
(Incorporated in USA - Delaware)

2200 Mission College Boulevard, Santa Clara,
California 95052, United States of America

(72) Inventor(s):

Mikhail Plotnikov
Andrey Naraikin
Hughes Christopher

(74) Agent and/or Address for Service:

HGF Limited
Document Handling - HGF - (Sheffield), 1 City Walk,
LEEDS, LS11 9DX, United Kingdom

(43)Date of A Publication

(51) INT CL:
GO6F 9/30 (2018.01)

(56) Documents Cited:
US 5903769 A

(58) Field of Search:

INT CL GO6F
Other: WPI, EPODOC

(13)A

28.10.2020

GOG6F 9/315 (2018.01)

US 5511210 A

(54) Title of the Invention: Read and write masks update instruction for vectorization of recursive computations

over independent data

Abstract Title: Read and write masks update instruction for vectorization of recursive computations over

Independent data

(67) A processor executes a mask update instruction to
perform updates to a first mask register K2 and a second
mask register K1. In response to the mask update
instruction, execution circuitry inverts a given number of
mask bits in the first mask register from a first bit value
(e.g. 1) indicating valid data to a second bit value (e.g. 0)
indicating an available slot, and inverts the given number
of mask bits in the second mask register from the second
bit value to the first bit value. The execution circuitry
further moves (e.g. merge 320) the given number of
elements (e.g. 3, shown with value Cg) from a first vector
register V2 to a second vector register V1 at the same
relative positions as the inverted bits in the second mask
register K1.

1

B Ag Bo Bo Bo

Ao

Bs

1 1 1 1 1

1

1

! ‘ 1STITERATION (310)

B1 At 8! B1 B1

A

1 0 1 1 1

0

IO Co o [- |-
1 1 0 1 0 1 0 0
MERGE (320):
ll OVERFLOW
B Ce B B B4 Co By Co
1 E 1 1 1 1 1 1
Co X
1 0 0 0 0 0 0 0
ll 2M0 [TERATION (330)
B, | Ci | B2 | B | B2] Ci | B | G
0 1 0 0 0 1 0 1
Cl} * * » W W > ®
1 0 0 ! 0 0 0 0
MERGE {340);
ll UNDERFLOW
C1 * C1 CO C1
0 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0

DATA ELEMENT POSITION

INTTIAL INPUT N V1
K1 = CONDITION (V1)

V1 = COMPUTATION (V1)
K4 = CONDITION {V1)

ELEMENTS INV2 TO
MOVE INTQ V1

K2 = CONDITION (V2)

V1 AFTER MERGE
K1 AFTER MERGE

V2 AFTER MERGE
K2 AFTER MERGE

V1 = COMPUTATION (V1)
K1 = CONDITION (V1)

ELEMENT IN V2 TO MOVE
INTO V1
K2

Vi AFTER MERGE
K1 AFTER MERGE

V2 AFTER MERGE
K2 AFTER MERGE

V Glve84¢ 99

1/15

| Ol

0cl
AHOWIN
-
- . 1Nd1NO
31SI93Y SYIN
|| 96 SEASIDIENS JLNdNI V1Y@
o1 ocl 0L}
SIT LINN NOILND3X3 4300030 JHOVD
SH1SIDAH HO1LO3A 1N41N0 SNOILORYLSNI
/LNdNI Y1¥a

L} 3114 318193

GLT SNLYYVYddY
ONISS300dd NOILOMNHLSNI

2/15

FWIWIZ

7 (SL19 2¢) ¥SOXW

12 (S119 #9) diY] S 119 967
092 (SL119 ¥9) SOV14Y Sliid 8cl
SEUILUIX SuawA
0SZ SH3LSIH3Y
3S0d44Nd-TYH3INTO 9}
0GZ 37114 ¥31S193Y V.LVA a3IMDOVd XN Owiwux OWILA OWUWIZ

S.Lig 9o
e -)
p ._ SL182Ls
” d3sviiv, 012 SH3LSI9DIY HOLD3A

|
m |
| C .
-
S.Lig 08
072 (d4 28X)

3114 "3151934 MOVLS INIOd ONILVO 14 ¥V 1IVOS

S1ig 79
¢ 9Ol 72 SHILSIOTH NSV

00¢ JaN1J31IHOYY ¥31S193Y

E]

3 /15

lH B
<D

1STITERATION (310)

H
E
lH

.

-
l
lH
l
l

—
<o
.

OND I TERATION (330)

(R I | ——
S L)
—— L

HE
N
lE
| ™o

'H
<

'
Hl
=l

N N
l
HI
IH
—d
* li
Gt

At
l
l
I
.
'

DATA ELEMENT POSITION

INITIAL INPUT IN V1
K1 = CONDITION (V1)

V1 = COMPUTATION (V1)
K1 = CONDITION (V1)

ELEMENTS INVZ TO
MOVE INTO V1

K2 = CONDITION (V2)

V1 AFTER MERGE
K1 AFTER MERGE

V2 AFTER MERGE
K2 AFTER MERGE

V1 = COMPUTATION (V1)
K1= CONDITION (V1)

ELEMENT IN V2 TO MOVE

INTO V1
K2

V1 AFTER MERGE
K1 AFTER MERGE

V2 AFTER MERGE
KZ AFTER MERGE

a/15

401
rwmaskupdate(K1 K2) /
for(i=0,k=0;i<KL; i++){

if (IKA[i]K
for (; k < KL; k++)
if (K2[k] N
K2lk] = 0;
K1i] = 1;
K+-+:
break;
}
}
}
}
40

sparsemov(K1,V1,K2,V2) T

for (i=0,k=0;i <KL i++) /

it (IK1[i]¥
for(; k <KL; k++)
if (K2[K]{
Vil = V2IK];
K++:
break;
}
}
}

5/15

minbipgis mhbpgly ik

1= 0;

v_index =-1:-2:....-KL+1:-KL
v_KL = KL:KL:...:KL:KL
K1=0;

K2 =0;

/linitialize loop counter

/linitial vector of indexes
/lincrement for vector of indexes
[laccumulator is initially empty

T ey ey mieke emmrin ey e miekee medee e ek

dot]

if (K2 == 0}
V2 = vector_Joad(X[I+KL-1:i});
K2 = condition(V2);
| += KL;
V mdex +=v_KL,;

L L I I I R

/lif no elements left from previous overflow 42

/lload new KL elements of X array
/lgenerate read mask for new elements

/lincrement loop counter
/lincrement index vector

431~1-~ sparsemov(K1, V1, K2, V2);
432~ sparsemov(K1, V3, K2, v_index);
433~'~ rwmaskupdate(K1,K2);

F'

|

/[add new elements to V1...
/land their indexes to V3
/lupdate read and write masks

[lelse continue with read mask K2

WA mikple mapge mhbgle sle shigle e sl sl nagee syl sl

Yol whipge whipge nappee iyl wilidis mhibgls napee Yplep shiage | sl

IsFullMask(K1)X
dof
V1 = computation(V1);
K1 = condition(V1),
twhile(K1 == OxFFFF)
scatter(knot(K1),V1,V3,X);

|
Wwhile((i < N) || (K2 1= 0)):

[[for full accumulator only

L R o

eyl e

/ldense computation over accumulated data
/lcheck condition after computation
/Icheck if accumulator is still full (all 1s in K1)

//scatter elements from V1 with indexes V3 to X array

/lcontinue when there is more input stream or

/Inew data in V2

b ik s g by e pheyes miebpg ey e

““*““““*

L R

w-—-*w***“‘_‘_‘____“““*_m___**

K3 = K1;
do{
V1{K1} = computation(V1);
K1 = condition(V1);
Wwhile(K1 != 0)
scatter(K3,V1,V3,X);

J/start remainder computations

/[store remainder mask for final scatter

[lcomputation under mask K1

/lcheck condition after computation

/Icheck if anything left to do
/[scatter remaining elements from
/lwith indexes V3 to X array

mebpgr whipglp e’ skl skl skl e sl sl sl ke

Lo L st T I I T T

Vi...

Lammaas L e e

6/15

BEGIN [TERATIONS /““‘“‘“‘“

LOAD INPUT DATA ELEMENTS
INTO V2
932

~USEFUL DATA ELEMENTS
IN V22
531

MOVE AT LEAST A PORTION OF
USEFUL DATA ELEMENTS FROM V2
INTO V1
933

UPDATE K1 AND K2 TO IDENTIFY
POSITIONS OF THE USEFUL DATA
ELEMENTS IN V1 AND V2,
RESPECTIVELY
934

HAVE ALL
INPUT DATA ELEMENTS \NO
BEEN LOADED INTO V12
538

NO

YES

PERFORM VECTOR COMPUTATION
OVER THE USEFUL DATA ELEMENTS
IN V1
236

YES

PERFORM REMAINING VECTOR
COMPUTATION OVER THE USEFUL
DATA ELEMENTS IN V1 AND STORE

STORE RESULTS OF THE VECTOR
COMPUTE OPERATION INTO MEMORY

RESULTS
239

237

FIG. 5A

7/15

RECEIVE BY A PROCESSOR A MASK UPDATE INSTRUCTION SPECIFYING o

A FIRST MASK REGISTER AND A SECOND MASK REGISTER /
211

DECODE THE MASK UPDATE INSTRUCTION
012

SET A GIVEN NUMBER OF MASK BITS IN THE FIRST MASK REGISTER
FROM A FIRST BIT VALUE TO A SECOND BIT VALUE
913

SET THE GIVEN NUMBER OF MASK BITS IN THE SECOND MASK

REGISTER FROM THE SECOND BIT VALUE TO THE FIRST BIT VALUE FIG. 5B
214

RECEIVE BY A PROCESSOR A VECTOR MOVE INSTRUCTION SPECIFYING e

A FIRST MASK REGISTER, A SECOND MASK REGISTER, A FIRST VECTOR
REGISTER, AND A SECOND VECTOR REGISTER
521

DECODE THE VECTOR MOVE INSTRUCTION
222

IN RESPONSE TO THE DECODED VECTOR MOVE INSTRUCTION AND
BASED ON MASK BIT VALUES IN THE FIRST AND SECOND MASK
REGISTERS, REPLACE A GIVEN NUMBER OF TARGET DATA ELEMENTS
IN THE FIRST VECTOR REGISTER WITH THE GIVEN NUMBER OF SOURCE
DATA ELEMENTS IN THE SECOND VECTOR REGISTER FIG. 5C
523 .

8 /15

9 Ol

¢09 FOVNONYT TIAITHOIH

809 o3 11dNOD
135 NOILONYLSNI
JAILYNYILTY

¥09 d311dNOD 98X

909 3d0D AHVNIF 98X

¢L9 d31d3ANOD
NOILONYLSNI

019 300D AHVYNIE
135S NOILONYLSNI
JHYMLH40S JAILVNAILTY

JaVMOHVH

919
3400 13S NOILONYLSNI
98X ANO LSV
1V HLIM 50S5300dd

719 340D 13S NOILONYLSNI

98X NV LNOHLIM HOSS3004d

9/15

VL.

041 LINN
AHOWSN

LINM JHOVD V.iVQd

09/ (S)H3LSNTID NOILND3IXT

9/ (S)LINN 29/
SS300V (S)LINN

AHOWIN NOILNO3X3

= Y__ __

| i —— .
T -] 147
ga. ‘ol 1 3 @%W@%%Wml _I) LN IN3W3IL3Y
|y @siNn 0S LINN
| = — SOOI/ IWWNIY_ _ INION3 NOILLNDIX3
0¢. 4/

| ovziNn30003a

| LINN ON3 LNOYA 06 THOD

884 HO134 NOILONALSNI

984 LINN 1L NOILONHLSNI

¢eL 1INN

| > 7€ LINN 3HOVD NOILONYLSNI NOLLOIOT¥d HONVYE 00/ INM3d
V. 9ld el
o | NG | y0.
VeL | onmanwn| FLHEM 94, QY34 AMOW3N 2iL 0bL 1 8oL f 9oL fo Dol 20
LINNOD |01 imoyg| AYOWSW | 39¥1S3IN03X3 | /Y3 | 3INA3HOS [ONINYNIY 001V[300030] ™ o =7 [HOL3A
IMOvE LMW SEINIREE T I E A e

10/15

g8 Ol

V908

FHOVO Vivd L]

b W
I N

V8 Old

208 w
MHOMLIN ONIY

:

08
JHOVD
Z1 3HL 40 13389NS VD0

gce8 | VZZ8
1H3IANOD 1HIANOD
DIHINNN | IIHINNN
v18 |
L SHALSIOTH
HOLD3IA | |
et |
I
0Z8 | vZ8
J1ZZIMS | LV d3H
TR
878
NV HOLD3A JAIM-91
! 0z8

SH41S193d MSVIA J11HM

vt —————— A28 4000 AP Mt -

908
JHOVD L1
P18 218
SH3LSIO3Y ||| S¥3LSIOIYM
| HOID3A ||| ¥MYIVOS
018 808
LINN _ LINN
HOLD3A HYIVOS
ﬂ A
| 4
008

300030 NOILONH.LSNI

11/15

916 (S)LINN

| YITIONINOD

SNg

716 (S)LINN
H3TIOHINOD
AHOW3IN
Q3.LVHOIINI

016 LINN
INJOV NJLSAS

|

216 DNIG |
lllllllllllll T _ _
906 (S)LINN IHOVYD AFHVYHS _
oo T |
R IR _
EX X | 80621907
| 3HOWO ! 3HOVYO 350d¥nd |
NZ06 3H0D | V206 3HOD WIO3ds |

T S Y v Skl

IIIIIL

™

006 40SS3004d

12 /15

001

0l ©Ol4
_...!.]
| 0504 Hol Of
— T ...i_
|
AHOWI ...mmuemw,zmq ..._ H0SSI00Yd |
0201 anH | 00
MITIONINGD | |
. s — |
G601 _
L — | ¥0SS3004d 1
_J

0901

0001

13/15

L1 Ol
0¢})

| viva |
St 1 anv 3000 |

JOVH0LS V.1V

LCV)
0Ll

GlL1 v ZAN)

d0S5300dd | O/1 0laNy

133

S30IA3CA
NWNQOD

1433

S30IA30 O/

9611 . 0611 13SdIHD

ol 1
Pall 7G1L1

081} E ElE

9811 8811
0GL1
¢8ll
Vel
AdOWIN
d0SS400dd00
[405S300dd

0LL}
Q/LL 9L
cLil
O
d0SS300dd

cCll

ISNOW
/GaVOEAIA

197’
390144 Snd

|
841
se1) J0SS3008dOO)

ll....il.l...i..L

cEll
AJONIN

0011

14 /15

d0SS300dd

1%%

474"
S30IAIJ O/

££E

¢l Ol

GLL
O/l AOVOIT

961} -

13SdIHO E
V6Ll —]

d055300dd

cell
ALJOWZN

00C1

15 /15

¢l Old

716 (S)LINN
Y¥3TTI0YINOD
AHOW3N
CEINEREIN

0Vl 0gE)
LNNAYTdsia | [¢e8F HINOYING) e v

916 (S)LINN
H3TI0YLINOD |
sSng

Z0ST (SILINA LOINNODYIINI

. 906 (S)LINN FHOVD AIHVHS
| | NvO6 | | V06
| {1 JOUNT) | ewe | |(S)LNA
016 LINN | 3HOV0 | | JHOV)
INTOY WILSAS . _r NZ06 340D ,.m V206 340D

01€1 J0SS300dd NOILYDIddV

0Z€1 (S)HOSSID0HL0D

00E}
diHO V NO W31SAS

10

15

20

25

30

35

READ AND WRITE MASKS UPDATE INSTRUCTION FOR VECTORIZATION OF
RECURSIVE COMPUTATIONS OVER INDEPENDENT DATA
Technical Field

The present disclosure pertains to the tield of processing logic, microprocessors, and
associated instruction set architecture that, when executed by the processor or other processing
logic, perform logical, mathematical, or other functional operations.

Background Art

An 1nstruction set, or instruction set architecture (ISA), 1s the part of the computer
architecture related to programming, and may include the native data types, instructions, register
architecture, addressing modes, memory architecture, interrupt and exception handling, and
external input and output (I/0). The term instruction generally refers herein to macro-
instructions — that 1s instructions that are provided to the processor (or 1nstruction converter that
translates (e.g., using static binary translation, dynamic binary translation including dynamic
compilation), morphs, emulates, or otherwise converts an instruction to one or more other
instructions to be processed by the processor) tor execution — as opposed to micro-instructions or
micro-operations (micro-ops) — that 1s the result of a processor’s decoder decoding macro-
instructions.

The ISA 1s distinguished from the micro-architecture, which 1s the internal design of the
processor implementing the instruction set. Processors with different micro-architectures can
share a common 1nstruction set. For example, Intel® Core™ processors and processors from
Advanced Micro Devices, Inc. of Sunnyvale CA implement nearly 1dentical versions of the x86
instruction set (with some extensions that have been added with newer versions), but have
different internal designs. For example, the same register architecture of the ISA may be
implemented 1n different ways 1n different micro-architectures using well-known techniques,
including dedicated physical registers, one or more dynamically allocated physical registers
using a register renaming mechanism, etc.

Many modern ISAs support Single Instruction, Multiple Data (SIMD) operations.
Instead of a scalar instruction operating on only one or two data elements, a vector instruction
(also referred to as packed data instruction or SIMD 1nstruction) may operate on multiple data
elements or multiple pairs of data elements simultancously or 1n parallel. The processor may
have parallel execution hardware responsive to the vector instruction to perform the multiple
operations simultaneously or in parallel. A SIMD operation operates on multiple data elements
packed within one vector register or memory location in one operation. These data elements are
referred to as packed data or vector data. Each of the vector elements may represent a separate

individual piece of data (e.g., a color of a pixel, etc.) that may be operated upon separately or

10

15

20

25

30

35

independently of the others.

In some scenarios, a SIMD operation may operate on independent vector data elements
1n a recursive manner, where the number of 1terations 1s different for different data elements.
Thus, computation for some data elements may be finished while some other data elements still
need more 1terations. One example of the recursive computation 1s a WHILE loop operation. In
this example, a data array X[i1] (1=0, ..., N-1) of N elements 1s subject to a recursive
computation while the condition(X]|1]) 1s true (satisfied). The computation for X][1] terminates
when condition (X[1]) becomes false. An example of the condition may be X]1] >0.

for (1=0; 1<N; 1++){
while (condition(X]1])){
X[1]=computation(X]|i]); } }

The above computation cannot be easily vectorized if the number of the WHILE loop
iterations is different tor different data elements of X|[1]. One possible approach 1s for a
processor to perform computation over those elements that do not satisty the condition, and then
throw away the results derived from those elements. However, this approach has low efficiency
because the processor not only performs unnecessary computation over those elements, but also
1s unable to utilize the vector register slots occupied by those elements.

Brief Description of the Drawings

Embodiments are illustrated by way of example and not limitation in the Figures of the
accompanying drawings:

Figure 1 is a block diagram of an instruction processing apparatus including vector
registers and mask registers according to one embodiment.

Figure 2 1s a block diagram of register architecture according to one embodiment.

Figure 3 1llustrates an example of a vector operation sequence according to one
embodiment.

Figure 4A illustrates an example of pseudo-code for instructions that cause a processor
to pertorm operations on vector registers and mask registers according to one embodiment.

Figure 4B illustrates an example of a code segment for using the instructions of Figure
4A according to one embodiment.

Figure 5A is a flow diagram illustrating operations to be performed responsive to a
code segment that uses the mask update instruction and the vector move instruction according to
one embodiment.

Figure 5B is a flow diagram 1llustrating operations to be performed responsive to a
mask update instruction according to one embodiment.

Figure 5C is a flow diagram 1llustrating operations to be performed responsive to a

10

15

20

25

30

35

vector move instruction according to one embodiment.

Figure 6 is a block diagram illustrating the use of a software instruction converter to
convert binary instructions in a source instruction set to binary instructions in a target instruction
set according to one embodiment.

Figure 7A 1s a block diagram of an in-order and out-of-order pipeline according to one
embodiment.

Figure 7B is a block diagram of an in-order and out-of-order core according to one
embodiment.

Figures 8A-B are block diagrams of a more specific exemplary in-order core
architecture according to one embodiment.

Figure 9 1s a block diagram of a processor according to one embodiment.

Figure 10 is a block diagram of a system in accordance with one embodiment.

Figure 11 is a block diagram of a second system in accordance with one embodiment.

Figure 12 is a block diagram of a third system in accordance with an embodiment of
the 1invention.

Figure 13 is a block diagram of a system-on-a-chip (SoC) in accordance with one
embodiment.

Description of the Embodiments

In the following description, numerous specific details are set forth. However, 1t 1s
understood that embodiments of the invention may be practiced without these specific details. In
other instances, well-known circuits, structures and techniques have not been shown 1n detail in
order not to obscure the understanding of this description.

Embodiments described herein provide instructions for improving the efficiency of
recursive vector computation over independent data elements. The 1nstructions utilize a pair of
vector registers and a pair of mask registers to perform recursive vector computation, where a
first vector register serves as an accumulator to accumulate vector computation results, and a
second vector register provides new data elements to fill in the unutilized slots (unused or
finished data element positions) of the first vector register. The mask registers are used to
indicate which data elements 1n the corresponding vector registers need further computation.

In one embodiment, the first vector register (1.e., the accumulator) accumulates input
data elements until the register 1s filled up with a tull vector. The processor then pertorms
computation on these data elements using non-masked (1.e., dense) vector operations. After the
computation, some elements (for which the computation is finished) in the accumulator can be
sent back to memory or other storage locations, and other elements (for which the computation

has not finished) can be kept in the accumulator for an additional number of iterations. The data

10

15

20

25

30

35

element positions of the finished computation in the accumulator can be utilized by new data
clements that also need the same recursive computation.

Two instructions RWMASKUPDATE and SPARSEMOYV are described herein. These
instructions improve the etficiency of vectorization in many scenarios. For example, 1n one
scenario the input data elements may come from one or more sparse vector data sets, each of
which does not have enough elements to fill the entire accumulator (1.e., the first vector register).
Moreover, input data elements from different data sets may need different numbers of iterations
in computation. Thus, unutilized slots are left in the accumulator from those data elements that
need no more computation. The instructions described herein allow these unutilized slots to be
filled by useful elements, thus enabling recursive computation over a full vector. As will be
described 1n further detail below, the SPARSEMOYV i1nstruction 1s a vector move instruction that
moves useful data elements (1.e., data elements that need computation) from a second vector
register into the accumulator. The RWMASKUPDATE instruction updates both a read mask
register (associated with the second vector register) and a write mask register (associated with

the accumulator) to 1identity the positions of useful data elements 1n these two vector registers.
The use of RWMASKUPDATE in combination with SPARSEMOYV reduces the total

number of instructions needed 1n a recursive computation, and simplities the overtflow and
underflow cases where the number of useful data elements (1.e., source data elements) 1n the
second vector register does not match the number of unutilized slots (1.e., target positions) in the
first vector register. The updated read and write masks are used to control the data movement
between the two vector registers; 1n particular, write mask bits of zeros are used to i1dentity the
target positions 1n the accumulator, and read mask bits of ones are used to identify the source
data elements 1in the second vector register. The use of inverted write mask bits for identifying
the target positions simplifies data accumulation 1n vectorization of sparse and recursive
computation.

Figure 1 is a block diagram of an embodiment of an instruction processing apparatus
115 having an execution unit 140 that includes circuitry operable to execute instructions,
including the RWMASKUPDATE and SPARSEMOYV 1nstructions. In some embodiments, the
instruction processing apparatus 115 may be a processor, a processor core of a multi-core
processor, or a processing element 1n an electronic system.

A decoder 130 receives incoming instructions in the form of higher-level machine
instructions or macroinstructions, and decodes them to generate lower-level micro-operations,
micro-code entry points, microinstructions, or other lower-level instructions or control signals,
which reflect and/or are derived from the original higher-level instruction. The lower-level

instructions or control signals may implement the operation of the higher-level instruction

10

15

20

25

30

35

through lower-level (e.g., circuit-level or hardware-level) operations. The decoder 130 may be
implemented using various different mechanisms. Examples of suitable mechanisms include,
but are not limited to, microcode, look-up tables, hardware implementations, programmable
logic arrays (PLLAs), other mechanisms used to implement decoders known 1n the art, etc.

The decoder 130 may receirve incoming instructions for a cache 110, a memory 120 or
other sources. The decoded 1nstructions are sent to the execution unit 140. The execution unit
140 may recerve trom the decoder 130 one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control signals, which retlect, or are derived from
the recerved instructions. The execution unit 140 receives data input from and generates data
output to a register file 170, the cache 110, and/or the memory 120.

In one embodiment, the register file 170 includes architectural registers, which are also
referred to as registers. Unless otherwise specified or clearly apparent, the phrases architectural
registers, register file, and registers are used herein to refer to registers that are visible to the
software and/or programmer (e.g., software-visible) and/or the registers that are specified by
macroinstructions to i1dentify operands. These registers are contrasted to other non-architectural
registers 1n a given microarchitecture (e.g., temporary registers, reorder bufters, retirement
registers, etc.).

To avoid obscuring the description, a relatively simple instruction processing apparatus
115 has been shown and described. It 1s to be appreciated that other embodiments may have
more than one execution unit. For example, the apparatus 115 may include multiple different
types of execution units, such as, for example, arithmetic units, arithmetic logic units (ALUSs),
integer units, floating point units, etc. Still other embodiments of instruction processing
apparatus or processors may have multiple cores, logical processors, or execution engines. A
number of embodiments of the instruction processing apparatus 115 will be provided later with
respect to Figures 7-13.

According to one embodiment, the register file 170 includes a set of vector registers 175
and a set of mask registers 185, both of which store the operands of the RWMASKUPDATE and
SPARSEMOYV i1nstructions. Each vector register 175 can be 512 bits, 256 bits, or 128 bits wide,
or a different vector width may be used. Each mask register 185 contains a number of mask bits,
with each mask bit corresponding to one data element of one of the vector registers 175. As each
mask bit 1s used to mask a data element of a vector register, a mask register of 64 bits can be
used to mask sixty-four 8-bit data elements of a S12-bit register. For a vector register with a
different width (e.g., 256 bits or 128 bits) and data elements of a different size (e.g., 16 bits, 32
bits or 64 bits), a different number of mask bits may be used 1n connection with a vector

operation.

10

15

20

25

30

35

Figure 2 illustrates an embodiment of underlying register architecture 200 that supports
the 1nstructions described herein. The register architecture 200 1s based on the Intel® Core™

processors implementing an instruction set including x86, MM X™, Streaming SIMD Extensions

(SSE), SSE2, SSE3, SSE4.1, and SSE4.2 instructions, as well as an additional set of SIMD
extensions, referred to the Advanced Vector Extensions (AVX) (AVX1 and AVX2). However,
it 1s understood different register architecture that supports different register lengths, different
register types and/or different numbers of registers can also be used.

In the embodiment illustrated, there are thirty-two vector registers 210 that are 512 bits
wide; these registers are referenced as zmm0O through zmm31. The lower order 256 bits of the
lower sixteen zmm registers are overlaid on registers ymmO-16. The lower order 128 bits of the
lower sixteen zmm registers (the lower order 128 bits of the ymm registers) are overlaid on
registers xmmoO-15. In the embodiment 1llustrated, there are eight mask registers 220 (kO
through k'7), each 64 bits 1n length. In an alternate embodiment, the mask registers 220 are 16
bits width.

In the embodiment illustrated, the register architecture 200 further includes sixteen 64-
bit general-purpose (GP) registers 230. In an embodiment they are used along with the existing
x86 addressing modes to address memory operands. The embodiment also 1llustrates RFLAGS
registers 260, RIP registers 270 and MXCSR registers 230.

The embodiment also 1llustrates a scalar floating point (FP) stack register file (x87
stack) 240, on which is aliased the MMX packed integer flat register file 250. in the
embodiment illustrated, the x87 stack i1s an eight-element stack used to perform scalar tloating-
point operations on 32/64/80-bit floating point data using the x87 instruction set extension; while
the MMX registers are used to perform operations on 64-bit packed integer data, as well as to
hold operands for some operations performed between the MMX and xmm registers.

Alternative embodiments of the invention may use wider or narrower registers.
Additionally, alternative embodiments of the invention may use more, less, or ditferent register
files and registers.

Figure 3 is a diagram 1llustrating an example of the operations performed by a
processor (e.g., the instruction processing apparatus 115) to efficiently vectorize the computation
over independent data elements. To simplify the illustration, each vector register in this example
1s shown to have only eight data elements. Alternative embodiments may have a different
number of data elements in the vector registers. The vector registers can be 128 bits, 256 bits,
or 512 bits wide (e.g., the xmm, ymm or zmm registers of Figure 2), or a different width may be
used. As there are eight data elements 1n each vector register, only eight mask bits are used 1n

connection with each vector register.

10

15

20

25

30

35

In this example, the vector register V1 1s used as an accumulator, and vector register V2
1s used to provide new data elements to V1. Mask registers K1 (the write mask) and K2 (the
read mask) are used to mask the data elements in V1 and V2, respectively. In this example, a
mask bit of zero indicates that the corresponding data element 1s masked from computation (i.¢.,
no further computation 1s necessary), and a mask bit of one indicates that the corresponding data
celement needs turther computation. In an alternative embodiment, the meaning of the mask bit
value may be reversed; €.2., a mask bit of one may be used to indicate that the corresponding
data element needs no further computation, and a mask bit of zero may be used to indicate that
the corresponding data element needs further computation.

Initially, 1t 1s assumed that the accumulator V1 stores two sets of data as the input
vector: A and B, each of which may be part of a sparse data array. The subscript j of A;and B;
indicates the number of iterations that a data element has gone through; e.2., Ay 1s the element of
A before any 1terations, and A 1s the element of A after a first iteration 310. To sumplify the
illustration, different data elements from the same data set in the same iteration are shown to
have the same 1dentifier; e.g2., Ay 1n position O and Ay 1n position 2 of the input vector are two
different elements and may have the same or different values, and B¢ in position 1 and By 1in
position 3 of the input vector are two different elements and may have the same or different
values. The 1nitial values of the mask bits in the mask register K1 are all ones, indicating that the
initial input vector in V1 1s a tull vector and that every element of V1 can participate in the first
iteration 310 of the vector computation.

In this example, each iteration represents an iteration of a WHILE loop 1n which a
recursive vector computation 1s performed. After the first iteration 310, the accumulator V1
includes a set of A;’s and B’s, where the subscript indicates that these elements have finished
the first iteration. Assume that elements of A only need one iteration of the WHILE loop and
clements of B need two 1terations. Thus, after one iteration of the WHILE loop, the computation
for the A elements has finished while one more iteration 1s needed for the B elements. At this
point, the condition for each of the A elements 1s false (because they do not satisty the condition
for further computation), and the condition for each of the B elements is true (because they
satisty the condition for further computation). Thus, the mask bit values in K1 are set to zeros
for those mask bits corresponding to A;’s, and ones for those mask bits corresponding to B;’s.

In one embodiment, a mask bit of zero indicates that the result in the corresponding
clement position will be thrown away after a vector operation over the entire vector register (in
this case, V1). In alternative embodiments, a mask bit of zero indicates that the computation for
the corresponding element position will not be pertormed and theretore that element position is

unutilized. In either scenario, keeping A;’s 1n the accumulator V1 1s a waste of vector resources

10

15

20

25

30

35

and reduces the efficiency of the vector computation. Therefore, according to one embodiment
of the invention, a second vector register V2 1s used to provide new data elements to V1 to fill
the unutilized slots (1.e., the data element positions) left by A;’s. The data elements of A;’s can
be saved 1into memory, cache or other data storage.

In the example of Figure 3, the vector register V2 stores elements of a data set C, which

e 92

may be part of another sparse vector array. The positions in V2 marked with *+” represent
“don’t care,” which means that they do not contain useful data elements for the purpose of the
recursive vector computation. Assume that each data element of C needs to go through three
iterations of the WHILE loop. Instead of or in addition to the elements of C, V2 may provide
new data elements of A and/or B (e.g., Ag’s, Bo’s and/or B;’s) that need to go through one or
more 1terations of the WHILE loop (and therefore further computation). These data elements in
V2 that need further computation are referred to as “source data elements.” These source data
clements 1n V2 can {ill in the unutilized slots 1n V1 left by A¢’s (referred to as “‘target data
elements™). For ease of description, data elements in V1 and/or V2 that need further
computation are referred to as “useful data elements.” Thus, a merge operation 320 1s performed
to merge the usetful data elements 1n V1 and V2, such that the source data elements in V2 are
moved to the positions 1n V1 occupied by the target data elements, and that the recursive
computation can proceed to a second iteration 330 with additional useful data elements in V1.

Three scenarios may occur 1n such a merge operation: overtlow, undertlow and exact
match. An exact match indicates that there 1s the same number of usetul data elements in V2 as
the number of unutilized slots left in V1. Thus, 1n an exact match, all of the source data elements
in V2 move into (1.e., replace) the unutilized slots left in V1. As a result, V1 has a full vector to
start the next iteration, and K1 is updated to contain all ones. There 1s no more source data
element left in V2, and K2 1s updated to contain all zeros.

The merge operation 320 illustrates an overflow scenario in which the number of new
data elements (Cy) 1s greater than the number of the zero-value mask bits 1n K1 (1.e., the number
of A;). Thus, not all of the new data elements in V2 can move into V1. In this example, the
encircled Cg 1n position 7 of V2 1s left in V2, while the other Cy’s 1n positions 2, 4 and 6 have
moved into V1. In this embodiment, the lower-order elements of V2 are moved into V1; in
alternative embodiments, the higher-order elements of V2 may be moved into V1. The merge
operation 320 also updates the corresponding mask bits in K1 and K2.

After the merge operation 320, V1 contains a full vector of eight elements to start the
second iteration 330, and V2 only has one Cy left in position 7. The corresponding mask register

K1 at this point (atter the merge operation 320) contains all ones, and K2 contains only one mask

bit having a value of one in position 7.

10

15

20

25

30

35

After the second iteration 330, the accumulator V1 contains a combination of B,’s and
Ci’s. As the computation for the B elements has finished after this 1teration, those B,’s can be
saved 1into memory, cache or other data storage. Thus, the condition for each of B elements 1s
talse (because they do not satisty the condition for further computation), and the condition for
cach of the C elements is true (because they satisty the condition for further computation). Thus,
the mask bit values 1n K1 are set to zeros for those mask bits corresponding to B;,’s, and ones for
those mask bits corresponding to C;’s.

The unutilized slots left by B,’s can be filled by the remaining source data elements in
V2; 1n this case, Co 1n position 7 of V2. However, as there 1s a smaller number of Cy’s than the
number of B,’s, an underflow occurs 1n a subsequent merge operation 340. In the undertlow
scenario shown in Figure 3, the lowest-order B, 1n V1 1s replaced by Cy; in alternative
embodiments, the highest-order B, 1n V1 may be replaced by C,. The merge operation 340 also
updates the corresponding mask bits in K1 and K2.

After the merge operation 340, the accumulator V1 1s not completely filled, and V2
does not have any more useful data elements that can move 1into V1. The mask register K1 at
this point (after the merge operation 340) contains ones 1n the positions corresponding to the C
clements, and K2 contains all zeros. V2 may load additional useful data elements to be moved
into V1 and the merge operations of 320 and/or 340 can be repeated, until all of the useful data
elements are processed and no more source data elements are left in V2. At this point, V1 may
90 through a number of additional iterations until all of the elements in V1 reach the required
number of iterations.

It 1s understood that the meaning of mask bit values of zeros and ones can be reversed
from what 1s shown in the example of Figure 3; e.g., a mask bit value of zero can be used to
mean that a condition 1s satistied and a mask bit value of one can be used to mean that the
condition 1s not satistied. In some embodiments, the meaning of K1 mask bit values can be
reversed from the meaning of K2 mask bit values; e.g., a K1 mask bit value of one can be used to
mean that a condition 1s not satisfied and a K2 mask bit value of one can be used to mean that the
condition 1s satisfied. Thus, different mask bit values can be used in the example of Figure 3 for
the same scenario, as long as the meaning of each mask bit in each mask register 1s consistently
defined to allow consistent interpretation.

According to one embodiment of the invention, the operations described 1n connection
with Figure 3 are performed by a processor (e.g., the instruction processing apparatus 115) in
response to the vector instructions that include RWMASKUPDATE and SPARSEMOV
instructions. The SPARSEMOYV instruction can be used to move source data elements from

vector register V2 1nto vector register V1, replacing the target elements 1n V1 that do not satisty

10

15

20

25

30

35

a condition (e.g., elements that need no more computation). The RWMASKUPDATE
instruction can be used to update the mask registers K1 and K2 to thereby 1dentity the positions
of the data elements in V1 and V2, respectively, that satisfy a condition (e.g2., elements that need
more computation). In one embodiment, RWMASKUPDATE has two operands K1 and K2, and
SPARSEMOYV has four operands K1, VI, K2 and V2. In alternative embodiments, some of the
operands of RWMASKUPDATE and/or SPARSEMOYV may be implicit.

Figure 4A shows an example of pseudo-code 401 and 402 for the RWMASKUPDATE
and SPARSEMOYV i1nstructions according to one embodiment. In the pseudo-code 401 and 402,
KL represents the vector length, which 1s the total number of data elements in each vector
register (e.g., each of V1 and V2). If a zmm register 1s used as the accumulator with 8-bit data
elements, KL = 512/8 = 64. Pseudo-code 401 describes the RWMASKUPDATE 1nstruction,
and pseudo-code 402 describes the SPARSEMOYV i1nstruction. It 1s noted that a processor may
implement the RWMASKUPDATE and SPARSEMOYV 1nstructions with operations or logic

different from what 1s shown 1n the pseudo-code 401 and 402.

The RWMASKUPDATE and SPARSEMOYV instructions update mask registers and
move data elements between vector registers, respectively. Additional instructions can be
executed to utilize results of these instructions to thereby perform recursive vector computation
more efficiently. Figure 4B illustrates an example of a code segment 400 that uses
RWMASKUPDATE and SPARSEMOYV instructions according to one embodiment. The code
segment 400 when executed by a processor causes the processor to perform recursive vector
computation over independent data elements of an array X. The array X may be stored 1n the
memory, cache or other data storage locations. The code segment 400 includes an 1nitialization
section 410, an 1nitial merge section 420, a subsequent merge section 430, a computation section
440 and a remainder section 450. Operations in each of the sections 410-450 are described
below with reference to the flow diagram of Figure SA, which illustrates an embodiment of a
method 500 performed by a processor (e.g., the instruction processing apparatus 115 of Figure
1).

In the initialization section 410, both mask registers K1 and K2 are initialized to zero,
indicating no useful data elements are in their corresponding vector registers V1 and V2. The
term “‘useful data elements” means data elements that need computation. Iterations begin at the
initial merge section 420, where K2 1s first checked to determine whether any useful data
clements are left in V2 (block 531). If there 1s no useful data in V2, input data elements are
loaded from array X into V2 (block 532), and their corresponding mask bits in K2 are set
accordingly.

The subsequent merge section 430 handles the scenario in which V2 contains useful

10

10

15

20

25

30

35

data elements. The useful data elements may be left in V2 from a previous overflow or may be
loaded 1nto V2 1n block 532. Responsive to the SPARSEMOYV 1nstruction 431, these useful data
clements 1n V2 are moved into V1 according to the mask bits in K1 and K2 (block 533).
Responsive to the RWMASKUPDATE instruction 433, the mask registers K1 and K2 are
updated to 1dentify the current positions of the useful data elements 1n V1 and V2, respectively,
after the move in block 533 (block 534).

In the subsequent merge section 430, a second SPARSEMOYV instruction 432 1s
executed to store the indexes (positions) of the data elements 1n array X that were moved from
V2 into V1, such that results of the computation can be stored back to their original positions in
array X.

The computation section 440 handles the vector computation of a full vector (as
indicated by the corresponding mask being all ones; 1.e., when IsFullMask(K1) 1s true). If V1
does not have a tull vector of usetul data elements (block 535) and there are input data elements
that have not been loaded 1into V1 (block 538), it indicates that additional input data elements can
to be loaded 1nto V1 via V2 (blocks 532-534). If V1 does not have a full vector and there are no
more input data elements to be loaded into V1 (block 538), it indicates that the operations
proceed to the remainder section 450 where remaining data elements in V1 are computed until
computation 1s finished and results are saved back to array X (block 539).

If V1 has a full vector of useful data elements (block 535), vector computation can be
performed on V1 (block 536). The mask register K1 is updated if any data elements in V1 need
no more computation. The vector computation continues until one or more data elements 1in V1
need no more computation (as indicated by corresponding zero-value mask bits in K1); at that
point those data elements are saved back to array X (block 537). In the embodiment as shown,
the data elements can be saved with a SCATTER instruction, and zero-value mask bits in K1 can
be 1dentified using a function knot(K1). Except for the RWMASKUPDATE and SPARSEMOV
instructions, the specific instructions and functions used 1n the code segment 400, such as
SCATTER, knot, IsFullMask, etc., can be emulated by alternative instruction sequences.

The operations of blocks 531-537 are repeated until there are no more input data
elements to be loaded into V1 through V2 (block 538); 1.e., when all of the input data elements in
array X have been loaded into V2 and all of the useful data elements 1in V2 have been moved into
V1. This 1s when the remainder section 450 begins. At this point, V1 may not have a full vector
of useful data elements but those data elements in V1 need turther computation. The vector
computation continues until all of the remaining data elements in V1 reach the required number

of 1terations (block 539). At this point, the computation result in V1 can be saved back 1nto

array X (e.g., using a SCATTER instruction) (block 539).

11

10

15

20

25

30

35

Figure 5B is a block flow diagram of a method 510 for executing the
RWMASKUPDATE instruction according to one embodiment. The method 510 begins with a
processor (e.g., the instruction processing apparatus 115 of Figure 1) receiving a mask update
instruction specitying a first mask register and a second mask register (block 511). The
processor decodes the mask update instruction (block 512). In response to the decoded mask
update instruction, the processor performs the operations including: inverting a given number of
mask bits 1n the first mask register; for example, by setting these mask bits from a first bit value
(e.g., zero) to a second bit value (e.g., one) (block 513); and inverting the given number of mask
bits 1n the second mask register; for example, by setting these mask bits from the second bit
value (e.g., one) to the first bit value (e.g., zero) (block 514). The given number 1s the smaller
one of the number of mask bits 1n the first mask register having the first bit value and the number
of mask bits in the second mask register having the second bit value. In an alternative
embodiment, the first bit value may be one and the second bit value may be zero.

Figure 5C is a block flow diagram of a method 520 for executing the SPARSEMOV
instruction according to one embodiment. The method 520 begins with a processor (e.g., the
instruction processing apparatus 115 of Figure 1) receiving a vector move instruction specifying
a first mask register, a second mask register, a first vector register, and a second vector register
(block 521). The processor decodes the vector move operation (block 522). In response to the
decoded vector move instruction and based on the mask bit values 1n the first and second mask
registers, the processor replaces a given number of target data elements in the first vector register
with the given number of source data elements in the second vector register (block 523). In one
embodiment, each source data element corresponds to a mask bit in the second mask register
having a second bit value (e.g., one), and wherein each target data element corresponds to a
mask bit in the first mask register having a first bit value (e.g., zero). In an alternative
embodiment, the first bit value may be one and the second bit value may be zero. The given
number 1s the smaller one of the number of mask bits in the first mask register having the first bit
value and the number of mask bits in the second mask register having the second bit value.

In various embodiments, the methods of Figures SA-C may be performed by a general-
purpose processor, a special-purpose processor (e.£2., a graphics processor or a digital signal
processor), or another type of digital logic device or instruction processing apparatus. In some
embodiments, the methods of Figures SA-C may be performed by the instruction processing
apparatus 115 of Figure 1, or a similar processor, apparatus, or system, such as the embodiments
shown in Figures 7-13. Moreover, the instruction processing apparatus 115 of Figure 1, as well
as the processor, apparatus, or system shown in Figures 7-13 may perform embodiments of

operations and methods either the same as, similar to, or different than those of the methods ot

12

10

15

20

25

30

35

Figures SA-C.

In some embodiments, the instruction processing apparatus 115 of Figure 1 may
operate 1n conjunction with an instruction converter that converts an instruction from a source
instruction set to a target instruction set. For example, the instruction converter may translate
(e.g., using static binary translation, dynamic binary translation including dynamic compilation),
morph, emulate, or otherwise convert an instruction to one or more other instructions to be
processed by the core. The instruction converter may be implemented in software, hardware,
firmware, or a combination thereof. The instruction converter may be on processor, oft
processor, or part on and part off processor.

Figure 6 is a block diagram contrasting the use of a software instruction converter
according to embodiments of the invention. In the illustrated embodiment, the instruction
converter 1s a software instruction converter, although alternatively the instruction converter may
be implemented in software, firmware, hardware, or various combinations thereof. Figure 6
shows a program in a high level language 602 may be compiled using an x86 compiler 604 to
generate x386 binary code 606 that may be natively executed by a processor with at least one x86
instruction set core 616. The processor with at least one x86 1nstruction set core 616 represents
any processor that can perform substantially the same functions as an Intel processor with at least
one x36 1nstruction set core by compatibly executing or otherwise processing (1) a substantial
portion of the instruction set of the Intel x86 instruction set core or (2) object code versions of
applications or other software targeted to run on an Intel processor with at least one x386
instruction set core, 1in order to achieve substantially the same result as an Intel processor with at
least one x386 instruction set core. The x86 compiler 604 represents a compiler that 1s operable to
generate x86 binary code 606 (e.g., object code) that can, with or without additional linkage
processing, be executed on the processor with at least one x86 instruction set core 616.

Similarly, Figure 6 shows the program in the high level language 602 may be compiled using an
alternative instruction set compiler 608 to generate alternative instruction set binary code 610
that may be natively executed by a processor without at least one x36 instruction set core 614
(e.g., a processor with cores that execute the MIPS 1nstruction set of MIPS Technologies of
Sunnyvale, CA and/or that execute the ARM 1instruction set of ARM Holdings of Sunnyvale,
CA). The instruction converter 612 1s used to convert the x86 binary code 606 into code that
may be natively executed by the processor without an x36 instruction set core 614. This
converted code 1s not likely to be the same as the alternative instruction set binary code 610
because an instruction converter capable of this 1s difficult to make; however, the converted code
will accomplish the general operation and be made up of instructions from the alternative

instruction set. Thus, the instruction converter 612 represents software, firmware, hardware, or a

13

10

15

20

25

30

35

combination thereof that, through emulation, simulation or any other process, allows a processor
or other electronic device that does not have an x36 instruction set processor or core to execute
the x86 binary code 606.

Exemplary Core Architectures

In-order and out-of-order core block diagram

Figure 7A is a block diagram illustrating both an exemplary in-order pipeline and an
exemplary register renaming, out-of-order 1ssue/execution pipeline according to embodiments of
the invention. Figure 7B is a block diagram illustrating both an exemplary embodiment of an
in-order architecture core and an exemplary register renaming, out-of-order 1ssue/execution
architecture core to be included 1n a processor according to embodiments of the invention. The
solid lined boxes in Figures 7A and 7B illustrate the in-order pipeline and in-order core, while
the optional addition of the dashed lined boxes 1llustrates the register renaming, out-of-order
1ssue/execution pipeline and core. (iven that the in-order aspect 1s a subset of the out-of-order
aspect, the out-of-order aspect will be described.

In Figure 7A, a processor pipeline 700 includes a fetch stage 702, a length decode stage
704, a decode stage 706, an allocation stage 708, a renaming stage 710, a scheduling (also
known as a dispatch or i1ssue) stage 712, a register read/memory read stage 714, an execute stage
716, a write back/memory write stage 718, an exception handling stage 722, and a commit stage
724,

Figure 7B shows processor core 790 including a front end unit 730 coupled to an
execution engine unit 750, and both are coupled to a memory unit 770. The core 790 may be a
reduced 1nstruction set computing (RISC) core, a complex instruction set computing (CISC)
core, a very long instruction word (VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 790 may be a special-purpose core, such as, for example, a network or
communication core, compression engine, Coprocessor core, general purpose computing graphics
processing unit (GPGPU) core, graphics core, or the like.

The front end unit 730 includes a branch prediction unit 732 coupled to an instruction
cache unit 734, which is coupled to an instruction translation lookaside butter (TLLB) 736, which
1s coupled to an instruction fetch unit 738, which 1s coupled to a decode unit 740. The decode
unit 740 (or decoder) may decode instructions, and generate as an output one or more micro-
operations, micro-code entry points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise retlect, or are derived from, the original
instructions. The decode unit 740 may be implemented using various ditferent mechanisms.
Examples of suitable mechanisms include, but are not limited to, look-up tables, hardware

implementations, programmable logic arrays (PLLAs), microcode read only memories (ROMSs),

14

10

15

20

25

30

35

etc. In one embodiment, the core 790 includes a microcode ROM or other medium that stores
microcode for certain macroinstructions (e.g., in decode unit 740 or otherwise within the front
end unit 730). The decode unit 740 1s coupled to a rename/allocator unit 752 1n the execution
engine unit 750.

The execution engine unit 750 includes the rename/allocator unit 752 coupled to a
retirement unit 754 and a set of one or more scheduler unit(s) 756. The scheduler unit(s) 756
represents any number of different schedulers, including reservations stations, central instruction
window, etc. The scheduler unit(s) 756 1s coupled to the physical register file(s) unit(s) 758.
Each of the physical register file(s) units 7358 represents one or more physical register files,
different ones of which store one or more different data types, such as scalar integer, scalar
floating point, packed integer, packed floating point, vector integer, vector floating point,, status
(e.g., an instruction pointer that 1s the address of the next instruction to be executed), etc. In one
embodiment, the physical register file(s) unit 758 comprises a vector registers unit, a write mask
registers unit, and a scalar registers unit. These register units may provide architectural vector
registers, vector mask registers, and general purpose registers. The physical register file(s)
unit(s) 758 1s overlapped by the retirement unit 754 to illustrate various ways in which register
renaming and out-of-order execution may be implemented (e.g2., using a reorder buffer(s) and a
retirement register file(s); using a future file(s), a history butfer(s), and a retirement register
file(s); using a register maps and a pool of registers; etc.). The retirement unit 754 and the
physical register file(s) unit(s) 758 are coupled to the execution cluster(s) 760. The execution
cluster(s) 760 includes a set of one or more execution units 762 and a set of one or more memory
access units 764. The execution units 762 may perform various operations (e.g., shifts, addition,
subtraction, multiplication) and on various types of data (e.g., scalar tloating point, packed
integer, packed floating point, vector integer, vector floating point). While some embodiments
may include a number of execution units dedicated to specific functions or sets of functions,
other embodiments may include only one execution unit or multiple execution units that all
perform all functions. The scheduler unit(s) 756, physical register file(s) unit(s) 758, and
execution cluster(s) 760 are shown as being possibly plural because certain embodiments create
separate pipelines for certain types of data/operations (e.2., a scalar integer pipeline, a scalar
floating point/packed integer/packed tloating point/vector integer/vector floating point pipeline,
and/or a memory access pipeline that each have their own scheduler unit, physical register file(s)
unit, and/or execution cluster — and 1n the case of a separate memory access pipeline, certain
embodiments are implemented 1n which only the execution cluster of this pipeline has the
memory access unit(s) 764). It should also be understood that where separate pipelines are used,

one or more of these pipelines may be out-of-order 1ssue/execution and the rest in-order.

15

10

15

20

25

30

35

The set of memory access units 764 1s coupled to the memory unit 770, which includes
a data TLB unit 772 coupled to a data cache unit 774 coupled to a level 2 (L.2) cache unit 776. In
one exemplary embodiment, the memory access units 764 may include a load unit, a store
address unit, and a store data unit, each of which 1s coupled to the data TLB unit 772 in the
memory unit 770. The instruction cache unit 734 1s turther coupled to a level 2 (1.2) cache unit
776 in the memory unit 770. The L2 cache unit 776 1s coupled to one or more other levels of
cache and eventually to a main memory.

By way of example, the exemplary register renaming, out-of-order issue/execution core
architecture may implement the pipeline 700 as follows: 1) the instruction fetch 738 performs
the fetch and length decoding stages 702 and 704; 2) the decode unit 740 pertorms the decode
stage 706; 3) the rename/allocator unit 752 performs the allocation stage 708 and renaming stage
710; 4) the scheduler unit(s) 756 performs the schedule stage 712; 5) the physical register file(s)
unit(s) 758 and the memory unit 770 perform the register read/memory read stage 714; the
execution cluster 760 perform the execute stage 716; 6) the memory unit 770 and the physical
register file(s) unit(s) 758 perform the write back/memory write stage 718; 7) various units may
be involved 1n the exception handling stage 722; and 8) the retirement unit 754 and the physical
register file(s) unit(s) 758 perform the commit stage 724.

The core 790 may support one or more 1nstructions sets (e.g., the x386 instruction set
(with some extensions that have been added with newer versions); the MIPS 1nstruction set of
MIPS Technologies of Sunnyvale, CA; the ARM instruction set (with optional additional
extensions such as NEON) of ARM Holdings of Sunnyvale, CA), including the instruction(s)
described herein. In one embodiment, the core 790 1ncludes logic to support a packed data
instruction set extension (e.g., SSE, AVX1, AVX?2, etc.), thereby allowing the operations used
by many multimedia applications to be performed using packed data.

It should be understood that the core may support multithreading (executing two or
more parallel sets of operations or threads), and may do so 1n a variety of ways including time
sliced multithreading, simultaneous multithreading (where a single physical core provides a
logical core for each of the threads that physical core 1s simultaneously multithreading), or a
combination thereot (e.g., time sliced fetching and decoding and simultaneous multithreading
thereatter such as in the Intel® Hyperthreading technology).

While register renaming is described 1n the context of out-of-order execution, it should
be understood that register renaming may be used in an 1in-order architecture. While the
illustrated embodiment of the processor also includes separate instruction and data cache units
734/774 and a shared L2 cache unit 776, alternative embodiments may have a single internal

cache for both instructions and data, such as, for example, a Level 1 (LL1) internal cache, or

16

10

15

20

25

30

multiple levels of internal cache. In some embodiments, the system may include a combination
of an internal cache and an external cache that 1s external to the core and/or the processor.

Alternatively, all of the cache may be external to the core and/or the processor.

Specific Exemplary In-Order Core Architecture

Figures 8A-B illustrate a block diagram of a more specific exemplary in-order core

architecture, which core would be one of several logic blocks (1including other cores of the same

type and/or different types) in a chip. The logic blocks communicate through a high-bandwidth
interconnect network (e.g., a ring network) with some fixed function logic, memory 1/0

interfaces, and other necessary 1I/0 logic, depending on the application.

Figure 8A is a block diagram of a single processor core, along with its connection to
the on-die interconnect network 802 and with its local subset of the Level 2 (1.2) cache 804,
according to embodiments of the invention. In one embodiment, an instruction decoder 800
supports the x36 1nstruction set with a packed data instruction set extension. An L1 cache 806
allows low-latency accesses to cache memory 1nto the scalar and vector units. While 1n one
embodiment (to sumplify the design), a scalar unit 308 and a vector unit 810 use separate register
sets (respectively, scalar registers 812 and vector registers 814) and data transterred between
them 1s written to memory and then read back in from a level 1 (I.1) cache 806, alternative
embodiments of the invention may use a ditferent approach (e.g., use a single register set or
include a communication path that allow data to be transterred between the two register files

without being written and read back).

The local subset of the 1.2 cache 804 1s part ot a global L2 cache that 1s divided into
separate local subsets, one per processor core. Each processor core has a direct access path to 1ts
own local subset of the .2 cache 804. Data read by a processor core 1s stored 1n 1ts L2 cache
subset 804 and can be accessed quickly, 1n parallel with other processor cores accessing their
own local L2 cache subsets. Data written by a processor core 1s stored 1n 1ts own L2 cache
subset 804 and 1s flushed from other subsets, 1f necessary. The ring network ensures coherency

tor shared data. The ring network 1s bi-directional to allow agents such as processor cores, L2

caches and other logic blocks to communicate with each other within the chip. Each ring data-

path 1s 1012-bits wide per direction.

Figure 8B is an expanded view of part of the processor core in Figure 8A according to

embodiments of the invention. Figure 8B includes an L1 data cache 806A part of the L1 cache
304, as well as more detail regarding the vector unit 810 and the vector registers 814.
Specitically, the vector unit 810 is a 16-wide vector processing unit (VPU) (see the 16-wide

ALU 828), which executes one or more of integer, single-precision tloat, and double-precision

17

10

15

20

25

30

35

float instructions. The VPU supports swizzling the register inputs with swizzle unit 820,
numeric conversion with numeric convert units 822A-B, and replication with replication unit 824

on the memory input. Write mask registers 826 allow predicating resulting vector writes.

Processor with integrated memory controller and graphics

Figure 9 1s a block diagram of a processor 900 that may have more than one core, may
have an integrated memory controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes 1in Figure 9 illustrate a processor 900 with
a single core 902A, a system agent 910, a set of one or more bus controller units 916, while the
optional addition of the dashed lined boxes illustrates an alternative processor 900 with multiple
cores Y02A-N, a set of one or more integrated memory controller unit(s) 914 in the system agent
unit 910, and special purpose logic 908.

Thus, different implementations ot the processor 900 may include: 1) a CPU with the
special purpose logic 908 being integrated graphics and/or scientific (throughput) logic (which
may include one or more cores), and the cores 902A-N being one or more general purpose cores
(e.g., general purpose 1n-order cores, general purpose out-of-order cores, a combination of the
two); 2) a coprocessor with the cores 902A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (throughput); and 3) a coprocessor with the
cores 902A-N being a large number of general purpose in-order cores. Thus, the processor 900
may be a general-purpose processor, CoOprocessor or special-purpose processor, such as, for
example, a network or communication processor, compression engine, graphics processor,
GPGPU (general purpose graphics processing unit), a high-throughput many integrated core
(MIC) coprocessor (1including 30 or more cores), embedded processor, or the like. The processor
may be implemented on one or more chips. The processor 900 may be a part of and/or may be
implemented on one or more substrates using any of a number of process technologies, such as,
for example, BiICMOS, CMOS, or NMOS.

The memory hierarchy includes one or more levels of cache within the cores, a set or
one or more shared cache units 906, and external memory (not shown) coupled to the set of
integrated memory controller units 914. The set of shared cache units 906 may include one or
more mid-level caches, such as level 2 (1L2), level 3 (LL3), level 4 (1L4), or other levels of cache, a
last level cache (LLC), and/or combinations thereof. While in one embodiment a ring based
interconnect unit 912 interconnects the integrated graphics logic 908, the set of shared cache
units 906, and the system agent unit 910/integrated memory controller unit(s) 914, alternative
embodiments may use any number of well-known techniques for interconnecting such units. In

one embodiment, coherency 1s maintained between one or more cache units 906 and cores 902-

A-N.

18

10

15

20

25

30

35

In some embodiments, one or more of the cores 902A-N are capable of multi-threading.
The system agent 910 1includes those components coordinating and operating cores 902A-N. The
system agent unit 910 may include for example a power control unit (PCU) and a display unit.
The PCU may be or include logic and components needed for regulating the power state of the
cores Y02A-N and the integrated graphics logic 9038. The display unit is for driving one or more
externally connected displays.

The cores 902A-N may be homogenous or heterogeneous in terms of architecture
instruction set; that 1s, two or more of the cores 902A-N may be capable of execution the same
instruction set, while others may be capable of executing only a subset of that instruction set or a
different instruction set.

Exemplary Computer Architectures

Figures 10-13 are block diagrams of exemplary computer architectures. Other system
designs and configurations known 1n the arts for laptops, desktops, handheld PCs, personal
digital assistants, engineering workstations, servers, network devices, network hubs, switches,
embedded processors, digital signal processors (DSPs), graphics devices, video game devices,
set-top boxes, micro controllers, cell phones, portable media players, hand held devices, and
various other electronic devices, are also suitable. In general, a huge variety of systems or
electronic devices capable of incorporating a processor and/or other execution logic as disclosed
herein are generally suitable.

Referring now to Figure 10, shown is a block diagram of a system 1000 in accordance
with one embodiment of the present invention. The system 1000 may include one or more
processors 1010, 1015, which are coupled to a controller hub 1020. In one embodiment the
controller hub 1020 includes a graphics memory controller hub (GMCH) 1090 and an
Input/Output Hub (I0H) 1050 (which may be on separate chips); the GMCH 1090 includes
memory and graphics controllers to which are coupled memory 1040 and a coprocessor 1045;
the IOH 1050 1s couples input/output (I/0) devices 1060 to the GMCH 1090. Alternatively, one
or both of the memory and graphics controllers are integrated within the processor (as described
herein), the memory 1040 and the coprocessor 1045 are coupled directly to the processor 1010,
and the controller hub 1020 1n a single chip with the IOH 10350.

The optional nature of additional processors 1015 1s denoted in Figure 10 with broken
lines. Each processor 1010, 1015 may include one or more of the processor cores described
herein and may be some version of the processor 900.

The memory 1040 may be, for example, dynamic random access memory (DRAM),
phase change memory (PCM), or a combination of the two. For at least one embodiment, the

controller hub 1020 communicates with the processor(s) 1010, 1015 via a multi-drop bus, such

19

10

15

20

25

30

35

as a frontside bus (FSB), point-to-point interface such as QuickPath Interconnect (QPI), or
similar connection 1095.

In one embodiment, the coprocessor 10435 1s a special-purpose processor, such as, for
example, a high-throughput MIC processor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor, or the like. In one embodiment,
controller hub 1020 may include an integrated graphics accelerator.

There can be a variety of ditfferences between the physical resources 1010, 1015 1n
terms of a spectrum of metrics of merit including architectural, micro-architectural, thermal,
power consumption characteristics, and the like.

In one embodiment, the processor 1010 executes instructions that control data
processing operations of a general type. Embedded within the instructions may be coprocessor
instructions. The processor 1010 recognizes these coprocessor instructions as being of a type
that should be executed by the attached coprocessor 1045. Accordingly, the processor 1010
1ssues these coprocessor instructions (or control signals representing coprocessor instructions) on
a coprocessor bus or other interconnect, to coprocessor 1045. Coprocessor(s) 1045 accept and
execute the recerved coprocessor instructions.

Referring now to Figure 11, shown is a block diagram of a first more specific
exemplary system 1100 1n accordance with an embodiment of the present invention. As shown
in Figure 11, multiprocessor system 1100 is a point-to-point interconnect system, and includes a
first processor 1170 and a second processor 1180 coupled via a point-to-point interconnect 1150.
Each of processors 1170 and 1180 may be some version of the processor 900. In one
embodiment of the invention, processors 1170 and 1180 are respectively processors 1010 and
1015, while coprocessor 1138 1s coprocessor 1045. In another embodiment, processors 1170 and
1180 are respectively processor 1010 coprocessor 1045.

Processors 1170 and 1180 are shown including integrated memory controller (IMC)
units 1172 and 1182, respectively. Processor 1170 also includes as part of its bus controller
units point-to-point (P-P) interfaces 1176 and 1178; similarly, second processor 1180 includes P-
P interfaces 1186 and 1188. Processors 1170, 1180 may exchange information via a point-to-
point (P-P) interface 1150 using P-P interface circuits 1178, 1188. As shown in Figure 11,
IMCs 1172 and 1182 couple the processors to respective memories, namely a memory 1132 and
a memory 1134, which may be portions of main memory locally attached to the respective
pProcessors.

Processors 1170, 1180 may each exchange information with a chipset 1190 via
individual P-P interfaces 1152, 1154 using point to point interface circuits 1176, 1194, 1186,
1198. Chipset 1190 may optionally exchange information with the coprocessor 1138 via a high-

20

10

15

20

25

30

35

performance interface 1139. In one embodiment, the coprocessor 1138 1s a special-purpose
processor, such as, for example, a high-throughput MIC processor, a network or communication
processor, compression engine, graphics processor, GPGPU, embedded processor, or the like.

A shared cache (not shown) may be included 1n either processor or outside of both
processors, yet connected with the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the shared cache if a processor 1s placed
into a low power mode.

Chipset 1190 may be coupled to a first bus 1116 via an interface 1196. In one
embodiment, first bus 1116 may be a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation 1/0 interconnect bus, although the scope of
the present invention 1s not so limited.

As shown in Figure 11, various I/O devices 1114 may be coupled to first bus 1116,
along with a bus bridge 1118 which couples first bus 1116 to a second bus 1120. In one
embodiment, one or more additional processor(s) 11135, such as coprocessors, high-throughput
MIC processors, GPGPU’s, accelerators (such as, e.g2., graphics accelerators or digital signal
processing (DSP) units), field programmable gate arrays, or any other processor, are coupled to
first bus 1116. In one embodiment, second bus 1120 may be a low pin count (LPC) bus.
Various devices may be coupled to a second bus 1120 including, for example, a keyboard and/or
mouse 1122, communication devices 1127 and a storage unit 1128 such as a disk drive or other
mass storage device which may include 1nstructions/code and data 1130, in one embodiment.
Further, an audio I/0O 1124 may be coupled to the second bus 1120. Note that other architectures
are possible. For example, instead of the point-to-point architecture of Figure 11, a system may
implement a multi-drop bus or other such architecture.

Referring now to Figure 12, shown is a block diagram of a second more specific
exemplary system 1200 in accordance with an embodiment of the present invention. Like
celements 1n Figures 11 and 12 bear like reference numerals, and certain aspects of Figure 11
have been omitted from Figure 12 1n order to avoid obscuring other aspects of Figure 12.

Figure 12 illustrates that the processors 1170, 1180 may include integrated memory and
I/O control logic (*“CL”) 1172 and 1182, respectively. Thus, the CL 1172, 1182 include
integrated memory controller units and include 1/0 control logic. Figure 12 illustrates that not
only are the memories 1132, 1134 coupled to the CL 1172, 1182, but also that I/O devices 1214
are also coupled to the control logic 1172, 1182. Legacy 1/0 devices 1215 are coupled to the
chipset 1190.

Referring now to Figure 13, shown is a block diagram of a SoC 1300 in accordance

with an embodiment of the present invention. Similar elements in Figure 9 bear like reference

21

10

15

20

25

30

35

numerals. Also, dashed lined boxes are optional features on more advanced SoCs. In Figure 13,
an interconnect unit(s) 1302 is coupled to: an application processor 1310 which includes a set of
one or more cores 202A-N and shared cache unit(s) 906; a system agent unit 910; a bus
controller unit(s) 916; an integrated memory controller unit(s) 914; a set or one or more
coprocessors 1320 which may include integrated graphics logic, an image processor, an audio
processor, and a video processor; an static random access memory (SRAM) unit 1330; a direct
memory access (DMA) unit 1332; and a display unit 1340 for coupling to one or more external
displays. In one embodiment, the coprocessor(s) 1320 include a special-purpose processor, such
as, for example, a network or communication processor, compression engine, GPGPU, a high-
throughput MIC processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be implemented 1n hardware,
software, firmware, or a combination of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or program code executing on
programmable systems comprising at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least one input device, and at least one
output device.

Program code, such as code 1130 illustrated in Figure 11, may be applied to input
instructions to perform the functions described herein and generate output information. The
output information may be applied to one or more output devices, in known fashion. For
purposes of this application, a processing system includes any system that has a processor, such
as, for example; a digital signal processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

The program code may be implemented 1n a high level procedural or object oriented
programming language to communicate with a processing system. The program code may also
be implemented 1n assembly or machine language, if desired. In fact, the mechanisms described
herein are not limited 1n scope to any particular programming language. In any case, the
language may be a compiled or interpreted language.

One or more aspects of at least one embodiment may be implemented by representative
instructions stored on a machine-readable medium which represents various logic within the
processor, which when read by a machine causes the machine to fabricate logic to perform the
techniques described herein. Such representations, known as “IP cores” may be stored on a
tangible, machine readable medium and supplied to various customers or manufacturing
tacilities to load into the tabrication machines that actually make the logic or processor.

Such machine-readable storage media may include, without limitation, non-transitory,

tangible arrangements of articles manufactured or formed by a machine or device, including

22

storage media such as hard disks, any other type of disk mcluding floppy disks, optical disks, compact disk
read-ondy memornies (CD-ROMs), compact disk rewrifable 's (CD-KWs), and magneto-optical disks,
semiconductor devices such as read-only memones (RUMSs), random access memornies (RAMs) such as
dynamic random access memories (DRAMs), static random access memories (SRAMS), erasable

programmable read-only memones (EPRUOMSs), flash memories, electrically erasable programmable read-

only memories {EEPROMS), phase change memory (PCM), magnctic or optical cards. or any other type of
raedia suitable for stornng clectrormce msiructions.

Accordingly, embodiments of the vention alse mclude non-transitory, tangible machine-readable
media contaimung nstructions or contaming design data, such as Hardware Description Language (HDL),
which defines structures, circuits, apparatuscs, processors and/or system features described herein, Such
cbodiments mav also be referred {0 as program products.

While certamn exemplary embodiments have been described and shown i the accompanying
drawings, 1t 1s to be understood that such embodiments arc merely llustrative of and not restrictive on the
broad 1vention, and that this mvention nol be lnmited to the speciiic constructions and arrangements
shown and described, since vanous other modiications may occur to those ordinanly skalled 1o the art
upon studyving this disclosure. {n an arca of technology such as this, where growth is fast and further
advancements arc not easuly foreseen, the disclosed embodiments may be readily modifiable i
arrangement and detail as facilitated by enabling technological advancoments without departing from the
principles of the present disclosure or the scope of the accompanying claims.

The following section of the descniption relates to turther examples. The numbered paragraphs m
this section arc not claims. The claims are sct forth below m the later section headed “claims™

1. An apparatus comprising:

a register file mcluding a first mask register and a sccond mask register; and

execution circuitry coupled to the reguster file to execute the mask update mstruction, wherein 1 response
to the mask update mstruction, the execution circutry 1s to wmvert a given number of mask bits 1o the first
mask register, and to mvert the given number of mask bits in the second mask register.

2. The apparatus of clause 1 |, wherein the given number 18 the smaller one of the number of mask bits
the first mask register having a first bt value and the number of mask bits m the second mask register
having a second b value.

3. The apparatus of clause 1, wheremn the first bit value 18 the same as the second bit value.

4. 'The apparatus of clause 1, wheren the first b value 18 an mverse of the second bif value.

3. The apparatus of clause 1, wherein the given number of mask bits m the first mask register are cither
lower-order mask bits or higher-order mask bits i the first mask register.

6. The apparatus of clause 1, wherem the given number of mask bits mn the second mask register are either
iower-order mask biis or higher-order mask bits m the second mask register.

7. The apparatus of clause 1. further comprising:

23

a first vector register associated with the first mask register, wherein each mask bit of the first mask
register mdicales whether a condition for a corresponding data clement 1 the first vector register 18
satisfied; and

a second vector register assoctated with the second mask register, wherein ¢ach mask bt of the second
mask register mdicates whether the condition for a corresponding data clement in the second vector
register 15 satishied.

8. The apparatus of clause 7, wherein further computation 1s necded for a given data element when the
condition for the given data element 18 satishicd.

9. A method comprising:

receiving by a processor a mask update msiruction specifving a first mask register and a second mask
register; and

in response to the mask update mstruction, performing operafions mehiding:

mverting a given number of mask bits 10 the first mask register, and

mverting the given number of mask bits i the second mask register.

10. The method of clause 9, wherein the given number 18 the smaller one of the number of mask bits in the
first mask register having a first bit value and the number of mask bits 1 the second mask register having a
second bl value.

11. The method of clause 9, wherein the first bit valoe 15 the same as the second bit vahue.

12. The apparatus of clause 9, wherein the first bit value 15 an mverse of the second bit value.

13. The method of clagse 9, wherein the given number of mask bits 1n the first mask regisier are cither
lower-order mask bits or higher-order mask bits i the first mask register.

14. The method of clause 9, whercin the given number of mask bits in the sccond mask register are either
lower-order mask bits or higher~ order mask bits in the second mask register.

13. The method of clause 9, wherein cach mask bit of the first mask register mdicates whether a condition
for a corresponding data clement 1 a first vector register s safistied, and

cach mask bit of the sccond mask register mdicates whether the condition for a corresponding data element
in a second vector register 1s satisfied.

16. The method of clause 15, wherein turther computation 1s necded for a given data element when the
condition for the given data element 1s satisficd.

17. A system Comprising:

memory (o store an wput data array:

a register file mcluding a first mask register and a second mask register to store operands of a mask update
instruction, and a first vector register and a second vector register associated with the first mask register
and the sccond mask register, respectively, to load the imput data array for vector computation; and
cxecution circuitry coupled to the regaster fue to execute the mask update mstruction, wheremn i response
to the mask update mstruchon, the execution circuitry 1s to set a given number of mask bits i the first
mask register from a first bit value to a second bit value, and to set the given number of mask bits n the

second mask register from the sccond bit value to the first bit valoe.

24

18. The system of clause 17, wheremn the given number 15 the smaller one of the number of mask bits m the
first mask register having the first bit valuc and the number of mask bits i the second mask register having
the second bul value,

19. The svstem of clause 17, wherem the first bt value is the same as the second bit value.

20. The svstem of clause 17, wherein the first bit value 1s an mmverse of the second bit value, 21. The
system of clause 17, wherein the given number of mask bits 1 the turst mask register are either lower-order
mask bits or lugher-order mask bits i the first mask register.

22. The svstem of clause 17, wherem the eiven number of mask bits in the second mask register are cither
lower-order mask bits or higher~order mask bits m the sccond mask register.

23. The svstem of clause 17, wheremn each mask bat of the first bit value m the first mask register mdicates
that a condition for a correspondimg data clement 1 the {first vector register 18 not satisfied. and wheren
cach mask bit of the second bit value 1n the second mask register indicates that the condiiion for a
corresponding data clement in the second vector register 1s satistied.

24, The svstem of clause 23, whercin further computation 1s necded for a given data clement when the

condition for the given data element 1s satisficd.

25

16 07 20

26

Claims

1. An apparatus comprising:

a register file mcluding first and second mask registers and first and second vector
registers;

decode circuitry to decode a mask update instruction; and

execution circuitry coupled to the register file and the decode circuitry, the execution
circultry to execute a decoded mask update mstruction to imnvert a given number of mask bits 1n
the first mask register from a first bit value indicating valid data to a second bit value indicating an
available slot, and to mmvert the given number of mask bits in the second mask register from the
second bit value to the first bit value, wherein the execution circuitry further to move the given
number of elements from the first vector register to the second vector register at the same relative

positions as the inverted bits in the second mask register.

2. The apparatus of claim 1, wherein the given number 1s the smaller one of the number of

mask bits n the first mask register having a first bit value and the number of mask bits 1n the

second mask register having a second bit value.

3. The apparatus of claim 1, wherein the first bit value 1s the same as the second bit value.
4. The apparatus of claim 1, wherein the first bit value 1s an inverse of the second bit value.
5. The apparatus of claim 1, wherein the given number of mask bits in the first mask register

are either lower-order mask bits or higher-order mask bits in the first mask register.

6. The apparatus of claim 1, wherein the given number of mask bits 1n the second mask

register are either lower-order mask bits or higher-order mask bits in the second mask register.

7. The apparatus of claim 1, wherein:
the first vector register 1s associated with the first mask register, wherein each mask bit of

the first mask register indicates whether a condition for a corresponding data element 1n the first

16 07 20

27

vector register 1s satisfied; and
the second vector register 1s associated with the second mask register, wherein each mask
b1t of the second mask register indicates whether the condition for a corresponding data element

in the second vector register 1s satisfied.

8. The apparatus of claim 7, wherein further computation 1s needed for a given data element

when the condition for the given data element 1s satistied.

9. A method comprising:
decoding a mask update mnstruction specifying a first mask register and a second mask
register; and
executing the mask update instruction by:
inverting a given number of mask bits in the first mask register from a first bit
value indicating valid data to a second b1t value indicating an available slot, and inverting
the given number of mask bits in the second mask register from the second bit value to the
first bit value, and
moving the given number of elements from a first vector register to a second
vector register at the same relative positions as the inverted bits in the second mask

register.

10. The method of claim 9, wherein the given number 1s the smaller one of the number of

mask bits in the first mask register having a first bit value and the number of mask bits in the

second mask register having a second bit value.

11. The method of claim 9, wherein the first bit value 1s the same as the second bit value.
12. The apparatus of claim 9, wherein the first bit value 1s an inverse of the second bit value.
13. The method of claim 9, wherein the given number of mask bits in the first mask register

are either lower-order mask bits or higher-order mask bits in the first mask register.

16 07 20

28

14. The method of claim 9, wherein the given number of mask bits in the second mask

register are either lower-order mask bits or higher-order mask bits 1n the second mask register.

15. The method of claim 9, wherein each mask bit of the first mask register indicates whether

a condition for a corresponding data element 1n the first vector register 1s satistied, and

each mask bit of the second mask register indicates whether the condition for a

corresponding data element 1n the second vector register 1s satisfied.

16. The method of claim 15, wherein further computation 1s needed for a given data element

when the condition for the given data element 1s satistied.

AN

Property
Office

Intellectual Property Office is an operating name of the Patent Office

29

Intellectual

Application No: GB2007409.2 Examiner: Dr Chris Batty
Claims searched: 1to 16 Date of search: 23 July 2020

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category [Relevant | Identity of document and passage or figure of particular relevance
to claims

A - USS5511210 A

(NISHIKAWA et al.) See line 27 of column 2 (“mask reverse
instruction”), for example.

A - US5903769 A

(ARYA) See lines 25 to 40 of column 3 (noting “vector merge
operation”), for example.

Categories:

X Document indicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.

Y Document indicating lack of mnventive step 1t P Document published on or after the declared priority date but
combined with one or more other documents of betore the filing date of this imnvention.
same category.

& Member of the same patent family E Patent document published on or after, but with priority date

earlier than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKC* :

Worldwide search of patent documents classified in the following areas of the IPC

GOO6F

The following online and other databases have been used 1n the preparation of this search report

WPI. EPODOC

International Classification:

Subclass Subgroup Valid From
GO6F 0009/30 01/01/2018
GO6F 0009/315 01/01/2018

www.gov.uk /ipo

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DRAWINGS
	Page 8 - DRAWINGS
	Page 9 - DRAWINGS
	Page 10 - DRAWINGS
	Page 11 - DRAWINGS
	Page 12 - DRAWINGS
	Page 13 - DRAWINGS
	Page 14 - DRAWINGS
	Page 15 - DRAWINGS
	Page 16 - DRAWINGS
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - CLAIMS
	Page 43 - CLAIMS
	Page 44 - CLAIMS
	Page 45 - SEARCH_REPORT

