(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2014/195805 A2

(43) International Publication Date 11 December 2014 (11.12.2014)

(51) International Patent Classification: Not classified

(21) International Application Number:

PCT/IB2014/001913

(22) International Filing Date:

20 May 2014 (20.05.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

13/898,094

20 May 2013 (20.05.2013)

US

- (71) Applicant: SIS RESOURCES, LTD. [IL/IL]; P.O. Box 674, 99000 Beith Shemesh (IL).
- (72) Inventors: JUSTER, Bernard; 5 Halotem Alley, Apt. #74, 42943 Netanya (IL). LEVITZ, Robert; 2 Nachal Tamar Street, Ramat Bet, 99643 Shemesh (IL). LEVY, **Dorron**; 12 Ken Kayemet Street, 53237 Givatayim (IL).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report (Rule 48.2(g))

(54) Title: APPLICATION DEVELOPMENT FOR A NETWORK WITH AN ELECTRONIC CIGARETTE

(57) Abstract: An electronic cigarette ("e-Cig") may include a controller for providing various operations within an e-Cig. Enhancements for the controller may provide for improved operations and control for the e-Cig with a consumer device, such as a smartphone. Applications on the smartphone may be developed for improving the operations and the control of the e-Cig, as well as making use of data communicated from the e-Cig. Applications may be developed for controlling smoke properties, monitoring operations, adjusting settings, receiving product notifications, or compiling/analyzing data from the e- Cig. Applications may also provide other capabilities that may not be unique to an e-Cig, but may incorporate capabilities of the e-Cig, including entertainment, medical, or gaming applications.

APPLICATION DEVELOPMENT FOR A NETWORK WITH AN ELECTRONIC CIGARETTE

INVENTORS: Bernard Juster Robert Levitz Dorron Levy

BACKGROUND

[0002] Smoking may be an activity with certain social implications. For example, social factors may influence the decision to start smoking or may be one reason for smoking in groups (from couples to people who go out to smoke together, to parties etc.). The social benefits of smoking without certain of the downsides may be achieved with an electronic cigarette ("e-cigarette" or "e-Cig"). An e-Cig is a device that emulates tobacco cigarette smoking, by producing smoke replacement that may be similar in its physical sensation, general appearance, and sometimes flavor (i.e., with tobacco fragrance, menthol taste, added nicotine etc.). The device may use heat, ultrasonic energy, or other means to atomize/vaporize a liquid (for example based on propylene glycol, or glycerin, for example including taste and fragrance ingredients) solution into an aerosol mist. The

atomization may be similar to nebulizer or humidifier vaporizing solutions for inhalation. The generated mist may be sensed similar to cigarette smoke. Because it is electronic, an e-Cig may provide opportunities for increased options, communication, and control.

BRIEF DESCRIPTION OF THE DRAWINGS

j

[0003] The system and method may be better understood with reference to the following drawings and description. Non-limiting and non-exhaustive embodiments are described with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. In the drawings, like referenced numerals designate corresponding parts throughout the different views.

[0004] Figure 1 is a diagram of an electronic eigarette;

[0005] Figure 2 is a diagram of an atomizer;

[0006] Figure 3 is a flow diagram of the electronic cigarette smoking process;

[0007] Figure 4 is a flow diagram of components for the electronic eigarette;

[0008] Figure 5 is an alternative diagram of an electronic cigarette with multiple e-Liquids;

[0009] Figure 6 is an alternative diagram of components in an electronic cigarette;

[0010] Figure 7 is a network diagram with an electronic cigarette;

[0011] Figure 8 is another network diagram with an electronic cigarette illustrating local and network communications;

[0012] Figure 9 is a diagram illustrating local communication examples;

[0013] Figure 10 is another network diagram with an electronic cigarette illustrating image acquisition;

[0014] Figure 11 is another exemplary electronic cigarette;

[0015] Figure 12 is a diagram illustrating communications interface examples;

[0016] Figure 13 is a diagram illustrating exemplary controller components;

[0017] Figure 14 is a flow chart for cigarette operation;

[0018] Figure 15 is a flow chart for smoking control;

[0019] Figure 16 illustrates an enhanced controller as part of a mount piece for regular cigarettes;

[0020] Figure 17 illustrates a flow diagram for the mount piece;

[0021] Figure 18 is a network diagram of electronic cigarette communications; and

[0022] Figure 19 is a network diagram with an application development component.

DETAILED DESCRIPTION

[0023] Subject matter will now be described more fully hereinafter with reference to the accompanying drawings, which form a part hereof, and which show, by way of illustration, specific example embodiments. Subject matter may, however, be embodied in a variety of different forms and, therefore, covered or claimed subject matter is intended to be construed as not being limited to any example embodiments set forth herein; example embodiments are provided merely to be illustrative. Likewise, a reasonably broad scope for claimed or covered subject matter is intended. Among other things, for example, subject matter may be embodied as methods, devices, components, or systems. Accordingly, embodiments may, for example, take the form of hardware, software, firmware or any combination thereof (other than software per se). The following detailed description is, therefore, not intended to be taken in a limiting sense.

[0024] Throughout the specification and claims, terms may have nuanced meanings suggested or implied in context beyond an explicitly stated meaning. Likewise, the phrase "in one embodiment" as used herein does not necessarily refer to the same embodiment and the phrase "in another embodiment" as used herein does not necessarily refer to a different embodiment. It is intended, for example, that claimed subject matter include combinations of example embodiments in whole or in part.

[0025] In general, terminology may be understood at least in part from usage in context. For example, terms, such as "and", "or", or "and/or," as used herein may include a variety of meanings that may depend at least in part upon the context in which such terms are used. Typically, "or" if used to associate a list, such as A, B or C, is intended to mean A, B, and C, here used in the inclusive sense, as well as A, B or C, here used in the

exclusive sense. In addition, the term "one or more" as used herein, depending at least in part upon context, may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense. Similarly, terms, such as "a," "an," or "the," again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context. In addition, the term "based on" may be understood as not necessarily intended to convey an exclusive set of factors and may, instead, allow for existence of additional factors not necessarily expressly described, again, depending at least in part on context.

By way of introduction, an electronic cigarette ("e-Cig") may include a [0026] controller for providing various operations within an e-Cig. Enhancements for the controller may provide for improved operations and control for the e-Cig. In one embodiment, there may be a communications capability which may be separate from or part of the controller. The communications may allow for the e-Cig to communicate with a consumer device, such as a computer, smartphone or tablet. The consumer may then control smoke properties, monitor operations, adjust settings, and/or receive product notifications or offers through the consumer device's communication with the e-Cig. Control may also be enabled for automatic services, such as messaging from commercial parties, by servers, by local area network ("LAN")-located entities, such as a smart phone application, and/or by other persons (e.g. friends, supporters or social networks) that may be located locally or over a wide area network ("WAN") such as the Internet. Other possible applications may include smoking cessation support, by professionals or peers (also my involve and incorporate other Nicotine Replacement Therapies (NRT), such as nicotine patches; competitions and challenges, for example of knowledge or taste recognition; related products marketing and sales, for example coffee or candy. The communications may enable connections to various websites on the Internet for usage tracking or social networking. Although commonly referred to as a smoker throughout, a user of an e-Cig may also be referred to as a vapor and the act of "smoking" may be referred to as vaping. Likewise, a non-electronic cigarette may be referred to as a

"regular" or "standard" cigarette, but should be understood to include non-electronic cigarettes. Although mist generation (or atomization) may be described interchangeably with vaporization, the concepts are distinct. The use of the term vaporization, vapor, or vaping should be understood to include the mist generation or atomization process.

[0027] Other systems, methods, features and advantages will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the following claims. Nothing in this section should be taken as a limitation on those claims. Further aspects and advantages are discussed below.

Figure 1 is a diagram of an electronic cigarette. The "smoke" produced by an [0028] e-Cig is a created by turning a liquid (e-Liquid 110) into mist and some vapor with an atomizer 112. The e-liquid 110 may have a high viscosity at room temperature to enable longer shelf life and reduce leakages; however, this high viscosity may reduce the atomization rate. The atomizer 112 is further described below with respect to Figure 2. The e-Liquid 110 is atomized via air flow 108, generated by the inhalation of the user (i.e. the smoker or consumer or vapor), which produces a pressure difference that removes e-Liquid droplets from the e-Liquid 110. In one embodiment, the e-Liquid 110 may be soaked in a wick. In order to reduce the e-Liquid viscosity, to a level enabling atomization, external heat may be applied through a heating element 111 as further described below. In this embodiment, local viscosity reduction via heating, while inhalation occurs, enables e-Liquid atomization in the inhalation-generated flow of air 108. The e-Liquid 110 may be heated via an electric current flowing through the heating element 111 and may then be atomized and evaporated through the e-Cig and may contain tastes and aromas that create a smoking sensation.

[0029] The controller 102 may be activated due to air flow 108 (from the inhaled air) passing a flow sensor 104. The sensor 104 may be activated by the pressure drop across the sensor and may directly switch the battery 106 power on, or be used as an input for the controller 102 that then switches the battery 106 current on. Although illustrated as

separate from the e-Cig, the controller 102 may be a part of the e-Cig (e.g. along with the battery 106). The enhancements to the controller 102 are further described below with respect to Figures 7-13, and include external communications from a communications chip. The communications described below may allow for increased control of properties of the sensor 104, battery 106, air flow 108, e-Liquid 110 or atomizer 112. In particular, the controller 102 may be configured for external communication to other computing devices and/or networks.

[0030] In one alternative embodiment, the battery 106 may be a separate/removable assembly. The battery 106 may include one or more electronic chips controlling and communicating from it. It may receive cartomizers. Conversely, a disposable e-Cig may include the battery 106 as a single unit. In another alternative embodiment, the battery 106 keeps a trickle current on. The trickle current may keep the communication link alive, while main current for the heating element 111 is only activated by the flow sensor 104.

[0031] Figure 2 is a diagram of the atomizer 112. The inhaled air 202 is passed through the atomizer 112. A heating element 206 (which may be separate from the atomizer 112 in alternate embodiments) supplies heat to the E-liquid 110, which reduces viscosity 208. Due to the heating element 206, the e-Liquid 110 viscosity over temperature profile may be designed in a way such that when heated its viscosity will be reduced to a level where atomization may be effective (with the pressure shear forces and velocities that can be created with inhalation activity). The heating element 206 may be powered through a power supply 204. The low viscosity e-liquid and the inhaled air 202 result in the smoke 210. The smoke 210 is not a traditional smoke, but is instead a combination of aerosol, warmed air and vapors, and may be referred to as a vapor.

[0032] The atomization may be the process that makes an aerosol. When a gas is injected under pressure difference through a tube with a narrowing cross-section, it speeds up, generating a pressure drop at the narrowest point due to Bernoulli's principle and creates Venturi's effect. The narrowing cross-section may enable pressure reduction in that the narrowing results in a velocity increase and pressure drop. The reduced pressure,

due to the pressure difference between the two points, sucks up a liquid from a reservoir through a narrow tube or tubes into the moving gas flow, and projects it forward as a fine spray of droplets. When liquid is moved through wick capillaries a pressure difference may be effective in creating shear forces. The generated microscopic droplets are then sucked in to the mouth and upper respiratory tract. Droplet size can be influenced by the internal structure of the e-Cig, and its working conditions, including liquid properties, liquid temperature while atomized, heating energy, flow local macro and micro structure, inhalation force, etc. The e-Liquid 110 may be purchased and interchangeable within the e-Cig for adding flavor to the smoke 210.

Figure 3 is a flow diagram of the electronic cigarette smoking process. The [0033] inhaled air 302 passes through a flow sensor 304. The e-Cig power source is a battery (or other power source, e.g. other electrical sources) which may be a part of the e-Cig that provides a current supply 306. The current supply 306 may be triggered by the controller which may be activated due to air flow 302 passing a flow sensitive switch or flow sensor 304. This sensor can switch the battery power or may be an input for the controller. When controller is activated it enables power to a heating resistance element (e.g. heating element 206). In one embodiment, the heating element 206 may be a heating coil. The power may be controlled using Pulse Width Modulation ("PWM") signaling. E-Liquid may be located in a container where a capillary device such as wick leads it to a place where inhaled air 302 have flow conditions that enable creation of pressure drop and/or shear forces that will enable aerosol creation. Heating of the e-Liquid in the wick by a coil or heating element may reduce viscosity 310 of the e-Liquid and enable aerosol creation through evaporation 312. The aerosol creation may result in a smoke feeling for a user. The resultant smoke/vapor 210 may include warm air, aerosol, and vapors 314. In one embodiment, the e-Liquid may flow through the coil, which may be wrapped around a wick in the e-Cig. The inhaled air flows across the wick such that the inhaled air flow may induce turbulent flow. A local air vortex may enable high pressure drops and shear forces that create aerosol from at least part of the e-Liquid soaked in the wick.

[0034] Figure 4 is a flow diagram of components for the electronic cigarette. Figures 1 and 3 illustrate exemplary e-Cig components and processes for smoke creation. Figure 4 illustrates a simplified embodiment of certain components. Inhaled air 402 passes through a flow sensor 404, which may notify a controller 406 of the presence of the inhaled air 402. The controller 406 may signal a current supply 408 which begins the smoke creation mechanism 410. As discussed above, the smoke creation mechanism 410 may include an atomizer and/or heating element for creating the aerosol. Figure 4 illustrates how the e-Cig is activated upon sensing the inhaled air. This basically "turns on" the e-Cig for creating the aerosol for the user to engage in the smoking process. When the power supply is not enabled, atomization and vaping is prevented.

[0035] Figure 5 is an alternative diagram of an electronic cigarette with multiple e-Liquid containers. The e-Cig in Figure 5 may be similar to or the same as the e-Cig in Figure 1 except it includes multiple e-Liquids. The e-Cig may include a first e-liquid 110 as with Figure 1, but also includes a second e-Liquid 510. The aerosol or smoke from the two e-Liquids may be combined to enhance or modify the flavor produced with just a single e-Liquid. In one embodiment, an e-Liquid with nicotine may be combined with an e-Liquid that is nicotine free. The controller may determine which e-Liquid is utilized for vaping. In one embodiment, the user may interact with the controller to switch between the e-Liquids. Alternatively, the controller may automatically select the e-Liquid based on usage patterns or may switch between the e-Liquids during inhalation.

[0036] The e-Liquids may be sensed by constant resistance measurement of the heating element when the cartomizer is removed or disconnection occurs. Likewise, when another cartomizer is assembled it may be sensed and restricted until it is confirmed with the controller (e.g. by a smartphone as discussed below).

[0037] Figure 6 is an alternative diagram of components in an e-Cig. The e-Cig may be the e-Cig illustrated in Figures 1 or 5. Figure 7 below includes a further description of additional components of an e-Cig. Figure 6 illustrates the flow of different functions of the e-Cig. In this embodiment, the e-Cig power source is a battery 606 which is part of the e-Cig. The battery 606 may be lithium-ion in one example. The controller 602 may

be activated due to air flow (from the inhaled air) passing a flow-sensitive switch or flow sensor 604. The sensor 604 may be activated by a pressure drop across the sensor. This sensor 604 may directly switch the battery 606 power on, or be used as an input for the controller 602, that then switches the battery 606 current on. This process is further described above with respect to Figures 1-3. The controller 602, when activated, enables, in a specific embodiment, a Pulse Width Modulation ("PWM") control over the heating coil 608 power. Heating of the liquid by the heating coil 608 reduces viscosity of the e-Liquid which may enable atomization 610.

[0038] In parallel the controller 602 may power up a light emitting diode ("LED") 612 light source at the e-Cig tip. The LED 602 light may imitate the cigarette light. In one embodiment, the light color may be changed to distinguish it from regular (non-electronic) cigarettes. For example, the LED may be green. The light may mimic the brightness of the fire/burn of a non-electronic cigarette. In other words, the lighting is different, for example turned on, for while receiving inhaled air. Accordingly, there may be an analog or digital electrical circuit that enables the light to increase and/or cease gradually. This setup may be translated to electrical circuits in more than a single way (for example the pressure switch can switch the power to the controller or only enable a signal to be transmitted to the controller). The e-Cig LED or light at its tip may be changed according to ambient illumination. For example, the light power may be reduced when driving at night or may be modified based on location. For example, the color may change when smoking indoors or in a restaurant. The change may be controlled by the smartphone, utilizing its various sensors.

[0039] Figure 7 is a network diagram including an e-Cig 701. Figure 7 illustrates a consumer device 702 and user device 703 that are coupled with a network 704. The consumer device 702 may be directly (or locally) coupled with the e-Cig 701. Through the network, an e-Cig server 706 may store (in database 708) and communicate information to/from the e-Cig 701. Herein, the phrase "coupled with" is defined to mean directly connected to or indirectly connected through one or more intermediate components. Such intermediate components may include both hardware and software

h ()

based components. Variations in the arrangement and type of the components may be made without departing from the spirit or scope of the claims as set forth herein.

Additional, different or fewer components may be provided.

[0040] The e-Cig 701 may be similar to or the same as the e-Cigs illustrated in Figures 1 and 5. As described below, the e-Cig 701 may communicate with a consumer device, such as a smartphone 702. A smartphone is merely one example of a device that may communicate directly/locally with the e-Cig 701 and connect with the network 704. Other devices may include a desktop computer or a portable device, such as a cellular telephone, a display pager, a radio frequency (RF) device, an infrared (IR) device, a Personal Digital Assistant (PDA), a handheld computer, a tablet computer, a laptop computer, a set top box, a wearable computer (e.g. glasses or watch), an integrated device or any computing device combining various features, such as features of the forgoing devices, or the like. However, the device will be labeled throughout this disclosure as a smartphone for simplicity. The smartphone 702 may also be referred to as a host or host device, while the e-Cig is the client or client device.

[0041] The smartphone 702 may also be referred to as a client device and may include a computing device capable of sending or receiving signals, such as via a wired or a wireless network (e.g. the network 704, which may be the Internet). The smartphone 702 communicates directly with the e-Cig 701 through local communication mechanisms, such as those illustrated in Figure 12. This communication with a smartphone 702 enables a user to have increased interaction and control of the e-Cig 701. Exemplary information communicated with the smartphone 702 is shown in Figure 9.

[0042] The smartphone 702 may include or may execute a variety of operating systems, including a personal computer operating system, such as a Windows, iOS or Linux, or a mobile operating system, such as iOS, Android, or Windows Mobile, or the like. The smartphone 702 may include or may execute a variety of possible applications, such as a client software application enabling communication with other devices, such as communicating one or more messages, such as via email, short message service (SMS), or multimedia message service (MMS), including via a network, such as a social network,

including, for example, Facebook, LinkedIn, Twitter, Flickr, WhatsApp, or Google+, to provide only a few possible examples. The smartphone 702 may also include or execute an application to communicate content, such as, for example, textual content, multimedia content, binary files, numerical data, or the like. The smartphone 702 may also include or execute an application to perform a variety of possible tasks, such as browsing, searching, playing various forms of content, including locally stored or streamed video, or games (such as fantasy sports leagues, or competitions such as e-Cig smokers competing on location-based assignments or any other games/activities involving community use). The foregoing is provided to illustrate that claimed subject matter is intended to include a wide range of possible features or capabilities. As described below, the smartphone 702 communicates with the e-Cig 701 and communicates over the network 704. Although not illustrated, the e-Cig 701 may communicate with other e-Cigs or multiple smartphones. In one embodiment, a couple may each have e-Cigs that can communicate with one another and that can communicate with each other's smartphones. This communication by the e-Cig may be through the network 704 in one embodiment. As further discussed below, the smartphone 702 may augments -Cig data with data from its own sensors, such as GPS, accelerometers, clocks, environmental parameters, microphone, and camera. In one embodiment, the e-Cig 701 may include a controller 720, memory 718, software 716, and/or a communications interface 714. In alternative embodiments, the memory 718, software 716, and/or a communications interface 714 may be considered to

software 716, and/or a communications interface 714. In alternative embodiments, the memory 718, software 716, and/or a communications interface 714 may be considered to be part of the controller 720. Alternatively, the memory 718 and/or software 716 may not be part of the e-Cig 701, rather the smartphone 702 will utilize its memory 718 (e.g. internal memory or external memory such as memory cards) and/or software 716 for the functions described below. In other words, functions performed by the smartphone 702 may be performed by the e-Cig 701 in certain circumstances, and functions performed by the e-Cig 701 may be performed by the smartphone 702 in other circumstances.

[0044] The communications interface 714 may communicate with the smartphone 702. In one embodiment, the communications interface 714 includes a communication chip as illustrated in Figures 8 and 11. The communications interface 714 may include

local/direct communication with the smartphone 702 using any of the interface mechanisms illustrated in Figure 12.

+:)

The controller 720 in the e-Cig 701 may include a central processing unit [0045] (CPU), a digital signal processor (DSP) or other type of processing device. The controller 720 may be one or more general processors, digital signal processors, application specific integrated circuits, field programmable gate arrays, servers, networks, digital circuits, analog circuits, combinations thereof, or other now known or later developed devices for analyzing and processing data. The controller 720 may operate in conjunction with software or firmware (e.g. software 716), such as code generated manually (i.e., programmed). The controller 720 may be coupled with a memory 718, or the memory 718 may be a separate component or embedded within the controller 720. The software 716 may be stored in the memory 718. The memory 718 may include, but is not limited to, computer readable storage media such as various types of volatile and non-volatile storage media, including random access memory, read-only memory, programmable readonly memory, electrically programmable read-only memory, electrically erasable readonly memory, flash memory, magnetic tape or disk, optical media and the like. The memory 718 may include a random access memory for the controller 720. Alternatively, the memory 718 may be separate from the controller 720, such as a cache memory of a processor, the system memory, or other memory. The memory 718 may be an external storage device or database for storing recorded ad or user data. The memory 718 is operable to store instructions executable by the controller 720.

[0046] The functions, acts or tasks illustrated in the figures or described herein may be performed by the programmed processor executing the instructions stored in the memory 718. The functions, acts or tasks are independent of the particular type of instruction set, storage media, processor or processing strategy and may be performed by software, hardware, integrated circuits, firm-ware, micro-code and the like, operating alone or in combination. Likewise, processing strategies may include multiprocessing, multitasking, parallel processing and the like. The controller 720 is configured to execute the software 716. The software 716 may include instructions for analyzing, monitoring, and tracking

f = f

e-Cig 701 data and communicating with the smartphone 702. The present disclosure contemplates a computer-readable medium that includes instructions or receives and executes instructions responsive to a propagated signal, so that a device connected to a network can communicate voice, video, audio, images, location, GPS information, accelerometer data, environmental sensors or any other data over a network.

The network (e.g. the network 704) may couple devices so that [0047] communications may be exchanged, such as between a server and a client device or other types of devices, including between wireless devices coupled via a wireless network, for example. A network may also include mass storage, such as network attached storage (NAS), a storage area network (SAN), or other forms of computer or machine readable media, for example. A network may include the Internet, one or more local area networks (LANs), one or more wide area networks (WANs), wire-line type connections, wireless type connections, or any combination thereof. Likewise, sub-networks, such as may employ differing architectures or may be compliant or compatible with differing protocols, may interoperate within a larger network. Various types of devices may, for example, be made available to provide an interoperable capability for differing architectures or protocols. As one illustrative example, a router may provide a link between otherwise separate and independent LANs. A communication link or channel may include, for example, analog telephone lines, such as a twisted wire pair, a coaxial cable, full or fractional digital lines including T1, T2, T3, or T4 type lines, Integrated Services Digital Networks (ISDNs), Digital Subscriber Lines (DSLs), wireless links including satellite links, or other communication links or channels, such as may be known to those skilled in the art. Furthermore, a computing device or other related electronic devices may be remotely coupled to a network, such as via a telephone line or link, for example.

[0048] A wireless network may couple client devices (e.g. the smartphone 702 or user device 703) with a network. A wireless network may employ stand-alone ad-hoc networks, mesh networks, Wireless LAN (WLAN) networks, cellular networks, or the like. A wireless network may further include a system of terminals, gateways, routers, or

, 1

the like coupled by wireless radio links, or the like, which may move freely, randomly or organize themselves arbitrarily, such that network topology may change, at times even rapidly. A wireless network may further employ a plurality of network access technologies, including Long Term Evolution (LTE), WLAN, Wireless Router (WR) mesh, or 2nd, 3rd, or 4th generation (2G, 3G, or 4G) cellular technology, or the like. Network access technologies may enable wide area coverage for devices, such as client devices with varying degrees of mobility, for example. For example, a network may enable RF or wireless type communication via one or more network access technologies, such as Global System for Mobile communication (GSM), Universal Mobile Telecommunications System (UMTS), General Packet Radio Services (GPRS), Enhanced Data GSM Environment (EDGE), 3GPP Long Term Evolution (LTE), LTE Advanced, Wideband Code Division Multiple Access (WCDMA), Bluctooth, 802.11b/g/n, or the like. A wireless network may include virtually any type of wireless communication mechanism by which signals may be communicated between devices, such as a client device or a computing device, between or within a network, or the like.

[0049] Signal packets communicated via a network, such as a network of participating digital communication networks, may be compatible with or compliant with one or more protocols. Signaling formats or protocols employed may include, for example, TCP/IP, UDP, DECnet, NetBEUI, IPX, Appletalk, or the like. Versions of the Internet Protocol (IP) may include IPv4 or IPv6. The Internet refers to a decentralized global network of networks. The Internet includes local area networks (LANs), wide area networks (WANs), wireless networks, or long haul public networks that, for example, allow signal packets to be communicated between LANs. Signal packets may be communicated between nodes of a network, such as, for example, to one or more sites employing a local network address. A signal packet may, for example, be communicated over the Internet from a user site via an access node coupled to the Internet. Likewise, a signal packet may be forwarded via network nodes to a target site coupled to the network via a network access node, for example. A signal packet communicated via the Internet may, for

example, be routed via a path of gateways, servers, etc. that may route the signal packet in accordance with a target address and availability of a network path to the target address.

[0050] In one embodiment, the connection between the smartphone 702 and the e-Cig 701 is a direct/local connection (not through an external network such as the Internet), but alternative embodiments may allow for other connections between the smartphone 702 and the e-Cig 701. For example, the e-Cig 701 may communicate through the network 704 with or without the smartphone 702. Likewise, the e-Cig 701 may allow connections with more than one device (e.g. smartphone 702 and user device 703) that may be direct/local connections or connections through the network 704. Although not illustrated in Figure 7, the communications mechanisms for the network 704 may apply to the connection between the smartphone 702 and the e-Cig 701.

[0051] In an alternative embodiment, there may be a wireless or wired charger or charging device that connects the e-Cig 701 and provides power for charging the battery. The smartphone 702 may act as a charger for the e-Cig 701 in one embodiment. Alternatively, the charger for the e-Cig 701 may be a separate device from the smartphone 702. For example, the charging device may be another computer (e.g. universal serial bus (USB)) that communicates with the e-Cig 701. There may be mutual charging between the smartphone and the e-Cig. In particular, the smartphone may provide a charge for the e-Cig and/or the e-Cig may provide a charge to the smartphone. An external charging device may charge both the smartphone and e-Cig, simultaneously or separately. The charging may be wired or wireless.

[0052] The e-Cig server 706 may be a server (e.g. web server) that provides the smartphone 702 with pages or information (e.g. through an app) that are requested over the network 704, such as by a user of the smartphone 702. In particular, the operator 710 may provide or collect information through the e-Cig server 706 when requested for or by the smartphone 702. The e-Cig server 706 may be operated by an operator 710 that maintains and oversees the operation of the e-Cig server 706. The e-Cig server 706 may be able to track information and provide offers stored in its database 708. The e-Cig database 708 may be coupled with the e-Cig server 706 and may store the

information/data that is provided by the e-Cig server 706 to the e-Cig 701. Alternatively, tracking metrics and other properties/parameters of the e-Cig 701 may be communicated through the e-Cig server 706 for storage in the e-Cig database 708. The e-Cig server 706 may allow for individual or group communication with e-Cig users. For example, the e-Cig server 706 may communicate with a subset of users (e.g. to notify of an event, such as a group smoking party) or may be used for remote deactivations (e.g. if a defective batch is found).

[0053] The application ("app") that is provided by the smartphone 702 for interacting with the e-Cig 701 may include a variety of interfaces. In one embodiment, the app may include a rendering of the e-Cig that may illustrate the components of the e-Cig. The status of those components may be displayed on the app interface (e.g. battery level, e-Liquid level, LED color etc.). Accordingly, the app may be used for checking on the functionality of the e-Cig. In an alternative embodiment, this may allow the user to also light the e-Cig for a simulated smoke. The simulated smoke may be achieved through augmented reality. For example, augmented reality glasses may be used for enabling creation of smoke from the e-Cig when it is held by hand or on camera of the glasses. The smartphone 702 may include a number of apps for communicating and interacting with the e-Cig 701, some of which may be developed by third party developer's using the application developer's tools described below.

[0054] The operator 710 of the e-Cig server 706 may include the manufacturer of the e-Cig or may be another third party company may monitor and facilitate the communications between the smartphone 702 and the e-Cig 701. In one embodiment, the e-Cig server 706 may provide an application (i.e. an "app") that is run on the smartphone 702 that implements the communication features discussed herein. In particular, the smartphone app may provide a user interface for all information stored in the e-Cig 701, the smartphone 702, and the database 708. The UI of the app displays that information and allows a user to modify any parameters for the e-Cig 701. Further, through the app, the enhanced controller of the e-Cig 701 may allow for the communication and interaction between the smartphone 702 and the e-Cig 701.

1]

Additional apps may be provided from the e-Cig server 706 which may be developed byt the operator 710 or by a third party developer using application developer tools.

[0055] The e-Cig server 706 may be one or more computing devices which may be capable of sending or receiving signals over the network 704, or may be capable of processing or storing signals, such as in memory as physical memory states, and may, therefore, operate as a server. Thus, devices capable of operating as a server may include, as examples, dedicated rack-mounted servers, desktop computers, laptop computers, set top boxes, integrated devices combining various features, such as two or more features of the foregoing devices, or the like. Servers may vary widely in configuration or capabilities, but generally a server may include one or more central processing units and memory. A server may also include one or more mass storage devices, one or more power supplies, one or more wired or wireless network interfaces, one or more input/output interfaces, or one or more operating systems, such as Windows Server, Mac OS X, Unix, Linux, FreeBSD, or the like.

In addition, the e-Cig server 706 may be or may be part of a content server. A 100561 content server may include a device that includes a configuration to provide content via a network to another device (e.g. smartphone 702). A content server may, for example, host a site, such as a social networking site, examples of which may include, without limitation, Flicker, Twitter, Facebook, LinkedIn, or a personal user site (such as a blog, vlog, online dating site, etc.). A content server may also host a variety of other sites, including, but not limited to business sites, educational sites, dictionary sites, encyclopedia sites, wikis, financial sites, government sites, etc. A content server may further provide a variety of services that include, but are not limited to, web services, third-party services, audio services, video services, email services, instant messaging (IM) services, SMS services, MMS services, FTP services, voice over IP (VOIP) services, calendaring services, photo services, or the like. Examples of content may include text, images, audio, video, or the like, which may be processed in the form of physical signals, such as electrical signals, for example, or may be stored in memory, as physical states, for example. Examples of devices that may operate as a content server include desktop

computers, multiprocessor systems, microprocessor-type or programmable consumer electronics, etc. As described herein, the e-Cig server 706 may host information (e.g. a website) that is used for interfacing with the smartphone 702 and the e-Cig 701. In one embodiment, the user device 703 may view a web page provided by the e-Cig server 706 to see information about the e-Cig 701 and to monitor/track/control the e-Cig 701 depending on the access settings for the e-Cig 701.

[0057] The user device 703 (other than the smartphone 702) may interact with the smartphone 702 and/or the e-Cig 701. The other user device 703 may not have a direct/local connection with the e-Cig 701 as with the smartphone 702, but it may be coupled with the smartphone 702 and/or e-Cig 701 through the network 704 in one embodiment. The examples and operation of the user device 703 may be the same as that discussed above with respect to the smartphone 702. In one example, a user may modify settings of the e-Cig 701 from a laptop computer. For example, social networking may be used for a user who wishes to limit usage and another user (e.g. user device 703 from the user's social network) may be given remote control of the amount and/or frequency that the e-Cig 701 can be used for.

[0058] Figure 8 is another network diagram with an electronic cigarette illustrating local communication 804. The communications interface 714 in Figure 7 may be used to provide instructions via a communication chip 802 or communications port (e.g. from the smartphone 702 or the user device 703) that is part of the controller or the e-Cig 801. The communication chip or port may be created in software or may be a physical connection in hardware and may be configured to connect with the smartphone 702 and/or the network 704. The connection with the smartphone 702 may be considered a local or direct communication 804 because the smartphone may need to be in proximity of the e-Cig 801 for the connection. The connection may be wired (e.g. USB cable) or wireless using a variety of wireless connection mechanisms as illustrated in Figure 12. In alternative embodiments, the connection between the communication chip 802 and the smartphone 702 may be through other mechanisms such as those discussed above with respect to the network 704.

The local communication 804 may be two-way communication between the [0059] smartphone 702 and the communication chip 802. The information that is transmitted is further described with respect to Figure 9. Figure 9 is a diagram illustrating local communication 804 examples. The local communications 804 may include security information 902. There may be a passcode, password, facial recognition, or other identifier that is required to establish a connection between the e-Cig 801 and the smartphone 702. RFID or other communication mechanisms may also be used for the security information 902. Alternatively, the e-Cig may detect a presence of the previously connected smartphone (or vice-versa) for re-establishing communications. In particular, the e-Cig 801 may be configured to only communicate with authorized smartphones. Each e-Cig may have its own password or security key that are required at the smartphone for establishing communication. The e-Cig may be locked to a specific user, thus helping to prevent misuse by unauthorized users such as minors. This locking may be through a connection with a particular smartphone. In other words, if the e-Cig is not near the smartphone, then it is disabled, inoperable or limited to a certain number or rate of puffs. The local communication 804 may include usage patterns 904 or usage [0060] restrictions 906. In one example, the smartphone can be used for tracking the usage patterns of the e-Cig. The time and duration of smoking may be recorded and tracked. The user may be able to establish self-imposed restrictions on their smoking. For example, a user may restrict usage to five times daily and no smoking allowed between certain times. In another example, the user may use different e-Liquids (e.g. by selection from Figure 5) to reduce a Nicotine level according to a certain plan by parting each inhalation between the e-Liquids. In another example, a user may puff slower in the mornings, so the temperature may be increased, leading to potentially smaller droplets. This pattern recognition may be utilized to tailor the e-Cig to the user and react to the user's patterns. Other parameters that may be adjusted automatically based on usage patterns or otherwise updated by the smartphone include current, voltage, temperature, power, e-Liquid selection/replacement, droplet size, viscosity, or airflow resistance. The

airflow resistance may be through a selectable orifice (e.g. a rotating disc with several

holes of various sizes in it) that may be placed in the airflow track. The usage patterns that are recorded may also include the type of e-Liquids that are used. Accordingly, there may be offers 912 made to the smartphone for a refill of a popular e-Liquid or a recommendation based on the user's usage pattern. In one embodiment, the smartphone app may allow for the manual or automatic reordering of a particular taste when an e-Liquid is running out. The smartphone app may follow up the history of usage of each cartomizer, and prevent usage if for example it counts the number of puffs and, for example taking into account the length of puffs, it determines that the cartomizer is about to be depleted and thus avoiding the burnt taste. Exemplary methods of knowing that the cartomizer is depleted may include follow up of temperatures, knowing the time and puffs numbers that the specific user had before each replacement of cartomizers, and more. In many of these applications the identification of a specific cartomizer is utilized, for example via bar-code, QR code or RFID tag. When liquid is finished the higher temperature may create a burned taste that can be avoided by monitoring the liquid level. Another example may limit a number of puffs according to the cartomizer, according to batch of production, or according to information received from the company through the e-Cig server about limiting the number of puffs.

[0061] The local communication 804 may include desired settings 908 or device status 910. The desired settings 908 may be similar to usage restrictions, but may include default settings relating to the generation of the aerosol. For example, increased temperature of the heating coil results in a different vapor. Additional settings may include vapor, droplet size, nicotine content, taste, and/or degree of liquid depletion or aging of the e-Cig's cartomizer. The local communication may further include complementary information from a smartphone that may be retrieved from the smartphone sensors, GPS, accelerometers, microphone, or other features of the smartphone. This information may be used for supplementing the usage of the e-Cig (e.g. the location that a user prefers). Accelerometer measurements may also be used for monitoring the handling of an e-Cig. An e-Cig may be sensitive to handling (for example accelerations), so the e-Cig acceleration history may be monitored, recorded, and analyzed

to sense if an acceleration threshold has been reached, or to sense e-Cig lifetime duration influence. This may also assist in error or defect identification. A malfunctioning e-Cig may be determined to be caused by poor handling. The smartphone microphone may also be used for defect or error detection to listen to the e-Cig for a potential problem. For example, a gurgle or other noise may indicate a current or future problem.

[0062] The user may be able to configure the generation of the smoke using the smartphone. The device status 910 may include information about the components of the e-Cig. For example, if there is a component that is malfunctioning (e.g. the battery needs recharging or the LED is out), the smartphone may be notified. Likewise, updates to the e-Cig (e.g. controller or firmware updates) may be transmitted from the smartphone. The smartphone may further be configured to both locate and identify a particular e-Cig. It may also recognize whether a particular e-Liquid is a match for the cartomizer and vice-versa.

[0063] Although not shown in Figure 9, the communications with the e-Cig may include social networking communications that may include accessing social connections over a network such as the Internet. In one embodiment, the e-Cig server 706 may maintain (e.g. in its database 708) a network of e-Cig users. Each user's smartphone allows for social interactions between that network of users. A user may receive notifications about the activity of others in that user's social network. The users in the social network may be selected by the user using the smartphone or may be automatically identified based e-Cig usage and/or geography. For example, a user that is smoking at a particular location may alert other users so that others can join. This notification may be automated through the smartphone application and the e-Cig server. Likewise, other users' interests/preferences/usage patterns may be shared within the social network. If there is a user with a similar usage pattern or preferences (e.g. e-Liquid type), that user's preferences may be communicated to similar users for identifying new settings, locations for smoking, and/or products (e.g. e-Liquid).

[0064] As described, the enhanced communications of the e-Cig may include real-time social interaction. In one embodiment, the communication by the e-Cig may be through

emails, text messages, photos, videos, or social network websites (e.g. FACEBOOK, TWITTER, LINKEDIN, etc.). The e-Cig may communicate information to a user's social circle. The communications may be controlled by the user. Commercial utilization of the communications may include on-line social marketing, sales, lead-generation, locationbased offerings, market research and other applications. For example, communication offering a particular E-liquid may be made to the user such as when the current e-Liquid is running low, or when a new product is being offered that may be appealing to the user. The user may allow for a social network to be notified of which e-liquid is being used and how often. This communication may be used along with global positioning system ("GPS") technologies to encourage social smoking. For example, two users (with GPS activated) may be in the same area and can be notified of their proximity. There may also be a notification of smoking preferences (e.g. e-Liquid type/taste, smoking times/lengths) to help join the users. In addition, to social connections, the enhanced communications may also be through businesses that may be notified of local smokers and can then provide discounts/sales for those smokers to shop and/or smoke at that business. For example, a user may be notified when they are close to such a business and offered a discount or coupon. In other words, the e-Cig provides functionality for connecting to individuals (social networking) or businesses. Enabling technologies, such as wire-line and wireless (e.g. Wi-Fi or cellular) networking, photography (such as smartphoneembedded cameras with automated on-line capabilities), location-aware technologies (such as GPS) and many more may improve the online social interaction.

[0065] The social interaction provided through this enhanced communication may encourage social smoking, commercialize co-offerings to smokers, support smoking cessation, encourage grouping via brand, taste, habits and other possibly identity-related criteria, etc. For example, when an e-Cig smoker is smoking, her smartphone may be aware of the fact that she is smoking, and is posting this fact (with her prior approval) on a website enabling special offers, combined with her location (with her prior approval) and her speed (indicating she is walking). The smartphone application/app can present a special, targeted offer to the smoker, suggesting a discounted deal for coffee in a nearby

coffee place, to go well with her e-Cig. A unique smoking-related offering can be made given to the fact that many smokers like to smoke while consuming coffee, as one example.

[0066] The application or app described herein may further be used for taste testing and combination exchanges. The e-Cig combined with the smartphone may test the response to tastes (either new or incumbent) or to taste combinations. The smartphone may transmit the data to the e-Cig server, where the aggregated data could be used for development, marketing, and product offerings. Accordingly, users would be providing feedback for future development.

[0067] When the user listens to music on the smartphone and smokes, the sound may be subtly changed based on the e-Cig usage. For example, during the puff the music may be subtly modified to compensate for the changes in the respiratory system in the head during the inhale. This change in sound may enhance the experience of smoking.

[0068] With smartphones and other devises that have input technologies that involve for example gestures, the LED at the e-Cig tip may be modulated to transfer data or commands to the device. The lighted tip may be used as a remote pen, under the proper command from the e-Cig for input or signaling purposes. Likewise, the e-Cig may be used as standard for length for smartphone photography.

[0069] Figure 10 is another network diagram with an electronic cigarette illustrating image acquisition. In particular, the e-Cig 1000 may include an identifier code 1002, such as a 1-D or 2-D bar code (e.g. QR code) that can be scanned by the smartphone. In particular, the identifier code 1002 may be part of a removable portion 1001 of the e-Cig 1000. In one example of an e-Cig's connection with a device's camera, a scanned QR code or other bar may be scanned that is used for communicating information about an e-Cig. For example, a product code could be scanned and the consumer device can notify the user whether the product is compatible with the e-Cig. Additional communication (other than the identifier code 1002) may also be used for identifying a cigarette. The e-Cig may include a passive form of communication as shown in Figure 10. There may be a camera-readable label that can also be attached to other related devices such as Nicotine-

Replacement-Therapy (NRT) devices like stickers. The communication chip functionality discussed above is an active form of communication.

In the identifier code 1002 may enable identification of the cartomizer(s) type and tastc(s) (e.g. via a QR-code or bar-code on the cartomizer). The identifier code may be read and identified by a smartphone camera and specific application software. In alternative embodiments, the identifier code may communicate with a RFID tag in the cartomizer and/or an NFC chip in the e-Cig and/or in the smartphone, combined with the proper software/application. External software programs, such as smartphone applications, web-sites, data-bases etc. (for example the e-Cig database) may be aware of a specific user's usage patterns and tastes. The ability to be specific about the special flavor of the e-Cig enables personalized offers to be most effective. To enable higher security the controller may not enable vaping until the identifier code is identified together with other communication and/or a password on the smartphone.

[0071] In one embodiment, the e-Cig 1000 may include a removable portion 1001 and an immoveable or permanent portion 1003. The immoveable or permanent (non-removable) portion 1003 may include a battery and controller, while the removable portion 1001 includes an e-Liquid and atomizer (e.g. cartomizer) that may be replaced. Different portions of the e-Cig 1000 may be part of either of the portions 1001, 1003. The LED may be installed in the cartomizer to enable a higher level of security.

[0072] Figure 11 is another exemplary e-Cig 1101. The e-Cig 1101 illustrates an organization of the components that were previously discussed. The e-Cig 1101 may include a controller 1102, a communications interface 1104, a heating element 1106, and an LED 1108. Functionality provided by the controller 1102 is discussed with respect to Figure 13. Exemplary communication mechanisms used by the communications interface 1104 are discussed with respect to Figure 12. In one embodiment, the e-Liquid container (not shown) may include the heating element and an atomizer and may be referred to as a cartomizer. The cartomizer may be replaceable and removal of the cartomizer may be detected by the e-Cig. The LED 1108 may be ignited with inhaling and may be dimmed slowly after inhaling is finished to imitate the cooling tip of a non-electric cigarette when

(;

inhaling is ceased. The LED may further be modulated to send specific indications to the user, such as a blinking pattern to indicate low power or dwindling cartomizer e-Liquid. Figure 12 is a diagram illustrating communications interface 1104 examples. [0073] The e-Cig 1101 may communicate through a communications interface 1104 using near field communication ("NFC") 1202, radio frequency identification ("RFID") 1204, Wi-Fi 1206 (e.g. Wi-Fi Direct), Bluetooth 1208, and/or ZigBee. The communications interface 1104 may be implemented through a small-size communication chip embedded on the e-Cig. Exemplary chips may include but are not limited to a Bluetooth chip, such as Parani BCD 210 or Texas Instruments (TI) CC2650 Bluetooth Single-Chip Solution. These Bluetooth chips can be activated as slaves to a server, with the Bluetooth chip in the smartphone acting as the master. Another exemplary chip is an NFC -enabled chip (such as Qualcomm's QCA1990), that allows for NFC communication, or even enhanced Wi-Fi or Bluetooth communication where NFC is used for link setup. NFC may also be used to read an e-Cig or cartomizer identifier (as RFID device). Another exemplary communication chip may include a Wi-Fi-enabled chip, such as TI's SimpleLink family's CC3000, that can hook the e-Cig to Wi-Fi networks with full capability. An additional possibility may be a SIM card on board of the e-Cig, following the growing trend of cellular-enabled M2M (Machine to Machine) nano-SIM card, creating a cellular e-Cig that communicates directly to a network over 3G/4G cellular networks. Alternatively, there may be a wired connection (e.g. universal serial bus ("USB")) rather than a wireless connection. Alternative forms of communication may be used to establish two-way communication between an e-Cig and a smartphone.

[0074] Figure 13 is a diagram illustrating exemplary controller 1102 components. As discussed, the controller for the e-Cig is enhanced with additional capabilities including communication abilities. Figure 13 illustrates exemplary components that may be a part of the controller 1102 or may be separate components coupled with the controller 1102. A clock 1302 may be used for enhancing the controller of the e-Cig to be able to control parameters of any sub-unit. For example, an initial inhalation (starting a puff) may start the clock 1302 which is then used for measuring puff length and other usage patterns.

The clock 1302 may enable a reliable report about the puffs made by the user which can then provide measurements of puff duration and intensity (rate per unit of time). This may be further usage pattern information that may enable more accurate social connections and targeted marketing. For example if the rate of puffs is increased there may be a situation where a nicotine craving is close and some parameters in e-Cig have to be changed. The clock 1302 may be synchronized with the smartphone when communication starts. The clock 1302 may provide a "time stamp" for every puff. These "time stamps" will be kept in memory of the e-Cig or smartphone and may be sent to the e-Cig server and database for storage.

The controller 1102 may include charging circuitry 1304 and a pulse width [0075] modulation ("PWM") unit 1306 for controlling the heating element and supplying a certain amount of controlled power. Alternatively, the PWM 1306 may enable battery 1308 activation. The charging of the battery 1308 may occur through an external charger or the smartphone. There may also be input/output ("I/O") 1310 circuitry for connections to/from the controller 1102. The power supply may be constant over time when a pressure difference switch is activated (e.g. when inhalation creates a pressure difference that passes a certain level). This may be accomplished with the PWM 1306 power supply. In another embodiment, the controller may disable or reduce the power [0076] supplied to the heating element if an internal counter indicates that the user's smoke rate is higher than is allowed or when an allowed number of puffs has been reached, or when the number of puffs that indicates a spent cartomizer is reached. The user may utilize the app on the smartphone to set limits for frequency and duration that are communicated and enforced automatically by the e-Cig. It may include the ability to read from internal memory parameters and to change power supply mode or timing according to these parameters to the heating element. The controller CPU may be able to write to internal memory data about power supported by PWM power supply to heating elements. The controller may be able to analyze this data and to modify power supply to enable controlling for example voltage, amperage or any dependence between both.

[0077] The controller may further be configured to provide the ability to monitor and analyze any power consumption of any subunit, for example the power consumption of heating element. It may include the ability not to activate any unit at certain circumstances. For example, the heating element may warm the wick while disabling vaping.

The controller may be configured to idle with low power consumption when no [0078]inhalation or communication occurs. In one embodiment, the idle state may enable supply power to internal clock and an option to keep two-way communication in receive mode. The e-Cig may be in an idle state unless a particular action, such as vaping, cartridge replacement, movement, or a wake up call from the smartphone occurs. The smartphone app may be on receive mode unless it receives a wake up communication from the e-Cig. To enable idle state when the internal battery is finished the controller may have internal rechargeable battery with proper circuitry to load and unload it from a main power supply. Figure 14 is a flow chart for an algorithm for cigarette operation. Although not 100791 shown in Figure 11, the e-Cig may include a memory as in Figure 7. In particular, the controller may include or be coupled with a memory module. The memory module may have read only and read/write parts. The memory module may be implemented in a single module or in two or more different modules. The memory may be non-volatile in one embodiment. Volatile implementations of the memory may utilize the smartphone for memory storage and retrieval. The e-Cig controller may be able to read all memory parts and write in the part where read/write is allowed. For the use of subsystem parameters the read only parameters may include default value, allowable values, and allowable limits.

[0080] The memory may store usage parameters (e.g. smoking length, frequency, puff length, droplet size, airflow, temperature, etc.) that may be monitored and controlled. The memory may be large enough to hold all information about a single puff, including time, duration and power consumption data. In addition it may include data about the temperature, power consumption and any other parameter from any sub-unit of the e-Cig. The user may use an app on the smartphone to set certain limits for certain parameters (i.e. input values). The input value 1402 is provided and the algorithm may check whether

value is within range 1406 and look for other restrictions such as integer conformity. The memory stores the maximum/minimum values 1404. If the value is not restricted in 1408, a new input value is received 1410. If the input value is not within range 1406 or is restricted 1408, the parameter will not be changed and an error message is transmitted 1412.

[0081] An example of this is the selection of an atomizer, when there are two atomizers (e.g. Figure 5). Value one and two (atomizers one, two) are both legal and limit the range of legal values. Another example is inputting the parameters 0-1 to the PWM of the first atomizer. The lower limit is 0, the upper limit is 1 but only numbers and all values between are allowable. Therefor the value 0.015 is allowable and 1.05 is not allowable. The suggested algorithm may be in the e-Cig controller and/or in the smartphone application. Any change in parameters that are monitored by the e-Cig may result in a change in any sub-unit's behavior.

[0082] Figure 15 is a flow chart for smoking control. In one embodiment, the user may interface with the e-Cig through the smartphone app to set limits on smoking 1502. The limit may be referred to as a violation that is detected 1506 after detecting any smoking event 1504. When a violation occurs, the e-Cig and/or smartphone can respond to the violation 1508. In one embodiment, the response may include a notification sent to a social network 1510. The notification may be through an email, text message, instant message, or through the smartphone app that connects with the e-Cigs. In response to the violation 1512, the e-Cig may also: 1) disable power; 2) modify other parameters; 3) reduce nicotine; 4) activate delay after puff; and/or 5) reduce power. This information may then be used to update the database 1514.

[0083] Figure 16 illustrates an enhanced controller as part of a mount piece for regular cigarettes. In particular, the e-Cig features and the enhanced controller 1606 may be part of a mount 1604 structure that is utilized with a regular (non-electronic) cigarette 1601. The embodiments for the e-Cig described herein may be applied in a mouthpiece structure (a/k/a mount piece 1604) that holds regular cigarettes 1601. The mount piece 1601 receives the cigarette 1601 and the controller 1606 may provide any of the features

discussed herein with respect to an e-Cig. For example, the enhanced controller 1606 that is a part of the e-Cig may provide the same or similar features for the standard eigarette 1601as for an electronic eigarette as described. In particular, the control, tracking, social networking, and other features may be applied to the standard eigarette 1601 and may include communications, such as the communication with a smartphone 1602. The mount piece 1604 illustrates the air flow 1608 from the standard eigarette 1601 that can be monitored, measured, analyzed and communicated by the controller 1606.

[0084] Figure 17 illustrates a flow diagram for the mount piece 1704. Inhaled air through the standard cigarette 1701 provides inhaled air with smoke to the mount piece 1704. A flow sensor 1708 may determine the presence of the air (e.g. to start up the device). The flow sensor 1708 may signal the controller 1702 to begin operations. The battery 1706 provides power to the flow sensor 1708 and/or the controller 1702. The mount piece 1704 includes all the electronic components and a mount for receiving and coupling with the standard cigarette 1701. The controller 1702 may include any of the functions of the controller(s) discussed for the e-Cig.

[0085] Figure 18 is a network diagram of electronic cigarette communications. In particular, Figure 18 is an alternate view of the communications network for communications to/from an electronic cigarette discussed herein. The network 1801 may be provided by an e-Cig server (e.g. the e-Cig server 708 in Figure 7). A user 1802 of an e-Cig 1803 may have a mobile app that is part of the smartphone 1804 for connecting with the network 1801. A social network 1806 of friends, family, or other users may connect through the network 1801 for communicating with one another and sharing e-Cig related information. Other devices 1808 may access certain (non-private or authorized to be shared) information from the network 1801. Data from the network 1801 may be used for research and/or clinical trials 1812.

[0086] Healthcare professionals 1814 may also be connected with the network 1801. For medical purposes, information may be collected through the network 1801 (e.g. by the e-Cig server) for one or more users. The users may be grouped (e.g. by amount, frequency, or duration of usage). Puff data (e.g. inhalation duration, frequency) may be

collected and used to monitor for changes. For example, a change in puff data may be used for notifying a user of a potential illness (e.g. having a cold, pulmonary diseases status, distress). The smartphone linkage may be then be used for identifying and retrieving appropriate medical information (websites) for the particular potential problem. In another embodiment, the e-Cig may be used for the transfer/inhalation of a medical material (medicine) with supervision or monitoring by the smartphone. For example, an e-Cig may be used as a replacement for current inhalators for various medical applications. Future smartphones may include scent sensing devices (e.g. nanotechnology-based). The scent detection may be used with the e-Cig for various uses, including monitoring operation (based on scent) of the e-Cig. Materials may be introduced that create some designed response in case of illness.

[0087] There may be access to the network 1801 from other custom or third-party services/applications 1810. There may be an app for the smartphone 1804 provided by the e-Cig server provider or e-Cig manufacturer, but other (third-party) applications may also receive (potentially limited) access to the network 1801.

[0088] Figure 19 illustrates a network with an application development component 1902. The software 716 may include applications ("apps") that operate on the smartphone 702. The apps may be downloaded from the network 704. The smartphone 702 and/or user device 703 may access the application developer server 1902 over a network such as the network 704. The application developer server 1902 may be connected with an applications database 1904 for storing application development tools and/or application software. In one embodiment, the application developer server 1902 may be part of the E-Cig server 706 and the applications database 1904 may be a part of the E-Cig database 708.

[0089] The application developer server 1902 may provide data, software, settings, functions, and information (which may be referred to as a software development kit ("SDK")) to an application developer to allow for development of an application that is associated with the e-Cig 701. The SDK may be an application development platform that is open to the developer community. In particular, this SDK is related to e-Cigs and

e-Cig applications. The developer's kit may further include all data, software, and functions that a developer might need to develop an e-Cig related application, and the toolkit may be referred to as a software package or application programming interface ("API"). The developer may be a software coder that writes software that runs on the smartphone 702 or user device 703 for performing any one of a number of functions or services related to the e-Cig 701 or the e-Cig server 706. In particular, the applications that are developed may include any of the capabilities and communications described with respect to Figure 9.

[0090] The apps that are developed may be specific to the software or operating system of a particular device. For example, Apple operates the iTunes app store, and there are additional application or app stores for Android devices, Windows mobile devices, Blackberry devices, Facebook devices, and Java devices. There may be separate developer's kit for the different devices (hardware) or interfaces (software), or the developer's kit may be universal for more than one device. The apps may be installed through the app store for a particular device. In one embodiment, the third party developer may pay a fee (e.g. per download, percent of the app cost, or based on the data/functionality required) or may display an advertisement for the e-Cig operator 710. Alternatively, the app may be free and the third party developer pays nothing to the e-Cig operator 710. The app store may require separate fees, such as a portion of revenue received based on displayed advertisements.

[0091] The e-Cig's 701 internal management, communication infrastructure, and host infrastructure is opened for developers through the SDK. As described herein, any listing of potential applications and the information/data/functions from the e-Cig that may be provided through the SDK are merely exemplary and additional applications and additional e-Cig features may be utilized. For example, a device management application may utilize the following capabilities of the e-Cig: 1) host communications; 2) cartomizer percent usage; 3) statistical data and usage patterns (e.g. number of puffs, average puff length, etc.); and 4) battery state. The data provided to or analyzed by the apps may further include automatic smoking intricate logs, including puffs, time, location, with

, J

whom, for fun, smoking cessation help etc. These logs may be used to detect patterns in the smoking habits (e.g. different puffs in the morning, in meetings, etc.), and modifying the e-Cig characteristics accordingly.

[0092] As described above, the communications of the e-Cig may be used for any number of social applications. In addition, the application development may also include social aspects. There may be developer forums or networks that are used for connections between developers. As described, the SDK may be provided through the Internet, such as at http://developer.greensmoke.com in one embodiment.

Exemplary applications may relate to smoking experience, smoking device [0093] management, smoking usage pattern feedback (e.g. mood feedback, smoking enhancement, health monitoring, etc.), social, fun applications (gaming, courting etc.), and/or visual communication (e.g. e-Cig LED). Additional exemplary applications may include cessation services. Cessation may be a value-added service to NRT (e.g., pharmaceutical company publishes the app). Additional social examples include dating. For example, when two people with matching profiles are in the same location their LEDs may blink in a certain fashion. There may be an e-Cig Messenger for creating a "C2C" (cigarette-to-cigarette) language. The C2C messaging language may be referred to as "Smoke Signals" and provides communications between e-Cigs. An app may detect that a cartomizer is about to run out and may find closest retail outlet, or a nearby "friend" may get an alert and offers to provide a new cartridge. Game apps may include trivia or contests (e.g. who smokes the longest puff). In one embodiment, the usage of the e-Cig may be an input for the game (e.g. one long puff versus two short puffs). There may be apps specific to a smoker's interests, including sports teams, music, movies, or television. A "computer-readable medium," "machine readable medium," "propagated-[0094]

[0094] A "computer-readable medium," "machine readable medium," "propagated-signal" medium, and/or "signal-bearing medium" may comprise any device that includes, stores, communicates, propagates, or transports software for use by or in connection with an instruction executable system, apparatus, or device. The machine-readable medium may selectively be, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. A non-

1. 1

exhaustive list of examples of a machine-readable medium would include: an electrical connection "electronic" having one or more wires, a portable magnetic or optical disk, a volatile memory such as a Random Access Memory "RAM", a Read-Only Memory "ROM", an Erasable Programmable Read-Only Memory (EPROM or Flash memory), or an optical fiber. A machine-readable medium may also include a tangible medium upon which software is printed, as the software may be electronically stored as an image or in another format (e.g., through an optical scan), then compiled, and/or interpreted or otherwise processed. The processed medium may then be stored in a computer and/or machine memory.

[0095] In an alternative embodiment, dedicated hardware implementations, such as application specific integrated circuits, programmable logic arrays and other hardware devices, can be constructed to implement one or more of the methods described herein. Applications that may include the apparatus and systems of various embodiments can broadly include a variety of electronic and computer systems. One or more embodiments described herein may implement functions using two or more specific interconnected hardware modules or devices with related control and data signals that can be communicated between and through the modules, or as portions of an application-specific integrated circuit. Accordingly, the present system encompasses software, firmware, and hardware implementations.

[0096] The illustrations of the embodiments described herein are intended to provide a general understanding of the structure of the various embodiments. The illustrations are not intended to serve as a complete description of all of the elements and features of apparatus and systems that utilize the structures or methods described herein. Many other embodiments may be apparent to those of skill in the art upon reviewing the disclosure. Other embodiments may be utilized and derived from the disclosure, such that structural and logical substitutions and changes may be made without departing from the scope of the disclosure. Additionally, the illustrations are merely representational and may not be drawn to scale. Certain proportions within the illustrations may be exaggerated, while

other proportions may be minimized. Accordingly, the disclosure and the figures are to be regarded as illustrative rather than restrictive.

1

1 9

WE CLAIM:

1. A communications system comprising:

an electronic cigarette comprising a communications interface for communicating with a computing device, wherein the computing device is coupled with a network;

an applications development server coupled with the network and configured to provide access to information from a plurality of users of electronic cigarettes.

- 2. The system of claim 1 wherein the applications development server provides the information from a plurality of users of electronic cigarettes to application developers for development of applications run on the computing device.
- 3. The system of claim 2 wherein the applications developers access an application developer's toolkit over the network from the applications development server.
- 4. The system of claim 3 wherein the application developer's toolkit provides settings, data, and communications protocols for communicating with and receiving data for the electronic cigarette and other electronic cigarettes.
- 5. The system of claim 2 wherein the applications are stored on the computing device.
- 6. The system of claim 5 wherein the applications utilize the information from a plurality of users of electronic cigarettes.
- 7. The system of claim 6 wherein the information comprise a usage pattern, wherein the usage pattern information further comprises a frequency, amount, liquid type, and/or time of usage.
 - 8. The system of claim 5 further comprising: a database that stores the information from the users of electronic cigarettes.

WO 2014/195805 PCT/IB2014/001913

1.

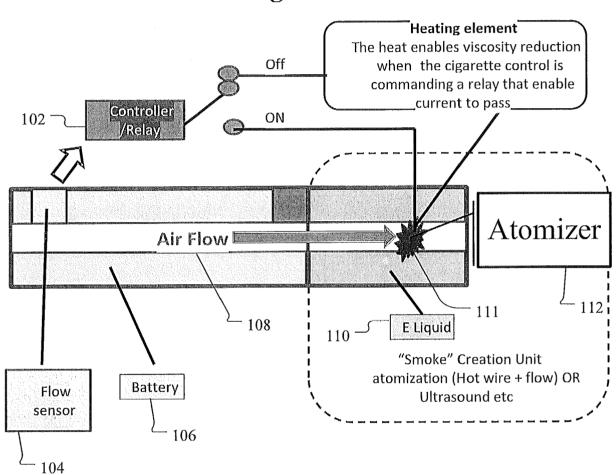
9. The system of claim 8 wherein the applications access the information from the database.

- 10. The system of claim 8 wherein the database is coupled with another server that receives the information from the electronic cigarettes.
- 11. The system of claim 1 wherein the electronic cigarette comprises:
 a controller configured to monitor or control operations of the electronic cigarette;
 and

a communications interface coupled with the controller and configured to allow communication with a computing device.

- 12. The system of claim 11 wherein the electronic eigarette further comprises: an atomizer for generating a vapor;
- a liquid container for providing a liquid that is used for flavoring the vapor; and a heating element that heats the liquid as part of a vaporization process where the vapor is generated by the atomizer.
- 13. The system of claim 12 wherein the applications development server provides the information from a plurality of users of electronic cigarettes to application developers for development of applications run on the computing device, and further wherein the applications monitor or control at least one of the generation of the vapor, the heating of the liquid, or an amount of the liquid.
- 14. The system of claim 1 wherein the computing device comprises a mobile computing device such as a cellular phone or a tablet that communicates with the electronic cigarette.

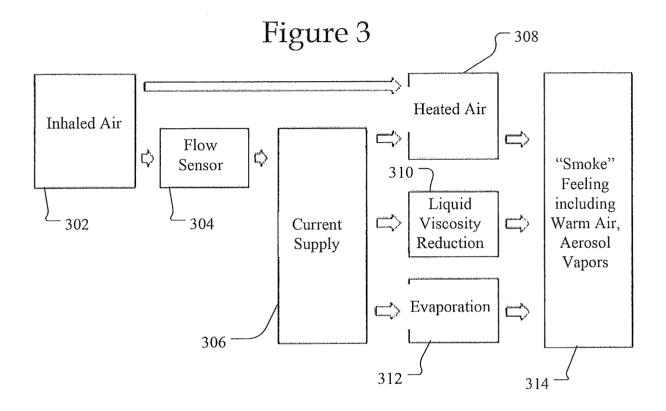
WO 2014/195805 PCT/IB2014/001913


15. A method for application development with a network including electronic cigarettes comprising:

accessing application tools from a server over the network that provides data, instructions, or communications associated with the electronic cigarettes; and

providing an application developed using the application tools, wherein the application runs on a computing device that is operative to communicate with one or more of the electronic cigarettes.

- 16. The method of claim 15 wherein the communications comprises communication protocols that allow the application to communicate with the electronic cigarettes.
- 17. The method of claim 16 wherein the application receives usage data from the electronic cigarette.
- 18. The method of claim 15 wherein the application is configured to control the electronic cigarette.
- 19. The method of claim 15 wherein the application is configured to allow a user of the electronic cigarette to interact with other users of electronic cigarettes.


Figure 1

L

WO 2014/195805

Figure 2 202 Inhaled Air ATOMIZER/CARTOMIZER 112 206 Power Supply Heating Element (PWM) Air pressure/velocity Heat 204 supply 208 Low Viscosity E-liquid E-liquid E-liquid Viscosity is E-liquid reduced 110 "Smoke" created: A combination of Aerosol, warmed air And vapors in inhaled air 210

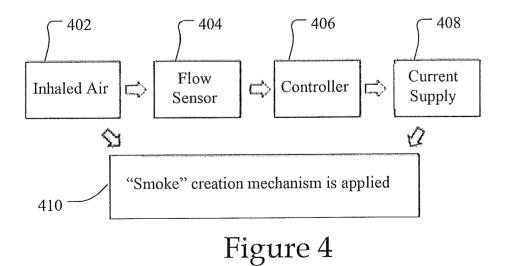


Figure 5

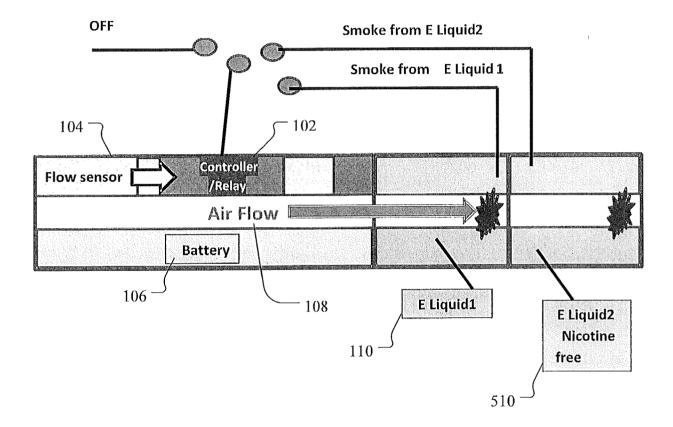


Figure 6

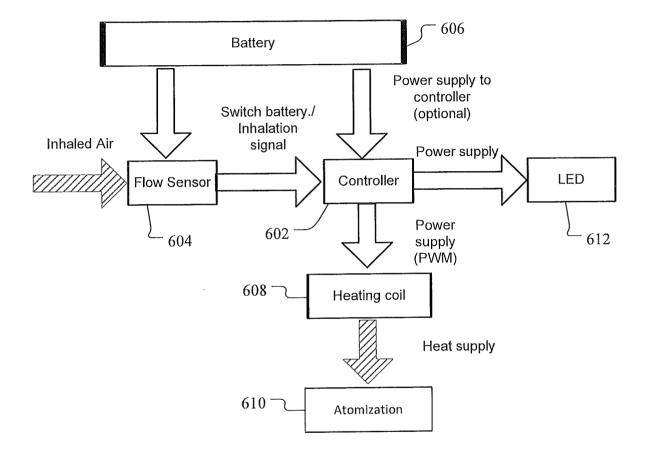


Figure 7

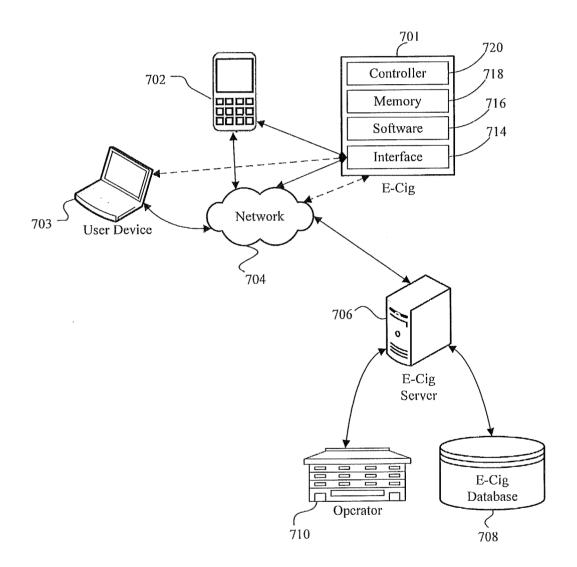
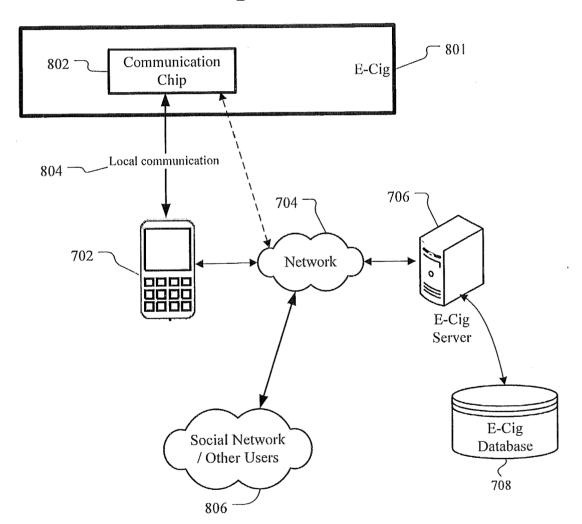
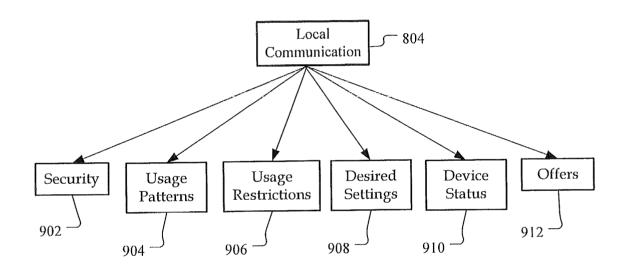
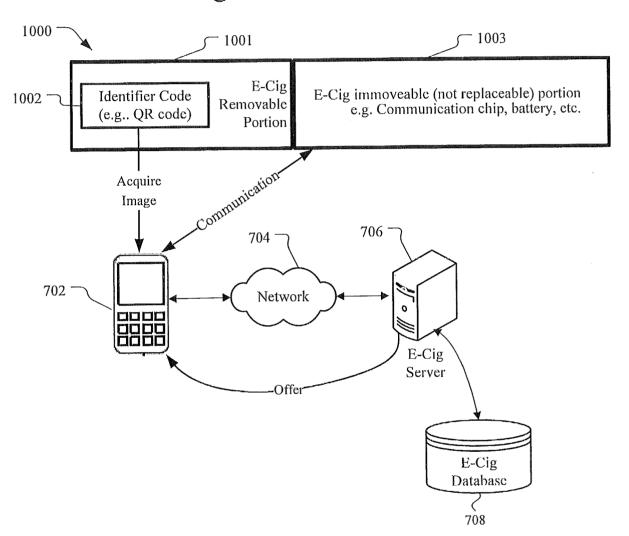
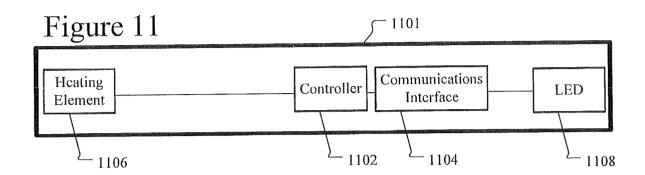
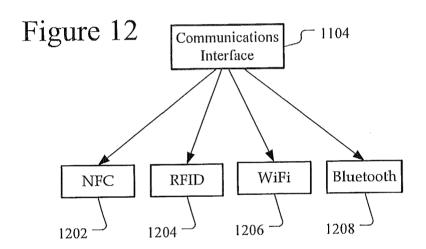


Figure 8


Figure 9



9/16

Figure 10

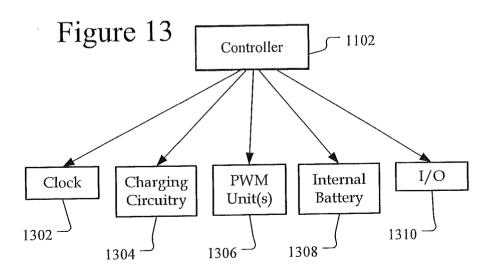
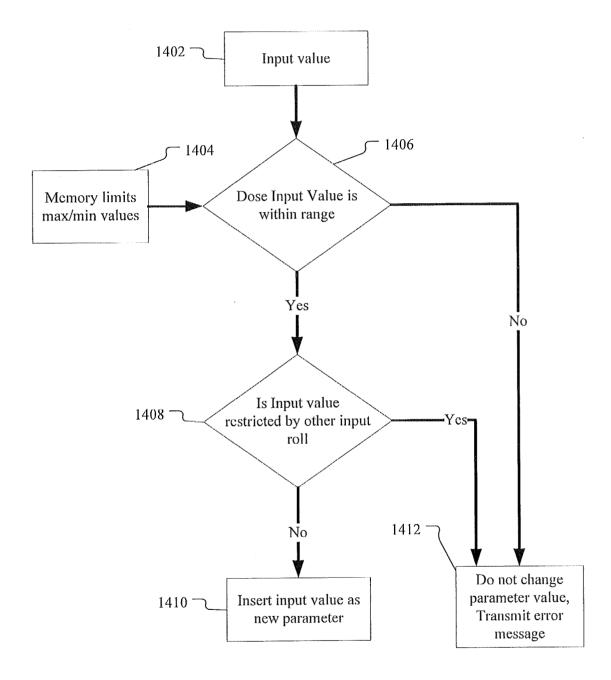
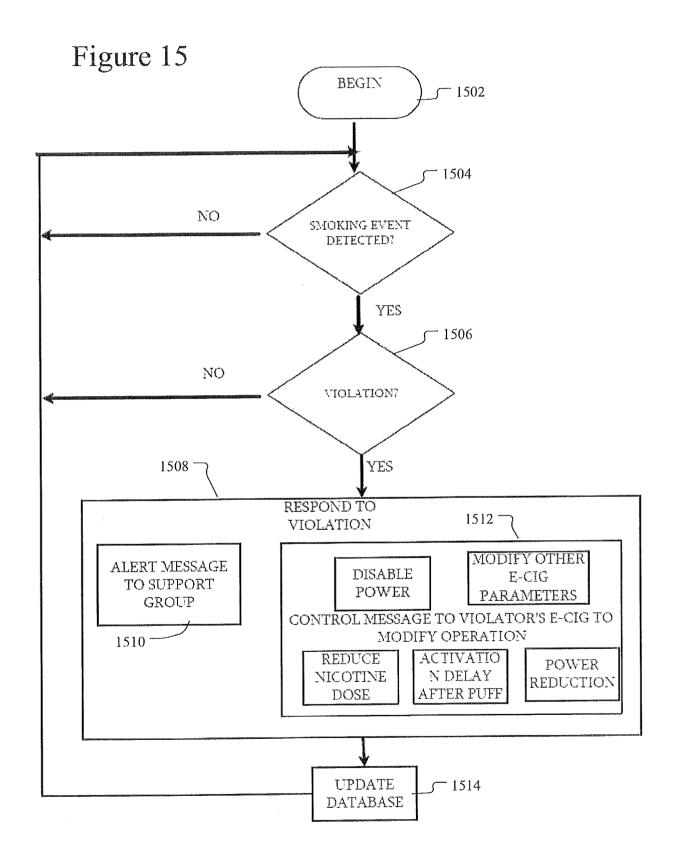




Figure 14

.

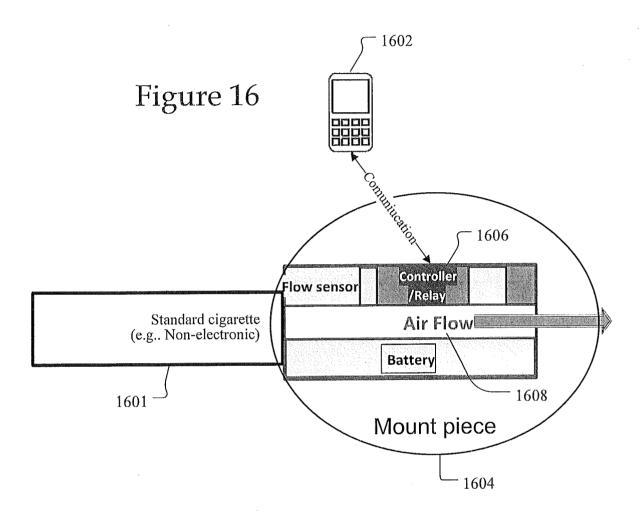
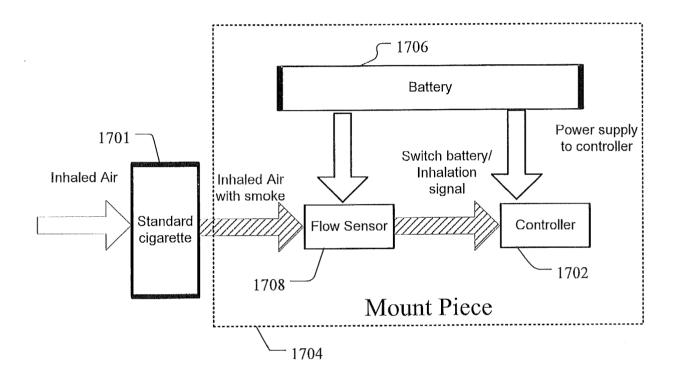



Figure 17

WO 2014/195805 PCT/IB2014/001913

15/16

Figure 18

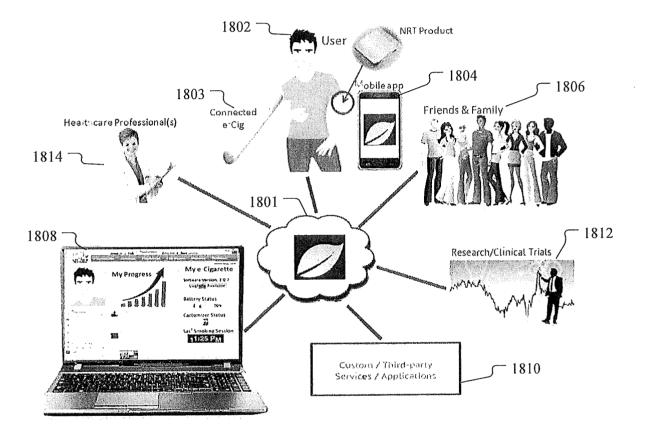
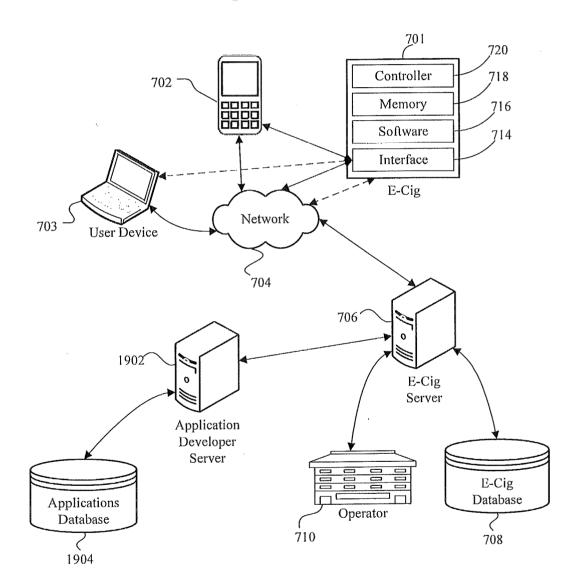



Figure 19

