PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6. (11) International Publication Number: WO 97/30389
06F 9/38 A2

G (43) International Publication Date: 21 August 1997 (21.08.97)

(21) International Application Number: PCT/US97/02184 | (81) Designated States: JP, European patent (AT, BE, CH, DE, DK,

(22) International Filing Date:

(30) Priority Data:
08/601,744

10 February 1997 (10.02.97)

15 February 1996 (15.02.96) uUs

(71) Applicant: HAL COMPUTER SYSTEMS, INC. [US/US];
1315 Deli Avenue, Campbell, CA 95008 (US).

(72) Inventors: KULKARNI, Paritosh, M.; 2275 South Bascom
Avenue #1504, Campbell, CA 95008 (US). REEVE,
Richard; Apartment 19, 200 Towne Terrace, Los Gatos,
CA 95030 (US). SAXENA, Nirmal, R.; 24390 Summerhill
Avenue, Los Altos Hills, CA 94024 (US).

(74) Agents: PATEL, Rajiv, P. et al.; Fenwick & West L.L.P., Suite
700, Two Palo Alto Square, Palo Alto, CA 94306 (US).

ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: METHOD AND APPARATUS FOR IMPROVED BRANCH PREDICTION ACCURACY IN A SUPERSCALER MICRO-

PROCESSOR

(57) Abstract

Methods and apparatuses predict whether conditional branch computer instructions INPUT ADDRESS
should be taken or not taken. A history register is maintained to record the history of groups FORBUNCH |- 410
of instructions, updated only once for each group. The history register and an address of one
of the bytes of one of the instructions in each group are appended or otherwise combined to
create an address to a table of two-bit saturating counters. The value of one of the bits of the
counter at the address created is used for predicting all the conditional branch instructions for
each branch in the group. INPUT HISTORY
REGISTER | 412
COMPUTE TABLE
ADDRESS [~ 41
RETRIEVE
PREDICTION
INDICATOR [~ 416
USING TABLE
ADDRSS
PREDICT
USING | 418
PREDICTION
INDICATOR

Codes used to identify States party to the PCT
applications under the PCT.

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Coéte d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Gemany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

FOR THE PURPOSES OF INFORMATION ONLY

MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG
St
SK
SN
sz
TD
TG
T3

on the front pages of pamphlets publishing international

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

i

10

30

WO 97/30389 PCT/US97/02184

METHOD AND APPARATUS FOR IMPROVED BRANCH PREDICTION ACCURACY IN
A SUPERSCALER MICROPROCESSOR

Field of Invention

The present invention relates to microprocessors and more
specifically to the prediction of branch instructions in

superscalar microprocessors.

Background of Invention

Conventional microprocessors which do not use a superscalar
or multipipelined architecture accept instructions from a serial
instruction stream, and process those instructions sequentially,
in a logical order allowing jumps and branches. When a
conditional branch instruction is encountered, the
microprocessor tests certain flags which have been set by
instructions previously executed by the microprocessor, and
either resumes executing at the instruction which followed the
conditional branch instruction in the serial instruction stream,
or resumes execution at an instruction stored at a location

described by the conditional branch instruction.

Superscalar microprocessors can accept a serial instruction
stream, and produce the same results as a non superscalar
microprocessor. However, superscalar microprocessors may
internally process multiple instructions simultaneously, which
may cause instructions to be executed out of their logical
order, the order intended by the original creator of the

instructions.

Referring now to Figure 1, a conventional superscalar
microprocessor 102 and memory 104 is shown. Fetch circuitry 106
directs memory 104 to transfer blocks of instructions 110, 112
starting with the memory address contained in the fetch program
counter 108 a block at a time into memory area 114, for
simultaneous processing by execution units 116, 118, 120.
Although the size of the blocks 110, 112 and memory area 114
shown in Figure 1 are four words, and the number of execution

units 116, 118, 120 shown in Figure 1 is three, conventional

10

15

20

25

30

35

WO 97/30389 PCT/US97/02184

superscalar microprocessors may have blocks 110, 112 and storage
areas 114 of any size, and any number of execution units 116,
118, 120.

Producing results in a superscalar microprocessor which are
identical to the results which would be produced by a
conventional non-superscalar microprocessor poses certain
problems for a superscalar microprocessor. One problem posed by
a superscalar microprocessor design arises in the processing of
a conditional branch instruction. Because the instructicns
which set the flags in a superscalar microprocessor may r.ot have
been processed at the time the branch instruction is ready for
execution by the superscalar microprocessor, it is impossible to
determine with certainty which instruction the non-superscalar
microprocessor would have executed after the execution of the
conditional branch instruction without waiting for all
instructions which logically precede the conditional branch
instruction to execute. Waiting for all such preceding

instructions to execute would introduce undesirable delays.

One approach to avoid these delays has been to attempt to
predict the result of the conditional branch instruction without
waiting for the logically preceding instructions to execute, and
continue processing instructions as if the prediction was
accurate. When the instructions which logically precede the
conditional branch have all completed execution, the prediction
may be tested for accuracy. If the result of the HEanch
prediction is indeed accurate, processing continues and the
undesirable delays are avoided. If the result of the branch
prediction is inaccurate, processing stops, and resumes at the
instruction which should have been executed after the
conditional branch, with the delay no greater than if processing
had suspended waiting for execution of the instructions which

logically preceded the conditional branch instruction.

Various conventional ideas exist for predicting which
branch direction to take. One approach is to always predict the
branch described in the branch instruction will be taken. Such
a prediction can often be corrsct more than fifty percent of the

time, as many programs contain loop instructions that result in

2

10

15

20

25

30

35

WO 97/30389 PCT/US97/02184

the branch described in the branch instruction being taken more

often than not. For example, the PASCAL instructions:

For i1:=1 to 100 do begin

enc;

cause the branch described in the branch instruction to be
taken 99 percent of the time. Of course, other instructions,
such as if..then, while..do, and repeat..until may not yield the
same prediction accuracy, but the scheme is relatively simple to

implement, saving valuable area in a superscalar microprocessor
102.

When an instruction described in the conditional branch
instruction is executed following the conditional branch
instruction, the action is described as "taking the branch" and
thus, the branch or "direction" of the branch is "taken". When
the instruction which physically follows the branch instruction
is executed because the conditions of the conditional branch
instruction were not true, the action is described as "not

taking the branch" and the branch or "direction" of the branch
is described as "not taken."

One idea which can improve the accuracy of branch
prediction is known as "bimodal" branch prediction and involves
the use cf a two-bit saturating counter as a prediction
indicator to indicate whether a branch should be taken. A two
bit saturating counter makes use of the assumption that branches
should be taken in groups, and so the whether a branch or group
of branches should be taken may be predicted by reference to
whether the last branch or branches were taken. Referring now
to Figures 2A and 2B, an illustration of a state table of a two-
bit saturating counter is shown. State 210 represents a strong
indication that the branch should not be taken. State 212
represents a weak indication that the branch should not be
taken. State 214 represents a weak indication that the branch
should be taken. State 216 represents a strong indication that
the branch should be taken. The state of the prediction may be
initialized to any state 210, 212, 214, 216. The branch is

3

10

20

30

35

WO 97/30389 PCT/US97/02184

predicted taken if the most significant bit of the current
prediction state has a value of "1", such as states 214, 216,
and the branch is not taken if the most significant bit in the
current prediction state has a value of "0", such as states 210,
212. When the prediction is tested after the instructions
logically preceding the branch have been executed, the state of
the prediction is changed according to table 218. Column 220
represents the current state, column 222 represents the new
state, and column 224 represents the actual branch action:
taken, meaning the branch was actually taken, or not taken,
meaning the branch was not actually taken. From a strong
indication, two actual branches opposite the indication are
required before a change is made to the branch prediction.
Other arrangements of counters, including those with mors than
two bits, may be utilized to vary the number of actual branches
opposite the strong indication required to change the
prediction.

The states of Figure 2A may also have the values opposite
those shown: strong taken, weak taken, weak not taken and strong
not taken for states 210, 212, 214, 216, respectively. In this
case, the most significant bit having a value of "1°" indicates
the branch should be predicted not taken, "0" indicates the
branch should be predicted taken. Table 218 of Figure 2B is

used as described above, with the opposite actual actiorns in
column 224.

The accuracy of bimodal branch prediction may be enhanced
through the use of a history register, which records the history
of the actual branch action taken. The use of a history
register assumes that conditional branches are taken according

to repeating patterns. For example, in the following PASCAL
program:

For i:= 1 to 100 do

For j:= 1 to 3 do begin

end;

10

15

20

30

35

WO 97/30389 PCT/US97/02184

the inner branch will be taken two times, but not the
third, followed by the outer branch taking its branch, behavior
which will be repeated ninety-eight times due to the outer
branch. Knowledge of the behavior of the last four branches of
both the inner and outer branch can predict the behavior of the
next branch with higher accuracy than bimodal branch prediction.
A shift register may be used as a history register to keep track
of the behavior of the branches by shifting bits one position in
a single direction (right or left) for each branch encountered,
shifting in a "1" for each branch that is actually taken, and
shifting in a "0" for each branch that is not actually taken.
For example, a left shift register would read 1101 after the
outer branch was taken, with the zero in the second least
significant position showing that the end of the inner loop had
been reached. The next branch should be predicted taken, as it
will be the first branch in the next iteration of the inner

loop.

The history register is used with a history table and the
two-bit saturating counters of bimodal branch prediction to
complete the prediction. Referring now to Figure 3, the
contents of a history register 308 as described above are used
as an index to a history table 312. The pointer 316 having the
same index 314 as that of history register 308 points to a two-
bit saturating counter 318, 320, 322, 324, 326 having a state
table as described above with reference to Figure 2A which is
used to determine the branch prediction as described above. The
entire history register 308 may be used as an index to the table
312, or a certain number of bits including and adjacent to the
bit most recently shifted in to the history register 308 may be
used as an index to the table 312.

Another method 1s similar to the history table method
described above, except that the address of all, or a certain
number oi the least significant bits, of the address of the
conditional branch instruction are used in place of the history
register 308 as the index to the table 312.

Still other methods combine the low order bits of the

address of the conditional branch instruction and some or all of

5

10

15

20

25

30

WO 97/30389 PCT/US97/02184

the branch history, for example by concatenation or exclusive-
OR-ing, to create an index to the table 312, in place of the
history register 308 alone.

Referring again to Figure 1, if the address of the
conditional branch instruction is used to create the index, the
address must be computed from the fetch program counter register
108 and the position of the conditional branch instruction in
the memory 114, causing added complexity of the microprocessor
102 and computational delay. If the history is used to create
the index, it must be updated for each conditional branch

instruction executed, resulting in additional complexity in the

design of the microprocessor 102.

Summary of Invention

A method and apparatus predicts whether each conditional
branch instruction in a bunch of instructions retrieved from a
block of memory should be taken using a table of pointers to an
array of two-bit saturating counters. For each conditional
branch instruction in the bunch, the index to the table is
derived from the least significant bits of an address of the
same one of the bytes in the block appended to, or otherwise
combined with a history register, which is updated only once for
the bunch by shifting in a "1" if any of the branches in the
punch were actually taken, "0" otherwise. Because the index
does not require the computation of the exact memory location of
each conditional branch instruction, the time and complexity
required to determine the index is reduced. Because the history
table is updated only once for the bunch, instead of once for

each conditional branch instruction in the bunch, complexity is

further reduced.

Brief Description of the Drawinds

Figure 1 is a block schematic diagram of a conventional

superscalar microprocessor and a conventional memory.

Figure 2A is a state diagram of a conventional two-bit

saturating counter.

10

15

20

25

30

WO 97/30389 PCT/US97/02184

Figure 2B is a state table illustrating the operation of a

conventional two-bit saturating counter described by Figure 2A.

Figure 3 is a block schematic diagram of a conventional

branch predictor utilizing a table.

Figure 4A is a flowchart illustrating a method of
predicting a conditional branch according to one embodiment of

the present invention.

Figure 4B is a flowchart illustrating a method of updating
a prediction indicator according to one embodiment of the

present invention.

Figure 4C is a flowchart illustrating a method of updating

a history register according to one embodiment of the present

invention.

Figure 5 is a block schematic diagram of conditional branch
prediction circuitry in a superscalar microprocessor according
to one embodiment of the present invention.

Detailed Description of a Preferred Embodiment

Referring now to Figure 4A, a flowchart illustrating a
method of predicting a conditional branch instruction in a bunch
of several instructions according to the present invention is
shown. A portion or all of a storage address for one of the
instructions in the bunch is identified 410. In one embodiment,
this address is the memory address of the first byte of the
first instruction of the bunch of instructions. Other
embodiments use the address of other bytes of the first or other

instructions in the bunch, or another identifier unique to the
bunch.

Some or all of a history register is retrieved 412 for use
as described below. The history register may be retrieved 412
after, prior to, or at substantially the same time as the
storage address is retrieved 410. The history register may be
initialized to any value, such as all zeros, and updated as
described in Figure 4B below.

15

20

25

30

35

WO 97/30389 PCT/US97/02184

A prediction table address is computed using the history
register and the storage address of one of the instructions in
the bunch 414. In one embodiment, the table address is a
concatenation formed by placing the entire history register in
the most or least significant table address bit positions and a
certain number of least significant bits of the storage address
of one of the instructions in the bunch in the remaining table
address bit positions. In another embodiment, the table address
is a concatenation of a certain number of the history reg:ster
bits in the most or least significant table address bit
positions and a certain number of least significant bits of the
storage address of one of the instructions in the bunch in the
remaining table address bit positions. In one embodiment. the
history register is updated by shifting a bit into the least
significant bit position of the history register, the four least
significant bits of the history register are placed into the
four most significant table address bit positions, and the eight
least significant bits of the address of the first instruction
in the bunch of instructions are placed into the remaining eight
least significant table address bits to form a twelve bit table
address.

In one of the embodiments described above, the bits of the
address of one of the bytes of the instructions in the buach to
be concatenated are the least significant bits of the address
and the bits of the history register to be concatenated are the
history register bits including and adjacent to the bit most
recently shifted in.

In another embodiment, the history register is used without
the address of one of the bytes of the instructions in the bunch
to compute the table address. 1In another embodiment, the
address of one of the bytes of the instructions in the bunch is

used without the history register to compute the table address.

The table address can alsc be computed using the history
register and the address of one of the bytes of an instruction
in the bunch using methods other than concatenation. 1In another
embodiment, som: or all of the bits of the history register and

some or all of the bits of the address of one of the bytes of

8

10

20

30

35

WO 97/30389 PCT/US97/02184

the instructions in the bunch are exclusive-OR-ed to create a
history table. In one embodiment, the bits of the address of
one of the bytes of the instructions in the bunch to be
exclusive-OR-ed are the least significant bits of the address,
and the bits of the history register to be exclusive-OR-ed are
the history register bits including and adjacent to the bit most

recently shifted in.

The table address may then be used to retrieve a portion or
all of a prediction indicator 416. In one embodiment, the
prediction indicator is located at the table address in a table
of prediction indicators. In another embodiment, the prediction
indicator is located via a pointer at the table address. The
prediction is made according to the prediction indicator
retrieved. In one embodiment, each prediction indicator acts as
a two-bit counter, such as the two-bit saturating counter
described above and having the state table illustrated in Figure
27, with the conditional branch predicted taken if the most
significant bit of the two-bit saturating counter corresponding
to the table address has one value such as a "1" 214, 216 and
predicted not taken if the most significant bit of the two-bit
saturating counter corresponding to the table address has the
opposite value, such as a "0" 210, 212. A single prediction
derived using this method may be performed once and used for

every conditional branch in the bunch.

Optionally, the prediction indicator may be updated based
on whether any branch in the bunch was actually taken, using a
method such as the method described above using Figure 2B.
Referring now to Figures 4B and 2B, if any branch in the bunch
is actually taken, the state of the prediction indicator is
updated using the lower portion 228 of table 213. 1If no
branches in the bunch are actually taken, the prediction

indicator is updated using the upper portion 226 of table 218.

In one embodiment, the history register is updated once for
each bunch of instructions, after all predictions for branch
instructions in the bunch have been made. In one embodiment,
the history register is updated as shown in Figure 4C. If any

branch in the bunch was actually taken 430, a value such as a

9

10

15

20

25

30

35

WO 97/30389 PCT/US97/02184

“l" is shifted into the history register 432, otherwise, if no
branches in the bunch were actually taken, the opposite value,
such as a "0" is shifted into the history register 434. Bits

may be shifted into the history register from either direction

as long as the direction of shifts is consistent among a large
number of bunches.

In one embodiment, the history register is only updated if
there is a conditional branch instruction in the bunch 436.
This embodiment allows a history register of a certain size to
track a longer history than a history register which is updated
even for bunches which do not contain conditional branch
instructions as described above.

Referring now to Figure 5, one embodiment of an apparatus
used to predict conditional branch instructions according to the
present invention is shown. Fetch program counter 508 hclds the
storage address of the first instruction of a bunch of
instructions stored in a storage device such as a memory, not
shown on Figure 5, but similar to memory 104 of Figure 1.
Retriever 504 addresses such storage device via address bus 506
to retrieve a certain number of instruction bytes from such
storage device via data bus 509 into memory 510. Execution unit
loader 502 loads instructions stored in memory 510 into
execution units 512. Next instruction decode 516 appends a tag
into tag storage 518 if the instruction stored in memory 510
following the instruction loaded into execution unit 512 is a
conditional branch instruction. The tag stored in tag storage
518 is made up of a number of bits, each bit corresponding to
the condition or conditions which must be met for the
conditional branch instruction stored in memory 510 following
the instruction in the respective execution unit 512 to take the
branch. One or more execution units 512 each contain a flag
register 514 which sets condition flag bits in the flag register
514 based upon the results produced by the execution unit 512.
Each bit in flag register 514 corresponds to conditions such as
"result = 0" "result > 0" or "result < 0". Result compare 520
compares the flag bits in flag register 514 with the tag bits
stored in tag storage 518. If all of the tag bits in tag
storage 518 match the corresponding set flag bits in flag

10

10

15

20

30

WO 97/30389 PCT/US97/02184

register 514, result compare 520 outputs true to history latch
521, indicating that the conditions for one of the conditional
branches in the bunch to take the branch has actually occcurred.
History latch 521 is shifted into history register 522, after
all of the instructions preceding conditional branch

instructions in the bunch have been executed by execution units
512.

FPC latch 511 is coupled to the fetch program counter 508
to preserve the value of some or all of the bits contained in
the fetch program counter 508. History register 522 is
concatenated with FPC latch 511 in the combination or fashion as
described above via concatenator 524 to address table RAM 526
which contains a table of two-bit saturating counters as
described above. In one embodiment concatenator 524
concatenates bits of the history register 522 and the bunch
address contained in FPC latch 511. In another embodiment,
concatenator 524 exclusive-ORs the bits as described above. The
most significant bit of the two-bit saturating counters of table
RAM 526 is output on output line 528 to branch execution unit
532 to indicate to the branch execution unit 532 whether to take
any branch in the bunch loaded into memory 510 as described

above.

Update unit 530 is coupled to history latch 521 and table
RAM output 529 to receive both bits stored in the two-bit
saturating counter addressed by concatenator 524. Update unit
530 updates the two-bit saturating counter in table RAM 526
using the values illustrated in Figure 2B. Update unit 530
updates the table RAM after all non-branch instructions stored
‘n memory 510 corresponding to the instructions loaded by the
fetch program counter 508 corresponding to the bits stored in
FPC latch 511. This means the update unit 530 updates a single
address of table RAM 526 corresponding to the table RAM address
output by concatenator 524 once for each time instructions are
loaded into memory 510. Other arrangements for loading memory
510 are possible, such as a double buffer arrangement whereby
pointers are used to correspond to memory 510, one pointer
points to the next location in memory 510 into which
instructions are to be loaded and one pointer points to tne next

11

WO 97/30389 PCT/US97/02184
location in memory 510 from which instructions are to be
transferred to execution units 512. 1In such an arrangement,
update unit 530 updates the two-bit counter in table RAM 526
corresponding to the address at the output of concatenator 524
cne time for each time all instructions which had been in

memory 510 at one time have been executed.

12

10

15

20

30

WO 97/30389 PCT/US97/02184

What is claimed is:

1. A method of locating in an addressable table of a
plurality of prediction indicators a prediction indicator
indicating a direction of a conditional branch instruction in a
bunch c¢f instructions comprising a plurality of instructions,
each instruction having at least one unique identifier, the

method comprising:

selecting at least a portion of a unique identifier of one
of the instructions in the bunch other than the conditional
branch instruction;

building an address for the table of prediction indicators

using the portion of the unique identifier selected; and

addressing the table of prediction indicators using the
address built.

2. The method of claim 1 wherein at least one unique
identifier of each instruction in the bunch comprises a storage

address corresponding to said each instructions.

3. The method of claim 2 wherein each instruction
comprises at least one byte and the storage address
corresponding to each instruction is a storage address of a byte

of said each instructions.

4. The method of claim 1 wherein the building step
comprises appending the portion of the unique identifier
selected with a number of bits of a history register comprising
a shift register.

5. The method of claim 4 wherein:

the unique identifier comprises a number of bits comprising

a least significant bit and having an order;

the portion of the unique identifier comprises a group of
eight bits of the unique identifier adjacent to and including

the least significant bit;

13

10

15

20

25

30

WO 97/30389 PCT/US97/02184

the history register bits have an order and comprise a bit

most recently shifted in; and

the number of bits of the history register is four, said
number of bits of the history register comprising the bit most
recently shifted in and three bits adjacent to the bit mecst

recently shifted in.

6. A method of updating a history register comprising a
plurality of bits, each having a first value and a second value,
to maintain the conditional branch history of one of a plurality
of bunches of instructions comprising a plurality of
instructions, at least one bunch of instructions including at
least one conditional branch instruction, each conditional
branch instruction having an actual taken state being selectable

from a first state and a second state, the method comprising:

determining the presence of at least one of the conditional
branch instructions in the bunch having an actual taken state of
the first state:

responsive to the presence of at least one of the
conditional branch instructions in the bunch having an actual

taken state of the first state, shifting a first value into the

history register; and

responsive to the absence of at least one conditional
pranch instructions in the bunch having an actual taken state of

the first state, shifting a second value into the history

register.

2 The method of claim 6 comprising the additiona. steps

of, for at least one instruction in the bunch:

determining whether a conditional branch instruction was

actually taken;

responsive to the conditional branch instruction having
been actually taken, selecting the actual taken state of the
first state; and

14

10

15

20

25

30

WO 97/30389 PCT/US97/02184

responsive to the conditional branch instruction having not
actually been taken, selecting the actual taken state of said

branch of the second state.

8. A method of updating a history register comprising a
plurality of bits having a first value and a second value to
maintain the conditional branch history of one of a plurality of
bunches of instructions comprising a plurality of instructions,
at least one bunch of instructions including a plurality of
conditional branch instructions, each conditional branch
instruction having an actual taken state being selectable from a

first state and a second state, the method comprising:

determining the presence of a conditional branch
instruction in the bunch; and

responsive to the presence of a conditional branch
instruction in the bunch:

determining the presence of one of the conditional

branch instructions in the bunch having an actual taken state of
the first state;

responsive to the presence of at least one of the
conditional branch instructions in the bunch having an actual
taken state of the first state, shifting a first value into the
history register; and

responsive to the absence of at least one conditional
branch instructions in the bunch having an actual state of the

first state, shifting a second value into the history register.

9. The method of claim 8 comprising the additional steps
of, for at least one instruction in the bunch:

determining whether a conditional branch instruction was
actually taken;

responsive to the conditional branch instruction having
been actually taken, selecting the actual taken state of the
first state; and

15

10

15

20

30

WO 97/30389 PCT/US97/02184

responsive to the conditional branch instruction hav:ing not
actually been taken, selecting the actual taken state of said

branch of the second state.

10. An apparatus for predicting the direction of at least
one conditional branch instruction in a bunch of a plurality of
conditional branch instructions having at least one branca
criteria and non-conditional branch instructions in a plurality
of bunches of instructions, each bunch having a unique
identifier, the apparatus having an output for indicating the

direction predicted, the apparatus comprising:

a fetch program counter latch having an output, the fetch
program counter latch for storing at least a portion of a unique

identifier for the bunch of instructions;

a concatenator having a first input coupled to the fetch
program counter latch and an output; and

an addressable storage device having a data input, an
address input coupled to the concatenator output and a data
output coupled to the apparatus output, the addressable storage
device containing at least one prediction indicator in at least

one addressable storage location.
11. The apparatus of claim 10 additionally comprising:

a nistory register comprising a shift register and having
an output comprising a most-recently-shifted-in bit of the shift
register and at least one additional bit of the shift register;
and

wherein, the concatenator additionally comprises a second

input coupled to the history register output.

12. The apparatus of claim 11 wherein the concatenator
output comprises a number of fetch program counter latch bits,
the most recently-shifted-in history register output bit and at

least one of the additional bits of the history register output.

16

10

15

20

25

30

WO 97/30389 PCT/US97/02184

13. The apparatus of claim 12 wherein the number of fetch
program counter latch bits is eight, and the concatenator output

comprises three additional bits of the history register output.

14. The apparatus of claim 11 wherein the concatenator
output comprises the first concatenator input exclusive-OR-ed

with the second concatenator input.

15. The apparatus of claim 10 wherein each instruction in
the bunch has a storage address and the unigque identifier for
each bunch of instructions comprises a storage address of at

least one of the instructions in the bunch.

16. The apparatus of claim 15 wherein the instruction
corresponding to the storage identifier for the bunch is a non-

conditional branch instruction.

17. The apparatus of claim 10 additionally comprising:

at least one register unit having an output and an input
coupled to receive at least one of the instructions and
comprising an execution unit and at least one result compare
having an output coupled to the register unit output and being
state selectable from a first state responsive to said
instructions preceding a conditional branch instruction and
having at least one branch criteria of said conditional branch
instruction and a second state responsive to said instructions
not preceding a conditional branch instruction or not having at
least one branch criteria of a conditional branch instruction

following said instruction;

a result compare latch having at least one input coupled to
at least one register unit output, and an output being state
selectable from a first state responsive to at least one of the
result compare latch inputs being in the first state and a
second state responsive to none of the result compare latch

inputs being in the first state; and

an update unit having a first input coupled to the result
compare latch output, a bunch of second inputs coupled to at

least one of the addressable storage device data outputs and an

17

10

15

20

25

WO 97/30389 PCT/US97/02184

output coupled to the addressable storage device data input and

having a plurality of selectable states responsive to the first
input and the second set of second inputs.

18. The apparatus of claim 17 wherein:

the update unit output is state selectable from a first

state, a second state, a third state and a fourth state; and

the addressable storage device outputs coupled to the
update unit set of second inputs have a first state, a second
state, a third state and a fourth state.

19. The apparatus of claim 18 wherein:

responsive to the result compare latch in the first state,

the update unit selects the update unit output to the:

first state responsive to the update unit in the first
state or the second state;

second state responsive to the update unit in the
third state; and

third state responsive to the update unit in the
fourth state; and

responsive to the result compare latch in the second state,

the update unit selects the update unit output to the:

second state responsive to the update unit in the
first state;

third state responsive to the update unit in the
second state; and

fourth state responsive to the update unit in the
third or fourth state.

20. The apparatus of claim 18 wherein:

responsive to the result compare latch in the second state,

tne update unit selects the update unit output to the:

i8

10

WO 97/30389 PCT/US97/02184

first state responsive to the update unit in the first

state or the second state;

second state responsive to the update unit in the
third state; and

third state responsive to the update unit in the
fourth state; and

responsive to the result compare latch in the first state,

the update unit selects the update unit output to the:

second state responsive to the update unit in the
first state;

third state responsive to the update unit in the
second state; and

fourth state responsive to the update unit in the
third or fourth state.

19

0 97/30389 PCT/US97/02184
W

1/7
104
i o 102
|
! l
! =110 \
! |
B — , f\DD,BESS | =10 TR
E i DATA (108
: ! - _114
! I
f | ~112
 — l
116 118 120
FIG. 1

(PRIOR ART)

WO 97/30389 PCT/US97/02184

2/7

STRONG WEAK WEAK STRONG

NOT NOT TAKEN TAKEN
TAKEN TAKEN

10 11

210 212 214 216

FIG. 2A
(PRIOR ART)

———— o G —— -—...—_——-———

00 |00 | NOT TAKEN‘:
01 |00 | NOTTAKEN ||
10 | 01 NOT TAKEN |~
4
|
{
|

‘—__———‘it‘——————l
l—h
|
!
[
°
|
<
10
_'
>
'm
'Z

00 | 01 | TAKEN
o1 | 10 TAKEN 008
10 | 11 TAKEN ||~
O O T S TAKEN __ ||
220 222 224
FIG. 2B

(PRIOR ART)

PCT/US97/02184

WO 97/30389

3/7

312

S N

|
1l

!

e e ————— am —— — ———— -]

314

FIG. 3
(PRIOR ART)

WO 97/30389 PCT/US97/02184

4/7

INPUT ADDRESS

FORBUNCH | — 410

A

INPUT HISTORY
REGISTER

—— 412

A

COMPUTE TABLE

ADDRESS | — 414

RETRIEVE
PREDICTION
INDICATOR [~ 416
USING TABLE
ADDRSS

PREDICT

USING [418
PREDICTION
INDICATOR

FIG. 4A

WO 97/30389 PCT/US97/02184

5/7

oy UPDATE
BRANCH
STATE FOR
IN BUNCH
ACTUALLY BRANCH | 444
TAKEN NOT ACTUALLY
A TAKEN

UPDATE
STATE FOR
BRANCH ——442
ACTUALLY

TAKEN

FIG. 4B

WO 97/30389

6/7

IN BUNCH

ANY
BRANCH
IN BUNCH
ACTUALLY

JAKEN? 430

SHIFT "1" INTO
HISTORY |~ 432
REGISTER

FIG. 4C

PCT/US97/02184

SHIFT "0" INTO
HISTORY
REGISTER

-~

WO 97/30389 PCT/US97/02184

7/7

P RETRIEVER

H i ' 506 FETCHPC +~_ 508

509

504

FPCLATCH [~ °11

NEXT INSTR
MEMORY S10 DECODE | = 516
EXECUTION | 500
UNIT LOADER -
RESULT 520
r COMPARE
518
514 FLAG g
— EXECUTION | TAG —+ ()521 9522
) —— HISTORY
512 RESULT |~ 520 o
COMPARE PD
518 UPDATE [530
514 _+ FLAG | (CONCAT
) 526
— EXECUTION | TAG Y 524 (
s [.
512 RESULT |~ s20
COMPARE |
518 TABLE RAM .?
514_,—1 FLAG % 529
+— EXECUTION | TAG -
5
512 ° 528
BRANCH EXECUTION [z

FIG. 5

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

