wo 2018/024348 A1 | 0E 0000 O 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

\
(19) World Intellectual Property ~
Organization 0 3 0 A
International Bureau —/) (10) International Publication Number
(43) International Publication Date = WO 2018/024348 A1
08 February 2018 (08.02.2018) WIPQ | PCT
(51) International Patent Classification: SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT,
GO6F 9/52 (2006.01) TZ,UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(21) International Application Number: (84) Designated States (unless otherwise indicated, for every
PCT/EP2016/077180 kind of regional protection available): ARIPO (BW, GH,
(22) International Filing Date: GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
ernational kHing %9N, ber 2016 (09.11.2016) UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
ovembe (09.11. TM), Buropean (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(25) Filing Language: English EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
26) Publication L . Enalish MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
(26) Publication Language: nglis TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
(30) Priority Data: KM, ML, MR, NE, SN, TD, TG).
62/370,961 04 August 2016 (04.08.2016) Us
71) Applicant: TELEFONAKTIEBOLAGET — Lm | llshed:
(71) Applicant: — with international search report (Art. 21(3))
ERICSSON (PUBL) [SE/SE]; SE-164 83 Stockholm (SE).
(72) Inventors: FALLON, Liam; Ericsson Software Cam-
pus, Athlone, Westmeath (IE). KEENEY, John; Ericsson
Software Campus, Athlone, Westmeath (IE). VAN DER
MEER, Sven; Ericsson Software Campus, Athlone, West-
meath (IE).
(74) Agent: ERICSSON; Torshamnsgatan 21-23, 164 80 Stock-
holm (SE).
(81) Designated States (unless otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,
AQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH, CL,CN, CO,CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KW,
KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME, MG, MK,
MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA,
PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD,

(54) Title: METHOD AND APPARATUS FOR DISTRIBUTED NETWORK MANAGEMENT

Receive Model Object Libraries
and Model Metadata h

Instantiate Management
Information Model based on
received Model Object Libraries
and Model Metadata

~

Store instantiated Management
Information Model in repository
of the process

™~ 2606

Fig. 26

(57) Abstract: Method and Apparatus for Distributed Network Management
A method of managing a network. The network comprises a plurality of dis-
tributed hosts, wherein at least one process is being run on a host. Said process
provides a function related to operation of the network by executing at least
one application instance, wherein the at least one application instance requires
for execution at least one Management Information Model. The method com-
prises receiving (2602) Model Object Libraries representing the at least one
Management Information Model and Model Metadata associated with the
Model Object Libraries and instantiating (2604) the at least one Management
Information Model based on the received Model Object Libraries and Model
Metadata. The method further comprises storing (2606) the instantiated Man-
agement Information Model in a repository ot the process for use by the at
least one application instance. Also disclosed is an apparatus configured to
carry the above method.

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

1

Method and Apparatus for Distributed Network Management

Technical Field

The present invention relates to network management, in general, and in particular

to network management based on distributed Management Information Model.

Background

As Telecommunication networks are becoming increasingly distributed and
virtualized due to the advent of technologies such as Software Defined Networking
(SDN) and Network Function Virtualization (NFV), network management applications
must evolve to manage such distributed virtualized networks. Although specifications for
managing NFV such as the NFV-MANO specification [ETSI, 2014] do not specify a
distributed architecture for management per se, using a distributed approach in the design
of a management system is an obvious way of leveraging the power of today’s cloud
infrastructure with its underlying multi-core and memory rich hosts. It is not surprising,
therefore, that modern management systems such as Ericsson Network Manager, ENM,

[Ericsson, 2016] are inherently distributed.

Network management has long used information models to describe information
that is being managed in network elements and management systems [ITU-T, 2005b],
[3GPP, 2011a], [IETF, 1991]. Such models provide many advantages: the modelled
information is unambiguously described, the model acts as an interface to the managed
domain, the protocol for accessing the model is available, and any application can use
and manipulate the information in the model once it complies with the management
protocol, and usage of the model can be logged. The paradigm of a hierarchy of models
is ubiquitous in network management [ITU-T, 2000b], with managers in a given level of

management using models published by agents in the level below.

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

2

A number of interesting technologies have emerged in the domain of computer
science that can be used to share information between processes in a distributed system.
Indeed, Memory Driven Computing [Bresniker et al., 2015] has been proposed as a way
of harnessing the large banks of cheap memory on the hosts of modern distributed
systems. Implementations of Distributed Hash Tables [Coulouris et al., 2012] that allow
exchange of unstructured maps of information between processes have been available for
some time [Infinispan, 2016], [Hazelcast, 2016]. A map is an object that maps keys to
values. A map cannot contain duplicate keys; each key can map to at most one value. In
parallel, frameworks have emerged that support distributed locking across distributed
processes. Some frameworks take a centralized approach, where a central server holds a
record of locks [Curator, 2015] while others take a fully distributed approach, with lock
information being exchanged between processes at run time [Hazelcast, 2016]. In
addition, distributed technologies for monitoring such as syslog [IETF, 2009] and Log4j
[Log4j, 2015] and persistence such as relational databases and distributed file systems are

mature and are very suitable for application to distributed model management.

There is no existing method for defining, scoping, and using a distributed
information model, where the model itself has a scope wider than a single network
element, NE. Although hierarchies of models are very common, each model is a separate
information model instance with responsibility for that model instance resting with the
NE in which the information model resides. The problem of information model
coordination is magnified because a different approach to model coordination is taken in
cach domain. For example, a given cell C/ is modelled in a base station model as cell C/
and is modelled separately in the management system as cell C/. The models are
different, the cell is modelled twice, and the management system and base station NEs
must interact with each other to keep those models consistent, in this case using 3GPP
Integration Reference Points, IRPs, [3GPP, 2011a]. Likewise, an interface is modelled in

a computer using MIB-II [IETF, 1991] as eth0 and in an element manager separately as

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

3

eth(. Again, the element manager and computer must interact with each other to keep

their models consistent, in this case using Simple Network Management Protocol, SNMP.

Information model coordination has been a challenge in management systems for
very many years, but the advent of Software Defined Networking exasperates the
problem. All current solutions rely on a stable hierarchy being present, with NEs
occasionally entering and leaving the hierarchy in a controlled manner. When resources
are managed across transient (and often virtual) NEs, where NEs, element managers and
even network managers transient, spun up and torn down as required, a hierarchical
approach to model coordination makes maintaining a consistent distributed view of those
models a very difficult task. The approach of having independent static hierarchical
models envisaged for the telecommunication networks of the 1980s [ITU-T, 2000b] does
not scale well in today’s dynamic networks because of the overhead and latency

introduced by model coordination.

The lack of a common distributed management of information models is a serious
drawback for distributed management application development. Not only does each
management application have to manage its own distributed information, there is no
coordination when different distributed management applications share management

information.

Although Distributed Shared Memory [Protic et al.,, 1996], Memory Driven
Computing [Bresniker et al., 2015] and distributed cache frameworks [Infinispan, 2016],
[Hazelcast, 2016] allow memory to be shared between systems, the data that is shared is
unstructured and uncontrolled, usually as distributed maps. Such frameworks are too
unstructured and uncoordinated to be used safely by disparate management applications.
Each process has the freedom to add, modify, or remove entire distributed maps or
instances in the distributed maps. For example, process P1 can add the instance named
cell C7 as an object called Cell with parameters representing the various attributes that a

cell might have. Process P2 can then simply overwrite the instance named cell C/ with a

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

4

string value or even delete the instance. Even more concerning, a process can place a
completely incompatible Customer object as a value on the C/ instance on the map called

CellMap, turning cell C/ into customer C/.

Data sharing using databases is common, but a centralised database used by
multiple distributed applications can introduce significant latency. There are numerous
approaches to use distributed databases to support distributed data access. For example,
CouchBase (http://www.couchbase.com) is a distributed NoSQL database, but like most
other NoSQL databases it does not use schemas to enforce a particular data model. Many
traditional relational databases support replication (for example MySQL) using either
master-master or master-slave replication strategies. However, most such database
replication strategies are only loosely consistent, i.e. lazy and asynchronous, violating
ACID (i.e. Atomicity, Consistency, Isolation, Durability) properties, or where ecager

replication is used then updates introduce high latency.

The ability to lock a particular element in a model so that a management
application knows that it can perform a safe read or write is a fundamental requirement
for any distributed management model. Distributed locking mechanisms [Curator, 2015],
[Hazelcast, 2016] support distributed synchronized locking of named distributed locks,
but they do not provide a mechanism to associate or bind a named lock to a particular
distributed information model instance. Controlled distributed locking of particular

named instances across distributed processes is not supported.

A straightforward locking approach is preferred to a transactional approach
because transaction frameworks such as those that implement the Java Transaction API
(JTA) [Oracle, 1999] [Little et al., 2016] introduce a high degree of complexity and
coordination that cannot be hidden from management applications. Explicit support for
starting, joining, committing, and aborting transactions must be provided. Further,

transactional approaches do not scale well [Cecchet et al., 2002], [Femminella et al.,

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

5

2011] as the number of application instances increase the speed of transaction execution

diminishes rapidly.

The lack of common distributed models also means that common monitoring of
operations on common items in shared models is difficult. If a manager requests a NE to
change an attribute on cell C/ or interface eth0, then both the manager and the NE must
log the change using their representation of C/ and eth0 using their different logging
mechanisms. A further system is required to aggregate and correlate the separate logs
together to provide a complete view of when a model instance was initiated, written, read,

and deleted.

Similarly, such a lack of a common view means that persistence of models must
also be done separately, with each separate model being saved and managed in the
persistence system separately. The separate models must then be mapped and joined to

provide a common view.

Existing approaches have the following drawbacks.

— No existing method for defining, scoping, and using an information model
with a scope wider than a single NE, concepts are re-modelled in
hierarchical information models for various NE types and various
management systems.

— Model coordination is required across the different information model
instances, which is difficult especially in dynamic soft network
management systems.

— Memory Driven Computing [Bresniker et al., 2015] and distribution
frameworks [Infinispan, 2016][Hazelcast, 2016] allow memory to be
shared between systems but the sharing is unstructured and unsafe.

— Integrated model aware distributed locking across models in different NEs

is not possible.

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

6

— Integrated model aware distributed monitoring is not possible. Integrated

model aware distributed persistence is not possible.

Summa

It is the object of the present invention to obviate at least some of the above
disadvantages and provide an improved management of Management Information Model

for use in network management.

Accordingly, the invention seeks to preferably mitigate, alleviate or eliminate one

or more of the disadvantages mentioned above singly or in any combination.

According to a first aspect of the present invention there is provided a method of
managing a network. The network comprises a plurality of distributed hosts, wherein at
least one process is being run on a host. Said process provides a function related to
operation of the network by executing at least one application instance, wherein the at
least one application instance requires for execution at least one Management Information
Model. The method comprises receiving Model Object Libraries representing the at least
one Management Information Model and Model Metadata associated with the Model
Object Libraries and then instantiating the at least one Management Information Model
based on the received Model Object Libraries and Model Metadata. The method also
comprises storing the instantiated Management Information Model in a repository of the

process for use by the at least one application instance.

According to a second aspect of the present invention there is provided an
apparatus for managing a network. The network comprises a plurality of distributed hosts,
wherein at least one process is being run on a host. Said process provides a function
related to operation of the network by executing at least one application instance, wherein
the at least one application instance requires for execution at least one Management
Information Model. The apparatus comprises a processor and a memory. The memory

contains instructions executable by the processor such that the apparatus is operative to

10

15

20

WO 2018/024348 PCT/EP2016/077180

7

receive Model Object Libraries representing the at least one Management Information
Model and Model Metadata associated with the Model Object Libraries. The apparatus is
also operative to instantiate the at least one Management Information Model based on the
received Model Object Libraries and Model Metadata; and to store the instantiated
Management Information Model in a repository of the process for use by the at least one

application instance.

According to a third aspect of the present invention there is provided an apparatus
for managing a network. The network comprises a plurality of distributed hosts, wherein
at least one process is being run on a host. Said process provides a function related to
operation of the network by executing at least one application instance. The at least one
application instance requires for execution at least one Management Information Model.
The apparatus comprises a receiver for receiving Model Object Libraries representing the
at least one Management Information Model and Model Metadata associated with the
Model Object Libraries and a creator for instantiating the at least one Management
Information Model based on the received Model Object Libraries and Model Metadata.
The apparatus also comprises a memory for storing the instantiated Management
Information Model in a repository of the process for use by the at least one application

instance.

Further features of the present invention are as claimed in the dependent claims.

Brief description of the drawings

The present invention will be understood and appreciated more fully from the

following detailed description taken in conjunction with the drawings in which:

FIG. 1 is a diagram illustrating a distributed Management Information Model

management in one embodiment of the present invention;

WO 2018/024348 PCT/EP2016/077180

8

FIG. 2 is a diagram illustrating further details of the distributed Management

Information Model management in one embodiment of the present invention;

FIG. 3 illustrates metadata and Model Objects for Distributed Management

Information Model management in one embodiment of the present invention;

5 FIG. 4 illustrates an example of a distributed Management Information Model in

use;

FIG. 5 illustrates an example of a process for creating metadata and Model Object;

FIG. 6 illustrates an example of a process for creating metadata for a MIM Model

Map;

10 FIG. 7 illustrates an example of a process for creating metadata for MIM Model

Usage by applications;

FIG. 8 illustrates an example of a process used by a Distributed Model Deployer

for deploying and updating metadata and Model Object Libraries;

FIG. 9A and FIG. 9B illustrate examples of locking and unlocking sub-processes;

15 FIG. 10 illustrates an example of a process of initializing local copies of

distributed MIM Model Maps;

FIG. 11 illustrates an example of a process of updating local copies of distributed

MIM Model Maps;

FIG. 12 illustrates an example of a process of clearing a MIM Model Map;

20 FIG. 13 illustrates an example of a process of initializing a Distributor component;

FIG. 14 illustrates an example of a process of setting up and initializing a MIM

Model Instance Object and its value;

WO 2018/024348 PCT/EP2016/077180

9

FIG. 15 is a diagram illustrating an example of a distribution mechanism;

FIG. 16 illustrates an example of a process of reading a MIM instance from a

MIM Model Map;

FIG. 17 illustrates an example of a process of writing a MIM instance to a MIM

5 Model Map;

FIG. 18 is a diagram illustrating an example of a locking mechanism;

FIG. 19 illustrates an example of a process of acquiring and releasing read or write

lock;
FIG. 20 is a diagram illustrating an example of a monitoring mechanism;
10 FIG. 21 is a diagram illustrating an example of a persistence mechanism;
FIG. 22 illustrates an example of a process of persisting MIM Model Maps;
FIG. 23 is a diagram illustrating a policy engine running instances of adaptive
policies;

FIG. 24 is a diagram illustrating how MIM Model Maps manage context in the

15 policy engine of FIG. 23;

FIG. 25 is a diagram illustrating an embodiment of an apparatus for managing a

network;

FIG. 26 — FIG. 28 are flowcharts illustrating a method of managing a network in

embodiments of the present invention;

20 FIG. 29 is a diagram illustrating an embodiment of an apparatus for managing a

network.

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

10

Detailed description

In the following description, for purposes of explanation and not limitation,
specific details are set forth such as particular architectures, interfaces, techniques, etc. in
order to provide a thorough understanding of the invention. However, it will be apparent to
those skilled in the art that the invention may be practiced in other embodiments that depart
from these specific details. In other instances, detailed descriptions of well-known devices,
circuits, and methods are omitted so as not to obscure the description of the invention with

unnecessary details.

Reference throughout the specification to “one embodiment” or “an embodiment”
means that a particular feature, structure, or characteristic described in connection with
an embodiment is included in at least one embodiment of the present invention. Thus,
the appearance of the phrases “in one embodiment” or “in an embodiment” in various
places throughout the specification are not necessarily all referring to the same
embodiment. Further, the particular features, structures or characteristics may be

combined in any suitable manner in one or more embodiments.

This document presents Distributed Management Information Model
Management, an overview of which is shown in Figure 1. The distributed Management
Information Models (MIMs) are authored by an Information Model Authoring
component, 102, which stores Model Metadata, 108, describing the MIMs in a Model
Knowledge Base, 104. The Information Model Authoring component, 102, also creates a
Model Object for each concept in each MIM, which may be instantiated at run time and

stores it in a Model Object Repository, 106.

Once the Model Metadata, 108, is stored, a Distributed Model Deployer, 110,
distributes the Model Metadata and Model Object Libraries to processes, 112 - 116, on
real or virtual hosts. These processes, 112 - 116, may be in any geographic location. The
Deployer, 110, ensures that only the required set of models and Object Libraries are

deployed to a given process, ensures that the model metadata and objects on each host is

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

11

consistent, upgrades the metadata and objects on processes as the metadata changes, and

removes metadata and objects when they are no longer required on a process.

The Model Manager, 118 — 122, on a process, 112 - 116, uses the Model Metadata
to build local copies of the MIMs required by the applications running on that process,
instantiating and initialising the model instances on each MIM using the Model Object
Library, 124 — 128. The Model Manager controls reading and writing of instances on
MIMs by applications, 130 — 134, on the process, ensuring that updates of MIM instances
are transferred to other processes using a distribution mechanism. It also ensures that
applications can only access instances on MIMs that are specified in the model metadata.
Applications may not add or remove instances to or from a MIM, and applications can

only access instances that have been defined as accessible to those applications.

If an application requires a read lock or write lock on an instance in a MIM, the
Model Manager, 118 — 122, uses a locking mechanism to ensure that the model instance
is locked or unlocked over all processes that are using the distributed MIM that contains

that instance.

The Model Manager, 118 — 122, in each process, 112 - 116, has a copy of the
MIM metadata. Each Model Manager can monitor model usage information such as
initialization, reads, writes, locks, and unlocks on model instances and send that
information to a common Model Usage Collector, 136, for storage in the Model
Knowledge base, 104, 138. The monitored information gives the usage of every instance
in every MIM on all NEs, allowing the consistency of each MIM individual to be verified
and its consistency to be checked. Consider the case where information for cell C/ is
changed by a coverage optimization application and an energy saving application.
Changes to the PowerLevel property of cell C/ by all instances of both applications can
be easily monitored. In this case, any overlap or interference between applications that
read or write the properties from the same instance can be easily detected. All accesses to

instances (and their properties) can then be audited. In addition, because the usage

10

15

20

WO 2018/024348 PCT/EP2016/077180

12

information of all MIM instances is available, machine learning and semantic techniques

can be applied to the usage information to identify less obvious conflicts and side effects.

The MIM metadata enables consistent management of persistence of information
in MIMs. MIM metadata can describe how the information can be persisted. For example,
the MIM metadata can be used to generate tables in a database management system.
Persistence can then be enabled on one or more processes, ensuring that the data in the
MIMs is always saved. MIM metadata can also assist in defining how the instance state
can be serialised, a key requirement for synchronising state across different model object
libraries (some fields might be transient or constant). MIM metadata can also be used to
assist in defining locking strategies for MIM instances or their subordinate parts. For
example, a property can be defined as “read-only”, thus supporting relaxed locking, or

“write-seldom-read-often” thus supporting optimistic locking strategies.

The solution disclosed herein describes Distributed Management Information

Model Management and has the following advantages:

. The method manages the distribution of formally modelled management
information in a way that allows distributed management applications to use that context

in a safe, controlled, and monitored manner.

. Distributed applications using this method have their information models

inherently defined, distributed and controlled.

. The method formalizes the modelling of information as metadata and
distributes the information models across multiple applications, with the required set of

models being distributed to the appropriate processes.

. The applications have a unified view of the modelled information, and use

the information as constrained and controlled by a distributor on each process.

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

13

. The distributor enforces controlled reading, writing, locking, and

monitoring of information in the distributed management information models.

. The approach prevents the information in MIMs from becoming

inconsistent because applications work towards common distributed synchronized MIMs.

. Applications cannot corrupt the structure of information in the MIMs
because the definition of the MIMs and their instances is controlled by metadata supplied

by the Distributed Model Deployer.

. Distributed Management Application design is more straightforward
because the requirement to coordinate shared information across application instances is

delegated to Distributed Management Information Model Management.

. Each operation on a MIM instance by every process that uses the MIM
instance is logged, allowing the consistency of MIM instance usage to be verified and

conflicts and side effects to be identified.

In the following description, for purposes of explanation and not limitation,
specific details are set forth such as particular architectures, interfaces, techniques, etc. in
order to provide a thorough understanding of the described solution. However, it will be
apparent to those skilled in the art that the described solution may be practiced in other
embodiments that depart from these specific details. In other instances, detailed descriptions
of well-known devices, circuits, and methods are omitted so as not to obscure the description

of the solution with unnecessary details.

Reference throughout the specification to “one embodiment” or “an embodiment”
means that a particular feature, structure, or characteristic described in connection with
an embodiment is included in at least one embodiment of the described solution. Thus,
the appearance of the phrases “in one embodiment” or “in an embodiment” in various

places throughout the specification are not necessarily all referring to the same

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

14

embodiment. Further, the particular features, structures or characteristics may be

combined in any suitable manner in one or more embodiments.

With the advent of cloud computing, virtualization, and hosts with multiple cores
and hundreds of gigabytes of memory, it is very common for management applications
to be distributed on multiple processes running on distributed real and virtual hosts. The
use of structured and controlled information models has a very long history in network
management and the value of having such structured models to constrain the managed
information is widely recognized. However, current management information models are
defined with the scope of a single Network Element (NE) or host with co-ordination of
models across multiple hosts being left as a task for each management application. The
lack of common distributed management of information models is a serious drawback for
distributed management application development because, not only does each
management application have to manage its own distributed information, there is no
coordination when different distributed management applications share management

information.

We present a method and apparatus that manages the distribution of formally
modelled management information in a way that allows distributed management
applications to use that context in a safe, controlled, and monitored manner. The method
formalizes the modelling of information as metadata and distributes the information
models across multiple applications, with the required set of models being distributed to
the appropriate processes. The applications then have a unified view of the modelled
information, and use the information as constrained and controlled by a Model Manager
on ecach process. The Model Manager enforces controlled reading, writing, locking, and
monitoring of information in the distributed management information models. Distributed
applications using this method have their information models inherently defined,

distributed and controlled.

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

15

Figure 2 is a detailed view of Distributed Management Information Model
Management. In Distributed MIM Management, all distributed MIMs are defined in
Metadata by a Model Authoring component, 102. The Metadata is stored in the Model
Knowledge base, 104. The Distributed Model Deployer, 110, distributes the MIMs to a
Model Manager, 118 — 122, in each process, 112 — 116, that is using Distributed MIM
management, where each process may host one or more instances, 202, of one or more
applications 130. The Model Manager, 118 — 122, manages its local copies of MIMs held
in Model Maps, 204, provides access to the MIMs for applications, 130, distributes the
MIM contents to other processes, as well as managing locking, monitoring, and persisting
of MIM Model Instances. A Model Map, 204, is a collection of named MIM instances
that have been defined to have a particular common scope, and provides a consistent
interface to access named MIM instances. The references to an operation of persisting

described in embodiments of the solution disclosed in this document refer to storing.

With reference to Figure 26 an embodiment of a method of managing a network
is now to be described. The network comprises a plurality of distributed hosts, wherein at
least one process, 112, is being run on a host. In one embodiment, the hosts are distributed
in various geographical locations. Said process, 112, provides a function related to
operation of the network by executing at least one application instance, 202. The at least
one application instance, 202, requires for execution at least one Management
Information Model. In this embodiment the method comprises: receiving, 2602, Model
Object Libraries representing the at least one Management Information Model and Model
Metadata associated with the Model Object Libraries and instantiating, 2604, the at least
one Management Information Model based on the received Model Object Libraries and
Model Metadata. The method also comprises storing, 2606 the instantiated Management
Information Model in a repository of the process for use by the at least one application
instance, 202. Preferably said at least one Management Information Model is used by

other instances of said application as well as by instances of other applications.

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

16

In a preferred embodiment the operations of receiving, instantiating and storing
are performed by the distributor, 206, shown in Figure 2 as part of a process, 112,

operating on a host.

Further, in a preferred embodiment, illustrated in Figure 27, the method comprises
receiving, 2702, from a first application instance, 202, a request for a write access to the
Management Information Model stored in the repository. In response to this write request
the method comprises locking, 2708, said Management Information Model if the
Management Information Model is available for modification, 2704 - no. In a locked state
other application instances, 130, in this host as well as applications instances, 132 and
134, in other hosts are not allowed to read said locked Management Information Model
and are not allowed to write in said locked Management Information Model. The locking
operation, 2708, is carried out by a Locker, 208, illustrated in Figure 2 as part of a process,
112, operating on a host. If the MIM is in a locked state, 2704 — yes, the method goes to
“wait” state, 2706, and waits until the MIM is unlocked. In a preferred embodiment the
distributor, 206, carries out the checking of the state of the MIM. The method further
comprises modifying, 2710, said Management Information Model, in a write operation,
based on the request received from the first application instance, 202, and storing, 2712,
the modified Management Information Model. These operations are preferably carried
out by the persistor, 210, illustrated in Figure 2 as part of a process, 112, operating on a
host. Alternatively, the operation of modifying, 2710, may be carried out by the
distributor, 206. The method further comprises unlocking, 2714, said Management
Information Model to make said Management Information Model available for reading

and writing operations for applications, 130 — 134, in the or another host.

Preferably the checking if the Management Information Model is available for
modification comprises checking if a locked state is imposed on said Management
Information Model by any process running on any host in the network and wherein said
Management Information Model is available for modification only if it is not in a locked

state.

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

17

In another embodiment, illustrated in Figure 28, the method further comprises
monitoring, 2802, operations of: instantiating a MIM, reading a MIM, writing to a MIM,
locking and unlocking a MIM; and sending, 2804, usage logs entries containing
monitoring data to a Model Usage Collector, 136, which centrally records, 138, MIM
usage data for the network. The operations of monitoring and sending usage logs are
preferably carried out by a monitor, 212, illustrated in Figure 2 as part of a process, 112,

operating on a host.

In one embodiment the method comprises imposing a write lock state on a
Management Information Model if said Management Information Model contains data
from a system external to the network. This is a special case in which the data from
external sources is protected against modification by the applications running on the
hosts, but which data can be read by these applications. It is important that, for example,
weather data received from external supplier are not modified, but it is important that
these data can be read so that, for example, adequate radio transmission parameters are

set.

With reference to Figure 25 an embodiment of an apparatus, 2500, for managing
a network is now to be described. The network comprising a plurality of distributed hosts,
wherein at least one process is being run on a host. In one embodiment the hosts are
distributed in various geographical locations. The process provides a function related to
operation of the network by executing at least one application instance. The at least one
application instance requires for execution at least one Management Information Model.
The apparatus, 2500, comprises a processor, 2502, and a memory, 2504. The memory,
2504, contains instructions executable by the processor, 2502, such that the apparatus,
2500, is operative to receive Model Object Libraries representing the at least one
Management Information Model and Model Metadata associated with the Model Object
Libraries and instantiate the at least one Management Information Model based on the
received Model Object Libraries and Model Metadata. The apparatus, 2500, is also

operative to store the instantiated Management Information Model in a repository of the

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

18

process for use by the at least one application instance. In a preferred embodiment said at
least one Management Information Model is used by other instances of said application

as well as by instances of other applications.

In a preferred embodiment the apparatus, 2500, comprises further an interface

2506 for communication with other elements of the system.

The apparatus, 2500, is further operative to receive from a first application
instance a request for a write access to the Management Information Model stored in the
repository. If the Management Information Model is available for modification the
apparatus is further operative to lock said Management Information Model so that the
first application instance requesting the write access can modify the model. If the MIM
is in a locked state other application instances, in this or another host, are not allowed to
read said locked Management Information Model and are not allowed to write in said
locked Management Information Model. The apparatus is further operative to modify said
Management Information Model, in a write operation, based on the request received from
the first application instance and to store the modified Management Information Model.
Further the apparatus, 2500, is operative to unlock said Management Information Model
to make said Management Information Model available for reading and writing

operations for applications in the or another host.

In one embodiment, in checking if the management Information Model is
available for modification the apparatus, 2500, is operative to check if a locked state is
imposed on said Management Information Model by any process running on any host in
the network. Said Management Information Model is available for modification only if it

is not in a locked state.

In yet another embodiment the apparatus according to any one of embodiments is
operative to monitor operations of: instantiating a MIM, reading a MIM, writing to a
MIM, locking and unlocking a MIM; and send usage logs entries containing monitoring

data to a Model Usage Collector which centrally records MIM usage data for the network.

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

19

The apparatus, 2500, in one embodiment is operative to impose a write lock state
on a Management Information Model if said Management Information Model contains
data from a system external to the network. This is a special case in which the data from
external sources is protected against modification by the applications running on the
hosts, but which data can be read by these applications. It is important that, for example,
weather data received from external supplier are not modified, but it is important that
these data can be read so that, for example, adequate radio transmission parameters are

set.

With reference to Figure 29 another embodiment of an apparatus, 2900, for
managing a network is now to be described. The network comprises a plurality of
distributed hosts. In one embodiment the hosts are distributed in various geographical
locations. At least one process is being run on a host, said process providing a function
related to operation of the network by executing at least one application instance. The at
least one application instance requires for execution at least one Management Information
Model. The apparatus, 2900, comprises a receiver, 2902, for receiving Model Object
Libraries representing the at least one Management Information Model and Model
Metadata associated with the Model Object Libraries and also comprises a creator, 2904,
for instantiating the at least one Management Information Model based on the received
Model Object Libraries and Model Metadata. The apparatus further comprises a memory,
2906, for storing the instantiated Management Information Model in a repository of the

process for use by the at least one application instance.

In a preferred embodiment at least one Management Information Model is used

by other instances of said application as well as by instances of other applications.

Preferably, the receiver, 2902, is further operative to receive from a first
application instance a request for a write access to the Management Information Model
stored in the repository. The apparatus also comprises a locker, 2908, for locking and

unlocking said Management Information Model In a locked state other application

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

20

instances in the or another host are not allowed to read said locked Management
Information Model and are not allowed to write in said locked Management Information
Model. Only unlocked Management Information Model is available for reading and
writing operations for applications in the or another host. The creator, 2904, is further
operative to modify said Management Information Model, in a write operation, based on
the request received from the first application instance. The memory, 2906, is operative

to store the modified Management Information Model.

Preferably, in checking if the Management Information Model is available for
modification the apparatus, 2900, is operative to check if a locked state is imposed on
said Management Information Model by any process running on any host in the network
and wherein said Management Information Model is available for modification only if it

is not in a locked state.

In a preferred embodiment the apparatus, 2900, also comprises a monitor, 2910, for
monitoring operations of: instantiating a Management Information Model, reading a
Management Information Model, writing to a Management Information Model, locking
and unlocking a Management Information Model. Additionally, in this embodiment the
apparatus, 2900, comprises a reporter, 2912, for sending usage logs entries containing
monitoring data to a Model Usage Collector which centrally records Management

Information Model usage data for the network.

In a preferred embodiment the apparatus, 2900, is operative to impose a write lock
state on a Management Information Model if said Management Information Model

contains data from a system external to the network.

In a preferred embodiment once model object libraries are in a process, 112, and
the distributor, 206, has the associated metadata it creates a MIM and stores it. The
application instances, 130 — 134, then may use the models. When a first application
instance, 202, wants to write to the model (modify the MIM) then the Distributor, 206,

activates a Locker, 208, ad imposes a lock on the model. This means that all remaining

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

21

application instances running on this process, 112, and on other processes, 114 and 116,
cannot perform operations of writing and reading on this model. The distributors, 206,
214, 216, check if models are available for writing/reading (they are not if there is a lock
on them). Once the lock is removed the modified model is persisted and is then available
to processes (application instances) in this modified form. Based on the above one skilled

in the art would recognize that the distributor, 206, plays a dual role:

— inside a process — constructing models based on Model Object Libraries
and associated metadata and controlling access to these models.
— across all processes — to exchange status of models and updates of the

models.

The Metadata and Model Objects for Distributed MIM management are shown in
Figure 3. All MIMs are composed of MIM instances, which must be of a Model Type.
The Model Type Definition, 308, holds the type name and version of the type as well as
a reference to a Model Object, an object that is instantiated at run time as the MIM
instance value. The type name must be unique in the Distributed MIM Management
system. Model Type Authoring, 254, in the Authoring component creates Model Type

Definition, 308, metadata and stores the metadata in the Model Knowledge Base.

The Model Object is an object programmed in a language such as Java. All Model
Objects are sub classes of an Abstract Model Object, 312; at run time the Model Maps
that hold MIMs are maps of Model Objects or fagades to Model Objects. Model Objects
are referenced using the name and version of the map to which they belong as well as a
local name, which is unique in a given MIM model map so any shared properties are
defined in the Abstract Model Object, 312, and are set at run time. It must be possible to
transfer Model Objects from one process to another (serializable in Java) so all Model
Objects have this property. They may have other properties such as the ability to be
persisted. The Concrete Model Object, 314, definition contains any logic that the Model

Object requires to implement its domain logic, for example a Cel/l Model Object may

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

22

have a Cell Id property and a Networkinterface Model Object may have an ifPhysAddress
property. Model Type Authoring in the Authoring component creates Model Objects and

stores them in the Model Object repository.

The MIM Model Map Definition, 302, metadata defines MIMs with a similar
scope and the content they may have. Each MIM has a name that uniquely identifies it in
the Distributed MIM Management system and a version that is used to control the
versions of MIMs that are being used. Each MIM contains zero or more MIM Model
Instances, also defined in metadata. Each MIM Model Instance, 306, is a specific instance
of a Model Type in a particular MIM, with the model type identified by the Model Type
reference. Its definition contains the name and version of the Model Map that owns it and
a Local Name that uniquely identifies the instance in its Model Map. For example, a cell
C!I in the MIM Model Map CELL has a local name of C/, and a cell C2 has a local name
of C2. The Writable Flag of an instance specifies whether applications can write a MIM
instance or not. For example, the instances in a MIM containing weather data read from

an external system cannot be written by applications.

The Scope of a MIM and its instances defines the visibility of the MIM in
applications. A scope of Application means that a MIM is visible only to the application
that uses it. A scope of Global means that any application can read and modify the MIM,
and a scope of External means that all applications can read the MIM but it is modified

externally to the Distributed MIM Management system. Other more selective scopes can

also be defined.

Model Map Authoring, 252, in the Authoring component creates the metadata for
MIM Model Maps and MIM Model Instances and stores the metadata in the Model

Knowledge Base.

The Model Knowledge Base, 104, also contains Application Metadata, 218, which

is set during configuration of any application that is using Distributed MIM Management.

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

23

The Application Definition, 304, metadata contains the name and version of each

application and references to each MIM each application uses.

The Model Monitoring information, 138, in the Knowledge Base, 104, provides
usage information on MIM instances. Each time an instance is initialized, read, written,
locked, or unlocked, a log is produced by the Monitor, 212, component in the Model
Manager, 118, of a process, 112. These logs are sent to the Model Usage Collector, 136,
component, which stores them in the Model Knowledge Base, 104. Each log entry
contains the identity of the MIM instance (Map name and version and local name), the
time stamp of the log entry, what operation triggered the log, the call stack of the
application at the time the log was made, and the value of the instance before and after
the operation in question completed. Applications may use the Call Stack field of the log
to insert tracing information that indicates its execution status such as what application

module was running and what state it was in at the at the time the log entry was made.

The Distributed Model Deployer, 110, shown in Figure 2 distributes MIB
metadata and Model Object Libraries to processes, 112 — 116. When a process starts, the
Distributed Model Deployer, 110, requests a list of the applications, 130, on the process,
112, and then sends the metadata for all MIMs used by that process, 112, to the Model
Manager, 118, on that process, 112. Alternatively, the Distributed Model Deployer, 110,
may have the information about MIMs used by processes cached locally from earlier
operations (e.g. deployments, upgrades, etc.) It then stores the Model Object Libraries for
those MIMs on the process. Finally, Distributed Model Deployer, 110, asks the Model
Manager, 118, on the process to set up Distributed MIM Management. If a new
application is installed on a process or an application is removed from a process, the
Distributed Model Deployer adds or removes the MIM metadata and Model Object
Libraries as appropriate and asks the Model Manager, 118, on the process to update its
Distributed MIM Management. The Distributed Model Deployer, 110, also ensures that
MIM models across processes, 112 - 116, are kept consistent. If a MIM model is updated

in the Model Knowledge Base, 104, the Deployer, 110, coordinates the update of the

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

24

MIM model across the Model Managers in all processes that use the MIM. See Section

MIM Metadata and Model Object Deployment for details of these processes.

The Distributor, 206, 214, 216, in each Model Manager, 118, 120, 122, in each
process, 112, 114, 116, (See Figure 2) manages the Distributed MIMs for the applications
in its process. When the Distributor, 206, receives metadata for a MIM from the
Distributed Model Deployer, 110, it initializes a local Model Map for that MIM, 204,
with the metadata using the process described in Section MIM Metadata and Model
Object Deployment. The Distributor, 206, distributes each MIM map to other processes
using known distribution mechanisms such as Infinispan or Hazelcast. Such unstructured
distribution mechanisms can be used because the Distributor, 206, defines the structure
of the distributed MIM Model Maps, 204, using the MIM metadata and controls access
to those MIM Model Maps, 204. Applications, 130, can then read or write the MIMs
using a map interface to the MIMs provided by the Distributor, 206. The Distributor, 206,
has a Locker, 208, and a Monitor, 212, and may have a Persistor, 210. The Locker, 208,
provides distributed locking of MIM instances by using the MIM instance keys from the
metadata as keys to a locking mechanism such as Curator or Hazelcast locks. The
Distributor, 206, uses the Monitor, 212, to send a MIM Model Instance Usage Log, 310,
entry to the Model Usage Collector, 136, when a MIM Instance is initiated, read, written,
locked or unlocked. The Monitor, 212, uses a mechanism such as Log4j [Log4j, 2015] or
syslog [IETF, 2009] to send the log messages. A Distributor may use a Persistor to save
the MIM information to persistent storage. The Persistor, 210, uses the MIM metadata to
define the structure of the files or database tables used to save the MIM information. The

Distributor, 206, calls the Persistor, 210, periodically to save its MIMs.

Figure 4 illustrates a typical usage of distributed MIMs. Instances of three
applications, 130, namely CP (Cell Power), BSHVAC (Base Station Heating, Ventilation,
and Air Conditioning), and CQOS (Customer QoS), are running on distributed processes
P, P2, and P3. Those processes are running on distributed real or virtual hosts. There

are nine distributed MIMs in the system as shown in Figure 4. In the case of the CELL

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

25

MIM, it holds information on cells in the system, it has GLOBAL scope and it is used by
the CP and CQOS applications. The TRANSPORT MIM contains timetable and status
information for motorways, rail networks, and airlines and has EXTERNAL scope. Each
application has its own internal MIM (BS_HVAC in the case of the BSHVAC application),
which is used to hold internal state information for use by that application. The BS HVAC
internal MIM may hold information such as the current fan speeds (RPM) in a given base

station.

Instances of all applications are running in Process P1 so the Distributed Model
Deployer, 110, (see Figure 2) sends the metadata for all MIMs to that process and the
Model Manager in that process instantiates MIM Model Maps for each MIM. Process P2
runs instances of CP and BSHVAC applications so the five required MIMs are deployed
and initialized. Process P3 is running instances of application CQOS, so only the MIMs

used by that application are deployed and used.

In one embodiment Process P1 may be the process 112 illustrated in Figure 2 and
the application instances running in Process P1 will be the application instances 130
running in process 112, whereas the MIM Model Maps in Process P1 correspond to MIM

Model Maps, 204, of process, 112, in Figure 2.

Note that, in execution, each application instance uses the MIM Model Maps as
if they were local, and need not be aware that maps are distributed. Distributed MIM
Management ensures that reads, writes, and locks executed on any MIM instance by any
application are distributed correctly. If the BSHVAC instance on Process P2 writes to an
instance on the BASE STATION MIM, those changes are visible to the CP and BSHVAC
application instances on P/ and P2. Likewise, if the CP application on P2 acquires a write
lock on a QoS profile instance in the QOS PROFILE MIM, all instances of the CP and
CQOS applications on P/, P2, and P3 that wish to use that QoS profile instance must wait
until the CP application instance on P2 releases the write lock before they can access that

QoS profile instance.

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

26

Below are described details of embodiment of various aspects related to practical

implementation of the solution disclosed in this document.

Metadata Authoring

The flowchart in Figure 5 shows the process for creating the metadata and Model
Object for a Model type definition by the Authoring component. The Authoring
component defines, 502, the Model Object as a sub class of an Abstract Model Object
and ensures that persistence and other properties required by Distributed MIM
Management are implemented, 504. The Authoring Component allows domain specific
properties of the Model Object to be defined, this is illustrated in step 506. Once the object
is written, the Authoring component stores, 508, the Model Object in the Model Object
Repository. The Authoring component then stores, 510, the metadata of the Model Type
in the Model Knowledge base, 104.

The flowchart in Figure 6 shows the process for creating the metadata for a MIM
Model Map. The Authoring component stores the Name, Version, and Scope of the Model
Map as its metadata in the Model Knowledge Base, 602. It the iterates over every member
instance in the Model Map, 604, and stores the Name, Version, Instance name, Scope,
whether the instance can be written, and the Model Type of the instance as its metadata

in the Model Knowledge Base, 606.

The flowchart in Figure 7 shows the process for creating the metadata for MIM
Model Usage by applications. An Application Configuration, 250, component stores, 704,
the Name, Version, and Scope of each application as its metadata in the Model
Knowledge Base. It the iterates over every MIM Model Map, 706, used by each
application and stores a reference to the MIM Model Map Definition in the application’s
metadata, 708, in the Model Knowledge Base. These operations are performed for each

application, 702.

MIM Metadata and Model Object Deployment

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

27

The flowchart in Figure 8 shows the process used by the Distributed Model
Deployer, 110, (See Figure 2) for deploying and updating the metadata and Model Object
Libraries for distributed MIMs in a system that is using Distributed MIM Management.
The Deployer, 110, runs this process for each distributed MIM Model Map (e.g. MIM
Model Map 204) to be updated in the system. For each MIM Model Map, the Distributor
gets a list of processes that are using the map, 802. In parallel it locks the MIM Model
Map, 804, on each process using the locking sub-process shown in Figure 9A. The Model
Manager on each process locks the MIM Model Map. Once the process acquires the lock,
806, access to all MIM instances on the MIM Model Map is blocked for all applications

on that process.

The Distributed Model Deployer now checks if the MIM Model Map update is
compatible with the previous version of the MIM Model Map, 808; that is the version
that is currently deployed. Updates are compatible if the new version of the metadata
specifies only additions of instances to maps and/or only additions or extensions of MIM
Model Instance definitions to MIMs. Therefore, an update that adds cell C/234 to the
CELL MIM is compatible but an update that deletes cell C/ is not. An update that adds a
field Description to the CELL Model Object is compatible but an update that deletes the
field Cell 1d is not. If an update is deemed to be compatible, 808-yes, the Deployer, 110,
calls the Update Model Map sub-process in Figure 11 to update, 810, the MIMs on each
process; otherwise, 808-no, it calls the Clear Model Map sub-process in Figure 12
followed by the Initialize Model Map sub-process, 822, in Figure 10 on each process,

824, to clear down and recreate the MIMs, 812.

Once all processes have updated, 814, or cleared and recreated, 816, their MIMs,
the Deployer, 110, calls the Unlock Model Map sub-process, 818, in Figure 9B to release
the locks on the distributed MIMs in each process, 820, which allows the applications to

recommence using the maps.

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

28

As shown in Figure 9A locking a Model Map, 902, starts with a request, 904, from
an application instance to impose a lock on a Model Map in a process. In the next step
the Model Map is Locked, 906. Figure 9B illustrates unlocking a Model Map, 908. The
operation starts with a request, 910, from the application instance that earlier requested

the lock, to release the lock on a Model Map. In the next step the Lock is released, 912.

The flowchart in Figure 10 shows the process used by a Model Manager, 118, in
a process, 112, (See Figure 2) to initialize its local copies of distributed MIM Model
Maps, 1002. Firstly, the Model Manager stores, 1004, the Object Library for the MIM to
its Process Model Object Library. It then calls the sub-process in Figure 13 to initialize,
1008, its Distributor, 206, component if the Distributor component is not already
initialized, 1006-no. It then uses the MIM metadata to create, 1010, a Model Map for the
MIM in the distribution mechanism. It then iterates, 1012, over each MIM Model Instance
Definition in the metadata for the MIM, creating a MIM Model Instance, 1014, using the

process shown in Figure 14. It then stores the instance on the MIM Model Map, 1016.

The flowchart in Figure 11 shows the process used by a Model Manager, 118, in
a process, 112, (See Figure 2) to update its local copies of distributed MIM Model Maps,
1102. Firstly, the Model Manager, 118, updates, 1104, the Object Library for the MIM in
its Process Model Object Library. It then used the MIM metadata to iterate over each
MIM Model Instance Definition, 1106, in the metadata for the MIM, creating a MIM
model instance, 1108, using the process shown in Figure 14. It then checks to see if that
instance is already on the MIM Model Map, 1110. If not, 1110-no, the MIM Model
Instance is stored, 1112, on the MIM model map. If the MIM Model Instance is already
on the MIM Model Map, 1110-yes, the Model Manager, 118, checks, 1114, if the version
of the MIM Model Instance on the MIM Model Map is equal to the incoming MIM and,
if not, 1114-no, it transfers, 1116, the data from the MIM Model Instance on the map to
the incoming MIM Model Instance and stores, 1112, the incoming MIM Model Instance
on the MIM Model Map. If the version of the MIM Model Instance on the MIM Model

Map is equal to the incoming MIM, 1114-yes, the process goes back to step 1106.

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

29

The flowchart in Figure 12 shows the process used by a Model Manager, 118, in
a process, 112, (See Figure 2) to clear a MIM Model Map on a process, 1202. The Model
Manager, 118, iterates over each instance on the map, 1204. The Model Manager, 118,
reads, 1206, Model Instance value from a Model Map. If persistence is active, 1208-yes,
it saves, 1210, the value ofthe MIM model instance. It then deletes, 1212, the MIM Model
Instance from the MIM Model Map. If persistence is not active, 1208-no, the Model
Manager, 118, deletes, 1212, the MIM Model Instance from the MIM Model Map. When
all instances have been deleted, 1204-yes, the Model Manager, 118, deletes, 1214, the
Model Map for the MIM in the distribution mechanism. Finally, it removes, 1216, the

Model Object Library for the MIM from the Process Model Object Library.

The flowchart in Figure 13 shows the process used by a Model Manager, 118, in
a process, 112, (See Figure 2) to initialize its Distributor, 206, component, 1302. The
Model Manager initializes, 1304, the distribution mechanism of model maps between
processes using this Distributed MIM Management system. In this step, a mechanism
such as Infinispan or Hazelcast is initialized; using whatever specific method is required
by the mechanism in question. The Model Manager then initializes, 1306, a Locker, 208,
and its underlying locking mechanism. In this step, a mechanism such as Curator or
Hazelcast Locks is initialized; using whatever specific method is required by the

mechanism in question.

The Model Manager, 118, then initializes, 1308, a Monitor, 212, and its
underlying monitoring mechanism. In this step, a mechanism such as Syslog or Java
Logging is initialized; using whatever specific method is required by the mechanism in
question. The Model Manager, 118, now checks if persistence is configured for
activation, 1310. If so, 1310-yes, the Model Manager, 118, initializes, 1312, a Persistor,
210, and its underlying persistence mechanism using whatever specific method is
required by the mechanism in question. The Model Manager, 118, then uses the MIM
metadata for each MIM Model Map to create tables, 1314, in the persistence mechanism

for storage of MIM information. Finally, the Model Manager, 118, initializes periodic

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

30

flushing, 1316, of MIM information to persistent storage using whatever interval for
flushing that is configured in the system. If persistence is not configured for activation,

1310-no, the process stops.

The flowchart in Figure 14 shows the process used by a Model Manager, 118, in
a process, 112, (See Figure 2) to set up and initialize a MIM Model Instance Object and
its value, 1402. Firstly, the Model Manager, 118, uses the MIM Model Instance Definition
metadata, 1404, to get a reference to the object in the Model Object Library that represents
the Model Instance. It then creates an instance, 1406, of the Model Object and logs, 1408,
initiation of the instance to the Monitor, 212. The Model Manager, 118, now uses the
Distributor, 206, to check if the MIM Model Instance already exists in the distributed
MIM Model Map, 1410, having being put there by another process. If so, 1410-yes, the
Model Manager, 118, reads, 1412, the value of the MIM Model Instance from the MIM
Model Map and stores, 1414, it into the Model Object.

If the value of the MIM Model Instance is not yet on the map, 1410-no, the Model
Manager, 118, checks if persistence is active, 1416. If persistence is active, 1416-yes, the
Model Manager attempts to read, 1418, the MIM Model Instance value from persistent
store. If the value exists in the persistent store, 1420-yes, that value is stored, 1414, into
the Model Object. Otherwise, 1420-no, a default value is stored into the Model Object,
1422, If persistence is not active, 1416-no, a default value is stored into the Model Object,

1422.

Reading from and Writing to Model Maps for MIMs in Processes

Figure 15 shows how Distributed MIM Management uses an underlying
distribution mechanism such as Infinispan [Infinispan, 2016] or Hazelcast [Hazelcast,
2016] to pass changes in MIM Model Maps between processes. Each process has a local
copy of each MIM Model Map. When an application instance changes a MIM Model

instance on a MIM Model Map, the Distributor propagates that change to the distribution

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

31

mechanism, which updates the instance on all local copies of the MIM Model Map in

processes D/ to D5 of the Distributed MIM Management system.

The flowchart in Figure 16 shows how an application reads a MIM instance from
a MIM Model Map. The application requests, 1602, a MIM Model instance, supplying
its key; the Distributor returns, 1604, a clone of the MIM Model instance from the MIM
Model Map to the application and logs, 1606, the read operation to the Monitor. Each
process has a local copy of its MIM Model Maps so a read operation simply reads from
the local copy without using the underlying distribution mechanism. The flowchart in

Figure 19 shows reading in the case where locking is applied.

The flowchart in Figure 17 shows how an application writes a MIM instance to a
MIM Model Map. The application requests, 1702, a MIM Model instance using its key;
the Distributor returns, 1704, a clone of the MIM Model instance from the MIM Model
Map to the application and logs, 1706, the read operation to the Monitor. The Application
then updates, 1708, the cloned MIM Model instance, making whatever changes it
requires. The application now requests, 1710, a write of the MIM Model Map, supplying
the key and the updated MIM Model instance. The Distributor, 206, writes, 1712, the
updated Model instance to the MIM Model Map, 204. The underlying distribution
mechanism (e.g. Infinispan or Hazelcast) propagates, 1714, the change to all other local
copies of the MIM Model Map in other processes, as shown in Figure 15. The Distributor,
206, then logs, 1716, the write operation to the Monitor. The flowchart in Figure 19 shows

writing in the case where locking is applied.

Locking and Unlocking Instances on Model Maps for MIMs in Processes

Figure 18 shows how Distributed MIM Management uses an underlying locking
mechanism such as Curator [Curator, 2015] or Hazelcast Locking [Hazelcast, 2016] to
lock and unlock MIM Model Map instances across processes. When an application
requests a lock on a MIM Model map instance, the Distributor, 206, in the Model Manger,

118, passes the request to its Locker, 208. The Locker, 208, uses the key from the

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

32

metadata of the MIM Model Map instance as a key to a Lock Manager, 1802, in the
underlying locking mechanism. Because the Lock Manager, 1802, of the underlying
locking mechanism is distributed, only one application in a process can hold a lock at any
one time. If two application instances request a lock, the request that reaches the Lock
Manager first acquires the lock. The request from the second application instance is
queued, with that application instance left waiting until the first application instance
releases the lock. The second application instance then acquires the lock. The Lock
Manager, 1802, in the distributed locking mechanism maintains a record of all locks that

are active.

The flowchart in Figure 19 shows the process of an application acquiring and
releasing a read or write lock. The application requests, 1902, a lock on a MIM Model
instance from the Distributor using the instance key from the MIM Model Instance
metadata; the Distributor requests the lock for this instance from the Locker, 1904, which
forwards the request to the Lock Manager in the distributed locking mechanism. The Lock
Manager, 1802, returns the lock if the MIM Model Instance key is not already locked. If
the MOM Model Instance key is locked, the request is queued in the Lock Manager, 1802,
and the request is answered when the lock becomes available. The distributed lock
mechanism returns the lock to the Locker, which returns, 1906, it to the Distributor. The
Distributor logs the lock operation to the Monitor, 1910, and the lock request returns,

1908, to the application.

The application performs whatever work it requires to perform when it has locked
access to the MIM Model Instance, 1912. Once the application has completed this work,
it requests release, 1914, of the lock on the MIM Model instance to the Distributor using
the MIM Model instance key from the MIM Model Instance metadata. The Distributor
requests release of the lock, 1916, for this instance from the Locker, which forwards the
request to the Lock Manager, 1802, in the distributed locking mechanism. The Lock

Manager, 1802, releases the lock and returns to the Locker, which returns to the

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

33

Distributor. The Distributor logs, 1920, the lock release operation to the Monitor and the

lock release request returns to the application, 1918.

Monitoring Operations on Instances on Model Maps for MIMs in Processes

Figure 20 shows how Distributed MIM Management uses an underlying
monitoring mechanism such as syslog or Java Logging to log operations. The Distributor,
206, 214, 216, in each process, 112, 114, 116, logs MIM Model Instance initiations when
it creates MIM Model Maps with the key read from the MIM Model Instance metadata
and logs read, write, lock, and unlock operations as they are requested by applications.
The Model Usage Collector, 136, receives these logs and stores them, 138, in the Model

Knowledge base, 104, in the format shown in Figure 3.

Persisting Model Maps for MIMs in Processes

Figure 21 shows how Distributed MIM Management uses an underlying
persistence mechanism such as a Relational Database or distributed storage system to
store the information in MIMs persistently. It is not normally necessary to activate
persistence on all processes because it is adequate to save a single copy of the MIM Model
information to the persistent store. However, for redundancy, a two or more process may
be used. In the scenario shown in Figure 21, persistence is active only on processes PE/

and PE2.

The tables used by the persistence mechanism may be created using the MIM
metadata in the manner explained in Figure 13 and Section MIM Metadata and Model
Object Deployment. Once created, the MIM Model Maps are stored to the persistence

mechanism using the process described in Figure 22.

The flowchart in Figure 22 shows the process of periodically persisting MIM
Model Maps. The process waits for a certain configurable length of time, 2202. It then
iterates, 2204, 2206, over each MIM Model Map in the process, reading, 2208 each MIM

10

15

20

WO 2018/024348 PCT/EP2016/077180

34

Model Instance in turn. If the Instance has been modified, 2210-yes, since the last
persistence operation, the MIM Model Instance is persisted, 2212 to the persistence

mechanism using its MIM Model Instance metadata.

Distributed MIM Management for Context in the Apex Policy System

The Apex Policy System [Van Der Meer et al., 2015] runs Adaptive Policies.
Policies can be run in parallel. Figure 23 shows an Apex policy engine running three
instances of the policy in a process. Each policy uses Policy Context C, to hold its internal

variables. Global Context C, holds variables that are available to all policies.

The MIM Model Maps used to manage context in Apex are shown in Figure 24.
Each policy has its own individual Policy Context MIM Model Map C,i, and all policies
use and set the Global Context MIM Model Map Cs.

The use of MIM Model Maps to share Policy and Global context has been
implemented in Apex and has been demonstrated to work on processes running on

multiple hosts.

Tracking of Denial of Service State Information for Distributed Applications

Consider a distributed management system. The management system is managing
a large network and is itself distributed, with many cooperating instances of the
management system running on different physical (possibly virtualized) hosts in different
physical locations. Many instances of a Denial of Service attack mitigation application
run in the different instances of the management system. Any of the instances of the
Denial of Service application may receive information about any subscriber and may have

to take action at any time.

In this application, four possible states exist for each subscriber, namely:

1. No suspicious activity detected.

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

35

2. Suspicious signaling activity, for example an unusual number of attaches
to the network or an unusual number of session creations may be reported by the Radio
Access Network, causing the DoS mitigation application to order an examination of the

user plane traffic on this subscriber.

3. The user plane traffic indicates traffic from suspicious sources such as
blacklisted IP addresses, or suspicious traffic patterns. In this case the DoS mitigation
application orders that the user’s traffic be directed into special Software Defined

Network used for quarantining traffic.

4. The user is quarantined.

The DoS mitigation application is fully distributed so any instance of the
application on any management system may require controlled, safe, in-memory access

to the structured information on a subscriber that is defined in metadata.

Take, for example, the case where three management system instances, A, B, and
C exist, perhaps running on three different distributed computers. Each instance of the
management system is running the DoS mitigation application, with perhaps hundreds of
threads running in each DoS mitigation application to handle the load of the millions of

subscribers using the network.

The radio access network reports suspicious signaling activity on Subscriber
Number 98765432 (See 2 above) to the management system and instance x on
management system A4 receives the message. A thread in 4, acquires a read lock and reads
the subscriber data for 98765432 (if any) from the Subscriber Model Map and sees that
the subscriber has no previous suspicious activity logged, triggering the system to record
that a read of the Subscriber Model Map was carried out. 4x now orders user plane traffic
examination on subscriber 98765432 and records that information to the Subscriber
Model Map record for 98765432, It does this by acquiring a write lock on record

98765432, recording the details of the suspicious signaling activity and setting the “user

10

15

20

25

WO 2018/024348 PCT/EP2016/077180

36

plane traffic examination active” flag on the record together with the time of activation
and any other relevant information, triggering the system to record that a write of the
Subscriber Model Map was carried out. The system persists the record if persistence is

active.

User plane traffic examination reports the user plane activity on Subscriber
Number 98765432 (See 3 above) to the management system and instance z on
management system C receives the message. A thread in C: acquires a read lock and reads
the subscriber data for 98765432 from the Subscriber Model Map and sees the previous
suspicious signaling activity on this subscriber and the indication that user plane
examination was ordered, triggering the system to record that a read of the Subscriber
Model Map was carried out. C. now orders quarantine of traffic on subscriber 98765432
and records that information to the Subscriber Model Map record for 98765432. It does
this by acquiring a write lock on record 98765432, recording the user plane activity,
clearing the “user plane traffic examination active” flag, and setting the “user traffic
quarantine ordered” flag on the record together with the time of ordering and any other
relevant information, triggering the system to record that a write of the Subscriber Model

Map was carried out. The system persists the record if persistence is active.

The Traffic Quarantine application reports that traffic on Subscriber Number
98765432 has been quarantined (See 4 above) to the management system and instance Y
on management system B receives the message. A thread in B, acquires a read lock and
reads the subscriber data for 98765432 from the Subscriber Model Map and sees that
quarantine of traffic on this subscriber was indeed ordered. This triggers the system to
record that a read of the Subscriber Model Map was carried out. By now records that
traffic on subscriber 98765432 has been quarantined to the Subscriber Model Map record
for 98765432, It does this by acquiring a write lock on record 98765432, clearing the
“user traffic quarantine ordered” flag, and setting the “user traffic quarantine active” flag

on the record together with the time of activation and any other relevant information,

10

15

WO 2018/024348 PCT/EP2016/077180

37

triggering the system to record that a write of the Subscriber Model Map was carried out.

The system persists the record if persistence is active.

Note that three fully independent instances of the DoS mitigation application (A4x,
C., and B)) accessed and set the subscriber information in the Subscriber Model Map, and
it was declared that the DoS mitigation application may access the Subscriber Model
Map. Note also that the DoS mitigation application can write and read only the
information that is defined on the Subscriber Model Map and may not itself change the

structure or schema of that information.

Of course, the radio network analytics application that detects suspicious
signaling, the application that probes user plane data, and the application for traffic
quarantining may also read and/or set record 98765432 of the Subscriber Model Map in
a controlled, synchronized and audited manner. However, they must also have declared
that they will access the Subscriber Model Map, and again they may not change the

structure of the Subscriber Model Map.

WO 2018/024348 PCT/EP2016/077180

38

Abbreviations:

ACID Atomicity, Consistency, Isolation, Durability
ADMF Administration Function

API Application Programming Interface

CSp Cloud Service Provider

DF Delivery function

E2E End to End

EM Element Management

ETSI European Telecommunications Standards Institute
FB Functional Block

FCAPS Fault Configuration Accounting Performance and Security
FEP Front End Processor

FG Forwarding Graph

HDFS Hadoop Distributed File System

HW Hardware

ICEs Intercepting Control Elements

IRP Integration Reference Point

ISG Industry Specification Group

ISP In service Performance

IT Information Technology

JTA Java Transaction API

KPI Key Performance indicator

LEMF Law Enforcement Monitoring Facilities
MANO Management and Orchestration

MIB Management Information Base

MIB Il Management Information Base version 2
MIM Management Information Model

NE Network Element
NF Network Function
NFV Network Functions Virtualisation

NFVO Network Functions Virtualisation Orchestrator
NRM Network Resource Model

NS Network Service

NSD Network Service Descriptor
OS Operating System

PI1 Performance indicator

PM Performance Management

PNF Physical Network Function

QoS Quality of Service

RBAC Role Based Access Control

RDBMS Relational Database Management System
SDN Software Defined Networking

WO 2018/024348

SNMP
SOD
SW
TAP
vCPU
VDU
VI
VIM
VL
VLAN
VLD
VM
VNF
VNEFC
VNFCI
VNFD
VS

39

Simple Network Management Protocol
Separation of duty

Software

TAP linux device interface

virtual Central Processing Unit
Virtualisation Deployment Unit
Virtual Infrastructure

Virtual Infrastructure Manager

Virtual Link

Virtual Local Area Network

Virtual Link Descriptor

Virtual Machine

Virtualised Network Function

Virtual Network Function Component
Virtual Network Function Component Instance
Virtual Network Function Descriptor
Virtual Storage

PCT/EP2016/077180

WO 2018/024348

References:

3GPP, 2011a

Bresniker et al., 2015

Cecchet et al., 2002

Coulouris et al., 2012

Curator, 2015

ETSI, 2014

Ericsson, 2016

Femminella et al., 2011

Hazelcast, 2016
IETF, 1991

IETF, 2009
ITU-T, 2000b
ITU-T, 2005b
Infinispan, 2016

Little et al., 2016

Log4j, 2015
Oracle, 1999
Protic et al., 1996

PCT/EP2016/077180

40

3GPP, "Bulk CM Integration Reference Point (IRP): Information
Service (IS)", 3GPP, no. 3GPP TS 32:612, Jan 2011

Bresniker, K.M., Singhal, S. & Williams, R.S., "Adapting to Thrive
in a New Economy of Memory Abundance”, Computer, vol. 48, no.
12, pp. 44-53, Dec 2015

Cecchet, E., Marguerite, J. & Zwaenepoel, W., "Performance and
Scalability of EJIB Applications”, SIGPLAN Not., ACM, vol. 37, no.
11, pp. 246-261, Nov 2002

Coulouris, G., Dollimore, J., Kindberg, T. & Blair, G., "Distributed
Systems: Concepts and Design", Addison-Wesley, ISBN 978-0-13-
214301-1, 2012

Curator, A., "Apache Curator Getting Started Guide”, Apache
Curator, Oct 2015

ETSI, "Network Functions Virtualisation (NFV); Management and
Orchestration”, ETSI, no. GS NFV-MAN 001, Dec 2014

Ericsson, "Ericsson Network Manager (ENM)",
http://www.ericsson.com/ourportfolio/products/network-manager,
Feb 2016

Femminella, M., Maccherani, E. & Reali, G., "Performance
Management of Java-based SIP Application Servers”, Integrated
Network Management (IM), 2011 IFIP/IEEE International
Symposium on, pp. 493-500, May 2011

Hazelcast, "Hazelcast Documentation”, Hazelcast, May 2016

IETF, "Management Information Base for Network Management of
TCP/IP-Based Internets: MIB-I11", IETF, RFC Editor, United States,
no. RFC 1213, Mar 1991

IETF, "The Syslog Protocol”, IETF, no. RFC 5424, Mar 2009

ITU-T, "Principles for a Telecommunications
Network", ITU-T, ITU, no. M.3010, Feb 2000

ITU-T, "Generic Network Information Model", ITU-T, ITU, no.
M.3100, Apr 2005

Management

Infinispan, "Infinispan Documentation”, Infinispan, Feb 2016

Little, M., Halliday, J., Dinn, A., Connor, K., Musgrove, M.,
Robinson, P., Trikleris, G. & Feng, A., "Narayana Transaction
Manager Project Documentation”, jboss.org, Jan 2016

Log4j, A., "Apache Log4j User’s Guide", Apache Log4j, Dec 2015
Oracle, "Java Transaction API (JTA)", Oracle, Apr 1999

Protic, J., Tomasevic, M. & Milutinovic, V., "Distributed Shared
Memory: Concepts and Systems”, Parallel Distributed Technology:
Systems Applications, IEEE, vol. 4, no. 2, pp. 63-71, Sum 1996

Van Der Meer et al., 2015 W02016/066438

WO 2018/024348 PCT/EP2016/077180

41

CLAIMS

1. A method of managing a network, the network comprising a plurality of distributed
hosts, wherein at least one process is being run on a host, said process providing a function
related to operation of the network by executing at least one application instance, wherein
the at least one application instance requires for execution at least one Management
Information Model, the method comprising;:
— receiving Model Object Libraries representing the at least one Management
Information Model and Model Metadata associated with the Model Object Libraries;
— instantiating the at least one Management Information Model based on the received
Model Object Libraries and Model Metadata;
— storing the instantiated Management Information Model in a repository of the process

for use by the at least one application instance.

2. The method according to claim 1, wherein said at least one Management Information
Model is used by other instances of said application as well as by instances of other

applications.

3. The method according to claim 2 comprising:

— receiving from a first application instance a request for a write access to the
Management Information Model stored in the repository;

— locking said Management Information Model if the Management Information Model
is available for modification, whereas in a locked state other application instances in
the or another host are not allowed to read said locked Management Information
Model and are not allowed to write in said locked Management Information Model;

— modifying said Management Information Model, in a write operation, based on the
request received from the first application instance;

— storing the modified Management Information Model;

WO 2018/024348 PCT/EP2016/077180

42

— unlocking said Management Information Model to make said Management
Information Model available for reading and writing operations for applications in

the or another host.

4. The method according to claim 3, wherein checking if the Management Information
Model is available for modification comprises checking if a locked state is imposed on said
Management Information Model by any process running on any host in the network and
wherein said Management Information Model is available for modification only if it is not

in a locked state.

5. The method according to any one of preceding claims comprising:

— monitoring operations of: instantiating a Management Information Model, reading a
Management Information Model, writing to a Management Information Model,
locking and unlocking a Management Information Model; and

— sending usage logs entries containing monitoring data to a Model Usage Collector

which centrally records Management Information Model usage data for the network.

6. The method according to claim 1 comprising:
— 1imposing a write lock state on a Management Information Model if said Management

Information Model contains data from a system external to the network.

7. The method according to any one of preceding claims, wherein the distributed hosts

are distributed in various geographical locations.

8. The method according to any one of preceding claims, wherein the at least one
Management Information Model represented by the received Model Object Libraries and
Model Metadata associated with the Model Object Libraries has been identified as being

used by the at least one process.

WO 2018/024348 PCT/EP2016/077180

43

9. An apparatus for managing a network, the network comprising a plurality of
distributed hosts, wherein at least one process is being run on a host, said process providing
a function related to operation of the network by executing at least one application instance,
wherein the at least one application instance requires for execution at least one Management
Information Model, the apparatus comprising a processor and a memory, the memory
containing instructions executable by the processor such that the apparatus is operative to:
— receive Model Object Libraries representing the at least one Management
Information Model and Model Metadata associated with the Model Object Libraries;
— instantiate the at least one Management Information Model based on the received
Model Object Libraries and Model Metadata; and
— store the instantiated Management Information Model in a repository of the process

for use by the at least one application instance.

10. The apparatus according to claim 9, wherein said at least one Management
Information Model is used by other instances of said application as well as by instances of

other applications.

11. The apparatus according to claim 10 operative to:

— receive from a first application instance a request for a write access to the
Management Information Model stored in the repository;

— lock said Management Information Model if the Management Information Model is
available for modification, whereas in a locked state other application instances in
the or another host are not allowed to read said locked Management Information
Model and are not allowed to write in said locked Management Information Model;

— modify said Management Information Model, in a write operation, based on the
request received from the first application instance;

— store the modified Management Information Model;

WO 2018/024348 PCT/EP2016/077180

44

— unlock said Management Information Model to make said Management Information
Model available for reading and writing operations for applications in the or another

host.

12. The apparatus according to claim 11, wherein in checking if the Management
Information Model is available for modification the apparatus is operative to check if a
locked state is imposed on said Management Information Model by any process running on
any host in the network and wherein said Management Information Model is available for

modification only if it is not in a locked state.

13. The apparatus according to any one of claims 9 - 12 operative to:

— monitor operations of: instantiating a Management Information Model, reading a
Management Information Model, writing to a Management Information Model,
locking and unlocking a Management Information Model; and

— send usage logs entries containing monitoring data to a Model Usage Collector which

centrally records Management Information Model usage data for the network.

14. The apparatus according to claim 9 operative to impose a write lock state on a
Management Information Model if said Management Information Model contains data from

a system external to the network.

15. The apparatus according to any one of claims 9 - 14, wherein the distributed hosts

are distributed in various geographical locations.

16. The apparatus according to any one of claims 9 - 15, wherein the at least one
Management Information Model represented by the received Model Object Libraries and
Model Metadata associated with the Model Object Libraries has been identified as being

used by the at least one process.

17. An apparatus for managing a network, the network comprising a plurality of

distributed hosts, wherein at least one process is being run on a host, said process providing

WO 2018/024348 PCT/EP2016/077180

45

a function related to operation of the network by executing at least one application instance,
wherein the at least one application instance requires for execution at least one Management
Information Model, the apparatus comprising:
— a receiver for receiving Model Object Libraries representing the at least one
Management Information Model and Model Metadata associated with the Model
Object Libraries;
— acreator for instantiating the at least one Management Information Model based on
the received Model Object Libraries and Model Metadata;
— amemory for storing the instantiated Management Information Model in a repository

of the process for use by the at least one application instance.

18. The apparatus according to claim 17, wherein said at least one Management
Information Model is used by other instances of said application as well as by instances of

other applications.

19. The apparatus according to claim 18, wherein the receiver is further operative to
receive from a first application instance a request for a write access to the Management
Information Model stored in the repository, wherein the apparatus comprises a locker for
locking said Management Information Model, whereas in a locked state other application
instances in the or another host are not allowed to read said locked Management Information
Model and are not allowed to write in said locked Management Information Model and
unlocking said Management Information Model to make said Management Information
Model available for reading and writing operations for applications in the or another host,
wherein the creator is further operative to modify said Management Information Model, in
a write operation, based on the request received from the first application instance and the

memory is operative to store the modified Management Information Model.

20. The apparatus according to claim 19, wherein in checking if the Management

Information Model is available for modification the apparatus is operative to check if a

WO 2018/024348 PCT/EP2016/077180

46

locked state is imposed on said Management Information Model by any process running on
any host in the network and wherein said Management Information Model is available for

modification only if it is not in a locked state.

21. The apparatus according to any one of claims 17 - 20 comprising:

— a monitor for monitoring operations of: instantiating a Management Information
Model, reading a Management Information Model, writing to a Management
Information Model, locking and unlocking a Management Information Model; and

— areporter for sending usage logs entries containing monitoring data to a Model Usage
Collector which centrally records Management Information Model usage data for the

network.

22. The apparatus according to claim 17 operative to impose a write lock state on a
Management Information Model if said Management Information Model contains data from

a system external to the network.

23. The apparatus according to any one of claims 17 to 22, wherein the distributed hosts

are distributed in various geographical locations.

24. The apparatus according to any one of claims 17 - 23, wherein the at least one
Management Information Model represented by the received Model Object Libraries and
Model Metadata associated with the Model Object Libraries has been identified as being

used by the at least one process.

PCT/EP2016/077180

WO 2018/024348

1/22

SISOH |ENLIA PUB [B9Y UO S3SSBI04 PaInguiisi|
ﬂ Ateiqry 129(q0 [9poN A" ﬁzmsz 19[qO [9poN <1 ﬂzmz: 19[q0 |PRON <[
b N h H
1 4 1
N ez | N Doz | N My |
Ja8euep ' Jadeue ! Jaseuen :
[P A . ¥ B 1
w o 19PON ™[suoneayddy | | ! [PPON ™ suoneoyddy | |! 1PPON ™\ suoneoddy "
: " I | il I
\\ \4./ $59004d \ ! \ J ssa004d \ ' u /mmwuc& \ , m
(44 Rl 7 : — T ¥ 7/ 7 / 7 —
e T \ i \ S \ oo 8l \N:\ !
................................. ‘,,_.,,:.,.v.m:w e R e At A L 06T .
911 . m 0cI m T G N
L " DIDPOIAN | o
N, " .\ [Bpoy 1 ; " salagr]
i 011~ o i . 192/0 j9pON
10199](0) | 1ahojdaq |9poW pa1nqLasia
afesn A w
WW\UOE h I
; i ”
9¢T e pI0g 360SN aspg abpajmou)| |3poN P e .
. N]
‘ 1apony BEING, BOIN i~ - '
~ ~ E
: eyeq a8esn) elepelsin !
....................................... > p 901
jopoiA [SPoN Aiojisoday
13190 19p0
bOT q0 [PPON
Sunoyiny

NS\

JOPOIA UOHBULION|

o
&b

o

=

PCT/EP2016/077180

WO 2018/024348

2/22

1PON e1epeRISN 312 elepeIsi V\,mmeO
\\ uopesy|ddy \\ way |9pon [SpoN
PO ,\.‘ X
uopeindyuon Suuoyiny Suuoyiny
\\ uopesijddy den [opoiN mo;m [epon
05T \\ TST Bupoyiny N 6T
01

SISOH [ENUIA PUE [B3Y UO S355800.4d Painqglisig \ SII \ 14!
Err W VA L
Jageuey [9poN ._s Ateign I lodeuelp |9poA \ﬂ Aseagr L lageue [epoin/ .ﬂ Qﬁmis J
_ 101515494 13[qO [9poN m 101815494 w »2lqo [9pon ||t ’EEN Pa[q0 [2powN 0<I
. 1_ aoueysul ddy _ ! E—— lm aouelsu; ddy : saueysul ddy | |
% TSI ' # 101UON M i “ JISTLIY TQN i
P QQ ” PR QQ " T QQ w
| soueysuy ddy || ¢ | @ouelsujddy |1, | souelsu) ddy | |
12007 : 12007 ot Lgog
i soueysuj ddy | | |} m aouelsuj ddy m ‘]\ aourisu; ddy m
it iy
sdejn -+ aoueisu ddy “ sdeiy -+ aouelsu} ddy m v0g sden | @dueisyj ddy m
[SPOIN INIIN | eouejsujddy | | ! [PPON INIIN | souelsujddy | |1 [SPOIN INIIN | ooueisuy ddy | |
i i
| ! 1 ' 1 i
L ‘_Ssznmtm_a | aoueisul ddy ! |I* hoﬁ&bm_o * souelsuj ddy " L ‘_S:w_bm_o | mucm“waﬂaq M
75Kk o171 | 7k ' 7k 077 |
917 © ssanoid oIl ' $1Z v 558004d il i 9027 ssev04d 48! “
: : W m m]
i : ! _ i § e : L
us /T 1ahojdag jepoN penguasiq | _ols
_ DopoIaN i ! SaL104q1] =
T fapo ; 1 331G0 18P0
asng abpajmou) [apoN 1oponi P 190 PO
9T~ so19)100 B H PO UUU U |
N eleq afesn :)
a8esn L !
[PPOIN 1ePON /r elepeIdn ”
-~ dep [3poN :
8el 901 Ai0y/50d5y 1931
piog abosn 7 J011S003Y 123190 |9POIN

WO 2018/024348 PCT/EP2016/077180

3/22
/302 Model Metadata pd 304 Model Object
MIM Model Map Definition Application Definition Serialization [I Persistence [[Other Properties
MName Name
Version Version
Scope
Abstract Model Object / 3 12
306 Definition 7
MIM Model Instance /
Definition Map Name
Map Name Map Version
Map Version instance Local Name
Instance Local Name 308
Model Type Definition
Scope b ,/
Writable Flag Name Concrete Model
i Object Definit
Model Type Reference 7| |version Ject beiniion
Runtime Object ID \ 314

Model Monitoring MIM Modet Instance / 310
Usage Log “

Map Name

Map Version

instance Local Name

Timestamp

Operation
Call Stack
Object Value

Fig. 3

WO 2018/024348 PCT/EP2016/077180
4/22
Applications Model Maps for Distributed MiMs
Name Description Name Scope Applications
cp Cell Power CELL Global CP,CQOS
BSHVAC Base Station HVAC BASE_STATION Global CP,BSHVAC
Caos Customer Qo% CUSTOMER Global COos
QOS5_PROFILE Global CQos, CP
METEQ External CP, BSHVAC
TRANSPORT External CQOos
CELL_POWER Application cP
B8S_HVAC Application BSHVAC
CUSTOMER_QOS| Application CQOs
Process P1 Process P2 Process P3
Applications . MIM Model Maps_ Applications | MIM Model Maps Applications .. MIM Model Maps
CELL CELL cQos CELL
BASE_STATION BASE_STATION CUSTOMER
CUSTOMER QOS_PROFILE €Qos ! QOS_PROFILE
| BSHVAC | Q05_PROFILE | BSHVAC | METEQ | caos | TRANSPORT
— :
€Qos METEOQ CELL_POWER cQos CUSTOMER_QOS
TRANSPORT BS _HVAC
CQos CELL_POWER \ [_caos]
| caos | BS_HVAC \ 114 €QOs
CUSTOMER_QOS AN
G 204 N6
112 .
130 Fig. 4
Define a Mode! Object as a Sub Class of
an Abstract Model Object 302
Implement F’ersist?nce and othe?r L —504
property Interfaces in Model Obejct
Implement domain-specific logic in 506
Model Object -
Store Model Object in Model _L—508

Object Repository

Store Model Type with Name, Version,

and Model Object Reference in Model_/ 510

Knowledge Base

!

Fig. 5

WO 2018/024348 PCT/EP2016/077180

5/22

7

Define Name, Version, and Scope of 7
Model Map in Knowledge Base

604

Last Member of Model
Map?

Yes ' / 606

Define Name, Version, lns’canc’e Name, Scope,
Writable Flag, and Model Type of member in
Model Map Metadata in Knowledge Base

|

Fig. 6

Last Application?

Yes Record name and Version of 1
Application in Applciation Metadata
4 706
Last Model Map used by
Application? /708
Record Reference to Model Map
in Application Metadata
k.
®

Fig. 7

WO 2018/024348

?

Get list of Processes using Model Map-l/ 802

In Parallel on all Processes | 804

Lock Model Map in Process

X 806
Model Maps Locked
on all Processes?

Model Map Update
is Compatible?

Yes
/810
In Parallel on all Processes
Update Model Map in Process
: 814
No

Model Maps Updated
on all Processes?

6/22

PCT/EP2016/077180

¥

In Parallel on all Processes

+812

Clear Model Map in Process

Model Maps Cleared
on all Processes?

Yes

¥

816

In Parallel on all Processes

+—822

initialize Model Map in
Process

Model Maps Initialized
on all Processes?

Yes

Fig. 8

¥

In Parallel on all Processes

A
\
o0
[u—
o0

Unlock Model Map in
Process

Model Maps Unlocked
on all Processes?

WO 2018/024348

PCT/EP2016/077180

7/22
Lock Model Map in Process Unlock Model Map in
\ Process \
) \902) \908
Request Lock on Model Request Lock Release on
Map in Process . Model Map in Process
! 904 910
Model Map in Process Model Map Lock in
Locked <~ Process Released ~_
906 912
A 4 Y
‘ Return] I Return l
Fig. 9A Fig. 9B
Initialize Model Map in - 1002
Process ¥
h 4
Store Model Object Library for MIM - 1004
to Process Model Object Library 1
1006
— S
Distributor Initialized? 1008

Yes

Initialize Distributor for Process

|

A 4

PR ; 1010
(Create Model Map in Distribution Mechanism V

Y

Last Model item on
Model Map?

1012
No

1014
v /

Yes

Prime Model lnstance'
Object and Value

/1016

\ Store Model Item in Model Map [

k.
I Return

Fig. 10

WO 2018/024348

PCT/EP2016/077180

8/22
Update ModelMapin | |_— 1102
Process
Update Model Object Library for MIM in
Process Model Object Library —+—"" 1104
1106
Last Model Instance
on Model Map? ‘.
Yes Prime Model Instance —+—— 1108

Object and Value

b,

on Map Already?
No

Is Model Instance Object

1110

Yes

Is Model Instance Version
on Map equal to Incoming
Model instance Version?

1114

Transfer Data from Model instance in
Model Map to incoming Model Instance

¥

¥

J Store Model Instance in Model Map-i/ 1112

1116

Yes

|
[Return

Fig. 11

WO 2018/024348 PCT/EP2016/077180

9/22

Clear Model Map in Process| |~ 1202

.4 1204

Last Model Instance
on Model Map?

Yes

v _~1206
Read Model Instance Value from Model Map

1208

N
_Persistence Active?

Yes

Store Model Instance // 1210
Value to Persistence

A
Delete Model Instance from
Model Map - 1212

h 4

Delete Model Map from
Distribution Mechanism ++— 1214

A 4

Remove Model Object Library for MIM
from Process Model Object Library -+ 1216

Fig. 12

PCT/EP2016/077180

WO 2018/024348
10/22
Initialize Distributor for Process |1 1302
A
Initialize Model Map Distribution using 1304
underlying Distribution Mechanism
Y
Initialize Locker using underlying Locking 1306
Mechanism J
Y
Initialize Monitor using underlying 1308
Montiroing Mechanism i
1310
Persistence
Configured ?
Yes]|
/ 1312
Initialize Persistence using un,deriying
Persistence Mechanism
1314
y

Initialize Tables for Model Maps and
Model Items using Metadata

1316 v
\\ Initialize Persistence Flushing

4

®

Fig. 13

WO 2018/024348 PCT/EP2016/077180

11/22

Prime Model Instance 1402
Object and Value - —

3\

k 4
Use Model Instance Metadata to 1404
get Object Reference +—

Instantiate Model Object for Model !nstance‘{/

Distributor logs initiation of the instance of the Model Object‘

1410

Model Object value

already stored in Model 1416
Map by other Processes 7 No
Persistence Active?
. Yes 1418
Read Model Instance Value from Model Map] Read Model Instance
Value from Persistence
1420

Yes No

Model Instance
Value Found?

1414

lStore Model Instance Value in Model Object{

1422

Store default Model Instance
Value in Model Object

) 4

Return

Fig. 14

WO 2018/024348 PCT/EP2016/077180

12/22
Process D1
iApp lz’\stancesl “‘1 Distributor f(x\
|_ Model Maps
Process D6 Local Copies
App Instances F[“-{ Distributor l(\\ Model Manager
Model Maps \ | Process D2
Local Copies / | K)/
; Distri '
. Model Manager | App Instances F[—‘[istributor :

wodel Maps '
Local Copies /|

__Model Manager |

Distribution
Mechanism

/ !

Process D5

App Instances —l Distributor :
Model Maps '\ |
Local Copies /|

_Mode| Manager | Process D4

Process D3
]App !nstances! _——] Distributor ‘/

Model Maps
Local Copies

lApp Instances T”{ Distributor]</ | Model Mgﬂggg[“;

Madel Maps Y, |
Local Copies / |

I 1602

Application requests Read of Model Instance using Model
Map Reference and Local Name from Metadata

v _ _~ 1604
Distributor reads Model instance from Distribution
Mechanism, clones value and and returns clone

N . _~ 1606
Distributor logs read of Model Instance to Monitor

Fig. 16

WO 2018/024348 PCT/EP2016/077180

13/22

!

Application requests Read of Model instance using Model
Map Reference and Local Name from Metadata

v 1702

7

A
Distributor reads Model Instance from Distribution
Mechanism, clones value and returns clone

v

~ 1704

7

/ 1706

7
Distributor logs read of Model Instance to Monitor

Y
Application updates values in cloned Model Instance

1708

y

Application requests Write of Model Instance using Model Map
Reference and Local Name from Metadata, supplying cloned value

- 1710

A

Y

Distributor writes Mode
Mechanism using s

| Instance to Distribution
upplied clone value

v 1712

-

A

4

Underlying Distribution Mechanism propogates the

update to all other local copies of the Model Map

Ve 1714

-

N

y

Distributor logs write of Model Instance to Monitor)

;

Fig

.17

PCT/EP2016/077180

WO 2018/024348

14/22

Ja8eUBA [SPOIN

[|

A sde|n [9poN v
i

Joangiasiqg |

1

asuelsu ddy

€1 5592014

Jadeue|p [9poN

A sde|N [2poN v
i

Joinqguasiqg |

aoue)su) ddy

77 $522044

(. 2
AWeN |20 2duelSU| [uoisIaA depy | swepn depy
AP0 BWM | 207 pesy
u gl 301
SLUBN [B207 BOURISU] | UOISIBA dey | swep dejny
07 2WM | 3207 peay
T 413207
JWeN 2207 aauelsu] | uoIsIaA dejy | swepN de
07 3UM | 3007 peay
T 41207
SWEN [B207 doueisu| |UoISIBA dey | swepN deiy
A0 WM | 007 pesy
0 Q13901
Ja8eug|p oo
\- . J
081

Jjodeue|p [9poiN

Joinguisiq

A sdey [9po v.l_
|

aosuelsu) ddy

17 ss@

2044

Fig. 18

WO 2018/024348 PCT/EP2016/077180

15/22

!

Application requests read or write lock on Model Instance using
Model Map Reference and Local Name from Metadata

¥ \ 1902

Distributor asks Locker to acquire lock 1— 1904

y
Locker returns Lock when Lock becomes
available from Lock Manager -+ 1906

4

Distributor returns Lock to Application +— 1908

r

Distributor logs lock of Model Instance to Monitor+— 1910

y
Appication Reads or Writes Model Instance +— 1912

y

Application requests release of Read or Write Lock on Model Instance
using Model Map Reference and Local Name from Metadata

- \ 1914

Distributor asks Locker to release Lock4+— 1916

Y

Distributor acknowledges release of lock
to Application T 1918

v // 1920
Distributor logs unlock of Model Instance to Monitor

6

Fig. 19

WO 2018/024348

Proc

ess M1

—{ Distributor

App Instance ‘—[

Model Maps

Model Manager

Proc

ess M2

—‘ Distributor

App Instance ,—[

Model Maps

Model Manager

Proc

ess M3

-—‘ Distributor

App Instance }"[

Model Maps

Model Manager

16/22

Fig. 20

PCT/EP2016/077180

Monitored Model
Instance Operations
INIT
GET
SET
READ_LOCK
READ_UNLOCK
WRITE_LOCK

WRITE_UNLOCK

138
Model
Model :
Usage __+—"|Usage Data
Collector Model Knowledge
\ Base

136 \
104

WO 2018/024348

Process PE1

App Instance }—[—‘l Distributor l‘—

Model Maps

ook
Model Manager

al

Process PE2

{ Distributor

App Instance } L

Model Maps
Fersitor

Muodel Manager

Process PE3

} Distributor l

App Instance I L

Model Maps

Model Manager

Process PE4

Distributor l

App Instance E L

Model Maps

Meodel Manager

17/22

Fig. 21

Persistence
Framework

PCT/EP2016/077180

WO 2018/024348 PCT/EP2016/077180

18/22
®
A
’ Wait for Timeout 2202
2204

Yes

Last Model Ma

2206

Last Model Instance in
this Model Map

_~ 2208
Read Value of Mocﬂal
Instance from Model Map

2210

Has value changed
ince last Persist?
Yes

S 2212
Store Value of Mod,el
Instance to Persistence

| [TasiCiogic |

Task
Parameters 1

Task
Parameters

Task
Parameters

Task
Parameters

Action Event with
Outgoing Context

Trigger Event with
Incoming Context

Global Context Cq

Fig. 23

WO 2018/024348 PCT/EP2016/077180

19/22

Apex MIM Model Maps

Policy Context C,

Policy Context C,1 |

Policy Context C,2

Policy Context C,3

P
o . .
.

Policy Context C,s

Global Context C,

Fig. 24

Interface

Y
N 2506

Processor

S
N 2502

WO 2018/024348 PCT/EP2016/077180

20/22

Receive Model Object Libraries
and Model Metadata

|

Instantiate Management

Information Model based on \\
received Model Object Libraries 2604
and Model Metadata

l

Store instantiated Management

Information Model in repository
of the process \ 2606

-~

Fig. 26

Monitor operations of

instantiating a MIM, reading a \\
MIM, writing to a MIM, locking 2802
and unlocking a MIM

l

Send usage logs entries

containing monitoring data to a ~\
Model Usage Collector 2804

Fig. 28

WO 2018/024348 PCT/EP2016/077180

21/22

Request for Write
access to MIM received b
™~ 2702

A

Locked?

Lock MIM R
™ 2708
Y
Write to MIM (Modify MIM)
™~ 2710
Y
Store modified MIM R
\ 2712
Y
Unlock MIM R
™~ 271

Fig. 27

WO 2018/024348 PCT/EP2016/077180

22/22
/ 2920
7
Interface
Receiver Reporter
b S
N 2902 N 2012
Locker Monitor
~. ~
N 2908 N 2910
Creator Processor
~ ~
N 2904 N 2906
\

Fig. 29

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2016/077180

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/52
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y WO 2016/066438 Al (ERICSSON TELEFON AB L M 1-24
[SE]) 6 May 2016 (2016-05-06)
abstract
page 4, line 24 - page 5, line 26
Y EP 1 843 259 A2 (COGNOS INC [CA]) 1-24
10 October 2007 (2007-10-10)
abstract
paragraph [0010] - paragraph [0027]
paragraph [0124] - paragraph [0141]
paragraph [0263] - paragraph [0276]
figures 2,3
claims 1, 4
A WO 20157158377 Al (ERICSSON TELEFON AB L M 1-24
[SE]) 22 October 2015 (2015-10-22)
the whole document
- / -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

14 March 2017

Date of mailing of the international search report

24/03/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Beltran-Escavy, José

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2016/077180

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 20147088932 Al (PIETZSCH TORSTEN [DE])
27 March 2014 (2014-03-27)

the whole document

US 2007/073877 Al (BOYKIN JAMES R [US] ET
AL) 29 March 2007 (2007-03-29)

the whole document

US 2004/210607 Al (MANCHANDA ARUN [CA] ET
AL) 21 October 2004 (2004-10-21)

the whole document

US 6 023 579 A (HELLGREN LARS VIKTOR [US]
ET AL) 8 February 2000 (2000-02-08)

the whole document

FALLON LIAM ET AL: "Apex: An engine for
dynamic adaptive policy execution",

NOMS 2016 - 2016 IEEE/IFIP NETWORK
OPERATIONS AND MANAGEMENT SYMPOSIUM, IEEE,
25 April 2016 (2016-04-25), pages 699-702,
XP032918172,

DOI: 10.1109/NOMS.2016.7502880

[retrieved on 2016-06-30]

the whole document

VAN DER MEER SVEN ET AL: "Dynamically
adaptive policies for dynamically adaptive
telecommunications networks",

2015 11TH INTERNATIONAL CONFERENCE ON
NETWORK AND SERVICE MANAGEMENT (CNSM),
IFIP,

9 November 2015 (2015-11-09), pages
182-186, XP032838999,

DOI: 10.1109/CNSM.2015.7367357

[retrieved on 2015-12-28]

the whole document

1-24

1-24

1-24

1-24

1-24

1-24

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2016/077180
Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 2016066438 Al 06-05-2016 NONE

EP 1843259 A2 10-10-2007 CA 2542379 Al 07-10-2007
EP 1843259 A2 10-10-2007
US 2007239769 Al 11-10-2007

WO 2015158377 Al 22-10-2015 (N 106464516 A 22-02-2017
EP 3132567 Al 22-02-2017
US 2017041181 Al 09-02-2017
WO 2015158377 Al 22-10-2015

US 2014088932 Al 27-03-2014 EP 2711794 Al 26-03-2014
JP 5675925 B2 25-02-2015
JP 2014067417 A 17-04-2014
US 2014088932 Al 27-03-2014

US 2007073877 Al 29-03-2007 CN 1921413 A 28-02-2007
W 1392270 B 01-04-2013
US 2007073877 Al 29-03-2007

US 2004210607 Al 21-10-2004 NONE

US 6023579 A 08-02-2000 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - wo-search-report
	Page 71 - wo-search-report
	Page 72 - wo-search-report

