

US 20050196833A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0196833 A1

(10) Pub. No.: US 2005/0196833 A1 (43) Pub. Date: Sep. 8, 2005

Beavo et al.

(54) CYCLIC GMP-BINDING, CYCLIC GMP-SPECIFIC PHOSPHODIESTERASE MATERIALS AND METHODS

(75) Inventors: Joseph A. Beavo, Seattle, WA (US); Jackie D. Corbin, Nashville, TN (US); Kenneth M. Ferguson, Bothell, WA (US); Sharron H. Francis, Nashville, TN (US); Ann Kadlecek, Madison, CT (US); Linda M. McAllister-Lucas, Ann Arbor, MI (US); Kate Loughney, Seattle, WA (US); William K. Sonnenburg, Spring, TX (US); Melissa K. Thomas, Boston, MA (US)

> Correspondence Address: MILES & STOCKBRIDGE PC 1751 PINNACLE DRIVE SUITE 500 MCLEAN, VA 22102-3833 (US)

- (73) Assignce: ICOS Corporation and University of Washington
- (21) Appl. No.: 10/353,575
- (22) Filed: Jan. 28, 2003

Related U.S. Application Data

(60) Continuation of application No. 10/115,515, filed on Apr. 3, 2002, which is a continuation of application No. 09/599,658, filed on Jun. 21, 2000, now abandoned, which is a continuation of application No. 09/055,584, filed on Apr. 6, 1998, now abandoned, which is a division of application No. 08/463,949, filed on Jun. 5, 1995, now Pat. No. 5,955,583, which is a continuation-in-part of application No. 08/068, 051, filed on May 27, 1993, now abandoned.

Publication Classification

- (51) Int. Cl.⁷ C12N 9/16; C07H 21/04; A61K 31/519
- (52) U.S. Cl. 435/69.1; 435/196; 435/320.1; 435/325; 514/252.16; 536/23.2

(57) ABSTRACT

The present invention provides novel purified and isolated nucleotide sequences encoding the cGMP-binding. cGMP-specific phosphodiesterase designated cGB-PDE. Also provided by the invention are methods and materials for the recombinant production of cGB-PDE polypeptide products and methods for identifying compounds which modulate the enzymatic activity of cGB-PDE polypeptides.

	408804947	E 1A
8947290020 797279900200 797279990020000000000	1220000	FIGURI
LLVTGKICK LVTGKLKR LLVTGKLKS LMTGRLKK VKNLELTN KMLHTGIMH FLLRTGMVH FLLRTGMVH LLGTPALEA LLNTPALEG	. SIMEHH . SILERH . SILERH . SILERH GSVMERH RSVLENH SSVLENH -SE-H	
	CH CH CH	
HAFNTADCMF HGFNVGQTMF HGFNVGQTMF HGFNVGQTMF HAFSVSHFCY HAADVTQTVH HAADVTQTVH HAADVTQSAH HAADVTQSAH	RSEHPLAQLY KSQNPLAKLH KSTSPLAKLH KSTSPLAKLH ASKSVLAALY QTRSDVAILY QTKSEQAILY NTNSELALMY NSSSELALMY	
NVAYHNWR ITYHNWR VTYHNWR P. PYHNWR YKNPYHNUN YKNPYHNLI YKNPYHNLI NVAYHNSL	HRGTNNLYOM HRGTNNLYOM HRGTNNLYOM HRGTNNLYOM HRGTNNSFQV HIGTTNSFHI HPGVSNOFLI HPGVSNOFLI HPGVSNOFLI	
WILSVKKNYR K FNYSLSKGYR R FLFSVSKGYR A MMTYVRKGYR A FLLMVKKGYR A FCLMVKKGYR A FLDALETGYG K FLDALETGYG K FMSTLEDHYV K FMSTLEDHYV K	LIAALSHDLD VTAAFCHDID VTAAFCHDID LAAAFCHDID FISCMCHDLD VFAAAIHDYE IFAAAIHDYE IFAACIHDVD LFAACIHDVD	
FOMKHEVLCK FHIPOEALVR FOIPOEALVR FKVPVEVLTR YKIDCPTLAR FKIPVSCLIA FKIPVSCLIA FKIPVSCLIA FKIPVFLMT FOIPADTLLR	RLTDLETLAL YFTDLEALAM YYTDLEAFAM YLTELETLAM ULTELETLAM CLSETEVLAT VFTPLEVGGA	
cGB-PDE RDS-a RDS-a RDS-b CONE-a' cGS cGS cGS cGS cGS conerved Conserved	CGB-PDE ROS-α ROS-β CONE-α' CONE-α' CONE-α' 63 kCaM 63 kCaM Ratdunce Drosdunce Conserved	

728 600 326 140 120 88 88 88 88 88 88 88 88 88 88 88 88 88	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	FIGURE 18
LALYFKRRGE LALYFKKRTH	LSAITKPWPI LSAITKPWFV LSAITKPWEV LSAITKPWEV LSAITKPWEV LSAITKPWEV LSAITKPWEV LSAITKPWEV LSAITKPWEV LSAITKPWEV LSAITKPWEV LSAITKPWEV LSAITKPWEV LSAITKPWEV	
IIKQAILATU HMDIAIIATU LMDIAIIATU LMDIAIIATU LVIENVLATU LVIENVLATU HVIDNVLATU HVIDNVLATU HVIDIVLATU	FLAMLATTACD VMAMAATTACD	
SIEEYKTTLK NRCHEHATH NRCHEHATH NKRCHEHVTH NKRCHEHVTH SRKDVCRMLD SRKDDWRDLRN TKDEFVELRA STKOKLSLRR CKKCRULLRA	MLEDPNOKEL MNLDQTRKET VTIDPTKKET VTIDPTKKET VTIDPTKKET VTIDPTKKET LSLETTRKET VTIDPTKKET LLONYSDRIG LLDNYSDRIG LLDNYTDRIG	
SPGNOILSGL DESLNIFONL EETLNIYONL DESLNIFONL DESLNIFONL THGCNIFDHF EEEMVLINL DOEMNIFINL GENCDIFONL	YETCODEMTOY YEDRKSWVEY METEEEAIKY LVGY TSLGVL AGSGVL	
HFDOCLMILN HLEFGKTLLR HLEFGKTLLR HLEYSKTLLO HLAVGFKTLLO HLAVGFKLLO HLAVGFKLLO HLAVGFKLLO HLAVGFKLLO HLAVGFKLLO	FFELINKON FOKIVDOSKT FOKIVDESKN FOKIVDACEK LOKNAE IRHSLOOPEG MKTALOOLER LKTHVETKKV LKTHVETKKV	
CGB-PDE RUS- RUS- RUS- CONE- CONE- CONE- RATDUNCE DROSDUNCE CONSERVED	CGB-PDE ROS-F ROS-F CONE-F CONE-F CONE-F CONE-F CONSERVED CONSERVED	

812 776 776 316 239
SMQVGFID KLOVGFID KLOVGFID KLQVGFID KLQVGFID CSQIGFID CSQVGFID KSQVGFID KSQVGFID
MUREKKNKIP MDRNKADELP MDRNKADELP MDRNKKDELP NDRNKKDELP NDRNKKDELP NDRNKKDELP MDRNKKDELP MDRNKKDELP MDRNKKDELP NDRNKKDELP MDRNKKDELP MDRNKKDELP NDRNKKDELP MDRNKKDELP NDRNKKDELP MDRNKKDELP NDRNKKDELP
KELNTEPAOL TVLOONPIPM TVLOOOPIPM A.HGNRPMEM ELGLPFSP ELGLPFSP ESGLDISP ESGLDISP
EFFDOGDRER EFWEOGDLER EFWEOGDLER EFFSOGDLER EFFLOGDKEA EFFLOGDKEA EFFLOGDKEA EFFLOGDKEA EFFLOGDKEA EFFLOGDKER EFOGD-E-
OORIAELVAT OSKVALLVAA OSKVALLVAA OSKVALLVAA OSKVALLVAA OSKVALLVAA OSKVALLVAA OSKVALLVAA OSKVALLVAA OSKVALLVAA OSKVALLVAA HHRWTMALLME YKRWVALLME ***-
cGB-PDE ROS- ROS- ROS- ROS- CONE- cGS cGS cGS cGS cGN CONSERVED CONSERVED

FIGURE 1C

			ZA
188 245 107 109	237 154 155	287 2042 205	FIGURÉ
OKFLI DKFLI DE. LA AE. LA	DAYED DLTSE DVKKN DVMEC NTEED	GTFTE DLFTD SEFSK PCFTS PHFTE F	
EDSSNDH EDN. LC ARNGTPI ORNGVAI	PLNIKD/ SIQLKDI TFNVPD/ MVNVQD/ IVNVPN/	KSGNGG LGGD VDAS	
LFLVC LLLVS MFLCR LFMYR LFMYR	IGHVAAFGE GOVVEDKK IGWVAHTKK IGHVAQTKK IGHVALSKK	DAINK CAFNK MAVNK MAVNK MAVNK	
ADRYSLI ASRCCLI ADRCSM ADRCSLI ADRMSLI A-R	1VGHV 1VGHV VVGHV VVGHV G-V	VVGVAC VVALA(VVALA(VVALA)	
HGLIS COETO AOLLO CSILH CFLLO	PLDNG PLDNG PLDNG PLDNG PLDNG	VHR. EE SRATDO MGKE NGKD	
IFLHIHGU VLQYLQQE ALQRLAQI ILRRLCS1 VMKKLCFI	NCIRL EISF REAVF SEIVF	MPIKI VPVI TPIV MIGT MIGS MIGS	
HLDVTALCHK . LDASSLOLK AGSVELAAHR NVNMERVVFK NLDAEKCVFN	NLVVPD CLVPPD CLVPPD	YKTOSILC CEVOAMLC YVTRNILA YVTRNILA	
	TLEE VLEE VLEE E-		
ELVKDISS OLCGELYD LEVL. LEE FELVODMOE	SRLFDVAEGS CKVIG0K SKLLDVTPTS TRLFSVOPDS TRLFNVHKDA	PRFNAEVDOI DM QOLQSM SHFSDFMDKQ PHFSSFADEL EHFCDFVDTL	
ILELV ILEVL	SRLFD CKVIG SKLLD TRLFS TRLFN	PRFNA DM. (SHFSI PHFSS EHFCI	
G	ED	8	
cGB-PDE cGS CONE-a' ROS-p ROS-a ROS-a	cGB-PDE cGS cONE-a' ROS-p ROS-a CONSERVI	668-РDE 665 2008-а' 205-а 205-а 205-а	
990000 990000	000000 000000	00000000000000000000000000000000000000	

337 390 252 253 253	361 309 302 302	4 4 6 6 7 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7	FIGURE 2B
SLIFEEQOSL KNLFTHLDDV NKVFEELTDV NKVFEELTDV SKVFEELTDI SKVFEELTDI	ECEELEKSSD GVLEDESY KPGEVEPYKG LMGEAQAYSG LMGEAPPYAG E	MYAQYVKNTM GIAGHVATTG GLPTYVAENG GLPTYVAESG GLPTYVAQNG	
KRNOVLLDLA CECCOALLOVA RRSQILMMSA RRGQVLLWSA RRGQVLLWSG Q-L	SDSFSSVFHM NELVAKVFDG KEFY.DEWPV KEFF.DVWPV KEFF.DVWPV	PPDDHWTLIS PPDD1 PPDDHWTLIS PPDDHWALAS PPPDHWALVS	
OLYETSLLEN LAFOKEOKLK HTNYLYNIES HYSYLHNCET HLSYLHNCET	TTFIVD.EDC SVFLIDQ SIGLLDMTKE SVGLLDMTKE SVGLLDMTKG	GKEDIKVIPT GKEDIKVIPS GKEDIKVIPS	
AFCGIVLHNA HYTSTVLTST SFVSIILKLH NFGTLNLKIY NFANLIMKVF	IISFMQVQKC ARNLSNAEIC VRTYLNCERY VRAYLNCDRY VRAFLNCDRY	FYKIDYILH	
KDEKDFAAYL ODEHVIOHCF ODEEVFSKYL EDEDVFLKYL NDEEILLKYL -DE	EVILKKIAAT SVLLDEIITE ERQFHKALYT ERQFHKAFYT ERQFHKAFYT	TLTRE PKTPDGREVI PRTPDGREIL PRTPDGREIL	
c GB - PDE c GS c ONE - a' R OS - p R OS - a C ONSERVED	cGB-PDE cGS cONE-a' ROS-b ROS-a ROS-a Conserved	cGB-PDE cGS CONE-a' ROS-b ROS-a CONSERVED	

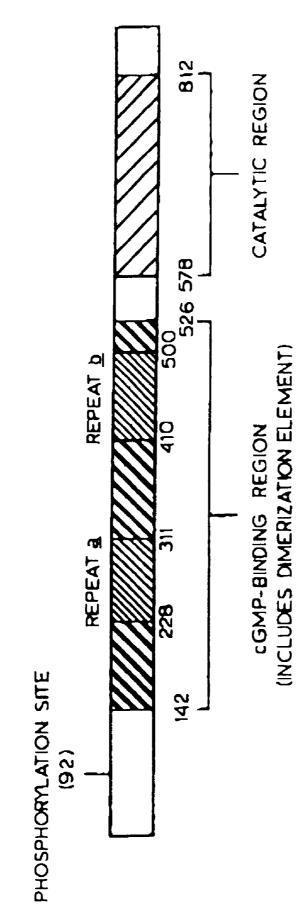
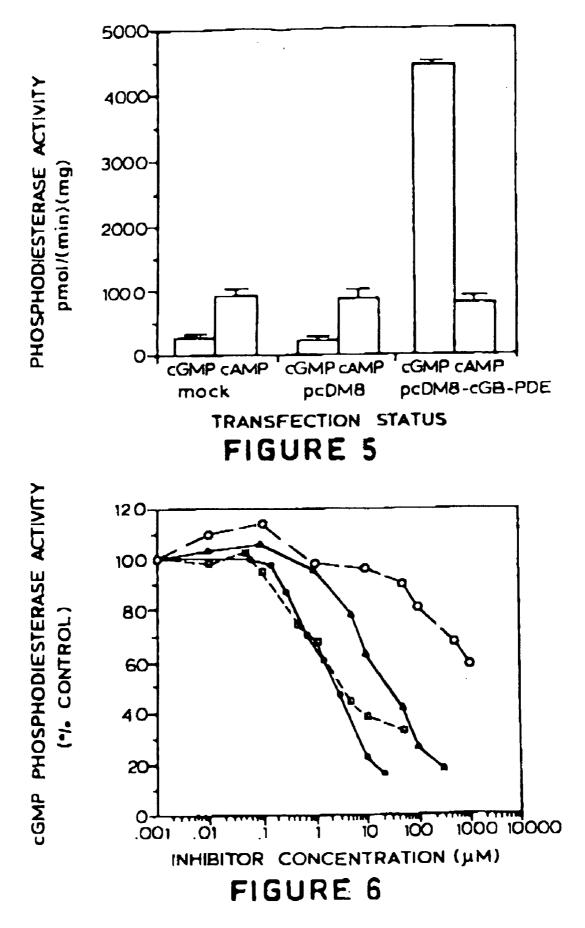

459 499 400 402	500 5441 5441 5441 5441 5441 5441 5441 5	526 561 462 462
KKNKVIGVCQ ENQEVIGVAE KKEDIVGVAT KKEEIVGVAT KKEEIVGVAT	EAVERAMAKO KKVNEAQYRS EKMNKLENRK DKMNKLENRK ELMNKLENRK	
SLLCTPIKNG NILCFPIKN. NVLSLPIVN. NVLSMPIVN. NVLSMPIVN. LPI-N-	GLGIQNTQWY GISIAHSLLY GWSLLNTDTY GWSVLNTDTY GWSVLNPDTY GSVLNPDTY	
MGNTNQQCIR DDSTGRF.TR VDETGWV.IK LDDSGWT.VK LDDSGWT.VK	OFLEAFVIFC DLATAFSIYC HIAETLTOFL VLMESLTOFL TLMESLAOFL	
DKRFPWTNEN HPLFY, RGV DEYFTFQKGP DEMFNFQEGP EDFFAFQKEP	KVKAFNRNDE . PWFSKFDE . KPFDEYDE . KPFDE0DE . KPFDE0DE	ASAAEEE MKVSDDE TKATPDE VRCDREE VRCDREE
EPLNIPDVSK GILNIPDAYA FICNMLNAPA FICNIMNAPA LICNIMNAPS	LVNKMEETTG LVNKING FYNRKDG FYNRKDG	MVTLEVLSYH HLANEMMNH DIAQEMLMNH DIAQDMVLYH DIFQDMVKYH
cGB-PDE cGS cONE-a' ROS-p ROS-a Conserved	cGB-PDE cGS cONE-a' ROS-a ROS-a CONSERVED	cGB-PDE cGS cONE-a' ROS-p ROS-a CONSERVED

FIGURE 2C


EPLNIKDAYEDPRFNAEVODITGYKTOSILCMPIKMH.REEVVGVADAIN.KKSGN KIVNVPNTEEDEHFCDFVDTLTEYOTKNILASPIMNG .K.DVVAVIMAVN.KVDGP KMVNVODVMECPHFSSFADELTDYVTRNILATPIMNG .K.DVVAVIMAVN.KVDGP KMVNVODVMECPHFSOFMOKOTGYVTRNILATPIMNG .K.DVVAVIMAVN.KVDGS KSIQLKDLTSEDMOGLOSMLGCEVOAMLCVPVISRATDQVVALACAFN.KLGGD EPLNIPDVSKDKRFPMTNENMGNINOOCIRSLLCTPIKNGKNKVIGVCQLVN.KMEET LICNIMNAPSEDFFAFOKEPLDE .SGWIKNVLSNPIVNK.KEEIVGVATFYNRKDGKP FICNIMNAPSEDFFFOKEPLDD .SGWIVKNVLSNPIVNK.KEEIVGVATFYNRKDGKP TICNIMNAPADEMFNFOEGPLDD .SGWIVKNVLSLPIVNK.KEEIVGVATFYNRKDGKP TICNIMNAPADEYFFFOKGPVDE .TGWVIKNVLSLPIVNK.KEEIVGVATFYNRKDGKP	GGTFTEKDEKDFAAYLAFCGIVLHMAOL.YE HFTENDEEILLKYLNFANLIMKVFHLSY CFTSEDEDVFLKYLNFGTLNLKIYHLSY EFSKODEEVFSKYLSFVSIILKLHHTNY IGKVKAFNRNDEOFLEAFVIFCGLGIONTOM.YE FDEMDETLMESLAOFLGWSV.LNPDTYE FDEMDETLMESLAOFLGWSV.LNPDTYE FDEYDEHIAETLTOFLGWSV.LNTDTYD MFSKFDEDLATAFSIYCGISI.AHSLLYK
	< < < < < < < < < < < < < < < < < < <
cGB-PDE ROS-e ROS-b CONE-b cGB-PDE ROS-b ROS-b CONE-e CONE-e CONE-e	CGB-PDE ROS-a ROS-a CONE-a CGB-PDE ROS-a ROS-a ROS-b CONE-a CONE-a

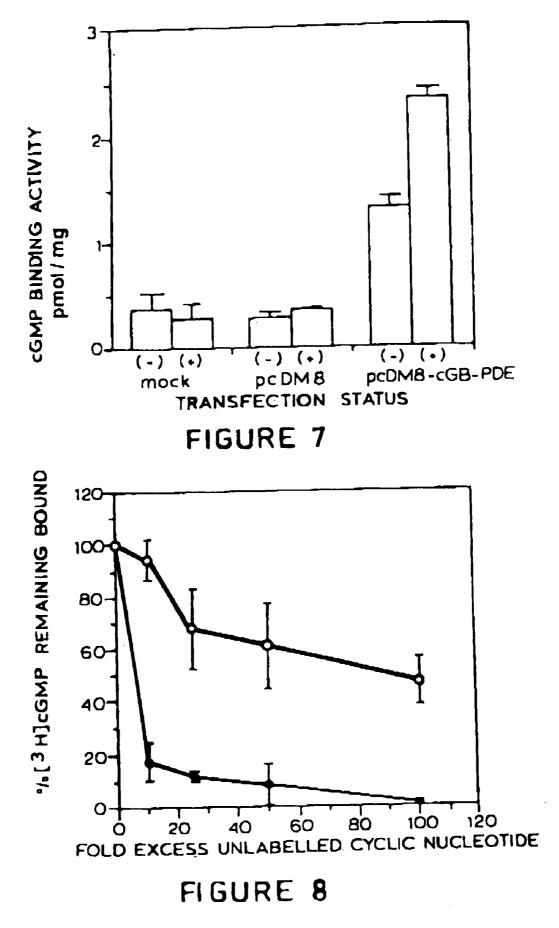

Patent Application Publication Sep. 8, 2005 Sheet 7 of 10 US 2005/0196833 A1

FIGURE 3

FIGURE 4

CYCLIC GMP-BINDING, CYCLIC GMP-SPECIFIC PHOSPHODIESTERASE MATERIALS AND METHODS

[0001] This application is a continuation-in-part of copending U.S. patent application Ser. No. 08/068,051 filed May 27, 1993.

[0002] Experimental work described herein was supported in part by Research Grants GM15731, DK21723, DK40029 and GM41269 and the Medical Scientist Training Program Grant GM07347 awarded by the National Institutes of Health. The United States government has certain rights in the invention.

FIELD OF THE INVENTION

[0003] The present invention relates generally to a cyclic guanosine monophosphate-binding, cyclic guanosine monophosphate-specific phosphodiester designated cGB-PDE and more particularly to novel purified and isolated polynucleotides encoding cGB-PDE polypeptides, to methods and materials for recombinant production of cGB-PDE polypeptide, and to methods for identifying modulators of cGB-PDE activity.

BACKGROUND

[0004] Cyclic nucleotide phosphodiesterases (PDEs) that catalyze the hydrolysis of 3'5' cyclic nucleotides such as cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (CAMP) to the corresponding nucleoside 5' monophosphates constitute a complex family of enzymes. By mediating the intracellular concentration of the cyclic nucleotides, the PDE isoenzymes function in signal transduction pathways involving cyclic nucleotide second messenger.

[0005] A variety of PDEs have been isolated from different tissue sources and many of the PDEs characterized to date exhibit differences in biological properties including physicochemical properties, substitute specificity, sensitivity to inhibitor, immunological reactivity and mode of regulation. [See Beavo et al., Cyclic Nucleotide Phosphodiesterases: Structure, Regulation and Drug Action, John Wiley & Sons, Chichester, U.K. (1990)]. Comparison of the known amino acid sequences of various PDEs indicates that most PDEs are chimeric multidomain proteins that have distinct catalytic and regulatory domains. [See Charbonneau, pp. 267 in Beavo et al., supra] All mammalian PDEs characterized to date share a sequence of approximately 250 amino acid residues in length that app to comprise the catalytic site and is located in the carboxyl terminal region of the enzyme. PDE domains that interact with allosteric or regulatory molecules are thought to be located within the amino-terminal regions of the isoenzymes. Based on their biological properties, the PDEs may be classified into six general families: the Ca²⁺/calmodulin-stimulated PDEs (Type I), the cGMP-stimulated PDEs (Type II), the cGMPinhibited PDEs (Type III), the cAMP-specific PDEs (Type IV), the cGMP-specific phosphodiesterase COB-PDE (Type V) which is the subject of the present invention and the cGMP-specific photoreceptor PDEs (Type VI).

[0006] The cGMP-binding PDEs (Type II, Type V and Type VI PDEs), in addition to having a homologous catalytic domain near their carboxyl terminus, have a second

conserved sequence which is located closer to their amino terminus and which may comprise an allosteric cGMPbinding domain. See Charbonneau et al., *Proc. Nail. Acad. Sci. USA*, 87: 288-292 (1990).

[0007] The Type II cGMP-stimulated PDEs (cGs-PDEs) am widely distributed in different tissue types and are thought to exist as homodimers of 100-105 kDa subunits. The cGs-PDEs respond under physiological conditions to evaluated cGMP concentrations by increasing the rate of cAMP hydrolysis. The amino acid sequence of a bovine heart cGs-PDE and a partial cDNA sequence of a bovine adrenal cortex cGS-PDE am reported in LeTrong et. al., *Biochemistry*, 29: 10280-10288 (1990) and full length bovine adrenal and human fetal brain cGB-PDE cDNA sequences are described in Patent Cooperation Treaty International Publication No. WO 92/18541 published an Oct. 29, 1992. The full length bovine adrenal cDNA sequence is also described in Sonnenburg et al., *J. Biol. Chem.*, 266: 17655-17661 (1991).

[0008] The photoreceptor PDEs and the cGB-PDE have been described as cGMP-specific PDEs because they exhibit a 50-fold or greater selectivity for hydrolyzing cGMP over cAMP.

[0009] The photoreceptor PDEs are the rod outer segment PDE (ROS-PDE) and the cone PDE (COS-PDE). The holoenzyme structure of the ROS-PDE consists of two large subunits α (88 kDa) and β (84 kDa) which are both catalytically active and two smaller y regulatory subunits (both 11 kDa) A soluble form of the ROS-PDE has also been identified which includes α , β , and γ subunits and a δ subunit (15 kDa) that appears to be identical to the COS-PDE 15 kDa subunit. A full-length cDNA corresponding to the bovine membrane-associated ROS-PDE α subunit is described in Ovchinnikov et al., FEBS Lett., 223: 169-173 (1987) and a full length cDNA corresponding to the bovine rod outer segment PDE β subunit is described in Lipkin et al., J. Biol. Chem., 265: 12955-12959 (1990). Ovchinnikov et. al., FEBS Lett, 204: 169-173 (1986) presents a full-length cDNA corresponding to the bovine ROS-PDE y subunit and the amino acid sequence of the δ subunit. Expression of the ROS-PDE has also been reported in brain in Collins et al., Genomics, 13: 698-704 (1992). The COS-PDE is composed of two identical α' (94 kDa) subunits and three smaller subunit of 11 kDa, 13 kDa and 15 kDa. A full-length cDNA corresponding to the bovine COS-PDE α ' subunit is reported in Li et al., Proc. Natl. Acad. Sci. USA, 87: 293-297 (1990).

[0010] cGB-PDE has been purified to homogeneity from rat [Francis et. al., Methods Enzymol., 159: 722-729 (1988)] and bovine lung tissue [Thomas et. al., J. Biol. Chem., 265: 14964-14970 (1990), hereinafter "Thomas I"]. The presence of this or similar enzymes has been reported in a variety of tissues and species including rat and human platelets [Hamet et al., Adv. Cyclic Nucleotide Protein Phosphorylation Res., 16: 119-136 (1984)], rat spleen [Coquil et al., Biochem. Biophys. Res. Commun., 127: 226-231 (1985)], guinea pig lung [Davis et. al., J. Biol. Chem., 252: 4078-4084 (1977)], vascular smooth muscle [Coquil et al., Biochim. Biophys. Acia, 631: 148-165 (1980)], and sea urchin sperm [Francis et al., J. Biol. Chem, 255: 620-626 (1979)]. cGB-PDE may be a homodimer comprised of two 93 kDa subunits. [See Thomas I, supra] cGB-PDE has been shown to contain a single site not found in other known cGMP-binding PDEs which is phosphorylated by cGMP-dependent protein kinase (cGK) and, with a lower affinity, by cAMP-dependent protein kinase (cAK). [See Thomas et al., *J. Biol. Chem.*, 265: 14971-14978 (1990), hereinafter "Thomas II"]The primary amino acid sequence of the phosphorylation site and of the amino-terminal end of a fragment generated by chymotryptic digestion of cGB-PDE are described in Thomas II, supra, and Thomas I; supra, respectively. However, the majority of the amino acid sequence of cGB-PDE has not previously been described.

[0011] Various inhibitors of different types of PDEs have been described in the literature. Two inhibitors that exhibit some specificity for Type V PDEs are zaprinast and dipyridamole. See Francis et al., pp. 117-140 in Beavo et. al., supra.

[0012] Elucidation of the DNA and amino acid sequences encoding the cGB-PDE and production of cGB-PDE polypeptide by recombinant methods would provide information and material to allow the identification of novel agent that selectively modulate the activity of the cGB-PDEs. The recognition that there are distinct types or families of PDE isoenzymes and that different tissues express different complements of PDEs has led to an interest in the development of PDE modulation which may have therapeutic indications for disease states that involve signal transduction pathways utilizing cyclic nucleotides as second messenger. Various selective and non-selective inhibitors of PDE activity are discussed in Murray et al., Biochem. Soc. Trans., 20(2): 460-464 (1992). Development of PDE modulators without the ability to produce a specific PDE by recombinant DNA techniques is difficult because all PDEs catalyze the same basic reaction, have overlapping substrate specificities and occur only in trace amounts. As a result, purification to homogeneity of many PDEs is a tedious and difficult process.

[0013] There thus continues to exist a need in the an for DNA and amino acid sequence information for the cGB-PDE, for methods and mates for the recombinant production of cGB-PDE polypeptides and for methods for identifying specific modulators of cGB-PDE activity.

SUMMARY OF THE INVENTION

[0014] The present invention provides novel purified and isolate polynucleotides (e.g., DNA sequences and RNA transcripts, both sense and antisense strands, including splice variants thereof) encoding the cGMP-binding, cGMPspecific PDE designated cGB-PDE. Preferred DNA sequences of the invention include genomic and cDNA sequences we well as wholly or partially chemically synthesized DNA sequences. DNA sequences encoding cGB-PDE that are set out in SEQ ID NO: 9 or 20 and DNA sequences which hybridize thereto under stringent conditions or DNA sequences which would hybridize thereto but for the redundancy of the genetic code are contemplated by the invention. Also contemplated by the invention are biological replicas (i.e., copies of isolated DNA sequences made in vivo or in vitro) of DNA sequences of the invention. Autonomously replicating recombinant constructions such as plasmid and viral DNA vectors incorporating cGB-PDE sequences and especially vectors wherein DNA encoding cGB-PDE is operatively linked to an endogenous or exogenous expression control DNA sequence and a transcriptional terminator are also provided. Specifically illustrating expression plasmids of the invention is the plasmid hcgbmet156-2 6n in *E. coli* strain JM109 which was deposited with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Md. 20852, on May 4, 1993 as Accession No. 69296.

[0015] According to another aspect of the invention, host cells including procaryotic and eucaryotic cells, are stably transformed with DNA sequences of the invention in a manner allowing the desired polypeptides to be expressed therein. Host cells expressing cGB-PDE products can serve a variety of useful purposes. Such cells constitute a valuable source of immunogen for the development of antibody substances specifically immunoreactive with cGB-PDE. Host cells of the invention are conspicuously useful in methods for the large scale production of cGB-PDE polypeptides wherein the cells are grown in a suitable culture medium and the desired polypeptide products are isolated from the cells or from the medium in which the cells are grown by, for example, immunoaffinity purification.

[0016] cGB-PDE products may be obtained as isolates from natural cell sources or may be chemically synthesized, but are preferably produced by recombinant procedures involving host cells of the invention. Use of mammalian host cells is expected to provide for such post-translational modifications (e.g., glycosylation, truncation, lipidation and tyrosine, serine or threonine phosphorylation) as may be needed to confer optimal biological activity on recombinant expression products of the invention. cGB-PDE products of the invention may be full length polypeptides, fragments or variants. Variants may comprise cGB-PDE polypeptide analogs wherein one or more of the specified (i.e., naturally encoded) amino acids is deleted or replaced or wherein one or more nonspecified amino acids a added: (1) without loss of one or more of the biological activities or immunological characteristics specific for cGB-PDE; or (2) with specific disablement of a particular biological activity of cGB-PDE.

[0017] Also comprehended by the present invention are antibody substances (e.g., monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies, CDRgrafted antibodies and the like) and other binding proteins specific for cGB-PDE. Specific binding proteins can be developed using isolated or recombinant cGB-PDE or cGB-PDE variants or cells expressing such products. Binding proteins are useful, in turn, in compositions for immunization as well as for purifying cGB-PDE polypeptides and detection or quantification of cGB-PDE polypeptides in fluid and tissue samples by known immunological procedure. They are also manifestly useful in modulating (i.e., blocking, inhibiting or stimulating) biochemical activities of cGB-PDE, especially those activities involved in signal transduction. Anti-idiotypic antibodies specific for anticGB-PDE antibody substances are also contemplated.

[0018] The scientific value of the information contributed through the disclosures of DNA and amino acid sequence of the present invention is manifest. As one series of examples, knowledge of the sequence of a cDNA for cGB-PDE males possible the isolation by DNA/DNA hybridization of genomic DNA sequences encoding cGB-PDE and specifying cGB-PDE expression control regulatory sequences such as promoters, operators and the like. DNA/DNA hybridization procedures carried out with DNA sequences of the

invention under stringent conditions am likewise expected to allow the isolation of DNAs ending allelic variants of cGB-PDE, other structurally related proteins sharing one or more of the biochemical and/or immunological properties specific to cGB-PDE, and non-human species proteins homologous to cGB-PDE. Polynucleotides of the invention when suitably labelled are useful in hybridization assays to detect the capacity of cells to synthesize cGB-PDE. Polynucleotides of the invention may also be the basis for diagnostic methods useful for identifying a genetic alteration(s) in the cGB-PDE locus that underlies a disease state or states. Also made available by the invention ae anti-sense polynucleotides relevant to regulating expression of cGB-PDE by those cells which ordinarily express the same.

[0019] The DNA and amino acid sequence information provided by the present invention also makes possible the systematic analysis of the structure and function of cGB-PDE and definition of those molecules with which it will interact. Agents that modulate cGB-PDE activity may be identified by incubating a putative modulator with lysate from eucaryotic cells expressing recombinant cGB-PDE and determining the effect of the putative modulator on cGB-PDE phosphodiesterase activity. In a preferred embodiment the eucaryotic cell lacks endogenous cyclic nucleotide phosphodiesterase activity. Specifically illustrating such a eucaryotic cell is the yeast strain YKS45 which was deposited with the ATCC on May 19, 1993 as Accession No. 74225. The selectivity of a compound that modulates the activity of the cGB-PDE can be evaluated by comparing ius activity on the cGB-PDE to its activity on other PDE isozymes. The combination of the recombinant cGB-PDE products of the invention with other recombinant PDE products in a series of independent assays provides a system for developing selective modulators of cGB-PDE.

[0020] Selective modulators may include, for example, antibodies and other proteins or peptides which specifically bind to the cGB-PDE or cGB-PDE nucleic acid, oligonucleotides which specifically bind to the cGB-PDE or cGB-PDE nucleic acid and other non-peptide compounds (e.g., isolated or synthetic organic molecules) which specifically react with cGB-PDE or cGB-PDE nucleic acid. Mutant forms of cGB-PDE which affect the enzymatic activity or cellular location of the wild-type cGB-PDE are also contemplated by the invention. Presently preferred targets for the development of selective modulators include, for example: (1) the regions of the cGB-PDE which contact other proteins and/or localize the cGB-PDE within a cell, (2) the regions of the cGB-PDE which bind substrate, (3) the allosteric cGMP-binding site(s) of cGB-PDE, (4) the phosphorylation site(s) of cGB-PDE and (5) the regions of the cGB-PDE which are involved in dimerization of cGB-PDE subunits. Modulators of cGB-PDE activity may be therapeutically useful in treatment of a wide range of diseases and physiological conditions.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] Numerous other aspects and advantages of the print invention will be apparent upon consideration of the following detailed description thereof, reference being made to the drawing wherein:

[0022] FIG. 1A to 1C is an alignment of the conserved catalytic domains of several PDE isoenzymes wherein residues which are identical in all PDEs listed are indicated by

their one letter amino acid abbreviation in the "conserved" line, residues which are identical in the cGB-PDE and photoreceptor PDEs only are indicated by a star in the "conserved" line and gaps introduced for optimum alignment are indicated by periods;

[0023] FIG. 2A to **2**C is an alignment of the cGMPbinding domains of several PDE isoenzymes wherein residues which are identical in all PDEs listed are indicated by their one letter amino acid abbreviation in the "conserved" line and gaps introduced for optimum alignment are indicated by periods;

[0024] FIG. 3 is an alignment of internally homologous repeats from several PDE isoenzymes wherein residues identical in each repeat A and B from all cGMP-binding PDEs listed are indicated by their one letter amino acid abbreviation in the "conserved" line and stars in the "conserved" line represent positions in which all residues are chemically conserved;

[0025] FIG. 4 schematically depicts the domain organization of cGB-PDE,

[0026] FIG. 5 is a bar graph representing the results of experiments in which extracts of COS cells transfected with bovine cGB-PDE sequences or extracts of untransfected COS cells were assayed for phosphodiesterase activity using either 20 μ M cGMP or 20 μ M cAMP as the substrate;

[0027] FIG. 6 is a graph depicting results of assays of extracts from cells transfected with bovine cGB-PDE sequences for cGMP phosphodiesterase activity in the presence of a series of concentrations of phosphodiesterase inhibitors including dipyridamole (closed squares), zaprinast (closed circles), methoxymethylxanthine (closed triangles) and rolipram (open circles);

[0028] FIG. 7 is a bar graph presenting results of experiments in which cell extracts from COS cells transfected with bovine cGB-PDE sequences or control untransfected COS cells were assayed for [³H]cGMP-binding activity in the absence (–) or presence (+) of 0.2 mM IBMX; and

[0029] FIG. 8 is a graph of the results of assays in which exacts from cells transfected with bovine cGB-PDE sequences were assayed for [³H]cGMP-binding activity in the presence of excess unlabelled cAMP (open circles) or cGMP (closed circles) at the concentrations indicated.

DETAILED DESCRIPTION

[0030] The following examples illustrate the invention. Example 1 describes the isolation of a bovine cGB-PDE cDNA fragment by PCR and subsequent isolation of a full length cGB-PDE cDNA using the PCR fragment as a probe Example 2 presents an analysis of the relationship of the bovine cGB-PDE amino acid sequence to sequences reported for various other PDEs. Northern blot analysis of cGB-PDE mRNA in various bovine tissues is presented in Example 3. Expression of the bovine cGB-PDE cDNA in COS cells is described in Example 4. Example 5 presents results of assays of the cGB-PDE COS cell expression product for phosphodiesterase activity, cGMP-binding activity and Zn^{2+} hydrolase activity Example 6 describes the isolation of human cDNAs homologous to the bovine cGB-PDE cDNA. The expression of a human cGB-PDE cDNA in yeast cells is presented in Example 7 RNase protection

assays to detect cGB-PDE in human tissues are described in Example 8. Example 9 describes the bacterial expression of human cGB-PDE cDNA and the development of antibodies reactive with the bacterial cGB-PDE expression product. Example 10 describes cGB-PDE analogs and fragments. The generation of monoclonal antibodies that recognize cGB-PDE is described in Example 11. Example 12 relates to utilizing recombinant cGB-PDE products of the invention to develop agents that selectively modulate the biological activities of cGB-PDE.

EXAMPLE 1

[0031] The polymerase chain reaction (PCR) was utilized to isolate a cDNA fragment encoding a portion of cGB-PDE from bovine lung first strand cDNA. Fully degenerate sense and antisense PCR primers were designed based on the partial cGB-PDE amino acid sequence described in Thomas I, supra, and novel partial amino-acid sequence information.

[0032] A. Purification of cGB-PDE Protein

[0033] cGB-PDE was purified as described in Thomas I, supra, or by a modification of that method as described below.

[0034] Fresh bovine lungs (5-10 kg) were obtained from a slaughterhouse and immediately placed on ice. The tissue was ground and combined with cold PEM buffer (20 mM sodium phosphate, pH 6.8, containing 2 mM EDTA and 25 mM β -mercaptoethanol). After homogenization and centrifugation, the resulting supernatant was incubated with 4-7 liters of DEAE-cellulose (Whatman, UK) for 3-4 hours. The DEAE slurry was then filtered under vacuum and rinsed with multiple volumes of cold PEM. The resin was poured into a glass column and washed with three to four volumes of PEM. The protein was eluted with 100 mM NaCl in PEM and twelve 1-liter fractions were collected. Fractions were assayed for IBMX-stimulated cGMP binding and cGMP phosphodiesterase activities by standard procedures decribed in Thomas et al., supra. Appropriate fractions were pooled, diluted 2-fold with cold, deionized water and subjected to Blue Sepharose® CL-6B (Pharmacia LKB Biotechnology Inc., Piscataway, N.J.) chromatography. Zinc chelate affinity adsorbent chromatography was then performed using either an agarose or Sepharose-based gel matrix. The resulting protein pool from the zinc chelation step treated as described in the Thomas I, supra, or was subjected to a modified purification procedure.

[0035] As decribed in Thomas I, supra, the protein pool was applied in multiple loads to an HPLC Bio-Sil TSK-545 DEAE column (150×21.5 mm) (BioRad Laboratories, Hercules, Calif.) equilibrated in PEM at 4° C. After in equilibration period, a 120-ml wash of 50 mM NaCl in PEM was followed by a 120-ml linear gradient (50-200 mM NaCl in PEM) elution at a flow rate of 2 ml/minute. Appropriate fractions were pooled and concentrated in dialysis tubing against Sephadex G-200 (Boehringer Mannheim Biochemicals, UK) to a final volume of 1.5 ml. The concentrated cGB-PDE pool was applied to an HPLC gel filtration column (Bio-Sil TSK-250, 500×215 mm) equilibrated in 100 mM sodium phosphate, pH 6.8, 2 mM EDTA, 25 mM β -mercaptoethanol and eluted with a flow rate of 2 ml/minute at 4° C.

[0036] If the modified, less cumbersome procedure was performed, the protein pool was dialyzed against PEM for 2

hours and loaded onto a 10 ml preparative DEAE Sephacel column (Pharmacia) equilibrated in PEM buffer. The protein was eluted batchwise with 0.5M NaCl in PEM, resulting in an approximately 10-15 fold concentration of protein. The concentrated protein sample was loaded onto an 800 ml (2.5 cm×154 cm) Sephacryl S400 gel filtration column (Boehringer) equilibrated in 0.1M NaCl in PEM, and eluted at a flow rate: of 1.7 ml/minute.

[0037] The purity of the protein was assessed by Coomassie staining after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Approximately 0.5-3.0 mg of pure cGB-PDE were obtained per 10 kg bovine lung.

[0038] Rabbit polyclonal antibodies specific for the purified bovine cGB-PDE were generated by standard procedures.

[0039] B. Amino Acid Sequencing of cGB-PDE

[0040] cGB-PDE phosphorylated with [³²P]ATP and was then digested with protease yield ³²P-labelled phosphopeptides. Approximately 100 μ g of purified cGB-PDE was phosphorylated in a reaction mixture containing 9 mM MgCl₂, 9 μ M [³²P]ATP, 10 μ M cGMP, and 4.2 μ g purified bovine catalytic subunit of cAMP-dependent protein kinase (cAK) in a final volume of 900 μ l. Catalytic subunit of cAK was prepared according to the method of Flockhart et. al., pp. 209-215 in Marangos et al., *Brain Receptor Methodologies, Part A*, Academic Press, Orlando, Fla. (1984). The reaction was incubated for 30 minutes at 30° C., and stopped by addition of 60 μ l of 200 mM EDTA.

[0041] To obtain a first peptide sequence from cGB-PDE, 3.7 μ l of a 1 mg/ml solution of a α -chymotrypsin in KPE buffer (10 mM potassium phosphate, pH 6.8, with 2 mM EDTA) was added to 100 µg purified, phosphorylated cGB-PDE and the mixture was incubated for 30 minutes at 30° C. Proteolysis was stopped by addition of 50 μ l of 10% SDS and 25 μ l of β -mercaptoethanol. The sample was boiled until the volume was reduced to less than 400 μ l, and was loaded onto an 8% preparative SDS-polyacrylamide gel and subjected to electrophoresis at 50 mAmps. The separated digestion products were electroblotted onto Immobilon polyvinylidene difluoride (Millipore, Bedford, Mass.), according to the method of Matsudaira, J. Biol. Chem, 262: 10035-10038 (1987). Transferred protein was identified by Coomassie Blue staining, and a 50 kDa band was excised from the membrane for automated gas-phase amino acid sequencing. The sequence of the peptide obtained by the α -chymotryptic digestion procedure is set out below as SEQ ID NO: 1.

REXDANRINYMYAQYVKNTM SEQ ID NO: 1

[0042] A second sequence was obtained from a cGB-PDE peptide fragment generated by V8 proteolysis. Approximately 200 μ g of purified cGB-PDE was added to 10 mM MgCl₂, 10 μ M [³²P]ATP, 100 μ M cGMP, and 1 μ g/ml purified catalytic subunit of cAK in a final volume of 1.4 ml. The reaction was incubated for 30 minutes at 30° C., and was terminated by the addition of 160 μ l of 0.2M EDTA. Next, 9 μ l of 1 mg/ml *Staphylococcal aureus* V8 protease (International Chemical Nuclear Biomedicals, Costa Mesa, Calif.) diluted in KPE was added, followed by a 15 minute

incubation at 30° C. Proteolysis was stopped by addition of 88 μ l of 20% SDS and 45 μ l β -mercaptoethanol. The digestion products were separated by electrophoresis on a preparative 10% SDS-polyacrylamide gel run at 25 mAmps for 4.5 hours. Proteins were electroblotted and stained as described above. A 28 kDa protein band was excised from the membrane and subjected to automated gas-phase amino acid sequencing. The sequence obtained is set out below as SEQ ID NO: 2.

QSLAAAVVP SEQ ID NO: 2

[0043] C. PCR Amplification of Bovine cDNA

[0044] The partial amino acid sequences utilized to design primers (SEQ ID NO: 3, below, and amino acids 9-20 of SEQ ID NO: 1) and the sequences of the corresponding PCR primers (in IUPAC nomenclature) are set below wherein SEQ ID NO: 3 is the sequence reported in Thomas I, supra.

SEÇ	~	NO: D		D	F	G	F	0								
5'		GAY						~	3'					(SEQ	ID	NO:
3'	AAR	CTR	TTR	CTR	СТҮ	CCN	СТҮ	\mathbf{GT}	5'					(SEQ	ID	NO:
SEQ	Q ID	NO:	1, 1	Amino	o aci	lds 9	9-20									
	N	Y	М	Y	А	Q	Y	v	к	N	т	М				
5'	AAY	TAY	ATG	TAY	GCN	CAR	TAY	\mathbf{GT}	3'					(SEQ	ID	NO:
3'	TTR	ATR	TAC	ATR	CGN	GTY	ATR	CA	5'					(SEQ	ID	NO;
3'	TUTU	סידי ג	መእሮ	סידי א	CCN	CTTV	סידיג	CAN	TTY	T	TCN	መእሮ	5'	(SEQ	тъ	NO.

[0045] The sense and antisense primers, synthesized using an Applied Biosystems Model 380A DNA Synthesizer (Foster City, Calif.), were used in all possible combinations to amplify cGB-PDE-specific sequences from bovine lung first strand cDNA as described below.

[0046] After ethanol precipitation, pairs of oligonucleotides were combined (SEQ ID NO: 4 or 5 combined with SEQ ID NOs: 6, 7 or 8) at 400 nM each in a PCR reaction. The reaction was run using 50 ng first strand bovine lung cDNA (generated using AMV reverse transcriptase and random primers on oligo dT selected bovine lung mRNA), 200 μ M dNTPs, and 2 units of Taq polymerase. The initial denaturation step was carried out at 94° C. for 5 minutes, followed by 30 cycles of a 1 minute denaturation step at 94° C., a two minute annealing step at 50° C., and a 2 minute extension step at 72° C. PCR was performed using a Hybrid Thermal Reactor (ENK Scientific Products, Saratoga, Calif.) and products were treated by gel electrophoresis on a 1% low melting point agarose gel run in 40 mM Tris-acetate, 2 mM EDTA. A weak band of about 800-840 bp was wen with the primers set out in SEQ ID NOs: 4 and 7 and with primers set out in SEQ ID NOs: 4 and 8. None of the other primer pairs yielded visible bands. The PCR product generated by amplification with the primers set out in SEQ ID NOs: 4 and 7 was isolated using the Gene Clean® (Bio101, La Jolla, Calif.) DNA purification kit according to the manufacturer's protocol. The PCR product (20 ng) was ligated into 200 ng of linearized pBluescript KS(+) (Stratagene, La Jolla, Calif.), and the resulting plasmid construct was used to transform E. coli XL1 Blue cells (Stratagene Cloning Systems, La Jolla, Calif.). Putative transformation positives were screened by sequencing. The sequences obtained were not homologous to any known PDE sequence or to the known partial cGB-PDE sequences.

[0047] PCR was performed again on bovine lung first strand cDNA using the primers set out in SEQ ID NOs; 4 and 7. A clone containing a 0.8 Kb insert with a single large open reading frame was identified. The open reading frame method a polypeptide that included the amino acids KNTM (amino acids 17-20 of SEQ ID NO: 1 which were not utilized to design the primer sequence which is set out in SEQ ID NO: 7) and that possessed a high degree of homology to the deduced amino acid sequences of the cGs-, ROS- and COS-PDEs. The clone identified corresponds to nucleotides 489-1312 of SEQ ID NO: 9.

[0048] D. Construction and Hybridization Screening of a Bovine cDNA Library

[0049] In order to obtain a cDNA encoding a full-length cGB-PDE, a bovine lung cDNA library was screened using the ³²P-labelled PCR-generated cDNA insert as a probe.

4) 5)

6) 7) 8)

[0050] Polyadenylated RNA was prepared from bovine lung as described Sonnenburg et al., J. Biol. Chem., 266: 17655-17661 (1991). First stand cDNA was synthesized using AMV reverse transcriptase (Life Sciences, St. Petersburg, Fla.) with random hexanucleotides primers as described in Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York (1987). Second strand cDNA was synthesized using E. coli DNA polymerase in the presence of E. coli DNA ligase and E. coli RNAse H. Selection of cDNAs larger than 500 bp was performed by Sepharose® CL-4B (Millipore) chromatography. EcoRI adaptors (Promega, Madison, Wis.) were ligated to the cDNA using T4 DNA ligase. Following heat inactivation of the ligase, the cDNA was phosphorylated using T4 polynucleotide kinase. Unligated adaptors were removed by Sepharose® CL-4B chromatography (Pharmacia, Piscataway, N.J.). The cDNA was ligated into EcoRI-digested, dephosphorylated lambda Zap®II arms (Stratagene) and packaged with Gigapack® Gold (Stratagene) extracts according to the manufacturer's protocol. The titer of the unamplified library was 9.9×10^5 with 18% nonrecombinants. The library was amplified by plating 50,000 plaque forming units (pfu) on to twenty 150 mm plates, resulting in a final titer of 5.95×10^6 pfu/ml with 21% nonrecombinants.

[0051] The library was plated on twenty-four 150 mm plates at 50,000 pfu/plate, and screened with the ³²P-labelled cDNA clone. The probe was prepared using the method of Feinberg et al., *Anal Biochem*, 137: 266-267 (1984), and the ³²P-labelled DNA was purified using Elutip-D® columns (Schleicher and Schuell Inc., Keene, N.H.) using the manu-

facturer's protocol. Plaque-lifts were performed using 15 cm nitrocellulose filters. Following denaturation and neutralization, DNA was fixed onto the filter by baking at 80° C. for 2 hours. Hybridization was carried out at 42° C. overnight in a solution containing 50% formamide, 5×SSC (0.75M NaCl, 0.75M sodium citrate, pH 7), 25 mM sodium phosphate (pH 7.0), 2× Denhardt's solution, 10% dextran sulfate, 90 μ g/ml yeast tRNA, and approximately 10⁶ cpm/ml ³²P-labelled probe (5×10**[text missing or illegible when filed]**cpm/ μ g). The filters were washed twice in 0.1×SSC, 0.1% SDS at 45° C. The fillers were then exposed to X-ray film at –70° C. for several days.

[0052] Plaques that hybridized with the labelled probe were purified by several rounds of replating and rescreening. Insert cDNAs were subcloned into the pBluescript SK(–) vector (Stratagene) by the in vivo excision method described by the manufacturer's protocol. Southern blots were performed in order to verify that the rescued cDNA hybridized to the PCR probe. Putative cGB-PDE cDNAs were sequenced using Sequenase® Version 2.0 (United States Biochemical Corporation, Cleveland, Ohio) or TaqTrack® kits (Promega).

[0053] distinct cDNA clones designated cGB-2, cGB-8 and cGB-10 were isolated. The DNA and deduced amino acid sequences of clone cGB-8 are set out in SEQ ID NOS: 9 and 10 The DNA sequence downstream of nucleotide 2686 may represent a cloning artifact. The DNA sequence of cGB-10 is identical to the sequence of cGB-8 with the exception of one nucleotide. The DNA sequence of clone cGB-2 diverges from that of clone cGB-8 5' to nucleotide 219 of clone cgb-8 (see SEQ ID NO: 9) and could encode a protein with a different amino terminus.

[0054] The cGB-8 cDNA clone is 4474 bp in length and contains a large open reading frame of 2625 bp. The triplet ATG at position 99-101 in the nucleotide sequence is predicted to be the translation initiation site of the cGB-PDE gene because it is preceded by an in-frame stop codon and the surrounding bases are compatible with the Kozak consensus initiation site for eucaryotic mRNAs. The stop codon TAG is located at positions 2724-2726, and is followed by 1748 bp of 3' untranslated sequence. The sequence of cGB-8 does not contain a transcription termination consensus sequence, therefore the clone may not represent the entire 3' untranslated region of the corresponding rRNA.

[0055] The open reading frame of the cGB-8 cDNA encodes an 875 ammo acid polypeptide with a calculated molecular mass of 99.5 kD. This calculated molecular mass is only slightly larger than the reported molecular man of purified cGB-PDE, estimated by SDS-PAGE analysis to be approximately 93 kDa. The deduced amino acid sequence of cGB-8 corresponded exactly to all peptide sequences obtained from purified bovine lung cGB-PDE providing strong evidence that cGB-8 encodes cGB-PDE.

EXAMPLE 2

[0056] A search of the SWISS-PROT and GEnEmbl data banks (Release of February, 1992) conducted using the FASTA program supplied with the Genetics Computer Group (GCG) Software Package (Madison, Wis.) revealed that only DNA and amino acid sequences reported for other PDEs displayed significant similarity to the DNA and deduced amino acid of clone cGB-8.

[0057] Pairwise comparisons of the cGB-PDE deduced amino acid sequence with the sequences of eight other PDEs were conducted using the ALIGN [Dayhoff et al., Methods Enzymol., 92; 524-545 (1983)] and BESTFIT [Wilbur et al., Proc. Natl. Acad. Sci. USA, 80: 726-730 (1983)] programs. Like all mammalian phosphodiesterases sequenced to date, cGB-PDE contains a conserved catalytic domain sequence of approximately 250 amino acids in the carboxyl-terminal half of the protein that is thought to be essential for catalytic activity. This segment comprises amino acids 578-812 of SEQ ID NO: 9 and exhibits sequence conservation with the corresponding regions of other PDEs. Table 1 below sets out the specific identity values obtained in pairwise comparisons of other PDEs with amino acids 578-812 of cGB-PDE, wherein "ratdunce" is the rat cAMP-specific PDE; "61 kCaM" is the bovine 61 kDa calcium/calmodulin-dependent PDE; "63 kCaM" is the bovine 63 kDa calcium/calmodulindependent PDE, "drosdunce" is the drosophila cAMP-specific dunce PDE; "ROS- α " is the bovine ROS-PDE α -subunit; "ROS- β " is the bovine ROS-PDE β -subunit; "COS- α " is the bovine COS-PDE α subunit; and "cGs" is the bovine cGs-PDE (612-844).

TABLE 1

Phosphodiesterase	Catalytic Domain Residues	% Identity
Ratdunce	77–316	31
61 kCaM	193-422	29
63 kcam	195-424	29
drosdunce	1-239	28
ROS-α	535-778	45
ROS-β	533-776	46
COS-a'	533-776	48
cGs	612-844	40

[0058] Multiple sequence alignments were performed using the Progressive Alignment Algorithm [Feng et al., Methods Enzymol., 183: 375-387 (1990)] implemented in the PILEUP program (GCG Software). FIG. 1A to 1C shows a multiple sequence alignment of the proposed catalytic domain of cGB-PDE with the all the corresponding regions of the PDEs of Table 1. Twenty-eight residues (see residues indicated by one lette amino acid abbreviations in the "conserved" line on FIG. 1A to 1C) are invariant among the isoenzymes including several conserved histidine residues predicted to play a functional role in catalysis. See Charbonneau et al., Proc. Natl. Acad. Sci. USA, supra. The catalytic domain of cGB-PDE more closely resembles the catalytic domains of the ROS-PDEs and COS-PDEs than the corresponding regions of other PDE isoenzymes. That are several conserved regions among the photoreceptor PDEs and cGB-PDE that are not shared by other PDEs. Amino acid positions in these regions that are invariant in the photoreceptor PDE and cGB-PDE sequences am indicated by stars in the "conserved" line of FIG. 1A to 1C. Regions of homology among cGB-PDE and the ROS- and COS-PDEs may serve important roles in conferring specificity for cGMP hydrolysis relative to cAMP hydrolysis or for sensitivity to specific pharmacological agents.

[0059] Sequence similarity between cGB-PDE, cGs-PDE and the photoreceptor PDEs, is not limited to the conserved

catalytic domain but also includes the noncatalytic cGMP binding domain in the amino-terminal half of the protein. Optimization of the alignment between cGB-PDE, cGs-PDE and the photoreceptor PDEs indicates that an amino-terminal conserved segment may exist including amino acids 142-526 of SEQ ID NO: 9. Pairwise analysis of the sequence of the proposed cGMP-binding domain of cGB-PDE with the corresponding regions of the photoreceptor PDEs and cGs-PDE revealed 26-28% sequence identity. Multiple sequence alignment of the proposed cGMP-binding domains with the cGMP-binding PDEs is shown in FIG. 2A to 2C wherein abbreviations am the same as indicated for Table 1. Thirty-eight positions in this non-catalytic domain appear to be invariant among all cGMP-binding PDEs (see positions indicated by one letter amino acid abbreviations in the "conserved" line of FIG. 2A to 2C).

[0060] The cGMP-binding domain of the cGMP-binding PDEs contains internally homologous repeats which may form two similar but distinct inter- or intra-subunit cGMP-binding sites. **FIG. 3** shows a multiple sequence alignment of the repeats a (corresponding to amino aids 228-311 of cGB-PDE) and b (corresponding to amino acids 410-500 of cGB-PDE) of the cGMP-binding PDEs. Seven residues are invariant in each A and B regions (see residue indicated by one letter amino aid abbreviations in the "conserved" line of **FIG. 3**. Residue that are chemically conserved in the A and B regions are indicated by stars in the "conserved" line of **FIG. 3**. cGMP analog studies of cGB-PDE support the existence of a hydrogen bond between the cyclic nucleotide binding site on cGB-PDE and the 2' OH of cGMP.

[0061] Three regions of cGB-PDE have no significant sequence similarly to other PDE isoenzymes. These regions include the sequence flanking the carboxyl-terminal end of the catalytic domain (amino acids 812-875), the sequence separating the cGMP-binding and catalytic domains (amino acids 527-577) and the amino-terminal sequence spanning amino acids 1-141. The site (the serine at position 92 of SEQ ID NO: 10) of phosphorylation of cGB-PDE by cGK is located in this amino-terminal region of sequence. Binding of cGMP to the allosteric site on cGB-PDE is required for its phosphorylation.

[0062] A proposed domain structure of cGB-PDE based on the foregoing comparisons with other PDE isoenzymes is presented in **FIG. 4**. This domain structure is supported by the biochemical studies of cGB-PDE purified from bovine lung.

EXAMPLE 3

[0063] The presence of cGB-PDE mRNA in various bovine tissues was examined by Northern blot hybridization.

[0064] Polyadenylated RNA was purified from total RNA preparations using the Poly(A) Quick® mRNA purification kit (Stratagene) according to the manufacturer's protocol, RNA sample (5 μ g) were loaded onto a 1.2% agarose, 67% formaldehyde gel. Electrophoresis and RNA transfer were performed as previously described in Sonnenburg et al., supra. Prehybridization of the RNA blot was carried out for 4 hours at 45° C. in a solution containing 50% formamide, 5×SSC, 25 mM sodium phosphate, pH 7, 2× Denhardt's solution, 10% dextran sulfate, and 0.1 mg/ml yeast tRNA. A random hexanucleotide-primer-labelled probe (5×10**[text missing or illegible when filed]**, cpm/ μ g) was prepared

as described in Feinberg et al., supra, using the 4.7 kb cGB-8 cDNA clone of Example 2 exercised by digestion with AccI and SacII. The probe was heat denatured and injected into a blotting bag (6×10^5 cpm/ml) following prehybridization. The Northern blot was hybridized overnight at 45° C, followed by one 15 minute wash with 2×SSC, 0.1% SDS at room temperature, and three 20 minute washes with 0.1×SSC, 0.1% SDS at 45° C. The blot was exposed to X-ray film for 24 hours at -70° C. The size of the RNA that hybridized with the cGB-PDE probe was estimated using a 0.24-9.5 kb RNA ladder that was stained with ethidium bromide and visualized with UV light.

[0065] The ³²P-labeled cGB-PDE cDNA hybridized to a single 6.8 kb bovine lung RNA species. A mRNA band of the identical size was also detected in polyadenylated RNA isolated from bovine trachea, aorta, kidney and spleen.

EXAMPLE 4

[0066] The cGB-PDE cDNA in clone cGB-8 of Example 2 was expressed in COS-7 cells (ATCC CRL1651).

[0067] A portion of the cGB-8 cDNA was isolated following digestion with the restriction enzyme XbaI. XbaI cut at a position in the pBluescript polylinker sequence located 30 bp upstream of the 5' end of the cGB-8 insert and at position 3359 within the cGB-8 insert. The resulting 3399 bp fragment, which contains the entire coding region of cGB-8, was then ligand into the unique XbaI cloning site of the expression vector pCDM8 (Invitrogen, San Diego, Calif.). The pCDM8 plasmid is a 4.5 kb eucaryotic expression vector containing a cytomegalovirus promoter and enhancer, an SV40-derived origin of replication, a polyadenylation signal, a procaryotic origin of replication (derived from pBR322) and a procaryotic genetic marker (supF). E. coli MC1061/P3 cells (Invitrogen) were transformed with the resulting ligation products, and transformation positive colonies were screened for proper orientation of the cGB-8 insert using PCR and restriction enzyme analysis. The resulting expression construct containing the cGB-8 insert in the proper orientation is referred to as pCDM8-cGB-PDE.

[0068] The pCDM8-cGB-PDE DNA was purified from large-scale plasmid preparations using Qiagen pack-500 columns (Chatsworth, Calif.) according to the manufacturer's protocol. COS-7 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum, 50 μ g/ml penicillin and 50 μ g/ml streptomycin at 37° C. in a humidified 5% CO2 atmosphere. Approximately 24 hours prior to transfection, confluent 100 mm dishes of cells were replated at one-fourth or one-fifth the original density. In a typical transfection experiment, cells were washed with buffer containing 137 mM NaCl, 2.7 mM KCl, 1.1 mM potassium phosphate, and 8.1 mM sodium phosphate, pH 7.2 (PBS). Then 4-5 ml of DMEM containing 10% NuSerum (Collaborative Biomedical Products, Bedford, Mass.) was added to each plate. Transfection with 10 µg pCDM8-cGB-PDE DNA or pCDM8 vector DNA mixed with 400 µg DEAE-dextran (Pharmacia) in 60 µl TBS [Tris-buffered saline: 25 mM Tris-HCl (pH 74), 137 mM NaCl, 5 mM KCl, 0.6 mM Na₂HPO₄, 0.7 mM CaCl₂, and 0.5 mM MgCl₂] was carried out by dropwise addition of the mixture to each plate. The cells were incubated at 37° C., 5% CO₂ for 4 hours, and then treated with 10% dimethyl sulfoxide in PBS for 1 minute. After 2 minutes, the dimethyl sulfoxide was removed, the cells were washed with PBS and

incubated in complete medium. After 48 hours, cells were suspended in 0.5-1 ml of cold homogenization buffer [40 mM Tris-HCl (pH 7.5), 15 mM benzamidine, 15 mM β -mercaptoethanol, 0.7 μ g/ml pepstatin A, 0.5 μ g/ml leupeptin, and 5 μ M EDTA]per plate of cells, and disrupted using a Dounce homogenizer. The resulting whole extracts were assayed for phosphodiesterase activity, cGMP-binding activity, and total protein concentration as described below in Example 5.

EXAMPLE 5

[0069] Phosphodiesterase activity in extracts of the transfected COS cells of Example 4 or in extracts of mock transfected COS cells was measured using a modification of the assay procedure described for the cGs-PDE in Martins et al., J. Biol. Chem. 257: 1973-1979 (1982). Cells were ha std and extracts prepared 48 hours after transfection. Incubation mixtures contained 40 mM MOPS buffer (pH 7), 0.8 mM EDTA, 15 mM magnesium acetate, 2 mg/ml bovine serum albumin, 20 µM [³H]cGMP or [³H]cAMP (100,000-200,000 cpm/assay) and COS-7 cell extract in a total volume of 250 μ l. The reaction mixture was incubated for 10 minutes at 30° C., and then stopped by boiling. Next, 10 μ l of 10 mg/ml Crotalus atrax venom (Sigma) was added followed by a 10 minute incubation at 30° C. Nucleoside product were separated from unreacted nucleotides as described in Martins et al., supra. In all studies, less than 15% of the total [³H]cyclic nucleoside was hydrolyzed during the reaction.

[0070] The results of the assays are presented in **FIG. 5** wherein the results shown are averages of three separate transfections. Transfection of COS-7 cells with pCDM8-PDE DNA resulted in the expression of approximately 15-fold higher levels of cGMP phosphodiesterase activity than in mock-transfected cells or in cells transfected with pCDM8 vector alone. No increase in CAMP phosphodiesterase activity over mock or vector-only transfected cells was detected in extracts from cells transfected with pCDM8-cGB-PDE DNA. These results confirm that the cGB-PDE bovine cDNA encodes a cGMP-specific phosphodiesterase.

[0071] Extracts from the transfected COS cells of Example 4 we also assayed for cGMP PDE activity in the presence of a series of concentrations of the PDE inhibitors zaprinast, dipyridamole (Sigma), isobutyl-1-methyl-8-methoxymethylxanthine (MeOxMeMIX) and rolipram.

[0072] The results of the assays are presented in FIG. 6 wherein PDE activity in the absence of inhibitor is taken as 100% and each data point represents the average of two separate determinations. The relative potencies of PDE inhibitors for inhibition of cGMP hydrolysis by the expressed cGB-BPDE cDNA protein product were identical to those relative potencies reported for native cGB-PDE purified from bovine lung (Thomas I, supra). IC₅₀ values calculated from the curves in FIG. 6 are as follows: zaprinast (closed circles), 2 μ M; dipyridamole (closed squares), 3.5 μ M; MeOxMeMIX (closed triangles), 30 μ M; and rolipram (open circles), >300 μ M. The IC₅₀ value of zaprinast, a relatively specific inhibitor of cGMP-specific phosphodiesterases, was at least two orders of magnitude lower than that reported for inhibition of phosphodiesterase activity of the cGs-PDE or of the cGMP-inhibited phosphodiesterase (cGi-PDEs) (Reeves et al., pp. 300-316 in Beavo et al., supra). Dipyrimadole, an effective inhibitor of selected cAMP- and cGMP-specific phosphodiesterases, was also a potent inhibitor of the expressed cGB-PDE. The relatively selective inhibitor of calcium/calmodulin-stimulated phosphodiesterase (CaM-PDEs), MeOxMeMIX, was approximately 10-fold less potent than zaprinast and dipyridamole, in agreement with results using cGB-PDE activity purified from bovine lung. Rolipram, a potent inhibitor of low K_m cAMP phosphodiesterases, was a poor inhibitor of expressed cGB-PDE cDNA protein product. These results show that the cGB-PDE cDNA encodes a phosphodiesterase that posses catalytic activity characteristic of cGB-PDE isolated from bovine tissue, thus verifying the identity of the cGB-8 cDNA clone as a cGB-PDE.

[0073] It is of interest to note that although the relative potencies of the PDE inhibitors for inhibition of cGMP hydrolysis were identical for the recombinant and bovine isolate cGB-PDE, the absolute IC_{50} values for all inhibitors tested were 2-7 fold higher for the recombinant cGB-PDE. This difference could not be attributed to the effects of any factors present in COS-7 cell extracts on cGMP hydrolytic activity, since cGB-PDE isolated form bovine tissue exhibited identical kinetics of inhibition as a pure enzyme, or when added back to extracts of mock-transfected COS-7 cells. This apparent difference in pharmacological sensitivity may be due to a subtle difference in the structure of the recombinant cGB-PDE cDNA protein product and bovine lung cGB-PDE, such as a difference in post-translational modification at or near the catalytic-site. Alternatively, this difference may be due to an alteration of the catalytic activity of bovine lung cGB-PDE over several purification steps.

[0074] Cell extracts were assayed for [³H]cGMP-binding activity in the absence or presence of 0.2 mM 3-isobutyl-1-methylaxanthine (IBMX) (Sigma), a competitive inhibitor of cGMP hydrolysis. The cGMP binding assay, modified from the assay described in Thomas I, supra, was conducted in a tow volume of 80 μ l. Sixty μ l of cell extract was combined with 20 μ l of a binding cocktail such that the final concentration of components of the mixture were 1 μ M $[^{3}H]$ cGMP, 5 μ M cAMP, and 10 μ M 8-bromo-cGMP. The cAMP and 8-bromo-cGMP were added to block [³H]cGMP binding to cAK and cGK, respectively. Assays were carried out in the absence and presence of 0.2 mM IBMX. The reaction was initiated by the addition of the cell extract, and was incubated for 60 minutes at 0° C. Filtration of the reaction mixtures was carried out as described in Thomas I, supra. Blanks were determined by parallel incubations with homogenization buffer replacing cell extracts, or with a 100-fold excess of unlabelled cGMP. Similar results were obtained with both methods. Total protein concentration of the cell extracts was determined by the method of Bradford, Anal. Biochem., 72:248-254 (1976) using bovine serum albumin as the standard.

[0075] Results of the assay are set out in **FIG. 7**. When measured at 1 μ M [³H]cGMP in the presence of 0.2 ml IBMX, extracts from COS-7 cells transfected with pCDM8-cGB-PDE exhibited 8-fold higher cGMP-binding activity than extracts from mock-transfected cells. No IBMX stimulation of background cGMP binding was observed suggesting that little or no endogenous cGB-PDE was present in the COS-7 cell extracts. In extracts of pCDM8cGB-PDE transfected cells cGMP-specific activity was stimulated approximately 1.8-fold by the addition of 0.2 mm IBMX. The ability of IBMX to stimulate cGMP-binding 2-5 fold is a distinctive property of the cGMP-binding phosphodiesterases.

[0076] Cell extracts were assayed as described above for $[^{3}H]_{cGMP}$ -binding activity (wherein concentration of $[^{3}H]$

cGMP was 2.5 μ M) in the presence of excess unlabelled cAMP or cGMP. Results are presented in **FIG. 8** wherein cGMP binding in the absence of unlabelled computer was taken 100% and each data point represents the average of three separate determinations. The binding activity of the problem product encoded by the cGB-PDE cDNA was specific for cGMP relative to cAMP. Less than 10-fold higher concentrations of unlabelled cGMP were required to inhibit [³H]cGMP binding activity by 50% whereas approximately 100-fold higher concentrations of cAMP were required for the same degree of inhibition.

[0077] The results presented in this example show that the cGB-PDE cDNA encodes a phosphodiesterase which possesses biochemical activities characteristic of native cGB-PDE.

[0078] The catalytic domains of mammalian PDEs and a Drosophila PDE contain two tandem conserved sequences (HX₃HX_{24⁻26}E) that are typical Zn²⁺-binding motifs in Zn²⁺hydrolases such as thermolysin [Vallee and Auld, Biochem., 29: 5647-5659 (1990)]. cGB-PDE binds Zn²⁺in the presence of large excesses of Me²⁺, Mn²⁺, Fe²⁺, Fe²⁺, Ca²⁺ or Cd²⁺. In the absence of added, metal, cGB-PDE has a PDE activity that is approximately 20% of the maximum activity that occurs in the presence of 40 mM Mg²⁺, and this basal activity is inhibited by 1,10-phenanthroline or EDTA. This suggests that a trace metal(s) accounts for the basal PDE activity despite exhaustive treatments to remove metal(s), PDE activity is stimulated by addition of Zn^{2+} (0.02-1 μ M) or Co²⁺(1-20 μ M), but not by Fe²⁺, Fe²⁺, Ca²⁺, Cd²⁺, or Cu²⁺. Zn²⁺increases the basal PDE activity up to 70% of the maximum stimulation produced by 40 mM Me²⁺. The stimulatory effect of Zn²⁺in these assays may be compromised by an inhibitory effect that is caused by Zn²⁺concentrations >1 μ M. The Zn²⁺-supported PDE activity and Zn²⁺ binding by cGB-PDE occur at similar concentrations of Zn²⁺. cGB-PDE thus appears to be a Zn²⁺hydrolase and Zn^{2+} appears to play a critical role in the activity of the enzyme. See, Colbran et al., The FASEB J., 8: Abstract 2148 (Mar. 15, 1994).

EXAMPLES 6

[0079] Several human cDNA clones, homologous to the bovine cDNA clone encoding cGB-PDE, were isolated by hybridization under stringent conditions using a nucleic acid probe corresponding to a portion of the bovine cGB-8 clone (nucleotides 489-1312 of SEQ ID NO: 9).

[0080] Isolation of cDNA Fragments Encoding Human cGB-PDE

[0081] Three human cDNA libraries (two glioblastoma and one lung) in the vector lambda Zap were probed with the bovine cGB-PDE sequence The PCR-generated clone corresponding to nucleotide 484-1312 of SEQ ID NO: 9 which is described in Example 1 was digested with EcoRI and SalI and the resulting 0.8 kb cDNA insert was isolated and purified by agarose gel electrophoresis. The fragment was labelled with radioactive nucleotides using a random primed DNA labelling kit (Boehringer).

[0082] The cDNA libraries were plated on 150 mm petri plates at a density of approximately 50,000 plaques per plate. Duplicate nitrocellulose filter replicas were prepared. The prehybridization buffer was 3×SSC, 0.1% sarkosyl, 10×

Denhardt's, 20 mM sodium phosphate (pH 6.8) and 50 μ g/ml salmon tests DNA. Prehybridization was carried out at 65° C. for a minimum of 30 minutes. Hybridization was carried out at 65° C. overnight in buffer of the same composition with the addition of 1×10^5 cpm/ml of probe. The filter were washed at 65° C. in $2 \times SSC$, 0.1% SDS. Hybridizing plaques were detected by autoradiography. The number of cDNAs that hybridized to the bovine probe and the number of cDNAs screened are indicated in Table 2 below.

TABLE 2

cDNA Library	Туре	Positive Plaques	Plaques Screened
Human SW 1088 glioblastoma	dT-primed	1	1.5×10^{4}
Human lung	dT-primed	2	1.5×10^{6}
Human SW 1088 glioblastoma	dT-primed	4	1.5×10^{6}

[0083] Plasmids designated cgbS2.1, cgbS3.1, cgbL23.1, cgbL27.1 and cgbS27.1 were excised in vivo from the lambda Zap clones ard sequenced.

[0084] Clone cgbS3.1 contains 2060 bp of a PDE open reading frame followed by a putative intron. Analysis of clone cgbS2.1 reveals that it corresponds to clone cgbS3.1 positions 664 to 2060 and extends the PDE open reading frame an additional 585 bp before reading into a putative intron. The sequence of the putative 5' untranslated region and the protein encoding portions of the cgbS2.1 and cgbS3.1 clones are set out in SEQ ID NOs: 11 and 12, respectively. Combining the two cDNAs yields a sequence containing approximately 2.7 kb of an open reading encoding a PDE. The three other cDNAs did not extend any further 5' or 3' than cDNA cgbS3.1 or cDNA cgbS2.1.

[0085] To isolate additional cDNAs, probes specific for the 5' end of clone cgbS3.1 and the 3' end of clone cgbS2.1 were prepared and used to screen a SW1088 glioblastoma cDNA library and a human aorta cDNA library. A 5' probe was derived from clone cgbS3.1 by PCR using the primers cgbS3.1S311 and cgbL23.1A1286 whose sequences am set out in SEQ ID NOs: 8 and 9, respectively, and below,

Primer cgb53.15311	(SEQ	ID 1	∛O: 1	3)
5' GCCACCAGAGAAATGGTC 3'				
Primer cgbL23.IA1286	(SEQ	ID)	NO:	14)
5' ACAATGGGTCTAAGAGGC 3'				

[0086] The PCR reaction was carried out in a 50 ul reaction volume containing 50 pg cgbS3.1 cDNA, 0.2 mM dNTP, 10 ug/ml each primer, 50 mM KCl, 10 mM Tris-HCl pH 8.2, 1.5 mM MgCl₂ and Taq polymerase. After an initial four minute denaturation at 94° C., 30 cycles of one minute at 94° C., two minutes at 50° C. and four minutes at 72° C. were carried out. An approximately 0.2 kb fragment was generated by the PCR reaction which corresponded to nucleotides 300-496 of clone cgbS3.1.

[0087] A 3' probe was derived from cDNA cgbS2.1 by PCR using the oligos cgbL3.1 S1190 and cgbS2.1A231 whose sequences are set out below.

Primer cgbL23.151190 5' TCAGTGCATGTTTGCTGC 3'	(SEQ 113 NO: 15)
Primer cgbS2.1A231 5' TACAAACATGTTCATCAG 3'	(SEQ ID NO: 16)

[0088] The PCR reaction as carried out similarly to that described above for generating the 5' probe, and yielded a fragment of approximately 0.8 kb corresponding to nucleotides 1358-2139 of cDNA cgbS2.1. The 3' 157 nucleotides of the PCR fragment (not shown in SEQ ID NO: 12) are within the presumptive intron.

[0089] The two PCR fragments were purified and isolated by agarose get electrophoresis, and were labelled with radioactive nucleotides by random priming. A randomprinted SW1088 glioblastoma cDNA library $(1.5\times10^6$ plaques) was screened with the labelled fragments as described above, and 19 hybridizing plaques were isolated. An additional 50 hybridizing plaques were isolated from a human aorta cDNA library (dT and random primed, Clontech, Palo Alto, Calif.).

[0090] Plasmids were excised in vivo from some of the positive lambda Zap clones and sequenced. A clone designated cgbS53.2, the sequence of which is set out in SEQ ID NO: 17, contains an approximately 1.1 kb insert whose sequence overlaps the last 61 bp of cgbS3.1 and extends the open reading frame an additional 135 bp beyond that found in cgbS2.1. The clone contains a termination codon and approximately 0.3 kB of putative 3' untranslated sequence.

[0091] Generation of a Composite cDNA Encoding Human cGB-PDE

[0092] Clones cgbS3.1, cgbS2.1 and cgbS53.2 were used as described in the following paragraphs to build a composite cDNA that contained a complete human cGB-PDE opening reading frame. The composite cDNA is designated cgbmet156-2 and was inserted in the yeast ADH1 expression vector pBNY6N.

[0093] First, a plasmid designated cgb stop-2 was generated that contained the 3' end of the cGB-PDE open reading fame. A portion of the insert of the plasmid was generated by PCR using clone cgbS53.2 as a template. The PCR primers utilized were cgbS2.1S1700 and cgbstop-2.

Primer cgbS2.IS1700

(SEQ ID NO: 18) 5' TTTGGAAGATCCTCATCA 3'

Primer cgbstop-2

(SEQ ID NO: 19) 5' ATGTCTCGAGTCAGTTCCGCTTGGCCCTG 3'

[0094] The PCR reaction was carried out in 50 ul containing 50 pg template DNA, 0.2 mM dNTPs, 20 mM Tris-HCl pH 8.2, 10 mM KCl, 6 mM $(NH_4)_2SO_4$, 1.5 mM MgCl₂, 0.1% Triton-X-100, 500 ng each primer and 0.5 units of Pfu polymerase (Stratagene). The reaction was heated to 94° C. for 4 minutes and then 30 cycles of 1 minute at 94° C., 2 minutes at 50° C. and four minutes at 72° C. were performed. The polymerase was added during the first cycle at 50° C. The resulting PCR product was phenol/ chloroform extracted, chloroform extracted, ethanol precipitated and cut with the restriction enzymes BclI and XhoI. The restriction fragment was purified on in agarose gel and eluted.

[0095] This fragment was ligated to the cDNA cgbS2.1 that had been grown in darn *E. coli*, cut with the restriction enzymes BcII and XhoI, and gel-purified using the Promega magic PCR kit. The resulting plasmid was sequenced to verify that cgbstop-2 contains the 3' portion of the cGB-PDE open reading frame.

[0096] Second, a plasmid carrying the 5' end of the human cGB-PDE open reading frame was generated. Its insert was generated by PCR using clone cgbS3.1 as a template. PCR was performed as described above using primers cgbmet156 and cgbS2.1A2150.

Primer cgbmet156 (SEQ ID NO: 20) 5' TACAGAATICTGACCATGGAGCGGGCCGGC 3' Primer cgbS2.1A2150 (SEQ ID NO: 21) 5' CATTCTAAGCGGATACAG 3'

[0097] The resulting PCR fragment was phenol/chloroform extracted, chloroform extracted, ethanol precipitated and purified on a Sepharose CL-6B column. The fragment was cut with the restriction enzymes EcoRV and EoRI, run on an agarose gel and purified by spinning through glass wool. Following phenol/chloroform extraction, chloroform extraction and ethanol precipitation, the fragment was ligated into EcoRI/EcoRV digested BluescriptII SK(+) to generate plasmid cgbmet156. The DNA sequence of the insert and junctions was determined. The insert contains a new EcoRI site and an additional 5 nucleotides that together replace the original 155 nucleotides 5' of the initiation codon. The insert extends to an EcoRV site beginning 531 nucleotides from the initiation codon.

[0098] The 5' and 3' portions of the cGB-PDE open reading frame were then assembled in vector pBNY6a. The vector pBNY6a was cut with EcoRI and XhoI, isolated from a gel and combined with the agarose gel purified EcoRV/EcoRV fragment from cgbmct156 and the agarose gel purified EcoRV/XhoI fragment from cgbstop-2. The junctions of the insert were sequenced and the construct was named hcbgmet15-2 6a.

[0099] The cGB-PDE insert from hcbgmet115-2 6a was then moved into the expression vector pBNY6n. Expression of DNA inserted in this vector is directed from the yeast ADH1 promoter and terminator. The vector contains the yeast 2 micron origin of replication, the pUC19 origin of replication and an ampicillin resistance gene. Vector pBNY6n was cut with EcoRI and XhoI and gel-purified. The EcoRI/XhoI insert from hcgbmet156-2 6a was gel purified using Promega magic PCR construct, and ligated into the cut pBNY6n. All new junctions in the resulting construct, hcgbmet156-2 6n, were sequenced. The DNA and deduced amino acid sequences of the insert of hcgbmet156-2 6n which encodes a composite human cGB-PDE is set out in SEQ ID NOs: 22 and 23. The insert extends from the first methionine in clone cgbS3.1 (nucleotide 156) to the stop codon (nucleotide 2781) in the composite cDNA. Because the methionine is the most 5' methionine in clone cgbS3.1

and because there are no stop codons in frame with the methionine and upstream of it, the insert in pBNY6n may represent a truncated form of the open reading frame.

[0100] Variant cDNAs

[0101] Four human cGB-PDE cDNAs that are different from the hcgbmet156-2 6n composite cDNA have been isolated. One cDNA, cgbL23.1, is missing an internal region of hcgbmet156-2 6n (nucleotides 997-1000 to 1444-1447). The exact end points of the deletion cannot be determined from the cDNA sequence at the positions. Three of the four variant cDNAs have 5' end sequences that diverge from the hcgbmet156-2 6n sequence upstream of nucleotide 151 (cDNAs cgbA7f, cgbA5C, cgbI2). These cDNAs presumably represent alteratively spliced or unspliced mRNAs.

EXAMPLE 7

[0102] The composite human cGB-PDE cDNA construct, hcgbmet56-2 6n, was transformed into the yeast strain YKS45 (ATCC 74225) (MAT α his3 trp1 ura3 leu3 pde-::HIS3 pde2::TRP1) in which two endogenous PDE genes are deleted. Transformants complementing the leu deficiency of the YKS45 strain were selected and assayed for cGB-PDE activity. Extracts from cells bearing the plasmid hcgbmet156-2 6n were determined to display cyclic GMP-specific phosphodiesterase activity by the assay described below.

[0103] One liter of YKS45 cells transformed with the plasmid cgbmet156-2 6n and grown in SC-leu medium to a density of $1-2 \times 10^7$ cells/ml was harvested by centrifugation, washed once with deionized water, frozen in dry ice/ethanol and stored at -70° C. Cell pellets (1-1.5 ml) were thawed on ice in the presence of an equal volume of 25 mM Tris-Cl (pH 8.0)/5 mM EDTA/5 mM EGTA/1 mM o-phenanthroline/0.5 mM AEBSF (Calbiochem)/0.1% β-mercaptoethanol and 10 ug/ml each of aprotinin, leupeptin, and pepstatin A. The thawed cells were added to 2 ml of acid-washed glass beads (425-600 µM. Sigma) in 15 ml Corex tube. Cells were broken with 4 cycle consisting of a 30 second vortexing on setting 1 followed by a 60 second incubation on ice. The cell lysate was centrifuged at 12,000×g for 10 minutes and the supernatant was passed through a 0.8u filter. The supernatant was assayed for cGMP PDE activity as follows. Samples we incubated for 20 minutes at 30° C. in the presence of 45 mM Tris-Cl (pH 8.0), 2 mM EGTA, 1 mM EDTA, 0.2 mg/ml BSA, 5 mM MgCl₂, 0.2 mM o-phenanthroline, 2 ug/ml each of pepstatin A, leupeptin, and aprotinin, 0.1 mM AEBSF, 0.02% β-mercaptoethanol and 0.1 mM [³H]cGMP as substrate. [¹⁴C]-AMP (0.5 nCi/assay) was added as a recovery standard. The reaction was terminated with stop buffer (0.1M ethanolamine pH 9.0, 0.5M ammonium sulfate, 10 nM EDTA, 0.05% SDS final concentration). The product was separated from the cyclic nucleotide substrate by chromatography on BioRad Affi-Gel 601. The sample was applied to a column containing approximately 0.25 ml of Affi-Gel 601 equilibrated in column buffer (0.1M ethanolamine pH 9.0 containing 0.5M ammonium sulfate). The column was washed five times with 0.5 ml of column buffer. The product was eluted with four 0.5 ml aliquots of 0.25 acetic acid and mixed with 5 ml Ecolume (ICN Biochemicals). The radioactive product was measured by scintillation counting.

EXAMPLE 8

[0104] Analysis of expression of cGB-PDE mRNA in human tissues was carried out by RNase protection assay.

[0105] A probe corresponding to a portion of the putative cGMP binding domain of cGB-PDE (402 bp corresponding to nucleotides 1450 through 1851 of SEQ ID NO: 13) was generated by PCR. The PCR fragment was inserted into the EcoRI site of the plasmid pBSII SK(-) to generate the plasmid RP3. RP3 plasmid DNA was linearized with XbaI and antisense probes were generated by a modification of the Stratagene T7 RNA polymerase kit. Twenty-five ng of linearized plasmid was combined with 20 microcuries of alpha ³²rUTP (800 Ci/mmol, 10 mCi/ml), 1× transcription buffer (40 mM Tris Cl, pH 8, 8 mM MgCl₂, 2 mM spermidine, 50 mM NaCl), 0.25 mM each rATP, rGTP and rCTP, 0.1 units of RNase Block II, 5 mM DTT, 8 µM rUTP and 5 units of T7 RNA Polymerase in a total volume of 5 μ l. The reaction was allowed to proceed 1 hour at room temperature and then the DNA template was removed by digestion with RNase free DNase. The reaction was diluted into 100 µl of 40 mM TrisCl, pH 8, 6 mM MgCl₂ and 10 mM NaCl. Five units of RNase-free DNase were added and the reaction was allowed to continue another 15 minutes at 37° C. The reaction was stopped by a phenol extraction followed by a phenol chloroform extraction. One half volume of 7.5M NH₄OAc was added and the probe was ethanol precipitated.

[0106] The RNase protection assays were carried out using the Ambion RNase Protection kit (Austin, Tex.) and 10 μ g RNA isolated from human tissues by an acid guanidinium extraction method. Expression of cGB-PDE mRNA was easily detected in RNA extracted from skeletal muscle, uterus, bronchus, skin, right saphenous vein, aorta and SW1018 glioblastoma cells. Barely detectable expression was found in RNA extracted from right atrium, right ventricle, kidney cortex, and kidney medulla. Only complete protection of the RP3 probe was sees. The lack of particle protection argues against the cDNA cgbL23.1 (a variant cDNA described in Example 7) representing a major transcript, at least in these RNA samples.

EXAMPLE 9

[0107] Polyclonal antisera was raised to *E. coli*-produced fragments of the human cGB-PDE.

[0108] A portion of the human cGB-PDE cDNA (nucleotides 1668-2612 of SEQ ID NO: 22, amino acids 515-819 of SEQ ID NO: 23) was amplified by PCR and inserted into the E. coli expression vector pGEX2T (Pharmacia) as a BamHI/EcoRI fragment. The pGEX2T plasmid carries an ampicillin resistance gene, an E. coli laq Iq gene and a portion of the Schisrosoma japonicum glutathione-S-transferase (GST) gene. DNA inserted in the plasmid can be expressed as a fusion protein with GST and can then be cleaved from the GST portion of the protein with thrombin. The resulting plasmid, designated cgbPE3, was transformed into E. coli stain LE392 (Stratagene). Transformed cells were grown at 37° C. to an OD600 of 0.6. IPTG (isopropylthioalactopyranoside) was added to 0.1 mM and the cells were grown at 37° C. for an additional 2 hours. The cells were collected by centrifugation and lysed by sonication. Cell debris was removed by centrifugation and the supernatant was fractionated by SDS-PAGE. The gel was stained with cold 0.4M KCl and the GST-cgb fusion protein band was excised and electrocuted. The PDE portion of the protein was separated from the GST portion by digestion with thrombin. The digest was fractionated by SDS-PAGE, the PDE protein was electroeluted and injected subcutaneously into a rabbit. The resultant antisera recognizes both the bovine cGB-PDE fragment that was utilized as antigen and the full length human cGB-PDE protein expressed in yeast (see Example 8).

EXAMPLE 10

[0109] Polynucleotides encoding various cGB-PDE analogs and cGB-PDE fragments were generated by standard methods.

[0110] A. cGB-PDE Analogs

[0111] All known cGMP-binding PDEs contain two internally homologous tandem repeats within their putative cGMP-binding domain. In the bovine cGB-PDE of the invention, the repeats span at least residues 228-311 (repeat A) and 410-500 (repeat B) of SEQ ID NO; 10. Site-directed mutagenesis of an aspartic acid that is conserved in repeats A and B of all known cGMP-binding PDEs was used to create analogs of cGB-PDE having either Asp-289 replaced with Ala (D289A) or Asp-478 replaced with Ala (D478A). Recombinant wild type (WT) bovine and mutant bovine cGB-PDEs were expressed in COS-7 cells cGB-PDE purified from bovine lung (native cGB-PDE) and WT cGB-PDE displayed identical cGMP-binding kinetics with a K_d of approximately 2 μ M and a curvilinear dissociation profile (t=1.3 hours at 4° C.). This curvilinearity may have been due to the presence of distinct high affinity (slow) and low affinity (fast) sites of cGMP binding. The D289A mutant had significantly decreased affinity for cGMP ($K_d > 20 \mu M$) and a single rate of cGMP-association (t[text missing or illeg**ible when filed]**=0.5 hours), that was similar to that calculated for the fast site of WT and native cGB-PDE. This suggested the lost of a slow cGMP-binding site in repeat A of this mutant. Conversely, the D478A mutant showed higher affinity for cGMP ($\vec{K_d}$ of approximately 0.5 μ M) and a single cGMP-dissociation rate (t[text missing or illeg**ible when filed]=**2.8 hours) that was similar to the calculated rate of the slow site of WT and native cGB-PDE. This suggested the loss of a fast site when repeat was modified. Them results indicate that dimeric cGB-PDE possesses two homologous but kinetically distinct cGMP-binding sites, with the conserved aspartic acid being critical for interaction with cGMP at each site. See, Colbran et al., FASEB J., 8: Abstract 2149 (May 15, 1994).

[0112] B. Amino-Terminal Truncated cGB-PDE Polypeptides

[0113] A truncated human cGB-PDE polypeptide including amino acids 516-875 of SEQ ID NO: 23 was expressed in yeast. A cDNA insert extending from the NcoI site at nucleotide 1555 of SEQ ID NO: 22 through the XhoI site at the 3' end of SEQ ID NO: 22 was inserted into the ADH2 yeast expression vector YEpC-PADH2d [Price et al., Meth. Enzymol., 118: 308-318 (1990)] that had been digested with NcoI and SalI to generate plasmid YEpC-PADH2d HcGB. The plasmid was transformed into spheroplasts of the yeast stain yBJ2-54 (prc1-407 prb1-1122 pep4-3 leu2 trp1 ura3-52 Δpde1::URA3, HIS3 Δpdc::TRP1 cir). The endogenous PDE genes are deleted in this strain. Cells were grown in SC-leu media with 2% glucose to 10^7 cells/ml, collected by filtration and grown 24 hours in YEP media containing 3% glycerol. Cells were pelleted by centrifugation and stored frozen. Cells were disrupted with glass beads and the cell homogenate was assayed for phosphodiesterase activity essentially as described in Prpic et al., *Anal. Biochem.*, 208: 155-160 (1993). The truncated human cGB-PDE polypeptide exhibited phosphodiesterase activity.

[0114] C. Carboxy-Terminal Truncated cGB-PDE Polypeptides

[0115] Two different plasmids encoding carboxy-terminal truncated human cGB-PDE polypeptides were constructed.

[0116] Plasmid pBJ6-84Hin contains a cDNA encoding amino acids 1-494 of SEQ ID NO: 23 inserted into the NcoI and SalI sites of vector YEpC-PADH2d. The cDNA insert extends from the NcoI site at nucleotide position 10 of SEQ ID NO: 22 through the HindIII site at nucleotide position 1494 of SEQ ID NO: 22 followed by a linker and the SalI site of YEpC-PADH2d.

[0117] Plasmid pBJ6-84Ban contains a cDNA encoding amino acids 1-549 of SEQ ID NO: 23 inserted into the NcoI and SalI sites of vector YEpC-PADH2d. The cDNA insert extends from the NcoI site at nucleotide position 10 of SEQ ID NO: 22 through the BanI site at nucleotide position 1657 of SEQ ID NO: 22 followed by a linker and the SalI site of YEpC-PADH2d.

[0118] The truncated cGB-PDE polypeptides are useful for screening for modulators of cGB-PDE activity.

EXAMPLE 11

[0119] Monoclonal antibodies reactive with human cGB-PDE were generated.

[0120] Yeast yB12-54 containing the plasmid YEpADH2 HcGB (Example 10B) were fermented in a New Brunswick Scientific 10 liter Microferm. The cGB-PDE cDNA insert in plasmid YEpADH2 HcGB extends from the NcoI site at nucleotide 12 of SEQ ID NO: 22 to the XhoI site at the 3' end of SEQ ID NO: 22. An inoculum of 4×10[text missing or illegible when filed]cells was added to 8 liters of media containing SC-leu, 5% glucose, trace metals, and trace vitamins. Fermentation was maintained at 26° C., agitated at 600 rpm with the standard microbial impeller, and aerated with compressed air at 10 volumes per minute. When glucose done to 0.3% at 24 hours post-inoculation the culture was infused with 2 liters of 5×YEP media containing 15% glycerol. At 66 hours post-inoculation the yeast from the ferment was harvested by centrifugation at 4,000×g for 30 minutes at 4° C. Total yield of biomass from this fermentation approached 350 g wet weight.

[0121] Human cGB-PDE enzyme was purified from the yeast cell pellet. Assays for PDE activity using 1 mM cGMP as substituted was employed to follow the chromatography of the enzyme. All chromatographic manipulations were performed at 4° C.

[0122] Yeast (29 g wet weight) were resuspended in 70 ml of buffer A (25 mM Tris pH 8.0, 0.25 mM DTT, 5 mM MgCl₂, 10 µM ZnSO⁴, 1 mM benzamidine) and lysed by passing through a microfluidizer at 22-24,000 psi. The lysate was centrifuged at 10,000×g for 30 minutes and the supernatant was applied to a 2.6×28 cm column containing Pharmacia Fast Flow Q anion exchange resin equilibrated with buffer B containing 20 mM BisTris-propane pH 6.8, 0.25 mM DTT, 1 mM MgCl₂, and 10 μ M ZnSO₄. The column was washed with 5 column volumes of buffer B containing 0.125M NaCl and then developed with a linear gradient from 0.125 to 1.0M NaCl. Fractions containing the enzyme were pooled and applied directly to a 5×20 cm column of ceramic hydroxyapatite (BioRad) equilibrated in buffer C containing 20 mM BisTris-propane pH 6.8, 0.25 mM DTT, 0.25 MKCl, 1 mM MgCl₂, and 10 µM ZnSO₄. The column was washed with 5 column volumes of buffer C and eluted with a linear gradient from 0 to 250 mM potassium phosphate in buffer C. The pooled enzyme was concentrated 8-fold by ultrafiltration (YM30 membrane, Amicon). The concentrated enzyme was chromatographed on a 2.6×90 cm column of Pharmacia Sephacryl S300 (Piscataway, N.J.) equilibrated in 25 mM BisTris-propane pH 6.8, 0.25 mM DTT, 0.25M NaCl, 1 mM MgCl₂, and 20 μ M ZnSO₄. Approximately 4 mg of protein was obtained. The recombinant human cGB-PDE enzyme accounted for approximately 90% of protein obtained a judged by SDS polyacrylamide gel electrophoresis followed by Coomassie blue staining.

[0123] The purified protein was used as an antigen to raise monoclonal antibodies. Each of 19 week old Balb/c mice (Charles River Biotechnical Services, Inc., Wilmington, Mass.) was immunized sub-cutaneously with 50 ug purified human cGB-PDE enzyme in a 200 ul emulsion consisting of 50% Freund's complete adjuvant (Sigma Chemical Co.). Subsequent boosts on day 20 and day 43 were administered in incomplete Freund's adjuvant. A pre-fusion boost was done on day 86 using 50 ug enzyme in FBS. The fusion was performed on day 90.

[0124] The spleen from mouse #1817 was removed sterilely and placed in 10 ml serum form RPMI 1640. A single-cell suspension was formed and filtered through sterile 70 mesh Nitex cell strainer (Becton Dickinson, Parsippany, N.J.), and washed twice by centrifuging at 200 g for 5 minutes and resuspending the pellet in 20 ml serum free RPMI. Thymocytes taken from 3 naive Balb/c mice were prepared in a similar manner.

[0125] NS-1 myeloma cells, kept in log phase in RPMI with 11% Fetalclone (FBS) Hyclone Laboratories, Inc., Logan, Utah) for three days prior to fusion, were centrifuged 200 g for 5 minutes, and the pellet was washed twice as described in the foregoing paragraph. After washing each cell suspension was brought to a final volume of 10 ml in serum free RPMI, and 20 μ l was diluted 1:50 in 1 ml serum free RPMI: 20 μ l of each dilution was removed, mixed with 20 μ l 0.4% trypan blue sun in 0.85% saline (Gibco), loaded onto a hemocytometer (Baxter Healthcare Corp., Deerfield, Ill.) and counted.

[0126] Twox10[text missing or illegible when filedspleen cells were combined with 4.0×10^7 NS-1 cells, centrifuged and the supernatant was aspirated. The cell pellet was dislodged by tapping the tube and 2 ml of 37° C. PEG 1500 (50% in 75 mM Hepes, pH 8.0) (Boehringer Mannheim) was added with stirring over the course of 1 minute, followed by adding 14 ml of serum free RPMI over 7 minutes. An additional 16 ml RPMI was added and the cells were centrifuged at 200 g for 10 minutes. After discarding the supernatant, the pellet was resuspended in 200 ml RPMI containing 15% FBS, $100 \,\mu\text{M}$ sodium hypoxanthine, $0.4 \,\mu\text{M}$ aminopterin, 16 µM thymidine (HAT) (Gibco), 25 units/ml IL-6 (Boehringer Mannheim) and 1.5×10[text missing or illegible when filed]thymocytes/ml. The suspension was first placed in a T225 flask (Corning, United Kingdom) at 37° C. for two hours before being dispensed into ten 96 well flat bottom tissue culture plates (Corning, United Kingdom) at 200 μ l/well. Cells in plates were fed on days 3, 4, 5 post fusion day by aspirating approximately 100 μ l from each well with an 20 G needle (Becton Dickinson), and adding 100 µl/well plating medium described above except containing 10 units/ml IL-6 and lacking thymocytes.

[0127] The fusion was screened initially by ELISA. Immulon 4 plates (Dynatech) were coated at 4° C. overnight with purified recombinant human cGB-PDE enzyme (100 ng/well in 50 mM carbonate buffer pH9.6). The plates were washed 3× with PBS containing 0.05% Tween 20 (PBST). The supernatants from the individual hybridoma wells were added to the enzyme coated wells (50 μ l/well). After incubation at 37° C. for 30 minutes, and washing as above, 50 μ l of horseradish peroxidase conjugated goat anti-mouse IgG(fc) (Jackson ImmunoResearch, West Grove, Pa.) diluted 1:3500 in PBST was added. Plates were incubated as above, washed 4× with PBST and 100 μ l substrate consisting of 1 mg/ml o-phenylene diamine (Sigma) and 0.1 μ l/ml 30% H₂O₂ in 100 mM citrate, pH 4.5, was added. The color reaction was stopped in 5 minutes with the addition of 50 μ l of 15% H₂SO₄. A₄₉₀ was read on a plate reader (Dynatech).

[0128] Wells C5G, **[text missing or illegible when filed]**4D, F1G, F9H, F11G, J4A, and J5D were picked and renamed 102A, 102B, 102C, 102D, 102E, 102F, and 102G respectively, cloned two or three times, successively, by doubling dilution in RPMI, 15% FBS, 100 µM sodium hypoxanthine, 16 µM thymidine, and 10 units/ml IL-6. Wells of clone plates were scored visually after 4 days and the number of colonies in the least dense wells were recorded. Selected wells of the each cloning were tested by ELISA.

[0129] The monoclonal antibodies produced by above hybridomas were isotyped in an ELISA assay. Results showed that monoclonal antibodies 102A to 102E were IgG1, 102F was IgG2b and 102G was IgG2a.

[0130] All seven monoclonal antibodies reacted with human cGS-PDE as determined by Western analysis.

EXAMPLE 12

[0131] Developing modulators of the biological activities of specific PDEs requires differentiating PDE isozymes present in a particular assay preparation. The classical enzymological approach of isolating PDEs from natural tissue sources and studying each new isozyme is hampered by the limits of purification techniques and the inability to definitively assess whether complete resolution of a isozyme has been achieved. Another approach has been to identify assay conditions which might favor the contribution of one isozyme and minimize the contribution of others in a preparation. Still another approach has been the separation of PDEs by immunological means. Each of the foregoing approaches for differentiating PDE isozymes is time consuming and technically difficult. As a result many attempts to develop selective PDE modulators have been performed with preparations containing more than one isozyme. Moreover, PDE preparations from natural tissue sources am susceptible to limited proteolysis and may contain mixtures of active proteolytic products that have different kinetic, regulatory and physiological properties than the full length PDEs.

[0132] Recombinant cGB-PDE polypeptide products of the invention greatly facilitate the development of new and specific cGB-PDE modulators. The use of human recombinant enzymes for screening for modulators has many inherent advantages. The need for purification of an isozyme can be avoided by expressing it recombinantly in a host cell that lacks endogenous phosphodiesterase activity (e.g. yeast swain YKS45 deposited as ATCC 74225). Screening compounds against human protein avoids complications that often arise from screening against non-human protein may fail to be specific for or react with the human protein. For example, a single amino acid difference between the human and rodent 5HT_{1B} serotonin receptors accounts for the difference in binding of a compound to the receptors [See Oskenberg]

et al., Nature, 360: 161-163 (1992)]. Once a compound that modulates the activity of the cGB-PDE is discovered, its selectivity can be evaluated by comparing its activity on the cGB-PDE to its activity on other PDE isozymes. Thus, the combination of the recombinant cGB-PDE products of the invention with other recombinant PDE products in a series of independent assays provides a system for developing selective modulators of cGB-PDE. Selective modulators many include, for example, antibodies and other proteins or peptides which specifically bind to the cGB-PDE or cGB-PDE nucleic acid, oligonucleotides which specifically bind to the cGB-PDE (so Patent Cooperation Treaty International Publication No. WO93/05182 published Mar. 18, 1993 which describes methods for selecting oligonucleotides which selectively bind to target biomolecules) or cGB-PDE nucleic acid (e.g., antisense oligonucleotides) and other non-peptide natural or synthetic compounds which specifically bind to the cGB-PDE or cGB-PDE nucleic acid. Mutant forms of the cGB-PDE which alter the enzymatic activity of the cGB-PDE or its localization in a cell are also contemplated. Crystallization of recombinant cGB-PDE

alone and bound to a modulator, analysis of atomic structure by X-ray crystallography, and computer modulating of those structures are methods useful for designing and optimizing non-peptide selective modulators. See, for example, Erickson et al., *Ann. Rep. Med. Chem.* 27: 271-289 (1992) for a general review of structure-based drug design.

[0133] Targets for the development of selective modulators include, for example: (1) the regions of the cGB-PDE which contact other proteins and/or localize the cGB-PDE within a cell, (2) the regions of the cGB-PDE which bind substrate, (3) the allosteric cGMP-binding site(s) of cGB-PDE, (4) the metal-binding regions of the cGB-PDE, (5) the phosphorylation site(s) of cGB-PDE and (6) the regions of the cGB-PDE which are involved in dimerization of cGB-PDE subunits.

[0134] While the present invention has been described in terms of specific embodiments, it is understood that variations and modifications will occur to those skilled in the art. Accordingly, only such limitations as appear in the appended claims should be placed on the invention.

```
SEQUENCE LISTING
<160> NUMBER OF SEQ ID NOS: 47
<210> SEQ ID NO 1
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: bovine
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (3)..(3)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEQUENCE: 1
Arg Glu Xaa Asp Ala Asn Arg Ile Asn Tyr Met Tyr Ala Gln Tyr Val151015
Lys Asn Thr Met
<210> SEQ ID NO 2
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: bovine
<400> SEQUENCE: 2
Gln Ser Leu Ala Ala Ala Val Val Pro
                5
<210> SEO ID NO 3
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Peptide from Bovine PDE5
<400> SEQUENCE: 3
Phe Asp Asn Asp Glu Gly Glu Gln
                5
1
<210> SEQ ID NO 4
<211> LENGTH: 23
```

<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (18)..(18) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 4 ttygayaayg aygarggnga rca 23 <210> SEQ ID NO 5 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (18)..(18) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 5 aarctrttrc trctyccnct ygt 23 <210> SEQ ID NO 6 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (15)..(15) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 6 23 aaytayatgt aygcncarta ygt <210> SEQ ID NO 7 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (15)..(15) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 7 ttratrtaca trcgngtyat rca 23 <210> SEQ ID NO 8 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (15)..(15) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (24)..(24) <223> OTHER INFORMATION: n is a, c, g, or t

15

-continued	
<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (33)(33)	
<223> OTHER INFORMATION: n is a, c, g, or t	
<400> SEQUENCE: 8	
ttratrtaca trogngtyat roanttyttr tgntac	36
<210> SEQ ID NO 9 <211> LENGTH: 4474 <212> TYPE: DNA <213> ORGANISM: bovine <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (99)(2723)	
<400> SEQUENCE: 9	
gggagggtct cgaggcgagt tctgctcctc ggagggaggg accccagctg gagtggaaaa	60
ccagcaccag ctgaccgcag agacacgccg cgctgatc atg gag agg gcc ggc ccc Met Glu Arg Ala Gly Pro 1 5	116
ggc tgc cgc gcg gcc gca aca gca atg gga cca gga ctc ggt cga agc Gly Cys Arg Ala Ala Ala Thr Ala Met Gly Pro Gly Leu Gly Arg Ser 10 15 20	164
gtg gct gga cga tca ctg gga ctt tac ctt ctc tac ttt gtt agg aaa 7al Ala Gly Arg Ser Leu Gly Leu Tyr Leu Leu Tyr Phe Val Arg Lys 25 30 35	212
ggc acc aga gaa atg gtc aac gca tgg ttt gct gag aga gtt cac acc Sly Thr Arg Glu Met Val Asn Ala Trp Phe Ala Glu Arg Val His Thr 40 45 50	260
att cct gtg tgc aag gaa gga atc aag ggc cac acg gaa tcc tgc tct Ile Pro Val Cys Lys Glu Gly Ile Lys Gly His Thr Glu Ser Cys Ser 55 60 65 70	308
tgc ccc ttg cag cca agt ccc cgt gca gag agc agt gtc cct gga aca Cys Pro Leu Gln Pro Ser Pro Arg Ala Glu Ser Ser Val Pro Gly Thr 75 80 85	356
cca acc agg aag atc tct gcc tct gaa ttc gat cgg ccg ctt aga ccc Pro Thr Arg Lys Ile Ser Ala Ser Glu Phe Asp Arg Pro Leu Arg Pro 90 95 100	404
atc gtt atc aag gat tct gag gga act gtg agc ttc ctc tct gac tca Ile Val Ile Lys Asp Ser Glu Gly Thr Val Ser Phe Leu Ser Asp Ser 105 110 115	452
gac aag aag gaa cag atg cct cta acc tcc cca cgg ttt gat aat gat Asp Lys Lys Glu Gln Met Pro Leu Thr Ser Pro Arg Phe Asp Asn Asp 120 125 130	500
gaa ggg gac cag tgc tcg aga ctc ttg gaa tta gtg aaa gat att tct Glu Gly Asp Gln Cys Ser Arg Leu Leu Glu Leu Val Lys Asp Ile Ser 140 145 150	548
igt cac ttg gat gtc aca gcc tta tgt cac aaa att ttc ttg cac atc Ser His Leu Asp Val Thr Ala Leu Cys His Lys Ile Phe Leu His Ile 155 160 165	596
at gga ctc atc tcc gcc gac cgc tac tcc tta ttc ctc gtc tgt gag Lis Gly Leu Ile Ser Ala Asp Arg Tyr Ser Leu Phe Leu Val Cys Glu 170 175 180	644
yac agc tcc aac gac aag ttt ctt atc agc cgc ctc ttt gat gtt gca Asp Ser Ser Asn Asp Lys Phe Leu Ile Ser Arg Leu Phe Asp Val Ala 185 190 195	692
aa ggt tca aca ctg gaa gaa gct tca aac aac tgc atc cgc tta gag lu Gly Ser Thr Leu Glu Glu Ala Ser Asn Asn Cys Ile Arg Leu Glu	740

16

-continued

ac at b as gac goc bat gag gat oct og at to at goa gan gtt gac Aan lle Ly As plant836ac at ac ggo tao ag oca ca agt at ct tt gt at goc att ag Cin lle Thr foly Tyr Lys Thr Glu Ser lle Leu Cys Met Pro 11e Lys 250884at cat agg gaa gag gtt gt gg gt ga gc cat cas cas gag cas ag gc tt gc tar ag 270884at cat agg gaa ag gg ta gt gt gt gg gt ga gc cat cas cas ag aga 270932at cat agg gaa at gg ga ca tt cat gaa aga gc gaa ag gg tt gt gr ga ga at gg ga aga gag gt gt gt gag aat ag ga gag ag ag ag gag at the tot tot at at got cas ct cat 200930agt tar tt gag gat tt gt tar gt of tar ga aga gad aga aga aga aga aga gag at tar ct tar gag gaa cas ag aga aga aga aga aga aga aga aga ag												-	con	tin	ued			
Trip Ann Lys Giy ILe Yal Giy His Yal Ala Ana Phe Giy Gin Pro Lei 225 230 Sac Ato ana gao goo tat geg gat cot egs the sat goo gas git gat 836 Ann ILe Lys Anp Ali Tyr Gin Amp Pro Arg Pho Ann Ala Gin Val Amp 836 Can att are gog tac ang ada can agt att cit tig tatg cor att ang 884 Gin fle The Giu Giu Yi Tyr Lys Th colo Ser ILe Luc Vys Mr Do Ann Ala Giu Yal Amp 884 Can att car agg ada get git git gog tag cor at cor agt ada 932 Star Cat agg ada get git git gog tag cor at cor agt ada gog cor to cat agg ada 931 Can att cat agg agg agt gor att cor gan ada gar gan gag gat tr got 930 Star gg ada git git git gog att got cor agt gan gag gat tr got 930 Star Giu Giu Giu Yi Tyr Hys Th Pho The file Giu Lys Amp Chu Lys Amp Fhe Ala 930 200 200 Tr Pho The Pho The file Giu Lys Amp Chu Lys Amp Fhe Ala 930 201 The Star Lys Giu Giu Giu Giu Giu Giu Giu Sin Sin Ala Giu Leu Tyr 1028 gag act ta cit tig gag aca aga aga at cag tag tat tot agg 1101 202 The Star Giu Giu Giu Giu Giu Giu Sin File Hys Cys Thr 1124 310 Tr Star 330 Tr Star 330 gat gat ta att tit gag gaa ta coa tat tat to tag tag tit cyt cog gat att ta agg 1124 311 The The Star 110 File Hys Hys Cys File Hys Cog Cog Giu Cys	2	200					205					210						
Aam 11e Lys Ap Ala Tyr Gli Asp For Arg Phe Am Ala Glu Val Asp Caa att era gg taa aag ara caa est att ctt ty atg cra att aag 884 Can 11e Thr Gi Y Tyr Lys Thr Gln Sar 11e Leu Cys Met Pro 11e Lys 884 Can att era gg daa gag tt gtt gt gg ta gor cag or cag caa caa aag aan 932 Caa att ga aag ag tt gtt gg a gaa gag tt gtt g						Val				-	Ála					Leu	788	
clin lie Thr ối y Tyr Lyś Thr Gli Sác lie Leu Cýc Meć Pro lie Lyś zat cat agg gaa gag git git git gigt ga go cag go ato aco aco aga aaa 932 aat cat agg gaa gag git git git gigt ga go cag go ato aco aco aga aaa 932 zat 200 270 270 sat cat agg gaa gag git git git gigt ga go cag go ato aco aco aga aaa 932 zat gag aat git git git git git ga at ga ca aa ag go tit got gaa aag go tit got gaa aag go lit got gaa aag go lit got gaa aag go lit got aco ato aco aga go aco tit got go ato aco aga aco ag go ato ag ga at cag git ca tit got go ato ta a cag ag go ato tag aco aga ga at cag git got got gaa cat ga gaa at cag git got got got aco the aco ato aga go aco tag aga aat cag git got got got aco the aco ato a aga ga ato cag got aco tac aco ato ato aco aga go ato tag aco ato aga ato ag git got got got aco the aco ato ato ato aga go ato tag aco ato aga ato ag ga at tag got got got aco the aco ato ato ato aga go ato tag aga ato agg got aco the aco ato ato ato aga got aco tag aco ato aga at cag git got got got aco the aco ato ato ato aga got ago tha ato the go got aco ta at ato ato ato aga got got gaa aa tag got got aco at at ato ato tag ag git got ga gaa at got got aco at at ato to the algo agg git got ga gaa at got got aco ato ato ato a ago got got got got aco at at ato to the aco agg got got got gat got ga ga ga at tag aga ato tag gat aco tag got got got got aco a go aco aco aco ato ato ago got aco ato ato ago got got got got got aco ato aga aco tag got cag the the the aco agg lie got got got got aco ato aga aco aga aco ga got got got aco ato aga aco ang aco aco aco ato gat aco the aco agg lie got got got got got got aco ato aga aco aga got got got aco ato aga aco ang aco aco aco ato gat got axo ato aco got got got got aco ato aga aco aco ga got got got ac					Ala					Arg					Val		836	
As m His Arg Giu Giu Yal Yal Giy Yal Ala Glu Ala File Ann Lyé Lye 205 207 207 207 207 207 207 207 207				Gly					Ser					Pro			884	
Ser Gily Aan Gily Gily Thr Phe Thr Glu Lys Aep Glu Lys Aep Phe Ala 290 285 285 285 295 295 295 295 295 295 295 29		lis	Arg	-		-	-	Gly	-	-	-	-	Ile		-		932	
Ala Tyr Leù Ala Phe Cye Gly Ile Val Leu Ris Asm Ala Gln Leu Tyr 310 393 aga act act ct c	Ser G	ly					Phe		-		-	Glu	-	-		-	980	
Glu Thr Ser Leu Leu Ciu Asn Lys Arg Asn Cln Val Leu Leu Asp Leu 3201124 325get age the att the gan gan can can tea the gan gth att ten ang 3301124 340Ala Ser Leu Ile Phe Glu Glu Gln Gln Ser Leu Glu Val Ile Leu Lys 3301172 340aaa ata get get act att ate tet the atg cag gtp cag aaa tge acc 3411172 345att the atg geg at gan gat tge tee gat tet the teat gtg fig tht 3651220att the ata gtg gat gan gat tge tee gat tet the teat gtg fig tht 3651220att the ata gtg gat gan gat tge tee gat tet the teat gtg gtg the 3651220acc atg gag tgt gag gan ta gan aca teg tea gat ate teat aca egg 3801268 385375380201 Lue Glu Lys Ser Ser Asp Thr Leu Thr Arg 385391390316392390316393390316394390316395380385396380385397380380398390316399390390390391391392390393391394391395390395390396390397390398390399390399390390390391391392392393393394394395394395395395395395396<						Cys					His					Tyr	1028	
Àla Sér Leu II e Phe Ĝlu Ĝlu Glu Gln Gln ser Leu Ĝlu Val II e Leu Lyé 330 340 aaa ata get gee act att ate tet tet atg cag ggtg cag aaa tge ace 1172 yrs IIe Ala Ala Thr II e IIe Ser Hem Met Gln Val Gln Lys Cys Thr 1172 att tto ata gtg gat gaa gat tge tee gat tet ttt tet aft gftt 1220 111 P he IIe Val Asp Glu Asp Cys Ser Asp Ser Phe Ser Ser Val Phe 1220 360 365 370 att tto ata gtg gag gaa ata gaa aate teg tee gat act tta aca cag 1268 375 380 385 375 380 1316 375 380 1316 376 380 390 380 380 390 375 380 390 380 380 390 380 380 390 380 380 390 380 380 390 381 282 282 382 385 390 383 385 390 383 385 390 383 385 390 384 384 394 <tr< td=""><td></td><td></td><td></td><td>-</td><td>Leu</td><td></td><td></td><td>-</td><td>-</td><td>Asn</td><td>-</td><td></td><td>-</td><td></td><td>Asp</td><td></td><td>1076</td><td></td></tr<>				-	Leu			-	-	Asn	-		-		Asp		1076	
LysIleÅlaThrIleIleSerPheMetGlnValGlnLysCýsThr335MashCysSerAspSerPheSerSerSerSerValPhe360IleValAspGluAspCysSerAspSerPheSerSerValPhe360IleValAspGluGluGluGluCasAspThrLeuThrLacAspSer <t< td=""><td>-</td><td>-</td><td></td><td>Ile</td><td></td><td>-</td><td>2</td><td></td><td>Gln</td><td></td><td></td><td>-</td><td>-</td><td>Ile</td><td></td><td>_</td><td>1124</td><td></td></t<>	-	-		Ile		-	2		Gln			-	-	Ile		_	1124	
Ile Phe Ile Vaí Asp Gu Asp Cys Ser Ásp Ser Phe Ser Ser Vaí Phe 360 Iváí Asp Gu Asp Cys Ser Ásp Ser Phe Ser Ser Vaí Phe 360 Iváí Asp Gu Gu Lys Gu Gu Lys Ser Ser Asp Thr Leu Thr Arg 375 380 gaa cgt gat gca aac aga att aga aaa tcg tca gat act tta aca cgg 1268 Glu Arg Asp Ala Asn Arg Ile Asn Tyr Met Tyr Ala Ghn Tyr Val Lys 395 400 405 401 405 402 405 403 405 405 405 405 405 405 405 405 405 406 405 407 405 408 Asn Thr Met Glu Pro Leu Asn Ile Pro Asp Val Ser Lys Asp Lys Arg 410 415 410 415 420 420 421 430 425 430 426 435 427 435 428 430 430 435 440 440 440 440 440 445 440 450		lle	Ala	-				Ser		-	-		Gln		-		1172	
His Met Glu Cys Glu Glu Leu Glu Lys Ser Ser Åsp Thr Leu Thr Årg 385390gaa cgt gat gca aac aga atc aat tac atg tat gct cag tat gtc aaa Glu Arg Asp Ala Asn Arg Ile Asn Tyr Met Tyr Ala Gln Tyr Val Lys 3951316aat acc atg gaa cca ctt aat atc cca gac gtc agt aag gac aaa aga Asn Thr Met Glu Pro Leu Asn Ile Pro Asp Val Ser Lys Asp Lys Arg 4101364ttt ccc tgg aca aat gaa aac atg gga aat ata aac cag cag tgc att 4251412Phe Pro Trp Thr Asn Glu Asn Met Gly Asn Ile Asn Gln Gln Cys Ile 4301412aga agt ttg ctt tgt aca cct ata aaa aat gga aag aag aac aaa gtg 4401460Arg Ser Leu Leu Cys Thr Pro Ile Lys Asn Cly Lys Lys Asn Lys Val 4401508ata agg ggt ttgc caa ctt gtt aat aag atg gag gaa acc act ggc aaa 4401508ile Gly Val Cys Gln Leu Val Asn Lys Met Glu Glu Thr Thr Gly Lys 4601556val Lys Ala Phe Asn Arg Asn Asp Glu Gln Phe Leu Glu Ala Phe Val 4901601att ttg tgc ttg ggg atc cag aca cac cac ag atg tac ga gca gt gc att 4801604ile Phe Cys Gly Leu Gly Ile Gln Asn Thr Gln Met Tyr Glu Ala Val 5001604gag aga gcc atg gcc aag caa atg gcc atg tcc tta ta1604	Ile F	Phe					Asp					Phe					1220	
Glu Arg Asp Ala Asn Arg Ile Asn Tyr Met Tyr Ala Gln Tyr Val Lys 400 Tyr Ala Gln Tyr Val Lys aat acc atg gaa cca ctt aat atc cca gac gtc agt aag gac aaa aga 1364 Asn Thr Met Glu Pro Leu Asn Ile Pro Asp Val Ser Lys Asp Lys Arg 410 410 415 415 Val Ser Lys Asp Lys Arg 420 410 415 415 Val Ser Lys Asp Lys Arg 420 410 415 415 Val Ser Lys Asp Lys Arg 420 420 420 Val Ser Lys Asp Lys Arg 420 410 415 415 Val Ser Lys Asp Lys Arg 420 410 415 415 Val Ser Lys Asp Lys Arg 420 425 425 1412 Phe Pro Trp Thr Asp Glu Asp Met Gly Asp Ile Asp Glu Cys Ile 1460 Arg Ser Leu Leu Cys Thr Pro Ile Lys Asp Gly Lys Lys Asp Lys Val 1460 Arg Ser Leu Leu Cys Gln Leu Val Asp Lys Met Glu Glu Thr Thr Gly Lys 455 455 460 455 470 gtt agg gct ttc aac cgc aac gat gaa cag ttc ctg gaa gct ttc gtc 1556 410 475 465 470 <t< td=""><td></td><td>-</td><td></td><td>-</td><td></td><td>Glu</td><td></td><td>-</td><td></td><td>-</td><td>Ser</td><td>-</td><td></td><td></td><td></td><td>Arg</td><td>1268</td><td></td></t<>		-		-		Glu		-		-	Ser	-				Arg	1268	
AsnThrMetGluProLeuAsnIleProAspValSerLysAspLysArg410Yat </td <td></td> <td></td> <td></td> <td></td> <td>Asn</td> <td></td> <td></td> <td></td> <td></td> <td>Met</td> <td></td> <td></td> <td></td> <td></td> <td>Val</td> <td></td> <td>1316</td> <td></td>					Asn					Met					Val		1316	
Phe Pro Trp Thr Asn Glu Asn Met Gly Asn Ile Asn Gln Gln Cys Ile aga agt ttg ctt tgt aca cct ata aaa aat aag agg gad aac aac aad adg gag gad aac aad adg aag agg gad acc acc gad gad acc acc gad gad dato fund fund fund fund				Glu					Pro					Asp			1364	
ArgSerLeuLeuCysThrProIleLysAsnGlyLysLysAsnLysVal44044544544545045015081508ataggggtttgccaacttgttaaaatg61uGluThrThrGlyLys450455460AsnLysMetGluGluThrThrGlyLys450gttaaggctttcaaccgcaacgatgatfds470gttaaggctttcaaccgcaacgatgatfds470gttaaggctttcaaccggaaggctttcgtc1556ValLysAlaPheAsnAsnAsnGluGlnPheLeuGluAlaPheVal475480480480485485485485485atctttggggatccagaaccagacacaggagcagtg16041lePheCysGlyLeuGlyIleGlnAsnThrGlnMetTyrGluAlaVal490490495500500500500465465465465gagagaagagagagagaggaggaggtttttt			Trp					Met					Gln				1412	
Ile Gly Val Cys Gln Leu Val Asn Lys Met Glu Glu Thr Thr Gly Lys 455 gtt aag gct ttc aac cgc aac gat gaa cag tt ctg gaa gct ttc gtc Val Lys Ala Phe Asn Arg 475 atc ttt tgt ggc ttg ggg atc cag aac aca cag atg tac cag tag ca gtg tac cag tag cag cag cag cag cag cag cag cag cag c	Arg S	Ser					Pro					Lys					1460	
Val Lys Ala Phe Asn Arg Asn Asp Glu Gln Phe Leu Glu Ala Phe Val 475 480 485 atc ttt tgt ggc ttg ggg atc cag aac aca cag atg tac gaa gca gtg 1604 Ile Phe Cys Gly Leu Gly Ile Gln Asn Thr Gln Met Tyr Glu Ala Val 490 495 gag aga gcc atg gcc aag caa atg gtc acg tta gag gtt ctg tct tat 1652						Leu					Glu					Lys	1508	
Ile Phe Cys Gly Leu Gly Ile Gln Asn Thr Gln Met Tyr Glu Ala Val 490 495 500 gag aga gcc atg gcc aag caa atg gtc acg tta gag gtt ctg tct tat 1652					Asn					Gln					\mathtt{Phe}		1556	
				Gly					Asn					Glu			1604	
																	1652	

-continued

the arg gan the gan city tot gan city gan and gan and gan city type and art of the Ser Asp Phe Cull Leu Ser Asp Leu Gu Thr Ala Leu Cys Thr Tile 555 546 555 546 555 546 555 546 556 556	 											con	tin	ued			
is Ala Ser Ala Ala Ciu Clu Thr Arg Ciu Leu Cin Ser Leu Ala 520 520 520 520 520 530 530 530 530 530 530 530 530 530 53		505					510					515					
La Àla Vai Vai Pro Ser Àla Ghi Thr Leu Lys ILe Thr Àap Phe Ser 545 545 to ago gao tht gag dtg tot gao dtg gaa aca goa ctg tg ca aa atc 555 1796 gan gao tht gag dtg tot gao dtg gaa aca goa ctg tg ca aa act 555 184 gan gto ctt tgo aag tgo tot gaa act ca ga aca to ca ga aca ta 555 184 gan gto ctt tgo aag tgo at tta agt gtg aag aag aac ta cag aag 570 184 gan tot tgo aag tgo at ta aag ga aca ta ta ca gat aga aca ta 570 194 sag gto ctt tgo aag tgg at ta ta agt gtg aga at gu ty Lys Aan Tyr Arg Lys 1940 ao gto goc tat aa at ag ag aga at got th aat aca got ag gac 600 1940 sag gaa at goa ga ga at got th aag aga ga ga ga aga aga aga aga aga a	Ala					Glu					Leu					1700	
he Ser Asp Phe Giu Leu Ser Asp Leu Clu Thr Àla Leu Cys Thr Ilegg atg ttt act gat ctt aan ott gtg cag act tt cag atg aan ott1844rg Met Phe Thr Asp Leu Aan Leu Val Clu Aen Phe Glu Met Lyg His1844ag gto ctt tge aag tgg att tta agt gtg aag aag act at cgg aag1892alu Val Leu Cys Lys Trp 11e Leu Ser Val Lys Lys Aen Tyr Arg Lys1840500500500500500194060011e Val Leu Cys Lys Trp 11e Leu Ser Val Lys Lys Aen Tyr Arg Lys194060060061019406006101940600610194019406006101940194061011e Leu Cys An Cly Star198861111e Leu Lys An Cly Star198861261011e Arg Star Clu Lys An Cly Star203661361411e An An Clu Lys An Cly Star203661411e Leu Lu Lu La An An Cly Star11e Arg Star Clu Lys Arg Arg Clu Cu Lys Arg Ar					Ser					Lys					Ser	1748	
rg Met Phe Thr Aep Leu Aen Leu Val GLn Aen Phe GLn Met Lys His 570 ag gtc ctt tg aag tgg att ta ag tg tg aag aag aa				Glu					Glu					\mathbf{Thr}		1796	
lu val Leu Gys Lys Trp Ile Leu Ser val Lys Lys Ann Tyr Arg Lys sogt get get ta cat aat tyg aga cat get that aca get cag tag 1940 an val Ala Tyr Hie Asn Trp Arg His Ala Phe Asn Thr Ala Gln Cys 1940 tg ttt geg gea cta aaa geg age age age age age age age ag			Thr					Val					Met			1844	
No. 1AlaTyrHisAnnTipArgHisAlaPheAnnThrAlaClinCys6056056056056056056066061988etPheAlaAlaLeuLysAlaGlyLysIleClinLysArgLeuThrAng156206206256256256256256362036etGlyLeuHaAlaLeuSerHisAng6452036accgtgttcatatacatcatcatcatcat2036accgtgttcatatacatcatcatcatcatcat2036accgtgttcatatacat<		Leu					Leu					Asn				1892	
ei Phe Àlá Àla Leu Lys Àla Čly Lys Ile Giñ Lys Arg Leu Thr Asp 2036 15 620 2036 16 ed lu Ile Leu Ala Leu Leu Ile Ala Ala Leu Ser His Asp Leu Asp 2036 ac cgt ggt gtc aat aac toa tac ata cag cga agt gaa cac cca ctt 2084 is Arg Gly Val Asn Asn Ser Tyr Ile Gln Arg Ser Glu His Pro Leu 2010 et cag tct tac tgo cat toa at a ta dtg gag cat cat cat ttt gat cag 2132 a Glu Tie Leu Ala Leu Lu Ser His Me Glu His His Pro Asp Gln 675 660 670 670 670 670 670 670 670 670 670 670 670 670 670 670 680 680 2180 ct at ga gag tat agg acc acc ctg ga at cag att ctc agt ggc ctc 2180 680 685 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700<	Val					Trp					Asn					1940	
eu Glu Ile Leu Ala Leu Leu Ile Ala Ala Leu Ser His Asp Leu Asp 6402084ac ogt ggt gt at aa ac ta ta at cag agt ga ca ca ca cat tt ga cag 6602084ac ogt gt val Asn Asn Ser Tyr 655File Gin Arg Ser Glu His Pro Leu 6602132ct ag ctc tac tgc cat ta at at agt gag cat cat cat tt tg at cag 6602132gc ctg atg atc ctt aat agt cct ggc aat cag at cat cat gag ggc ctc 6602180gc ctg atg atc ctt aat agt cct ggc aat cag att ctc agt ggc ctc 6802180gc ctg atg atc ctt aat agt cct ggc aat cag att ctc agt ggc ctc 6802180cc att gaa gag tat aag acc acc ctg ag at cat cat cat gag ga a cat cat cat tt 685228cc att gaa gag tat aag acc acc ctg aag atc at caa gca att 1 7002228rile Glu Glu Tyr 700Tyr File File Luy Sing Glu Ala File 7002276ag cc aca gac cta gca ctg tac 11 Leu Sing File File Lys Glu Asp Pro 7152324ac tt at at atg aaa aat caa tt caat ttg gaa gat cct cta cta caa aag 7352324ag ttg ttt tag cg atg ctg atg acg atg ttg at acc ag ct tgt ac 735ac gca tgt ct att aa atg aa 740ag ttg ttt tt gac ag agt gg ag ag ag ag ag ag ac tt tct b ga att lie 7652372aa att ttt tt gac aag aga gga gga gaa ctt gt gas ctt gas Ala Thr 7602460right tt tt gac ag aga gga gga ga aga ga aga gaa cta acc acc acc acc 7552420aa tt tt tt gac aag aga gga gga ga aga gaa gaa ct acc acc acc acc 7652420aa tt tt tt gac aag aga gga gga ga aga gaa gaa ct acc acc acc acc 7652420aa tt tt tt gac aag aga gga gga ga gga gga ga aga ct caac acc acc acc 76524207			-		Lys					Gln					Asp	1988	
<pre>is Arg Gly Val Asn Asn Ser Tyr IIe Gln Arg Ser Glu His Pro Leu 655</pre> ct cag ctc tac tgc cat tca atc atg gag cat cat cat ttt gat cag 1a Gln Leu Tyr Cys His Ser IIe Met Glu His His His Pro Asp Gln 665 ct gatg atc ctt aat agt cct ggc aat cag att ctc agt ggc ctc 1e Leu Met IIe Leu Asn Ser Pro Gly Asn Gln IIe Leu Ser Gly Leu 680 cc att gaa gag tat aag acc acc ctg aag atc atc aag caa gct att 95 Ie Glu Glu Tyr Lys Thr Thr Leu Lys IIe IIe Lys Gln Ala IIe 705 cc att aga gac ca gac ctg tac ata aag aga aga aga aga gga gga gaa ttt ttt				Ala					Ala					Leu		2036	
la Gln Leu Tyr Cys His Ser Ile Met Glu His His His His Phe Asp Gln2180gc ctg atg atc ctt aat agt cct ggc aat cag att ctc agt ggc ctc2180gc ctg atg atc ctt aat agt cct ggc aat cag att ctc agt ggc ctt2228gc ctg atg ag cat aga cca ccc ctg aag atc atc aga caa gct att2228gc cat gaa gag tat aag acc acc ctg aag atc atc ag gga gga gaa tt2276r Ile Glu Glu Tyr Lys Thr Thr Leu Lys Ile Ile Lys Gln Ala Ile2276a gcc aca gac cta gca ctg tac ata agy aga gga gga gaa tt2276aa ctt ata atg aaa aat caa ttc aat ttg gaa gat cct cct aca aag2324lu Leu Ile Met Lys Asn Gln Phe Asn Leu Glu Asp Pro His Gln Lys237273073075r Thr Ala Cys Asp Leu Met Thr Ala Cys Asp Leu Ser Ala Ile2372aa tt tta gcg atg cct att cca caa cag gga gaa ctt gt gcc act2420r Hys Pro Trp Pro Ile Gln Gln Arg Ile Ala Gu Leu Val Ala Thr2420r Hys Pro Trp Pro Ile Gln Gln Arg Ile Ala Gu Leu Asn Ile Glu2468r Hys Pro Trp Pro Ile Gln Gln Arg Ile Ala Gu Leu Asn Ile Glu2516aa ttt ttt gac caa gga gat aga gaa gaa aa act caa atc caa ata gag2468r C gct gat cta atg aac acg ggg gaa gaa aa act cca ata cac acg acg2516r C gra gat cta atg aac acg ggg gaa gaa aa act cca ata aca cac acg acg2516aa ttt ttt gac caa gga gat aga gaa gaa aa act caa atc caa tag gag2516r C gct gat cta atg aac acg ggg gaa gaa aa act cac acg acg at ct gra for aca at aca aca cac aca aca aca aca aca			Val					Ile					His			2084	
ys Leu Met Ile Leu As Ser Pro Gly As Gln Ile Leu Ser Gly Leu $\begin{array}{c} 690 \\ 690 \end{array}$ 2228 cc att gaa gag tat aag ac ac ac cct aag aa at at at aag caa gc att $\begin{array}{c} 2228 \\ 700 \end{array}$ 2276 ta gc aca gac cta gc at at ag gc at t t tt $\begin{array}{c} 2276 \\ 715 \end{array}$ 2276 aa ctt at at at ag aa aat caa tc aat tg ga gg gg ga att tt tt $\begin{array}{c} 725 \\ 720 \end{array}$ 2324 a ct at at at at ag aa aat caa tc aat tt gaa gg gt cct at caa ag ca agg 2324 lu Leu Ile Met Lys As Gln Phe As Leu Glu As Pro His Gln Lys $\begin{array}{c} 740 \end{array}$ 2324 ag tt g tt tt ta gcg atg ctg atg aca gct gt gat ac gct gt gg ga tt tt tt $\begin{array}{c} 757 \\ 730 \end{array}$ 2372 aa tt t tt gcg atg ct att caa caa cgg tat gca gt gca ctt tct gca att $\begin{array}{c} 2372 \\ 740 \end{array}$ 2372 aa tt t tt gcg atg ac a gct gat ac ag gct gt gag ac tt gt gca att $\begin{array}{c} 757 \\ 750 \end{array}$ 240 ca aat tt tt gac gag gg ga agg agg agg ac tt gt gca att $\begin{array}{c} 757 \\ 750 \end{array}$ 240 ca aat tt tt gac gag gg ga agg agg agg agg ac tt gt gca att $\begin{array}{c} 757 \\ 750 \end{array}$ 240 ca aat tt tt gac gag gg ga agg agg agg agg ac tt gt gca att $\begin{array}{c} 757 \\ 750 \end{array}$ 240 ca aat tt tt gac gag gg ga agg agg agg agg agg ac tt agg agg 240 ca att tt gac caa gg gg ga agg agg agg agg agg ag		Leu					Ile					His				2132	
er Ile Glu Glu Tyr Lys Thr Thr Leu Lys Ile Ile Lys Gln Ala Ile 700 Thr Thr Leu Lys Ile Ile Lys Gln Ala Ile 700 Thr Thr Leu Lys Arg Arg Gly Glu Phe Phe 710 725 725 725 725 725 725 725 725 725 725	Leu					Ser					Ile					2180	
eu Ala Thr Asp Leu Ala Leu Tyr Ile Lys Arg Arg Gly Glu Phe Phe 7202324aa ctt ata atg aaa aat caa ttc aat ttg gaa gat cct cat caa aag lu Leu Ile Met Lys Asn Gln Phe Asn Leu Glu Asp Pro His 730Cct cat caa aag r402324ag ttg ttt tta gcg atg ctg atg aca gct tgt gat ctt tct gca att 745Caa caa caa cgg ata cy Asp Pro His 750Ctt tct gca att 7552372aa acc ct tgg cct att caa caa caa cgg ata gca gat gca gaa ctt gtt gc act r45Ctt tct gca att 7502420aa ttt ttt gac cag gag agg agg agg agg agg agg agg		-			Lys			-	-	Ile		-		-	Ile	2228	
IuLeuIleMetLysAsnGlnPheAsnLeuGluAspProHisGlnLysagttgttagcgatgctgatgacagcttgtgatctttctgcaatt2372luLeuPheLeuAlaMetLeuMetMetMetMetMetMetPro <t< td=""><td></td><td></td><td></td><td>Leu</td><td></td><td></td><td></td><td></td><td>Lys</td><td></td><td></td><td></td><td></td><td>Phe</td><td></td><td>2276</td><td></td></t<>				Leu					Lys					Phe		2276	
IuLeuAlaMetLeuMetThrAlaCysAspLeuSerAlaIle7457457507507507557557552420caaaaccctgg cctattcaacaacgg atagcagaacttgtt gccact2420hrLysProTrpProIleGlnGlnArgIleAlaGluLeuValAlaThr760760TrpProIleGlnGlnArgIleAlaGluLeuValAlaThr76076076575570702468246824681uPhePheAspGlnGluArgLysGluLeuAsnIleGlu757807807857857907902516ccgctgatctaatgaaccgggaaaaaaacaaaaacaaaaacaaaaacaaaaacccaagtatg2516aagttggattcatagatgcactggtactggg2564			Met					Asn					His			2324	
hr Lys Pro Trp Pro Ile Gln Gln Arg Ile Ala Glu Leu Val Ala Thr 760 767 767 765 770 720 724 Ala Thr 770 2468 2468 2468 10 Phe Phe Asp Gln Gly Asp Arg Glu Arg Lys Glu Leu Asn Ile Glu 75 780 780 780 785 790 790 2468 cc gct gat cta atg aac cgg gag aag aaa aac aaa atc cca agt atg ro Ala Asp Leu Met Asn Arg Glu Lys Lys Asn Lys Ile Pro Ser Met 795 800 805 805 2564		Phe					Met					Leu				2372	
Iu Phe Phe Asp Gln Gly Asp Arg Glu Arg Lys Glu Leu Asn Ile Glu 75 780 785 790 cc gct gat cta atg aac cgg gag aag aaa aac aaa atc cca agt atg 2516 ro Ala Asp Leu Met Asn Arg Glu Lys Lys Asn Lys Ile Pro Ser Met 800 805 aa gtt gga ttc ata gat gcc atc tgc ttg caa ctg tat gag gcc ttg 2564	Lys					Gln					Glu					2420	
ro Ala Asp Leu Met Asn Arg Glu Lys Lys Asn Lys Ile Pro Ser Met 795 800 805 aa gtt gga ttc ata gat gcc atc tgc ttg caa ctg tat gag gcc ttg 2564					Gly					Lys					Glu	2468	
				Met					Lys					Ser		2516	
																2564	

-continued

-continued	
810 815 820	
acc cat gtg tcg gag gac tgt ttc cct ttg ctg gac ggc tgc aga aag Thr His Val Ser Glu Asp Cys Phe Pro Leu Leu Asp Gly Cys Arg Lys 825 830 835	2612
aac agg cag aaa tgg cag gct ctt gca gaa cag cag gag aag aca ctg Asn Arg Gln Lys Trp Gln Ala Leu Ala Glu Gln Gln Glu Lys Thr Leu 840 845 850	2660
atc aat ggt gaa agc agc cag acc aac cga cag caa cgg aat tcc gtt Ile Asn Gly Glu Ser Ser Gln Thr Asn Arg Gln Gln Arg Asn Ser Val 855 860 865 870	2708
gct gtc ggg aca gtg tagccaggtg tatcagatga gtgagtgtgt gctcagctca	2763
gtcctctgca acaccatgaa gctaggcatt ccagcttaat tcctgcagtt gactttaaaa	2823
aactggcata aagcactagt cagcatctag ttctagcttg accagtgaag agtagaacac	2883
caccacagtc agggtgcaga gcagttggca gtctcctttc gaacccagac tggtgaattt	2943
aaagaagagc agtcgtcgtt tatatctctg tcttttccta agcggggtgt ggaatctcta	3003
agaggagaga gagatetgga ecacaggtee aatgegetet gteeteteag etgetteeee	3063
cactgtgctg tgacctctca atctgagaaa cgtgtaagga aggtttcagc gaattccctt	3123
taaaatgtgt cagacagtag cttcttgggc cgggttgttc ccgcagctcc ccatctgttt	3183
gttgtctatc ttggctgaaa gaggctttgc tgtacctgcc acactctcct ggatccctgt	3243
ccagtagctg atcaaaaaaa aggatgtgaa attctcgtgt gactttttag aaaaggaaag	3 3 0 3
tgaccccgag gatcggtgtg gattcactag ttgtccacag atgatctgtt tagtttctag	3363
aatttteeaa gatgataeac teeteeetag tetaggggte agaeeetgta tggtggetgt	3423
gaccettgag gaaettetet etttgeatga eattageeat agaaetgtte ttgteeaaat	3483
acacagetea tatgeagett geaggaaaea etttaaaaae acaaetatea eetatgttat	3543
totgattaca gaagttatoo otactoactg taaacataaa caaagoocoo caaacttoaa	3603
atagttgtgt gtggtgagaa actgcaagtt ttcatctcca gagatagcta taggtaataa	3663
gtgggatgtt tetgaaaett ttaaaaataa tettttaeat atatgttaae tgttteetta	3723
tgagcactat ggtttgtttt ttttttttt tgctctgctt tgacttgccc ttttcactca	3783
attatcttgg cagtttttct aaatgacttg cacagacttc tcctgtactt catggctgtg	3843
cagtgttcca tgctgtgagg gcaccatcgt gtattaaatc agttccctgg tcacacatag	3903
gtgagctggt tggaaatttt taccattaaa aaaccacttt cccacattga tgctttctaa	3963
tctggcacag gatgcttctt tttttcccct ttttctctgt ttaattattg gaaatgggat	4023
ctgtgggatc ctcgttccct ggcacctagc tgctctcaac gtggcctgtg gccagcagca	4083
ttggctagac ctgggggctt gttgggaacg gagaccetet gecetgecee tggeetgetg	4143
acaaggacct gcattttgct gagctcccag tgaccctggt gtttaattgt taaccattga	4203
aaaaaatcaa actatagttt atttacaatg ttgtgttaat ttcgggtgta cagcaaagtg	4263
actcagtggt caagtacatt taaaacactg ggcatactct ctccctctcc ttgtgtacct	4323
ggttggtatt tocagaaacc atgotottgt otgtootgta gttttggaag ogotttotot	4383
ttgaagactg cettetetee tetgtetgee etacatggae tagttegttt attgteetae	4443
atggetttge ttecatgtte eteteaaett t	4474

<210> SEO ID NO 10 <211> LENGTH: 875 <212> TYPE: PRT <213> ORGANISM: bovine <400> SEOUENCE: 10 Met Glu Arg Ala Gly Pro Gly Cys Arg Ala Ala Ala Thr Ala Met Gly Pro Gly Leu Gly Arg Ser Val Ala Gly Arg Ser Leu Gly Leu Tyr Leu 20 25 30 Leu Tyr Phe Val Arg Lys Gly Thr Arg Glu Met Val Asn Ala Trp Phe Ala Glu Arg Val His Thr Ile Pro Val Cys Lys Glu Gly Ile Lys Gly His Thr Glu Ser Cys Ser Cys Pro Leu Gln Pro Ser Pro Arg Ala Glu Ser Ser Val Pro Gly Thr Pro Thr Arg Lys Ile Ser Ala Ser Glu Phe Asp Arg Pro Leu Arg Pro Ile Val Ile Lys Asp Ser Glu Gly Thr Val Ser Phe Leu Ser Asp Ser Asp Lys Lys Glu Gln Met Pro Leu Thr Ser 115 120 125 Pro Arg Phe Asp Asn Asp Glu Gly Asp Gln Cys Ser Arg Leu Leu Glu 130 135 140 Leu Val Lys Asp Ile Ser Ser His Leu Asp Val Thr Ala Leu Cys His 145 150 155 160 Lys Ile Phe Leu His Ile His Gly Leu Ile Ser Ala Asp Arg Tyr Ser Leu Phe Leu Val Cys Glu Asp Ser Ser Asn Asp Lys Phe Leu Ile Ser Arg Leu Phe Asp Val Ala Glu Gly Ser Thr Leu Glu Glu Ala Ser Asn Asn Cys Ile Arg Leu Glu Trp Asn Lys Gly Ile Val Gly His Val Ala 210 215 220 Ala Phe Gly Glu Pro Leu Asn Ile Lys Asp Ala Tyr Glu Asp Pro Arg 225 230 235 240 Phe Asn Ala Glu Val Asp Gln Ile Thr Gly Tyr Lys Thr Gln Ser Ile Leu Cys Met Pro Ile Lys Asn His Arg Glu Glu Val Val Gly Val Ala Gln Ala Ile Asn Lys Lys Ser Gly Asn Gly Gly Thr Phe Thr Glu Lys Asp Glu Lys Asp Phe Ala Ala Tyr Leu Ala Phe Cys Gly Ile Val Leu His Asn Ala Gln Leu Tyr Glu Thr Ser Leu Leu Glu Asn Lys Arg Asn Gln Val Leu Asp Leu Ala Ser Leu Ile Phe Glu Glu Gln Gln Ser Leu Glu Val Ile Leu Lys Lys Ile Ala Ala Thr Ile Ile Ser Phe Met - 345 Gln Val Gln Lys Cys Thr Ile Phe Ile Val Asp Glu Asp Cys Ser Asp 355 360 365

Ser	Phe 370	Ser	Ser	Val	Phe	His 375	Met	Glu	Cys	Glu	Glu 380	Leu	Glu	Lys	Ser
Ser 385	Asp	Thr	Leu	Thr	Arg 390	Glu	Arg	Asp	Ala	Asn 395	Arg	Ile	Asn	Tyr	Met 400
Tyr	Ala	Gln	Tyr	Val 405	Lys	Asn	Thr	Met	Glu 410	Pro	Leu	Asn	Ile	Pro 415	Asp
Val	Ser	Lys	Asp 420	Lys	Arg	Phe	Pro	Trp 425	Thr	Asn	Glu	Asn	Met 430	Gly	Asn
Ile	Asn	Gln 435	Gln	Суз	Ile	Arg	Ser 440	Leu	Leu	Сув	Thr	Pro 445	Ile	Lys	Asn
Gly	Lys 450	Lys	Asn	Lys	Val	Ile 455	Gly	Val	Сув	Gln	Leu 460	Val	Asn	Lys	Met
Glu 465	Glu	Thr	Thr	Gly	L y s 470	Val	Lys	Ala	Phe	Asn 475	Arg	Asn	Asp	Glu	Gln 480
Phe	Leu	Glu	Ala	Phe 485	Val	Ile	Phe	Сув	Gly 490	Leu	Gly	Ile	Gln	Asn 495	Thr
Gln	Met	Tyr	Glu 500	Ala	Val	Glu	Arg	Ala 505	Met	Ala	Lys	Gln	Met 510	Val	Thr
Leu	Glu	Val 515	Leu	Ser	Tyr	His	Ala 520	Ser	Ala	Ala	Glu	Glu 525	Glu	Thr	Arg
Glu	Leu 530	Gln	Ser	Leu	Ala	Ala 535	Ala	Val	Val	Pro	Ser 540	Ala	Gln	Thr	Leu
Lys 545	Ile	Thr	Asp	Phe	Ser 550	Phe	Ser	Asp	Phe	Glu 555	Leu	Ser	Asp	Leu	Glu 560
Thr	Ala	Leu	Суз	Thr 565	Ile	Arg	Met	Phe	Thr 570	Asp	Leu	Asn	Leu	Val 575	Gln
Asn	Phe	Gln	Met 580	Lys	His	Glu	Val	Leu 585	Сув	Lys	Trp	Ile	Leu 590	Ser	Val
Lys	Lys	Asn 595	Tyr	Arg	Lys	Asn	Val 600	Ala	Tyr	His	Asn	Trp 605	Arg	His	Ala
Phe	Asn 610	Thr	Ala	Gln	Суз	Met 615	Phe	Ala	Ala	Leu	L y s 620	Ala	Gly	Lys	Ile
Gln 625	Lys	Arg	Leu	Thr	Asp 630	Leu	Glu	Ile	Leu	Ala 635	Leu	Leu	Ile	Ala	Ala 640
Leu	Ser	His	Asp	Leu 645	Asp	His	Arg	Gly	Val 650	Asn	Asn	Ser	Tyr	Ile 655	Gln
Arg	Ser	Glu		Pro				Leu 665					Ile 670		Glu
His	His	His 675	Phe	Asp	Gln	Суз	Leu 680	Met	Ile	Leu	Asn	Ser 685	Pro	Gly	Asn
Gln	Ile 690	Leu	Ser	Gly	Leu	Ser 695	Ile	Glu	Glu	Tyr	L y s 700	Thr	Thr	Leu	Lys
Ile 705	Ile	Lys	Gln	Ala	Ile 710	Leu	Ala	Thr	Asp	Leu 715	Ala	Leu	Tyr	Ile	L y s 720
Arg	Arg	Gly	Glu	Phe 725	Phe	Glu	Leu	Ile	Met 730	Lys	Asn	Gln	Phe	Asn 735	Leu
Glu	Asp	Pro	His 740	Gln	Lys	Glu	Leu	Phe 745	Leu	Ala	Met	Leu	Met 750	Thr	Ala
Cys	Asp	Leu 755	Ser	Ala	Ile	Thr	L y s 760	Pro	Trp	Pro	Ile	Gln 765	Gln	Arg	Ile

-continued	
Ala Glu Leu Val Ala Thr Glu Phe Phe Asp Gln Gly Asp Arg Glu Arg 770 775 780	
Lys Glu Leu Asn Ile Glu Pro Ala Asp Leu Met Asn Arg Glu Lys Lys 785 790 795 800	
Asn Lys Ile Pro Ser Met Gln Val Gly Phe Ile Asp Ala Ile Cys Leu	
805 810 815 Gln Leu Tyr Glu Ala Leu Thr His Val Ser Glu Asp Cys Phe Pro Leu	
820 825 830	
Leu Asp Gly Cys Arg Lys Asn Arg Gln Lys Trp Gln Ala Leu Ala Glu 835 840 845	
Gln Gln Glu Lys Thr Leu Ile Asn Gly Glu Ser Ser Gln Thr Asn Arg 850 855 860	
Gln Gln Arg Asn Ser Val Ala Val Gly Thr Val 865 870 875	
<210> SEQ ID NO 11	
<211> LENGTH: 2060 <212> TYPE: DNA <213> ORGANISM: human cDNA	
<400> SEQUENCE: 11	
gcggccgcgc tccggccgct ttgtcgaaag ccggcccgac tggagcagga cgaaggggga	60
gggtctcgag gccgagtcct gttcttctga gggacggacc ccagctgggg tggaaaagca	120
gtaccagaga gcctccgagg cgcgcggtgc caaccatgga gcgggccggc cccagcttcg	180
ggcagcagcg acagcagcag cagccccagc agcagaagca gcagcagagg gatcaggact	240
cggtcgaagc atggctggac gatcactggg actttacctt ctcatacttt gttagaaaag	300
ccaccagaga aatggtcaat gcatggtttg ctgagagagt tcacaccatc cctgtgtgca	360
aggaaggtat cagaggccac accgaatctt gctcttgtcc cttgcagcag agtcctcgtg	420
cagataacag tgtccctgga acaccaacca ggaaaatctc tgcctctgaa tttgaccggc	480
ctcttagacc cattgttgtc aaggattctg agggaactgt gagcttcctc tctgactcag	540
aaaagaagga acagatgcct ctaacccctc caaggtttga tcatgatgaa ggggaccagt	600
gctcaagact cttggaatta gtgaaggata tttctagtca tttggatgtc acagccttat	660
gtcacaaaat tttcttgcat atccatggac tgatatctgc tgaccgctat tccctgttcc	720
ttgtctgtga agacagctcc aatgacaagt ttcttatcag ccgcctcttt gatgttgctg	780
aaggttcaac actggaagaa gtttcaaata actgtatccg cttagaatgg aacaaaggca	840
ttgtgggaca tgtggcagcg cttggtgagc ccttgaacat caaagatgca tatgaggatc	900
ctcggttcaa tgcagaagtt gaccaaatta caggctacaa gacacaaagc attctttgta	960
tgccaattaa gaatcatagg gaagaggttg ttggtgtagc ccaggccatc aacaagaaat	1020
caggaaacgg tgggacattt actgaaaaag atgaaaagga ctttgctgct tatttggcat	1080
tttgtggtat tgttcttcat aatgctcagc tctatgagac ttcactgctg gagaacaaga	1140
gaaatcaggt gctgcttgac cttgctagtt taatttttga agaacaacaa tcattagaag	1200
taattttgaa gaaaatagct gccactatta tctctttcat gcaagtgcag aaatgcacca	1260
ttttcatagt ggatgaagat tgctccgatt ctttttctag tgtgtttcac atggagtgtg	1320
aggaattaga aaaatcatct gatacattaa caagggaaca tgatgcaaac aaaatcaatt	1380
acatgtatgc tcagtatgtc aaaaatacta tggaaccact ttatatccca gatgtcagta	1440

23

aggataaaag atttccctgg acaactgaaa atacaggaaa tgtaaaccag cagtgcatta 1500 gaagtttgct ttgtacacct ataaaaaatg gaaagaagaa taaagttata ggggtttgcc 1560 aacttgttaa taagatggag gagaatactg gcaaggttaa gcctttcaac cgaaatgacg 1620 aacagtttct ggaagctttt gtcatctttt gtggcttggg gatccagaac acgcagatgt 1680 atgaagcagt ggagagagcc atggccaagc aaatggtcac attggaggtt ctgtcgtatc 1740 atgetteage ageagaggaa gaaacaagag agetacagte gttagegget getgtggtge 1800 catctgccca gacccttaaa attactgact ttagcttcag tgactttgag ctgtctgatc 1860 tggaaacagc actgtgtaca attcggatgt ttactgacct caaccttgtg cagaacttcc 1920 agatgaaaca tgaggttctt tgcagatgga ttttaagtgt taagaagaat tatcggaaga 1980 atgttgccta tcataattgg agacatgcct ttaatacagc tcagtgcatg tttgctgctc 2040 taaaagcagg caaaattcag 2060 <210> SEQ ID NO 12 <211> LENGTH: 1982 <212> TYPE: DNA <213> ORGANISM: human cDNA <400> SEQUENCE: 12 acaaaatttt cttgcatatc catggactga tatctgctga ccgctattcc ctgttccttg 60 tctgtgaaga cagctccaat gacaagtttc ttatcagccg cctctttgat gttgctgaag 120 180 gttcaacact ggaagaagtt tcaaataact gtatccgctt agaatggaac aaaggcattg tgggacatgt ggcagcgctt ggtgagccct tgaacatcaa agatgcatat gaggatcctc 240 ggttcaatgc agaagttgac caaattacag gctacaagac acaaagcatt ctttgtatgc 300 caattaagaa tcatagggaa gaggttgttg gtgtagccca ggccatcaac aagaaatcag 360 gaaacqqtqq gacatttact gaaaaagatq aaaaqgactt tqctqcttat ttqqcatttt 420 gtggtattgt tcttcataat gctcagctct atgagacttc actgctggag aacaagagaa 480 atcaggtgct gcttgacctt gctagtttaa tttttgaaga acaacaatca ttagaagtaa 540 ttttgaagaa aatagctgcc actattatct ctttcatgca agtgcagaaa tgcaccattt 600 tcatagtgga tgaagattgc tccgattctt tttctagtgt gtttcacatg gagtgtgagg 660 aattagaaaa atcatctgat acattaacaa gggaacatga tgcaaacaaa atcaattaca 720 tgtatgctca gtatgtcaaa aatactatgg aaccacttaa tatcccagat gtcagtaagg 780 ataaaagatt tccctggaca actgaaaata caggaaatgt aaaccagcag tgcattagaa 840 gtttgctttg tacacctata aaaaatggaa agaagaataa agttataggg gtttgccaac 900 ttgttaataa gatggaggag aatactggca aggttaagcc tttcaaccga aatgacgaac 960 agtttctgga agcttttgtc atcttttgtg gcttggggat ccagaacacg cagatgtatg 1020 aagcagtgga gagagccatg gccaagcaaa tggtcacatt ggaggttctg tcgtatcatg 1080 cttcagcagc agaggaagaa acaagagagc tacagtcgtt agcggctgct gtggtgccat 1140 ctgcccagac ccttaaaatt actgacttta gcttcagtga ctttgagctg tctgatctgg 1200 aaacagcact gtgtacaatt cggatgttta ctgacctcaa ccttgtgcag aacttccaga 1260 tgaaacatga ggttctttgc agatggattt taagtgttaa gaagaattat cggaagaatg 1320 ttgcctatca taattggaga catgccttta atacagctca gtgcatgttt gctgctctaa 1380

24

aagcaggcaa aattcagaac aagctgactg acctggagat acttgcattg ctgattgctg	1440
cactaagcca cgatttggat caccgtggtg tgaataactc ttacatacag cgaagtgaac	1500
atccacttgc ccagctttac tgccattcaa tcatggaaca ccatcatttt gaccagtgcc	1560
tgatgattct taatagtcca ggcaatcaga ttctcagtgg cctctccatt gaagaatata	1620
agaccacgtt gaaaataatc aagcaagcta ttttagctac agacctagca ctgtacatta	1680
agaggcgagg agaatttttt gaacttataa gaaaaaatca attcaatttg gaagatcctc	1740
atcaaaagga gttgtttttg gcaatgctga tgacagcttg tgatctttct gcaattacaa	1800
aaccctggcc tattcaacaa cggatagcag aacttgtagc aactgaattt tttgatcaag	1860
gagacagaga gagaaaagaa ctcaacatag aacccactga tctaatgaac agggagaaga	1920
aaaacaaaat cccaagtatg caagttgggt tcatagatgc catctgcttg caactgtatg	1980
ag	1982
<210> SEQ ID NO 13 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 13	
gccaccagag aaatggtc	18
<pre><210> SEQ ID NO 14 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 14</pre>	
acaatgggtc taagaggc	18
<pre><210> SEQ ID NO 15 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 15	
tcagtgcatg tttgctgc	18
<210> SEQ ID NO 16 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 16	10
tacaaacatg ttcatcag	18
<210> SEQ ID NO 17 <211> LENGTH: 1107 <212> TYPE: DNA <213> ORGANISM: human cDNA	

25

-cont	in	ued
-00110		ueu

0> SEQUENCE: 17	
jacatgcc tttaatacag ctcagtgcat gtttgctgct ctaaaagcag gcaaaattca	60
acaagetg actgacetgg agataettge attgetgatt getgeactaa geeaegattt	120
atcaccgt ggtgtgaata actcttacat acagcgaagt gaacatccac ttgcccagct	180
actgccat tcaatcatgg aacaccatca ttttgaccag tgcctgatga ttcttaatag	240
aggcaat cagattetea gtggeetete cattgaagaa tataagaeea egttgaaaat	300
.caagcaa gctattttag ctacagacct agcactgtac attaagaggc gaggagaatt	360
tgaactt ataagaaaaa atcaattcaa tttggaagat cctcatcaaa aggagttgtt	420
ggcaatg ctgatgacag cttgtgatct ttctgcaatt acaaaaccct ggcctattca	480
accggata gcagaacttg tagcaactga attttttgat caaggagaca gagagagaaa	540
actcaac atagaaccca ctgatctaat gaacagggag aagaaaaaca aaatcccaag	600
gcaagtt gggttcatag atgccatctg cttgcaactg tatgaggccc tgacccacgt	660
agaggac tgtttccctt tgctagatgg ctgcagaaag aacaggcaga aatggcaggc	720
tgcagaa cagcaggaga agatgctgat taatggggaa agcggccagg ccaagcggaa	780
gagtggcc tatttcatgc agagttgaag tttacagaga tggtgtgttc tgcaatatgc	840
gtttctt acacactgtc tgtatagtgt ctgtatttgg tatatacttt gccactgctg	900
ttttatt tttgcacaac ttttgagagt atagcatgaa tgtttttaga ggactattac	960
attttttg tatatttgtt ttatgctact gaactgaaag gatcaacaac atccactgtt	1020
acattga taaaagcatt gtttgtgata tttcgtgtac tgcaaagtgt atgcagtatt	1080
gcactga ggtttttttg cttgggg	1107
0> SEQ ID NO 18 1> LENGTH: 18 2> TYPE: DNA 3> ORGANISM: Artificial Sequence 0> FEATURE: 3> OTHER INFORMATION: Primer	
ggaagat cctcatca	18
<pre>0> SEQ ID NO 19 1> LENGTH: 28 2> TYPE: DNA 3> ORGANISM: Artificial Sequence 0> FEATURE: 23> OTHER INFORMATION: Primer 00> SEQUENCE: 19</pre>	
gtetegag teagtteege ttggeetg	28
0> SEQ ID NO 20 1> LENGTH: 30 2> TYPE: DNA 3> ORGANISM: Artificial Sequence 0> FEATURE: 3> OTHER INFORMATION: Primer	
0> SEQUENCE: 20	
agaatto tgaccatgga gogggooggo	30

-continued

<210> SEQ ID NO 21 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 21	
cattctaagc ggatacag	18
<pre><210> SEQ ID NO 22 <211> LENGTH: 2645 <212> TYPE: DNA <213> ORGANISM: human cDNA <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (12)(2636)</pre>	
<400> SEQUENCE: 22	
gaattetgae c atg gag egg gee gge eee age tte ggg eag eag ega eag Met Glu Arg Ala Gly Pro Ser Phe Gly Gln Gln Arg Gln 1 5 10	50
cag cag ccc cag cag cag aag cag cag cag	98
gtc gaa gca tgg ctg gac gat cac tgg gac ttt acc ttc tca tac ttt Val Glu Ala Trp Leu Asp Asp His Trp Asp Phe Thr Phe Ser Tyr Phe 30 35 40 45	146
gtt aga aaa gcc acc aga gaa atg gtc aat gca tgg ttt gct gag aga Val Arg Lys Ala Thr Arg Glu Met Val Asn Ala Trp Phe Ala Glu Arg 50 55 60	194
gtt cac acc atc cct gtg tgc aag gaa ggt atc aga ggc cac acc gaa Val His Thr Ile Pro Val Cys Lys Glu Gly Ile Arg Gly His Thr Glu 65 70 75	242
tct tgc tct tgt ccc ttg cag cag agt cct cgt gca gat aac agt gtc Ser Cys Ser Cys Pro Leu Gln Gln Ser Pro Arg Ala Asp Asn Ser Val 80 85 90	290
cct gga aca cca acc agg aaa atc tct gcc tct gaa ttt gac cgg cct Pro Gly Thr Pro Thr Arg Lys Ile Ser Ala Ser Glu Phe Asp Arg Pro 95 100 105	338
ctt aga ccc att gtt gtc aag gat tct gag gga act gtg agc ttc ctc Leu Arg Pro Ile Val Val Lys Asp Ser Glu Gly Thr Val Ser Phe Leu 110 115 120 125	386
tct gac tca gaa aag aag gaa cag atg cct cta acc cct cca agg ttt Ser Asp Ser Glu Lys Lys Glu Gln Met Pro Leu Thr Pro Pro Arg Phe 130 135 140	434
gat cat gat gaa ggg gac cag tgc tca aga ctc ttg gaa tta gtg aag Asp His Asp Glu Gly Asp Gln Cys Ser Arg Leu Leu Glu Leu Val Lys 145 150 155	482
gat att tct agt cat ttg gat gtc aca gcc tta tgt cac aaa att ttc Asp Ile Ser Ser His Leu Asp Val Thr Ala Leu Cys His Lys Ile Phe 160 165 170	530
ttg cat atc cat gga ctg ata tct gct gac cgc tat tcc ctg ttc ctt Leu His Ile His Gly Leu Ile Ser Ala Asp Arg Tyr Ser Leu Phe Leu 175 180 185	578
gtc tgt gaa gac agc tcc aat gac aag ttt ctt atc agc cgc ctc ttt Val Cys Glu Asp Ser Ser Asn Asp Lys Phe Leu Ile Ser Arg Leu Phe 190 195 200 205	626

-continued

								-	con	tin	ued			
	gtt Val											674		
	tta Leu											722		
	ccc Pro											770		
	gtt Val 255											818		
	att Ile											866		
	aag Lys											914		
	ttt Phe											962		
	ctc Leu				-							1010		
	gac Asp 335											1058		
	ttg Leu											1106		
	tgc C y s											1154		
	gtg Val											1202		
	aca Thr											1250		
	gtc Val 415											1298		
	aaa Lys											1346		
	tgc Cys											1394		
	aaa Lys											1442		
	ggc Gl y											1490		
-	ttt Phe 495	-		-	 -		-		-	-	-	1538		

-continued

							-	con	tin	ued				
	gca Ala											1586		
	tcg Ser											1634		
	tta Leu											1682		
	ttt Phe											1730		
	aca Thr 575											1778		
	aaa Lys											1826		
	cgg Arg											1874		
	cag Gln											1922		
	act Thr											1970		
-	ttg Leu 655	-	-	 				-	-	-	-	2018		
	cca Pro											2066		
	дас Авр											2114		
	ggc Gl y											2162		
	gct Ala											2210		
	ttt Phe 735											2258		
	caa Gln											2306		
	gca Ala											2354		
	gca Ala											2402		
	ata Ile											2450		

-continued

											-	con	tin	ued		
					GJÀ ddd											2498
					gtg Val 835											2546
					cag Gln											2594
					GJÀ dàà									tga	ctcgag	2645
<213 <213)> SH 1> LH 2> TY 3> OH	ENGTH	H: 87 PRT	75	an cI	ONA										
<400)> SH	EQUEI	ICE :	23												
Met 1	Glu	Arg	Ala	Gly 5	Pro	Ser	Phe	Gly	Gln 10	Gln	Arg	Gln	Gln	Gln 15	Gln	
Pro	Gln	Gln	Gln 20	Lys	Gln	Gln	Gln	Arg 25	Asp	Gln	Asp	Ser	Val 30	Glu	Ala	
-		35	-		Trp	-	40				-	45			-	
	50	-			Val	55		-			60	-				
65			-	-	Glu 70	-		-	-	75				-	80	
-				85	Ser Ser		-		90					95		
		-	100		Ser			105		-	-		110	-		
		115	-	-	Met		120					125		-		
	130	-			Ser	135					140		-		-	
145 Ser	His	Leu	Asp	Val	150 Thr	Ala	Leu	Сув	His	155 Lys	Ile	Phe	Leu	His	160 Ile	
His	Gly	Leu	Ile 180	165 Ser	Ala	Asp	Arg	Ty r 185	170 Ser	Leu	Phe	Leu	Val 190	175 Cys	Glu	
Asp	Ser	Ser 195		Asp	Lys	Phe	Leu 200		Ser	Arg	Leu	Phe 205		Val	Ala	
Glu	Gly 210	Ser	Thr	Leu	Glu	Glu 215	Val	Ser	Asn	Asn	C y s 220	Ile	Arg	Leu	Glu	
Trp 225	Asn	Lys	Gly	Ile	Val 230	Gly	His	Val	Ala	Ala 235	Leu	Gly	Glu	Pro	Leu 240	
Asn	Ile	Lys	Asp	Ala 245	Tyr	Glu	Asp	Pro	Arg 250	Phe	Asn	Ala	Glu	Val 255	Asp	
Gln	Ile	Thr	Gly 260	Tyr	Lys	Thr	Gln	Ser 265	Ile	Leu	Cys	Met	Pro 270	Ile	Lys	
Asn	His	Arg	Glu	Glu	Val	Val	Gly	Val	Ala	Gln	Ala	Ile	Asn	Lys	Lys	

-continued

												con	tin	ued							
		275					280					285									
Ser	Gly 290	Asn	Gly	Gly	Thr	Phe 295	Thr	Glu	Lys	Asp	Glu 300	Lys	Asp	Phe	Ala						
Ala 305	Tyr	Leu	Ala	Phe	C y s 310	Gly	Ile	Val	Leu	His 315	Asn	Ala	Gln	Leu	Ty r 320						
Glu	Thr	Ser	Leu	Leu 325	Glu	Asn	Lys	Arg	Asn 330	Gln	Val	Leu	Leu	A sp 335	Leu						
Ala	Ser	Leu	Ile 340	Phe	Glu	Glu	Gln	Gln 345	Ser	Leu	Glu	Val	Ile 350	Leu	Lys						
Lys	Ile	Ala 355	Ala	Thr	Ile	Ile	Ser 360	Phe	Met	Gln	Val	Gln 365	Lys	Cys	Thr						
Ile	Phe 370	Ile	Val	Asp	Glu	Asp 375	Cys	Ser	Asp	Ser	Phe 380	Ser	Ser	Val	Phe						
His 385	Met	Glu	Cys	Glu	Glu 390	Leu	Glu	Lys	Ser	Ser 395	Asp	Thr	Leu	Thr	Arg 400						
Glu	His	Asp	Ala	Asn 405	Lys	Ile	Asn	Tyr	Met 410	Tyr	Ala	Gln	Tyr	Val 415	Lys						
Asn	Thr	Met	Glu 420	Pro	Leu	Asn	Ile	Pro 425	Asp	Val	Ser	Lys	Asp 430	Lys	Arg						
Phe	Pro	Trp 435	Thr	Thr	Glu	Asn	Thr 440	Gly	Asn	Val	Asn	Gln 445	Gln	Cys	Ile						
Arg	Ser 450	Leu	Leu	Cys	Thr	Pro 455	Ile	Lys	Asn	Gly	Lys 460	Lys	Asn	Lys	Val						
Ile 465	Gly	Val	Cys	Gln	Leu 470	Val	Asn	Lys	Met	Glu 475	Glu	Asn	Thr	Gly	L y s 480						
Val	Lys	Pro	Phe	Asn 485	Arg	Asn	Asp	Glu	Gln 490	Phe	Leu	Glu	Ala	Phe 495	Val						
Ile	Phe	Сув	Gly 500	Leu	Gly	Ile	Gln	Asn 505	Thr	Gln	Met	Tyr	Glu 510	Ala	Val						
Glu	Arg	Ala 515	Met	Ala	Lys	Gln	Met 520	Val	Thr	Leu	Glu	Val 525	Leu	Ser	Tyr						
His	Ala 530	Ser	Ala	Ala	Glu	Glu 535	Glu	Thr	Arg	Glu	Leu 540	Gln	Ser	Leu	Ala						
Ala 545	Ala	Val	Val	Pro	Ser 550	Ala	Gln	Thr	Leu	L y s 555	Ile	Thr	Asp	Phe	Ser 560						
Phe	Ser	Asp	Phe	Glu 565	Leu	Ser	Asp	Leu	Glu 570	Thr	Ala	Leu	Cys	Thr 575	Ile						
Arg	Met	Phe	Thr 580	Asp	Leu	Asn	Leu	Val 585	Gln	Asn	Phe	Gln	Met 590	Lys	His						
Glu	Val	Leu 595	Cys	Arg	Trp	Ile	Leu 600	Ser	Val	Lys	Lys	Asn 605	Tyr	Arg	Lys						
Asn	Val 610	Ala	Tyr	His	Asn	Trp 615	Arg	His	Ala	Phe	Asn 620	Thr	Ala	Gln	Cys						
Met 625	Phe	Ala	Ala	Leu	L y s 630	Ala	Gly	Lys	Ile	Gln 635	Asn	Lys	Leu	Thr	Asp 640						
Leu	Glu	Ile	Leu	Ala 645	Leu	Leu	Ile	Ala	Ala 650	Leu	Ser	His	Asp	Leu 655	Asp						
His	Arg	Gly	Val 660	Asn	Asn	Ser	Tyr	Ile 665	Gln	Arg	Ser	Glu	His 670	Pro	Leu						
Ala	Gln	Leu 675	Tyr	Cys	His	Ser	Ile 680	Met	Glu	His	His	His 685	Phe	Asp	Gln						

Сув	Leu 690	Met	Ile	Leu	Asn	Ser 695	Pro	Gly	Asn	Gln	Ile 700	Leu	Ser	Gly	Leu
Ser 705	Ile	Glu	Glu	Tyr	L y s 710	Thr	Thr	Leu	Lys	Ile 715	Ile	Lys	Gln	Ala	Ile 720
Leu	Ala	Thr	Asp	Leu 725	Ala	Leu	Tyr	Ile	L y s 730	Arg	Arg	Gly	Glu	Phe 735	Phe
Glu	Leu	Ile	Arg 740	Lys	Asn	Gln	Phe	Asn 745	Leu	Glu	Asp	Pro	His 750	Gln	Lys
Glu	Leu	Phe 755	Leu	Ala	Met	Leu	Met 760	Thr	Ala	Сув	Asp	Leu 765	Ser	Ala	Ile
Thr	L y s 770	Pro	Trp	Pro	Ile	Gln 775	Gln	Arg	Ile	Ala	Glu 780	Leu	Val	Ala	Thr
Glu 785	Phe	Phe	Asp	Gln	Gl y 790	Asp	Arg	Glu	Arg	L y s 795	Glu	Leu	Asn	Ile	Glu 800
Pro	Thr	Asp	Leu	Met 805	Asn	Arg	Glu	Lys	L y s 810	Asn	Lys	Ile	Pro	Ser 815	Met
Gln	Val	Gly	Phe 820	Ile	Asp	Ala	Ile	Cys 825	Leu	Gln	Leu	Tyr	Glu 830	Ala	Leu
Thr	His	Val 835	Ser	Glu	Asp	Cys	Phe 840	Pro	Leu	Leu	Asp	Gly 845	Cys	Arg	Lys
Asn	A rg 850	Gln	Lys	Trp	Gln	Ala 855	Leu	Ala	Glu	Gln	Gln 860	Glu	Lys	Met	Leu
Ile 865	Asn	Gly	Glu	Ser	Gly 870	Gln	Ala	Lys	Arg	Asn 875					
<21 <21	0> SE 1> LE 2> TY 3> OF	NGTH	\mathbf{PRT}	35	.ne										
<213 <213 <213	l> LH 2> TY	NGTH PE: RGANI	I: 23 PRT SM:	35 bovi	.ne										
<213 <213 <213 <400	1> LE 2> TY 3> OF	PE: RGANI	I: 23 PRT SM: NCE:	35 bovi 24		Val	Leu	Сув	Lys 10	Trp	Ile	Leu	Ser	Val 15	Lys
<21: <21: <21: <400 Phe 1	1> LE 2> TY 3> OF 0> SE	ENGTH PE: RGANI RQUEN Met	H: 23 PRT SM: NCE: Lys	35 bovi 24 His 5	Glu				10					15	
<21: <21: <21: <400 Phe 1 Lys	1> LH 2> TY 3> OF 0> SH Gln	ENGTH PE: RGANI EQUEN Met Tyr	H: 23 PRT SM: NCE: Lys Arg 20	35 bovi 24 His 5 Lys	Glu Asn	Val	Ala	Ty r 25	10 His	Asn	Trp	Arg	His 30	15 Ala	Phe
<21: <21: <21: <400 Phe 1 Lys Asn	l> LH 2> TY 3> OF 0> SH Gln Asn	ENGTH PE: GGANJ EQUEN Met Tyr Ala 35	H: 23 PRT SSM: NCE: Lys Arg 20 Gln	35 bovi 24 His 5 Lys Cys	Glu Asn Met	Val Phe	Ala Ala 40	Tyr 25 Ala	10 His Leu	Asn Lys	Trp Ala	Arg Gly 45	His 30 Lys	15 Ala Ile	Phe Gln
<21: <21: <21: <400 Phe 1 Lys Asn Lys	<pre>1> LE 2> TY 3> OF 0> SE Gln Asn Thr Arg</pre>	ENGTH PE: CGANJ CQUEN Met Tyr Ala 35 Leu	A: 23 PRT SM: NCE: Lys Arg 20 Gln Thr	35 bovi 24 His 5 Lys Cys Asp	Glu Asn Met Leu	Val Phe Glu 55	Ala Ala 40 Ile	Tyr 25 Ala Leu	10 His Leu Ala	Asn Lys Leu	Trp Ala Leu 60	Arg Gly 45 Ile	His 30 Lys Ala	15 Ala Ile Ala	Phe Gln Leu
<211 <211 <211 <400 Phe 1 Lys Asn Lys Ser 65	<pre>1> LE 2> TY 3> OF 0> SE Gln Asn Thr Arg 50</pre>	NGTH (PE: QGANJ QQUEN Met Tyr Ala 35 Leu Asp	H: 23 PRT SM: Lys Arg 20 Gln Thr Leu	bovi 24 His 5 Lys Cys Asp Asp	Glu Asn Met Leu His 70	Val Phe Glu 55 Arg	Ala Ala 40 Ile Gly	Tyr 25 Ala Leu Val	10 His Leu Ala Asn	Asn Lys Leu Asn 75	Trp Ala Leu 60 Ser	Arg Gly 45 Ile Tyr	His 30 Lys Ala Ile	15 Ala Ile Ala Gln	Phe Gln Leu Arg 80
<211 <211 <400 Phe 1 Lys Asn Lys Ser 65 Ser	<pre>1> LE 2> TY 3> OF Gln Asn Thr Arg 50 His</pre>	NGTH REAL CQUEN Met Tyr Ala 35 Leu Asp His	I: 23 PRT SM: ICE: Lys Arg 20 Gln Thr Leu Pro	bovi 24 His 5 Lys Cys Asp Asp Leu 85	Glu Asn Met Leu His 70 Ala	Val Phe Glu 55 Arg Gln	Ala 40 Ile Gly Leu	Tyr 25 Ala Leu Val Tyr	10 His Leu Ala Asn Cys 90	Asn Lys Leu Asn 75 His	Trp Ala Leu 60 Ser Ser	Arg Gly 45 Ile Tyr Ile	His 30 Lys Ala Ile Met	15 Ala Ile Ala Gln Glu 95	Phe Gln Leu Arg 80 His
<211 <211 <400 Phe 1 Lys Asn Lys Ser 65 Ser His	<pre>l> LE 2> TY 3> OF Gln Asn Thr Arg 50 His Glu</pre>	NGTH (PE: (GANJ) (QUEN Met Tyr Ala 35 Leu Asp His Phe	I: 23 PRT SSM: ACE: Lys Gln Thr Leu Pro Asp 100	bovi 24 His 5 Lys Cys Asp Asp Leu 85 Gln	Glu Asn Met Leu His 70 Ala Cys	Val Phe Glu 55 Arg Gln Leu	Ala Ala 40 Ile Gly Leu Met	Tyr 25 Ala Leu Val Tyr Ile 105	10 His Leu Ala Asn Cys 90 Leu	Asn Lys Leu Asn 75 His Asn	Trp Ala Leu 60 Ser Ser Ser	Arg Gly 45 Ile Tyr Ile Pro	His 30 Lys Ala Ile Met Gly 110	15 Ala Ile Ala Gln Glu 95 Asn	Phe Gln Leu Arg 80 His Gln
<211 <211 <400 Phe 1 Lys Asn Lys Ser 65 Ser His Ile	<pre>l> LF 2> TY 3> OF 0> SF Gln Asn Thr Arg 50 His Glu His</pre>	NGTH PE: CQUEN Met Tyr Ala 35 Leu Asp His Phe Ser 115	I: 23 PRT CSM: CSM: UCE: Lys Gln Thr Leu Pro Asp 100 Gly	bovi 24 His Lys Cys Asp Leu 85 Gln Leu	Glu Asn Met Leu His 70 Ala Cys Ser	Val Phe Glu 55 Arg Gln Leu Ile	Ala Ala Gly Leu Met Glu 120	Tyr 25 Ala Leu Val Tyr Ile 105 Glu	10 His Leu Ala Asn Cys 90 Leu Tyr	Asn Lys Leu Asn 75 His Asn Lys	Trp Ala Leu 60 Ser Ser Ser Thr	Arg Gly 45 Ile Tyr Ile Pro Thr 125	His 30 Lys Ala Ile Met Gly 110 Leu	15 Ala Ile Ala Gln Glu 95 Asn Lys	Phe Gln Leu Arg 80 His Gln Ile
<211 <211 <400 Phe 1 Lys Asn Lys Ser 65 Ser His Ile	<pre>l> LE 2> TY 3> OF Gln Asn Thr Arg 50 His Glu His Leu Lys</pre>	NGTH PE: CQUEN Met Tyr Ala 35 Leu Asp His Phe Ser 115 Gln	I: 23 PRT SM: CSM: Lys CCE: Lys Gln Thr Leu Pro Asp 100 Gly Ala	bovi 24 His 5 Lys Cys Asp Asp Leu 85 Gln Leu Ile	Glu Asn Met Leu His 70 Ala Cys Ser Leu	Val Phe Glu 55 Gln Leu Ile Ala 135	Ala Ala 40 Gly Leu Met Glu 120 Thr	Tyr 25 Ala Leu Val Tyr Ile 105 Glu Asp	10 His Leu Ala Asn Cys 90 Leu Tyr Leu	Asn Lys Leu Asn 75 His Asn Lys Ala	Trp Ala Leu 60 Ser Ser Ser Thr Leu 140	Arg Gly 45 Ile Tyr Ile Pro Thr 125 Tyr	His 30 Lys Ala Ile Gly 110 Leu Ile	15 Ala Ile Ala Gln Glu 95 Asn Lys Lys	Phe Gln Leu Arg 80 His Gln Ile Arg

-continued

165 170 175 Asp Leu Ser Ala Ile Thr Lys Pro Trp Pro Ile Gln Gln Arg Ile Ala 180 185 190 Glu Leu Val Ala Thr Glu Phe Phe Asp Gln Gly Asp Arg Glu Arg Lys 195 200 205 Glu Leu Asn Ile Glu Pro Ala Asp Leu Met Asn Arg Glu Lys Lys Asn 210 215 220 Lys Ile Pro Ser Met Gln Val Gly Phe Ile Asp 225 230 <210> SEQ ID NO 25 <211> LENGTH: 244 <212> TYPE: PRT <213> ORGANISM: bovine <400> SEQUENCE: 25 Phe His Ile Pro Gln Glu Ala Leu Val Arg Phe Met Tyr Ser Leu Ser 10 1 5 15 Lys Gly Tyr Arg Arg Ile Thr Tyr His Asn Trp Arg His Gly Phe Asn 25 20 Val Gly Gln Thr Met Phe Ser Leu Leu Val Thr Gly Lys Leu Lys Arg 35 40 45 Tyr Phe Thr Asp Leu Glu Ala Leu Ala Met Val Thr Ala Ala Phe Cys 50 55 60 His Asp Ile Asp His Arg Gly Thr Asn Asn Leu Tyr Gln Met Lys Ser 65 70 75 80 Gln Asn Pro Leu Ala Lys Leu His Gly Ser Ser Ile Leu Glu Arg His 85 90 95 His Leu Glu Phe Gly Lys Thr Leu Leu Arg Asp Glu Ser Leu Asn Ile 100 105 110 Phe Gln Asn Leu Asn Arg Arg Gln His Glu His Ala Ile His Met Met 115 120 125 Asp Ile Ala Ile Ile Ala Thr Asp Leu Ala Leu Tyr Cys Lys Arg 130 135 140
 Thr Met Phe Gln Lys
 Ile Val Asp Gln Ser Lys
 Thr Tyr Glu
 Thr Gln

 145
 150
 155
 160
 Gln Glu Trp Thr Gln Tyr Met Met Leu Asp Gln Thr Arg Lys Glu Ile 165 170 175 Val Met Ala Met Met Met Thr Ala Cys Asp Leu Ser Ala Ile Thr Lys 190 180 185 Pro Trp Glu Val Gln Ser Lys Val Ala Leu Leu Val Ala Ala Glu Phe 205 195 200 Trp Glu Gln Gly Asp Leu Glu Arg Thr Val Leu Gln Gln Asn Pro Ile 215 210 220 Pro Met Met Asp Arg Asn Lys Ala Asp Glu Leu Pro Lys Leu Gln Val 230 235 225 240 Gly Phe Ile Asp <210> SEQ ID NO 26 <211> LENGTH: 244 <212> TYPE: PRT <213> ORGANISM: bovine <400> SEQUENCE: 26

Phe 1	Gln	Ile	Pro	Gln 5	Glu	Val	Leu	Val	Arg 10	Phe	Leu	Phe	Ser	Val 15	Ser
Lys	Gly	Tyr	Arg 20	Arg	Ile	Thr	Tyr	His 25	Asn	Trp	Arg	His	Gly 30	Phe	Asn
Val	Ala	Gln 35	Thr	Met	Phe	Thr	Leu 40	Leu	Met	Thr	Gly	L y s 45	Leu	Lys	Ser
Tyr	Ty r 50	Thr	Asp	Leu	Glu	Ala 55	Phe	Ala	Met	Val	Thr 60	Ala	Gly	Leu	Cys
His 65	Asp	Ile	Asp	His	Arg 70	Gly	Thr	Asn	Asn	Leu 75	Tyr	Gln	Met	Lys	Ser 80
Gln	Asn	Pro	Leu	Ala 85	Lys	Leu	His	Gly	Ser 90	Ser	Ile	Leu	Glu	Arg 95	His
His	Leu	Glu	Phe 100	Gly	Lys	Phe	Leu	Leu 105	Ser	Glu	Glu	Thr	Leu 110	Asn	Ile
Tyr	Gln	Asn 115	Leu	Asn	Arg	Arg	Gln 120	His	Glu	His	Val	Ile 125	His	Leu	Met
Asp	Ile 130	Ala	Ile	Ile	Ala	Thr 135	Asp	Leu	Ala	Leu	Tyr 140	Phe	Lys	Lys	Arg
Thr 145	Met	Phe	Gln	Lys	Ile 150	Val	Asp	Glu	Ser	L y s 155	Asn	Tyr	Glu	Asp	Arg 160
Lys	Ser	Trp	Val	Glu 165	Tyr	Leu	Ser	Leu	Glu 170	Thr	Thr	Arg	Lys	Glu 175	Ile
Val	Met	Ala	Met 180	Met	Met	Thr	Ala	С у в 185	Asp	Leu	Ser	Ala	Ile 190	Thr	Lys
Pro	Trp	Glu 195	Val	Gln	Ser	Lys	Val 200	Ala	Leu	Leu	Val	Ala 205	Ala	Glu	Phe
Trp	Glu 210	Gln	Gly	Asp	Leu	Glu 215	Arg	Thr	Val	Leu	Asp 220	Gln	Gln	Pro	Ile
Pro 225	Met	Met	Asp	Arg	Asn 230	Lys	Ala	Ala	Glu	Leu 235	Pro	Lys	Leu	Gln	Val 240
Gly	Phe	Ile	Asp												
<213 <212)> SE 1> LE 2> TY 3> OF	NGTH	H: 24 PRT	14	lne										
<400)> SE	QUEI	ICE :	27											
Phe 1	Lys	Val	Pro	Val 5	Glu	Val	Leu	Thr	Arg 10	Trp	Met	Thr	Tyr	Val 15	Arg
Lys	Gly	Tyr	Arg 20	Ala	Val	Thr	Tyr	His 25	Asn	Trp	Arg	His	Gly 30	Phe	Asn
Val	Gly	Gln 35	Thr	Met	Phe	Thr	Leu 40	Leu	Met	Thr	Gly	Arg 45	Leu	Lys	Lys
Tyr	Ty r 50	Thr	Asp	Leu	Glu	Ala 55	Phe	Ala	Met	Leu	Ala 60	Ala	Ala	Phe	Cys
His 65	Asp	Ile	Asp	His	Arg 70	Gly	Thr	Asn	Asn	Leu 75	Tyr	Gln	Met	Lys	Ser 80
Thr	Ser	Pro	Leu	Ala 85	Arg	Leu	His	Gly	Ser 90	Ser	Ile	Leu	Glu	Arg 95	His
His		-					_	-		_					

-continued	-co	on	ti	.n	ue	d
------------	-----	----	----	----	----	---

Phe Gln Asn Leu Asn Lys Arg Gln Tyr Glu Thr Val Ile His Leu Phe 120 125 115 Glu Val Ala Ile Ile Ala Thr Asp Leu Ala Leu Tyr Phe Lys Lys Arg 130 135 140 Thr Met Phe Gln Lys Ile Val Asp Ala Cys Glu Lys Met Glu Thr Glu 145 150 155 160 Glu Glu Ala Ile Lys Tyr Val Thr Ile Asp Pro Thr Lys Lys Glu Ile 165 170 175 Ile Met Ala Met Met Met Thr Ala Cys Asp Leu Ser Ala Ile Thr Lys 190 180 185 Pro Trp Glu Val Gln Ser Gln Val Ala Leu Leu Val Ala Asn Glu Phe 195 200 205 Trp Glu Gln Gly Asp Leu Glu Arg Thr Val Leu Gln Gln Gln Pro Ile 215 210 220 Pro Met Met Asp Arg Asn Lys Lys Asp Glu Leu Pro Lys Leu Gln Val 230 225 235 240 Gly Phe Ile Asp <210> SEQ ID NO 28 <211> LENGTH: 233 <212> TYPE: PRT <213> ORGANISM: bovine <400> SEQUENCE: 28 Tyr Lys Ile Asp Cys Pro Thr Leu Ala Arg Phe Cys Leu Met Val Lys 1 5 10 15 Lys Gly Tyr Arg Asp Pro Pro Tyr His Asn Trp Met His Ala Phe Ser 20 25 30 Val Ser His Phe Cys Tyr Leu Leu Tyr Lys Asn Leu Glu Leu Thr Asn 35 40 45 Tyr Leu Glu Asp Met Glu Ile Phe Ala Leu Phe Ile Ser Cys Met Cys 50 55 60 His Asp Leu Asp His Arg Gly Thr Asn Asn Ser Phe Gln Val Ala Ser 65 70 75 80 Lys Ser Val Leu Ala Ala Leu Tyr Ser Ser Glu Gly Ser Val Met Glu 95 85 90 Arg His His Phe Ala Gln Ala Ile Ala Ile Leu Asn Thr His Gly Cys 100 105 110 Asn Ile Phe Asp His Phe Ser Arg Lys Asp Tyr Gln Arg Met Leu Asp 115 120 125 Leu Met Arg Asp Ile Ile Leu Ala Thr Asp Leu Ala His His Leu Arg 130 135 140 Ile Phe Lys Asp Leu Gln Lys Met Ala Glu Val Gly Tyr Asp Arg Thr 150 145 155 160 Asn Lys Gln His His Ser Leu Leu Leu Cys Leu Met Thr Ser Cys 165 170 175 Asp Leu Ser Asp Gln Thr Lys Gly Trp Lys Thr Thr Arg Lys Ile Ala 180 185 190 180 Glu Leu Ile Tyr Lys Glu Phe Phe Ser Gln Gly Asp Leu Glu Lys Ala 195 200 205 Met Gly Asn Arg Pro Met Glu Met Met Asp Arg Glu Lys Ala Tyr Ile 210 215 220

Pro Glu Leu Gln Ile Ser Phe Met Glu 225 230 <210> SEQ ID NO 29 <211> LENGTH: 230 <212> TYPE: PRT <213> ORGANISM: bovine <400> SEQUENCE: 29 Phe Lys Ile Pro Val Ser Cys Leu Ile Ala Phe Ala Glu Ala Leu Glu 1 5 10 15 Val Gly Tyr Ser Lys Tyr Lys Asn Pro Tyr His Asn Leu Ile His Ala 20 25 30 Ala Asp Val Thr Gln Thr Val His Tyr Ile Met Leu His Thr Gly Ile 40 35 45 Met His Trp Leu Thr Glu Leu Glu Ile Leu Ala Met Val Phe Ala Ala 60 50 55 Ala Ile His Asp Tyr Glu His Ile Gly Thr Thr Asn Asn Phe His Ile65707580 Gln Thr Arg Ser Asp Val Ala Ile Leu Tyr Asn Asp Arg Ser Val Leu 85 90 95 Glu Asn His His Val Ser Ala Ala Tyr Arg Leu Met Gln Glu Glu Glu 100 105 Met Asn Val Leu Ile Asn Leu Ser Lys Asp Asp Trp Arg Asp Leu Arg 115 120 125 Asn Leu Val Ile Glu Met Val Leu Ser Thr Asp Met Ser Gly His Phe 130 135 140 Gln Gln Ile Lys Asn Ile Arg Asn Ser Leu Gln Gln Pro Glu Gly Leu 145 150 155 160 Asp Lys Ala Lys Thr Met Ser Leu Ile Leu His Ala Ala Asp Ile Ser 165 170 175 His Pro Ala Lys Ser Trp Lys Leu His His Arg Trp Thr Met Ala Leu 180 185 190 Met Glu Glu Phe Phe Leu Gln Gly Asp Lys Glu Ala Glu Leu Gly Leu 195 200 205 Pro Phe Ser Pro Leu Cys Asp Arg Lys Ser Thr Met Val Ala Gln Ser 210 215 220 Gln Ile Gly Phe Ile Asp 225 230 <210> SEQ ID NO 30 <211> LENGTH: 230 <212> TYPE: PRT <213> ORGANISM: bovine <400> SEQUENCE: 30 Phe Lys Ile Pro Thr Val Phe Leu Met Thr Phe Leu Asp Ala Leu Glu 1 5 10 15 Thr Gly Tyr Gly Lys Tyr Lys Asn Pro Tyr His Asn Gln Ile His Ala 20 25 30 Ala Asp Val Thr Gln Thr Val His Cys Phe Leu Leu Arg Thr Gly Met 40 35 45 Val His Cys Leu Ser Glu Ile Glu Val Leu Ala Ile Ile Phe Ala Ala 50 55 60

|--|

Ala 65																
	Ile	His	Asp	Tyr	Glu 70	His	Ile	Gly	Thr	Thr 75	Asn	Ser	Phe	His	Ile 80	
Gln	Thr	Lys	Ser	Glu 85	Gln	Ala	Ile	Leu	Ty r 90	Asn	Asp	Arg	Ser	Val 95	Leu	
Glu	Asn	His	His 100	Ile	Ser	Ser	Val	Phe 105	Arg	Met	Met	Gln	Asp 110	Asp	Glu	
Met	Asn	Ile 115	Phe	Ile	Asn	Leu	Thr 120	Lys	Asp	Glu	Phe	Val 125	Glu	Leu	Arg	
Ala	Leu 130	Val	Ile	Glu	Met	Val 135	Leu	Ala	Thr	Asp	Met 140	Ser	Сув	His	Phe	
Gln 145	Gln	Val	Lys	Ser	Met 150	Lys	Thr	Ala	Leu	Gln 155	Gln	Leu	Glu	Arg	Ile 160	
Asp	Lys	Ser	Lys	Ala 165	Leu	Ser	Leu	Leu	Leu 170	His	Ala	Ala	Asp	Ile 175	Ser	
His	Pro	Thr	Lys 180	Gln	Trp	Ser	Val	His 185	Ser	Arg	Trp	Thr	Lys 190	Ala	Leu	
Met	Glu	Glu 195	Phe	Phe	Arg	Gln	Gly 200	Asp	Lys	Glu	Ala	Glu 205	Leu	Gly	Leu	
Pro	Phe 210	Ser	Pro	Leu	Сув	Asp 215	Arg	Thr	Ser	Thr	Leu 220	Val	Ala	Gln	Ser	
Gln 225	Ile	Gly	Phe	Ile	Asp 230											
<213 <213)> SE L> LE 2> TY 3> OF	NGTH	I: 24 PRT	10												
~~ -																
)> SE	QUEN	ICE :	31												
<400)> SE Gln				Asp	Thr	Leu	Leu	Arg 10	Tyr	Leu	Leu	Thr	Leu 15	Glu	
<400 Phe 1		Ile	Pro	Ala 5	_				10	-				15		
<400 Phe 1 Gly	Gln	Ile Tyr	Pro His 20	Ala 5 Ser	Asn	Val	Ala	Ty r 25	10 His	Asn	Ser	Ile	His 30	15 Ala	Ala	
<400 Phe 1 Gly Asp	Gln His	Ile Tyr Val 35	Pro His 20 Gln	Ala 5 Ser Ser	Asn Ala	Val His	Ala Val 40	Ty r 25 Leu	10 His Leu	Asn Gly	Ser Thr	Ile Pro 45	His 30 Ala	15 Ala Leu	Ala Glu	
<400 Phe 1 Gly Asp Ala	Gln His Val Val	Ile Tyr Val 35 Phe	Pro His 20 Gln Thr	Ala 5 Ser Ser Asp	Asn Ala Leu	Val His Glu 55	Ala Val 40 Val	Ty r 25 Leu Leu	10 His Leu Ala	Asn Gly Ala	Ser Thr Ile 60	Ile Pro 45 Phe	His 30 Ala Ala	15 Ala Leu Cys	Ala Glu Ala	
<400 Phe 1 Gly Asp Ala Ile 65	Gln His Val Val 50	Ile Tyr Val 35 Phe Asp	Pro His 20 Gln Thr Val	Ala 5 Ser Ser Asp Asp	Asn Ala Leu His 70	Val His Glu 55 Pro	Ala Val 40 Val Gly	Tyr 25 Leu Leu Val	10 His Leu Ala Ser	Asn Gly Ala Asn 75	Ser Thr Ile 60 Gln	Ile Pro 45 Phe Phe	His 30 Ala Ala Leu	15 Ala Leu Cys Ile	Ala Glu Ala Asn 80	
<400 Phe 1 Gly Asp Ala Ile 65 Thr	Gln His Val Val 50 His	Ile Tyr Val 35 Phe Asp Ser	Pro His 20 Gln Thr Val Glu	Ala 5 Ser Ser Asp Asp Leu 85	Asn Ala Leu His 70 Ala	Val His Glu 55 Pro Leu	Ala Val Val Gly Met	Tyr 25 Leu Leu Val Tyr	10 His Leu Ala Ser Asn 90	Asn Gly Ala Asn 75 Asp	Ser Thr Ile 60 Gln Ser	Ile Pro 45 Phe Phe Ser	His 30 Ala Ala Leu Val	15 Ala Leu Cys Ile Leu 95	Ala Glu Ala Asn 80 Glu	
<400 Phe 1 Gly Asp Ala 1 Le 65 Thr Asn	Gln His Val Val His Asn	Ile Tyr Val 35 Phe Asp Ser His	Pro His 20 Gln Thr Val Glu Leu 100	Ala 5 Ser Ser Asp Leu 85 Ala	Asn Ala Leu His 70 Ala Val	Val His Glu 55 Pro Leu Gly	Ala Val 40 Val Gly Met Phe	Tyr 25 Leu Leu Val Tyr Lys 105	10 His Leu Ala Ser Asn 90 Leu	Asn Gly Ala Asn 75 Asp Leu	Ser Thr Ile 60 Gln Ser Gln	Ile Pro 45 Phe Ser Gly	His 30 Ala Ala Leu Val Glu 110	15 Ala Leu Cys Ile Leu 95 Asn	Ala Glu Ala Asn 80 Glu Cys	
<400 Phe 1 Gly Asp Ala 1 le 65 Thr Asn Asp	Gln His Val Val His Asn His	Ile Tyr Val 35 Phe Asp Ser His Phe 115	Pro His 20 Gln Thr Val Glu Leu 100 Gln	Ala Ser Ser Asp Asp Leu 85 Ala Asn	Asn Ala Leu His 70 Ala Val Leu	Val His Glu 55 Pro Leu Gly Ser	Ala Val 40 Val Gly Met Phe Thr 120	Tyr 25 Leu Leu Val Tyr Lys Lys Lys	10 His Leu Ala Ser Asn 90 Leu Gln	Asn Gly Ala Asn 75 Asp Leu Lys	Ser Thr Ile 60 Gln Ser Gln Leu	Ile Pro 45 Phe Ser Gly Ser 125	His 30 Ala Ala Leu Val Glu 110 Leu	15 Ala Leu Cys Ile Leu 95 Asn Arg	Ala Glu Ala Asn 80 Glu Cys Arg	
<400 Phe 1 Gly Asp Ala 1 Ile 65 Thr Asn Asp Met	Gln His Val Val His Asn His Ile Val	Ile Tyr Val 35 Phe Asp Ser His Phe 115 Ile	Pro His 20 Gln Thr Val Glu Leu 100 Gln Asp	Ala Ser Ser Asp Asp Leu 85 Ala Asn Met	Asn Ala Leu His 70 Ala Val Leu Val	Val His Glu 55 Pro Leu Gly Ser Leu 135	Ala Val Gly Met Phe Thr 120 Ala	Tyr 25 Leu Leu Val Tyr Lys 105 Lys Thr	10 His Leu Ala Ser Asn 90 Leu Gln Asp	Asn Gly Ala Asn 75 Asp Leu Lys Met	Ser Thr Ile 60 Gln Ser Gln Leu Ser 140	Ile Pro 45 Phe Ser Gly Ser 125 Lys	His 30 Ala Ala Leu Val Glu 110 Leu His	15 Ala Leu Cys Ile Leu 95 Asn Arg Met	Ala Glu Ala Asn 80 Glu Cys Arg Ser	
<400 Phe 1 Gly Asp Ala Ile 65 Thr Asn Asp Met Leu 145	Gln His Val Val His Asn His Ile Val 130	Ile Tyr Val 35 Phe Asp Ser His Phe 115 Ile Ala	Pro His 20 Gln Thr Val Glu Leu 100 Gln Asp Asp	Ala Ser Ser Asp Asp Leu S5 Ala Asn Met Leu	Asn Ala Leu His 70 Ala Val Leu Val Lys 150	Val His Glu 55 Pro Leu Gly Ser Leu 135 Thr	Ala Val 40 Val Gly Met Phe Thr 120 Ala Met	Tyr 25 Leu Val Tyr Lys Lys Lys Thr Val	10 His Leu Ala Ser Asn 90 Leu Gln Asp Glu	Asn Gly Ala Asn 75 Asp Leu Lys Met Thr 155	Ser Thr Ile 60 Gln Ser Gln Leu Ser 140 Lys	Ile Pro 45 Phe Ser Gly Ser 125 Lys Lys	His 30 Ala Ala Leu Val Glu 110 Leu His Val	15 Ala Leu Cys Ile Jeu 95 Asn Arg Met	Ala Glu Ala Asn 80 Glu Cys Arg Ser Ser 160	

-continued

												con	tin	ued	
			180					185					190		
Pro	Leu	Ty r 195	Arg	Gln	Trp	Thr	Glu 200	Arg	Ile	Met	Ala	Glu 205	Phe	Phe	Gln
Gln	Gly 210	Asp	Arg	Glu	Arg	Glu 215	Ser	Gly	Leu	Asp	Ile 220	Ser	Pro	Met	Cys
Asp 225	Lys	His	Thr	Ala	Ser 230	Val	Glu	Lys	Ser	Gln 235	Val	Gly	Phe	Ile	Asp 240
<211 <212	.> LH ?> TY	EQ II ENGTH (PE: RGAN]	I: 2 PRT	39	soph:	ila									
<400)> SI	EQUEI	NCE :	32											
Met 1	Ile	Pro	Pro	Lys 5	Thr	Phe	Leu	Asn	Phe 10	Met	Ser	Thr	Leu	Glu 15	Asp
His	Tyr	Val	Lys 20	Asp	Asn	Pro	Phe	His 25	Asn	Ser	Leu	His	Ala 30	Ala	Asp
Val	Thr	Gln 35	Ser	Thr	Asn	Val	Leu 40	Leu	Asn	Thr	Pro	Ala 45	Leu	Glu	Gly
Val	Phe 50	Thr	Pro	Leu	Glu	Val 55	Gly	Gly	Ala	Leu	Phe 60	Ala	Ala	Cys	Ile
His 65	Asp	Val	Asp	His	Pro 70	Gly	Leu	Thr	Asn	Gln 75	Phe	Leu	Val	Asn	Ser 80
Ser	Ser	Glu	Leu	Ala 85	Leu	Met	Tyr	Asn	Asp 90	Glu	Ser	Val	Leu	Glu 95	Asn
His	His	Leu	Ala 100		Ala	Phe	Lys	Leu 105	Leu	Gln	Asn	Gln	Gly 110	Суз	Asp
Ile	Phe	C y s 115	Asn	Met	Gln	Lys	L y s 120	Gln	Arg	Gln	Thr	Leu 125	Arg	Lys	Met
Val	Ile 130	Asp	Ile	Val	Leu	Ser 135	Thr	Asp	Met	Ser	Lys 140	His	Met	Ser	Leu
Leu 145	Ala	Asp	Leu	Lys	Thr 150	Met	Val	Glu	Thr	L y s 155	Lys	Val	Ala	Gly	Ser 160
Gly	Val	Leu	Leu	Leu 165	Asp	Asn	Tyr	Thr	Asp 170	Arg	Ile	Gln	Val	Leu 175	Glu
Asn	Leu	Val	His 180		Ala	Asp	Leu	Ser 185		Pro	Thr	Lys	Pro 190	Leu	Pro
Leu	Tyr	L y s 195	Arg	Trp	Val	Ala	Leu 200	Leu	Met	Glu	Glu	Phe 205	Phe	Leu	Gln
Gly	Asp 210	Lys	Glu	Arg	Glu	Ser 215	Gly	Met	Asp	Ile	Ser 220	Pro	Met	Cys	Asp
A rg 225	His	Asn	Ala	Thr	Ile 230	Glu	Lys	Ser	Gln	Val 235	Gly	Phe	Ile	Asp	
<211 <212	.> LH ?> TY	EQ II ENGTH (PE: RGAN]	H: 3 PRT	85	ine										
<400)> SH	EQUEI	NCE :	33											
Leu 1	Leu	Glu	Leu	Val 5	Lys	Asp	Ile	Ser	Ser 10	His	Leu	Asp	Val	Thr 15	Ala
Leu	Сув	His	Lys	Ile	Phe	Leu	His	Ile	His	Gly	Leu	Ile	Ser	Ala	Asp

-continued

			20					0 F					30		
۸ra	Ture	Ser	20 Leu	Dhe	Low	Vol	C	25 Glu	Acr	Sor	Sor	Acr	30 Acr	Tare	Dhe
Arg	ryr	Ser 35	ьeu	гле	Leu	vai	Сув 40	GIU	Asp	ъer	ser	Asn 45	Азр	цув	rne
Leu	Ile 50	Ser	Arg	Leu	Phe	Asp 55	Val	Ala	Glu	Gly	Ser 60	Thr	Leu	Glu	Glu
	Ser	Asn	Asn	Cys		Arg	Leu	Glu	Trp		Lys	Gly	Ile	Val	_
65	1	- 1	- 1	_1	70	- 1	_	_	_	75	_	_		_	80
His	Val	Ala	Ala	Phe 85	Gly	Glu	Pro	Leu	Asn 90	Ile	Lys	Asp	Ala	Tyr 95	Glu
Asp	Pro	Arg	Phe 100	Asn	Ala	Glu	Val	Asp 105	Gln	Ile	Thr	Gly	Ty r 110	Lys	Thr
Gln	Ser		Leu	Cys	Met	Pro		Lys	Asn	His	Arg	Glu	Glu	Val	Val
a1	** - 1	115	a 1	.].	T].	•	120	T	a	al		125	a 1	m]	Dl
GIY	Val 130	Ala	GIn	Ala	IIe	Asn 135	Lys	Lys	Ser	GIY	Asn 140	GIY	GIY	Thr	Phe
Thr 145	Glu	Lys	Asp	Glu	Lys 150	Asp	Phe	Ala	Ala	Ty r 155	Leu	Ala	Phe	Cys	Gly 160
Ile	Val	Leu	His	Asn	Ala	Gln	Leu	Tyr	Glu	Thr	Ser	Leu	Leu	Glu	Asn
_	_	_		165	_	_	_	_	170	_	_			175	
Lys	Arg	Asn	Gln 180	Val	Leu	Leu	Asp	Leu 185	Ala	Ser	Leu	Ile	Phe 190	Glu	Glu
Gln	Gln	Ser 195	Leu	Glu	Val	Ile	Leu 200	Lys	Lys	Ile	Ala	Ala 205	Thr	Ile	Ile
Ser	Phe		Gln	Val	Gln	Lys		Thr	Ile	Phe	Ile	Val	Asp	Glu	Asp
	210					215					220		_		
С у в 225	Ser	Asp	Ser	Phe	Ser 230	Ser	Val	Phe	His	Met 235	Glu	Cys	Glu	Glu	Leu 240
Glu	Lys	Ser	Ser	Asp 245	Thr	Leu	Thr	Arg	Glu 250	Arg	Asp	Ala	Asn	Arg 255	Ile
Asn	Tyr	Met	Tyr		Gln	Tyr	Val	Lys	Asn	Thr	Met	Glu	Pro		Asn
_			260					265					270		
Ile	Pro	Asp 275	Val	Ser	Lys	Asp	Lys 280	Arg	Phe	Pro	Trp	Thr 285	Asn	Glu	Asn
Met	Gly 290	Asn	Ile	Asn	Gln	Gln 295	Сув	Ile	Arg	Ser	Leu 300	Leu	Cys	Thr	Pro
Ile		Asn	Gly	Lys	Lys		Lys		Ile		Val	Cys	Gln	Leu	Val
305					310										320
Asn	Lys	Met	Glu	Glu 325	Thr	Thr	Gly	Lys	Val 330	Lys	Ala	Phe	Asn	Arg 335	Asn
Asp	Glu	Gln	Phe 340	Leu	Glu	Ala	Phe	Val 345	Ile	Phe	Cys	Gly	Leu 350	Gly	Ile
Gln	Asn	Thr		Met	Tyr	Glu	Ala		Glu	Arg	Ala	Met		Lys	Gln
		355			-		360			,		365		-	
Met	Val 370	Thr	Leu	Glu	Val	Leu 375	Ser	Tyr	His	Ala	Ser 380	Ala	Ala	Glu	Glu
Glu 385															

<212> TYPE: PRT <213> ORGANISM: bovine

<400)> SE	QUEN	ICE :	34											
Ile 1	Leu	Gln	Leu	Cys 5	Gly	Glu	Leu	Tyr	Asp 10	Leu	Asp	Ala	Ser	Ser 15	Leu
Gln	Leu	Lys	Val 20	Leu	Gln	Tyr	Leu	Gln 25	Gln	Glu	Thr	Gln	Ala 30	Ser	Arg
Суз	Суз	Leu 35	Leu	Leu	Val	Ser	Glu 40	Asp	Asn	Leu	Gln	Leu 45	Ser	Сув	Lys
Val	Ile 50	Gly	Asp	Lys	Val	Leu 55	Glu	Glu	Glu	Ile	Ser 60	Phe	Pro	Leu	Thr
Thr 65	Gly	Arg	Leu	Gly	Gln 70	Val	Val	Glu	Asp	L y s 75	Lys	Ser	Ile	Gln	Leu 80
Lys	Asp	Leu	Thr	Ser 85	Glu	Asp	Met	Gln	Gln 90	Leu	Gln	Ser	Met	Leu 95	Gly
Сув	Glu	Val	Gln 100	Ala	Met	Leu	Сув	Val 105	Pro	Val	Ile	Ser	Arg 110	Ala	Thr
Asp	Gln	Val 115	Val	Ala	Leu	Ala	Cys 120	Ala	Phe	Asn	Lys	Leu 125	Gly	Gly	Asp
Leu	Phe 130	Thr	Asp	Gln	Asp	Glu 135	His	Val	Ile	Gln	His 140	Cys	Phe	His	Tyr
Thr 145	Ser	Thr	Val	Leu	Thr 150	Ser	Thr	Leu	Ala	Phe 155	Gln	Lys	Glu	Gln	L y s 160
Leu	Lys	Cys	Glu	С у в 165	Gln	Ala	Leu	Leu	Gln 170	Val	Ala	Lys	Asn	Leu 175	Phe
Thr	His	Leu	Asp 180	Asp	Val	Ser	Val	Leu 185	Leu	Gln	Glu	Ile	Ile 190	Thr	Glu
Ala	Arg	Asn 195	Leu	Ser	Asn	Ala	Glu 200	Ile	Cys	Ser	Val	Phe 205	Leu	Ile	Asp
Gln	Asn 210	Glu	Leu	Val	Ala	L y s 215	Val	Phe	Asp	Gly	Gly 220	Val	Leu	Glu	Asp
Glu 225	Ser	Tyr	Glu	Ile	Arg 230	Ile	Pro	Ala	Asp	Gln 235	Gly	Ile	Ala	Gly	His 240
Val	Ala	Thr	Thr	Gl y 245	Gln	Ile	Leu	Asn	Ile 250	Pro	Asp	Ala	Tyr	Ala 255	His
Pro	Leu	Phe	Ty r 260	Arg	Gly	Val	Asp	A sp 265	Ser	Thr	Gly	Arg	Phe 270	Thr	Arg
Asn	Ile	Leu 275	Сув	Phe	Pro	Ile	L y s 280	Asn	Glu	Asn	Gln	Glu 285	Val	Ile	Gly
Val	Ala 290	Glu	Leu	Val	Asn	Lys 295	Ile	Asn	Gly	Pro	Trp 300	Phe	Ser	Lys	Phe
Asp 305	Glu	Asp	Leu	Ala	Thr 310	Ala	Phe	Ser	Ile	Ty r 315	Суз	Gly	Ile	Ser	Ile 320
Ala	His	Ser	Leu	Leu 325	Tyr	Lys	Lys	Val	Asn 330	Glu	Ala	Gln	Tyr	Arg 335	Ser
His	Leu	Ala	Asn 340	Glu	Met	Met	Met	Ty r 345	His	Met	Lys	Val	Ser 350	Asp	Asp
Glu															

<210> SEQ ID NO 35 <211> LENGTH: 402 <212> TYPE: PRT <213> ORGANISM: bovine

<400)> SE	QUEI	ICE :	35											
Leu 1	Leu	Glu	Val	Leu 5	Leu	Glu	Glu	Ala	Gly 10	Ser	Val	Glu	Leu	Ala 15	Ala
His	Arg	Ala	Leu 20	Gln	Arg	Leu	Ala	Gln 25	Leu	Leu	Gln	Ala	Asp 30	Arg	Сув
Ser	Met	Phe 35	Leu	Cys	Arg	Ala	Arg 40	Asn	Gly	Thr	Pro	Glu 45	Val	Ala	Ser
Lys	Leu 50	Leu	Asp	Val	Thr	Pro 55	Thr	Ser	Lys	Phe	Glu 60	Asp	Asn	Leu	Val
Val 65	Pro	Asp	Arg	Glu	Ala 70	Val	Phe	Pro	Leu	Asp 75	Val	Gly	Ile	Val	Gly 80
Trp	Val	Ala	His	Thr 85	Lys	Lys	Thr	Phe	Asn 90	Val	Pro	Asp	Val	Lys 95	Lys
Asn	Ser	His	Phe 100	Ser	Asp	Phe	Met	A sp 105	Lys	Gln	Thr	Gly	Ty r 110	Val	Thr
Arg	Asn	Leu 115	Leu	Ala	Thr	Pro	Ile 120	Val	Met	Gly	Lys	Glu 125	Val	Leu	Ala
Val	Phe 130	Met	Ala	Val	Asn	L y s 135	Val	Asp	Ala	Ser	Glu 140	Phe	Ser	Lys	Gln
Asp 145	Glu	Glu	Val	Phe	Ser 150	Lys	Tyr	Leu	Ser	Phe 155	Val	Ser	Ile	Ile	Leu 160
Lys	Leu	His	His	Thr 165	Asn	Tyr	Leu	Tyr	Asn 170	Ile	Glu	Ser	Arg	Arg 175	Ser
Gln	Ile	Leu	Met 180	Trp	Ser	Ala	Asn	L y s 185	Val	Phe	Glu	Glu	Leu 190	Thr	Азр
Val	Glu	Arg 195	Gln	Phe	His	Lys	Ala 200	Leu	Tyr	Thr	Val	Arg 205	Thr	Tyr	Leu
Asn	C y s 210	Glu	Arg	Tyr	Ser	Ile 215	Gly	Leu	Leu	Asp	Met 220	Thr	Lys	Glu	Lys
Glu 225	Phe	Tyr	Asp	Glu	Trp 230	Pro	Val	Lys	Pro	Gly 235	Glu	Val	Glu	Pro	Ty r 240
Lys	Gly	Pro	Lys	Thr 245	Pro	Asp	Gly	Arg	Glu 250	Val	Ile	Phe	Tyr	L y s 255	Ile
Ile	Asp	Tyr	Ile 260	Leu	His	Gly	Lys	Glu 265	Glu	Ile	Lys	Val	Ile 270	Pro	Thr
Pro	Pro	Met 275	Asp	His	Trp	Thr	Leu 280	Ile	Ser	Gly	Leu	Pro 285	Thr	Tyr	Val
Ala	Glu 290	Asn	Gly	Phe	Ile	C y s 295	Asn	Met	Leu	Asn	Ala 300	Pro	Ala	Asp	Glu
Ty r 305	Phe	Thr	Phe	Gln	Lys 310	Gly	Pro	Val	Asp	Glu 315	Thr	Gly	Trp	Val	Ile 320
Lys	Asn	Val	Leu	Ser 325	Leu	Pro	Ile	Val	Asn 330	Lys	Lys	Glu	Asp	Ile 335	Val
Gly	Val	Ala	Thr 340	Phe	Tyr	Asn	Arg	Lys 345	Asp	Gly	Lys	Pro	Phe 350	Asp	Glu
Tyr	Asp	Glu 355	His	Ile	Ala	Glu	Thr 360	Leu	Thr	Gln	Phe	Leu 365	Gly	Trp	Ser
Leu	Leu 370	Asn	Thr	Asp	Thr	Ty r 375	Glu	Lys	Met	Asn	L y s 380	Leu	Glu	Asn	Arg
Lys	Asp	Ile	Ala	Gln	Glu	Met	Leu	Met	Asn	His	Thr	Lys	Ala	Thr	Pro

		-	4			-	-1
-00	n	т.	Т.	n	11	е	а.

	-continued														
385					390					395					400
Asp	Glu														
<211 <212	.> LE ?> TY	Q II NGTH PE: QANJ	I: 40 PRT		ine										
<400)> SE	QUEN	ICE :	36											
Leu 1	Phe	Glu	Leu	Val 5	Gln	Asp	Met	Gln	Glu 10	Asn	Val	Asn	Met	Glu 15	Arg
Val	Val	Phe	Lys 20	Ile	Leu	Arg	Arg	Leu 25	Cys	Ser	Ile	Leu	His 30	Ala	Asp
Arg	Cys	Ser 35	Leu	Phe	Met	Tyr	Arg 40	Gln	Arg	Asn	Gly	Val 45	Ala	Glu	Leu
Ala	Thr 50	Arg	Leu	Phe	Ser	Val 55	Gln	Pro	Asp	Ser	Val 60	Leu	Glu	Asp	Cys
Leu 65	Val	Pro	Pro	Asp	Ser 70	Glu	Ile	Val	Phe	Pro 75	Leu	Asp	Ile	Gly	Val 80
Val	Gly	His	Val	Ala 85	Gln	Thr	Lys	Lys	Met 90	Val	Asn	Val	Gln	Asp 95	Val
Met	Glu	Cys	Pro 100	His	Phe	Ser	Ser	Phe 105	Ala	Asp	Glu	Leu	Thr 110	Asp	Tyr
Val	Thr	Arg 115	Asn	Ile	Leu	Ala	Thr 120	Pro	Ile	Met	Asn	Gly 125	Lys	Asp	Val
Val	Ala 130	Val	Ile	Met	Ala	Val 135	Asn	Lys	Leu	Asp	Gly 140	Pro	Cys	Phe	Thr
Ser 145	Glu	Asp	Glu	Asp	Val 150	Phe	Leu	Lys	Tyr	Leu 155	Asn	Phe	Gly	Thr	Leu 160
Asn	Leu	Lys	Ile	Ty r 165	His	Tyr	Ser	Tyr	Leu 170	His	Asn	Cys	Glu	Thr 175	Arg
Arg	Gly	Gln	Val 180	Leu	Leu	Trp	Ser	Ala 185	Asn	Lys	Val	Phe	Glu 190	Glu	Leu
Thr	Asp	Ile 195	Glu	Arg	Gln	Phe	His 200	Lys	Ala	Phe	Tyr	Thr 205	Val	Arg	Ala
Tyr	Leu 210	Asn	Cys	Asp	Arg	Ty r 215	Ser	Val	Gly	Leu	Leu 220	Asp	Met	Thr	Lys
Glu 225	Lys	Glu	Phe	Phe	Asp 230	Val	Trp	Pro	Val	Leu 235	Met	Gly	Glu	Ala	Gln 240
Ala	Tyr	Ser	Gly	Pro 245	Arg	Thr	Pro	Asp	Gly 250	Arg	Glu	Ile	Leu	Phe 255	Tyr
Lys	Val	Ile	Asp 260	Tyr	Ile	Leu	His	Gly 265	Lys	Glu	Asp	Ile	L y s 270	Val	Ile
Pro	Ser	Pro 275	Pro	Ala	Asp	His	T rp 280	Ala	Leu	Ala	Ser	Gly 285	Leu	Pro	Thr
Tyr	Val 290	Ala	Glu	Ser	Gly	Phe 295	Ile	Суз	Asn	Ile	Met 300	Asn	Ala	Pro	Ala
Asp 305	Glu	Met	Phe	Asn	Phe 310	Gln	Glu	Gly	Pro	Leu 315	Asp	Asp	Ser	Gly	Trp 320
Ile	Val	Lys	Asn	Val 325	Leu	Ser	Met	Pro	Ile 330	Val	Asn	Lys	Lys	Glu 335	Glu
Ile	Val	Gly	Val	Ala	Thr	Phe	Tyr	Asn	Arg	Lys	Asp	Gly	Lys	Pro	Phe

continued

												con	tin	ued	
			340					345					350		
Asp	Glu	Gln 355	Asp	Glu	Val	Leu	Met 360	Glu	Ser	Leu	Thr	Gln 365	Phe	Leu	Gly
Trp	Ser 370	Val	Leu	Asn	Thr	Asp 375	Thr	Tyr	Asp	Lys	Met 380	Asn	Lys	Leu	Glu
Asn 385	Arg	Lys	Asp	Ile	Ala 390	Gln	Asp	Met	Val	Leu 395	Tyr	His	Val	Arg	Cys 400
Asp	Arg	Glu	Glu												
<211 <212	l> LE 2> TY	EQ II ENGTH PE: RGANI	I: 40 PRT)1	ine										
<400)> SE	QUEN	ICE :	37											
Leu 1	Leu	Arg	Asp	Phe 5	Gln	Asp	Asn	Leu	Gln 10	Ala	Glu	Lys	Cys	Val 15	Phe
Asn	Val	Met	Lys 20	Lys	Leu	Суз	Phe	Leu 25	Leu	Gln	Ala	Asp	Arg 30	Met	Ser
Leu	Phe	Met 35	Tyr	Arg	Ala	Arg	Asn 40	Gly	Ile	Ala	Glu	Leu 45	Ala	Thr	Arg
Leu	Phe 50	Asn	Val	His	Lys	Asp 55	Ala	Val	Leu	Glu	Glu 60	Cys	Leu	Val	Ala
Pro 65	Asp	Ser	Glu	Ile	Val 70	Phe	Pro	Leu	Asp	Met 75	Gly	Val	Val	Gly	His 80
Val	Ala	Leu	Ser	L y s 85	Lys	Ile	Val	Asn	Val 90	Pro	Asn	Thr	Glu	Glu 95	Asp
Glu	His	Phe	Cy s 100	Asp	Phe	Val	Asp	Thr 105	Leu	Thr	Glu	Tyr	Gln 110	Thr	Lys
Asn	Ile	Leu 115	Ala	Ser	Pro	Ile	Met 120	Asn	Gly	Lys	Asp	Val 125	Val	Ala	Ile
Ile	Met 130	Ala	Val	Asn	Lys	Val 135	Asp	Gly	Pro	His	Phe 140	Thr	Glu	Asn	Asp
Glu 145	Glu	Ile	Leu	Leu	Lys 150	Tyr	Leu	Asn	Phe	Ala 155	Asn	Leu	Ile	Met	Lys 160
Val	Phe	His	Leu	Ser 165	Tyr	Leu	His	Asn	C y s 170	Glu	Thr	Arg	Arg	Gly 175	Gln
Ile	Leu	Leu	T rp 180	Ser	Gly	Ser	Lys	Val 185	Phe	Glu	Glu	Leu	Thr 190	Asp	Ile
Glu	Arg	Gln 195	Phe	His	Lys	Ala	Leu 200	Tyr	Thr	Val	Arg	Ala 205	Phe	Leu	Asn
Cys	Asp 210	Arg	Tyr	Ser	Val	Gly 215	Leu	Leu	Asp	Met	Thr 220	Lys	Gln	Lys	Glu
Phe 225	Phe	Asp	Val	Trp	Pro 230	Val	Leu	Met	Gly	Glu 235	Ala	Pro	Pro	Tyr	Ala 240
Gly	Pro	Arg	Thr	Pro 245	Asp	Gly	Arg	Glu	Ile 250	Asn	Phe	Tyr	Lys	Val 255	Ile
Asp	Tyr	Ile	Leu 260	His	Gly	Lys	Glu	A sp 265	Ile	Lys	Val	Ile	Pro 270	Asn	Pro
Pro	Pro	Asp 275	His	Trp	Ala	Leu	Val 280	Ser	Gly	Leu	Pro	Thr 285	Tyr	Val	Ala
Gln	Asn		Leu	Ile	Cys	Asn		Met	Asn	Ala	Pro		Glu	Asp	Phe

-continued

											-	con	tin	ued	
	290					295					300				
Phe 305	Ala	Phe	Gln	Lys	Glu 310	Pro	Leu	Asp	Glu	Ser 315	Gly	Trp	Met	Ile	L y s 320
Asn	Val	Leu	Ser	Met 325	Pro	Ile	Val	Asn	Lys 330	Lys	Glu	Glu	Ile	Val 335	Gly
Val	Ala	Thr	Phe 340	Tyr	Asn	Arg	Lys	А вр 345		Lys	Pro	Phe	Asp 350	Glu	Met
Asp	Glu	Thr 355	Leu	Met	Glu	Ser	Leu 360	Ala	Gln	Phe	Leu	Gly 365	Trp	Ser	Val
Leu	Asn 370	Pro	Asp	Thr	Tyr	Glu 375	Leu	Met	Asn	Lys	Leu 380	Glu	Asn	Arg	Lys
Asp 385	Ile	Phe	Gln	Asp	Met 390	Val	Lys	Tyr	His	Val 395	Lys	Cys	Asp	Asn	Glu 400
Glu															
<211 <212 <213	.> LH :> TY :> OF	EQ II ENGTH (PE: RGAN] EQUEN	H: 84 PRT (SM:	l bov:	ine										
					Lys	Asp	Ala	Tyr	Glu 10	Asp	Pro	Arg	Phe	Asn 15	Ala
	Val	Asp	Gln 20		Thr	Gly	Tyr	Lys 25		Gln	Ser	Ile	Leu 30		Met
Pro	Ile	L y s 35		His	Arg	Glu	Glu 40		Val	Gly	Val	Ala 45		Ala	Ile
Asn	Lys 50	Lys	Ser	Gly	Asn	Gly 55	Gly	Thr	Phe	Thr	Glu 60	Lys	Asp	Glu	Lys
Asp 65	Phe	Ala	Ala	Tyr	Leu 70	Ala	Phe	Cys	Gly	Ile 75	Val	Leu	His	Met	Ala 80
Gln	Leu	Tyr	Glu												
<211 <212	> LE > TY	EQ II ENGTH (PE: RGAN]	H: 83 PRT	L	ine										
<400	> SH	EQUEN	ICE :	39											
Lys 1	Ile	Val	Asn	Val 5	Pro	Asn	Thr	Glu	Glu 10	Asp	Glu	His	Phe	C y s 15	Asp
Phe	Val	Asp	Thr 20	Leu	Thr	Glu	Tyr	Gln 25	Thr	Lys	Asn	Ile	Leu 30	Ala	Ser
Pro	Ile	Met 35	Asn	Gly	Lys	Asp	Val 40	Val	Ala	Ile	Ile	Met 45	Ala	Val	Asn
Lys	Val 50	Asp	Gly	Pro	His	Phe 55	Thr	Glu	Asn	Asp	Glu 60	Glu	Ile	Leu	Leu
L y s 65	Tyr	Leu	Asn	Phe	Ala 70	Asn	Leu	Ile	Met	Lys 75	Val	Phe	His	Leu	Ser 80
Tyr															
.010				4.0											

<210> SEQ ID NO 40 <211> LENGTH: 81 <212> TYPE: PRT

```
-continued
```

<213> ORGANISM: bovine <400> SEQUENCE: 40 Lys Met Val Asn Val Gln Asp Val Met Glu Cys Pro His Phe Ser Ser 1 5 10 15 Phe Ala Asp Glu Leu Thr Asp Tyr Val Thr Arg Asn Ile Leu Ala Thr 20 25 30 Pro Ile Met Asn Gly Lys Asp Val Val Ala Val Ile Met Ala Val Asn 35 40 45 Lys Leu Asp Gly Pro Cys Phe Thr Ser Glu Asp Glu Asp Val Phe Leu 50 55 60 Lys Tyr Leu Asn Phe Gly Thr Leu Asn Leu Lys Ile Tyr His Leu Ser65707580 Tyr <210> SEQ ID NO 41 <211> LENGTH: 81 <212> TYPE: PRT <213> ORGANISM: bovine <400> SEQUENCE: 41 Lys Thr Phe Asn Val Pro Asp Val Lys Lys Asn Ser His Phe Ser Asp 1 5 10 15 Phe Met Asp Lys Gln Thr Gly Tyr Val Thr Arg Asn Ile Leu Ala Thr 20 25 30 Pro Ile Val Met Gly Lys Glu Val Leu Ala Val Phe Met Ala Val Asn 35 40 45 Lys Val Asp Ala Ser Glu Phe Ser Lys Gln Asp Glu Glu Val Phe Ser 50 55 60 LysTyrLeuSerPheValSerIleLeuLysLeuHisThrAsn65707580 Tyr <210> SEQ ID NO 42 <211> LENGTH: 81 <212> TYPE: PRT <213> ORGANISM: bovine <400> SEQUENCE: 42 Lys Ser Ile Gln Leu Lys Asp Leu Thr Ser Glu Asp Met Gln Gln Leu 5 10 15 1 Gln Ser Met Leu Gly Cys Glu Val Gln Ala Met Leu Cys Val Pro Val 20 25 30 Ile Ser Arg Ala Thr Asp Gln Val Val Ala Leu Ala Cys Ala Phe As
n35 40 45 Lys Leu Gly Gly Asp Leu Phe Thr Asp Gl
n Asp Glu His Val Ile Gln $% \mathcal{S}_{\mathrm{S}}$ 55 60 50 His Cys Phe His Tyr Thr Ser Thr Val LeuThr Ser Thr Leu Ala Phe65707580 Gln <210> SEQ ID NO 43 <211> LENGTH: 91 <212> TYPE: PRT

<213> ORGANISM: bovine

-continued

<400> SEOUENCE: 43 Glu Pro Leu Asn Ile Pro Asp Val Ser Lys Asp Lys Arg Phe Pro Trp 5 15 1 10 Thr Asn Glu Asn Met Gly Asn Ile Asn Gln Gln Cys Ile Arg Ser Leu 20 25 30 Leu Cys Thr Pro Ile Lys Asn Gly Lys Lys Asn Lys Val Ile Gly Val 40 45 35 Cys Gln Leu Val Asn Lys Met Glu Glu Thr Thr Gly Lys Val Lys Ala 50 55 60 Phe Asn Arg Asn Asp Glu Gln Phe Leu Glu Ala Phe Val Ile Phe Cys 70 75 65 80 Gly Leu Gly Ile Gln Asn Thr Gln Met Tyr Glu 85 90 <210> SEQ ID NO 44 <211> LENGTH: 84 <212> TYPE: PRT <213> ORGANISM: bovine <400> SEQUENCE: 44 Leu Ile Cys Asn Ile Met Asn Ala Pro Ser Glu Asp Phe Phe Ala Phe 1 5 10 Gln Lys Glu Pro Leu Asp Glu Ser Gly Trp Met Ile Lys Asn Val Leu 20 25 30 Ser Met Pro Ile Val Asn Lys Lys Glu Glu Ile Val Gly Val Ala Thr 35 40 45 Phe Tyr Asn Arg Lys Asp Gly Lys Pro Phe Asp Glu Met Asp Glu Thr 50 55 60 Leu Met Glu Ser Leu Ala Gln Phe Leu Gly Trp Ser Val Leu Asn Pro 65 70 75 80 Asp Thr Tyr Glu <210> SEQ ID NO 45 <211> LENGTH: 84 <212> TYPE: PRT <213> ORGANISM: bovine <400> SEQUENCE: 45 Phe Ile Cys Asn Ile Met Asn Ala Pro Ala Asp Glu Met Phe Asn Phe 10 5 15 1 Gln Glu Gly Pro Leu Asp Asp Ser Gly Trp Ile Val Lys Asn Val Leu 20 25 30 Ser Met Pro Ile Val Asn Lys Lys Glu Glu Ile Val Gly Val Ala Thr 35 40 45 Phe Tyr Asn Arg Lys Asp Gly Lys Pro Phe Val Glu Gln Asp Glu Val 50 55 60 Leu Met Glu Ser Leu Thr Gln Phe Leu Gly Trp Ser Val Leu Asn Thr 65 70 75 80 Asp Thr Tyr Asp <210> SEQ ID NO 46 <211> LENGTH: 84 <212> TYPE: PRT <213> ORGANISM: bovine

-continued

<400> SEOUENCE: 46 Phe Ile Cys Asn Met Leu Asn Ala Pro Ala Asp Glu Tyr Phe Thr Phe 1 -5 10 15 Gln Lys Gly Pro Val Asp Glu Thr Gly Trp Val Ile Lys Asn Val Leu 25 Ser Leu Pro Ile Val Asn Lys Lys Glu Asp Ile Val Gly Val Ala Thr 35 40 45 Phe Tyr Asn Arg Lys Asp Gly Lys Pro Phe Asp Glu Tyr Asp Glu His 50 55 60 Ile Ala Glu Thr Leu Thr Gln Phe Leu Gly Trp Ser Leu Leu Asn Thr 65 70 75 80 70 Asp Thr Tyr Glu <210> SEQ ID NO 47 <211> LENGTH: 82 <212> TYPE: PRT <213> ORGANISM: bovine <400> SEQUENCE: 47 Gln Ile Leu Asn Ile Pro Asp Ala Tyr Ala His Pro Leu Phe Tyr Arg 1 5 10 15 Gly Val Asp Asp Ser Thr Gly Phe Arg Thr Arg Asn Ile Leu Cys Phe Pro Ile Lys Asn Glu Asn Gln Glu Val Ile Gly Val Ala Glu Leu Val 40 Asn Lys Ile Asn Gly Pro Trp Phe Ser Lys Phe Asp Glu Asp Leu Ala 50 55 60 Thr Ala Phe Ser IleTyr Cys Gly Ile Ser Ile Ala His Ser LeuLeu65707580 Tyr Lys

1. A purified and isolated polynucleotide encoding cGB-PDE.

2. The polynucleotide of claim 1 which is a DNA sequence.

3. The DNA sequence of claim 2 which is a cDNA sequence or a biological replica thereof.

4. The DNA sequence of claim 2 which is a genomic DNA sequence or a biological replica thereof.

5. An RNA transcript of the genomic DNA sequence of claim 4.

6. The DNA sequence of claim 2 which is a wholly or partially chemically synthesized DNA sequence or a biological replica thereof.

7. The DNA sequence of claim 4 further comprising an endogenous expression control DNA sequence.

8. A DNA vector comprising a DNA sequence according to claim 2.

9. The vector of claim 8 wherein said DNA sequence is operatively linked to an expression control DNA sequence.

10. A host cell stably transformed or transfected with a DNA sequence according to claim 7 in a manner allowing the expression in said host cell of cGB-PDE polypeptide

possessing a ligand/receptor binding biological activity or immunological property specific to cGB-PDE.

11. A method for producing cGB-PDE polypeptide, said method comprising growing a host cell according to claim 10 in a suitable nutrient medium and isolating cGB-PDE polypeptide from said cell or the medium of its growth.

12. A polypeptide or peptide capable of specifically binding to cGB-PDE.

13. An antibody substance according to claim 12.

14. A monoclonal antibody according to claim 13.

15. A hybridoma cell line producing a monoclonal antibody according to claim 14.

16. A humanized antibody substance according to claim 13.

17. An antisense polynucleotide specific for a polynucleotide encoding cGB-PDE.

18. A DNA sequence encoding cGB-PDE and selected from the group consisting of:

(a) the DNA sequence set out in SEQ ID NO: 9 or 22;

(b) a DNA which hybridizes under stringent conditions to the DNA of (a); and

(c) a DNA sequence which, but for the redundancy of the generic code, would hybridize under stringent conditions to a DNA sequence of (a) or (b).

19. A method for modulating the enzymatic activity of cGB-PDE, comprising contacting cGB-PDE with an effective amount of an agent that binds CGB-PDE and activates or inhibits cGB-PDE.

20. The method of claim 19 wherein the agent that binds cGB-PDE is selected from the group consisting of antibodies, peptides, proteins, oligonucleotides, antisense molecules, non-peptide compounds, and small molecules.

21. The method of claim 20, wherein the agent that binds cGB-PDE is an anti-cGB-PDE antibody.

22. A method for identifying an agent that specifically binds to cGB-PDE comprising:

- (a) contacting cGB-PDE with an effective amount of a test agent; and
- (b) determining if the test agent specifically binds cGB-PDE.

23. A method for identifying an agent that specifically binds to cGB-PDE so as to modulate the enzymatic activity of cGB-PDE comprising:

- (a) contacting cGB-PDE with an effective amount of a test agent;
- (b) determining if the test agent specifically binds cGB-PDE; and

(c) testing for modulation of cGB-PDE activity.

24. The method of claim 23, wherein the cGB-PDE is recombinant cGB-PDE.

25. The method of claim 23, wherein the agent is selected from the group consisting of antibodies, peptides, proteins, oligonucleotides, antisense molecules, non-peptide compounds, and small molecules.

26. A method of using an agent that modulates the enzymatic activity of cGB-PDE for treating a condition that involves signal transduction pathways utilizing cyclic nucleotides as second messengers, comprising administering to a subject an agent that modulates the activity of cGB-PDE.

27. An agent identified by the method of claim 24.

* * * * *