	(19) (12)	(KR) (B1)	
(51) 。Int. Cl. ⁶ C12N 15/12 A61K 35/00		(45) (11) (24)	2004 05 27 10-0414615 2003 12 26
(21) (22)	10-1997-0706109 1997 09 02 1997 09 02	(65) (43)	10-1998-0702702 1998 08 05
(86)	PCT/AU1996/000094	(87)	WO 1996/27007
(86)	1996 02 22	(87)	1996 09 06
(81)	: , , , , ,	, , , , , ,	, 가, , , , , , ,
	EA :	, , , 	, ,
		, , , ,	, ,
	EP : , , , , , , ,	, , , , , ,	, , , , , , , , , , ,
(30)	PN1457 PN6647 PN7274	1995 03 02 1995 11 20 1995 12 22	(AU) (AU) (AU)
(73)	3	, 121	576
(72)	, -161	37, 19	
	, -113	3 44, 가 10 3	
	, 4(064, , , 1	3
(74)			
:			
(54)			

/ , /

(vascular endothelial growth factor)

, / , (effector) (astroglial cell)

・ ・ ・ ・

(Vascular Endothelial Growth Factor)(, 'VEGF' (homodimer) (Seng) (Sharkey ., 1993), ., 1993). er (Yan ., 1993) (Senger ., 1993), (Sunderkotter ., 1994) 가 (Dissen ., 1994) (Koch ., 1994) (Folkman amp (Folkman amp; Shing, 1992), VEGF ; Shing, 1992) , VEGF VEGF ,VEGF VEGF

susceptibility gene)(MEN1) I (Multiple Endocrine Neoplasia type I VEGF , MEN1 가

2 (i) 15% ; (ii) 2 5% (proteinaceous molecule) 2 15% 5% (i) ; (ii) VEGF 1가 (i) 2 15% 5% , (ii) (a) : (b) flt-1/flk-1 (c) 가 가 1 가 1 20% 40% 65% 90% . 가 가 80 15% 2 , (i) 2 ; (ii) 5% (i) 2 15% 5% ; (ii) VEGF 1가 2 (i) 15% 5%

(c)	,	; (ii) /	(a)				; (b) flt-1. 기	/flk - 1	가	- ,	
,		1			15%		5%				
2	VEGF			VEGF			(, 'VE	GF ₁₆₅ ') VEG	·. , F-	
VEGF ((, 가), VEGF -) 가	VEC	θF-	(, ,	, 11q13	3	,가 ()	, ,	,), , . 가	
, (simi	VE larity)	GF- (op	otimal	alignmen	t)	2					
30%	60	, 70%, 가	VEG	F-	40% 80	, , 95% 4			50% ,	,	
,		(splic	e)			19	, 20% 6,	29 30 SOM175 8 /	% .	10	
	(i)	, 4 5%	가	; (ii) VE	GF	4		가		2 15%	
	(i)	6 5%	가	; (ii) VE	, GF	, 6		가		2 15%	
	(i)	8 5%	가	; (ii) VE	, GF	, 8		가		2 15%	
	(i)	, 10 5%	가	, (ii) V	, /EGF	, 10		가		2 15%	
VEGF	(a) , /			40%	;(b ,)) flt-1/fl 가	k-1 5	가 0%	3	; (c)	
65%	·		4		가		6,	8		10	
					3			,	(trun	, cated form)	
3 (Con (corr	15% nplement) nplement)	15%	30	%	(low str	ingency	, condition)	3	. ,	3	
, A	T 'SOI	, C M175'	G	, Т	A	, G 35%	С	• • • •	3	39%	,
∠ t	40 (the level) (high st	of stringe ringency	‰ ency))				[Sambrook	c (1989),	p. 9.47-9	.51]	

(low stringency) 4-6X SSC/0.1-0.5% w/v SDS 37-45 2 3 , 1-4X SSC/0.25-0.5% w/v SDS 45 2 3 0.1-1X SSC/0.1% w/v SDS (medium stringent condition) 60 1 3 가 VEGF-3 15% , (level of homology) 40% 60 . 70% VEGF (murine) ('mVRF'). mVRF VEGF 92% (conservation) 85% (i dentity) 9 . mVRF . VEGF-VEGF / VEGF-, 1 1 3 15% 40%, 60 7 0% 30% 39% 3 VEGF-VEGF-2 15% 5% (i) ; (ii) (VEGF) 1가 (astroglial proliferation) 3 6 (i) 2 15% 5% 1가 ; (ii) (VEGF) / , 3 6 , VEGF-VEGF -가 1 1 VEGF 165 1] 2] [[2 SOM 175 ſ [31 41 3 SOM175 BLAST (search) VEGF cDNA SOMI75 cDNA BESTFIT 4 SOM175 (splice variant) 5 VEGF 165 . VEGF 165 6 SOM175 7 SOM 175 (exon/intron map) 8a / SOM175 / SOM175 8b mVRF cDNA 9 А 1 mRNA . 가 mVRF 167 mVRF 186 3 . ' UTR AC 1 10 VRF (isoform) BESTFIT . A: mVRF ₁₆₇ hVRF ₁₆₇ , B: mVRF 186 167 hVRF 186 VRF ,

11 mVRF 167 mVEGF 188 (Breier , 1992) BESTFIT . mVEGF 9 12 VRF(/ VRF) **VEGF/PIGF/PDGF** VRF 186 . VRF 3' UTR 가 (alternate splicing) 13 mVRF cDNA () RNA 가 (Northern blot) 1.3kb 14 mVRF mRNA (A-C) (dark-field) (D-E) . E14 (A) (Ha) (Cx) (B) (Ha) . E17 . (SC) (Fa) (T) . E14 (C - D) (Ha) (Fa) (Lu) (D) E17 (cold probe) (E). = 0.5mm(A), 1.2mm(B), 1mm(C), 0.3mm(D), 0.1mm(E). 15 (A-B) (C-D) mVRF mRNA (dark-field)(A D) C) (bright-field)(B (B) (A) (A - B M) . , (C) mVRF (C ounterstaining) mVRF mRNA가 (i nterneuron)((D) = 0.1 mm(A), 0.1 mm(B), 0.25 m), m(C), 0.015mm(D). % 16 %, (μm) 8 (E8) , VEGF SOM175 . CNS 17 VEGF CNS SOM 175 ³ H(cpm) 18 1. FGF-2(10ng/ml) X6 * 1 ng/ml 2. SOM 3. SOM X6 10 ng/ml 4, SOM X6 100 ng/ml 5. SOM X6 1000 ng/ml X6 1000 ng/ml, 가 6. SOM 7. SOMX6 ** 1 ng/ml 8. SOMX6 10 ng/ml 9. SOMX6 100 ng/ml 10. SOMX6 1000 ng/ml 11. SOMX6 1000 ng/ml, 가 SOM175 6 : ** SOM 175 . 19 SOM175 ³ H(cpm) 1. FGF-2(10ng/ml) 2. SOM X6 * 1 ng/ml X6 10 ng/ml 3. SOM 4. SOM X6 100 ng/ml 5. SOM X6 1000 ng/ml 6. SOM X6 1000 ng/ml, 가 7. SOMX6 ** 1 ng/ml 8. SOMX6 10 ng/ml 9. SOMX6 100 ng/ml 10. SOMX6 1000 ng/ml 11. SOMX6 1000 ng/ml, 가 6 SOM175 : ** SOM 175 . 20 % SOM175

1. FGF-2(10ng/ml)									
2. SOM	X6 * 1 ng/	ml							
3. SOM	X6 10 ng/r	nl							
4. SOM	X6 100 ng	/ml							
5. SOM	X6 1000 ng	g/ml							
6. SOM	X6 1000 ng	g/ml,	가						
7. SOMX6	** 1 ng/ml								
8. SOMX6	10 ng/ml								
9. SOMX6	100 ng/ml								
10. SOMX6	6 1000 ng/r	nl							
11. SOMX6	6 1000 ng/r	nl,	가						
*	6	SOM175	:						
** S	OM175								

서열 번호 요약

[1]

서열 번호 VEGF165의 뉴클레오티드 서열 1 2 VEGF165의 아미노산 서열 SOM175의 뉴클레오티드 서열(VEGF-유사 분자) 3 SOM175의 아미노산 서열 4 5 엑손 6이 없는 SOM175의 뉴클레오티드 서열 엑손 6이 없는 SOM175의 아미노산 서열 6 7 <u>엑손 6 및 엑손 7이 없는 SOM175의 뉴클레오티드 서열</u> 엑손 6 및 엑손 7이 없는 SOM175의 아미노산 서열 8 엑손 4가 없는 SOM175 뉴클레오티드 서열 9 10 엑손 4가 없는 SOM175의 아미노산 서열 올리고뉴클레오티드 11 12올리고뉴클레오티드 올리고뉴클레오티드 13 14 올리고뉴클레오티드

15	인간 SOM175 인트론/엑손의 뉴클레오티드 서열
16	쥐의 SOM175(VRF)의 뉴클레오티드 서열
17	쥐의 SOM175의 아미노산 서열
18	엑손 6이 없는 쥐의 SOM175의 아미노산 서열
19	엑손 6이 없는 인간 SOM175의 아미노산 서열
	(서열 번호 6과 농일)
20	아미노산 위치 116의, 엑손 6이 없는 쥐의 SOM175에서 의 분기점(point of divergence)으로부터의, 쥐의 SOM175의 아미노산 서열
21	아미노산 위치 116의, 엑손 6이 없는 인간 SOM175에서 의 분기점으로부터의, 인간 SOM175의 아미노산 서열
22	쥐의 VEGF188의 아미노산 서열

1 cDNA SOM175 cDNA D11S750 zapll,) (1.1 kb c , -) [: Larsson (1992)]. , , 3 DNA SOM175 cDNA (SOM175 . 3 SOM175-4A, SOM175-5 4가 (SOM175-e4). SOM175-6A . SOM175-5A А SOM175 () (random primed insert) A2058 SOM175 cDNA GT11 () , : Church . cDNA Gilbert, (1984)] [SOM175 PCR (18f - 700r) (r ,

andom priming) cDNA , SOM175 (全腦) cDNA () , M175-A, M175-B, M175-C M175-D . 4 cDNA , M175-C . cDNA 3 cDNA 6 + 5'utr M1 3'utr , 2 DNA cDNA (SOM175) 2 (GCG, MAP (open reading frame)) . 5' . 672 bp 2). (2 bp) (: . 3' 3' - A -, NCBI (homology search) BLAST () VEGF VEGF ₁₆₅ : 3). SOM175 (BESTFIT (GCG, ; : 4 5) . BESTFIT 69.7% 33.3% 52.5% BLAST EST06302 (Adams , (1993)). SOM175가 VEGF . 8 VEGF VEGF -78, -80, -81, -82 6 VEGF SOM175 - 47, -70, -72, -74, -77, -82, - 89, -91, -122 - 124 가 . SOM175 VEGF . VEGF ₁₆₅ VEGF-

, VEGF-1 . 3

 VEGF
 SOM175
 ()
 (similarity)(%)
 (divergence)(%)
 ,

 DNASTAR
 (Clustal method)
 .
 .
 .
 .

 2a
 2b
 . SOM175
 6
 , SOM1

 75-e6;
 6amp;7
 , SOM175-e6amp;7;
 47
 , SOM175-e4

 . SOM175
 7
 .
 /
 SOM175

8a 8b .

A. SOM175의 스플라이스 변형체 및 인체 VEGF ₁₆₅ 사이의 뉴큘레오티드 유사성(%)										
	VEGF ₁₆₅	SOM175	SOM175-e6	SOM175-e6&7	SOM175-e4					
VEGF ₁₆₅	***	34.9	39.7	41.4	37.0					
SOM175		* * *	98.9	95.1	99.2					
SOM175-e6			***	98.8	84.0					
SOM175-e6&7				ak ak ak	80.3					
SOM175-e4					***					
B. SOM175의 스플라이스 변형체 및 인체 VEGF ₁₆₅ 사이의 뉴클레오티드 발산성(%)										
B. SOM17	5의 스플라	이스 변형처 빌	에 및 인체 VE(산성(%)	GF ₁₆₅ 사이의 뉴클	레오티드					
B. SOM17	5의 스플라 VEGF ₁₆₅	이스 변형처 빌 SOM175	에 및 인체 VE(산성(%) SOM175-e6	GF ₁₆₅ 사이의 뉴클 SOM175-e6&7	레오티드 SOM175-e4					
B. SOM17 VEGF165	5의 스플라 VEGF ₁₆₅ ***	이스 변형처 빌 SOM175 41.7	에 및 인체 VE(산성(%) SOM175-e6 41.6	GF ₁₆₅ 사이의 뉴클 SOM175-e6&7 41.7	레오티드 SOM175-e4 41.8					
B. SOM17 VEGF165 SOM175	5의 스플라 VEGF ₁₆₅	이스 변형처 빌 SOM175 41.7 ***	N 및 인체 VE(산성(%) SOM175-e6 41.6 0.2	GF ₁₆₅ 사이의 뉴클 SOM175-e6&7 41.7 0.2	레오티드 SOM175-e4 41.8 0.0					
B. SOM17 VEGF165 SOM175 SOM175-e6	5의 스플라 VEGF ₁₆₅ ***	이스 변형처 빌 SOM175 41.7 ***	N 및 인체 VE(산성(%) SOM175-e6 41.6 0.2 ***	GF ₁₆₅ 사이의 뉴클 SOM175-e6&7 41.7 0.2 0.0	레오티드 SOM175-e4 41.8 0.0 0.2					
B. SOM17 VEGF165 SOM175 SOM175-e6 SOM175-e6&7	5의 스플라 VEGF ₁₆₅ ***	이스 변형처 빌 SOM175 41.7 ***	N 및 인체 VE(산성(%) SOM175-e6 41.6 0.2 ***	GF ₁₆₅ 사이의 뉴클 SOM175-e6&7 41.7 0.2 0.0 ***	레오티드 SOM175-e4 41.8 0.0 0.2 0.3					

[2a]

	VEGF ₁₆₅	SOM175	SOM175-e6	SOM175-e6&7	SOM175-e4						
$VEGF_{165}$	***	31.4	42.3	33.5	40.6						
SOM175		***	74.7	73.7	99.1						
SOM175-e6			***	76.8	99.1						
SOM175-e6&7				***	99.1						
SOM175-e4					***						
발산성(%) VEGF ₁₆₅ SOM175 SOM175-e6 SOM175-e6&7 SOM175-e4											
VEGF ₁₆₅	***	65.7	55.4	54.6	57.4						
SOM175		***	19.9	4.2	0.0						
SOM175-e6			***	0.0	0.0						
				***	0.0						
SOM175-e6&7	1	+ · · · · · · · · · · · · · · · · · · ·	1	······································							

[2b]

4 SOM175

가

[Ferrara amp; Henzel (1989) Gospodarowicz (1989)]

(Miles test)

[Miles amp; Miles (19

.

52)] SOM175 (Boyden chamber chemotaxis assay) SOM175 가 (activator) (Pepper (1991)). SOM175 [Montesano (1986)] •

[Leung (1989)] 가 : SOM175 SOM175 가 (PC12)

,

PC12) NGF (SOM175 [Drinkwater (1991); Drinkwater (1993)]. (PNS) PNS ` SOM175 : , (神經綾) -[Suter (1992) Marinou (1992)] [Hendry (1992)] (PNS) 가 SOM175 가 [Otto (1989); Yip (1984) Hendry (1976)] CNS SOM175 SOM175 [Hagg (1992); Williams (1986); Hefti (1986) Kromer (1987)] SOM175 [Schilling (1995) Hunt (1967)] 가 : (murine) FACS-가 (stem cell) : (a) Lin⁻, Rh^{hi}, Ly-6A/E , ^з Н +, c-kit + (b) , D13 CFU-S Lin -, Rh hi, Ly-6A/E +, c-kit + , D13 (c) (progenitor)-Lin ⁻ , Rh ^{hi} , Ly-6A/E ⁺ , c-kit , SOM175가 + . , 7 14 , Т SOM175 가 가 (coverslip) (modifi ed Rose chamber) SOM175 SOM175 [Lowe (1991)] [Lowe (1991)] , cAMP ,) [Midy (1994)] (SOM175 [Ewton (1980) Gospodarowicz (1976)] 5 VEGF DNA cDNA VRF(mVRF) Zap cDNA (5 x 10 () ⁴ pfu/) hVRF cDNA(pSOM175) PCR 682

 bp ³² P .
 (-N)

 [Church amp; Gilbert (1984)]
 65
 ,

 ,
 p
 SK cDNA
 .

 Fix II
 ()
 SV 129
 .

 (5 × 10 ⁴ pfu/)
 mVRF cDNA
 233-798
 PCR
 563 bp ³² P

 ()
 :
 9).
 , 400
 800 pfu

 .
 QIAGEN)
 ZnCl 2
 [

cDNA (ABI) (terminator) , 가 ABI 373A DNA . BESTFIT(GCG,)

/ DNA mVRF PCR hVRF PCR , 가 5 10 (mismatch) Τm (annealing) PCR 가 QIA () MVRF / cDNA DNA /

 RNA
 [Chomczynski
 Sacchi (1987)]
 (, ,

 , ,)
 .
 RNA 20 µg
 , (
 -N,)
)

 , ,)
 .
 RNA 20 µg
 , (
 -N,)
)

 , (Church Gilbert (1984)).
 65
 0.1 x SSC(20xSSC
)

 3 M NaCl/0.3 M
 .
 .
 -70
 1
 3

 X .
 .
 .
 .
 .
 .

mVRF cDNA VRF hVRF cDNA . 가 cDNA 0.8 1.5 kb 5 cDNA .) 3' UTR(379 bp), 564 bp; 163 bp 5' UTR 621 bp (1041 bp cDNA (: 9). hVRF (out of frame) AT G - 47 (-9 - 33) (in-frame)

N hVRF 81% mVRF (17/21). mVRF 21 (: 10). mVRF가 , hVRF (ORF) cDNA . 5 4 , hVRF 6 101 bp

4 , mVRF 27⊦ (isoform) (: 10).

mVRF₁₈₆ 7 +622 621 bp OR F (: 9). mVRF₁₆₇ +622 TAG , 101 bp 6 8 +666 (TGA) (: 9).

(TGA) (: 9). $mVRF_{168} VEGF ,$ $.mVRF_{167} , C- mVEGF$ $(: 11). hVRE_{167} mVRF_{167} 85\% 92\% (: 10)$

(: 11). NVKE 167 10). , mVRF 167 mVEGF [Breier (1992)] 49% 71% (: 11). , (AATAAA)[: Brinstiel (1986)] mVRF cDNA , GATAAA가 VRF cDNA (· 역

mVRF

(: 3) hVRF ng) . mVRF I, III, IV VI(: 3 12) hVRF / (mapping) (intervening sequenc VI mVRF mVRF 5'UTR 가 e) (2.2kb) . mVRF hVRF VI 가 cDNA 가 7/ 가 10 bp mVRF 7 hVRF , mVRF 10 bP . mVRF 6 mVRF 6amp;7 VRF ₁₈₆ hVRF (: 10) 1 VEGF (VEGF, PICF, hVRF) 가 . 12). mVRF (: 가 11q13 1 , [Rochelle (1992)]. 19 1 kb), VRF 19 MEN1 hVRF (mVRF RNA) 가 가 1.3 kb (: 14). 2.0 5.5 kb , hVRF 1.3 kb 5'UTRs 6 VEGF , ALAB C57 가 -70 (n=4) (n=2)() 8(E8), 14 E17. (in situ) [: Dagerlind (1992)] (14 μm) (cryostat)(), - [] ity) 7-10 x 10⁻⁸ cpm / μg 3'-[³⁵ S](NEN) , 42 16-18 5 , 4xSSC(1xSSC = 0.15 M NaCl 0.015 M , BSA), 1% v/v (N- ; 0% v/v (0.02%), 1 x), 0.02 M (pH 7.0), 10% w/v), 250 µg/Mℓ tRNA(), 500 µg/Mℓ () 200 mM (DTT: DNA(LKB) 가 20 , NTB2 D-19 [′] 1 x SSC 55 (nuclear track emulsion)() . 3 5) () 4 VRF E8 가 . E14 , 가 (: 14A). E17 mVRF mRNA 14B). : 14B). E14 (14 (background) mVRF mRNA : 14C) ((: I4D), (: 14E).

, mVI	RF mRNA		(· 15A 15D)
(, mVRF : 15D) (\\ (: 15C) m\	ventral horn)(VRF mRNA	(
F8 ³ H- NGF VEGF	VEGF SOM175 VEGF SOM1 1 , VEGF,	75 2000 (%), VEGF . 5FU	[: Nurcombe (1992)] 48 (μm) 5 μ Μ 5'- (5FU)
, EGF SOM175 (稀突起膠細胞) 2000	З Н-	10 μg/Mℓ	. 17 3 V CNS , CNS , 24 . 1
SOM175	,	,	, フトフト
8 7	SOM1	75 ,VEGF	
[: 'Methods 0)]	in Neurosciences(Vol. pp33-46,	2): Cell Culture	' Ed. P.M. Conn, Academic Press, San Diego (199 pp56-74 pp87-102
-L-	(0.1 mg/MØ, 1hr) 48	, 24-	, . (Nunc) 2,000 / [: Maruta (1993)]
³ H]	・ ア	(10 μg/Mℓ,	, l 5 mM 5 2 - ()
,) 5 , (scir	³ H - 0.1 mC 20 μθ ntillation) (5% v/v	Ci/Me ³ H- / 2 -X	(103 µ Ci/µg) 14 , ((, CSL) () 가 ,
가 6 SOM17 18). 가 (inducer)	75 (SOM⊿X6) (: 17), ,		(: 16). 7
, ,			· , ,

[3] 쥐의 VRF 유전자의 스플라이스 접합

5' UTR*	엑손	1	>223bp	CCCAGgtacgtgcgt	인트론	I	495bp				
ttccccacagGCCCC	엑손	2	43bp	GAAAGgtaataatag	인트론	II	288bp				
ctgcccacagTGGTG	엑손	3	197bp	TGCAGgtaccagggc	인트론	III	196bp				
ctgagcacagATCCT	엑손	4	74bp	TGCAGgtgccagccc	인트론	IV	182bp				
ctcttttcagACCTA	엑손	5	36bp	GACAGattcttggtg	인트론	V	191bp				
ctcctcctagGGTTG	엑손	6	101bp		인트론	없음					
CCCACTCCAGCCCCA	엑손	7	135bp	TGTAGgtaaggagtc	인트론	VI	~2200bp				
cactccccagGTGCC	엑손	8	394bp	AGAGATGGAGACACT							
대문자 및 소문자는 각각 엑손 및 인트론의 서열을 나타낸다. *는 엑손 1의 5' 말단이 결정되지 않았다는 것을 의미한다.											

관계 서적 목록

Adams MD, Soares MB, Kerlavage AR, Fields C, Venter JC,(1993)

Nature Genet, 4, 373-380.

Birnstiel ML, Busslinger M 및 Strub K (1985) Cell 41,349-359.

Breier G, Albrecht U, Sterrer S 및 Risau W (1992) Development

114.521-532.

Chomczynski P 및 Sacchi N (1987) Analyt. Biochem. 162, 156-159.

Church G 및 Gilbert W (1984) Proc. Natl. Acad. Sci. USA 18.

1991-1995.

Dagerlind A, Friberg K, Bean AJ 및 Hokfelt T (1992) Histochemistry 98, 39-49.

Dissen GA, Lara HE, Fabrenbach WH, Costa ME, Ojeda SR, (1994) Endocrinology 134, 1146-1154.

Drinkwater CC, Barker PA, Suter U 및 Shooter EM (1993) J. Biol.Chem., 268, 23202-23207

Drinkwater CC, Suter U, Angst C 및 Shooter EM (1991) Proc. Roy Soc. Lond. (시리즈 B), 246,307-313.

Ewton DZ & Florini JR (1980) Endocrinology, 106: 577-583.

Ferrara N & Henzel WJ (1989) Biochem. Biophys. Res. Commun. 161, 851-185.

Folkman J & Shing Y (1992) J. Biol. Chem. 267, 10931-10934.

Gospodarowicz D, Abraham JA & Schilling J (1989) Proc. Natl. Acad. Sci USA 86, 7311-7315.

Gospodarowicz D, Weseman J, Morgan JS & Lindstrom J (1976) J.Cell Biol., 70: 395-405.

Hagg T, Quon D, Higaki J & Varon S (1992) Neuron, 8, 145-158.
Hefti S (1986) J.Neurosci, 6, 2155-2162.
Hendry IA & Campbell J (1976) J. Neurocytol., 5, 351-360.
Hendry IA, Murphy M, Hilton DJ, Nicola NA & Bartlett PF (1992)

J. Neurosci. 12, 3427-3434.

Hunt 등, (1967) Am. J. Surgery, 114: 302-307.

Koch AE, Harlow LA, Haines GK, Amento EP, Unemoti EN, Wong

WL, Pope RM, Ferrara N, (1994) J. Immunol. 152, 4149-4156.

Kromer AF (1987) Science, 235, 214-216.

Larsson C, Weber G, Kvanta E, Lewis C, Janson M, Jones C,

Glaser T, Evans G, Nordenskjold M, (1992) Hum Genet. 89, 187-193.

OZUS Leung DW, Cachianes G, Kuang W-J, Goeddel DV & Ferrara N (1989) Science 246 1306-1309.

Lowe C, Cornish J, Callon K, Martin TJ & Reid IR (1991) J. Bone Mineral Res., 6, 1277-1283.

Martinou JC, Martinou I & Kato AC (1992) Neuron, 8, 737-744.

Lowe C, Cornish J, Martin TJ & Reid IR (1991) Calcif. Tissue Int., 49, 394-397.

Maruta 등 (1993) Growth Factors 8: 119-134.

Midy V & Plouet J (1994) Biochem. Biophys. Res. Commun., 199: 380-386.

Miles AA & Miles EM (1952) J. Physiol. (Lond) 118:228-257

Montesano R, Vassalli JD, Baird A, Guillemin R & Orci, L (1986)

Proc. Natl Acad. Sci USA, 83, 7297-7301.

Nurcombe 등 (1992) Development 116: 1175-1183.

Otto D., Frotscher M & Unsicker K (1989) J Neurosci Res., 22, 83-91.

Pepper MS, Ferrara N, Orci L, Montesano R. (1991) Biochem. Biophys. Res. Commun. 181, 902-906.

Rochell JM. Watson ML, Oakey RJ 및 Seldin MF (1992) Genomics 14, 26-31.

Roth S & Weston J (1967) Proc. Natl. Acad. Sci USA, 58: 974-980.

Sambrook J, Fritsch EF, Maniatis T, (1989) Molecular Cloning: A Laboratory Manual 제2 판 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

Santos MA (1991) Nucleic Acids Res. 19, 5442.

Schilling 등,(1959) Surgery, 46: 702-710.

Senger DR, Van De Water L, Brown LF, Nagy JA, Yeo KT, Yeo TK, Berse B, Jackman RW, Dvorak AM, Dvorak HF (1993) Cancer Netastasis Rev. 12, 303-324.

Sharkey AM, Chamock-Jones DS, Boocock CA, Brown KD, Smith SK, (1993) J. Reprod. Fertil. 99, 609-615.

Sunderkotter C, Steinbrink K, Goebeler M, Bhardway R, Sorg E,

(1993) J. Leukocyt. Biol. 55, 410-422.

Suter U, Angst C, Tien C-L, Drinkwater CC, Lindsay RM 및 Shooter EM (1992) J. Neurosci., 12, 306-318.

Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, & Abraham J (1991) J. Biol. Chem. 266, 11947-11954.

Williams LR, Varon S, Peterson GM, Wictorin K, Fischer W, Bjorklund A & Gage FH (1986) Proc. Natl. Acad. Sci. USA 83, 9231-9235.

Yan Z, Weich HA, Bernart W, Breckwoldt M, Neulen J, (1993) J Clin. Endocrinol. Metab. 77, 1723-1725.

Yip NK, Rich KM, Lampe PA & Johnson EM Jr (1984) J. Neurosci., 4, 2986-2992.

10-0414615

서열표

<110> Hayward, Nicholas K. Weber, Gunther Grimmond, Sean Nordenskjold, Magnus Larsson, Catharina <120> A NOVEL GROWTH FACTOR AND A GENETIC SEQUENCE ENCODING SAME . . <130> DAVIES . <140> 08/765,588 <141> 1996-02-22 . . <160> 22 <170> PatentIn Ver. 2.1 <210> 1 <211> 649 <212> DNA . <213> Nucleotide Sequence of VEGF165 <220> <221> CDS <222> (17) .(589) <400> 1 togggeetee gaaace atg aae tit etg etg tet tgg gtg cat tgg age ett 52 Met Asn Phe Leu Leu Ser Trp Val His Trp Ser Leu 1 5 10 gee tty etg etc tae etc cae cat gee aag tgg tee cag get gea ecc 100 Ala Leu Leu Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Pro 15 20 atg gca gaa gga ggg cag aat cat cac gaa gtg gtg aag tte atg 148 Met Ala Glu Gly Gly Gly Gln Asn His His Glu Val Val Lys Phe Met 30 35 40 gat gto tat cag cgc ago tac tgo cat cca atc gag acc ctg gtg gao 196 Asp Val Tyr Gln Arg Ser Tyr Cys His Pro Ile Glu Thr Leu Val Asp 45 50 55 60 ate the cag gag tae eet gat gag ate gag tae ate the aag cea tee 244 Ile Phe Gln Glu Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys Pro Ser 65 70 75

tgt gtg ccc ctg atg cga tgc ggg ggc tgc tgc aat gac gag ggc ctg 292 Cys Val Pro Leu Met Arg Cys Gly Gly Cys Cys Asn Asp Glu Gly Leu 80 85 90 gag tgt gtg ccc act gag gag tcc aac atc acc atg cag att atg cgg 340 Glu Cys Val Pro Thr Glu Glu Ser Asn Ile Thr Met Gln Ile Met Arg 95 100 105 ate aaa eet cae caa gge cag cae ata gga gag atg age tte eta cag 388 Ile Lys Pro His Gln Gly Gln His Ile Gly Glu Met Ser Phe Leu Gln 110 115 120 'Cac aac aaa tgt gaa tgc aga cca aag aaa gat aga gca aga caa gaa 436 His Asn Lys Cys Glu Cys Arg Pro Lys Lys Asp Arg Ala Arg Gln Glu 125 130 135 140 aat ccc tgt ggg cct tgc tca gag cgg aga aag cat ttg ttt gta caa 484 Asn Pro Cys Gly Pro Cys Ser Glu Arg Arg Lys His Leu Phe Val Gln 145 150 155 532 gat ccg cag acg tgt aaa tgt tcc tgc aaa aac aca gac tcg cgt tgc Asp Pro Gln Thr Cys Lys Cys Ser Cys Lys Asn Thr Asp Ser Arg Cys 160 165 170 aag gog agg cag ott gag tia aac gaa ogt act too aga tot gad aag 580 Lys Ala Arg Gln Leu Glu Leu Asn Glu Arg Thr Cys Arg Cys Asp Lys 175 180 185 175 ccg agg cgg tgagccgggc aggaggaagg agcetecete agegtttegg 629 Pro Arg Arg 190 gaaccagate tetcaccagg 649 <210> 2 <211> 191 <212> PRT <213> Nucleotide Sequence of VEGF165 <400> 2 Met Asn Phe Leu Leu Ser Trp Val His Trp Ser Leu Ala Leu Leu 1 5 10 15

Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Pro Met Ala Glu Gly 20 25 30 Gly Gly Gln Asn His His Glu Val Val Lys Phe Met Asp Val Tyr Gln
45Arg Ser Tyr Cys His Pro Ile Glu Thr Leu Val Asp Ile Phe Gln Glu
50Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys Pro Ser Cys Val Pro Leu
70Met Arg Cys Gly Gly Cys Cys Asn Asp Glu Gly Leu Glu Cys Val Pro
85Thr Glu Glu Ser Asn Ile Thr Met Gln Ile Met Arg Ile Lys Pro His
100Gln Gly Gln His Ile Gly Glu Met Ser Phe Leu Gln His Asn Lys Cys
115Glu Cys Arg Pro Lys Lys Asp Arg Ala Arg Gln Glu Asn Pro Cys Gly
130Pro Cys Ser Glu Arg Arg Lys His Leu Phe Val Gln Asp Pro Gln Thr
165Cys Lys Cys Cys Ser Cys Lys Asn Thr Asp Ser Arg Cys Lys Ala Arg Gln
180Leu Glu Leu Asn Glu Arg Thr Cys Arg Cys Asp Lys Pro Arg Arg
180

<210> 3 <211> 1094 --<212> DNA <213> Nucleotide Sequence of SOM175 <220> <221> CDS <222> (3).. (623) <400> 3 cc atg age cet etg etg ege etg etg etg gee gea etc etg eag 47 Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln 1 5 10 15 etg gee ece gee eag gee eet gte tee eag eet gee gee eae 95 Leu Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His 20 25 30 cag agg aaa gtg gtg tea tgg ata gat gtg tat act ege get ace tge 143 Gln Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys 35 40

cag ccc cgg gag gtg gtg gtg ccc ttg act gtg gag ctc atg ggc acc 191 Gln Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr 50 55 60 gtg gcc aaa cag ctg gtg ccc agc tgc gtg act gtg cag cgc tgt ggt 239 Val Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly 65 70 75 gge tge tge cet gae gat gge etg gag tgt gtg eee aet ggg eag eae 287 Gly Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His 80 85 90 95 caa gtc cgg atg cag atc ctc atg atc cgg tac ccg agc agt cag ctg 335 Gln Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu 100 105 110 ggg gag atg tcc ctg gaa gaa cac age cag tgt gaa tgc aga cct aaa 383 Gly Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys 115 120 125 aaa aag gac agt got gtg aag oca gac agg got goo act ooc oac cac 431 Lys Lys Asp Ser Ala Val Lys Pro Asp Arg Ala Ala Thr Pro His His 130 135 140 cgt ccc cag ccc cgt tct gtt ccg ggc tgg gac tct gcc ccc gga gca 479 Arg Pro Gln Pro Arg Ser Val Pro Gly Trp Asp Ser Ala Pro Gly Ala 145 150 155 ece tee cea get gae ate ace cat ece act cea gee cea gge cee tet 527 Pro Ser Pro Ala Asp Ile Thr His Pro Thr Pro Ala Pro Gly Pro Ser 160 165 170 175 gee cae get gea eee age ace age gee etg ace eee gga eet gee 575 Ala His Ala ATa Pro Ser Thr Thr Ser Ala Leu Thr Pro Gly Pro Ala 180 185 190 get gee get gee gee gee get tee tee get gee aag gge ggg get 623 Ala Ala Ala Asp Ala Ala Ala Ser Ser Val Ala Lys Gly Gly Ala 195 200 205 tagageteaa eccagacace tgeaggtgee ggaagetgeg aaggtgacae atggetttte 683 agactcagca geereactty cotcagage tatateccag tgggggaaca aaggggagco 743

tggtaaaaa cagccaagee eecaagaeet eageecagge agaagetget etaggaeetg 803 ggeeteteag agggetette tgeeateeet tgteteeetg aggeeateat caaacaggae 863 agagttggaa gaggagaetg ggaggeagea agaggggtea cataceaget caggggagaa 923 tggagtaetg teteagtte taaceaetet gtgeaagtaa geatettaea aetggetett 983 ceteeetea etaagaagae ecaaaeetet geataatggg atttgggett tggtacaaga 1043 aetgtgaeee ceaaceetga taaaagagat ggaaggaaaa aaaaaaaaaa a

```
<210> 4
<211> 207
<212> PRT
<213> Nucleotide Sequence of SOM175
AMet Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln Leu
1
Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Gln
20
Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln
40
Arg Glu.Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val
50
Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly
65
Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr GIy Gln His Gln
90
Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu Gly
100
Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys
115
Lys Asp Ser Ala Val Lys Pro Asp Arg Ala Ala Thr Pro His His Arg
130
Pro Gln Pro Arg Ser Val Pro Gly Trp Asp Ser Ala Pro Gly Ala Pro
160
Ser Pro Ala Asp Ile Thr His Pro Thr Pro Ala Pro Gly Pro Ser Ala
160
```

10-0414615

165 170 - 175 His Ala Ala Pro Ser Thr Thr Ser Ala Leu Thr Pro Gly Pro Ala Ala 180 185 Ala Ala Asp Ala Ala Ala Ser Ser Val Ala Lys Gly Gly Ala 195 200 205 <210> 5 <211> 993 <212> DNA <213> Nuc. Seq. of SOM175 Absent Exon 6 <220>
<221> CDS
<222> (3)..(566) <400> 5 cc atg age cet etg etc ege ege etg etg etc gee gea etc etg eag 47 Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gin 1 5 10 15 etg gee eee gee cag gee eet gte tee cag eet gat gee eet gge cae 95 Leu Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His 20 25 30 cag agg ass gtg gtg tca tgg ats gat gtg tat act cgc gct acc tgc 143 Gln Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys 35 40 45cag ccc cgg gag gtg gtg gtg ccc ttg act gtg gag ctc atg ggc acc 191 Gln Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr 50 55 60 gtg gcc aaa cag ctg gtg ccc agc tgc gtg act gtg cag cgc tgt ggt 239 Val Ala Lys GIn Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly 65 70 75 ggc tgc tgc cct gac gat ggc ctg gag tgt gtg ccc act ggg cag cac 287 Gly Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His 80 85 90 95 caa gtc cgg atg cag atc ctc atg atc cgg tac ccg agc agt cag ctg 335 Gin Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu 100 105 110

ggg gag atg tcc ctg gaa gaa cac agc cag tgt gaa tgc aga cct aaa 383 Gly Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys 115 120 125 aaa aag gac agt get gtg aag eea gat age dee agg eee ete tge eea 431 Lys Lys Asp Ser Ala Val Lys Pro Asp Ser Pro Arg Pro Leu Cys Pro 130 135 140 cgc tgc acc cag cac cac cag cgc cct gac ccc cgg acc tgc cgc tgc 479 Arg Cys Thr Gln His His Gln Arg Pro Asp Pro Arg Thr Cys Arg Cys 145 150 155 cge tge ega ege ege age tte ete egt tge eaa ggg egg gge tta gag 527 Arg Cys Arg Arg Arg Ser Phe Leu Arg Cys Gln Gly Arg Gly Leu Glu 160 165 170 175 ctc aac cca gac acc tgc agg tgc cgg sag ctg cga agg tgacacatgg 576 Leu Asn Pro Asp Thr Cys Arg Cys Arg Lys Leu Arg Arg 180 185 cttttcagac tcagcagggt gacttgcctc agaggctata tcccagtggg ggaacaaagg 636 ggagcetggt aaaaaacage caageeecca agaceteage ceaggeagaa getgetetag 696 gacctgggcc tetcagaggg etettetgcc atcettgte teeetgagge cateateaaa 756 caggacagag tiggaagagg agacigggag gcagcaagag gggtcacata ccagcicagg 816 ggagaatgga gtactgtete agtttetaac cactetgtge aagtaageat ettacaactg 876 getetteete cecteactaa gaagaeeeaa acetetgeat aatgggattt gggetttggt 936 acaagaactg tgacccccaa ccctgataaa agagatggaa ggazaaaaaaa aaaaaaa 993

<210> 6 <211> 188 <212> PRT <213> Nuc. Seq. of SOM175 Absent Exon 6 <400> 6 Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln Leu 1 5 10 15 Ala Pro Ala Gin Ala Pro Val Ser Gin Pro Asp Ala Pro Gly His Gin Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gin Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val Gin Leu Val Pro Ser Cys Val Thr Val Gin Arg Cys Gly Gly Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gin His Gin Val Arg Met Gin Ile Leu Met Ile Arg Tyr Pro Ser Ser Gin Leu Gly Glu Met Ser Leu Glu Glu His Ser Gin Cys Glu Cys Arg Pro Lys Lys Lys Asp Ser Ala Val Lys Pro Asp Ser Pro Arg Pro Leu Cys Pro Arg Cys Thr Gin His His Gin Arg Pro Asp Pro Arg Thr Cys Arg Cys Arg Thr Gin His His Gin Arg Pro Asp Pro Arg Thr Cys Arg Cys Arg Thr Gin His His Gin Arg Pro Asp Pro Arg Thr Cys Arg Cys Arg Thr Arg Arg Ser Pro Leu Arg Cys Gin Gly Arg Gly Leu Giu Leu Thr Arg Arg Arg Ser Pro Arg Cys Arg Pro Leu Cys Pro Arg Thr Arg Arg Thr Cys Arg Cys Arg Lys Leu Arg Arg Thr Arg Arg Thr Cys Arg Cys Arg Lys Leu Arg Arg Thr Arg Arg Thr Cys Arg Cys Arg Lys Leu Arg Arg Thr Cys Arg Thr Cys Arg Cys Arg Lys Leu Arg Arg Thr Cys Arg Thr Cys Arg Cys Arg Lys Leu Arg Arg Thr Cys Arg Cys Arg Lys Leu Arg Arg Arg

cag agg aaa gtg gtg tca tgg ata gat gtg tat act cgc gct acc tgc 143 Gln Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys 35 40 45 cay ccc cgg gag gtg gtg gtg ccc ttg act gtg gag ctc atg ggc acc 191 Gln Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr 50 55 60 . gtg gcc aaa cag ctg gtg ccc agc tgc gtg act gtg cag cgc tgt ggt. 239 Val Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly 65 70 75 ggc tgc tgc cct gac gat ggc ctg gag tgt gtg ccc act ggg cag cac 287 Gly Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His 80 85 90 95 caa gtc cgg atg cag atc ctc atg atc cgg tac ccg agc agt cag ctg 335 Gln Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu 100 105 110 ggg gag atg tcc ctg gaa gaa cac agc cag tgt gaa tgc aga cct aaa 383 Gly Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys 115' 120 125 aaa aag gac agt get gtg aag eea gat agg tge egg aag etg ega agg 431 Lys Lys Asp Ser Ala Val Lys Pro Asp Arg Cys Arg Lys Leu Arg Arg 130 135 140 tgacacatgg cttttcagac teageagggt gacttgeete agaggetata teccagtggg 491 ggaacaaagg ggagcctggt aaaaaacagc caagccccca agacctcagc ccaggcagaa 551 getgetetag gačetgggee teteagaggg etettetgee atceettgte teeetgagge 611 catcatcaaa caggacagag ttggaagagg agactgggag gcagcaagag gggtcacata 671 ccagctcagg ggagaatgga gtactgtctc agtttctaac cactctgtgc aagtaagcat 731 CITACAACTS SCICITCOIC CONTEACTAA SAASACCCAA ACCTOSCAT AATSSSATT 791 gggctttggt acaagaactg tgacccccaa ccctgataaa agagatggaa ggaaaaaaa 851

aaaaaaa

<210> 8 <211> 143 <212> PRT <213> Nuc. Seq. of SOM175 Absent Exons 6&7 <400> 8 Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln Leu 1 5 10 15 Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Gln 20 25 30 $\mbox{Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln 35 40 45$ Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val 50 55 60 Ala Lys Gln Leu Val Fro Ser Cys Val Thr Val Gln Arg Cys Gly Gly 65 70 75 80 Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln 85 90 95 Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu Gly 100 105 110 Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys 115 120 125 Lys Asp Ser Ala Val Lys Pro Asp Arg Cys Arg Lys Leu Arg Arg 130 135 140 <210> 9 <211> 910 <212> DNA <213> Nuc. Seq. of SOM175 Absent Exon 4 <220> <221> CDS <222> (3)..(305) <400> 9 cc atg age cet etg etc ege etg etg etc gee gea etc etg eag 47 Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln ាត

ctg gee eee gee cay gee eet gte tee cag eet gat gee eet gge cae

- 28 -

858

95

Leu Ala Pro Ala Gl
n Ala Pro Val Ser Gl
n Pro Asp Ala Pro Gly His $\begin{array}{c} 20 \\ 25 \\ \end{array}$ cag agg aaa gtg gtg tca tgg ata gat gtg tat act cgc gct acc tgc 143 Gln Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys 35 40 45 cag ccc cgg gag gtg gtg gtg ccc ttg act gtg gag ctc atg ggc acc 191 Gln Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr 50 55 60 gtg gcc aaa cag ctg gtg ccc agc tgc gtg act gtg cag cgc tgt ggt 239 Val Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly 65 70 75 gge tge tge cet gae gat gge etg gag tgt gtg eec aet ggg eag eac 287 Gly Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His 80 85 90 95 caa gtc cgg atg cag acc taaaaaaaag gacagtgctg tgaagccaga 335 Gln Val Arg Met Gln Thr 100

cagggetgee acteeceae acegteecea geeeegtet gtteeggget gggaetetge 395 ccceggagea eceteeceag etgaeateae ceateecaet eeageeeeg geeeetetge 455 ceaegetgea eeeageaeea eeagegeeet gaeeeegga eetgeegetg eegetgeega 515 egeeggaage teeteegttg eeaagggegg ggettagage teaaeeeaga eacetgeagg 575 tgeeggaage tgegaaggtg acaeatgget ttteagaete ageagggtga ettgeeteag 635 aggetatate eeagtgggga acaaagagga geetggtaaa aaacageeaa geeeeeaga 695 eeteageeea ggeagaaget getetaggae etgggeete teetgeeete 755 eettgtetee etgaggeeat eateaaeeg gaeagagttg gaagaggaga etgggaggea 815 geeaggggg teaeataeea geteaggga gaatggagta etgteeag 875

910

<210> 10 <211> 101 <212> PRT <213> Nuc. Seq. of SOM175 Absent Exon 4 <400> 10 Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln Leu 1 5 10 15 Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Gln 20 25 30 Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln 35 40 45 Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val 50 55 60 Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly 65 70 75 80 Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln 85 90 95 Val Arg Met Gln Thr 100 <210> 11 <211> 42 <212> DNA <213> Oligonucleotide <400> 11 accaccacct ccctgggctg gcatgtggca cgtgcataaa cg 42 <210> 12 <211> 42 <212> DNA <213> Oligonucleotide <400> 12 agttgtttga ccacattgcc catgagttcc atgctcagag gc 42

<210> 13 <211> 38 <212> DNA.

<213> Oligonucleotide <400> 13 gatectgggg etggagtggg atggatgatg teagetgg 38 <210> 14 <211> 40 <212> DNA <213> Oligonucleotide <400> 14 gcgggcagag gatcctgggg ctgtctggcc tcacagcact 40 <210> 15 <211> 236 <212> DNA <213> Human SOM175 <400> 15 atgaggggcc aggtacgtga ggtctcccac aggcccctgg aaagaatact tacatctgct 60 cccatggtgt atgcaggtcc gagatgctga atacagatcc tcatgcaggt gtcaggcaac 120 ttttcaagac ctaaagacag gtgagtettt eteeteegta ggetgeetee ageeceagge 180 cccccactcc agecccagac ccagacacct gtagccctgc tcaggtgccg aggtga 236 <210> 16 <211> 1242 _. <212> DNA <213> mVRF <220> <221> CDS <222> (166)..(789) <400> 16 geacgagete aggeegtege tgeggegetg egttgegetg eetgegeeea gggeteggga 60 gggggccgcg gaggagccgc cccctgcgcc ccgccccggg tccccgggtc cgcgccatgg 120 ggcggetetg getgacecee ecceacaceg eegggetagg geeeg atg age ece etg 177 Met Ser Pro Leu 1 ctg cgt cgc ctg ctg ctt gtt gca ctg ctg cag ctg gct cgc acc cag 225

Leu	l Arg	Arg	Leu	. Leu	Leu 10	Val	Ala	Leu	Leu	Gln 15	Let	l-Ala	Arg	I Thi	Gln 20	
gco	cct	gtg	tcc	cag	tr	gat	ggc	ccc	agt	cac	cag	aag	aaa	gtg	gtg	273
Ala	Pro	Val	Ser	G1n 25	Phe	Asp	Gly	Pro	Ser 30	His	Gln	Lys	Lys	Val 35	Val	
cca	tgg	ata	gac	gtt	tat	gca	cgt	gcc	aca	tgc	cag	ccc	agg	gag	gtg	321
Pro	Trp	Ile	Asp 40	Val	Tyr	Ala	Arg	Ala 45	Thr	Суз	Gln	Pro	Arg 50	Glu	Val	
gtg	gtg	cct	ctg	agc	atg	gaa	ctc	atg	ggc	aat	gtg	gtc	aaa	caa	cta	369
`Val	Val	Pro 55	Leu	Ser	Met	Glu	Leu 60	Met	Gly	Asn	Val	Val 65	Lys	Gln	Leu	
gtg	cc¢	agç	tgt	gtg	act	gtg	cag	cgc	tgt	ggt	ggç	tgc	tgc	CCL	gac	417
Val	Pro 70	Ser	Cys	Val	Thr	Va1 75	Gln	Arg	Cys	Gly	Gly 80	Cys	Cys	Pro	Asp	
gat	ggc	ctg	gaa	tgt	gtg	cc¢	act	aaa	caa	cac	саа	gtc	cga	atg	cag	465
Asp 85	Gly	Leu	Glu	Cys	Val 90	Pro	Thr	Gly	Gln	His 95	Gln	Val	Arg	Met	Gln 100	
atc	ctc	atg	atc	cag	tac	ccg	agc	agt	cag	ctg	33 2	gag	atg	tcc	ctg	513
Ile	Leu	Met	Ile	Gln 105	Tyr	Pro	Ser	Ser	Gln 110	Leu	Gly	Glu	Мес	Ser 115	Leu	
gga	gaa	cac	agc	caa	tgt	gaa	tgc	aga	cct	2 88	aaa	aag	gag	agt	gct	561
Gly	Glu	His	Ser 120	Gln	Суз	Glu	Cys	Arg 125	Pro	Lys	Lys	Lys	Glu 130	Ser	Ala	
gtg	agg	cca	gac	agg	gtt	gcc	ata	ccc	CaC	cac	cgt	ccc	cag	ccc	cgc	609
Val	Arg	Pro 135	Asp	Arg	Val	Ala	Ile 140	Pro	His	His	Arg	Pro 145	Gln	Pro	Arg	
tct	gtt	ccg	ggc	tgg	gac	tct	acc	ccg	gga	gcá	ccc	tcc	cca	gct	gac	657
Ser	Val 150	Pro	Gly	Trp	Asp	Ser 155	Thr	Pro	Gly	Ala	Pro 160	Ser	Pro	Ala	Asp	
atc	atc	cat	ccc	act	cca	gcc	cca	gga	tcc	tct	gcc	cgc	ctt	gca	CCC	705
Ile 165	Ile	His	Pro	Thr	Pro 170	Ala	Pro	Gly	Ser	Ser 175	Ala	Arg	Leu	Ala	Pro 180	
agc	gcc	gcc	aac	gcc	ctg	acc	ccc	ggs	cct	gcc	gtt	gcc	gct	gta	gac	753
Ser	Ala	Ala	Asn .	Ala	Leu	Thr	Pro	Gly	Pro	Ala	Val	Ala	Ala	Val	Asp	

185 190 195 gcc gcc gct tcc tcc att gcc aag ggc ggg gct tag agctcaaccc 799 Ala Ala Ala Ser Ser Ile Ala Lys Gly Gly Ala 200 205 agacacctgt aggtgccgga agccgcgaaa gtgacaagct gctttccaga ctccacggge 859 ccggctgctt ttatggccct gcttcacagg gagaagagtg gagcacaggc gtaacctcct 919 cagtotggga ggtcactgcc ccaggacotg gacottttag agagetetet cgccatettt 979 tateteecag agetgecate taacaattgt caaggaacet catgteteac etcaggggee 1039 agggtactet etcacttaac caccetggte aagtgageat ettetggetg getgteteee 1099 ctcactatga aaaccccaaa cttctaccaa taacgggatt tgggttctgt tatgataact 1159 aaaaaaaaa aaaaaaaaaa aaa 1242

<210> 17 <211> 207 <212> PRT <213> mVRF

Pro Gln Pro Arg Ser Val Pro Gly Trp Asp Ser Thr Pro Gly Ala Pro145150155160Ser Pro Ala Asp Ile Ile His Pro Thr Pro Ala Pro Gly Ser Ser Ala170175Arg Leu Ala Pro Ser Ala Ala Ash Ala Leu Thr Pro Gly Pro Ala Val180190Ala Ala Val Asp Ala Asp Ala Ala Ser Ser Ile Ala Lys Gly Gly Ala200205

<210> 18 <211> 188 <212> PRT <213> mVRF167 <400> 18 Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Val Ala Leu Leu Gln Leu 1 1 Ala Arg Thr Gln Ala Pro Val Ser Gln Phe Asp Gly Pro Ser His Gln 20 Lys Lys Val Val Pro Trp Ile Asp Val Tyr Ala Arg Ala Thr Cys Gln 30 Lys Lys Val Val Val Val Pro Leu Ser Met Glu Leu Met Gly Asn Val 50 Val Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly 65 Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln 90 Val Arg Met Gln Ile Leu Met Ile Gln Tyr Pro Ser Ser Gln Leu Gly 100 Glu Met Ser Leu Gly Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys 115 Cys Glu Ser Ala Val Arg Pro Asp Ser Pro Arg Ile Leu Cys Pro Pro 130 Cys Thr Gln Arg Arg Gln Arg Pro Asp Pro Arg Int Cys Arg Cys Arg 145 Cys Arg Arg Arg Arg Phe Leu His Cys Gln Gly Arg Gly Leu Glu Leu 170 Asn Pro Asp Thr Cys Arg Cys Arg Lys Pro Arg Lys 180

<210> 19 <211> 188

10-0414615

<212> PRT <213> hVRF167

<400> 19

Met Ser Pro Leu Leu Arg Arg Leu Leu Ala Ala Leu Leu Gln Leu 1 1 Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Gln 20 Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln 35 Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val 50 Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly 65 Cys Cye Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln 90 Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu Gly 100 Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys 120 125 Lys Asp Ser Ala Val Lys Pro Asp Pro Arg Pro Arg Pro Leu Cys Pro Arg 145 Cys Arg Arg Arg Ser Phe Leu Arg Cys Gln Gly Arg Gly Leu Glu Leu 165 20 <20 <211> 71 <212> PRT <213> mVRF186

<400> 20 Arg Val Ala Ile Pro His His Arg Pro Gln Pro Arg Ser Val Pro Gly 1 10 15 Trp Asp Ser Thr Pro Gly Ala Pro Ser Pro Ala Asp Ile Ile His Pro 20 25 30 Thr Pro Ala Pro Gly Ser Ser Ala Arg Leu Ala Pro Ser Ala Ala Asn 35 40

10-0414615

10,

Ala Leu Thr Pro Gly Pro Ala Val Ala Ala Val Asp Ala Ala Ala Ser 50 55 60 Ser Ile Ala Lys Gly Gly Ala 65 70 <210> 21 <211> 71 <212> PRT <213> hVRF186 <400> 21 Arg Ala Ala Thr Fro His His Arg Pro Gln Pro Arg Ser Val Pro Gly 1 5 10 15 Trp Asp Ser Ala Pro Gly Ala Pro Ser Pro Ala Asp Ile Thr His Pro 20 25 30 Thr Pro Ala Pro Gly Pro Ser Ala His Ala Ala Pro Ser Thr Thr Ser 35 40 45 Ala Leu Thr Pro Gly Pro Ala Ala Ala Ala Ala Ala Ala Ala Ala Ser 50 55 60 Ser Val Ala Lys Gly Gly Ala 65 70 <210> 22 <211> 214 <212> PRT <213> mVEGF188 <400> 22 Met Asn Phe Leu Leu Ser Trp Val His Trp Thr Leu Ala Leu Leu Leu 1 5 10 15 Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Fro Thr Thr Glu Gly 20 25 30 Glu Gln Lys Ser His Glu Val Ile Lys Phe Met Asp Val Tyr Gln Arg 35 40 45 Ser Tyr Cys Arg Pro Ile Glu Thr Leu Val Asp Ile Phe Gln Glu Tyr 50 55 60 Pro Asp Glu Ile Glu Tyr Ile Phe Lys Pro Ser Cys Val Pro Leu Met 65 70 75 80 Arg Cys Ala Gly Cys Cys Asn Asp Glu Ala Leu Glu Cys Val Pro Thr 85 90 95 Ser Glu Ser Asn Ile Thr Met Gln Ile Met Arg Ile Lys Pro His Gln 100 105 110 (57) 1. (i) : (ii) flt - 1/ flk - 1 : 가 (iii) 1가 9 (a) 3. 5, 7, 16 (b) 4, 6, 8, 17 18 2. 1 4 3. 6 1 4. 1 8 5. 10 1 6. 4 7. 6
	8. 8 9. 10 10. 3, 3,	5, 5,	7	7,	9 9	16 16			,
(i) (ii) <i>flt</i> (iii) 17ŀ	11. - 1/ <i>fIk</i> - 1 ,		/	;	; /		가		
				4,	6,	, 8,	10,	17	18
10	12.	,	3						
10	13.	,	5						
10	14.		7						
10	15.	,	9						
11	16.	,	4						
11	17.	3	6						
11	18.	,	8						
11	19.	3	10						
11	20.				(mature f	orm)			
1	21.	,	3		(mature i	,		·	
1	22.	,	5						
1	23.	3	7						
1	24.	,	9						
1	25.	,			(leader see	quence)			(mature form)
10	26.								
10	27.					•			

1		,	16							
	28.	•								
1	29.	,	17							
1	30	,	18							
1	00.	,			/	3	/			
	31.									
10	32.	,	16					•		
11	021	,	17							
•	33.									
11		3	18							
11	34.									
11	35.									
1				,				1		
	36									
	30.			,	/				,	34
	1 37 .									
	17 38 .						•			

.

18

	1
⊊ 1a	⊊ 1b
도 1c	도 1d

				1a				
1	TCG	GCCI	'CC G	AAAC	C AT Me	G AA t As	C TI n Ph	T CTG Leu
						-		
50	CTT Leu	GCC Ala	TTG Leu	CTG Leu 15	CTC Leu	TAC Tyr	CTC Leu	CAC His
98	CCC Pro	ATG Met	GCA Ala 30	GAA Glu	GGA Gly	GGA Gly	GGG Gly	CAG Gln 35
146	ATG Met	GAT Asp 45	GTC Val	tat Tyr	CAG Gln	CGC Arg	AGC Ser 50	TAC Tyr
194	GAC Asp 60	ATC Ile	TTC Phe	CAG Gln	GAG Glu	TAC Tyr 65	CCT Pro	gat Asp
242	TCC Ser	TGT Cys	GTG Val	CCC Pro	CTG Leu 80	ATG Met	CGA Arg	TGC Cys
290	CTC Leu	GAG Glu	tgt Cys	GTG Val 95	CCC Pro	ACT Thr	GAG Glu	GAG Glu
338	CGG Arg	ATC Ily	AAA Lys 110	CCT Pro	CAC His	CAA Gln	GGC Gly	CAG Gln 115

10

1b

•	
CTG TCT TGG GTG CAT TGG AGC Leu Ser Trp Val His Trp Ser 5 10	49
CAT GCC AAG TGG TCC CAG GCT GC His Ala Lys Trp Ser Gln Ala Al 20 25	A 97 a
AAT CAT CAC GAA GTG GTG AAG TT Asn His His Glu Val Val Lys Ph 40	C 145 e
TGC CAT CCA ATC GAG ACC CTG GTC Cys His Pro Ile Glu Thr Leu Va 55	G 193 1
GAG ATC GAG TAC ATC TTC AAG CCA Glu Ile Glu Tyr Ile Phe Lys Pro 70 75	A 241
GGG GGC TGC TGC AAT GAC GAG GGC Gly Gly Cys Cys Asn Asp Glu Gly 85 90	289 7
TCC AAC ATC ACC ATG CAG ATT ATCSer Asn Ile Thr Met Gln Ile Met100105	g 337
CAC ATA GGA GAG ATG AGC TTC CTA His Ile Gly Glu Met Ser Phe Leu 120	A 385

1c

386	CAG	CAC	AAC	AAA	\mathbf{TGT}	GAA	TGC	AGA
	Gln	His	Asn	Lys	Cys	Glu	Cys	Arg
		125					130	

- 434 GAA AAT CCC TGT GGG CCT TGC TCA Glu Asn Pro Cys Gly Pro Cys Ser 140 145
- 482 CAA GAT CCG CAG ACG TGT AAA TGT Gln Asp Pro Gln Thr Cys Lys Cys 160
- 530 TGC AAG GCG AGG CAG CTT GAG TTA Cys Lys Ala Arg Gln Leu Glu Leu 175
- 578 AAG CCG AGG CGG TGAGCCGGGC AGGAG Lys Pro Arg Arg 190
- 630 GAACCAGATC TCTCACCAGG

1d

1d	
CCA AAG AAA GAT AGA GCA AGA CAA Pro Lys Lys Asp Arg Ala Arg Gln 135	433
GAG CGG AGA AAG CAT TTG TTT GTA Glu Arg Arg Lys His Leu Phe Val 150 155	481
TCC TGC AAA AAC ACA GAC TCG CGT Ser Cys Lys Asn Thr Asp Ser Arg 165 170	529
AACGAACGTACTTGCAGATGTGACAsnGluArgThrCysArgCysAsp180185	577
GAAGG AGCCTCCCTC AGCGTTTCGG	629

649

0
2

도 2a	도 2b
도 2c	도 2d
도 2e	도 2f

	2a
1	CC ATG AGC CCT CTG CTC CGC CGC
	1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
48	CTG GCC CCC GCC CAG GCC CCT GTC Leu Ala Pro Ala Gln Ala Pro Val
	20
-96	CAG AGG AAA GTG GTG TCA TGG ATA
	Gln Arg Lys Val Val Ser Trp Ile 35
144	CAG CCC CGG GAG GTG GTG GTG CCC
: 	Gln Pro Arg Glu Val Val Val Pro 50 55
192	GTG GCC AAA CAG CTG GTG CCC AGC
	Val Ala Lys Gln Leu Val Pro Ser 65 70
240	GGC TGC TGC CCT GAC GAT GGC CTG
·	Gly Cys Cys Pro Asp Asp Gly Leu 80 85
288	CAA GTC CGG ATG CAG ATC CTC ATG
	Gln Val Arg Met Gln Ile Leu Met 100
336	GGG GAG ATG TCC CTG GAA GAA CAC
	Gly Glu Met Ser Leu Glu Glu His 115

2b

	CTC Lei	G CT(1 Lei	G CTO Lev 10	C GCC 1 Ala	C GCA Ala	A CTO a Leu	CTC Leu	G CAG I Gln 15	47	7
	TCC Ser	CAG Gln 25	CCT Pro	GAT Asp	GCC Ala	CCT Pro	GGC Gly 30	CAC His	95	I
4	GAT Asp 40	GTG Val	TAT Tyr	ACT Thr	CGC Arg	GCT Ala 45	ACC Thr	TGC Cys	143,	
	TTG Leu	ACT Thr	GTG Val	GAG Glu	CTC Leu 60	ATG Met	GGC Gly	ACC Thr	191	
	TGC Cys	GTG Val	ACT Thr	GTG Val 75	CAG Gln	CGC Arg	TGT Cys	GGT Gly	239	
	GAG Glu	TGT Cys	GTG Val 90	CCC Pro	ACT Thr	GGG Gly	CAG Gln	CAC His 95	287	
	ATC Ile	CGG Arg 105	TAC Tyr	CCG Pro	AGC Ser	AGT Ser	CAG Gln 110	CTG Leu	335	
	AGC Ser 120	CAG Gln	tgt Cys	GAA Glu	TGC Cys	AGA Arg 125	CCT Pro	aaa Lys	383	

384	AAA Lys	AAG Lys	GAC Asp 130	AGT Ser	GCT Ala	GTG Val	AAG Lys	CCA Pro 135
432	CGT Arg	CCC Pro 145	CAG Gln	CCC Pro	CGT Arg	TCT Ser	GTT Val 150	CCG Pro
480	CCC Pro 160	TCC Ser	CCA Pro	GCT Ala	GAC Asp	ATC Ile 165	ACC Thr	CAT His
528	GCC Ala	CAC His	GCT Ala	GCA Ala	CCC Pro 180	AGC Ser	ACC Thr	ACC Thr
576	GCT Ala	GCC Ala	GCT Ala	GCC Ala 195	GAC Asp	GCC Ala	GCA Ala	GCT Ala

2d

									<u> </u>	
	GAC Asp	AGG Arg	GCT Ala	GCC Ala	ACT Thr 140	CCC Pro	CAC His	CAC His		431
	GGC Gly	TGG Trp	GAC Asp	TCT Ser 155	GCC Ala	CCC Pro	GGA Gly	GCA Ala		479
ę	CCC Pro	ACT Thr	CCA Pro 170	GCC Ala	CCA Pro	GGC Gly	CCC Pro	TCT Ser 175		527
	AGC Ser	GCC Ala 185	CTG Leu	ACC Thr	CCC Pro	GGA Gly	CCT Pro 190	GCC Ala		575
•	TCC Ser 200	TCC Ser	GTT Val	GCC Ala	AAG Lys	GGC Gly 205	GGG Gly	GCT Ala	т	624
									·	
					2	2e				
	625	AG	AGCT	CAAC	CCA	GACA	CCT	GCAG	GTO	SCCG

685	GACTCAGCAG GGTGACTTGC CTCAGAGGCT
745	GGTAAAAAAC AGCCAAGCCC CCAAGACCTC
805	GCCTCTCAGA GGGCTCTTCT GCCATCCCTT
865	GAGTTGGAAG AGGAGACTGG GAGGCAGCAA
825	GGAGTACTGT CTCAGTTTCT AACCACTCTG
985	CTCCCCTCAC TAAGAAGACC CAAACCTCTG
1045	CTGTGACCCC CAACCCTGAT AAAAGAGATG

	Z		
GAAGCTGCGA	AGGTGACACA	TGGCTTTTCA	684
ATATCCCAGT	GGGGGAACAA	AGGGGAGCCT	744
AGCCCAGGCA	GAAGCTGCTC	TAGGACCTGG	804
GTCTCCCTGA	GGCCATCATC	AAACAGGACA	864
GAGGGGTCAC	ATACCAGCTC	AGGGGAGAAT	924
TGCAAGTAAG	CATCTTACAA	CTGGCTCTTC	984
CATAATGGGA	TTTGGGCTTT	GGTACAAGAA	1044
GAAGGAAAAA	Алалалала		1094

3a VEGF_ 인체 혈관 내피 >VEGF_ 인체 (혈관 215 아미노산 길이 = 215 스코어 = 181 (92.4 비트), 기대치 = 6.4e-20, 동일성 = 33/75 (44%), 양성 = 48/75 의문서열 : 31 HORKVVSWIDVYTRATCOPREVVVPLTVEL +++ VV + DVY R+ C+P E +V \div E 피검서열 : 36 NHHEVVKFMDVYQRSYCHPIETLVDIFQEY 의문서열 : 91 PTGQHQVRMQILMIR 105 PT + + MQI + I +피검서열: 96 PTEESNITMQIMRIK 110 스코어 = 76 (38.8 비트), 기대치 = 0.0011, 양성 = 16/19 동일성 = 12/19 (63%), 의문서열 : 110 QLGEMSLEEHSQCECRPKK 128 ++GEMS +H+ CECRPKK 피검서열 : 116 HIGEMSFLOHNKCECRPKK 134 스코어 = 72 (36.8 BITS), 기대치 = 0.0046, 동일성 = 14/21 (66%), 양성 = 15/21 의문서열 : 202 RCQGRGLELNPDTCRCRKLRR 222 RC +R LELN TCRC K RR 피검서열 : 195 RCKAROLELNERTCRCDKPRR 215 스코어 = 46 (23.5 BITS), 기대치 = 47., 양성 = 9/10 동일성 = 6/10 (60%), 의문서열 : 187 DPRTCRCRCR 196 DP+TC+C C+ 피검서열: 181 DPQTCKCSCK 190

3b 중식 인자 전구물질 (VEGF) P = 6.4e - 20(64%) MGTVAKQLVPSCVTVQRCGGCCPDDGLECV 90 PSCV + RCGGCC D+GLECV + PDEIEYIFKPSCVPLMRCGGCCNDEGLECV 95 프와송 P(2) = 9.1e-12 (84%) 프와송 P(3) = 3.6e-18 (718) 프와송 P(4) = 7.3e-10 (90%)

	4
도 4a	도 4b
도 4c	도 4d

4a

갭 길이 기	중량:3.00 중치:0.100 특색:100.9 비:0.175	평균 정합 :1.000 평균 부정합 :-0.900 길이 :739 갭 :30
유사성	(%):69.703	동일성(%):69.703
28 17	ATGAGCCCTC ATGAACTTTC	TGCTCCGCCGCCTGC
68	TGCAGCTGGC	CCCCGCCCAGGCCCC
57	 TGCTGCTCTA	CCTCCACCATGCCAA
118	CACCAGAGGA	
106	AGAAGGAGGA	GGGCAGAATCATCAC
140	GTGTATACTC	GC.GCTACCTGCCAG
152	GTCTATCAGC	GCAGCTA.CTGCCAT
194	TGA	CTGTGGAGCTCAT
201	 TCCAGGAGTA	CCTGATGAGATCGA
235	CCCAGCTGCG	IGACTGTGCAGCGCT
239	CCATCCTGTG	TGCCCCTGATGCGAT
285	CCTGGAGTGT	GTGCCCACTGGGCAG
289	CCTGGAGTGT	GTGCCCACTGAGGAG

TGCTCGCCGCACTCC	67
TGGGTGCATTGGAGCCTTGCCT	56
	117
GTGGTCCCAGGCTGCA.CCCATGGC	105
AAGTGGTGTCATGGATAGAT	147
GAAGTGGTGAAGTTCATGGAT	151
CCCCGGGAGGTGGTGGTGCCCT	193
CCAATCGAGACCCTGGTGGACATCT	200
GGGCACCGTGGCCAAACAGCTGGTG	234
GTACATCTTG	238
GTGGTGGCTGCTGCCCTGACGATGG	284
GCGGGGGCTGCTGCAATGACGAGGG	288
CACCAAGTCCGGATGCAGAT	329
TCCAACATCACCATGCAGATTATGC	338

330	
339	GGATCAAACCTCAC
369	GTCCCTGGAAGAACACAGCCAGTGT
376	GAGCTTCCTACAGCACAACAAATGT
419	GTGCTGTGAAGCCAGACAGGGCTGC
423	GAGCAAGACAAG
469	CGTTCTGTTCCGGGCTGGGACTCTG
443	IIIIIIIIIII TGTGGGCCTTGCTCAGA
519	CATCACCCATCCCACTCCAGCCCCA
468	
569	GCACCACCAGCGCCC
469	 GCATTTGTTTGTACAA
609	TGCCGACGCCGCAGCTTCCTCCGTT
509	 TG.CAAAAACACAGACTCGCGTT
657	AACCCAGACACCTGCAGGTGCCGGA
554	 AACGAACGTACTTGCAGATGTGACA

4c

	CGAGCAGTCAGCTGGGGGGAGAT	368
	CAAGGCCAGCACATAGGAGAGAG	375
	GAATGCAGACCTAAAAAAAAGGACA	418
	GAATGCAGACCAAAGAAAGATA	422
	CACTCCCCACCACCGTCCCCAGCCC	468
		442
	CCCCCGGAGCACCCTCCCCAGCTGA	518
	GCGGAGAA	467
	GGCCCCTCTGCCCACGCTGCACCCA	568
:	A	468
	TGACCCCCGGACCTGCCGCTGCCGC	608
	.GATCCGCAGACGTGTAAATGTTCC	508
 	GCCAAGGGCGGGGGCTTAGAGCTC	656
	GCAAGGCGAGGCAGCTTGAGTTA	553
	AGCTGCGAAGGTGA	695
1	AGCCGAGGCGGTGA	592

	5	
도 5a	도 5b	도 5c
도 5d	도 5e	도 5f

165SOMSO.MSF.msf MSF:687 유형: D 1995년 6월 20일 (화) 검사 :3140 1 VEGF165 ATGAACTTTCTGCTGTCTTGGGTG SOM175 ATGAGCCCTCTGCTCCGCCGCCTG SOM175-e6 ATGAGCCCTCTGCTCCGCCGCCTG SOM175-e6&7 ATGAGCCCTCTGCTCCGCCGCCTG SOM175-e4 ATGAGCCCTCTGCTCCGCCGCCTG 81 VEGF165 CACCCATGGCAGAAGGAGGAGGGC SOM175 TGCCCCTGGCCACCAGAGGAAAGT SOM175-e6 TGCCCCTGGCCACCAGAGGAAAGT SOM175-e6&7 TGCCCCTGGCCACCAGAGGAAAGT SOM175-e4 TGCCCCTGGCCACCAGAGGAAAGT 161 VEGF165 CCAATCGAGACCCTGGTGGACATC SOM175 GTGGTGGTGCCCTTGACTG. TGGA SOM175-e6 GTGGTGGTGCCCTTGACTG. TGGA SOM175-e6&7 GTGGTGGTGCCCTTGACTG.TGGA SOM175-e4 GTGGTGGTGCCCTTGACTG.TGGA 241 VEGF165 GATGCGATGCGGGGGGCTGCTGCAA SOM175 GCAGCGCTGTGGTGGCTGCTGCCC SOM175-e6 GCAGCGCTGTGGTGGCTGCTGCCC SOM175-e6&7 GCAGCGCTGTGGTGGCTGCTGCCC SOM175-e4 GCAGCGCTGTGGTGGCTGCTGCCC

5a

CATTGGAGCCTTGCCTTGCTGCTCTACC CTGCTCGCCGCACTCCTGCAGCTGGCCC CTGCTCGCCGCACTCCTGCAGCTGGCCC CTGCTCGCCGCACTCCTGCAGCTGGCCC CTGCTCGCCGCACTCCTGCAGCTGGCCC

AGAATCATCACGAAGTGGTGAAGTTCAT GGTGTCATGGATAGATGTGTATACTCGC GGTGTCATGGATAGATGTGTATACTCGC GGTGTCATGGATAGATGTGTATACTCGC GGTGTCATGGATAGATGTGTATACTCGC

TTCCAGGAGTACCCTGATGAGATCGAGT GCTCATGGGCACCGTGGCCAAAC..AGC GCTCATGGGCACCGTGGCCAAAC..AGC GCTCATGGGCACCGTGGCCAAAC..AGC GCTCATGGGCACCGTGGCCAAAC..AGC

TGACGAGGGCCTGGAGTGTGTGCCCACT TGACGATGGCCTGGAGTGTGTGCCCACT TGACGATGGCCTGGAGTGTGTGCCCACT TGACGATGGCCTGGAGTGTGTGCCCACT TGACGATGGCCTGGAGTGTGTGCCCACT 80 TCCACCATGCCAAGTGGTCCCAGGCTG. CCGCCCAGGCCCCTGTCTCCCAGCCTGA CCGCCCAGGCCCCTGTCTCCCAGCCTGA CCGCCCAGGCCCCTGTCTCCCAGCCTGA

160

GGATGTCTATCAGCGCAGCTACTGCCAT G....CTACCTGC.CAGCC.CCGGGAG G....CTACCTGC.CAGCC.CCGGGAG G....CTACCTGC.CAGCC.CCGGGAG G....CTACCTGC.CAGCC.CCGGGAG

240

ACATCTTCAAGCCATCCTGTGTGCCCCT TGGTGCCCAG....CTGCGTGACTGT TGGTGCCCAG....CTGCGTGACTGT TGGTGCCCAG....CTGCGTGACTGT TGGTGCCCAG....CTGCGTGACTGT

320

GAGGAGTCCAACATCACCATGCAGATTA GGGCAGCACCAAGTCCGGATGCAGATCC GGGCAGCACCAAGTCCGGATGCAGATCC GGGCAGCACCAAGTCCGGATGCAGATCC GGGCAGCACCAAGTCCGGATGCAGA...

N	321
VEGF165	TGCGGATCAAACCTCACCAAGGCC
SOM175	TCATGATCCGGTACCCGAGCA
SOM175-e6	TCATGATCCGGTACCCGAGCA
SOM175-e6&7	TCATGATCCGGTACCCGAGCA
SOM175-e4	• • • • • • • • • • • • • • • • • • • •
	401
VEGF165	AAGAAAGATAGAGCAA
SOM175	AAAAAGGACAGTGCTGTGAAGCCA
SOM175-e6	AAAAAGGACAGTGCTGTGAAGCCA
SOM175-e6&7	AAAAAGGACAGTGCTGTGAAGCCA
SOM175-e4	AAAAAGGACAGTGCTGTGAAGCCA
	· · · · ·
	481
VEGF165	AAGCA
SOM175	CTCTGCCCCCGGAGCACCCTCCCC
SOM175-e6	
SOM175-e6&7	
SOM175-e4	CTCTGCCCCCGGAGCACCCTCCCC
· · · · · · · · · · · · · · · · · · ·	
	561
VEGF165	A
SOM175	GCACCACCAGCGCCCTGACCCCCG
SOM175-E6	GCACCACCAGCGCCCTGACCCCCG
SOM175-e6&7	
SOM175-e4	GCACCACCAGCGCCCTGACCCCCG
	641
VEGF165	 ͲͲ Ͼ ϡ <u>Ⴚ</u> ͲͲ <u>ϡ</u> ϡϡϹ <u></u> ϹϡϡϡϹϾͲͽϹͲͲϲϹͽ
SOM175	TAGAGCTCAACCCAGACACCTCCA
SOM175-e6	TACACCTCAACCCACACCTCCA
SOM175-667	INCASE I CARCECAGALACE I GLA
SOM175-6/	

5d

ł	
l	AGCACATAGGAGAGATGAGCTTCCTACA
l	CTCACCTCCCCACATCTCCCTCCAACA
l	CTCACCTOCOCCACATOTCCCTOCAACA
	GICAGCIGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
	GTCAGCTGGGGGGGGAGATGTCCCTGGAAGA
	• • • • • • • • • • • • • • • • • • • •
	GACAAGAAAATCCCTGTGG
	GACAGGGCTGCCACTCCCCACCACCGTC
	GATAG
	GATAG
	GACAGGGCTGCCACTCCCCACCACCGTC
	AGCTGACATCACCCATCCCACTCCAGCC
	· · · · · · · · · · · · · · · · · · ·
	• • • • • • • • • • • • • • • • • • • •
	AGCTGACATCACCCATCCCACTCCAGCC
	GACGTGTAAATGTTCCTGCAAAAAC.AC
	GACCTGCCGCTGCCGACGCCGC
	GACCTGCCGCTGCCGCCGACGCCGC
	CACCIDECOCIDECOACOCCOC
	GALCTGUUGUTGUUGUUGAUGUUGU
	60 7
	687
	GATGTGACAAGCCGAGGCGGTGA
	GGTGCCGGAAGCTGCGAAGGTGA
	GGTGCCGGAAGCTGCGAAGGTGA
	. GTGCCGGAAGCTGCGAAGGTGA
	GGTGCCGGAAGCTGCGAAGGTGA

400
GCACAACAAATGTGAATGCAGACCA
ACACAGCCAGTGTGAATGCAGACCTAAA
ACACAGCCAGTGTGAATGCAGACCTAAA
ACACAGCCAGTGTGAATGCAGACCTAAA
· · · · · · · · · · · · · · · · · · ·
480
GCCTTGCTCAGAGCGGAGA
CCCAGCCCCGTTCTGTTCCCGCCTCCCA
CCCAGCCCCGTTCTGTTCCGGGCTGGGA
560
····· TTTGTT TGTAC A
CCAGGCCCCTCTGCCCACGCTGCACCCA
CCAGGCCCCTCTGCCCACGCTGCACCCA
CCAGGCCCCTCTGCCCACGCTGCACCCA
640
AGACTCGCGTTGCAAGGCGAGGCAGC
AGCTTCCTCCGTTGCCAAGGGCGGGGCT
AGCTTCCTCCGTTGCCAAGGGCGGGGCT
•••••••••••••••••••••••••••••••••••••••
AGCTTCCTCCGTTGCCAAGGGCCCCCCT
e

				6a				
VEGF ₁₆₅ SOM175	VEGF ₁₆₅ SOM175	VEGF ₁₆₅ SOM175	VEGF ₁₆₅ SOM175	OR	VEGF₁₆₅ SOM175	VEGF ₁₆₅ SOM175	VEGF ₁₆₅ SOM175	VEGF ₁₆₅ SOM175
않	잔	잗	交		ιΩ	ф	μΰ	m
1								
າບົດ	ヒョ	ЧН	ZZ		нC	ヒュ	Чн	XX
סי פל	ヨピ	ካኳ	SZ		AX	R L	нч	ω Z
0 0	ыЮ	< 10	দদ		₽ C	S I	< 10	עלי טי
N FI	HH	H H	FF		S G	нн	ন দ	도 도
ЮĦ	s n	エス			S S S S S S S S S S S S S S S S S S S	0 Z	L K	エト
1 H H H H	NX	d B	S R		JX	<u>N X</u>	ס א	N K
R H	0 0	0 0	RE		ΗZ	0 0	ດປ	RW
Ν×	ম ম	ЧЫ	エム		ы	西西	ਸ ਸ	r 4
RH	0 0	ЧН	Чн		D	0 0	Ч Н	ГН
· ٢	R R	ÞΕ	· S		5 5	\mathbf{x}	א ב	· W
· 73	סי סי	XX	<u>0</u>		ЧЪ	ס ס	хĸ	<u>0</u>
1. 4	XX	Юн			טמ	XX	ЮН	2.2
QU	XX	Гч	AA		n x	XX	ርካ	AA
ם ם	X.	<u> </u>	AL		PA	×・	くて	D L
ש ש	Ð٠	סי סי			A R	U •	ק ק	
RD	· N	ດ ທ	H H		ЪЮ	N •	າ ເນ	てて
HН	A	0.0	N K		Ā	A٠	0 0	N A
0 0	<	< <	H H		a f	く・	4 4	
RX	X·	ЧЪ	H A		ΡĽ	X·	чч	H
00	ਸ	< F	ЧH		d Z	יש	< F	<u>H q</u>
N R	99	<u>N</u>	AA		AE	99	N X N	AA
		RR	ΝX		R		R R	ΝX
	AA	0 0	· £		Ъ. H	AA	0 0	• 2
RR	A ·	ရ ရ	v ∙		ပ လ	₽.	ရ ရ	· v
ы R	H.	ର ର	· Ю		S B	Ч·	မ ဂ	· Ю
D N	י סי	0.0	• <u>></u> •		4 0	יטי	0 0	• <u>></u>
אדי	н	0 0	AA	-	D A	H.	<u>റ</u> റ	AA
F ·	<u> </u>	שצ	שש		XX	<u> </u>	שצ	ק ק

6b

· · · · · · · · · · · · · · · · · · ·	
אר סס אא אמא	אר הם יא הט
AN HU OF UU	אמע אם יק אס
HO FO HO KO	
הא הא הג אט	שי דד הם
, 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
94 00 · v 00	
דד לי לל דס	Q4 20 · P
ה ה ה ה ה ה ה ה	צה שישי ישי
гг о. нн шш	· 나바 표표
NN N. OH OH	
玉氏 正Q ・D 正F	RK RO OD
DR S· HS K·	· K OH HO
HH DY DY CC	PI NI (CC)
00 P 44 44	२२ म२ जिल
メと Fix ・Co KK	KO FK OD
OU D. WK KA	PG XX SH
<u>ын</u> оо е <u>ок</u>	צו מס קיקי
	о нн ОО
אס אי די אין	י ס מ רא עע
RR A· MR YY	AE RX KK
OF HH .D KK	Он НН КО
$\mathbf{R} \mathbf{R} \rightarrow \mathbf{R}$	RK XK RH
S A G · · H	S A P · XF
H· KH HK	田田 ス田 よス
DO QU · U	טט מה זמ
HO DN H	H J J J J J J J J J J J J J J J J J J J
שישי סמי שי	שישי סגימ ישי
HK HQ ·K	P O H RH
	国国 H J 오F
ଦେ ଦେ ସେମ	ରପ ରଜ ଏମ
· · · · · · · · · · · · · · · · · · ·	א א א שי שי
	SD RE CC
DA NN DD	D d N N H A
219 117 120 117 120 117 120 117 120 117 120 110 110 110 110 110 110 110 110 110	21 11 11 09 77 12 56

100% 상동 지역은 박스로 나타내었고, 동종이랑채화와 관련 있는 것으로 추정되는 보존

6c 비롯하여 많은 구조적 잔기가 보존된다.(PDGF와 비교하여) К 100% 상동성 블록이 존재한다. 특히 VEGF의 동종이량채와 관련 있는 것으로 추정되는 잔기들을

	٦C
프롤린 -70, 아르기닌-77, 시스테인-89, 시스테인 122	시스테인 - 47
시스테인-72, 시스테인-78, 프롤린 -91 & 124	
발린 -74 글리신 -80,	
시스테인 ~81 & 8	
Ñ	

•••3'UTR	AGG TCA	(22bp)	8	LP JS	*	GIGCCG	ccctgctcag
acacctgtag	ACCCAG	(1.09bp)	1	2L 4D		CCCCAG	cccactccag
ccccaggccc	CTCCAG	(101bp)	5	년 사		GGCTGC	ctcctccgta
gtgagtcttt	AGACAG	(34bp)	сл	일 (비		ACCTAA	acttttcaag
gtgtcaggca	ATGCAG	(73bp)	4	외 신		ATCCTC	ctgaatacag
gtccgagatg	ATGCAG	(187bp)	ω	일 사		TGGTGT	tctgctccca
aatacttaca	GGAAAG	(43bp)	ູ	일 (1)		GCCCCT	tctcccacag
gtacgtgagg	GGCCAG	(ɗơŋ 9)		외 신	*	ATGAGG	5'UTR

8b

- 68 -

	9
도 9a	도 9b
도 9c	도 9d

gga gga gca	acga gggo cggo	agei cego ctet	tcag cgga cgga	ggco agga ctga	cgto agco acco	cgct cgcc cccc		ggcg tgc caca	gctg gcc iccg	
CGI	CGC	сто	CTO	CTI	GTI	'GCA	CTG	CTG	CAG	
R	R	L	L	L	V	Α	L	L	Q	
TTT	GAT	GGC	ccc	AGT	CAC	CAG	AAG	AAA	GTG	
F	D	G	Ρ	S	H	Q	K	K	v	
ACA	TGC	CAG	ccc	AGG	GAG	GTG	GTG	GTG	ССТ	
Т	С	Q	P	R	E	V	v	v	P	
ААА	CAA	CTA	GTG	ccc	AGC	TGT	GTG	ACT	GTG	
K	Q	L	v	P	S	С	V	Т	v	
GGC	CTG	GAA	TGT	GTG	ccc	ACT	GGG	CAA	CAC	
G	L	Ε	С	V	P	т	G	Q	н	 •
TAC	CCG	AGC	AGT	CAG	CTG	GGG	GAG	ATG	тсс	
Y	Ρ	S	S	Q	L	G	Ε	М	S	
CCT	AAA	ААА	AAG	GAG	AGT	GCT	GTG	AGG	CCA	
P	K	K	K	Е	S	A	V	R	P	!
CAG	ccc	CGC	TCT	GTT	CCG	GGC	TGG	GAC	TCT	
Q	P	R	S	V	P	G	W	D	S	
	gca gga gga CGI R TTTI F ACA T AAA K GGC G TAC G CCT P CAG Q	gcacga gggggg ggcggg CGTCGC R R TTTGAT F D ACATGC T C AAACAA K Q GGCCTG G L TACCCG Y P CCTAAA P K <u>CAGCCC</u> Q P	gcacgagc ggggggccg ggcggctcd R R L TTTGATGGC F D G ACATGCCAG T C Q AAACAACTA K Q L GGCCTGGAA G L E TACCCGAGC Y P S CCTAAAAAA P K K <u>CAGCCCCGC</u> Q P R	$\begin{array}{c} gcacgagctcag\\ ggggggccgcgga\\ ggcggctctgga\\ ggcggctctgga\\ R R L L\\ \end{array}$ $\begin{array}{c} CGTCGCCTGCTGCTG\\ R R L L\\ \end{array}$ $\begin{array}{c} TTTGATGGCCCCC\\ F D G P\\ \end{array}$ $\begin{array}{c} ACATGCCAGCCCC\\ T C Q P\\ \end{array}$ $\begin{array}{c} ACATGCCAGCCCC\\ T C Q P\\ \end{array}$ $\begin{array}{c} AAACAACTAGTG\\ K Q L V\\ \end{array}$ $\begin{array}{c} GGCCTGGAATGT\\ G L E C\\ \end{array}$ $\begin{array}{c} GGCCTGGAATGT\\ G L E C\\ \end{array}$ $\begin{array}{c} TACCCGAGCAGT\\ Y P S S\\ \end{array}$ $\begin{array}{c} CCTAAAAAAAAG\\ P K K K\\ \end{array}$ $\begin{array}{c} CAGCCCCGCTCT\\ Q P R S \end{array}$	$\begin{array}{c} gcacgagctcaggcgggggggccgcggaggaggcggctctggctgaTTTGATGGCCCCAGTF D G P SACATGCCAGCCCAGGT C Q P RAAACAACTAGTGCCCK Q L V PGGCCTGGAATGTGTGG L E C VTACCCGAGCAGTCAGY P S S QCCTAAAAAAAAGGAGP K K K E\begin{array}{c} CAGCCCCGCTCTGTT\\Q P R S V\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	gcacgagctcaggccgtcgctgccgcgggggggccgcggaggagccgccccccggcggctctggctgacccccccccc	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	gcacgageteaggecgtegetgegegegetg gggggeegeggaggageegeeceeeeeeeeeeeeeeee

a	h
J	D.

cg	ttg	cgc	tgc	ctg	cgco	cca	gggo	ctcg	jgga	
cc	gçc	ccg	ggto	ccc	cggg	gtco	cgcg	geca	atgg	
cc	ggg	ctag	gggd	ccc	<u>jATC</u>	AGC	CCC	CTC	SCTG	
1					М	S	P	\mathbf{L}	L	-17
· ·					1					
CTO	GCI	CGC	CACC	CAC	GCC	CCI	GTG	TCC	CAG	
Ľ	Α	R	T	Q	A	P	v	S	0	4
				~					~	
GTO	SCCA	TGG	ATA	GAC	GTT	ТАТ	GCA	CGT	GCC	
V V	Р	W	I	D	v	Y	A	R	A	24
	_		_	-	•	-		• `		0 , 1
CTG	AGC	ATG	GAA	CTC	ATG	റററ	ልልጥ	ദനദ	രനറ	
ι	S	M	E	С. т.	M	<u>ے دی</u>	N	77	37	A A
(_	-			<u> </u>	2.7	9	TA	v	v	44
CAG	CCC	ന്നന	ഭരസ		መረርሳ	TCC	ററൺ	270	~ .	
	D	201	GGT				C L L L	GAU	JAT.	C A
¥ ¥	ĸ		G	G	C	C	Р	D	D	64
033	~~~			1						
CAA	GTC	CGA	ATG	CAG	ATC	CTC	ATG	ATC	CAG	_
Q	V	R	M	Q	I	L	M	I	Q	84
									ł	
CTG	GGA	GAA	CAC	AGC	CAA	rgto	GAA	IGC	AGA	
L	G	E	H	S	Q	С	E	С	R	104
	4									
GAC	AG <u>G</u>	GTT	GCC	ATA	CCC	CAC	CAC	CGT	CCC	
D	R	v	A	Ι	P	H	H	R	P	124
ACC	CCG	GGA	GCA		TCC	CA	GCT	GAC	ATC	
T	P	G	A	P	S	P	Δ	D	T	144
	-	-		-	~	-	• •	2	-	723

a	0
J	U

496 <u>ATCCATCCCACTCCAG</u> CCCCAGGATCCTCT I H P T P A P G S S S P R I L 556 CTGACCCCCGGACCTGCCGTTGCCGCTGTA L T P G P A V A A V P D P R T C R C R C 616 GGGGCT <u>TAG</u> AGCTCAACCCAGACACCTGTA G A * R G L E L N P D T C 676 ctttccagactccacgggcccggctgcttt 736 agcacaggcgtaacctcctcagtctggag 796 gagctctctcgccatcttttatctcccaga 856 atgtctcacctcaggggccagggtactctc 916 ttctggctggctgtctcccctcactatgaa 976 gggttctgttatgataactgtg <u>acacacac</u> 1036 gacactaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		······				•					
IHPTPAPGSSSPRIL556CTGACCCCCGGACCTGCCGTTGCCGCTGTA LTPPAVPDPRTCRC616GGGGCTTAGAGCTCAACCCAGACACCTGTA GA*RGLELNPDTC676Ctttccagactccacgggcccggctgcttt agcacaggcgtaacctcctcagtctgggag 796gagctctctcgccatcttttatctcccaga atgtctcacctcaggggccagggtactctc 916ttctggctggctgtctcccctcactatgaa 976gggttctgttatgataactgtgacacacac aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	496	<u>አ</u> ጥ/	<u>с</u> сл	ምድድ	$C \lambda C$	ምድድ	1		NGG	አጥጦ	൨൱൜	,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TJ 0	<u> </u>	u u	D	<u>רהכ</u> ש		<u>лос</u> Л		-00-7 -0-7	AIC C		
 5 F K I E 556 CTGACCCCCGGACCTGCCGTTGCCGCTGTA L T P G P A V A A V P D P R T C R C R C 616 GGGGCT<u>TAG</u>AGCTCAACCCAGACACCTGTA G A * R G L E L N P D T C 676 ctttccagactccacgggcccggctgcttt 736 agcacaggcgtaacctcctcagtctgggag 796 gagctctctcgccatcttttatctcccaga 856 atgtctcacctcaggggccagggtactctc 916 ttctggctggctgtctcccctcactatgaa 976 gggttctgttatgataactgtg<u>acacacac</u> 1036 gacactaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa		-	11	F	T	F	л с	י <u>ד</u> ס	D D	T	т. Т.	
 556 CTGACCCCCGGACCTGCCGTTGCCGCTGTA L T P G P A V A A V P D P R T C R C R C 616 GGGGCT<u>TAG</u>AGCTCAACCCAGACACCTGTA G A * R G L E L N P D T C 676 ctttccagactccacgggcccggctgcttt agcacaggcgtaacctcctcagtctgggag 796 gagctctctcgccatcttttatctccccaga 856 atgtctcacctcaggggccagggtactctc 916 ttctggctggctgtctcccctcactatgaa 976 gggttctgttatgataactgtg<u>acacacacacacacacacacacacacacacacacacac</u>							3	Ę	R	-	ىد	
L T P G P A V A A V P D P R T C R C R C 616 GGGGCT <u>TAGAGCTCAACCCAGACACCTGTA</u> G A * R G L E L N P D T C 676 ctttccagactccacgggcccggctgcttt 736 agcacaggcgtaacctcctcagtctgggag 796 gagctctctcgccatcttttatctccccaga 856 atgtctcacctcaggggccagggtactctc 916 ttctggctggctgtctcccctcactatgaa 976 gggttctgttatgataactgtg <u>acacacacacacacacacacacacacacacacacacac</u>	556	СТС	GAC	ccc	CGG	ACC	rgc	CGT'	TGC	CGC	гста	
$\begin{array}{ccccccc} P & D & P & R & T & C & R & C & R & C \\ \hline 616 & GGGGCT \underline{TAG} AGCTCAACCCAGACACCTGTA \\ G & A & * \\ R & G & L & E & L & N & P & D & T & C \\ \hline 676 & ctttccagactccacgggcccggctgcttt \\ \hline 736 & agcacaggcgtaacctcctcagtctgggag \\ \hline 796 & gagctctctcgccatcttttatctcccaga \\ \hline 856 & atgtctcacctcaggggccagggtactctc \\ \hline 916 & ttctggctggctgtctcccctcactatgaa \\ \hline 976 & gggttctgttatgataactgtgacacacac \\ \hline 1036 & gacactaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		Ŀ	Т	Ρ	G	Р	A	v	A	А	v	•
 616 GGGGCT<u>TAG</u>AGCTCAACCCAGACACCTGTA G A * R G L E L N P D T C 676 ctttccagactccacgggcccggctgcttt 736 agcacaggcgtaacctcctcagtctgggag 796 gagctctctcgccatcttttatctcccaga 856 atgtctcacctcaggggccagggtactctc 916 ttctggctggctgtctcccctcactatgaa 976 gggttctgttatgataactgtg<u>acacacac</u> 1036 gacactaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa		P	D	P	R	T	C	R	С	R	C	
 616 GGGGCT<u>TAG</u>AGCTCAACCCAGACACCTGTA G A * R G L E L N P D T C 676 ctttccagactccacgggcccggctgcttt 736 agcacaggcgtaacctcctcagtctgggag 796 gagctctctcgccatcttttatctcccaga 856 atgtctcacctcaggggccagggtactctc 916 ttctggctggctgtctcccctcactatgaa 976 gggttctgttatgataactgtgacacacac 1036 gacactaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa			_	_		-	-		-		-	
G A * R G L E L N P D T C 676 ctttccagactccacgggcccggctgcttt 736 agcacaggcgtaacctcctcagtctgggag 796 gagctctctcgccatcttttatctcccaga 856 atgtctcacctcaggggccagggtactctc 916 ttctggctggctgtctcccctcactatgaa 976 gggttctgttatgataactgtg <mark>acacacac</mark> 1036 gacactaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	616	GGG	GC'	ΓΤΑ	GAG	CTCZ	AAC	CA	GAC	ACC	rgta	
R G L E L N P D T C 676 ctttccagactccacgggcccggctgcttt 736 agcacaggcgtaacctcctcagtctgggag 796 gagctctctcgccatcttttatctcccaga 856 atgtctcacctcaggggccagggtactctc 916 ttctggctggctgtctcccctcactatgaa 976 gggttctgttatgataactgtgacacacac 1036 gacactaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa		G	A	*								
676 ctttccagactccacgggcccggctgcttt 736 agcacaggcgtaacctcctcagtctgggag 796 gagctctctcgccatcttttatctcccaga 856 atgtctcacctcaggggccagggtactctc 916 ttctggctggctgtctcccctcactatgaa 976 gggttctgttatgataactgtgacacacac 1036 gacactaaaaaaaaaaaaaaaaaaaaaaaaa		R	G	L	Е	L	N	Р	D	т	С	
676 ctttccagactccacgggcccggctgcttt 736 agcacaggcgtaacctcctcagtctgggag 796 gagctctctcgccatcttttatctcccaga 856 atgtctcacctcagggggccagggtactctc 916 ttctggctggctgtctcccctcactatgaa 976 gggttctgttatgataactgtgacacacac 1036 gacactaaaaaaaaaaaaaaaaaaaaaaaaa			-		-							•
 736 agcacaggcgtaacctcctcagtctgggag 796 gagctctctcgccatcttttatctcccaga 856 atgtctcacctcagggggccagggtactctc 916 ttctggctggctgtctcccctcactatgaa 976 gggttctgttatgataactgtgacacacac 1036 gacactaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	676	ctt	tc	caga	acto	ccad	cggg	acco	cgga	ctgo	cttt	
 796 gagctctctcgccatcttttatctcccaga 856 atgtctcacctcagggggccagggtactctc 916 ttctggctggctgtctcccctcactatgaa 976 gggttctgttatgataactgtgacacacac 1036 gacactaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	736	ago	caca	agge	cata	aaco	ctco	tca	agto	ctg	ggag	
 856 atgtctcacctcaggggccagggtactctc 916 ttctggctggctgtctcccctcactatgaa 976 gggttctgttatgataactgtgacacacac 1036 gacactaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	796	gad	rcto	ctci	Ecgo	ccat	cti	tta	atci	tcco	caga	
916 ttctggctggctgtctcccctcactatgaa 976 gggttctgttatgataactgtgacacacac 1036 gacactaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	856	ato	itc	tca	cct	cago	ada	cca	gggt	tact	tctc	
976 gggttctgttatgataactgtgacacacac 1036 gacactaaaaaaaaaaaaaaaaaaaaaaaaaaaa	916	tto	ta	acto	aact	tata	ctco	ccci	tcad	cta	tgaa	
1036 gacactaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	976	aac	rtt	cta	ttal	tgal	taad	cta	toad	caca	acac	
	1036	295 060	ac	taa	aaa		aaa	aaa	aaa	aaa	aaaa	
		300										

9d

ſ

	GC A C	CCG R P	CCT L P	TGC A C	ACC P T	CAG S Q	CGC A R	CGC A R	CAA N Q	ACGC(I A R	2	164 130
1	GA	CGC	CGC	CGC	TTC	СТС	CAT	TGC	CAA	GGGC		
	D	A	A	A	S	S	I	Α	K	Ġ		184
	R	R	R	R	F	L	H	С	0	G		150
	GG	TGC	CGG	AAG	CCG	CGA	AAG	<u>rga</u>	caa	gctg		
												186
	R	С	R	K	Ρ	R	K '	ĸ				167
	tai gti gci tca aca aca	tggo cact tgco act ccco acao acao	ccci tgcc taac caaa caaa caaa caaa	tgc ctai ccai act act aca	ttca agga acaa ccci tcta ctci a	acag acci attg tgg acca t ga	ggga tgga gtca tcaa aata taa	agaa acci agg agt aaga aaga	aga Jaa Jag Jgg aga	gtgg taga cctc catc attt tgga		

10a

A

	1
hVRF167	-21 MSPLLRRLLLAALLQLAPAQAP
mVRF167	-21 MSPLLRRLLLVALLQLARTQAP
hVRF167	30 EVVVPLTVELMGTVAKQLVPSC
mVRF167	30 EVVVPLSMELMGNVVKQLVPSC
hVRF167	80 ILMIRYPSSQLGEMSLEEHSQC
mVRF167	80 ILMIQYPSSQLGEMSLGEHSQC
hVRF167	130 RPDPRTCRCRCRRRSFLRCQGR
mVRF167	130 RPDPRTCRCRCRRRFLHCQGR
В	
hVRF186	116 RAATPHHRPQPRSVPGWDSAPG
mVRF186	1
hVRF186	166 TPGPAAAAADAAASSVAKGGA*
mVRF186	: 166 TPGPAVAAVDAAASSIAKGGA*

- 74 -

		11a
mVRF167	-21	MSPLLRRLLLVALLQL
mVEGF188	-26	MNFLLSWVHWTLALLLYLHH
mVRF167	25	TCQPREVVVPLSMELMGNVV
mVEGF188	24	YCRPIETLVDIFQEYPDEIE
mVRF167	75	QVRMQILMIQYPSSQ.LGEM
mVEGF188	74	NITMQIMRIKPHQSQHIGEM
mVRF167	119	ILCPPC
mVEGF188	124	QKRKRKKSRFKSWSVHCEPC
mVRF167	152	GLELNPDTCRCRKPRK
mVEGF188	173	QLELNERTCRCDKPRR
		•

11b

AR.TQAPVSQFDGPSHQKKVVPWIDVYARA	24
AKWSQAAPTT.EGEQKSHEVIKFMDVYQRS	23
KQLVPSCVTVQRCGGCCPDDGLECVPTGQH	74
YIFKPSCVPLMRCAGCCNDEALECVPTSES	73
SLGEHSQCECRPKKKESAVRPDSPR	118
SFLQHSRCECRPKKDRTKPEKKSVRGKGKG	123
TQRRQRPDPRTCRCRCRRRFLHCQGR	151
SERRKHLFVQDPQTCKCSCKNTDS.RCKAR	172
	167
	188
l	

PDGF-B PDGF-A PIGF VEGF VAF anna. 11111 MIII ~ <u>/////2</u> W ///// ఆ A ||||| *Ш* ы లు 🕅 4 4 5 4 5 //// თ 5 5 6 6 6 *6* ///// o ~ 22 7 1 11/11/ <u>~~</u> 1 4 8

12

10-0414615

