

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.)

C22C 38/18 (2006.01) C21D 8/02 (2006.01) **C22C 38/14** (2006.01) **C22C 38/28** (2006.01)

(21) 출워번호

10-2009-0131852

(22) 출원일자 심사청구일자 2009년12월28일 2011년03월17일

(65) 공개번호

10-2011-0075408

(43) 공개일자

2011년07월06일

(56) 선행기술조사문헌

JP10036911 A*

KR1020010062057 A*

JP2002275595 A

KR100293209 B1

*는 심사관에 의하여 인용된 문헌

(45) 공고일자 2013년10월11일

(11) 등록번호 10-1316907

(24) 등록일자 2013년10월02일

(73) 특허권자

주식회사 포스코

경상북도 포항시 남구 동해안로 6261 (괴동동)

(72) 발명자

김상석

경상북도 포항시 남구 새천년대로 306, SK뷰 1차 102동 2003호 (효자동)

박지언

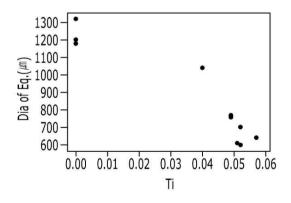
경상북도 포항시 남구 양학천로118번길 17-8, I 좋은집 302호 (대도동)

(뒷면에 계속)

(74) 대리인

유미특허법인

전체 청구항 수 : 총 6 항


심사관 : 이한욱

(54) 발명의 명칭 페라이트계 스테인레스강 및 그 제조방법

(57) 요 약

페라이트계 스테인레스강 및 그 제조방법이 개시된다. 페라이트계 스테인레스강은 티타늄(Ti)을 미량첨가하여 등축정입경을 800μm이하로 제어할 수 있다. 또한, 연속주조시 주조온도, 주조속도, EMS 전류범위를 제어하여 60% 이상의 등축정률을 가진 슬라브를 제조할 수 있다. 페라이트계 스테인레스강 슬라브를 조압연 후 바(bar) 시편의 (1/4) 두께 부위의 {001}<110>(rotate-cube 집합조직) 방위분율이 0.25% 이하로 제어함과 동시에 탄소 (C)와 오스테나이트 분율(y)의 관계 및 질소(N)와 오스테나이트 분율(y)의 관계를 각각 1.5≤ y *C(wt%)≤3.2, 0.6≤ x *N(wt%)≤1.4로 제한하여 내리징성을 개선할 수 있다.

대 표 도 - 도1

(72) 발명자

김광육

경상북도 포항시 남구 지곡로379번길 3-6, 79블록 (지곡동)

박수호

경북 포항시 남구 대잠동 이동 현대홈타운 106동 903호

특허청구의 범위

청구항 1

wt%로,

탄소(C): 0.02 이상 0.08이하,

질소(N): 0.01 이상 0.05이하,

실리콘(Si): 0.01 이상 0.50이하,

망간(Mn): 0.01 이상 0.70이하,

인(P): 0.001 이상 0.035이하,

황(S): 0.001 이상 0.005이하,

크롬(Cr): 15.0 이상 17.0이하,

니켈(Ni): 0.001 이상 0.50이하,

구리(Cu): 0.01 이상 0.50이하,

알루미늄(A1): 0.01 이상 0.15이하,

나머지 티타늄(Ti), 철(Fe) 및 불순물을 포함하되,

상기 티타늄(Ti)은 0.04 이상 0.09 이하이며,

페라이트계 스테인레스강 슬라브를 절단하여 등축정부위를 에칭 후, 12.5 배율의 광학현미경으로 측정한 등축정 입도는 하기의 식을 만족하는 페라이트계 스테인레스강.

등축정입도(µm)=1,238-10,279*Ti(wt%).

청구항 2

제1항에 있어서,

상기 페라이트계 스테인레스강 슬라브의 등축정부의 평균 입도크기는 0.01μ m 내지 800μ m 인 페라이트계 스테인 레스강.

청구항 3

제1항에 있어서,

상기 페라이트계 스테인레스강의 열간압연시 델타(δ) 페라이트로부터 오스테나이트로 변태되는 오스테나이트 분율을 $\chi(\%)$ 라 할때,

χ(%)=420*C+470*N+23*Ni+9*Cu+10*Mn+180-11.5*Cr- 11.5*Si-12.0*Mo

-52.0*A1로 정의하고, 상기 탄소(C)와 상기 오스테나이트 분율($\chi(\%)$)의 관계 및 상기 질소(N)와 상기 오스테나이트 분율($\chi(\%)$)의 관계가 각각 하기의 식들을 만족하는 페라이트계 스테인레스강.

 $1.5 \le \chi (\%) *C(wt\%) \le 3.2$,

 $0.6 \le \chi (\%) *N(wt\%) \le 1.4$.

청구항 4

삭제

청구항 5

wt%로,

탄소(C): 0.02 이상 0.08이하,

질소(N): 0.01 이상 0.05이하,

실리콘(Si): 0.01 이상 0.50이하,

망간(Mn): 0.01 이상 0.70이하,

인(P): 0.001 이상 0.035이하,

황(S): 0.001 이상 0.005이하,

크롬(Cr): 15.0 이상 17.0이하.

니켈(Ni): 0.001 이상 0.50이하.

구리(Cu): 0.01 이상 0.50이하,

티타늄(Ti): 0.05 이상 0.09이하,

알루미늄(Al): 0.01 이상 0.15이하,

나머지 철(Fe) 및 불순물을 포함하는 페라이트계 스테인레스강의 제조방법에 있어서,

연속주조시 주조온도가 1,520℃~1,545℃, 주조속도가 0.6~1.0m/min, EMS 전류범위가 1,000A 내지 1,600A인 페라이트계 스테인레스강의 제조방법.

청구항 6

제5항에 있어서,

상기 연속주조에 의해 제조된 슬라브의 등축정율이 60% 이상인 페라이트계 스테인레스강의 제조방법.

청구항 7

제5항에 있어서,

상기 페라이트계 스테인레스강의 열간압연시 조압연된 바(bar) 시편(25mm~35mm)의 (1/4)두께 부위의 {001}<110>(rotate-cube 집합조직) 방위분율이 0.25 이하인 스테인레스강의 제조방법.

청구항 8

삭제

청구항 9

삭제

명세서

발명의 상세한 설명

기 술 분 야

[0001] 본 발명은 페라이트계 스테인레스강 및 그 제조방법에 관한 것으로, 보다 상세하게는 내리징성이 우수하고 슬리 버 결함을 저감시킨 페라이트계 스테인레스강 및 그 제조방법에 관한 것이다.

배경기술

- [0002] 페라이트계 스테인레스강은 오스테나이트계 스테인레스강에 비해 가격이 저렴하고 열팽창률이 낮으며 표면광택, 성형성 및 내산화성이 양호하여 내열기구, 싱크대 상판, 외장재, 가전제품, 전자부품등에 널리 사용되고 있다. 페라이트계 스테인레스강의 냉연 박판의 경우 열간압연공정, 열간압연된 코일의 표면스케일을 제거하고 재료내 부 응력을 제거하는 소둔산세공정, 냉간압연 및 광휘소둔공정을 통해 제조된다.
- [0003] 상기의 공정을 통해 제조된 페라이트계 스테인레스강의 박판제품의 가공시 재료가 받는 소성변형 구간에 따라 벤딩크랙(bending crack), 리징(ridging)등의 가공에 기인한 표면결함이 발생되는 경우가 있다. 리징의 주원인

은 열연판 중심층에 잔존하는 조대 페라이트 밴드에 의한 것으로 주편의 등축정율의 향상 및 등축정의 미세화가 해결방법으로 제시되고 있으나 페라이트계 스테인레스강의 연속주조시 공정변수 조절에 의해 등축정율을 향상시킨 경우에도 리장 개선효과에 효율적이지 않을 수 있다.

발명의 내용

해결 하고자하는 과제

[0004] 페라이트계 스테인레스강의 내리징성 향상 및 슬리버 결함 저하를 위하여 티타늄(Ti) 함량 및 오스테나이트 분율을 최적화함으로써 내리징성이 우수하고 슬리버(sliver) 결함을 저감시킨 페라이트계 스테인레스강 및 그 제조방법을 제공하고자 한다.

과제 해결수단

- [0005] 본 발명의 일 실시예에 따른 페라이트계 스테인레스강은 wt%로, 탄소(C): 0.02 이상 0.08이하, 질소(N): 0.01 이상 0.05이하, 실리콘(Si): 0.01 이상 0.50이하, 망간(Mn): 0.01 이상 0.70이하, 인(P): 0.001 이상 0.035이하, 황(S): 0.001 이상 0.005이하, 크롬(Cr): 15.0 이상 17.0이하, 니켈(Ni): 0.001 이상 0.50이하, 구리(Cu): 0.01 이상 0.50이하, 알루미늄(Al): 0.01 이상 0.15이하, 나머지 티타늄(Ti), 철(Fe) 및 불순물을 포함하되, 상기 티타늄(Ti)은 0.04 이상 0.09 이하 함량을 갖는다.
- [0006] 본 발명의 다른 실시예에 따른 페라이트계 스테인레스강의 제조방법은 wt%로, 탄소(C): 0.02 이상 0.08이하, 질소(N): 0.01 이상 0.05이하, 실리콘(Si): 0.01 이상 0.50이하, 망간(Mn): 0.01 이상 0.70이하, 인(P): 0.001 이상 0.035이하, 황(S): 0.001 이상 0.005이하, 크롬(Cr): 15.0 이상 17.0이하, 니켈(Ni): 0.001 이상 0.50이하, 구리(Cu): 0.01 이상 0.50이하, 티타늄(Ti): 0.05 이상 0.09이하, 알루미늄(Al): 0.01 이상 0.15이하, 나머지 철(Fe) 및 불순물을 포함하는 페라이트계 스테인레스강의 연속주조시 주조온도가 1,520℃~1,545℃, 주조속도가 0.6~1.0m/min, EMS 전류범위가 1,000~1,600A 범위를 갖는다.

直 과

[0007] 상기한 페라이트계 스테인레스강 및 그 제조방법은 다음과 같은 효과가 있다. 티타늄(Ti)을 미량첨가하여 슬라 브의 등축정입경을 일정범위로 제어함으로써 내리징성이 개선된 페라이트계 스테인레스강을 제공할 수 있다. 또한, 슬라브의 연속주조 공정조건들을 제어하여 60%이상의 등축정율을 가진 페라이트계 스레인레스강을 제공할 수 있다.

발명의 실시를 위한 구체적인 내용

- [0008] 여기서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
- [0009] 다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
- [0010] 본 발명의 일 실시예에 따른 페라이트계 스테인레스강은 wt%로, 탄소(C): 0.02 이상 0.08이하, 질소(N): 0.01 이상 0.05이하, 실리콘(Si): 0.01 이상 0.50이하, 망간(Mn): 0.01 이상 0.70이하, 인(P): 0.001 이상 0.035이하, 황(S): 0.001 이상 0.005이하, 크롬(Cr): 15.0 이상 17.0이하, 니켈(Ni): 0.001 이상 0.50이하, 구리(Cu): 0.01 이상 0.50이하, 알루미늄(A1): 0.01 이상 0.15이하, 나머지 티타늄(Ti), 철(Fe) 및 불순물을 포함하되, 상기 티타늄(Ti)은 0.04 이상 0.09를 만족한다.
- [0011] 탄소(C)의 양은 0.02wt% 내지 0.08wt% 이하이다. 강중 탄소(C)는 페라이트계 스테인레스강에 불가피하게 포함되는 불순물이지만, 강의 오스테나이트 안정화원소이기 때문에 오스테나이트 분율(y(%))을 최대화하는 작용을하여 로핑 및 리징을 억제하는 효과가 있으나 과잉으로 포함하게 되면 연신율을 저하시켜 제품의 가공성을 현저

히 저하시키기 때문에 0.1wt% 이하로 설정하되 바람직하게는 전술한 범위로 제한한다.

- [0012] 질소(N)의 양은 0.01wt% 내지 0.05wt% 이하이다. 강중 질소(N)는 탄소(C)와 동등하게 불순물원소로 존재하며 오스테나이트 분율을 증가시키는 역할을 하여 열간 압연시에 오스테나이트상을 석출시켜 재결정을 촉진시키는 역할을 하나 다량의 첨가는 가공성을 저해시킬 뿐만 아니라 냉연제품의 스트레처 스트레인의 원인이 되기 때문에 그 함유량을 전술한 범위로 제한한다.
- [0013] 실리콘(Si)의 양은 0.01wt% 내지 0.5wt% 이하이다. 실리콘은 강중에 포함되는 불가피한 불순물이지만 제강시 탈산제 역할로 첨가되는 원소로 페라이트 안정화원소이다. 강내에 다량 함유되면 재질의 경화를 일으켜서 연성을 저하시키기 때문에 그 함유량을 전술한 범위로 제한한다.
- [0014] 망간(Mn)의 양은 0.01wt% 내지 0.70wt% 이하이다. 망간(Mn)은 강중에 불가피하게 포함되는 불순물이지만 오스테나이트 안정화 원소이기 때문에 로핑 및 리징을 억제하는 역할을 한다. 하지만 다량으로 포함될 경우 용접시망간계 퓸이 발생하며 MnS상 석출의 원인이 되어 연신율을 저하시키기 때문에 그 함유량을 전술한 범위로 제한한다.
- [0015] 인(P)의 양은 0.001wt% 내지 0.035wt% 이하이다. 인(P)은 강중에 포함되는 불가피한 불순물로 산세시 입계부식을 일으키거나 열간가공성을 저해시키기 때문에 그 함유량을 전술한 범위로 조절한다.
- [0016] 황(S)의 양은 0.001wt% 내지 0.005wt% 이하이다. 황(S)은 강중에 포함되는 불가피한 불순물로 결정입계에 편석되어 열간가공성을 저해시키기 때문에 그 함유량을 전술한 범위로 제한한다.
- [0017] 크롬(Cr)의 양은 14.0wt% 내지 19.0wt% 이하이다. 크롬(Cr)은 강의 내식성을 향상시키기 위해 첨가하는 합금원 소로 크롬의 임계함량은 12wt% 이다. 다만, 탄소 및 질소가 함유된 페라이트계 스테인레스강은 입계부식이 일 어날 수 있으며 입계부식 가능성 및 제조단가 증가를 고려하여 그 함유량을 전술한 범위로 제한한다.
- [0018] 니켈(Ni)의 양은 0.001wt% 내지 0.50wt% 이하이다. 니켈(S)은 구리(Cu), 망간(Mn)과 함께 오스테나이트 안정화 원소로 오스테나이트 분율을 증가시켜 로핑 및 리징을 억제하는 효과가 있으며 미량 첨가로 내식성을 향상시키 는 역할을 하나 다량 첨가시 가공성 열화 및 제조단가 증가로 그 함유량을 전술한 범위로 제한한다.
- [0019] 구리(Cu)의 양은 0.01wt% 내지 0.50wt% 이하이다. 구리(Cu)는 니켈(Ni), 망간(Mn)과 함께 오스테나이트 안정화 원소로 오스테나이트 분율을 증가시켜 로핑 및 리징을 억제하는 효과가 있으며 미량 첨가로 내식성을 향상시키 는 역할을 하나 다량 첨가시 가공성 열화 및 제조단가 증가로 그 함량을 전술한 범위로 제한한다.
- [0020] 알루미늄(A1)의 양은 0.01wt% 내지 0.15wt% 이하이다. 알루미늄(A1)은 제강시 탈산제로 첨가되는 합금성분이지 만, 다량 첨가시 비금속개재물로 존재하여 냉연스트립의 슬리브(sliver) 결함의 원인이 되며 용접성 저하를 일으키기 때문에 그 함유량을 전술한 범위로 제한한다.
- [0021] 전술한 원소들을 제외한 페라이트계 스테인레스강의 나머지는 티타늄(Ti), 철(Fe) 및 기타 불가피한 불순물로이루어진다.
- [0022] 티타늄(Ti)의 양은 0.04wt% 내지 0.09wt% 이하이다. 티타늄(Ti)은 주편조직의 등축정입도를 미세화시키거나 탄소, 질소등을 고정시켜 가공성을 향상시키는 역할을 한다.
- [0023] 상기 티타늄의 첨가에 의해 페라이트계 스테인레스강의 슬라브의 등축정부의 평균 입도크기는 0.01 μm 내지 800 μm로 제어할 수 있다.
- [0025] 상기 티타늄의 양이 0.04wt% 미만인 경우, 등축정부의 입도제어 효과를 기대할 수 없으며 0.09wt% 이상인 경우 페라이트계 스테인레스강의 광휘소둔(bright annealing)시 슬리버(sliver) 결함이 발생하게 되어 냉연제품의 표 면성상을 저하시키는 결과를 가져온다.
- [0026] 또한, 상기 티타늄의 첨가에 의해 상기 페라이트계 스테인레스강 슬라브의 압연시 0.3mm 이하 두께로 냉간압연을 하는 경우 표면결함(sliver)이 발생하지 않을 수 있다.
- [0027] 한편, 페라이트계 스테인레스강의 오스테나이트 분율(γ(%))은 γ(%)=420*C+470*N+23*Ni+9*Cu+10*Mn+180-11.5*Cr-11.5*Si-12.0*Mo-52.0*Al로 표시할 수 있으며, 열연과정에서 델타(δ) 페라이트로부터 오스테나이트로 변태될 수 있는 분율을 나타낸다.
- [0028] 페라이트계 스레인레스강은 탄소(C)와 오스테나이트 분율(ү(%))의 관계가 하기의 수학식 1 및 수학식 2를 만족

하다.

수학식 1

- [0029] $1.5 \le \chi (\%) *C(wt\%) \le 3.2$
- [0030] γ(%)*C(wt%)가 1.5 미만인 경우 내리징성이 열위되는 문제점이 있으며, 3.2 초과인 경우 연신율이 저하되는 문제점이 있다.

수학식 2

- [0031] $0.6 \le y (\%) *N(wt\%) \le 1.4$.
- [0032] $\gamma(\%)*N(wt\%)$ 가 0.6 미만인 경우 내리징성이 열위되는 문제점이 있으며, 1.4 초과인 경우 연신율 및 내스트레쳐 스트레인성이 저하되는 문제점이 있다.
- [0033] 또한, 페라이트계 스테인레스강의 슬라브를 절단하여 등축정부위를 에칭 후, 12.5배율의 광학현미경으로 측정면 적 750,000㎢ 로 3 circle 법을 이용하여 측정한 등축정입도(d)는 하기의 식(3)을 만족한다.

수학식 3

- [0034] 등축정입도(µm) = 1,238-10,279*Ti(wt%)
- [0035] 본 발명의 다른 실시예에 의한 페라이트계 스테인레스강의 제조방법은 wt%로, 탄소(C): 0.02 이상 0.08이하, 질소(N): 0.01 이상 0.05이하, 실리콘(Si): 0.01 이상 0.50이하, 망간(Mn): 0.01 이상 0.70이하, 인(P): 0.001 이상 0.035이하, 황(S): 0.001 이상 0.005이하, 크롬(Cr): 15.0 이상 17.0이하, 니켈(Ni): 0.001 이상 0.50이하, 구리(Cu): 0.01 이상 0.50이하, 티타늄(Ti): 0.05 이상 0.09이하, 알루미늄(Al): 0.01 이상 0.15이하, 나머지 철(Fe) 및 불순물을 포함하는 페라이트계 스테인레스강의 연속주조시 주조온도가 1,520℃ 내지 1,545℃, 주조속도가 0.6 내지 1.0m/min, EMS 전류범위가 1,000 내지 1,600A 를 만족한다.
- [0036] 상기 연속주소시 주조공정 변수들(주조온도, 주조속도, EMS 전류범위)을 조절함으로써 페라이트계 스테인레스강 의 등축정율의 향상을 기할 수 있다.
- [0037] 상기 페라이트계 스테인레스강의 연속주조시 주조온도는 1,520℃~1,545℃ 범위이며 주조온도가 1,520℃ 미만인 경우는 노즐 막힘현상의 문제점이 있으며, 1,545℃ 초과인 경우는 과도한 superheat로 인한 등축정율 저하의 문제점이 있다.
- [0038] 상기 주조속도는 0.6~1.0m/min 범위이며 주조속도가 0.6m/min 이하인 경우는 생산성저하로 인한 제조단가 상승의 문제점이 있으며, 1.0m/min 초과인 경우는 열적조건변화에 따른 등축정율 저하의 문제점이 있다.
- [0039] 연속주조시 인가되는 EMS(Electro Magnetic Stirring) 전류범위는 1,000~1,600A 이며 인가된 EMS 전류가 1,000A 미만인 경우는 등축정율 저하의 문제점이 있으며, 1,600A 초과인 경우는 탕면 hunting에 의한 오실레이 션마크 등의 주조결함 발생 가능성이 커지는 문제점이 있다.
- [0040] 본 발명의 실시예에 따른 페라이트계 스테인레스강의 제조방법은, 상기 연속주조에 의해 제조된 슬라브의 등축 정율이 60% 이상인 것을 특징으로 한다.
- [0041] 상기 슬라브의 등축정율이 60% 미만인 경우에는 강판의 내리징성이 저하된다. 이는 등축정율이 60% 미만인 경우 열연판 중심층에 잔존하는 조대 페라이트 밴드가 생성이 우세하기 때문이다.
- [0042] 또한, 상기 페라이트계 스테인레스강의 열간압연시 조압연된 바(bar) 시편(25mm~35mm)의 (1/4) 두께(t) 부위의 {001}<110>(rotate-cube 집합조직) 방위분율은 0.25 이하(25%이하 면적%)일 수 있다.
- [0043] 본 발명의 또 다른 실시예에 의한 페라이트계 스테인레스강판의 제조방법은 wt%로, 탄소(C): 0.02 이상 0.08이 하, 질소(N): 0.01 이상 0.05이하, 실리콘(Si): 0.01 이상 0.50이하, 망간(Mn): 0.01 이상 0.70이하, 인(P): 0.001 이상 0.035이하, 황(S): 0.001 이상 0.005이하, 크롬(Cr): 15.0 이상 17.0이하, 니켈(Ni): 0.001 이상 0.50이하, 구리(Cu): 0.01 이상 0.50이하, 티타늄(Ti): 0.05 이상 0.09이하, 알루미늄(Al): 0.01 이상 0.15이 하, 나머지 철(Fe) 및 불순물을 포함하는 페라이트계 스테인레스강 슬라브를 가열하는 단계, 상기 가열된 슬라

브를 열간압연 및 열연 상소둔하는 단계, 및 상기 열간압연 및 열연 상소둔된 슬라브를 냉간압연 및 냉연소둔하는 단계를 포함하되,

- [0044] 상기 열간압연은 28%~35%의 패스당 압하율로 조압연을 2회 실시후 35% 이상의 패스당 압하율로 조압연을 1회 실 시한다.
- [0045] 상기 슬래브를 가열하는 단계는 상기 슬래브를 열간압연 하기전 열간가공성을 확보하기 위한 것으로 1,000℃ ~1,200℃의 온도범위에서 이루어질 수 있다.
- [0046] 슬래브를 열간압연 하는 단계는 상기 1,000℃~1,200℃의 온도범위에서 가열된 슬래브를 조압연기와 연속 마무리 압연기등에 의해 800℃ 이상의 완료온도로 압연하여 열연강판을 제조하는 것을 말한다.
- [0047] 상기 열간압연시 28%~35%의 패스당 압하율로 조압연을 2회 실시할 수 있다.
- [0048] 상기 2회의 조압연후 35% 이상의 패스당 압하율로 조압연을 1회 실시할 수 있다.
- [0049] 상기 패스당 압하율이 35% 이상인 구간의 열간압연 온도는 950℃~1,100℃ 범위를 가질 수 있다.
- [0050] 열간압연 온도가 950℃ 미만인 경우는 스티킹(sticking)에 의한 표면결함이 발생될 가능성이 커지는 문제점이 있으며 1,100℃ 초과하는 경우, 고온변형에 의한 재료의 축적에너지(stored energy)가 적어져 재료내의 동적재 결정이 둔화되어 내리장성 저하를 가져오는 문제점이 있다.
- [0051] 상기 열간압연 단계를 거친 스테인레스 강판은 이후의 냉간 압연 공정을 거치기 전에 냉간가공성을 증대시키기 위하여 열연 상소둔(batch annealing) 단계를 거칠 수 있다.
- [0052] 보다 상세하게, 상기 열연 상소둔 공정은 800℃~900℃ 구간에서 강을 충분히 장시간 소둔시킴으로써 고용원소인 탄소와 질소를 충분히 석출시킴으로써 열연소둔재의 석출상(Cr₂N, Cr₂₃C₆, AlN)의 분율을 제어할 수 있다.
- [0053] 냉간 상소둔 단계를 거친 열연 강판은 냉간압연 단계를 거칠 수 있으며 냉간압연은 강의 재결정 온도이하에서 가공하는 것으로 강판의 표면이 깨끗하고 두께 정밀도 및 형상이 보다 정밀하여 매우 얇은 두께의 제품까지 얻을 수 있어 높은 생산성, 낮은 생산비등의 장점을 갖는다.
- [0054] 바람직하게 상기 냉간압연은 압연 워크롤(work roll) 50mm 이상의 압연기로 이루이질 수 있으나 이에 한정되는 것은 아니다.
- [0055] 냉연 소둔단계는 상기 냉간압연에 의해 가공된 냉연강판의 경도, 항복점등을 낮추어 가공성을 향상시키기 위하여 냉간압연에 의해 변형된 결정조직을 일정온도로 가열 및 일정시간 유지시킴으로써 변형조직으로부터 새로운 결정립이 형성하여 성장하는 재결정현상을 일어나게 하는 공정이다.
- [0056] 이하에서는 실험예를 통하여 본 발명을 좀더 상세하게 설명한다. 이러한 실험예는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다.
- [0057] 실험예
- [0058] 하기 표 1은 페라이트계 스테인레스강의 탄소(C), 질소(N), 알루미늄(Al), 타이타늄(Ti) 및 오스테나이트 분율 (ɣ)을 조절하여 진공용해한 A~N강의 화학성분, 등축정입도를 나타낸 자료이다.
- [0059] 또한, 표 1은 상기의 강을 1,000~1,200℃의 온도범위에서 재가열한 후 조압연한 후의 바(bar) 시편(25mm~35mm) 의 1/4 두께 부위의 {001}<110>(rotate-cube 집합조직) 방위분율 및 연속마무리압연기에 의해 800℃ 이상의 완료 온도로 압연하여 열연판을 제조하고 그 후 열연 상소둔(batch annealing)을 행한 후 냉간압연 및 냉연소둔을 실시하여 리징 및 미세광학조직(배율 500배 기준)의 중심부 100μm×10,000μm 면적에 대하여 연신된 개재물(20μm 이상 연신된 개재물을 연신개재물로 정의함)의 개수등을 평가한 자료이다.
- [0060] 표 1의 리정등급은 냉간 압연후 냉연소둔을 거친 강의 시편을 상온에서 크로스헤드 스피드 20mm/min으로 15% 인 장변형을 가한 후 평가한 결과이다.

丑 1

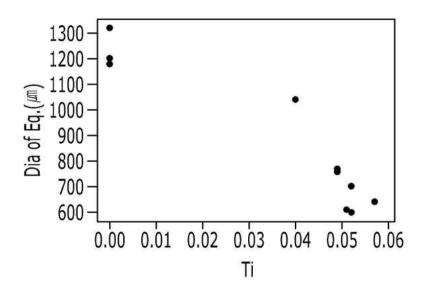
[0061]

<i>11.</i> 1	•																		
강종	합금성분(wt%)											등축 정입 도(#m)	100@m ×10, 000@m 내 연 신된 개재 눌 수	{00 1}<1 10> (%) (바 시편 1/4 두께)	γ* N(w t%)	y *C (wt%)	조 합 연 최 종 합 하 알 (리징등급	
	С	Si	Mn	Р	S	Cr	Ni	Cu	Al	Ti	N						%)		
A	0.04	0.25	0.40	0.02	0.00	16.2	0.10	0.05	trac e	0.08	0.03	600	20	25	0.8 5	1.13	28	3등 급	回回
В	0.06	0.25	0.50	0.02	0.00	16.2	0.10	0.05	0.16	trac e	0.02	1200	9	29	0.4 9	1.49	26	5등 급	예
С	0.06	0.25	0.50	0.02	0.00	16.2	0.10	0.05	0.12	trac e	0.01	1350	8	26	0.3	1.47	38	4등 급	
D	0.02	0.25	0.60	0.02	0.00	16.2	0.30	0.05	trac e	trac e	0.04	1270	11	24	1.0	0.50	27	4등 급	
Е	0.05	0.25	0.60	0.02	0.00	16.1	0.25	0.05		1.50	0.03	500	55	29	1.0	1.75	38	2등 급	
F	0.06	0.25	0.50	0.02		16.2	0.20	0.05	0.10	1.20	0.02	550	45	27	0.6	1.97	40	2등 급	
G	0.07	0.25	0.50	0.02		16.2	0.20	0.05	0.11	1.35	0.02	650	47	28	0.9	2.72	25	3등 급	
Н	0.05	0.25	0.50	0.02	0.00	16.3	0.30	0.05	0.09	Trac	0.02	1400	11	23	0.7 5	1.50	35	2등 급	
Ι	0.04	0.25	0.40	0.02	0.00	16.2	0.10	0.05	trac e	Trac e	0.04	1300	8	28	1.2 9	1.29	27	3등 급	
J	0.06	0.25	0.60	0.02	0.00	16.3	0.30	0.05	0.12	0.01	0.03	1050	17	20	1.3 4	2.30	30	2등 급	
K	0.07	0.25	0.60	0.02	0.00	16.1	0.25	0.05	0.10	0.06	0.03	600	18	20	1.3 5	3.15	40	1등 급	본 발
L	0.05	0.25	0.50	0.02	0.00	16.2	0.10	0.05	trac e	0.05	0.03	750	16	19	1.2 6	1.80	42	1등 급	- 명 예
M	0.05	0.25	0.60	0.02	0.00	16.1	0.25	0.05	0.10	0.07	0.03	650	21	21	1.0	1.70	39	1등 급	본 발
N	0.05	0.25	0.50	0.02	0.00	16.5	0.25	0.05	0.08	0.06	0.03	600	19	22	1.2	1.76	42	1등 급	명예

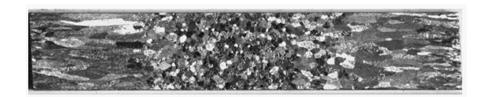
[0062] 리징 등급(Rt 기준) : [1등급] 10μm~12μm, [2등급] 12μm~14μm, [3등급] 14μm~16μm, [4등급] 16μm~18μm, [5등급] 18μm~20μm

[0063] 본 발명예

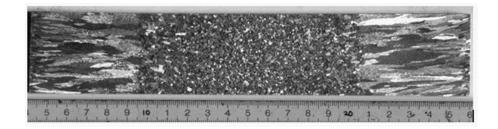
- [0064] 표 1의 K~N강종은 페라이트계 스테인레스강을 나타내며 티타늄(Ti)의 함량을 0.04wt%~0.09wt% 범위로 조절함으로써 강의 등축정입도를 800μm 이하로 제어할 수 있어 1등급의 리징등급을 가질 수 있었다. 또한, 미세광학조직(배율 500배 기준)의 중심부 100μm×10,000μm 면적에 대하여 연신된 개재물의 개수를 25개 미만으로 제어할 수 있었다.
- [0065] 한편, 페라이트계 스테인레스강은 연속주조시 주조온도 범위를 1,520℃~1,545℃로, 주조속도 범위를 0.6m/min~1.0m/min로, 인가되는 EMS 전류범위를 1,000A~1,600A로 제어함으로써 60% 이상의 등축정율을 얻었으며 조압연 최종(final) 압하율(%)이 35% 이상일 때 1등급의 리징등급을 가질 수 있었다.
- [0066] <u>비교예 1</u>
- [0067] 표 1의 A강은 ɣ*C(wt%) 값이 1.13으로 본 발명예의 범위인 1.5≤ ړ*C(wt%)≤3.2를 벗어남을 알 수 있었다. 또한, 조압연 최종 압하율(%)은 28이었다.
- [0068] 비교예 2

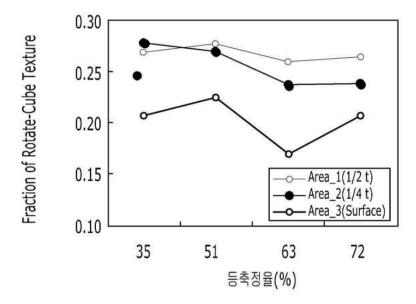

- [0069] 표 1의 B강은 ɣ*N(wt%), ɣ*C(wt%)이 각각 0.49, 1.49으로 0.6≤ ɣ*N(wt%)≤1.4, 1.5≤ ɣ*C(wt%)≤3.2를 벗어났으며 조압연 최종 압하율(%)이 26, 등축정입도는 1,200μm이었다.
- [0070] 비교예 3
- [0071] 표 1의 C강은 ɣ*N(wt%), ړ*C(wt%)이 각각 0.36, 1.47로 0.6≤ ɣ*N(wt%)≤1.4, 1.5≤ ɣ*C(wt%)≤3.2를 벗어남을 알 수 있었다. 또한, C강은 {001}<110>(%)(바 시편 1/4 두께)이 26, 등축정입도는 1,350μm이었다.
- [0072] 비교예 4
- [0073] 표 1의 D강은 ɣ*C(wt%)이 0.50으로 1.5≤ ɣ*C(wt%)≤3.2를 벗어남을 알 수 있었다. 또한, D강은 조압연 최종 압하율(%)이 27. 등축정입도는 1.270㎝이었다.
- [0074] 비교예 5
- [0075] 표 1의 E강은 100㎞×10,000㎞내 연신된 개재물 수가 55, {001}<110>(%)(바 시편 1/4 두께)이 29이었다.
- [0076] 비교예 6
- [0077] 표 1의 F강은 100μm×10,000μm내 연신된 개재물 수가 45, {001}<110>(%)(바 시편 1/4 두께)이 27이었다.
- [0078] 비교예 7
- [0079] 표 1의 G강은 100년 10,000년 연신된 개재물 수가 47, {001}<110>(%)(바 시편 1/4 두께)이 28이었다. 또한, G강의 조압연 최종 압하율(%)은 25이었다.
- [0080] 비교예 8
- [0081] 표 1의 H강은 등축정입도가 1,400@이었다.
- [0082] 비교예 9
- [0083] 표 1의 I강은 등축정입도가 1,300μm, 조압연 최종 압하율(%)이 27이었다. 또한, I강의 {001}<110>(%)(바 시편 1/4 두께)은 28이었으며 x*C(wt%)이 1.29로 1.5≤ x*C(wt%)≤3.2를 벗어남을 알 수 있었다.
- [0084] <u>비교예 10</u>
- [0085] 표 1의 J강은 등축정입도가 1,050μm, 조압연 최종 압하율(%)이 30이었다.
- [0086] 도 1은 본 발명의 일 실시예에 따른 페라이트계 스테인레스강 슬라브의 등축정 부위의 등축정입경과 티타늄(Ti) 함유량과의 관계를 나타낸 도면이다. 도 1에 도시한 바와 같이, 티타늄 함량이 증가할수록 등축정입경이 감소함을 알 수 있다.
- [0087] 도 2a 및 도 2b는 본 발명의 일 실시예에 따른 페라이트계 스테인레스강의 비교예와 본발명예의 슬라브 조직을 나타낸 도면이다. 도 2a 및 도 2b에 도시한 바와 같이, 본 발명예의 등축정 입경이 비교예의 등축정 입경에 비해 미세함을 알 수 있었다.
- [0088] 도 3은 등축정율에 따른 바(bar) 시편의 두께부위별 rotate-cube 집합조직(texture) 분율변화를 나타낸 도면이 다.
- [0089] 도 3에 도시한 바와 같이, 등축정율이 증가할수록 바 시편의 1/4 두께부위에서의 rotate-cube 집합조직의 분율이 감소함을 알 수 있었다.
- [0090] 도 4는 재가열온도 및 열간압연온도가 950℃~1,100℃ 로 제어된 구간에서의 최종 조압연 압하율에 따른 리징 (ridging)높이 변화를 나타낸 도면이다.
- [0091] 도 4에 도시한 바와 같이, 가열온도 증가에 따라 리징 높이가 증가하며 조압연 최종 압하율이 증가할수록 리징 높이가 감소함을 알 수 있다.
- [0092] 본 발명을 앞서 기재한 바에 따라 설명하였지만, 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 한, 다양한 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에 종사하는 자들은 쉽게 이해할 것이다.

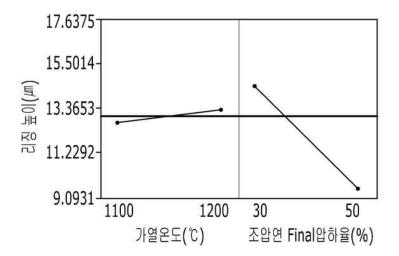
도면의 간단한 설명


- [0093] 도 1은 본 발명의 일 실시예에 따른 페라이트계 스테인레스강 슬라브의 등축정 부위의 등축정 입경과 Ti 함유 량과의 관계를 나타낸 도면이다.
- [0094] 도 2a 및 도 2b는 각각 페라이트계 스테인레스강의 비교예 및 본 발명예의 슬라브 조직을 나타낸 도면이다.
- [0095] 도 3은 등축정율에 따른 바(bar) 시편의 두께부위별 rotate-cube 집합조직(texture) 분율변화를 나타낸 도면이 다.
- [0096] 도 4는 재가열온도 및 열간압연온도가 950℃~1,100℃ 로 제어된 구간에서의 최종 조압연 압하율에 따른 리징 (ridging)높이 변화를 나타낸 도면이다.

도면


도면1


도면2a


도면2b

도면3

도면4

