(12) PATENT (11) Application No.. AU 199519979 B2
(19) AUSTRALIAN PATENT OFFICE (10) Patent No. 706132

(54) Title

System and method for communication with a remote network device

(51)¢ International Patent Classification(s)
GO6F o015/16

21 Application No: 199519979 (22) Application Date: 1995 03 15
(87) WIPONo: yog5/25311
(30) Priority Data

(31N Number (32) Date (33) Country
08/213197 1994 03 .15 us

(43) Publication Date : 1995 .10 .03

(43) Publication Journal Date © 1995 11 16

(44) Accepted Journal Date : 1999 0§ 10

71 Applicant(s)
Digi International, Inc.

(72) Inventor(s)

Gene H Olson

(74) Agent/Attorney
SPRUSON and FERGUSON,GPO Box 3898,SYDNEY NsW 2001

(56) Related Art
US 5265239
US 4972368

- OPL DATE 03/10/95 APPLN. Ip 19979/95 l l"l”,ll”l“”l ll ‘l”
AQJP DATE 16/11/95 PCYT NUMBER PCT/US95,/03183
N1 AUP519979
fgl) luternational Patent Classification 6 : (1) International Publication Number: WO 95725311
GO6F 15/16 Al i .
(43) International Pyblication Date: 21 Septernber 1995 (21,09.95)
(21) International Application Number; PCT/US95/03183 | (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH,
CN, C2, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG,
(22) International Filing Date: 15 March 1995 (15.03.95) kP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW,
MX, NL, NO, NZ, PL, PT, RO, RU, 8D, SE, 8], SK, T},
TT, UA, UZ, VN, European patent (AT, BE, CH, DE, DK,
(30) Priority Data: ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
08/213,197 L5 March 1994 (15.03.94) us patent (BF, BJ, CF, OG, CI, CM, GA, GN, ML, MR, NE,
SN, TD, TG), ARIPO patent (KE, MW, SD, 57, UG).
(71) Applicant: DIGI INTERNATIONAL INC. [US/US]: 6400

Flying Cloud Drive, Eden Prai

(72) Inventor: OLSON, Gene, H.; 5131
Minneapolis, MN 55419 (US).

(74) Agents: TYSVER, Danel
55402 (US).

rie, MN 55344 (US).

Aldrich Avenue South,

» A et al,; Faegre & Benson, 2200
Norwest Center, 90 South Seventh Street, Minneapolis, MN

Published
With international search report,

(54) Title: SYSTEM AND METHOD FOR COMMUN!

ICATION WITH A REMOTE NETWORK DEVICE

(57) Abstraet

A terminal server (20) for
communications port across a general
communication protocol. The server (20) communicat
thereby reducing demands on the network (10). In addit
which have all the characteristics of 1

Finally, the invention can also
further reducing host computer

be implemented in hard
overhead,

providing communication
purpose network (10) is provided utilizing a unique device driver

ocal communication p
server (20) to multiple host computers located on the network (10), allowing fair access to shared TESOUICes S|

between a host computer and a synchronous, asynchronous or paralle]
interface and multiplexing
es data and control commands for multiple ports (40) on a single connection,
ion, genuine TTY devices are made available across the general purpose network
orts. The present invention also makes possible access to the ports (40) on the
uch as modems angd printers,

ware, further increasing compatibility with existing host computer software and

WO 95/25311 PCT/US95/03183

10

15

20

25

30

35

SYSTEM AND METHOD FOR COMMUNICATION WITH A
REMOTE NETWORK DEVICE -

Description
Technical Fiel

This invention relates to the field of
communication between digital devices such as computers
and computer related peripherals across a general purpose
network.

Background Art

The need for digital computers to communicate
to each other and to remotely located computer
peripherals has long been felt. Numerous technolegies
have been designed to meet this need, including the use
of modems for establishing long distance links over the
analog phone network and the creation of networking
technologies which allow computers and peripherals to
communicate over a data transmission medium.

Modems are used in pairs to establish
commuinication between two computers, with each modem
being attached to the serial port of its local computer
as well as connected to the analog telephone network.
The serial port is a standard interface port on the
computer which allows the computer to pass a serial bit
stream of information to a peripheral such a modem or a
printer. On UNIX based computers and other multi-user
computer systems, this same serial port is used for
communication with the terminals which allow users to
interact with the computer. As a result, it is a
relatively simple matter to utilize a modem to allow a
remotely located terminal to communicate with a multi-
user computer system over the phone lines.

Because modern multi-user computers are capable
of supporting numerous simultaneous users, it is .
desirable to have a number of serial ports through which
terminals can communicate with the computer.

WO 95/25311 PCT/USS5/03183

10

15

20

25

30

35

Unfortunately, mounting all of the serial ports directly
onto the computer can be logistically difficult, since
multi-uger computers can often support more than fifty
terminal connections. As a result, multiplexors have
been utilized to combined serial traffic from numerous,
internally referenced serial ports into a single
communication channel. 1In this way, only one
communication cable needs to be attached to the computer.
On the other end of the communication cable is another
multiplexing device, which separates the combined data
traffic into data for individual serial ports, and then
provides the serial ports through which this data can be
accesged. This type of multiplexing device, called a
ports concentrator, can be used to provide multiple
serial ports for terminals in a location remote from the
computer. It is even possible to use multiplexing in a
system which allows the data on the main communication
cable to be transported across phone lines using modems.
This allows multiple serial ports to be accessible at
great distances from the computer.

Networking technology can also be utilized to
allow remote communication between a computer and another
computer or peripheral. Networks which connect computers
and peripherals within a relatively emall area are
referred to as Local Area Networks, or LANs. A general
purpose network is a communication system utilizing
standard hardware and standard communication protocols,
and operating in a multi-vendor environment. General
purpoge network hardware includes LAN technologies like
Ethernet and Token Ring. Standard Network protocols
inglude TCP/IP and SPX/IPX,

LANs are generally formed by connecting
computers and peripherals together through a transmission
medium, and then communicating over the medium by
following standardized communication protoccls. These
protocols set forth such requirements as to how data

WO 95/23311 PCTUSY5/03183

10

15

20

25

30

35

should be formatted and how data is designated for a
particular device. Data cannot be sent over the network
without conforming to these protocols.

Application programs on a host operating gystem
generally depend strongly on the Application Program
Interfaces (API) for local conmmunication devices provided
by the host operating system. This is especially
important on systems like UNIX, whose traditional user
interface is terminal command line operation.

General purpose networks most often support two
types of communication, a connectionless unreliable
datagram service and a reliable bi-directional bytesteam
connection. The API to both of these services is very
different from the serial port API, and in general
programs written to run on serial devices (known as TTYs)
require an adaptation layer to run correctly.

In the UNIX environment this is generally done
with the network protocols Telnet and Rlogin using a
virtual TTY device known as a pseudo-tty or PTTY device.
PTTY devices are scftware entities, not hardware
entities, that emulate UNIX TTYs well enough that most
command line programs will run with them.

It is important to distinguish these PTTYs from
genuine TTYs associated with and controlling actual
serial port hardware. A PTTY has a slave side and a
master side. The slave side of the PTTY is the TTY
emulation device, and is used by programs that reguire
the serial port API to function. The master side
interfaces to a network program, such as Telnet or
Rlogin, that can send data across the network.

The glave side of the PTTY accepts requests to
change user options like line editing characters, tab
expangion, and other functions done by the line
discipline of the local operating system. However it
ignores requests to change baud rate, character size,

WO 95/25311 PCT/USY5/03183

10

15

20

25

30

35

action on received errors and BREAK signals, and the
like.

The master side of the PTTY accepts reads,
writes, and a very limited set of input output controls
(ioctls) to change the way data is passed back and forth
between the slave and master devices. Data written to
the master side of the PTTY appears as received serial
data on the slave side of the PTTY, as though it had been
received on a serial port, and is processed as input
gerial data by the line discipline cf the operating
system. The data then appears as received data when read
from the slave side of the PTTY. Data written to the
slave PTTY is likewise processed as serial output data by
the UNIX line discipline, after which it can be read on
the master side.

Ioctl operations made to the slave side of the
PTTY are invisible to the master side, hence it is not
possible for the program accessing the master side of the
PTTY to detect that these calls have been made. The
interface is just not rich enocugh to support any
operations that cannot be done in the line discipline of
the local operating system.

It should also be noted that in most
implementations, there ig not a cne-to-one correspondence
between physical devices and PTTYs. When a connection is
made into a UNIX system by Telnet or Rlogin, these
program simply allocate the next available PTTY for the
session. Hence from session to session a network user is
likely to get different PTTY devices, in no obvious
pattern. Thig makes it difficult or impossible to enforce
system security or user options based on pseudo-tty
devices. To overcome this tc scme extent, ad-hoc
programs are commonly written by terminal server vendors
that can be attached to the master side of a particular
PTTY, so that the slave side of that PTTY remains
attached to that program and is not periodically

WO 93725311 PCT/US95/03183

10

15

20

25

30

35

reallocated to another use; Such programs can be used
for incoming connects and running login programs, but are
most often used to simulate dial-out modems, printers, or
direct connect serial devices. This use expands the PTTY
to other uses than Telnet and Rlogin, but because of
their limited emulation of a genuine TTY device, they
require varied workarounds and cause continual
maintenance and compatibility problems.

Telnet also uses TCP/IP flow controcl for port
data flow control and sends commands in sequence with the
data so that commands cannot be processed until the data
ahead of them in the data stream have also been
processed. As a result, Telnet requires the use of the
expedited data feature of TCP/IP to send certain commands
such as user requested interrupts. The implementation of
this requires that data ahead of the user interrupt be
discarded before the interrupt can be processed.

Unfortunately, this procedure can place a
tremendoug strain on the host computer as well as the
network itself. For instance, when typing on a remote
terminal connected through the network, each keystroke is
procesged, sent over the network to the host computer,
and then echoed back over the network to the remote
terminal. On an Ethernet network, a transmitted
character must be transmitted on a 64 byte minimum size
message packet and the acknowledge also requires a 64
byte message packet. Thus, two 64-byte packets must be
transmitted for each character typed.

In addition, the receiving of the character by
the host computer requires a task switch to run the PTTY
control software to receive the character, and a tasgk
gwitch back to the PTTY control software to transmit the
eche character.

Devices called terminal servers make remote
logins, utilizing the TELNET and RLOGIN commands,
available to users through a serial port without

il

#

10

20

25

-6 -

requiring the users to be logged onto a computer on the network, A user connected to
a serial port on the terminal server can use RI.OGIN or TELNET to connect to a multi-
user compuier on the network., A second user on the terminal server could also connect
to the same multi-user computer, and thereby establish a second communications link
with its own PTTY assigned to it. Connection made by the terminal server through
TELNET, RLOGIN aud similar procedures of course embody the same disadvantages
as connection made using those procedures through a different computer on the
network.
Sammary of the Invention

In accordance with one aspect of the present invention there is provided a
system comprising:

a server having a plurality of communication ports; and

a host computer having a driver communicatively coupling the host computer
to the server via a network connection, wherein the driver emulates the communication
ports of the server by defining a corresponding local communication port for each of
the communication ports of the server, and further wherein the driver includes an
application programming interface (API) by which an application program executing on
the host computer is granted full control of one of the commanication ports of the
servef, including hardware and software flow control, as if the communication ports of

the server were local to the host computer.

In accordance with another aspect of the invention, there is provided a
hardware device for a host computer, wherein the hardware device includes a driver
that emulates a plurality of communication ports of a remote server that is
communicatively coupled to the host computer via a network connection, wherein the
driver defines a corresponding local communication port for each communication port

of the server and includes an application programming interface (API) by which an

[N:ALIBEIC 784:LS

e il 1

- Ba -

application program executing on the host computer is granted full control of one of the
communication ports of the server, including hardware and software flow control, as if
the communication ports of the server were local to the host computer.

The present invention includes a communication system which ameliorates the
disadvantages of the prior art by allowing a host computer full access to the
asynchronous ports located on a remote terminal server across a general purpose
network. By utilizing a unique device driver interface and multiplexing communication
protocol, the server is able to communicate data and control commands for multiple
ports on a single connection, thereby reducing demands on the network. In addition,
genuine TTY devices can be provided across the network which have all the
characteristics of local communication ports. It is also possible to provide access to the
ports on the server to multiple host computers located on the network, allowing fair
access to shared resources such as modems and printers. Finally, the invention can also
be embodied in hardware, further increasing compatibility with existing host computer
software and further reducing host computer overhead.

Each of the embodiments of the present invention operates over the reliable
communication link provided by a general purpose network between a client (usually a

host computer) who wishes to access or provide access to remote

INALIBEJO1784:4LS

i i

-7 -

communication ports and a server that incorporates such ports.
Each of the embodiments of the present invention differs from traditional
PTTY implementations in that it provides genuine TTY devices across a general
purpose network. Unlike the PTTY implementations, the TTYs of these embodiments
5 of the current invention have a one-to-one correspondence with actual hardware, and
allow the host operating system to control that hardware as if the serial ports were

directly connected to the host operating system and dedicated to this use.

Where it does not interfere with the assumptions made by application
programs, each of the embodiments of the current invention then leosens these

10 restrictions, and extends the functionality of these ports to allow sharing -with other

PR hosts on the network, and with dynamic port allocation with PBX-style hunt groups.
. The present invention as embodied allows each operating system to maintain a one-to-
et one correspondence with genuine TTYs, but can optionally allow those TTYs to be

accessed for other purposes when they are not currently in use by the current operating
15 system.

tet Each client that wishes to use one or more ports on the server opens a single

connection to that server utilizing the protocol provided by embodiments of the present
invention (the "Communication Protocol"). All communication between the client and
server which uses the Communication Protocal then proceeds using this single

20 conmection, no matter how many ports are used by the client. Additional connections
between the client and server may be opened under prior art protocols such as Telnet
and Rlogin, however the existence of these prior art protocol connections does not
affect the ports under the control of the embodiments of the present invention's
Communication Protocol. When the connection between the client and server is broken

25 for any reason, all the ports

[NALIBEIO 784:04P

S

s

under Communication Protocol control are cloged, and all
rescurces claimed by that client are returned.
The existence of a Communication Protoeol
connection does not automatically grant the clienp access
5 to all port resources on the Server. Before the client
accesses a port, the client must first successfully OPEN
the port, after which time the client is granted

exclusive access to the port until the client CLOSES the
port.

10 Once a port is opened, the client may send

Téquests to change baud rate, control modem settings, and
the like. The client may send data out the port, and the
ST, Seérver automatically sends the client all data received
.. in the port. Under the Communication Protocol, the
3"22 15 client may request status updates from the server. Tﬁe
:.". updates can be made immediately upon request, or the
: client may request the server inform the client of any
changes to various status conditions (such as modem input
signals) as they change.

20 Brief Description of the Drawings

Figure 1 illustrates a general purpose computer networking
linking a variety of host computers and a server of an embodiment of the
present invention.,

25 Figure 2 illustrates a client computer attached across a general

purpose network to a server of an embodiment of the present invention,

including the critical components of the server.

Fom

Figure 3 illustrates a wrap-around sequence space with a single

30

Sequence number pointing toward a location in the sequence space.
Figure 4 illustrates a wrap-around sequence space with two

Sequence numbers pointing toward locations in the sequence space

il

Figure 5 illustrates the process by which a
server controls the flow of data transmitted from a
client through a server to a port.

Figure 6 illustrates the process by which a

5 client controls the flow of data transmitted from—a

client through a server to a port.

Figure 7 illustrates the process by which a
seérver controls the flow of data transmitted from a port

through a gerver to a client.
10 F‘igufe 8 illustrates a client computer attached across a general
purpose network to a server of an embodiment of the preseént invention,

including the critical components of the client driver.

N Detailed Disclosure of the Invention

. 15 FIG. 1 shows a general purpose network 10
interconnecting a variety of computers including a UNIX
Computer 12, a Digital Equipment Corporation’s VAX
computer 14 and a Novell Network of PCs at a particular
R location 16. The network 10 can utilize any of a variety
it 20 of standard networking communication protocols, such as

el TCP/IP, SPX/IPX and X.25, as long as the protocol

.;.é provides for error free byte stream data transmission.
R The communication protocal operates on a specific logical
:f:g topology such as Ethernet or Token Ring.

7 o2s

A typical network connecting the computers and
networks shown in FIG. 1 would utilize the TCp/IP
. protoceol running on top of Ethernet. 9The TCP portion of
the protocol takes byte stream data ang convertg it to
packets. The IP portion takes the packets and forms
30 datagrams, while Ethernet takes the datagrams and forms
frames. This typical configuration will be utilized for
the purpose of explaining the present invention, alﬁhough
the invention itself is independent of the network
protocol utilized.) '5 ‘

I -

iy

10 -

A server 20 operates to connect various ports (not shown) to the network 10.
Communication lines 22 can be connected to the ports on the server 20. Although only
five communication lines 22 are shown in FIG. 1, the server 20 typically has sixteen or
more ports which can be connected to the network 10.
5 FIG. 2 shows the primary elements of the communication between one or more
clients 18 and the server 20 across a general purpose network 10, The client 18 can be
a host computer such as a UNIX computer 12 or a VAX computer 14, or even a ocal
area network 16, The server 20 is connected (o the network 10 through the server's
network interface 30. The network interface 30 provides the industry standard
10 hardware and software control necessary for the server 20 to communicate &ver the
L network 10 in the same way as any otber device on the network 10. As with all
, e industry standard network interfaces, the network interface 30 is capable of receiving
: data frames from the network 10, determining whether the data is addressed to server
20, and, if so, make the data available in a byte stream form by removing the network
15 formatting and reassembling the frames, datagrams and packets. In other words, the
] network interface 30 contains the functionality of the Transport, Network, Link and
Physical layers of the International Standards Organization Open Systems
Interconnection (ISO/0SI) model.
The byte stream data provided by the network interface 30 is then supplied to a
20 central processing unit (CPU) 32, which coordinates the implementation of the
Commumication Protocol. The program modules necessary for implementation of the
Communication Protocol modules necessary for implementation of the Communication

Protocal are stored in the program memory portion 36 of the server memory 34.

INALIBEIOT 784: 0P

- 11 -

After the CPU 32 has analyzed the data received
from the network interface 30, raw data is passed through
to the appropriate port 40 on server 20. The po‘rts 40 on
the server 20 may be asynchronous, synchronous or

5 parallel ports. Attached to the ports 40 may be a
variety of devices, such as terminals, printers or -
modems .

Data that is sent from the client 18 for transmission through the

ports 40 is stored in an output or transmit buffer 42 unit the port 40 is

= ready to transmit the data. Data that is sent into the server 20 through
S the ports 40 is handled similarly. The data coming from port 40 for
_ transmission to the client 18 is stored in input or receive buffer 44 until
3::5.= 15 it is ready to be transmitted over the network 10 to the client 18. The
Communication Protocol is executed by the CPU 32 and the step of
formatting the byte stream transmission into the frames, datagrams and
" packets required on the network 10 is handled by the network interface
:::é: 20 g

The server memory 34 also containsg server state
variables 38, which contain the status information

.
-
[IETIT IR T

-
s 9
-

-

-

necesgary to fully implement the Communication Protocol.
The types of server state variables 38 stored in the

25 preferred embodiment of the present invention are shown
in Table 1.

These variable types represent a variety of
data structures, and are used in various ways to control
the workings of the server 20 and to facilitate

30 communication between the client 18 and the server 20.
faﬂélarify the purpose of these variables, they are
discugsed below in detail. :

" The Client Connections list maintains a list of
c¢lients 18 that currently have a connection with the

35 server 20 open under the Communication Protocol. In the

S0
£ 1R

WO 9525311 PCT/US95/03183

10

15

20

25

30

35

- 1% -

preferred embodiment, the server 20 can support eight or
more simultaneous client connections.

The Message Build Interval controls the polling
interval to determine how often the server 20 intermally
polls its state to determine whether information needs to
be constructed according to the Communication Protocol
and transmitted to the client 18. In the preferred
embodiment, this polling takes place approximately fifcy
times per second. This results in a worst case delay
time of twenty milliseconds, with an average of ten
milliseconds. This is adequate for users at terminals,
and for most sliding window protocols.

By transmitting information only at the message
puild interval, the server 20 is able to accumulate
information during the interval. Thus, data is sent in
larger packets than if data were sent a character at a
time, which limits the demands on both the network 10 and
the client 18.

The Port Open State variable is a data
structure which tracks which clients 18 have a connection
open to a port 40, and which clients 18 are waiting to
open that port 40. 1In other words, for each open port 40
this data structure tracks which client 18 currently
holds the port 40 and which clients 18 are on the Open
walt list. Further details on opening a port 40 are set
forth below.

The Port Baud Rate variable stores the baud
rate of each port 40 in such a way that the baud rate of
the port 40 is 1,843,200 divided by the Port Baud Rate
variable. This representation requires only sixteen bhits
to represent all standard baud rates in the range 50-
115K Baud.

The Processing Flags variables control,
character size, hardware state, and input/output
character processing for each port 40. There are four
sets of processing flags that are stored in the server

N . |

WO 95/25311 PCT/US95/03183

10

15

20

25

30

35

- 13 -

state variables: CFLAGS, IFLAGS, OFLAGS AND XFLAGS.
CFLAGS, IFLAGS and CFLAGS are standard flags provided by
in the termio interface of most standard UNIX operating
gystems, and are used in the present invention as is
standard in the industry. (Unix Programmers Manual,
Termio) .

CFLAGS has settings which control UART hardware
gsettings on the port 40, including character size, stop .
bits, and parity. The actual CFLAGS settings that it
makes sense to implement in the server 20 include CBAUD,
CSIZE, CSTOPB, CREAD, PARENB, PARODD, and HUPCL.
Similarly, IFLAGS has settings which control the
processing of data at the server 20 received from the
port 40. IFLAGS settings include control over the
interpretation of Break conditions, error handling and
software flow control settings. The IFLAGS implemented
on the server 20 are IGNBRK, IGNPAR, PARMRK, INPCK,
ISTRIP, IXON,_IXOFF, IXANY, DOSMODE. OFLAGS controls the
server 20 processing of data intended to be outputted

over the ports 40. OFLAGS settings control such things
as CR and NL settings and tab delay, and are defined by
termio to include OPOST, OLCUC, ONLCR, OCRNL, ONOCR,
ONLRET, OFILL, OFDEL, NLDLY, CRDLY, TABDLY, BSDLY, VTDLY,
FFDLY.

In the preferred embodiment, variocus flags
settings which are no longer used with modern
communications eguipment are not supported. These flags
settings include OFILL, OFDEL, NLDLY, CRDLY, BSDLY, VIDLY
and FFDLY, all from OFLAGS., Each of these settings could
be supported with only slight modificaticns to the
preferred embodiment, but the decision whether or not to
support these setting is irrelevant to the present
invention.

XFLAGS is a set of flags taken from termio
LFLAGS, plus some additional functions. The XFLAGS
gettings are set forth in Table 2.

WO 95125311 PCT/US95/03183

10

15

20

25

30

35

- 14 -

The XFLAGS variables (except for XCASE which is
& UNIX line discipline cor LFLAG variable) are extensions
to the UNIX feature set either to expand the interface to
multiple host operating systems or to provide value-added
features. These XFLAGS settings interact with the
settings of the CFLAGS, IFLAGS and OFLAGS settings. The
details of the interactions are as follows.

If the XPAR setting of XFLAGS is reset or if
the underlying hardware does not support mark/space
parity, then the PARODD setting cof CFLAGS selects odd
parity if set and even parity if reset. Otherwise PARODD
gelects space parity if set and mark parity if reset.

If PARMRK of IFLAGS and XMCODEM of XFLAGS are
set, any change in one or more modem signals ig encoded
in the input stream as FF 80 MM, where MM is the updated
medem signal value.

If XCASE of XFLAGS is set, certain non-
alphabetic printing characters are converted to two-
ctharacter equivalents on output according to UNIX
specifications.

XT0OS8S of XFLAGS controls whether a character
that resumes output during flowing control is ignored or
not. When IXANY of IFLAGS is reset, output is restarted
only when a matching XON or XXON character is received.
However, when IXANY of IFLAGS is set, any received
character resumes output. Thus, if XTOSS is set, the
character that resumes output is discarded. If XTOSS is
reget, any non-flow control character resuming output is
placed in the data stream,

When XIXON of XFLAGS is set, an extra set of
output flow control characters is enabled. Receipt of
XXOFF stops output while XXON resumes it.

The Flow Control Characters variables determine
what the flow control characters will be. Two sets of
output flow control characters are supported and one set
of input flow control characters is supported. 1In

WO 9525311 PCT/US95/03183

10

15

20

25

30

35

- 15 -
addition, a flow control escape character is supported to
allow input of flow control characters without
interpretation. The Flow Control Characters include 1)
the standard scftware flow control start character (XON} ,
2) the standard software flow control stop character
(XOFF), 3) the extra software flow control start
character (XXON), 4) the extra software flow control stop
character (XXOFF) and 5) the flow Control Escape
Character (LNEXT).

After receipt of the LNEXT character, the next
character received is not recognized as a flow control
character, and both characters are placed into the input
data stream.

Returning to the Server State Variables 38, the
provision of full modem control facilities to the client
18 are provided through eight Modem Comtrol variables.
Each of these variables use masks to represent the
operating state of a modem. The seven modem variables
are set forth as follows in Table 3.

All variables shown in Table 3 represent sets
of modem signals, using the bit assignments shown in
Table 4.

The use of the different Modem Control
variables are as follows., The MOUT Modem Control
Variable contains the values of RTS and DIR last
requested by the client 18. These values are changed by
issuing a request to the server 20, When the RTS/DTR
bits in MFLOW are set, the corresponding values set in
MOUT are temporarily ignored, and those signals indicate
whether the server 20 is ready to receive data. When
receive is paused, these signals are driven low. When
receive is restarted, the signals are driven high.

MFLOW is used to inhibit the "in-band" output
of data. Data, commands, and responses that are handled
in the same sequence as the normal flow of data in and
out of data ports is called in-band data. Data,

5

10

15

20

25

30.

35

- 16 -

commands, and responses that are transmitted ahead of
normal data, and are processed immediately upon receipt
are called out-of-band data. In-band cutput is inhibiteg
when any of CTS/DSR/DCD/RI are set in MFLOW and at least
one of the corresponding hardware input gignals is low.

Flow control characters and transmit immediate
characters are not governed by software flow control or
MFLOW., They are transmitted according to the
CTS/DSR/DCD/RI flow control constraints given by MCTRL.
The server 20 automatically resets any bit in MCTRL that
is not set in MFLOW.]

MSTAT contains the current state of the input
and output modem signals.

MLAST contains the lagt modem status reported
to the client 18,

MTRAN contains the modem signals that have
changed since they were last reported to the client 18.
It is possible for MSTAT te equal MLAST and still have
bits set in MIRAN. This condition indicates that some
signals in MSTAT made at least one transition, and then
returned to the wvalue last reported to the client 18.

When any of the six modem signals are set in
MINT, corresponding changes in those modem signals are
reported to the client 13.

The server 20 maintains per-port statistical counters in the server

state variables 38 to keep track of the number of receive
character errors occurring on that port 40. These
counters are referred to as the Line Error Counters. A
different counter is utilized to track each of the
rfollowing counts: the number of UART overrun errors, the
number of buffer overflow errors, the number of framing
errors, the number of parity errors and the number of
breaks received. Each of these variables are 16-bit
wrap-arcund counters that keep track of the number of

WO 95/25311 PCT/US95/03183

10

15

20

25

3¢

35

- 17 -

line errcors that have occurred in each category for that
port 40.

An additional Line Error Counter variable
tracks the report time in milliseconds. 1If this variable
is zero, line errors are not automatically reported to
the client 18. Otherwise the server 20 inspects the
counters at each specified interval, and sends a complete
report to the client 18 if any have changed since the
last report.

The Send Break and Send Immediate variables
allow a client 18 to request the server 20 to immediately
send either a Break or another character to a port 40.
The Send Immediate variable is a one character buffer
which contains the character that the client 18 wishes to
send. The Send Break variable contains the length in
milliseconds of the requested break. Two special cases
exist in the contents of the Send Break variables. When
an FFFF value is sent to Send Break, this denotes an
infinite break time. A 0000 sent to Send Break cancels
any break in progress. Any other value sent to the
server 20 is simply added to Send Break time, and the
break proceeds for the combined duration of the two
reguests.

Since the current invention does not utilize
TCP/IP flow control for port flow control, data received
by the client 18 or server 20 can always be immediately
processed. As a result, it ig easy to send out-of-band
commands and data witheout disrupting the flow of im-band
data.

The server 20 alsc maintains a list of status
conditions in the Server State Variables 38. These
status conditions are stored in the Event Reporting
variables, and represent conditions that are of general
interest to the client 18. The client 18 can poll these,
Oor request that the server 20 automatically send the
appropriate event information whenever the conditions

W0 95/25311 PCT/US95/03183

10

15

20

25

30

35

- 18 -

change. The Event Reporting variables allow the server
20 to track the sending of this event information. Table
5 sets forth the various Event Reporting variables.

EINT can be set by the client 18 to create a
predetermined condition which will cause event
information to ke sent by the server 20 to the client 18.
Event information is sent to the client 18 whenever
(ETRAN & EINT) is non-zero.

Nete that it is possible for ESTAT to equal
ELAST and still have bits set in ETRBN. This condition
indicates that some conditions in ESTAT made at least one
transition, and then returned to their ELAST values
before they could be reported to the client 18.

The events that are recorded in these variables
are set forth in Table 6, along with the masks which show
how the events are indicated. The events listed in Table
6 are communication events well understocod in the context
of this invention.

The last two types of variables stored in the
server state variables 38 are the Input Sequence and
Receive Buffer Parameters variables and the related
Output Sequence and Transmit Buffer Parameters. These
variables represent the state of the tranamit buffers 42
and the receive buffers 44 which are associated with each
port 40.

To communicate the flow of data in the bhuffers
42, 44, the preferred embodiment of the server 20 uses
sixteen bit wrap-around sequence numbers. TwO sSequence
numbers are assoclated with each buffer 42, 44. The
first sequence number communicates the sequence number of
the next byte to be placed into the buffer. This first
sequence number is labeled RIN for the receive buffer 44
and TIN for the transmit buffer 42. The second gequence
number communicates the sequence number of the next byte
to be removed from the buffer. This second seguence
number is labeled RQUT for the receive buffer 44 and TOUT

WO 95/25311 PCTIS95/03183

10

15

20

25

30

- 19 -

for the transmit buffer 42. These sequence numbers begin
at zero and advance by one for each byte of data
transmitted or received. When the sequence numbers reach
FFFF, they wrap back to zero and continue when the next
byte of data is transmitted or received. It should be
noted that the TIN, TOUT, RIN, and ROUT variables are
sequence number variables used to communicate between the
client 18 and the server 20. They do not specify the
physical positicns of data in the transmit and receive
buffers 42, 44, which is done through techniques well
known in the art and not described herein.

These sequence numbers, and the other variables
which make up the Input Sequence and Recelve Buffer
Parameters and the Output Sequence and Transmit Buffer
Parameters variable types are shown in Tables 7 and 8.

Wrap-arocund sequence numbers like TIN, TOUT,
RIN and ROUT have some very helpful mathematical
properties. However, sequence numbers can be confusing,
especially when doing addition and subtraction, since
special definitions of these functions must be used as a
regult of their wrap-around nature.

To clarify their use, an example embodiment of
a transmit buffer 42 will be discussed, as illustrated in
FIGs. 3 and 4. In the embodiment of FIG. 3, the TOUT
sequence pointer (pointing to the next byte of data to be
transmitted out of the buffer 42 to a port 40 and
represented in FIG. 3 by arrow 50} is set to byte 8.

When n bytes of data are transmitted, the transmitted
bytes are numbered § though $ + (n - 1). By convention,
we say the buffer has transmitted bytes between S and (8
+ n). However, since we are adding an ordinary number to
a sequence number that wraps at OxFFFF, we must compute
the expression S + n using the following formula:

(S + n) & OXFFFF

W0 95/25311 PCT/USY5/03183

-20_
with & indicating a logical AND operation. Thus, where S
is OxFFFB8 and n is 5, the formula for computing S + n
give us OxFFFC. Similariy, where S is OxFFF8 and n is 9,
S +nisg 2.

5 After transmitting n bytes, the TOUT sequence
pointer must be advanced to the new location of the next
byte to be transmitted. This is done by replacing the
old value of TOUT with the computed result § + n.

To determine the number of bytes that exist
10 between two sequence number, subtraction is used.
However, a special rule must be used to determine the
result of the subtraction of cne sequence number from
another. Thus, to determine the number of bytes between
sequence number sl and s2, the following formula is used:

15 (82 - s1) & OxXEfEff

This formula works even if segquence sl is
numerically greater than segquence number s2. For
example, if 81 = OxFFFD and s2 = 3, then {82 - s1) &
OxFFFF is 0x13, the correct answer.

20 In fact the concept of distance between
gSequence numbers is g0 important that it is useful to
define it as:

DIST{from, to) = {({{to) - (from)) & Oxffff)
Given a pair of sequence numbers sl and s2, it
25 is true that 83 is the sequence location of a byte
between sl and s2 only if:
DIST(sl, 83) < DIST(sl, s2)
This formula can be read as: "s3 is between sl

and s2 if and only if the distance from sl to 83 is less
30 than the distance from sl to s2."

10

15

20

25

30

- 21 -

Sequence numbers can communicate the amount of
data, or the amount of free space in a remote buffer,
Assume that in the transmit buffer 42 for a partlcular
port 40, as shown in FIG. 4, the TOUT sequence number 50
is set to gl, while the TIN sequence number 52,
representing the next byte to be transmitted through the
port 40, is set to 52. In FIG. 4, both TOUT and TIN are
represented by arrows pointing to locations in Eransmit
buffer 42. It isg possible tu determine that the numbeyr
of bytes in the transmit buffer 42 for that port is:

DIST(s1, s2)

In addition, if the transmit buffer 42 for that
port is of fixed size SIZE, it is clear that the number
of free bytes in the buffer is:

SIZE - DIST(s1, s2)

Both the client 18 and the server 20 make use of the special characteristics of
the wrap-around sequence numbers to control the in-band flow of information between
them. Both client 18 and server 20 send in-band data to the other only when pre-
authorized to do so. This pre-authorization is accomplished by communicating the

amount of data that the other is aflowed to transmit to it, When the sender has
sent encugh data to fill this space, the sender pauses i
Lransmission until the receiver removes gsome of the data
and informs the sender that additional space is
available.

To control the flow from client 18 to server
20, the gerver 20 provides the client 18 with the size of
its transmit buffer 42, and the sequence of the firgt
byte currently im the transmit buffer 42 (TOUT). ‘The
client 18 keeps track of the data that has previously

WO 95/25311 PCT/USO5/03183

- 22 -

been sent to the server 20 by keeping itg own client 18
send sequence number. By using this send sequence
number, along with the information provided by the server
20, the client 18 can compute the amount empty space left
5 in the server’s transmit buffer 42. The client 18
therefore will not send any more data than will f£it in
that empty space.
This process is shown in detail by the flow
chart of FIG. 5. The indication to start transmitting
10 activity is shown in box 100 on the chart. The first
step is to determine whether data has been received from
the client 18 through the network interface 30 of the
gerver 20. If so, as indicated in box 102, it is
necessary to receive the data and place the data into the
15 transmit buffer 42 for the appropriate port 40. Whenever
data is placed in the transmit buffer 42, TIN is
incremented, as is shown in box 104.
Whether or not data was received from the
elient 18, it is possible that data exists in the
20 transmit buffer 42 that can be sent out through the port
40, as shown at query box 106. If data does exist, the
data in the buffer 42 should be sent out over the port
40, box 108, and TOUT should be incremented, box 110.
At this point, the server 20 must determine
25 whether it is necessary to report TOUT to the client 18.
Three tests, indicated by query boxes 112, 114 and 116,
are utilized in the preferred embodiment. The first test
112 compares TOUT, which indicates the next output byte
to be transmitted, with TPOS. TPOS is one of the Qutput
30 Seguence and Transmit Buffer Parameter variable stored in
the server state variables 38. TPOS indicates the last
value of TOUT that was reported tc the client 18. If the
difference between TOUT and TMAX, computed using the
seguence number subtraction formula described above, is
35 greater that TMAX, the TOUT will be reported. TMAX is
also stored in the server state variables 38, and is set

WO 95125311 PCT/US95/03183

10

15

20

25

30

35

- 23 -

by the client 18 to determine the transmission intervals
at which TOUT will be reported. Note that whenever TOUT
is reported to the client 18, at box 120, TPOS is then
set to the value of TOUT at box 122.

The second test for reporting TOUT, at Box 114,
determines whether the data was in the buffer 42 at least
TTIME milliseconds ago, and since that time TOUT has not
been reported, with TTIME being a server state variable
38 which can be set by the client 18. If so, TOUT will
be reported to client 18.

The final test, 116, compares the value of TOUT
with the value of TREQ. TREQ, stored as one of the
server state variables 38, is set by the client 18 so
that when TOUT passes TREQ, TOUT is reported to the
client 18. Mathematically, to compare the wrap-around
sequence number TOUT with TREQ, it is necessary to test
their relationship by comparing whether (TIN - TREQ) is
greater than or egual to (TIN - TOUT), using the seguence
number subtraction formula described above. If TOUT has
passed TREQ, then TREQ becomes invalidated, box 118, and
TOUT is reported to the client 18, box 120.

To allow for flexibility in the client 18
driver software, the client 18 may =send data to the
server 20 whenever it is convenient to do so, so long as
the client 18 does not overflow the server’s transmit
buffer 42. The procedure for making sure that the
transmit buffer 42 does not overflow is shown in FIG. 6.

When a client 18 wishes to transmit data to a
port 40, the driver on the client 18, which is handling
the Communication Proteceol for the client 18, must
request that the server 20 open the port 40 for it, as
shown in box 130, The details of opening a port 40 are
explained below. After a successful open, the client 18
aggsumes that TSIZE, the gize of the transmit buffer 42
connected to the open port 40, and TOUT are zero. In
addition, the client 18 regets its own Send Sequence

g

WO 95/25311 PCT/US95/03183

10

15

20

25

30

- 24

Number, which is a wrap arcund sequence number variable
stored and maintained on the client 18. The client 18
then requests TSIZE from the server as shown in box 132,
Note that the client cannot actually sgend data, as shown
in box 140, until TSIZE is received from the server 20 as
explained below.

The client 18 next determines if data has been
received from the host computer, at box 134. If data has
been received, the data must be prepared for
transmissicn, box 135. The preparation for transmission
is later discussed in detail.

The client 18 then tests if there is any data
to be sent at box 136. If data is ready to be sent, the
client‘s driver must compute the maximum number of bytes
that can be accepted by the server 20 without overflowing
the transmit buffer 42, box 138. This is accomplished by
comparing the client’'s Send Sequence Number with the most
recently reported value of TOUT, and subtracting this
difference from TSIZE:

Max # Bytes to Send =
TSIZE - (Send Sequence # - TOUT})

Of course, the subtraction of the sequence number TOUT
from the client‘s Send Sequence Number must be done in
compliance with the formula for subtracting sequence
nunbers .

If the calculated maximum number of bytes to be
sent is greater than zero, box 140, then up to that
number of bytes can be sent to the server 20, as shown in
box 144. The client’'s Send Sequence Number must then be
incremented by the number of bytes sent, box 146.

Regardless of whether data has been sent, the
client 18 must next determine whether the server 20 has
transmitted the value for TOUT or TSIZE, as shown in box

WO 95/25311 PCT/US95/03183

10

15

20

25

30

35

. 25 -

148. TIf so, the value of TOUT or TSIZE as stored at the
client 18 is updated, box 149.

To avoid falgely reporting that the transmitter
is idle when it is not, the server 20 recognizes a very
special case. When the transmit buffer 42 is empty, but
the UART is still busy sending in-band data, the server
20 reports (TOUT - 1) instead of TOUT. This convention
allows the client 18 to assume all data has been
successfully sent when the client receives TOUT equal to
the Send Sequence Number of the last data sent to the
server 20.

The handling of data received from the port 40
and transmitted from thé server 20 to the client 18 is
shown in FIG. 7. The server 20 is not authorized to
transmit data to the client 18 until the server 20
receives a value for RWIN, as seen in box 150. RWIN is
an Input Sequence and Receive Buffer variable which is
set by the client 18 to indicate the highest sequence
number the client 18 wighes to accept.

When the initial RWIN is received from the
client 18, the server 20 examines the port 40 to see if
incoming data is available to be placed into the receive
buffer 44, shown at box 152. If data has been received,
it is placed in the receive buffer 44 and the RIN
sequence nmumber is incremented accordingly. This is
shown in box 154 and box 156.

Because it 1is not known by the server 20 how
quickly the client 18 will be able to receive data from
the server 20, the server 20 has the ability to implement
input flow controcl on the port 40. Flow control is
initiated when the amount of data remaining in the
receive buffer 44 (calculated as RIN - ROUT) exceeds the
value of RHIGH, another Input Sequence and Receive
Buffer. Thus, after data has been placed in the receive
buffer 44 and RIN has been incremented, the server 20
determines whether input control shall be invoked, hoxes

W0 95/25311 PCT/US95/03183

10

15

20

25

30

35

- 26 -

162 and 164, Flow control‘is released when the amount of
data in the receive buffer 44 drops below Input Sequence
and Receive Buffer RILOW, which is tested after data is
sent to the client 18 as shown in boxes 158 and 160.

If the review of the port 40 in step 152 dig
not find new data on the port 40, the server 20 then
determines whether data is available to be sent in the
receive buffer 44. If not, as indicated in FIG. 7 at box
166, the server 20 agaim waits for data at the port 40.

If data ig available on the receive buffer 44,
then the server 20 must compute the maximum number of
bytes that can be sent to the client 1§, at box 168. The
number is determined by the simple formula (RWIN - ROUT),
calculated according to the seguence number subtracticon
formula. 1If the maximum number of bytes to send is zero,
then the server 20 must wait for RWIN to be updated,
shown as at query box 170. If the calculated number is
greater than zerc, then the server 20 must determine
whether it is appropriate to send the data bytes to the
client 18 at this time. Two tests are used to trigger
the sending of data. The first test, at box 172,
compares the number of bytes in the receive buffer 44
(RIN - ROUT) with RMAX, an Input Sequence and Receive
Buffer which can be set by the client 18. If the bytes
in the receive buffer 44 exceeds RMAX, then up to the
maximum number of bytes allowed is sent to the client 18,
box 176, and ROUT ig incremented accordingly, box 178.

If the number of bytes in the receive buffer 44
did not exceed RMAX, then the server 20 determines if
data has been in the receive buffer 44 at least RTIME
milligeconds ago and since that time data has not been
sent to the client 18. If so, then, as shown in query
box 174, data is sent to the client 18.

If data is not sent to the client 18, the data
remains in the receive buffer 44 until one of the two
conditions for sending data, 172 or 174, becomes true.

- 27 -

After a port 40 is opened, RMAX is initialized
to one, RTIME to zerc, RLOW to 1/4 RSIZE, RHIGH to /4
RSIZE and all the sequence numbers are zeroed. These
variables however can be altered as desired. -

5 Generally, the server 20 sends all available
data for each port 40 when it sends any data for that
port 40, unless it is restricted by the calculated
maximum number of bytes that can be sent. This
convention reduces the number of packets both server 20

16 and client 18 must process, and generally improves client
18 efficiency.

On the client side, in the host computer, the operation can vary greatly
«ess 15 depending upon the operating system of the host computer. For the purposes of
., describing the operation on a client 18, the implementation on a UNTX host system will
. be outlined, as shown on in Figure 8. There is provided access to the ports 40 on the

server 20 through the use of a client driver 200 which implements the API

20 of the host operating system by emulating a driver for a
set of locally connected serial ports 204. To do this,

St the client driver 200 maintains for each remote server

e port 204, an input or receive buffer 206, an output or
transmit buffer 208, and information concerning the state

25 of the remote server 20 as well as the interface to the

. host computer, which are stored in status memory 210.

The driver 200 also interfaces to a standard

network interface 212 which is connected to the general

. purpose network 10. All communication from the client

30 driver 200 to the server 20 is transmitted over the
network 10. The network interface 212 maintains only one
connection over the network 10 for each server 20,
regardless cof the number of ports 40 that the driver 200
has open under the Communication Protocol.

35 When the system is booted, the operating system
start-up procedure initializes the driver 200, and for

S e b e

WO 95/25311 PCT/US95/03183

10

15

20

25

30

35

28 -

each server 20 starts up a user mode daemon 214 which
cpens a STREAMS connection 218 to the server 20. The
daemon 214 then opens a STREAMS connection 220 to a
control device 202 associated with the driver 200. The
Daemon 214 next, using the STREAMS interface, requests
that the operating system link the stream 218 below the
control device 202 so that the driver 200 can directly
send and receive data on the network connection to the
server 20 w/o further interaction from the daemon 214.
By doing s8¢, the driver 200 is able to both transmit
TCP/IP data to and receive TCP/IP data from the server 20
in the STREAMS gqueue service routine of the control
device. This eliminates the task switch overhead
required by the prior art.

The connection made is a bytestream connection,
allowing the driver 200 to reliably send and received ‘
sequenced data to the server 20. The driver 200 relies
completely upon the reliability of this conmection and
has no provision to retry for lost packets and the like.
Should the driver 200 ever detect an error in the data
received from the server 20, the driver 200 passes a
hangup signal up to the daemon 214, which then closes and
attempts to reopen the connection to the server 20. Such
an error cannot occur during normal operation. The error
can only occur due to a failure of the remote server
software, the networking software, the driver software,
or scme gort of computer failure. The standard TCP/IP
software in the host computer affectively insures this
sort of error cannot occur due to lost or garbled packets
as normally happens on a general purpose computer network
10.

Once the driver 200 has access to the network
connection, the driver requests the server 20 to return
information as to the number of serial ports 40 on the
server 20, and other hardware and software
characteristics of the server 20.

WO 95/25311 PCT/US95/03183

10

it

20

25

30

a5

- 29 -

When a user mode task 216 attempts to open a
TTY serial port 204, the host cperating system 215 makes
an open call to the driver 200. If the port 204 is not
already open by another user mode tasgk 216, the driver
sends an open request to the gerver 20 to gain exclusive
access to the port 40 on the server 20 associated with
the TTY port 204 of the driver 200. If the port 40 is
available, the server 20 responds, granting exclusive
access to the client 18 until the client 18 closes the
port 40, or the connection to the client 18 is lost.

If the port 40 is not available, the action
taken depends on the type of open request originally made
by the user mode task 216. A user mode task 216 may
request that the open fall if it cannot be done
immediately, or it may regquest that the request wait
until the port 40 becomes available. In the former case,
the driver 200 requests an immediate open to the server
20, which the server 20 rejects if the port 40 is busy,
and the driver 200 then returns an error to the user mode
task 216. In the latter case, the driver 200 issues a
waiting open to the server 20, asking to be put on a
gqueue of waiting clients until the port 40 eventually
becomes available. The server 20 then returns an
indication that the request is queued, and the driver 200
puts the user mode task 216 to sleep until the server 20
notifies the driver 200 that the port 40 is available.

Once the driver 200 has successfully opened a
server port 40, the driver 200 sends inquiry packets to
the server 20 to learn the hardware and software
characteristics of the port 40, including the hertz value
of the baud rate generator, and whether the port 40 can
support mark and space parity. The driver 200 also sends
the server 20 the size of the receive buffer 206 for port
204 so that the server 20 knows how much data can be
received by the client 18 without further authorization.
The gerver 20 regponds to the inquiries, sending the

il

WO 95/2531¢ PCT/US95/03183

.10

15

20

25

30

35

- 30 -

characteristics of the port 40, and including the size of
transmit and receive buffers 42, 44 of the port 40.

When the driver 200 has received the reply from
the server 20, the driver 200 is ready to send and
receive data to the port 40, and make contrel and status
inquiries on behalf of a user mode task 216, when
requested to do so by the host operating system
open / close / ioctl {(input/output control) interface.
Thereafter, all data received om the port 40 of the
server 20 is automatically sent to the client 18, where
it is stored in a receive buffer 206. The server 20 is
initially authorized to send as much input port data as
will fit in this buffer 206, but no more, so there ig no
possibility of a buffer overrun.

When a user mode task 216 requests to read
data, the host operating system calls the read routine of
the driver 200. If sufficient data has been received
from the server 20, according to the parameters of the
read request, the driver 200 returns that data to the
host operating system 215 which in turn Passes the data
to the user mode task 216. If sufficient data is not
available, the driver 200 puts the user mode task 216 to
sleep until the data arrives, or until the read request
times out or is interrupted according to the API of the
host operating system 215.

After the driver 200 has removed data from the
receive buffer 206, the driver 200 informs the server 20
that this data has been removed by incrementing a
sequence number (RWIN) by the number of bytes removed, as
described above. The server 20 is then authorized to
send additional data until that data reaches the seguence
number RWIN.

When a user mode task 216 reguests to write
data, the host operating system 215 calls the write
routine of the driver 200. If the driver 200 then copies
as much of the user data as will fit into the transmit

WO 9525311 PCT/US95/03183

10

15

29

25

30

35

- 31 -

buffer 208. If all of the data could be placed in the
transmit buffer 208, the server 20 completes the regquest,
and the user mode task 216 is allowed to continue. If
not all of the data fit in the transmit buffer 208, the
driver 200 puts the user mode task 216 to sleep until
data can be sent to the server 20, freeing up encugh
space in the transmit buffer 208 so the remaining data
can be placed in the buffer 208.

When a user mode task 216 makes a control or
inquiry request (known as an ioctl request), the host
operating system 215 calls the icctl routine in the
driver 200. TIf the request is to change the hardware or
software characteristics of the port 204, the driver 200
notes the change in the status memory 210, and sends a
command to the server 20 to make the necessary changes.
If the request is an inquiry request which the driver 200
can respond to without consulting the server 20, the
driver 200 will do so. If the request requires data in
the server 20, the driver 200 sends an inquiry request to
the gerver 20 for this information and uses the
information returned to satisfy the request of the user
mode task 216. The types of requests that can be made by
uger mode tasks 216 are very diverse, and the action
takes varies widely. In some cases the request can be
satisfied immediately, and in some cases the user mode
task 216 must be put to sleep until the request can be
completed.

When a user mode task 216 makeg the last close
to the TTY port 204, the host operating system calls the
close routine of the driver 200. This causes the driver
200 to put the user mode task 216 to sleep, to wait until
all the data in the transmit buffer 208 has been
transmitted and to wait until any pending request to the
server 20 are complete. The driver 200 then sends a
close request to the server 20. Upon receipt of the
close request, the server 20 de-allocates the port 40 and

10

20

-32-

possibly reallocates it to another client 18. The driver 200 then completes the close,
and the user mode task 216 continues.

To optimize the efficiency of the operations of the driver 200, and minimize
the load on the host operating system 215, driver 200 communications the server 20 are
made at periodic intervals about fifty times/second. At each such interval, the driver
200 inspects each active port 204 that is open to that server 20, and places requests and
data for afl such ports 204, 40 into a common message, and sends that message to the
server 20 as a single operation. This action minimizes the total number of TCP/IP
messages (or other general purpose network messages) that must be sent to the server
20, and so enhances the operation of the system. =

It should be recognized that embodiments of the current invention provides a
protocol which can be used to simulate serial port hardware across a network 10.

When used in this manner, a board or other hardware is installed in a host computer in
such a way that is provides a serial port interface to the host computer similar to a local
serial port board. In this embodiment, the board contains a general-purpose network
protecol stack, in addition to other software that provides the serial port interface and
the functionality described above in connection with the client driver 200. Using this
board, drivers can be used on the host operating system that are aware or only a serial
Port interface, and are unaware of the existence of the network 10,

Such a hardware implementation has several advantages. First, it can be used
to emulate a hardware or software interface for which drivers are already available (or
can easily be adapted) on the host operating system. Second, the board can be installed

in a computer where networking hardware or software is not

[NALIBEIO17B4:JJP

- 33 -

readily available, thereby providing network services to
the host computer. Third, the board can include an
additional processor and hardware which off-loads much of
the serial port overhead onto the card. Finally, such a
5 card could be multi-functional in nature by coﬁ?gining,
for example, a small number of physical devices that
could either be reserved for the local computer or be
network accessible.
All information, including data and commands,
10 exchanged'between the server 20 and the client 18 is sent
over ‘the byte stream provided by the network protocol in
small units called packets. The format of these packets
.makes up the Communication Protocol,
) " The Communication Protocel packets are
! 15 similar in format to CRT terminal escape sequences, in

f:", that the first few bytes of the sequence determine the
?'?: format and length ¢f the data that follows.

;:y, The creation of the packets for communication
::;; from the server 20 to the client 18 takes place in the

20 CPU 32 of the server 20. Packets that are sent from the
¢client 18 to the server 20 are created by the special
driver operating on the ciient 18. The packets
themselves have a variable format and variable length,
depending on the type of information they contain. The

25 format of each packet is determined by processing it

..t sequentially. The value of earlier bytes completely
O determines the format and content of the bytes that
follow.

Table 9 shows the different types of packets
30 which can be sent between a server 20 and a client 18.
The table shows how the first byte breaks down a packet
into major subtypes. Values denoted illegal were not
supported in the preferred embodiment of the present
invention.
3s Data packets are used to send all in-band data
between the client 18 and server 20. When received by

10

15

20

25

30

35

- 34 -

the server 20, the data in the data packets are
transmitted through to the appropriate port 40 as
described above, -
Window sequence packets inform the receiver
about the state of the sender’s sequence numbers. The

transfer of this information is essential for the working

of the data flow control, as outlined above, Window sequence packets are used by the

server 20 to send TOUT to the client 18, and are used by
the client 18 to send RWIN to the server 20.

Command packets have different formats and
different lengths depending om the value of the command
type field in byte one. Commands are sent to set and to
query about the values of the server state variables 38.
In addition, command packets are utilized to open a port
40, allowing the client 18 to guarantee synchronization
with the server 20, to ascertain the size of the server
transmit and receive buffers 42, 44, to ascertain the
capabllities of a particular rort 40, to flush the
buffers 42, 44 of the server 20, to send a break cor an
immediate character and to pause or restart input or
output. The command packets implemented in the preferred
embodiment are set forth in Table 10.

Two of the mest important command packets
involve communication between the client 18 and the
sexrver 20 in connection with opening a port 40. The Open
Request command for opening a port 40 is sent by a client
18 who wishes to obtain exclusive access to a port 40 on
a server 20. When the server 20 receives an Open Reguest
command, the server 20 attempts to open the port 40 for
the client 18 and then responds with an Open Response
packet which informs the client 18 of the results of the
open attempt.

The format of the Open Request Command Packet
and the Open Response Command Packet are set forth in
Tables 11 and 12. E

WO 55/25311 PCT/US95/03183

10

15

20

25

30

as

- 35 -

The command packet to open a port 40 can take
different forms, depending on which type of open command
ig desired by the requesting client 18. The possible
types of open commands are an immediate open, a
persistent open, an incoming cpen.

A request for an immediate open succeeds and
the port 40 is assigned to the requesting client 18 only
if the port 40 is valid and immediately available, If
the port 40 is not immediately available, the request
fails.

When a persistent open request is made, the
request will succeed and the port 40 will be assigned to
the client 18 if the port 40 is available. If the port
40 is busy, the server 20 returns an Open Response packet
to the client 18 which indicates the port 40 is busy, and
then places the client 18 on a waiting list for that port
40. When the port 40 subseqguently becomes available, the
port 40 ig opened, and the client 18 is notified with a
second Open Respcnse indicating success.

The third type of open request is a request for
an incoming open. Thig request succeeds immediately if
the port 40'is available, and a carrier is present on the
port 40, If the port 40 is busy, or if a carrier is not
present, the server 20 returns the corresponding Open
Response code and places the client 18 on a waiting list
for that port 40. When the port 40 subsegquently becomes
available with carrier present, the port 40 is opened,
and the client 18 is notified with a second Open Response
indicating success.

A client 18 may also send a cancel waiting type
of Open Request for a particular port 40. When this
command is received from a client 18, the server 20
checks to see if the client 18 is on the waiting list for
that port 40. If the client 18 is found on the list, the
client 18 is removed, and the server 20 returns an Open
Response indicating success.

WO 95/25311 PCT/US95/03183

10

15

20

25

30

35

- 236 -

It is possible to organize ports 40 on a gerver
20 intc a port hunt group. When this is done, the server
20 provides one or more logical ports designated as hunt
group ports so that any attempt to open one of these
ports in fact opens a physical port 40 configured as a
member of the hunt group. Thus, if a client 18 requests
a port 40 which is part of a port hunt group, the actual
port 40 opened will be different from the port 40
requested. The client 18 must inspect the PNUM portion
of the Open Response after a successful open, and use
that port number for all subseguent references to the
port 40.

The Synchronization Request command causes the
recipient to respond with a Synchronization Response. It
has no other effect. The primary purpose of this command
is to allow the client to guarantee syanchronization with
the server. For example, a client 18 may wish to confirm
a requested baud rate change before returning to the
calling program. The client 18 achieves this by first
sending a baud rate change to the server 20, and then
following it with a Synchronization Request. Since the
server 20 processes commands seguentially, when the
client 18 receives the matching the Synchronization
Regponse, the client 18 can be confident the baud rate
change has been accomplished.

The Seguence Request and Responge Packets are
provided so the client 18 can accurately track the flow
of data in and out of the server 20. The server 20
responds to this packet by providing RIN and TOUT to the
client 18.

The client 18 may send a Status Request Packet
to discern the current state of ESTAT and MSTAT in the
server 20. The server 20 returns the requested data in a
Status Response Packet, and takes no other action. This
command is one of two ways the client 18 may learn the
statusg of server 20. The client 18 may also use the

WO 95/25311 PCT/US95/03183

10

15

20

25

30

- 37 -

Select Event Conditions Pécket to have the server
automatically report selected status changes as they
occur. ,

The client 18 sends the Line Error Request
Packet to poll the line error counters, to configure
periodic reporting of line error counters, and to clear
the counters. The gerver 20 sends a Line Error Response
in response to a poll for the error counters, and also at
periodic intervals as configured with the variable LTIME.
All Line Error Request packets may set the server
variable LTIME. An LTIME value of 0 disables automatic
reporting. An LTIME value of FFFF leaves LTIME
unchanged.

After the client 18 has set LTIME non-zero, the
server 20 inspects the state of the error counters every
LTIME milliseconds (to an accuracy of approximately 20
milliseconds) and sends an automatic Line Error Response
packet if they have changed since the last report.

The Buffer Request Packet is sent by the client
18 to learn the size of the server transmit buffers 42
and receive buffers 44. The server 20 responds with the
Buffer Response Packet. After a successful open, and
before sending data to the server 20, the client 18 needs
to ascertain the size of the server’s buffers 42, 44.

The size of the transmit buffer 42 is needed so the
client 18 can know how much data the client 18 is allowed
to send. The size of the receive buffer 44 is needed s0
the server 20 can set the flow control high and low water
marks accordingly.

The Port capability request packet is generally
sent by the client 18 to learn the capabilities of the
hardware and software of a port 40. Unlike other port-
level commands, the port 40 need not be open when this
command is issued.

WO 95/25311 PCT/USS5/03183

10

15

20

25

30

35

- a8 -

The Set Baud Rate command is used by the client
18 to set the port baud rate, CFLAGS, IFLAGS, OFLAGS and
XFLAGS of a port 40.

The client 18 sends the Select Event Conditions
command to specify which ESTAT and MSTAT conditions cause
the server 20 to send an Event Packet. The client may
also poll for ESTAT and MSTAT using the Status Request
Packet.

The Set Window Trigger command allows the
client 18 to set TREQ, one of the server status variable
38. TREQ is the client 18 requested level at which a
Window Sequence Packet should be sent. If TREQ is
outside the range of data currently in the output buffer,
the server 20 immediately responds with a Window Sequence
Packet.

The Set Modem Outputs and Flow Control packet
is sent by the client 18 to set modem outputs, and select
medem-signal hardware flow control. Note that when RTS
and DTR modem flow control are selected, the values of
RTS and DTR in MOUT are ignored.

The client 1B sends the Set Receive High/Low
Water Marks packet to set receive flow contrel high and
low water marks. When this packet is processed by the
server 20, if takes effect immediately. If the number of
characters in the input buffer exceeds RHIGH, flow
contrel is immediately invoked. If less than RLOW, [low
control is immediately released.

The client 18 sends the Set Flow Control
Characters packet to set server 20 software flow control
characters., Similarly, the client sends the Set RMAX and
RTIME command to set the parameters RMAX and RTIME and
the Set TMAX and TTIME command to set TMAX and TTIME.

The client sends the Send Character Immediate
packet to send a character ahead of in-band data. In
sending immediate data, software flow contrel is ignored,
and hardware flow control uses the variable MCTRL instead

£

W0 95/25311 PCT/US95/03183

- 39 -

of MFLOW. The client 18 utiligzes the Send Break
Immediate packet to send a hardware break signal. The
Break signal is also sent ahead of all in-band data, and
regardless of software or hardware flow control.

5 The client sends Flush Buffers packet to flush
either or both the server input and output buffers. The
Pause Input/Output packet pauses any set of software flow
control conditioms in the server. It is ineffective to
attempt to pause input if the number of characters in the

10 receive buffer is less than RLOW. Finally, the Unpausge
Input/Output packet is used to unpause any set of
software flow control conditions in the server. It is
ineffective to attempt to unpause input if the number of
characters in the receive buffer is greater than RHIGH.

15 Event packets are sent by the gerver 20 to
inform the client 18 of changes in ESTAT and MSTAT
conditions. The server 20 sends an event packet for each
port 40 whenever: (ETRAN & EINT) or (MTRAN & MINT) are
non-zero.

20 To assure this reguest does not cause
transitions to be lost that would otherwise be reported
in event packets, the server 20 first sets ELAST and
MLAST as follows, and then reports ELAST and MLAST to the
client 18.

25 ELAST “= (ESTAT ~ ELAST} | (ETRAN & EINT)
ETRAN = ESTAT “ ELAST

MLAST “= {MSTAT " MLAST) | (MTRAN & MINT)
MTRAN = MSTAT “ MLAST

Module Select Packets are used to select a
30 particular grouping of ports 40. To reduce communication
bandwidth, ports 40 are logically grouped into modules,
with each module containing only sixteen ports 40 (ports
0-15). There need be no relationship between a logical

WO 95/25311 PCT/US95/03183

10

15

20

25

30

35

- 40 -

module grouping and the phyéical layout of the ports 40
on the sgerver(s). By grouping ports 40 into modules, the
addressing in all commands and responses references need
to only refer to which port (0-15) is desired within the
current module. Module 0 is selected by default.

Modules 0-7 can be selected with a one byte module select
packet. Modules 8-255 require a two-byte packet. It is
possible to convert between a module and port pair and a
physical port number. When module n is selected, port K
in all subsequent packets refers to physical port 1é*n+K.

An ID request packet is sent by either the
client 18 or server 20 to get identity or configuration
information from the remote, The remote responds with a
corresponding ID response packet.

The debugging packet types supports access to
ports 40 of the server 20 for debugging purposes, such as
transmitting debugging data between the client 18 and
server 20, These packets could alsc be used tc allow the
client 18 access to the server program memory 36, either
to review the contents of program memory 36 or to change
the programming of the server 20 as stored in program
memory 36.

The reset packet type is sent by a client 18 or
gserver 20 to report a protocol error toc the remote, prior
to shutting down the connection. The packet contains an
explanation of the reason for the reset in an ASCII
format. The Reset Packet sghould be the last packet sent
in a conversation.

Although this discussion has not specifically
coversd operating systems other than UNIX, it will be
obvious to one skilled in the art that there are features
documented in XFLAGS, the error counters and the event
flags that are required to satisfy the application
programming interfaces of Novell, Windows, Windows NT,
0S/2 and DOS. As a result, the implementation of the

WO 95/25311 PCT/US95/03183

- a1 -
invention in any of thesge operating systems is obvious to
one skilled in the art.

The invention is not to be taken as limited to
all of the details thereof as modifications and
5 variations thereof may be made without departing from the
spirit or scope of the invention.

W0 95/25311

10

15

- 42 -

PCT/US95/03183

Table 1: Server State Variables

Type of Server State Variables

Client Connections

Message Build Interval

Port Open State

Port Baud Rate

Processing Flags

Flow Control Characters
Modem Control

Line Error Counters

Send Break and Send Immediate
Event Reporting

Input Sequence and Receive Buffer
Parameters

Output Sequence and Transmit Buffer
Parameters

SUBSTITUTE SHEET (RULE 26)

Fr

per
per
per
per
per
per
per
per
per
per

per

per

enc
server
server
port
port
port
port
port
port
port
port
port

port

WO 9525311

3
~

0001

0002

5 0004

0040

2000

Name
XPAR
XMODEM

XCASE

XTOSS

XIXON

PCT/US95/03183

- 43 -

Table 2: XFLAGS Settings
Description

Enable Mark/Space parity.
Enable in-band modem signaling.

Convert gpecial characters toc multiple-
character sequences on output.

Togs IXANY characters.

Enable a second set of Qutput Software Flow
Contreol Characters.

SUBSTITUTE SHEET (RULE 26)

W0 95725311

Name
MOUT
MFLOW
5 MCTRL
MSTAT
MLAST

MTRAN

MINT

PCT/US95/03183

- 44 -

Table 3; Modem Variables
Description
Client'specified modem output values.
Modem flow contreol for in-band data.
Modem flow control for out-of-band data.
Current modem status.
Last modem status sent to the client.

Set of modem signals which have changed, but
those changes have not yet been sent to the
client.

Modem signal changes to be reported to the
client.

SUBSTITUTE SHEET (RULE 26)

WO 95/25311

40

80

- 45 -

PCT/US95/03183

Table 4: Modem Signals in Modem Variables

Name Description

DTR

RTS

CTS

DSR

RI

DCD

Data Terminal Ready.
Request To Send.
Clear to Send.

Data Set Ready.

Ring Indicator.

Data Carrier Detect.

SUBSTITUTE SHEET (RULE 26)

g

WO 9525311

Name
ESTAT

ELAST

EINT

PCT/US95/03183

Table 5: Event Reporting Variables
Description
Current state of event conditions.

Last state of the event conditiong sent to the
client.

Set of event conditions which have seen
transitions, but those transitions have not,
yet been reported to the client.

Set of event conditions which cause an event
to be generated.

SUBSTITUTE SHEET (RULE 26)

WO 9525311

10

:

0001

0002

0004

o008

010

0020

0040

0080

0100

0200

Name
OPU

[02]

OPX

OFH
IPU
IPS
TXB
TXI

TXF

PCT/US95/03183

- 47 -

Table 6: Recorded Events
Description
Output paused unconditionally by client.

Qutput paused by regular scftware flow
contrel.

Output paused by extra software flow control
characters.

Output paused by hardware flow control.
Input paused uncenditionally by client.
Input paused by high/low water marks.
Transmit break pending.

Transmit immediate pending.

Transmit flow control character pending.

Break received.

SUBSTITUTE SHEET (RULE 26)

o
MM 1 1

WO 95/25311

PCT/US95/03183

- 48 -

Table 7: Input Sequence and Receive Buffer Variables

Name

RIN

ROUT

5 RWIN

RTIME
RSIZE
RLOW

10 RHIGH

Degcription

Sequence number of the next byte of data to be
read from the UART and placed in the local
receive buffer.

Sequence number of the next byte to be
transmitted from the receive buffer to the
client.

Highest Sequence number the glient wishes to
accept.

Receive trigger maximum.

Receive trigger time.

Size of the local receive buffer.
Software flow control low water mark.

Software flow control high water mark.

SUBSTITUTE SHEET (RULE 26}

o

WO 95725311

PCT/US95/03183

- 49 -

Table 8: Output Sequence and Transmit Buffer Parameters

Name
TSIZE

TIN

5 TOUT

TPOS

TTIME

TREQ

Descripticn
Size of the transmit buffer in bytes.

Sequence of the next byte to be placed in the
transmit buffer.

Sequence of the next byte to be sent from the
transmit buffer out the port.

Value of TOUT last repcrted to the client.
TOUT report maximum.
TOUT report time (milliseconds).

Client regquested sequence number.

SUBSTITUTE SHEET (RULE 26)

i

WO 95/25311

Nibble 0

10

0

10

11

PCT/US95/03183

- 5O -

Table 9: Packet Types

Nibbie 1

port

port

port

port

port

port

port

port

port

port

port

port

0-15

0-15

0-15

0-15

0-15

0-15

0-15

0-15

0-15

0-15

0-15

Description

Data Packet. 1 byte of data follows

for the specified port.

Data Packet. 2 bytes of
for the specified port.

Data Packet. 3 bytes of
for the specified port.

Data Packet. 4 bytes of
for the specified port.

Data Packet. &5 bytes of
for the specified port.

Data Packet. 6 bytes of
for the specified port.

Data Packet. 7 bytes of
for the specified port.

Data Packet. 8 bytes of
for the specified port.

data

data

data

data

data

data

data

follow

follow

follow

follow

follow

follow

follow

Data Packet. Byte 1 of the packet

specifies 1-255 bytes of

data

following for the specified port.

Data Packet. Bytes 1-2 of the

packet specify 1-65535 bytes of data

following for the specified port.

Window Seguence Packet.

Bytes 1-2
specify a window sequence number.

Command Packet. Byte 1 specifies a

command number which determines the
length and format of the data that

follows.,

SUBSTITUTE SHEET (RULE 26}

L

WO 95/25311

Nibble 0O

10

1z

13

14

15

15

15

15

15

15

15

15

Nibble 1

port 0-15

*

module 0-7

12

13

14

15

PCT/US95/03183

- 51 -

Description

Event Packet. 3 bytes of status
follow.

Illegal.

Illegal.

Module select Packet. Nibble 1
contains the module number to be
selected.

Module select Packet. Byte 1
specifies a module select code in
the range 0-255.

Illegal.

ID Request packet. Requests an ID
response.

ID Response packet. Byte 1
determines the size of the data
which follows.

Debugaging and Control Packet.

Debug Packet. 8Specifies a number of
following bytes to be utterly
ignored. Used for stress testing.

Remet Packet. Followed by a null-
terminated ASCII string describing
the reason for the reset.

SUBSTITUTE SHEET (RULE 26)

il

il

WO 95/25311

10

15

20

PCT/US95/03183

Table 10: Command Type Assignments & Lengths

Command Tvpe
(byte 1 value)

10
i1
12
13
14
15
16
17
18
19
20
21
22
23

40

42
43

44

45

46

Command Length
(bytes)

3

6

32

12

Command Name

Open Request

Open Response
Synchronize Request
Synchronize Response
Seguence Regquest
Sequence Response
Status Request

Status Response

Line Error Request

Line Error Response
Buffer Reguest

Buffer Response

Port Capability Request
Port Capability Response

Set Baud Rate, CFLAGS,
IFLAGS, OFLAGS and XFLAGS

Select Event Conditions
Set Window Trigger

Set Modem outputs and Flow
Control

Set High/Low Water marks

Set Flow Control
Characters

SUBSTITUTE SHEET (RULE 26)

=4

WO 95/25311

Command e
(byte 1 value)

47
48
60
61
5 62
63

64

- 53 -

Command Length
{bytes)

6

6

PCT/USI5/03183

Command Name

Set RMAX and RTIME

Set TMAX and TTIME

Send Character Immediate
Send Break Immediate
Flush input/output

Pauge input/output

Unpause input/output

SUBSTITUTE SHEET {RULE 26)

M i {

WO 95/25311 PCT/USY5/03183

- 54 -

Table 11: Opén Request Packet

Position Name Description
Nikble O MTYPE Message type 11: Command.
Nibble 1 PORT Port number 0-15.

5 Byte 1 CTYPE Command type 10: Open Request.
Byte 2 REQ Request Type:

0=Immediate open
l=Persistent open.
2=Incoming open.

3=Cancel/Close immediate open.

4=Cancel /Close persistent or

incoming open.

SUBSTITUTE SHEET (RULE 26)

PCTIUS95/03183

- 55 -

Table 12: Open Response Packet

WO 95/25311

Position Name
Nibble 0 MTYPE
Nibble 1 PORT

5 Byte 1 CTYPE
Byte 2 REQ

Byte 3 RESP

Bytes 4-5 PNUM

Description
Megsage type 11: Command,.
Port number 0-15.

Command type 11: Open Response.

Request Type:
O=Immediate open
1=Persistent open.
2=Incoming open.
3=Cancel/Close immediate open.
4=Cancel/Close persistent or

incoming open.

Request code:
0=Success.
1=Port busy.
2=No carrier.
3=Resource allocation problem,
try again.
4=Request not supported on this
device.

Actual port number {lé*module+port)
opened by this request.

SUBSTITUTE SHEET (RULE 26)

20

25

- 56 -

The claims defining the invention are as follows:

1. A system comprising:

a server having a plurality of communication ports; and

a host computer having a driver communicatively coupling the host computer
to the server via a network connection, wherein the driver emulates the communication
ports of the server hy defining a corresponding local communication port for each of
the communication ports of the server, and further wherein the driver includes an
application programming interface (APT) by which an application program executing on
the host computer is granted full control of one of the communication ports of the
server, including hardware and software flow control, as if the communication ports of

the server were local to the host computer.

2. The system as claimed in claim 1, wherein the driver maintains a
single network comnection from the host computer to the server as the application

program requests additional local communication ports from the driver.

3. The system as claimed in claim 1, wherein the driver defines a TTY

device as the local communication port.

4, The system as claimed in claim 1, wherein the driver receives
input/output (I/O) settings from the application program via the application
programming interface, and further wherein the driver communicates the I/0 settings to
the server for configuring hardware characteristics of the granted server communication

port.

3. The system as claimed in claim 1, wherein the server communication

ports are serial ports.

[NALIBEIOT784:.18

. |

20

25

-B7 -

6. The system as claimed in claim 1, wherein the network connection is a

TCP connection.

7. The system as claimed in claim 1, further comprising a UNIX daemon
executing on the host computer for establishing the network connection as a reliable bi-
directional bytestream connection over a network, opening a control device associated
with the driver, and utilizing a STREAMS interface to link the reliable bytestream

network connection to the driver.

8. A hardware device for a host computer, wherein the hardware device
includes a driver that emulates a plurality of communication ports of a remote server
that is communicatively coupled to the host computer via a network comnection,
wherein the driver defines a corresponding local communication port for each
communication port of the server and includes an application programming interface
(API) by which an application program executing on the host computer is granted full
control of one of the communication ports of the server, including hardware and
software flow control, as if the communication ports of the server were local to the host

computer,

9. The hardware device as claimed in claim 8, wherein the driver
maintains a single network connection from the host computer to the server as the

application program requests additional local communication ports.

10. The hardware device as claimed in claim 8, wherein the driver defines
a TTY device as the local communication port.

11, The hardware device as claimed in claimed in claim 8, wherein the
driver receives input/output (I/0) settings from the application program via the

application programming interface, and further wherein the driver communicates the

IN:\LIBEIO1784: LS

il

i

20

26

58 -

I/0O settings to the terminal server for configuring hardware characteristics of the

terminal server communication port.

12, The hardware device as claimed in claim 8, wherein the terminal

server communication ports are serial ports,

13, The hardware device as claimed in claim 8, wherein the network

connection is a TCP connection.

14. The hardware device as claimed in claim 8, further comprising a
UNIX daemon executing on the host computer for establishing the network connection
as a reliable bi-directional bytestream connection over a network, opening a control
device associated with the driver, and utilizing a STREAMS interface to link the

reliable bytestream network connection to the driver.

15. A terminal server substantially as hereinbefore described with

reference to the accompanying drawings.

16. A method for transmitting data and commands, said method being

substantiaily as hereinbefore described with reference to the accompanying drawings.

17. A system for communicating digital data said system being

substantially as hereinbefore described with reference to the accompanying drawings.

DATED this Twenty-ninth Day of March 1999
Digi International Inc.
Patent Attorneys for the Applicant
SPRUSON & FERGUSON

{N:\LIBEIO1784: LS

WO 95/25311

/7

Fig. 1

PCT/US95/03183

SUBSTITUTE SHEET {RULE 26)

PCT/US95/03183

i 1H0d 180d 140d LHOd 1¥0d
e _ [m _ _ o
y34dng | | |w344ng op wa44na | | |u31sna
o 1 ¥ i
vJ NvJ . , \3 . , \3.
N m Ov 7 DV T
w3d4na| |w3d4ang b y344na| |y34dna ¥3ddna| |waddna
e L v o 1 . m L
N m
zr
r—————— 9
| T _
ge— 1T s3iaviava | |
| 31V1S i Ndo
_ ¥AAM3S | . R
K |
] _
_ AMOWIW _ FOVAIILNI
_ WYH9O0Hd _ SMMOMLAN T—0¢
_ 1T t—se
-

WO 95/25311

N .MN_.WN m_‘[\\.l\‘ LNIITO

SUBSTITUTE SHEET (RULE 26)

WO 95/25311 PCT/US95/03183
3/7
N
=
o i
o - b
w [92] ld-_
~
éo
o
n o]
o
1
c
2)
éo

[=]
wn

SUBSTITUTE SHEET (RULE 26)

WO 95/25311

4/7
BEGIN TRANSMIT 10
DATA ACTIVITY /

PCT/US95/03183

Fig. 5

-

0

DATA
RECEIVED
FROM
CLIENT

PLACE DATA IN BUFFER
AND INCREMENT TIN
ACCORDINGLY

?

106

/- 108

DATA IN
BUFFER READY
TO BE SENT

YES

SEND DATA IN BUFFER
OUT THROUGH PORT

!

INCREMENT TOUT

(TOUT-TPOS)

ACCORDINGLY

>= TMAX
?

!

YES
IN BUFFER AND
NO DATA HAS BEEN
SENT FOR AT LEAST 16
RTIME MILLI-
120 SECONDS
\ (TIN-TREQ)>
) VES (TIN-TOUT)
REPORT TOUT
TO CLIENT
* /4 18
STEOTTTSSTS INVALIDATE
\ TREQ
122

SUBSTITUTE SHEET (RULE 26)

WO 95/25311

PCT/US95/03183

5/7

OPEN PORT, INITIALIZE
TSIZE, TOUT AND CLIENT
SEND SEQUENCE NUMBER

/—- 130
Fig. 6

L

REQUEST TSIZE
FROM SERVER

DATA
RECEIVED
FROM THE HOST
COMPUTER
?

134

YES

_/- 132

/ 135

PREPARE DATA FOR
TRANSMISSION

136

1S
THERE
DATATO

SEND
?

YES

NO

r— 138

COMPUTE MAX NUMBER
OF BYTES THAT CAN
BE SENT

140

MAX

NO NUMBER

OF BYTES TO

SEND>0
?

148

TOUT
OR TSIZE
RECEIVED FROM

SERVER
?

148 \ YES

UPDATE TOUT
OR TSIZE

144

\ YES

SEND DATA TO SERVER UP TO
CALCULATED MAX NUMBER
OF BYTES TO SEND

y

UPDATE CLIENT SEND
SEQUENCE NUMBER
ACCORDINGLY

k 146

SUBSTITUTE SHEET (RULE 26f

WO 95/25311 PCT/USH5/03183

150 | WAIT TO 8/7 Fig. 7

RECEIVE RWIN
/‘ 154

I
YES RECEIVE DATA FROM
PORT, STORE IN

RECEIVE BUFFER _l (156

152

IS

DATA

AVAILABLE

ON PORT
?

166

18
THERE INCREMENT RIN
DATA TO SEND 162 ACCORDINGLY
INTHE
BUFFER

?

(RIN-ROUT)>

168 RHIGH
7
COMPUTE MAX NUMBER
OF BYTES THAT CAN BE

SENT (RWIN-ROUT])

f164

INVOKE INPUT
FLOW CONTROL

MAX
NUMBER
OF BYTES TO
SEND >0
?

YES
4
176 \ -
\
SSEEé“\Rzgﬁr@gngT WAS IN BUFFER
AND NO DATA HAS BEEN™_ NO
UP TO CALCULATED
SENT FOR AT LEAST
MAX NUMBER OF
BYTES TO SEND RTIME MILLI-
SECONDS

?

INCREMENT ROUT
ACCORDINGLY

178 /

-

RELEASE INPUT
CONTROL

158

SUBSTITUTE SHEET (RULE 26)

WO 95/25311 PCT/US95/03183
777
Fig. &8
216 g
ya 214
USER MODE USER MODE USER MODE 1
TASK TASK TASK
DAEMON
215
il
HOST HOST HOST 218 —_|
OPERATING OPERATING QPERATING —
SYSTEM SYSTEM SYSTEM /
220
204
e (]
] /— : :
i TTY — TTY2 — TTY3 N i
! 202—~"_] CONTROL ||
/206 DEVICE §
| -{ RBUFFER | || RBUFFER {— | RBUFFER A
e a
; s 208 :
i I TBUFFER | |~ T BUFFER — TBUFFER | |!
. 210
tL] statUs | | || status | | sTATUs | |1
{ | MEMORY MEMORY MEMORY | |!
212 NETWORK
(T\ | INTERFACE
gm 200

SERVER

20

SUBSTITUTE SHEET {RULE 26)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

