»UK Patent .,GB

2979699

(45)Date of B Publication

(13)B

22.09.2021

(54) Title of the Invention: 11l€ region protection

(51) INT CL: GO6T 1/20 (2006.01)
GO6T 1/60 (2006.01)
G09G 5/00 (2006.01)

GO1C 23/00 (2006.01)
GO6T 7/00 (2017.01)

G02B 27/01 (2006.01)
GO6T 11/00 (2006.01)

GO6K 9/36 (2006.01)
GO6T 13/00 (2011.01)

(21) Application No: 1914057.3
(22) Date of Filing: 04.12.2018
Date Lodged: 30.09.2019

(62) Divided from Application No
1819810.1 under section 15(9) of the Patents Act 1977

(43) Date of A Publication 01.07.2020

(72) Inventor(s):
lan King
Jamie Broome

(73) Proprietor(s):
Imagination Technologies Limited
(Incorporated in the United Kingdom)
Imagination House, Home Park Estate,
KINGS LANGLEY, Hertfordshire, WD4 8LZ,
United Kingdom

(74) Agent and/or Address for Service:

(56) Documents Cited:
US 20160071231 A1

(58) Field of Search:
As for published application 2579699 A viz:
INT CL B60K, G01C, G02B, GO6F, GO6K, GO6T, G09G,
HO3M
Other: WPI, EPODOC, Patent Fulltext
updated as appropriate

Additional Fields
Other: None

Slingsby Partners LLP
1 Kingsway, LONDON, WC2B 6AN, United Kingdom

g4 6696.9¢ 99

10f 5

103
\
100
?\/105
CPUO CPU1
101 102
?/106
y
104 FIGURE 1

202

FIGURE 2

20f 5

300 | PUM
AR 302 | Put 304
PUO
3D Data 203
Manager]
307 Geometry Data
CPU Unit Cache 301
205 319 324 L~
2Dbata |} |
Manager |] 1
9 308 ! Fragment Processor | 320
| |
L
! l
- | Shader Core :
irmware — ! '
! 321 i
309 | |
|
i Rasteriser !
| |
322
306 Tiling Engine | |
310 | i
i Texture Unit |
: 323| |
! ||
Memory
() Cache — Filter 313
Check Unit Data | | FDU Fault _
Parameter 31 314 Stgre 1 317
Buffer) /
\ \
318 315
312

FIGURE 3

30f5

Mission Safety
PUO 303 PU1 304
L 319
(a)
Fragment Fragment
312 Processor ' Processor [} 320
Il 1 314
N Fault
Parameter Filter 313 Chef:k
Buffer) Unit 317
.
| 3
.
I R
| §
!
I N
| :
|
|
: PUO 303 PU1 304
|_{>401
Geometry Geometry ~_ 319
Unit Unit ~
(b)
- 320
< 314
| : Check |Fault
| F|I§ier 313 Unit —>317
; .
|
(c) FIGURE 4

Memory 306 403

4 0of 5

500 01 Software
\ — 505
,
PO P1 S P2
204
Driver APl T~ 506
w Hardware u
306
Memory
503
\\ Display
Screen
305 300
CPU GPU < >
FIGURE 5
1002
1004 8 1006
))
((
Circuit layout Intearated
IC definition Layout definition gra Integrated
— . » circuit > circuit
dataset processing . circul
generation

FIGURE 7

16 07 20

612

613

50f5
601

data describing
scene

Mission Pass

Receive geometry

Safety Pass

602 v

Perform geometry
processing at mission
geometry unit

604

v 603

Perform geometry
processing at safety
geometry unit

Compare the mission and
safety processed geometry

\ 605

Write mission
processed geometry
to cache

Yes

Repeat
tiling

Tile processed
geometry

................. v 611

Write tile list to cache
with processed |«
geometry

Geometry
passes match?

Tiling
passes match?

Raise a fault signal

610

Raise a fault signal

-

Mission Pass

v

Safety Pass

Perform fragment Perform fragment
processing at mission processing at safety

processing unit processing unit

Y Y

Form a signature over Formmn a signature over
each buffer write by each buffer write by
mission processing unit safety processing unit

616

Compare mission and
safety signatures

617 v

Signatures

match?

Allow buffer writes by
mission processing unit
to memory

Yes

614

Repeat over buffer
writes of fragment

615 processing

619

Raise a fault
signal

620

Make use of
rendered output at
memory

FIGURE 6

10

15

20

25

30

35

Tile Region Protection

BACKGROUND

The present disclosure relates to graphics processing systems and methods of processing

tasks at graphics processing systems.

In safety-critical systems, at least some of the components of the system must meet safety
goals sufficient to enable the system as a whole to meet a level of safety deemed necessary
for the system. For example, in most jurisdictions, seat belt retractors in vehicles must meet
specific safety standards in order for a vehicle provided with such devices to pass safety tests.
Likewise, vehicle tyres must meet specific standards in order for a vehicle equipped with such
tyres to pass the safety tests appropriate to a particular jurisdiction. Safety-critical systems
are typically those systems whose failure would cause a significant increase in the risk to the

safety of people or the environment.

Data processing devices often form an integral part of safety-critical systems, either as
dedicated hardware or as processors for running safety-critical software. For example, fly-by-
wire systems for aircraft, driver assistance systems, railway signalling systems and control
systems for medical devices would typically all be safety-critical systems running on data
processing devices. VWhere data processing devices form an integral part of a safety-critical
system it is necessary for the data processing device itself to satisfy safety goals such that the
system as a whole can meet the appropriate safety level. In the automotive industry, the safety
level is normally an Automotive Safety Integrity Level (ASIL) as defined in the functional safety
standard 1ISO 26262.

Increasingly, data processing devices for safety-critical systems comprise a processor running
software. Both the hardware and software elements must meet specific safety goals. Software
failures are typically systematic failures due to programming errors or poor error handling. For
software, the safety goals are typically achieved through rigorous development practices, code
auditing and testing protocols. For the hardware elements of a data processing device, such
as processors, safety goals may be expressed as a set of metrics, such as a maximum number
of failures in a given period of time (often expressed as Failures in Time, or FIT), and the
effectiveness of mechanisms for detecting single point failures (Single Point Failure

Mechanisms, or SPFM) and latent failures (Latent Failure Mechanisms, or LFM). Itis important

10

15

20

25

30

35

that data processing hardware is designed to handle some level of errors because, even if
systematic errors could be completely excluded from a safety-critical system, random errors
can be introduced into hardware, e.g. by transient events (e.g. due to ionizing radiation, voltage
spikes, or electromagnetic pulses). In binary systems transient events can cause random bit-

flipping in memories and along the data paths of a processor.

There are various approaches to achieving safety goals in data processing hardware: for
example, by providing redundancy so that if one component fails another is available to
perform the same task, or through the use of check data (e.g. parity bits or error-correcting
codes) to allow the hardware to detect and/or correct for minor data corruptions. Data
processors can be provided in a dual lockstep arrangement 100 as shown in Figure 1 in which
a pair of identical processing cores 101 and 102 are configured to process a stream of
instructions 103 in parallel. The output of either one of the processing cores (101) may be
used as the output 104 of the lockstep processor. When the outputs of the processing cores
101 and 102 do not match, a fault can be raised to the safety-critical system. However, since
a second processing core is required, dual lockstep processors necessarily consume double
the chip area compared to conventional processors and consume approximately twice the

power.

A delay 105 can be introduced on the input to one of the cores so as to improve the detection
probability of errors induced by extrinsic factors such as ionizing radiation and voltage spikes
(with typically a corresponding delay 106 being provided on the output of the other core). By
adding further processor cores to a lockstep processor 100, it can be possible to continue to
provide an error-free output: the output of the processor may be that provided by two or more
of its processing cores, with the output of a processing core which does not match the other
cores being disregarded. However, this further increases the area and power consumption of

the processor.

Advanced driver-assistance systems and autonomous vehicles may incorporate data
processing systems that are suitable for such safety-critical applications which have significant
graphics and/or vector processing capability, but the increases in the area and power
consumption (and therefore cost) of implementing a dual lockstep processor might not be
acceptable or desirable. For example, driver-assistance systems often provide computer-
generated graphics illustrating hazards, lane position, and other information to the driver.

Typically this will lead the vehicle manufacturer to replace a conventional instrument cluster

16 07 20

10

with a computer-generated instrument cluster which also means that the display of safety-
critical information such as speed and vehicle fault information becomes computer-generated.
Such processing demands can be met by graphics processing units (GPUs). However, in the
automotive context, advanced driver-assistance systems typically require a data processing
system which meets ASIL level B of ISO 26262.

Autonomous vehicles must in addition process very large amounts of data (e.g. from RADAR,
LIDAR, map data and vehicle information) in real-time in order to make safety-critical decisions.
Graphics processing units can also help meet such processing demands but safety-critical
systems in autonomous vehicles are typically required to meet the most stringent ASIL level D
of ISO 26262.

SUMMARY

This summary is provided to introduce a selection of concepts that are further described below
in the detailed description. This summary is not intended to identify key features or essential
features of the claimed subject matter, nor is it intended to be used to limit the scope of the

claimed subject matter.

10

N
(&)

N
o

16,07 20

25

30

35

According to a first aspect of the invention, there is provided a graphics processing unit for
performing tile-based rendering of a scene that includes safety-critical elements, the graphics
processing unit being configured to: receive data relating to protected tiles that include safety-
critical elements and data relating to non-protected tiles that do not include safety-critical
elements; in a fragment processing phase: process each protected tile first and second times
so as to, respectively, generate first and second fragment-processed outputs; and process
each non-protected tile a single time so as to generate a respective single fragment-processed
output; wherein the graphics processing unit comprises a check unit configured to compare
the first and second fragment-processed outputs for each protected tile and raise a fault signal

if the first and second fragment-processed outputs do not match.

The graphics processing unit may be configured to write each first fragment-processed output
and each single fragment processed output to a data store, and to prevent each second

fragment-processed output being written to the data store.

The graphics processing unit may comprise a plurality of processing units, including: a first
processing unit configured to perform the first time fragment processing for each protected tile;
and a second processing unit configured to perform the second time fragment processing for

each protected tile.

The graphics processing unit may be configured to process each non-protected tile at any of

the plurality of processing units.

The graphics processing unit may comprise three or more processing units and may be
configured to process each non-protected tile at any of the plurality of processing units not

including the first and second processing units.

According to a second aspect of the invention, there is provided a method of performing tile-
based rendering of a scene that includes safety-critical elements, the method comprising:
receiving data relating to protected tiles that include safety-critical elements and data relating
to non-protected tiles that do not include safety-critical elements; in a fragment processing
phase: processing each protected tile first and second times so as to, respectively, generate
first and second fragment processed outputs; and processing each non-protected tile a single

time so as to generate a respective single fragment processed output; and comparing the first

16 07 20

and second fragment processed outputs and raising a fault signal if the first and second

fragment processed outputs do not match.

10

15

20

25

30

The graphics processing system and/or graphics processing unit may be embodied in
hardware on an integrated circuit. There may be provided a method of manufacturing, at an
integrated circuit manufacturing system, the graphics processing system and/or graphics
processing unit. There may be provided an integrated circuit definition dataset that, when
processed in an integrated circuit manufacturing system, configures the system to manufacture
the graphics processing system and/or graphics processing unit. There may be provided a
non-transitory computer readable storage medium having stored thereon a computer readable
description of an integrated circuit that, when processed in an integrated circuit manufacturing
system, causes the integrated circuit manufacturing system to manufacture the graphics

processing system and/or graphics processing unit.

There may be provided an integrated circuit manufacturing system comprising: a non-transitory
computer readable storage medium having stored thereon a computer readable integrated
circuit description that describes the graphics processing system and/or graphics processing
unit; a layout processing system configured to process the integrated circuit description so as
to generate a circuit layout description of an integrated circuit embodying the graphics
processing system and/or graphics processing unit; and an integrated circuit generation
system configured to manufacture the graphics processing system and/or graphics processing

unit according to the circuit layout description.

There may be provided computer program code for performing a method as described herein.
There may be provided non-transitory computer readable storage medium having stored
thereon computer readable instructions that, when executed at a computer system, cause the

computer system to perform the methods as described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described by way of example with reference to the accompanying
drawings. In the drawings:

Figure 1 shows a conventional dual lockstep processor.

Figure 2 shows a computer-generated instrument cluster for a vehicle.

Figure 3 shows a graphics processing system configured in accordance with the

principles described herein.

10

15

20

25

30

35

Figure 4 is a schematic diagram illustrating the operation of a graphics processing
system configured in accordance with the principles described herein.

Figure 5 shows a data processing system comprising a graphics processing system
configured in accordance with the principles described herein.

Figure 6 is a flowchart illustrating the operation of a graphics processing system
configured in accordance with the principles described herein.

Figure 7 is a schematic diagram of an integrated circuit manufacturing system.

DETAILED DESCRIPTION

The following description is presented by way of example to enable a person skilled in the art
to make and use the invention. The present invention is not limited to the embodiments
described herein and various modifications to the disclosed embodiments will be apparent to

those skilled in the art. Embodiments are described by way of example only.

The present disclosure relates to a graphics processing system comprising one or more
processing units for performing tile-based rendering of a scene. A graphics processing system
configured in accordance with the principles herein may have any tile-based architecture — for
example, the system could be operable to perform tile based deferred rendering. Each
processing unit may be able to process a tile independently of any other processing unit. The
processing units may be, for example, any kind of graphical and/or vector and/or stream
processing units. Each processing unit may comprise a rendering pipeline for performing
geometry processing and/or fragment processing of primitives of a scene. Each processing

unit may be a different physical core of a GPU.

A tile may be any portion of a frame which is to be rendered at a graphics processing system.
A frame may be all or part of an image or video frame. A processing unit may be configured
to perform part or all of any aspect of graphics processing, including, for example, tiling,
geometry processing, texture mapping, shading, depth processing, vertex processing, tile
acceleration, clipping, culling, primitive assembly, colour processing, stencil processing, anti-
aliasing, ray tracing, pixelization and tessellation. Different processing units may be configured
to perform different aspects of rendering. In some examples, all of the processing units may

be identical.

10

15

20

25

30

35

In general, a fragment processing engine includes those parts of a graphics processing system
which are arranged to collectively or individually perform fragment processing. A fragment
processing engine may comprise one or more functional units arranged in any manner as
appropriate to the particular architecture of the graphics processing system. In general, a
geometry engine includes those parts of a graphics processing system which are arranged to
collectively or individually perform geometry processing, including tiling. A geometry engine
may comprise one or more functional units arranged in any manner as appropriate to the
particular architecture of the graphics processing system. Parts of a graphics processing
system may be shared between its fragment processing engine and its geometry engine. The
configuration of geometry units, tiling engines and processing units described herein and
shown in the figures is provided by way of example and it will be appreciated that different
configurations of the geometry units, tiling engines and processing units may be adopted in

other architectures.

A graphics processing system configured in accordance with the principles described herein
may be arranged to render any kind of scene. In some applications it is necessary to protect
the rendering of a scene such that faults in the rendering process can be identified and suitable
action taken. For example, in the automotive context, graphics processing systems may be
used to render an instrument cluster for display at a dashboard display screen. The instrument
cluster provides critical information to the driver, such as vehicle speed and details of any
vehicle faults. It is important that such critical information is reliably presented to the driver
and vehicle regulations would typically require that the critical information is rendered
according to a predefined safety level, such as ASIL B of the ISO 26262 standard. The
instrument cluster may additionally provide non-critical information such as the time and which

radio station is selected.

Figure 2 illustrates an instrument cluster 200 for rendering at a graphics processing system
which will be referred to in the examples described herein. The instrument cluster comprises
a speedometer 202 in the form of a traditional dial having speed values 208 around the edge
of the dial and a needle 207 whose angular orientation indicates the current speed of the
vehicle. The instrument cluster further comprises an oil temperature gauge 203, an information
icon 204 (e.g. indicating the selected radio station), a non-critical warning icon 205 (e.qg.
indicating a fault with the air conditioning system), and a critical warning icon 206 (e.qg.

indicating a serious engine problem).

10

15

20

25

30

35

Only the speedometer 202 and the critical warning icon 206 of the display elements are critical
to the safety of the vehicle and its occupants. It may be necessary to render those display
elements in a manner which satisfies a mandated safety level, such as ASIL B of the ISO
26262 standard. The oil temperature gauge 203, information icon 204 and non-critical warning
icon 205 do not need to be rendered to that safety level. One or more of the display elements
202 to 208 and/or a background to the display elements may require three-dimensional
rendering. For example, the display elements could overlay a map illustrating the location of
the vehicle and/or video feeds from one or more vehicle cameras.

The rendering space used to render the frame representing the rendered instrument cluster is
divided into a plurality of tiles 201 each comprising a plurality of pixels. Only the highlighted
tiles 209 include the critical display elements in that at least part of a critical display elements
overlaps with each of the highlighted tiles. The highlighted tiles 209 are an example of the

protected tiles discussed in more detail below.

A graphics processing system configured in accordance with the principles described herein
is shown in Figure 3 in the form of a graphics processing unit (GPU) 300. The GPU 300 is
suitable for rendering the instrument cluster 200 shown in Figure 2. The operation of the GPU
will be described with reference to the exemplary flowchart shown in Figure 6. The GPU 300
comprises a plurality of processing units 301, labelled in the figure as PUO to PU(n). Only two
processing units 303 and 304 are shown in Figure 3 but typically there would be more. In
general the GPU 300 may have any suitable architecture for performing tile-based rendering.
In the example shown in Figure 3, the GPU comprises a system portion 302 having various
functional elements to, for example, process tiles and other data, communicate with external
devices such as CPU 305 and memory 306, store data and support the processing performed

at the processing units 301.

In Figure 3, the system portion 302 comprises a 3D data manager 307 for controlling the three-
dimensional rendering of tiles at the processing units 301 and a 2D data manager 308 for
controlling the two-dimensional rendering of tiles. The system portion 302 further comprises
firmware 309 which may, for example, perform low-level management of the GPU and provide
an interface for control messages directed to the GPU. The operation of such units will vary
depending on the particular architecture of the GPU. A data bus 318 may be provided over

which the elements of the GPU and its processing units communicate.

10

15

20

25

30

35

10

A cache 311 may be provided at the GPU for receiving tiles for processing at the processing
units 301 and/or receiving processed data from the processing units. In some examples, the
cache may cache the contents of memory 306. Memory 306 may comprise a parameter buffer
312 into which the output of geometry processing (such as transformed geometry and tile lists)

may be written for subsequent use when performing fragment processing.

Each of the plurality of processing units 301 may comprise a geometry unit 319 and a fragment
processor 320. In some examples, geometry unit 319 and fragment processor 320 may share
common hardware elements, e.g. arithmetic logic units (ALUs), which can be allocated to
either geometry or fragment processing as required. The geometry unit is configured to
process geometry data submitted 601 to the GPU. The geometry data represents the elements
of a scene to be rendered. The geometry data may comprise, for example, one or more of:
primitives to be rendered, vertex data describing geometric shapes in the scene, and objects
to be rendered. An element of a scene may be one or more of. one or more primitives, vertex
data relating to one or more geometric shapes (e.g. vertex data identifying coordinates of the
vertices of one or more geometric shapes), and an object. For example, the geometry data
may comprise a set of primitives representing the display elements of the instrument cluster
shown in Figure 2. Each primitive may be created by means of a suitable draw call from a
software process arranged to generate the instrument cluster. A primitive may be a
fundamental geometric shape from which the objects or other parts of a scene may be

constructed. A primitive may be, for example, a triangle, a line, or a point.

In some examples, some aspects geometry processing may be performed at parts of the GPU
other than the geometry unit 319. For example, geometry processing may be performed in
part at fragment processor 320 — e.g. vertex shading may be performed at a shader core 321.
In some examples tiling may be performed at a tiling engine 310, as is described below. In
some examples, some aspects of fragment processing may be performed at parts of the GPU

other than the fragment processor 320.

Geometry data (e.g. as generated in response to draw calls from a software process) may be
held in memory 306 and read into cache 311 from the memory for processing at a processing
unit. Each processing unit may comprise a data cache 324 for holding data to be processed
at that processing unit and/or to receive the processed data generated at that processing unit.
Geometry data for processing at a processing unit may be read into the data cache 324 of that

processing unit.

10

15

20

25

30

35

1

The geometry unit 319 is configured to transform the geometry data describing the elements
of a scene so as to form processed geometry data representing the scene from the point of
view of the frame to be rendered. The processed geometry data may comprise transformed
vertex data defining the primitives of the scene. The geometry unit may perform any suitable
processing on the geometry data, including, for example, vertex processing (e.g. vertex

shading), clipping, projection, culling and tiling.

In general, the processed geometry data may be generated at any part of the graphics
processing system: for example, at a geometry unit of the same processing unit at which
fragment processing is performed, at a geometry unit of a different processing unit to the
processing unit at which fragment processing is performed, or at a geometry unit located

elsewhere (for example, at system portion 312 of the GPU or in software).

The geometry unit performs at least part of a geometry phase of the process of rendering a
scene at the graphics processing system. The geometry phase also comprises tiling: that is,
identifying which elements of the scene fall within each tile of the frame to be rendered. Tiling
may comprise generating for each tile a list of the elements (e.g. primitives) that fall within that

tile.

In the example shown in Figure 3, tiling is performed at tiling engines 310. Each tiling engine
may be configured to operate on the processed geometry data received from a geometry unit
319 so as to identify which elements are included in each tile of the frame to be rendered. In
some examples, the tiling of the processed geometry data into tiles may be performed at the
geometry unit 319 or at any other part of the graphics processing system. Tiling may be
performed according to any suitable algorithm — for example, using perfect tiling, a bounding
box approach or a hierarchical tiling approach. Many such algorithms are known and will not
be discussed further herein. A tile may be considered to include an element of a scene when
any part of that element is calculated by the tiling algorithm to overlap with any part of the area
of the tile — for example, when an element overlaps with all or part of any of the pixels of the

tile.

Processed geometry data (e.g. transformed vertex data) for the scene as a whole may be
stored. Furthermore, for each tile of the frame to be rendered, a list of the elements (e.g. the

primitives) that overlap with that tile may also be stored. In this manner the list of elements

10

15

20

25

30

35

12

may refer to the transformed elements in the processed geometry data for the scene, avoiding
duplicating storage of processed geometry data for such elements (e.g. due to elements of the
scene overlapping more than one tile). In other examples, some or all of the processed
geometry data required to perform fragment processing of each tile may be stored separately
for each tile. “Tiles” may be submitted to processing units for fragment processing, in the
sense that the output of the geometry phase in respect of a given tile of a frame to be rendered

may be submitted to the processing units for fragment processing.

The processed data from the geometry phase (e.g. from the geometry unit 319 and/or tiling
engines 310) may be stored at any suitable location for subsequent use in the fragment
processing phase. For example, the output of geometry processing (such as transformed
vertex data and tile lists) may be stored at memory 306 (e.g. at a parameter buffer 312) and
may be accessed through cache 311. In some examples the processed data from the

geometry phase may be held at a processing unit 301, such as at data cache 324.

Geometry processing is performed in respect of a complete frame to be rendered and not
performed on a tile-by-tile basis. This is because until the geometry is processed it is not
known, for example, where the elements of the scene are located in relation to the tiles of the
frame to be rendered, the apparent size of the elements, and whether those elements are

visible.

In some examples, the geometry unit 319 may be provided at a different processing unit to the
fragment processor 320. The number of geometry units may differ from the number of
fragment processors at the GPU. In some examples the graphics processing system may
comprise a single geometry unit configured to repeat geometry processing in the manner

described below.

Each fragment processor 320 is configured to perform fragment processing in a tile-based
manner on the processed geometry data generated by geometry unit 319. For example, each
fragment processor of the graphics processing system may be arranged to receive processed
geometry data for one tile at a time. Since the GPU comprises a plurality of fragment
processors (e.g. the fragment processors at processing units 303 and 304), different fragment
processors may be arranged to concurrently perform fragment processing in respect of
different tiles. The processed data from the geometry phase for a given tile may be provided

in any suitable form. For example, the processed data from the geometry phase for a given

10

15

20

25

30

35

13

tile may comprise: the list of elements for that tile and the transformed geometry data
describing each of those elements, or the transformed geometry data for each of the elements

identified in the list of elements for that tile.

Tiles may be allocated to processing units for fragment processing in any suitable manner.
For example, the fragment processors of the plurality of processing units may be configured
to collectively work through the tiles of a frame by arranging that, one tile at a time, each
processing unit reads into its data cache 324 the processed geometry data for a tile from

parameter buffer 312 at cache 311.

The fragment processor may be configured to perform any suitable processing on the
processed geometry data of a tile. For example, the fragment processor may perform one or
more of: texture processing, shader processing, rasterization, hidden surface removal, and
alpha processing. The fragment processor may comprise one or more units (e.g. arranged in
a pipeline) for performing different aspects of the fragment processing. For example, as shown
in Figure 3, the fragment processor may comprise a shader core 321 for performing shader
processing and hidden surface removal, a rasteriser 322 for performing rasterization, and a
texture unit 323 for performing texture processing. More than one of a given type of unit may
be provided at the fragment processor pipeline — for example, in the example shown in Figure
3, two shader cores are provided. Shader processing typically represents a substantial
proportion of the fragment processing and can be readily distributed over a plurality of shader

cores.

The processing unit at which each fragment processor is provided may comprise a data cache
324 for holding data associated with the processing performed by the fragment processor. The
output of calculations performed during fragment processing may be written to one or more
buffers — for example, one or more of: a colour buffer for storing colour values (e.g. of pixels),
a depth buffer for storing depth values (e.g. of pixels) and a stencil buffer for storing an
indication as to which parts (e.g. pixels) of a tile are to be rendered. Such buffers may be
maintained in any manner appropriate to the GPU architecture, including at one or more of
system memory 306, GPU cache 311, and processing unit data cache 324. The use of such

buffers is well known in the art and will not be discussed in detail here.

The tile-based deferred rendering architecture illustrated in Figure 3 is merely an example. In

general the processing unit and the GPU may have any tile-based rendering architecture.

10

15

20

25

30

35

14

A graphics processing system configured in accordance with the principles of the present
disclosure is operable to render frames that include safety critical display elements, such as
the instrument cluster of Figure 2. This will now be described by way of example with reference
to the GPU shown in Figure 3.

The geometry data received for processing at the geometry unit 319 may comprise elements
(e.g. objects, primitives or other parts of a scene to be rendered) which are safety critical.
Safety critical elements may be identified in the geometry data in any suitable manner. For
example, vertex data which geometrically describes one or more primitives making up an
object in a scene may comprise an identifier indicating whether or not those primitives are

safety critical and are to be rendered accordingly.

A typical arrangement of a GPU at a data processing system is illustrated in Figure 5, in which
GPU 300 is shown in hardware 502 along with a memory 306 and a CPU 305. The GPU, CPU
and memory may be arranged to communicate over a data bus 503. The data processing
system comprises a software environment 501 which comprises one or more processes 505
and a driver 504 for the GPU. The driver provides an application programming interface (API)
506 arranged to receive draw calls from a process 505 so as to cause the GPU to render a
scene to a display screen 507. For example, the APl may be an OpenGL API and the process
may be a software controller of the instrument cluster shown in Figure 2 that is arranged to
issue OpenGL draw calls so as to cause the GPU to render the instrument cluster to a display

screen at the dashboard of a vehicle.

The source of the geometry data defining the scene to be rendered can identify which elements
of the scene are safety critical. For example, a mechanism may be provided to enable a
process to identify that a draw call or a group of one or more draw calls relates to a safety
critical element. In the OpenGL framework, for example, the API calls g/Enable() and
glDisable() may be used to set a state bit for a draw call which indicates whether or not the
draw call relates to a safety critical element. Suitable mechanisms may be provided at the
driver (e.g. as a function of the driver which can be called by a process) or more generally at
any combination of software, firmware and hardware. Such mechanisms can allow an
application developer to control which parts of a scene are safety critical and so— in the manner

which will now be described — which tiles of the frame to be rendered are to be protected.

10

15

20

25

30

35

15

In general the safety critical elements may be identified in any suitable manner, including, for
example, by providing one or more identifiers with geometry data defining those elements (e.g.
as one or more flags or as control messages with the data) and/or by means of a data structure
(e.g. a lookup table) identifying which elements of the geometry data are safety critical and/or

which elements of the geometry data are not safety critical.

A graphics processing system configured in accordance with the principles set out herein is
configured to identify in the geometry phase which tiles of a frame to be rendered include safety
critical elements. Such tiles may be referred to as protected tiles. Protected tiles may be
processed at the graphics processing system in order to satisfy a predefined safety level. The
identification of protected tiles may be performed during tiling. For example, on identifying
which elements overlap with a given tile, if any of those elements are safety critical elements,
that tile may be identified as being a protected tile. A protected tile may be marked in the
graphics processing system in any suitable manner. For example, a protected tile may be
identified by one or more of: an identifier (e.g. a flag) set in data output by the geometry phase
(e.g. in the list of elements relating to that tile, or in a header structure relating to the list); a
parameter in a control stream associated with a geometry data for a tile; and a data structure

(e.g. a lookup table) identifying whether each tile of a frame is to be protected.

By identifying in the geometry phase which tiles include safety critical elements and providing
that information with the processed geometry data for fragment processing, a graphics
processing system configured in accordance with the principles described herein may be
operable to process both protected tiles which include safety-critical elements and non-
protected tiles which do not include safety-critical elements and which therefore do not need
protected rendering. Each processing unit of the system may be arranged to process any
given task independently of any other processing unit, allowing different processing units to
process different tasks. In some examples, fragment processing of both protected and non-
protected tiles may be concurrently processed at different processing units of the system. In
some examples, fragment processing of both protected and non-protected tiles may be

performed at the same processing unit.

The protected rendering performed by a graphics processing system configured in accordance
with the principles set out herein will now be described in more detail with reference to Figure 4
which schematically illustrates the rendering performed by GPU 300 by way of example and

the flowchart shown in Figure 6 which illustrates the operation of the GPU by way of example.

10

15

20

25

30

16

Figure 4(a) illustrates the geometry phase, Figure 4(b) illustrates the fragment processing
phase and Figure 4(c) the rendered tiles formed as the output of the rendering process in the

event that faults do not occur during geometry or fragment processing.

Redundant fragment processing

The graphics processing system is configured to perform fragment processing at least twice
on each protected tile and to compare the outputs of those passes to check that they match.
If the outputs of the two fragment processing passes do not match, a fault signal may be raised
to indicate that a fault has occurred. By performing such redundant processing, a graphics
processing system configured in accordance with the principles described herein may be
arranged to meet a required safety level in respect of its processing of protected tiles. The
processing units configured to perform each processing pass of a protected tile may or may
not be the same processing unit, depending on the particular implementation. Each
processing pass of a given protected tile may or may not be processed concurrently with one

or more other passes.

Any suitable approach may be used for distributing tiles to processing units for fragment
processing and arranging that fragment processing is performed at least twice for protected
tiles. In general, the GPU may have any kind of architecture and may utilise any scheme for
distributing tiles to processing units. Fragment processing is performed once at a single
processing unit for tiles which are not identified as being protected tiles (i.e. non-protected

tiles).

In some examples, a GPU may be configured to designate one or more of its processing units
as mission processing units and one or more of its processing units as safety processing units.
Each mission processing unit may have a respective safety processing unit such that a
protected tile is submitted to a mission processing unit and its respective safety processing
unit. A graphics processing unit may be configured to designate mission and safety processing
units — for example, on initialisation of the GPU (e.g. a software driver for the GPU may perform
such designations) and/or dynamically at run-time in response to being arranged to render one
or more new frames and/or tiles. The number of mission processing units may differ from the
number of safety processing units designated at a GPU. In the examples shown in Figures 3

and 4, processing unit 303 is designated a mission processing unit and processing unit 304 is

10

15

20

25

30

35

17

designated a safety processing unit for the purposes of performing fragment processing for a

particular tile.

Once the geometry processing phase has completed, tiles may be submitted to the processing
units for fragment processing. A protected tile (e.g. a tile which has an identifier set indicating
that it is a protected tile which includes one or more safety critical elements) may be submitted
to both mission and safety processing units (e.g. both of processing units 303 and 304) for
processing — see 612, 614 in Figure 6. A regular tile (e.g. a tile which does not have an
identifier set because it does not include any safety critical elements) may be submitted to any

of the processing units (e.g. either of processing units 303 and 304).

Tiles may be allocated to processing units for fragment processing by a component of the
GPU. For example, for 3D workloads, the 3D data manager 307 may be configured to allocate
tiles to processing units: on encountering a protected tile, the 3D data manager may allocate
that tile to two processing units for fragment processing (e.g. both mission and safety
processing units); on encountering a tile which is not identified as protected, the 3D data
manager may allocate that tile to any one processing unit for fragment processing (e.g. either
the mission or the safety processing unit). In some examples, the processed geometry data

(e.g. transformed vertex data) making up a tile may be read from parameter buffer 312.

In some examples, the GPU may be configured to distribute tiles to processing units for
fragment processing in dependence on the ability of processing units to process those tiles.
For example, each processing unit may retrieve tiles for processing from parameter buffer 312
when the processing unit becomes able to receive a new tile for processing (e.g. on completing
processing its current tile). This is illustrated by arrow 401 in Figure 4 which represents
geometry data being provided from the geometry phase to the highlighted fragment processors
320 for fragment processing. In some examples, tiles could be processed for a first time at
any processing unit of the plurality of units and processed for a second (or further) time at any
processing unit of the plurality of units. This means that tiles (whether on the first or a further
pass) can be dynamically allocated to processing units so as to efficiently spread the

processing load and avoid a situation in which processing units become idle unnecessarily.

In some examples, the graphics processing system may be configured such that protected
tiles and non-protected tiles cannot be processed at the same processing unit. This can help

avoid faults which occur when processing non-protected tiles from corrupting or stalling the

10

15

20

25

30

18

processing performed on protected tiles. For example, the graphics processing system may
be configured such that a processing unit designated for performing fragment processing of
protected tiles may be prohibited from performing fragment processing of non-protected tiles.
In some examples, a subset of the total number of processing units at the graphics processing
system may be designated for processing protected tiles and a different subset of graphics

processing units may be designated for processing non-protected tiles.

Protected tiles may be submitted concurrently to different processing units for fragment
processing — for example, in the manner illustrated in Figure 4. Such an arrangement can help
to reduce the read bandwidth consumed in reading from memory textures and other data that
may be required during fragment processing. Such an arrangement can also offer protection
over permanent faults specific to a given processing unit whilst still maintaining protection over
transients due to the natural variation in time at which different processing units perform the
same fragment processing calculation. This is because such data is likely to be available at a
cache of the GPU (e.g. cache 311) for both fragment processing passes, avoiding the need to
re-fetch that data from memory (e.g. memory 306). Note that, generally, the fragment
processing performed at different processing units need not be synchronised: it is typically
sufficient that different fragment processing passes of a tile occur closely enough in time that
the required data is still available at the cache when the subsequent processing pass is
performed. The likelihood of the required data being available may be controlled through

appropriate choice of the size of the cache.

The output from each processing unit configured to perform fragment processing on a
protected tile is compared to check whether those outputs match. The output data which is
provided to the check unit from the processing units arranged to process a given protected tile
may comprise writes to one or more buffers, such as one or more of a colour buffer, a stencil
buffer and a depth buffer. In some examples, the output data provided to the check unit may
be an intermediate or final rendered output for a tile. Checking the complete output of fragment
processing performed in respect of a protected tile maximises the likelihood of capturing faults
that occur during fragment processing and can help the GPU to achieve a high safety level. In
other examples, the check unit may be configured to accumulate data relating to the outputs
of fragment processing for all protected tiles in a frame, and to perform a comparison check

on a per-frame rather than a per-tile basis.

10

15

20

25

30

35

19

In some examples, the fragment processors 320 are arranged to maintain one or more buffers
to which the output of fragment processing calculations are written. For example, the fragment
processors may maintain one or more of a colour buffer, a stencil buffer and a depth buffer.
Such buffers may be held at the data cache 324 of the processing unit at which the fragment
processing is performed. In some examples, the outputs of the processing units in the

fragment processing phase are the writes to its respective buffers.

In Figure 3, a filter 313 is provided to appropriately direct the outputs of the processing units.
The filter is shown coupled to data bus 318 over which, in the example shown in Figure 3, the
various units of the GPU communicate. It will be appreciated that the filter shown in the figure
is schematic and the direction of data around the GPU may be performed in many different
ways, depending on the architecture of the GPU. In general, the flow of data around the GPU

may be performed in any suitable manner and by any one or more units of the GPU.

On receiving output data from processing units in respect of a protected tile, the filter is
configured to direct that output data to a check unit 314. The check unit is configured to
compare the output data from different fragment processing passes of the same protected tile.
The output data may be from the same or different processing units. In some examples, the
output data formed in respect of a given protected tile is received from mission and safety
processing units designated in the manner described above. In some examples, the output
data from a processing unit arranged to perform fragment processing on a tile comprises the

set of writes to one or more of its buffers (e.g. colour and/or stencil and/or depth buffers).

The output of the fragment processing phase may be a rendered tile suitable for writing to a
frame buffer, potentially subject to one or more further processing steps (e.g. stitching and/or
blending tiles together to create a seamless output frame). An example is shown in Figure
4(c) of the protected rendered tiles 403 output by the fragment processing phase in respect of
GPU 300 when applied to render the instrument cluster 200 of Figure 2. The rendered tiles

may be written to memory 306 (e.g. to a frame buffer).

In some examples, the check unit 314 is configured to directly compare the output data
received from different fragment processing passes of the same protected tile — for instance,
the check unit may stream the output data (e.g. buffer writes) from different passes and directly
compare the data (e.g. at a bit, byte, word, or any other suitable level). The comparison of the

output streams may be performed at a fault detection unit 316 of the check unit 314. One or

10

15

20

25

30

35

20

more buffers may be provided at the check unit or elsewhere at the GPU in order to enable the
check unit to compensate for a time offset between the output data streams received at the
check unit (e.g. due to the fragment processing at one processing unit being ahead of the
fragment processing at another processing unit or a single processing unit being configured to

sequentially process a protected tile first and second times).

In some examples, the check unit 314 is configured to, for each fragment processing pass,
form one or more signatures which are characteristic of the output data received from the
respective processing unit. The check unit may be configured to form such signatures in any
suitable manner. In some examples, the check unit is configured to form a signature over the
complete output from a processing unit once fragment processing has been completed at that

processing unit.

In some examples, the check unit is configured to form a signature over output data from a
processing unit arranged to perform fragment processing of a protected tile. For example, the
check unit may be configured to form a signature over sets of one or more writes by a fragment
processor to its buffers — see 613 and 615 in Figure 6. For example, each time a fragment
processor writes to one of its colour, depth or stencil buffers, that write may be passed to the
check unit 314 (e.g. by means of filter 313) for the check unit to generate a signature in respect
of that write. One or more writes could be batched together for submission to the check unit
with the check unit being configured to generate a signature over the writes of a batch. The
signatures formed over the writes by a fragment processor to its buffers may be accumulated
at data store 315. Signatures may be associated at the data store with information
representing the protected tile to which the signature relates (e.g. an identifier or coordinate of
the tile) and the buffer to which the signature relates (e.g. which of the colour, stencil and depth
buffers the write was directed to in respect of which the signature was formed). Since the
content of the buffers written to during fragment processing are representative of the fragment
processing performed by the respective processing unit, the total set of signatures formed over
the writes to the buffers made during fragment processing is representative of the complete

processed output from that processing unit.

The check unit is configured to compare 616 the signatures formed in respect of each fragment
processing pass for a tile so as to verify that the fragment processing performed in each pass
is in agreement. A signature generated for a processing pass may be stored at data store 315

for subsequent use (e.g. comparison with the signature of another pass in respect of the same

10

15

20

25

30

35

21

protected tile). A fault detection unit 316 may be configured to perform the comparison of
signatures — for example, by comparing signatures held at the data store 315. The check unit
may perform, for example, a checksum, a CRC, a hash or a fingerprint calculation on the output
data. A signature provides an expression of the processing performed on a protected tile by
a processing unit in a more compact form than the output data from that processing unit itself
so as to facilitate comparison of the output data provided on different fragment processing
passes. For example, a signature may provide a compact expression of the data written to a
buffer during fragment processing. A fault detection unit 316 of the check unit 314 is configured
to compare the signatures formed at the check unit in respect of a given protected tile. The
comparison of signatures could be performed at any suitable level of granularity — for example,

at a bit, byte, word level.

The fault detection unit 316 may be configured to begin comparing signature data formed in
respect of a given pair of fragment processing passes before fragment processing completes
for at least one of the pair of passes. This can allow a fault signal to be raised as early as
possible and enable, for example, the respective fragment processing passes to be abandoned
(and potentially restarted), minimising wasted processing at the GPU. In examples where each
signature is formed in respect of one or more writes to a buffer, the fault detection unit 316
may be arranged to compare the corresponding signatures stored at the data store 315 from
different processing passes of the same protected tile (and potentially the same buffer). Such
processing passes may be being performed concurrently at a pair of processing units (e.qg.
mission and safety processing units) of the GPU. Signatures may be stored sequentially at
the data store 315 for each processing pass of a protected tile so as to facilitate comparison

of the signatures for corresponding buffer write operations at the fault detection unit.

In some examples, the check unit may be arranged to compare the output from processing
units in respect of different fragment processing passes of the same protected tile only once
processing of all of the protected tiles of a frame has completed. For instance, the check unit
may be configured to generate signatures for fragment processed data in accordance with any
of the approaches described herein and to accumulate those signatures at data store 315.
Once all of the signatures are available for all of the protected tiles of a frame, the check unit
314 may be configured to perform a comparison between pairs of corresponding signatures at
its fault detection unit 316 and, if any of the signatures do not match, raise a fault in respect of

the frame as a whole.

10

15

20

25

30

35

22

The check unit may comprise a plurality of check unit instances — for example, each check unit
instance may be configured to receive output data from a different subset of processing units
of the GPU. Preferably the check unit additionally operates on memory addresses and/or
control data comprised in the output from the processing unit — this can help the validation

operations described herein to identify a wider range of faults.

The fault detection unit 316 is configured to raise 619 a fault signal 317 on determining that
the fragment processing performed on different passes of the same protected tile do not match
618. As described, such comparison could be, for example, by comparing the fragment
processed outputs directly and/or by comparing signatures characteristic of fragment
processed outputs. A fault could potentially lead to a safety violation at the GPU. For example,
a fault in rendering any of the protected tiles 209 of the instrument cluster shown in Figure 2
could cause corruption of safety critical elements of the instrument cluster, such as the

speedometer.

The fault signal 317 may be provided in any suitable manner. The fault signal may be provided
as an output of the GPU 300. The fault signal may be, for example, one or more of: control
data; data written out to memory 306; and data written to a register or memory of the GPU or
a system to which the GPU is connected. A fault signal indicates that the processed outputs
from different passes of the same protected tile are not the same and therefore the processed
output from one or more of the processing unit(s) that generated those processed outputs is
invalid. The outputs of processing unit(s) configured to process the same protected tile may
differ due to transient events such as ionizing radiation or voltage spikes, or permanent errors

due to bugs in some combination of hardware, software and firmware.

The fault detection unit 316 is for comparing output data generated on different passes of the
same protected tile. Two or more processing units may be arranged to process the same
protected tile. The processing performed on different passes may or may not be concurrent.
If two processing passes are performed at two different processing units, comparing the output
data generated by those processing units indicates whether the processing performed by the
pair of processing units is in agreement: a fault signal indicates that a fault occurred at one of

the processing units but does not indicate which unit experienced the fault.

If a group of three or more processing units are arranged to process the same protected tile,

comparing the output data from those processing units indicates whether the processing

10

15

20

25

30

35

23

performed by the processing units is in agreement. When the processed output of one of the
group of processing units does not match the output of the other two processing units, the fault
signal indicates that a fault occurred at one of the processing units of the group and it can
further indicate at which one of the processing units of the group the fault occurred. This is
because the fault can be assumed to have occurred at the processing unit whose output does

not match the outputs from the two or more other processing units.

If the outputs from different fragment processing passes of the same tile do match, then the
rendered tile generated at the graphics processing system may be considered valid and used
in a manner appropriate to the application (e.g. in the example of Figure 2, the rendered tile
data may be part of instrument console 200). If the outputs from different fragment processing
passes of the same tile do match then no fault signal may be raised or, in some examples, a

signal may be raised indicating that the outputs do match.

The fault signal may be any kind of indication that a fault has occurred, including, for example,
one or more of a control message, an interrupt, a flag in control data, one or more bits set at a

register, and a data packet.

The graphics processing system may be configured to write out to external memory 306 (e.g.
to a frame buffer) one or more of the processed outputs generated at the processing unit(s) in
respect of each protected tile. The outputs generated in respect of a protected tile may be
written out from only one of the processing passes performed for that tile so as to minimise the
memory bandwidth consumed. In some examples, the filter 313 is configured to cause the
processed outputs generated at the mission processing unit (e.g. writes to colour, stencil and
depth buffers) to be written out to memory 617 and to cause the processed output generated
at the safety processing unit not to be written out to memory. This is illustrated in Figure 4 in
which arrow 402 represents mission processing unit 303 writing data to memory 306 so as to

form the rendered output tiles 403.

In some examples, the filter 313 is configured to cause the first available processed output
(e.g. a write to a colour, stencil or depth buffer) from a processing unit in respect of a given
protected tile to be written out to memory. In this way the rendered output is available sooner
to a data processing system at which the GPU is located. In general, all or any one or more
of the processed tile output data from processing units arranged to process a given protected

tile may be written out to memory 306.

10

15

20

25

30

35

24

Should the fault detection unit determine that a rendered tile written out to external memory (or
in a cache for writing to external memory) is invalid then the graphics processing system may

be configured to cause that rendered tile to be discarded and/or marked as invalid.

Once fragment processing has completed for a given protected tile, the rendered tile output
(e.g. at memory 306) may be available for use 620 as appropriate to the application. In the
example that GPU 300 is configured to render instrument cluster 200, completed rendered

tiles may be written to the physical display at which the instrument cluster is provided.

One approach to performing protected rendering is to render the entire scene twice and check
that the rendered outputs match — for example, as might be performed at a pair of GPUs
arranged in the dual lockstep configuration illustrated in Figure 1. However, in many
applications of a GPU, not all of the elements in a scene will be safety critical. For example,
in Figure 2 only around 40% of the tiles representing the rendered instrument cluster include
safety critical elements. The present disclosure provides an efficient approach to protected
rendering in which fragment processing is duplicated only for protected tiles which have been
identified in the geometry phase as including safety-critical elements. Since fragment
processing typically dominates the rendering performance of a GPU, the present approach
can provide substantial performance benefits over conventional systems such as dual lockstep
processors in which both processing cores must necessarily both perform the same rendering
operations, even if those operations do not relate to safety-critical elements of a scene. A
lockstep processor suffers from the problem that its two (or more) cores are locked together
and cannot be individually utilised, leading to an inflexible 100% chip area cost in respect of

every frame processed.

Redundant geometry processing

Errors in geometry calculations — even those which relate to non-safety critical elements of a
scene — could cause elements to be written to protected tiles of a frame to be rendered. For
example, with reference to Figure 2, errors in geometry calculations relating to information icon
204 could cause the icon to be incorrectly rendered across one or more of the protected tiles
209, obscuring safety-critical elements of the instrument cluster. The geometry phase of
rendering a frame which includes any safety critical elements is therefore performed at least

twice at the graphics processing system and the outputs of each pass is compared to check

10

15

20

25

30

35

25

that the geometry calculations are in agreement. If the outputs of geometry processing passes
do not match, a fault signal may be raised to indicate that a fault has occurred. Such redundant
geometry calculations may be performed according to any of the approaches described above
for redundantly performing fragment processing. By performing redundant processing, a
graphics processing system configured in accordance with the principles described herein may

be arranged to meet a required safety level in respect of its processing of protected tiles.

The geometry unit configured to perform each geometry processing pass may or may not be
the same geometry unit, depending on the particular implementation. For example, a
geometry unit 319 may repeat processing of geometry data. This can be acceptable because
typically fragment processing dominates over geometry processing in terms of the processing
time required and in some architectures this can reduce data transfer at the GPU - e.g. in
processing unit 301 the geometry data to be processed at geometry unit 319 may be
maintained at the data cache 324 for re-use on the second pass thereby avoiding reading the
geometry data from the cache 311 for a second time. However, repeating geometry
processing at the same logic will not reveal some permanent errors which would simply be

repeated on the second pass.

However, as described above different geometry processing passes for a frame may be
performed at different geometry units. Such an arrangement can offer protection over
permanent faults specific to a given geometry unit whilst still maintaining protection over
transients due to the natural variation in time at which different geometry units perform the
same geometry calculation. Each geometry processing pass for a given frame may or may

not be processed concurrently with one or more other passes for that frame.

Any suitable approach may be used for distributing geometry data to geometry units for
processing. In general, the GPU may have any kind of architecture and may utilise any scheme
for distributing geometry data to geometry units. A check as to whether a scene includes any
safety critical elements can be performed. Such a check could be performed anywhere at the
graphics processing system. For example, its driver may determine whether any of the draw
calls in respect of a frame identify an element as being safety critical: if so an identifier may be
set for the frame as a whole indicating that the graphics processing system is to process the
frame in a protected mode in which geometry processing is to be repeated. In other examples,
it could be the responsibility of the application developer to identify that a frame includes safety

critical elements and therefore geometry processing is to be repeated. For instance, a process

10

15

20

25

30

26

could be configured by means of one or more calls to a graphics APl and/or the GPU driver to
cause the graphics processing system to enter a protected mode in which geometry

processing is repeated and the output of the geometry processing passes compared.

If a frame does not include safety critical elements then geometry processing may be
performed in the conventional manner just once at one or more geometry units of the graphics

processing system.

In some examples, the graphics processing system is configured to designate one or more
mission geometry units and one or more safety geometry units and geometry data may be
submitted to both the mission and safety geometry units. A mission geometry unit may be
designated at a mission processing unit and a safety geometry unit may be designated at a
safety processing unit as described in the examples above for performing fragment processing.
In some examples the one or more geometry units of the graphics processing system are not
provided at the plurality of processing units. In examples where the geometry unit is provided
at a processing unit — e.g. in the example shown in Figure 3 — a mission geometry unit may be
the geometry unit at a designated mission processing unit and a safety geometry unit may be
the geometry unit at a designated safety processing unit. The processing of geometry data at

such mission 602 and safety 603 geometry units is shown in Figure 6.

Each mission geometry unit may have a respective safety geometry unit such that geometry
data for a frame that includes safety critical elements is submitted to a mission geometry unit
and its respective safety geometry unit. A graphics processing unit may be configured to
designate mission and safety geometry units — for example, on initialisation of the GPU (e.qg.
a software driver for the GPU may perform such designations) and/or dynamically at run-time
in response to being arranged to render one or more new frames. The number of mission

geometry units may differ from the number of safety geometry units designated at a GPU.

Geometry data may be allocated to geometry units for geometry processing by a component
of the GPU. For example, for 3D workloads, the 3D data manager 307 may be configured to
allocate geometry data to processing units. In examples in which the GPU includes a plurality
of geometry units, the 3D data manager may allocate geometry data to two geometry units for
processing (e.g. both mission and safety processing units). Geometry data may be allocated

to a single geometry unit in the event that repeat geometry processing is not enabled (e.g. the

10

15

20

25

30

35

27

frame to be rendered does not include any safety critical elements and/or the GPU is in a non-

protected mode).

In some examples in which the GPU includes a plurality of geometry units, the GPU may be
configured to distribute geometry data to geometry units in dependence on the ability of
geometry units to process that data. For example, each geometry unit may retrieve geometry
data for a frame from a buffer in memory 306 when the geometry unit becomes able to receive
new geometry data for processing (e.g. on completing processing its current geometry data).
In some examples, geometry data could be processed for a first time at any geometry unit of
the plurality of units and processed for a second (or further) time at any geometry unit of the
plurality of units. In this way, geometry data (whether on the first or a further pass) can be
dynamically allocated to geometry units so as to efficiently spread the processing load and

avoid having idle geometry units.

The output from each geometry processing pass is compared 604 to check whether those
outputs match. This comparison may be performed at check unit 314 in any of the ways
described herein for checking the output from the fragment processing passes. The filter 313
may similarly direct the outputs of the geometry units to the check unit for verification. On
receiving output data from geometry units in respect of a given frame, the filter is configured

to direct that output data to check unit 314.

The check unit is configured to compare the output data from different geometry processing
passes of the same frame. The output data may be from the same or different geometry units.
In some examples, the output data is received from designated mission and safety processing

units.

In some examples, the check unit 314 is configured to directly compare the output data
received for different geometry processing passes of the same frame — for instance, the check
unit may stream the output data from different passes and directly compare the data (e.g. at a
bit, byte, word, or any other suitable level). This is shown at 606 in Figure 6. The comparison
of the output streams may be performed at the fault detection unit 316 of the check unit 314.
One or more buffers may be provided at the check unit or elsewhere at the GPU in order to
enable the check unit to compensate for a time offset between the output data streams
received at the check unit (e.g. due to the geometry processing at one geometry unit being

ahead of the geometry processing at another geometry unit or a single geometry unit being

10

15

20

25

30

35

28

configured to sequentially process a frame first and second times). By performing such direct
comparison of the output streams from geometry units, the processed geometry data (typically
transformed vertex data and tile lists) is generally substantially smaller than the output from
fragment processors and a direct comparison of output data can be performed quickly and
efficiently at the GPU.

In some examples, the check unit 314 is configured to, for each geometry processing pass,
form one or more signatures which are characteristic of the output data received from the
respective geometry unit. The check unit is configured to compare the signatures formed in
respect of each geometry processing pass so as to verify that the geometry processing
performed in each pass is in agreement. In some examples a sighature is formed in respect
of each write by the geometry unit to parameter buffer 312. The fault detection unit 316 may
be configured to perform the comparison of signatures. Signature(s) generated for a geometry
pass may be stored at data store 315 for subsequent use (e.g. for comparison with the
signature of another pass in respect of the same frame). The check unit may perform, for
example, a checksum, a CRC, a hash or a fingerprint calculation on the output data. The one
or more signatures generated for a geometry pass provide an expression of the processing
performed on the geometry data for a frame by a geometry unit in a more compact form than
the output data from that geometry unit itself so as to facilitate comparison of the output data
provided on different geometry processing passes. A fault detection unit 316 of the check unit
314 is configured to compare the signatures formed at the check unit in respect of a given
frame. The comparison of signatures could be performed at any suitable level of granularity —

for example, at a bit, byte, word level.

The check unit may comprise a plurality of check unit instances — for example, each check unit
instance may be configured to receive output data from a different subset of processing units
of the GPU, and/or separate check units may be provided for checking geometry and fragment
processed data. The check unit operates on at least the processed data generated by a
geometry unit processing the geometry data for a frame. The check unit may additionally
operate on memory addresses and/or control data comprised in the output from the geometry

unit — this can help the validation operations described herein to identify a wider range of faults.

The fault detection unit 316 is configured to raise 607 a fault signal 317 on determining that
the geometry processing performed on different passes of the same frame do not match. As

described, such comparison could be performed, for example, by comparing the geometry

10

15

20

25

30

35

29

processed outputs directly and/or by comparing signatures characteristic of geometry
processed outputs. A fault could potentially lead to a safety violation at the GPU — whether or
not fragment processing is protected according to the redundant approach described herein.
For example, a fault in the geometry calculations performed in respect of the instrument cluster
shown in Figure 2 could cause corruption of safety critical elements of the instrument cluster,

such as the speedometer.

The fault signal 317 raised in respect of an error in geometry processing may be provided in
any suitable manner. A fault signal indicates that the processed output from different geometry
passes of the same frame are not the same and therefore the processed output from one or
more of the geometry unit(s) that generated those processed outputs is invalid. Such a fault
signal may be provided as an output of the GPU 300 and/or it may be used internally at the
GPU. For example, a fault signal raised in respect of an error in geometry processing may
cause the protected geometry processing to be restarted — e.g. by one or more of: resubmitting
the geometry data to a pair of mission and safety geometry units; by resubmitting the geometry
data twice more to a geometry unit; and by resubmitting the geometry data to any two available
geometry units of the GPU. The fault signal 317 may be one or more of: control data; data
written out to memory 306; and data written to a register or memory of the GPU or a system
to which the GPU is connected. The output of geometry unit(s) configured to process the same
geometry data may differ due to transient events such as ionizing radiation or voltage spikes,

or permanent errors due to bugs in some combination of hardware, software and firmware.

The fault detection unit 316 is operable to compare output data generated on different
geometry passes of the same frame. As has been described, two or more geometry units may
be arranged to process the same frame. The processing performed on different passes may
or may not be concurrent. If two geometry processing passes are performed at two different
geometry units, comparing the output data generated by those geometry units indicates
whether the processing performed by the pair of geometry units is in agreement: a fault signal
indicates that a fault occurred at one of the geometry units of the pair but does not indicate

which unit experienced the fault.

If a group of three or more geometry units are arranged to process the same frame, comparing
the output data from those geometry units indicates whether the processing performed by the
geometry units is in agreement. When the processed output of one of the group of geometry

units does not match the output of the other two geometry units, the fault signal indicates that

10

15

20

25

30

35

30

a fault occurred at one of the geometry units of the group and it can further indicate at which
one of the geometry units of the group the fault occurred. This is because the fault can be
assumed to have occurred at the geometry unit whose output does not match the outputs from

the two or more other geometry units.

If the outputs from the different geometry processing passes are the same, then the processed
geometry may be considered valid and one or more of the outputs of those geometry passes
may be made available for fragment processing in accordance with the principles described
herein. If the outputs from different geometry processing passes of the same frame do match
then no fault signal may be raised or, in some examples, a signal may be raised indicating that

the outputs do match.

The fault signal raised in respect of the geometry phase may be the same or different to the
fault signal raised in respect of the fragment processing phase. The fault signal raised in
respect of the geometry phase may be any kind of indication that a fault has occurred,
including, for example, one or more of a control message, an interrupt, a flag in control data,

one or more bits set at a register, and a data packet.

The graphics processing system may be configured to write out to a data store of the GPU
(e.g. parameter buffer 312) and/or memory 306 the validated output from the geometry
processing phase. By writing out only one of the geometry-processed outputs generated in
respect of a frame, duplication of data at the data store can be avoided. In some examples,
the filter 313 is configured to cause the geometry-processed output generated at the mission
geometry unit to be written 605 to the data store and/or memory 306 and to cause the
processed output generated at the safety geometry unit not to be written to the data store

and/or memory 306.

In some examples, the filter 313 is configured to cause the first available output from a
geometry unit in respect of a frame to be written to the data store and/or memory 306. In this
way, the geometry-processed output is available sooner for fragment processing. In some
examples, the fragment processing of the tiles of a frame may commence as soon as a
geometry-processed output is available for a frame without waiting for validation of that
geometry-processed output; should that output be subsequently found invalid the fragment
processing may be abandoned and the invalid geometry-processed output discarded (e.g. the

fragment processor(s) 320 performing that processing may be flushed).

10

15

20

25

30

35

31

In some examples, the output of the last geometry processing pass for a frame may be written
to the data store and/or memory 306 with the output of earlier passes being discarded. In this
way, once the output of the last processing pass is known, all of the output data is available
for comparison at the fault detection unit. This can avoid unnecessary data transfers around

the GPU and writes to the cache.

Tiling may be performed twice 608 for all tiles of a frame, including both protected and non-
protected tiles. This is because errors in tiling could, for example, lead to safety-critical
elements being included within non-protected tiles. In examples where the tiling of processed
geometry data is performed at the geometry unit, the duplication of tiling could be achieved
through the duplication of geometry processing at one or more geometry units in accordance
with the principles described above. In examples where the tiling of processed geometry data
is performed outside the geometry unit, the unit performing that tiling repeats the tiling for the
frame at least twice. Tiling may be performed twice for all tiles of a frame, including both
protected and non-protected tiles. Such repetition may be performed according to any of the
approaches described herein for the repetition of geometry processing, with the output of
different tiling passes being provided (e.g. through appropriate direction of data by filter 313)
to the check unit 314 for verification 609 and a fault signal 317 being raised 610 should the
output of those different tiling passes not match. In some examples — such as the example
shown in Figure 3 — two or more tiling engines 310 are provided. One of the tiling engines may
be designated a mission tiling engine and one of the tiling engines may be designated a safety
tiling engine in accordance with any of the approaches described herein. The chip area
consumed by the tiling engine is usually a small proportion of the total chip area of the GPU
and so there is not a substantial area cost in providing additional tiling engines which duplicate

tiling over all tiles of a frame, including non-protected tiles.

A list of the elements present in each tile of the frame to be rendered may be written 611 to a
data store (e.g. the parameter buffer 312 at the GPU cache 311) on the output of the two tiling

passes being verified at the check unit.

A graphics processing system configured in accordance with the principles described herein
may be configured to render protected tiles so as to meet a predefined safety level in respect
of the processing performed for those tiles. The graphics processing system may concurrently

process non-protected tiles on a non-protected path which does not meet the predefined safety

10

15

20

25

30

35

32

level. For example, the graphics processing system may be certified to meet the ASIL B or

ASIL D standards of ISO 26262 in respect of the rendering of protected tiles.

Graphics processing systems configured in accordance with examples described herein may
have one or more advantages over conventional systems (such as GPUs in a dual lockstep
configuration) which perform protected rendering by simply repeating the rendering of an entire

frame.

Firstly, by repeating fragment processing only of those tiles that include safety critical
elements, the system can offer substantially improved performance over systems that must
repeat fragment processing over an entire frame in order to protect safety critical elements of

the scene to be rendered.

Secondly, the system may offer flexibility over existing systems because, depending on the
scene submitted for rendering, the system may perform protected fragment processing of
some, all or none of the tiles. This allows application developers to protect only the safety
critical parts of a scene to be rendered and make efficiency savings by not protecting parts of

a scene which are not safety critical.

Thirdly, whilst protected fragment processing is performed on a per-tile basis, the geometry
phase for a frame as a whole is protected which can ensure that errors occurring in geometry
calculations relating to elements present in non-protected tiles do not introduce errors into the
rendering of protected tiles. Since substantially more chip area is typically provided for
fragment processing than for geometry processing, providing additional geometry units in
accordance with some of the examples described herein (e.g. in which concurrent processing
of geometry passes is performed for a frame at different geometry units) does not substantially
increase the total GPU area. And since the processing time consumed by fragment processing
is typically substantially greater than the processing time consumed by geometry processing,
sequentially repeating geometry processing in accordance with some of the examples
described herein (e.g. in which geometry passes are repeated for a frame at the same

geometry unit) does not substantially increase the time taken to process a frame.

Fourthly, the fault reaction time of the system may be substantially reduced because faults
during fragment processing can be detected at the completion of an individual tile rather than

after a complete render of a frame. In some examples the fault reaction time of the system

10

15

20

25

30

35

33

can be reduced further by checking for faults before fragment processing of a tile is complete
(e.g. by checking signatures generated over one or more buffer writes performed during

fragment processing).

Fifthly, the memory bandwidth consumed when performing protected rendering of a frame may
be reduced because for each protected tile the output of only one of the fragment processing
passes (e.g. from the mission processing unit) may be written out to memory. Furthermore,
by concurrently processing protected tiles at different processing units, the use of a common
cache at the GPU can prevent costly double-fetching of data (e.g. texture data) from memory
because both processing units can use the same data fetched for a given fragment processing
operation. If double-fetch does occur it is only in respect of protected tiles and not the whole

frame.

Sixthly, because the present system may allow protected rendering to be performed with fewer
fragment processing operations, the power consumption of a GPU configured in accordance

with the principles described herein may be lower than that of conventional protected GPUs.

Seventhly, an application developer may enable protected rendering of safety critical parts of
a scene without being required to make significant changes to their application (e.g. a software
or firmware process which submits scene geometry to a GPU for rendering). In some
examples, a process need merely set a flag or other identifier in respect of a draw call to the
GPU (e.g. by means of an API cooperating with a driver for the GPU) to indicate that the
geometry to which the draw call relates is safety critical and is to be rendered on the protected
path. This avoids the need to handle the protected rendering in an application itself — e.g. by
submitting draw calls twice and/or causing different parts of a scene to be separately rendered

then subsequently combined at a frame buffer before being written to a display.

The graphics processing systems and data processing systems of Figures 2 to 5 and 7 are
shown as comprising a number of functional blocks. This is schematic only and is not intended
to define a strict division between different logic elements of such entities. Each functional
block may be provided in any suitable manner. It is to be understood that intermediate values
described herein as being formed by graphics processing systems need not be physically
generated by the graphics processing systems at any point and may merely represent logical
values which conveniently describe the processing performed by a graphics processing

system between its input and output.

10

15

20

25

30

35

34

A graphics processing unit described herein may be embodied in hardware on an integrated
circuit. The graphics processing systems described herein may be configured to perform any

of the methods described herein.

The terms computer program code and computer readable instructions as used herein refer to
any kind of executable code for processors, including code expressed in a machine language,
an interpreted language or a scripting language. Executable code includes binary code,
machine code, bytecode, code defining an integrated circuit (such as a hardware description
language or netlist), and code expressed in a programming language code such as C, Java or
OpenCL. Executable code may be, for example, any kind of software, firmware, script, module
or library which, when suitably executed, processed, interpreted, compiled, executed at a
virtual machine or other software environment, cause a processor of the computer system at
which the executable code is supported to perform the tasks specified by the code. Examples
of a computer-readable storage medium include a random-access memory (RAM), read-only
memory (ROM), an optical disc, flash memory, hard disk memory, and other memory devices
that may use magnetic, optical, and other techniques to store instructions or other data and

that can be accessed by a machine.

A processor, computer, or computer system may be any kind of device, machine or dedicated
circuit, or collection or portion thereof, with processing capability such that it can execute
instructions. A processor may be any kind of general purpose or dedicated processor, such
as a CPU, GPU, vector processor, tensor processor, System-on-chip, state machine, media
processor, an application-specific integrated circuit (ASIC), a programmable logic array, a field-
programmable gate array (FPGA), or the like. A computer or computer system may comprise

one or more processors.

It is also intended to encompass software which defines a configuration of hardware as
described herein, such as HDL (hardware description language) software, as is used for
designing integrated circuits, or for configuring programmable chips, to carry out desired
functions. That is, there may be provided a computer readable storage medium having
encoded thereon computer readable program code in the form of an integrated circulit definition
dataset that when processed in an integrated circuit manufacturing system configures the
system to manufacture a graphics processing unit configured to perform any of the methods

described herein, or to manufacture a graphics processing unit comprising any apparatus

10

15

20

25

30

35

35

described herein. An integrated circuit definition dataset may be, for example, an integrated

circuit description.

There may be provided a method of manufacturing, at an integrated circuit manufacturing
system, a graphics processing unit as described herein. There may be provided an integrated
circuit definition dataset that, when processed in an integrated circuit manufacturing system,

causes the method of manufacturing a graphics processing unit to be performed.

An integrated circuit definition dataset may be in the form of computer code, for example as a
netlist, code for configuring a programmable chip, as a hardware description language defining
an integrated circuit at any level, including as register transfer level (RTL) code, as high-level
circuit representations such as Verilog or VHDL, and as low-level circuit representations such
as OASIS (RTM) and GDSII. Higher level representations which logically define an integrated
circuit (such as RTL) may be processed at a computer system configured for generating a
manufacturing definition of an integrated circuit in the context of a software environment
comprising definitions of circuit elements and rules for combining those elements in order to
generate the manufacturing definition of an integrated circuit so defined by the representation.
As is typically the case with software executing at a computer system so as to define a
machine, one or more intermediate user steps (e.g. providing commands, variables etc.) may
be required in order for a computer system configured for generating a manufacturing definition
of an integrated circuit to execute code defining an integrated circuit so as to generate the

manufacturing definition of that integrated circuit.

An example of processing an integrated circuit definition dataset at an integrated circuit
manufacturing system so as to configure the system to manufacture a graphics processing

unit will now be described with respect to Figure 7.

Figure 7 shows an example of an integrated circuit (IC) manufacturing system 1002 which is
configured to manufacture a graphics processing unit as described in any of the examples
herein. In particular, the IC manufacturing system 1002 comprises a layout processing system
1004 and an integrated circuit generation system 1006. The IC manufacturing system 1002 is
configured to receive an IC definition dataset (e.g. defining a graphics processing unit as
described in any of the examples herein), process the IC definition dataset, and generate an
IC according to the IC definition dataset (e.g. which embodies a graphics processing unit as

described in any of the examples herein). The processing of the IC definition dataset

10

15

20

25

30

36

configures the IC manufacturing system 1002 to manufacture an integrated circuit embodying

a graphics processing unit as described in any of the examples herein.

The layout processing system 1004 is configured to receive and process the IC definition
dataset to determine a circuit layout. Methods of determining a circuit layout from an IC
definition dataset are known in the art, and for example may involve synthesising RTL code to
determine a gate level representation of a circuit to be generated, e.g. in terms of logical
components (e.g. NAND, NOR, AND, OR, MUX and FLIP-FLOP components). A circuit layout
can be determined from the gate level representation of the circuit by determining positional
information for the logical components. This may be done automatically or with user
involvement in order to optimise the circuit layout. When the layout processing system 1004
has determined the circuit layout it may output a circuit layout definition to the IC generation

system 1006. A circuit layout definition may be, for example, a circuit layout description.

The IC generation system 1006 generates an IC according to the circuit layout definition, as is
known in the art. For example, the IC generation system 1006 may implement a
semiconductor device fabrication process to generate the IC, which may involve a multiple-
step sequence of photo lithographic and chemical processing steps during which electronic
circuits are gradually created on a wafer made of semiconducting material. The circuit layout
definition may be in the form of a mask which can be used in a lithographic process for
generating an IC according to the circuit definition. Alternatively, the circuit layout definition
provided to the IC generation system 1006 may be in the form of computer-readable code
which the IC generation system 1006 can use to form a suitable mask for use in generating an
IC.

The different processes performed by the IC manufacturing system 1002 may be implemented
all in one location, e.g. by one party. Alternatively, the IC manufacturing system 1002 may be
a distributed system such that some of the processes may be performed at different locations,
and may be performed by different parties. For example, some of the stages of: (i) synthesising
RTL code representing the IC definition dataset to form a gate level representation of a circuit
to be generated, (ii) generating a circuit layout based on the gate level representation, (iii)
forming a mask in accordance with the circuit layout, and (iv) fabricating an integrated circuit

using the mask, may be performed in different locations and/or by different parties.

10

15

20

25

30

35

37

In other examples, processing of the integrated circuit definition dataset at an integrated circuit
manufacturing system may configure the system to manufacture a graphics processing unit
without the IC definition dataset being processed so as to determine a circuit layout. For
instance, an integrated circuit definition dataset may define the configuration of a
reconfigurable processor, such as an FPGA, and the processing of that dataset may configure
an IC manufacturing system to generate a reconfigurable processor having that defined

configuration (e.g. by loading configuration data to the FPGA).

In some embodiments, an integrated circuit manufacturing definition dataset, when processed
in an integrated circuit manufacturing system, may cause an integrated circuit manufacturing
system to generate a device as described herein. For example, the configuration of an
integrated circuit manufacturing system in the manner described above with respect to Figure
7 by an integrated circuit manufacturing definition dataset may cause a device as described

herein to be manufactured.

In some examples, an integrated circuit definition dataset could include software which runs
on hardware defined at the dataset or in combination with hardware defined at the dataset. In
the example shown in Figure 7, the IC generation system may further be configured by an
integrated circuit definition dataset to, on manufacturing an integrated circuit, load firmware
onto that integrated circuit in accordance with program code defined at the integrated circuit
definition dataset or otherwise provide program code with the integrated circuit for use with the

integrated circuit.

The implementation of concepts set forth in this application in devices, apparatus, modules,
and/or systems (as well as in methods implemented herein) may give rise to performance
improvements when compared with known implementations. The performance improvements
may include one or more of increased computational performance, reduced latency, increased
throughput, and/or reduced power consumption. During manufacture of such devices,
apparatus, modules, and systems (e.g. in integrated circuits) performance improvements can
be traded-off against the physical implementation, thereby improving the method of
manufacture. For example, a performance improvement may be traded against layout area,
thereby matching the performance of a known implementation but using less silicon. This may
be done, for example, by reusing functional blocks in a serialised fashion or sharing functional
blocks between elements of the devices, apparatus, modules and/or systems. Conversely,

concepts set forth in this application that give rise to improvements in the physical

16 07 20

10

38

implementation of the devices, apparatus, modules, and systems (such as reduced silicon
area) may be traded for improved performance. This may be done, for example, by

manufacturing multiple instances of a module within a predefined area budget.

The applicant hereby discloses in isolation each individual feature described herein and any
combination of two or more such features, to the extent that such features or combinations are
capable of being carried out based on the present specification as a whole in the light of the
common general knowledge of a person skilled in the art, irrespective of whether such features
or combinations of features solve any problems disclosed herein. In view of the foregoing
description it will be evident to a person skilled in the art that various modifications may be

made within the scope of the claims.

40

10

15

20

25

30

35

39

CLAIMS

1. A graphics processing unit for performing tile-based rendering of a scene that includes
safety-critical elements, the graphics processing unit being configured to:
receive data relating to protected tiles that include safety-critical elements and data
relating to non-protected tiles that do not include safety-critical elements;
in a fragment processing phase:
process each protected tile first and second times so as to, respectively,
generate first and second fragment-processed outputs; and
process each non-protected tile a single time so as to generate a respective
single fragment-processed output;
wherein the graphics processing unit comprises a check unit configured to compare
the first and second fragment-processed outputs for each protected tile and raise a fault signal

if the first and second fragment-processed outputs do not match.

2. A graphics processing unit as claim in claim 1, wherein the graphics processing unit is
configured to write each first fragment-processed output and each single fragment processed
output to a data store, and to prevent each second fragment-processed output being written

to the data store.

3. A graphics processing unit as claimed in claim 1 or 2, wherein the graphics processing unit
comprises a plurality of processing units, including:

a first processing unit configured to perform the first time fragment processing for each
protected tile; and

a second processing unit configured to perform the second time fragment processing

for each protected tile.

4. A graphics processing unit as claimed in claim 3, wherein the graphics processing unit is

arranged to concurrently submit each protected tile to the first and second processing units.

5. A graphics processing unit as claimed in claim 3 or 4, wherein the graphics processing unit
comprises three or more processing units and is configured such that the second processing
unit is constrained to be any processing unit of the plurality of processing units other than the

first processing unit.

10

15

20

25

30

35

40

6. A graphics processing unit as claimed in any of claims 3 to 5, wherein the graphics
processing unit is configured to process each non-protected tile at any of the plurality of

processing units.

7. A graphics processing unit as claimed in any of claims 3 to 5, wherein the graphics
processing unit comprises three or more processing units and is configured to process each
non-protected tile at any of the plurality of processing units not including the first and second

processing units.

8. A graphics processing unit as claimed in any of claims 3 to 7, wherein the check unit is
configured to:

form one or more first signatures which are characteristic of the output from the first
processing unit;

form one or more second signatures which are characteristic of the output from the
second processing unit; and

perform the comparison of the first and second fragment-processed outputs by

comparing the respective first and second signatures.

9. A graphics processing unit as claimed in claim 8, wherein the first and second processing
units are each configured to write their respective first and second fragment-processed outputs
by performing one or more writes to one or more buffers at a data store and the check unit is
configured to form each first signature over groups of one or more writes by the first processing
unit to the one or more buffers and to form each second signature over groups of one or more

writes by the second processing unit to the one or more buffers.

10. A graphics processing unit as claimed in claim 9, wherein the graphics processing unit is
configured to allow writes by the first processing unit to the one or more buffers and to prevent

writes by the second processing unit to the one or more buffers.

11. A graphics processing unit as claimed in any of claims 3 to 10, the graphics processing
unit further comprising a fragment processing engine arranged to perform fragment
processing, the fragment processing engine being operable to write to a memory over a data
bus and the graphics processing unit being configured to:

designate the first processing unit as a mission processing unit and the second

processing unit as a safety processing unit;

10

15

20

25

30

35

41

allow writes to the memory by the mission processing unit; and

not allow writes to the memory by the safety processing unit.

12. A graphics processing unit as claimed in any preceding claim, wherein each protected tile

is for processing according to a predefined safety level.

13. A method of performing tile-based rendering of a scene that includes safety-critical
elements, the method comprising:
receiving data relating to protected tiles that include safety-critical elements and data
relating to non-protected tiles that do not include safety-critical elements;
in a fragment processing phase:
processing each protected tile first and second times so as to, respectively,
generate first and second fragment processed outputs; and
processing each non-protected tile a single time so as to generate a respective
single fragment processed output;
and
comparing the first and second fragment processed outputs and raising a fault signal if

the first and second fragment processed outputs do not match.

14. A method as claimed in claim 13, the method further comprising:
writing each first fragment-processed output and each single fragment processed
output to a data store; and

preventing each second fragment-processed output being written to the data store.

15. A method as claimed in claim 13 or 14, wherein each protected tile is for processing

according to a predefined safety level.

16. A graphics processing unit as claimed in any of claims 1 to 12, wherein the graphics

processing unit is embodied in hardware on an integrated circuit.

17. Computer program code for performing a method as claimed in any of claims 13 to 15.

18. An integrated circuit definition dataset that, when processed in an integrated circuit

manufacturing system, configures the integrated circuit manufacturing system to manufacture

the graphics processing unit of claim 16.

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - CLAIMS
	Page 46 - CLAIMS
	Page 47 - CLAIMS

