(19) 日本国特許庁(JP)

(12) 特許公報(B2)

(11)特許番号

特許第6051514号

(P6051514)

(45) 発行日 平成28年12月27日(2016.12.27)

(24) 登録日 平成28年12月9日 (2016.12.9)

(51) Int.Cl.	F I	
HO1M 10/056	2 (2010.01) HO1M	10/0562
HO1M 10/052	? (2010.01) но 1 м	10/052
HO1M 10/058	15 (2010.01) HO1M	10/0585
HO1M 4/58	(2010.01) HO1M	4/58
HO1M 4/136	(2010.01) но 1 М	4/136
		請求項の数 13 (全 46 頁) 最終頁に続く
(21) 出願番号	特願2011-263611 (P2011-263611)	(73)特許権者 000002185
(22) 出願日	平成23年12月1日 (2011.12.1)	ソニー株式会社
(65) 公開番号	特開2012-256581 (P2012-256581A)	東京都港区港南1丁目7番1号
(43) 公開日	平成24年12月27日 (2012.12.27)	(74)代理人 100082762
審査請求日	平成26年10月3日 (2014.10.3)	弁理士 杉浦 正知
(31) 優先権主張番号	特願2010-269090 (P2010-269090)	(74)代理人 100123973
(32) 優先日	平成22年12月2日 (2010.12.2)	弁理士 杉浦 拓真
(33) 優先権主張国	日本国(JP)	(72)発明者 佐飛 裕一
(31) 優先権主張番号	特願2011-109923 (P2011-109923)	東京都港区港南1丁目7番1号 ソニー株
(32) 優先日	平成23年5月16日 (2011.5.16)	式会社内
(33)優先権主張国	日本国(JP)	(72)発明者 佐藤 晋
		東京都港区港南1丁目7番1号 ソニー株
		式会社内
		最終頁に続く

(54) 【発明の名称】固体電解質電池および正極活物質

(57)【特許請求の範囲】

【請求項1】

正極活物質と、

固体電解質と

を備え、

上記正極活物質は、アモルファス状態の式(1)で表されるリチウムリン酸化合物を含 む固体電解質電池。

式(1)

Li_xNi_yPO₇

10 (式中、 x はリチウムの組成比を示す。 y はニッケルの組成比を示す。 z は酸素の組成比 を示す。 x は 0 < x < 8 . 0 である。 y は 2 . 0 y 1 0 である。 z は酸素の組成比を 示す。zはNi、Pの組成比に応じて酸素が安定に含まれる比となる。)

【請求項2】

上記リチウムリン酸化合物は、さらに、Co、Mn、Au、Ag、Pd、Cuから選ば れる少なくとも1種の元素のみを組成に持つものである請求項1に記載の固体電解質電池

【請求項3】

上記リチウムリン酸化合物は、さらに、B、Mg、Al、Si、Ti、V、Cr、Fe 、Zn、Ga、Ge、Nb、Mo、In、Sn、Sb、Te、W、Os、Bi、Gd、T b、 D y 、 H f 、 T a 、 Z r から選ばれる少なくとも 1 種の添加元素のみを組成に持つも

10

20

30

40

のである請求項1~2の何れか一項に記載の固体電解質電池。 【請求項4】 上記正極活物質を含む正極活物質層と、 上記固体電解質を含む固体電解質層と を備えた請求項1~3の何れか一項に記載の固体電解質電池。 【請求項5】 上記正極活物質層を有する正極側層と、 負極側層と を備え、 上記固体電解質層は、上記正極側層と上記負極側層との間にある請求項4に記載の固体 電解質電池。 【請求項6】 上記負極側層は、負極集電体層と、負極側電位形成層とで構成され、 充電時に上記固体電解質層の負極側の界面にリチウム過剰層が形成される請求項5に記 載の固体電解質電池。 【請求項7】 上記正極側層は、上記正極活物質層と、正極集電体層とで構成された請求項5~6の何 れか一項に記載の固体電解質電池。 【請求項8】 上記負極側層は、負極集電体層で構成され、 充電時に上記固体電解質層の負極側の界面にリチウム過剰層が形成される請求項5に記 載の固体電解質電池。 【請求項9】 基板をさらに備え、 上記基板上に、上記正極側層と、上記負極側層と、上記固体電解質層とを含む積層体が 形成された請求項5~8の何れか一項に記載の固体電解質電池。 【請求項10】 上記基板が樹脂基板である請求項9に記載の固体電解質電池。 【請求項11】 少なくとも上記正極活物質層は、薄膜で形成された請求項5~10の何れか一項に記載 の固体電解質電池。 【請求項12】 上記正極側層、上記負極側層および上記固体電解質層が、薄膜で形成された請求項5~ 10の何れか一項に記載の固体電解質電池。 【請求項13】 式(1)で表されるリチウムリン酸化合物であって、該リチウムリン酸化合物はアモル ファス状態である正極活物質。 式(1) Li,Ni,PO, (式中、 x はリチウムの組成比を示す。 y はニッケルの組成比を示す。 z は酸素の組成比 を示す。×は0 < x < 8 . 0 である。 y は 2 . 0 y 1 0 である。 z は酸素の組成比を 示す。zはNi、Pの組成比に応じて酸素が安定に含まれる比となる。) 【発明の詳細な説明】 【技術分野】 [0001]本技術は、固体電解質電池および正極活物質に関する。さらに詳しくは、有機電解液を 含有しない固体電解質を有する固体電解質電池およびこれに用いる正極活物質に関する。 【背景技術】 [0002]

リチウムイオンのドープおよび脱ドープを利用したリチウムイオン二次電池は、優れた 50 エネルギー密度を有することから、携帯型電子機器などに広く使用されている。このリチ ウムイオン二次電池の中でも、安全性や信頼性の観点から、電解質として、有機電解液を 含有しない固体電解質を使用した全固体リチウムイオン二次電池の研究開発が、精力的に 進められている。

【 0 0 0 3 】

この全固体リチウムイオン二次電池の一形態として、薄膜リチウム二次電池の開発が盛 んに行われている。この薄膜リチウム二次電池は、電池を構成する集電体、活物質および 電解質を薄膜で形成して、二次電池とするものである。薄膜リチウム二次電池を構成する 各薄膜は、スパッタリング法、蒸着法などの成膜方法を用いて形成される。(例えば、非 特許文献1参照)

【0004】

薄膜リチウム二次電池では、固体電解質として、Li₃PО₄に窒素を置換したLiPO N、Li_xB₂O₃に窒素を置換したLiBONなどのアモルファス材料を用いる。このア モルファス材料のイオン伝導度は10⁻⁶S/cm程度であり、一般的な液体電解質のイオ ン伝導度10⁻²S/cmと比較すると非常に低い値である。薄膜リチウム二次電池では、 固体電解質の膜厚が小さく(例えば1µm程度)Li移動距離が短いので、イオン伝導度 が低い上記のアモルファス材料で構成した固体電解質は、液系電解質とほぼ同等の性能を 示すことが可能である。

【0005】

一方、薄膜リチウム二次電池では、電気伝導を律速しているのは、正極活物質となる。20 薄膜リチウム二次電池では、この正極活物質として、液系リチウムイオン二次電池と同様、LiCoO2、LiMn2O4、LiFePO4などのリチウム遷移金属酸化物を用いることが一般的である。また、これらの他にも、正極活物質として用いる新しいリチウム遷移金属酸化物が提案されている。例えば、特許文献1には、正極活物質として用いるリチウム遷移金属酸化物として、結晶質のLiCu_{1+x}PO4が提案されている。これらのリチウム遷移金属酸化物(以下、上記リチウム遷移金属酸化物)は、イオン伝導度および電子伝導度が低い材料である。

[0006]

薄膜リチウムニ次電池では、正極活物質層の厚さは電池容量に比例するため、高い容量 を得るためにはなるべく厚いことが好ましい。しかしながら、薄膜リチウムニ次電池では 、イオン伝導度および電子伝導度が低い材料で構成された正極活物質層の厚みを厚くする (例えば10µm以上)と、内部インピーダンスが非常に大きくなってしまう。

【 0 0 0 7 】

このため、イオン伝導度および電子伝導度が低い、上記リチウム遷移金属酸化物を用いて、正極活物質層の厚さを厚くした高容量の薄膜リチウム二次電池の実用化は難しい。 【0008】

また、上記リチウム遷移金属酸化物は、結晶質相で用いることが通常であるため、薄膜 リチウムニ次電池では、上記リチウム遷移金属酸化物を成膜する際に、成膜中の基板加熱 、成膜後のポストアニールなどを行うことで、結晶質相を形成している。

【先行技術文献】 【非特許文献】

[0009]

【非特許文献 1】Thin-Film lithium and lithium-ion batteries, J. B. Bates et al. : Solid State lonics, 135, 33 (2000) 【特許文献】 【 0 0 1 0 】

【特許文献1】特許第3965657号公報

【発明の概要】

【発明が解決しようとする課題】

[0011]

10

しかしながら、薄膜リチウム二次電池では、基板加熱や成膜後のポストアニールを行う 場合には、基板として高価な耐熱ガラスを用いる必要があるので製造コストが高くなって しまう。また、薄膜リチウム二次電池では、固体電解質として用いるLiPON、LiB ONなどは、アモルファスで機能する材料であるため、これらの材料に対してアニールを 行うと特性が劣化してしまう。

【0012】

このため、正極活物質もアニールレスでも機能する材料を用いることが好ましいが、ア ニールレスでは、LiCoO₂、LiMn₂О₄、LiFePO₄などのリチウム遷移金属酸 化物は、非結晶性が高いため正極活物質としての特性が悪い。すなわち、LiCoO₂、 LiMn₂О₄、LiFePO₄などのリチウム遷移金属酸化物は、アニールレスでは、イ オン伝導度がLiPONなどの固体電解質のイオン伝導度よりも低いため、正極活物質と しての特性が悪い。

10

30

40

50

【0013】

したがって、本技術の目的は、アモルファス状態で、正極活物質として機能し、高いイ オン伝導度を有する正極活物質を用いた固体電解質電池およびアモルファス状態で、高い イオン伝導度を有する正極活物質を提供することにある。

【課題を解決するための手段】

【0014】

上述した課題を解決するために、第1の技術は、正極活物質と、固体電解質とを備え、 正極活物質は、<u>ア</u>モルファス状態の<u>式(1)で表される</u>リチウムリン酸化合物を含む固体 ²⁰ 電解質電池である。

式 (1)

Li_xNi_yPO₇

<u>(式中、xはリチウムの組成比を示す。yはニッケルの組成比を示す。zは酸素の組成比 を示す。xは0 < x < 8 . 0である。yは2 . 0 y 1 0である。zは酸素の組成比を 示す。zはNi、Pの組成比に応じて酸素が安定に含まれる比となる。)</u>

である。

【0015】

第2の技術は、<u>式(1)で表され</u>るリチウムリン酸化合物であって、リチウムリン酸化 合物はアモルファス状態である正極活物質である。

式(1)

Li_xNi_yPO_z

<u>(式中、xはリチウムの組成比を示す。yはニッケルの組成比を示す。zは酸素の組成比 を示す。xは0 < x < 8 . 0である。yは2 . 0 y 1 0である。zは酸素の組成比を 示す。zはNi、Pの組成比に応じて酸素が安定に含まれる比となる。)</u>

【0020】

本技術では、正極活物質は、LiとPとNi、Co、Mn、Au、Ag、Pdから選ば れる何れかの元素M1とOとを含有するアモルファス状態のリチウムリン酸化合物を含む 。また、正極活物質は、アモルファス状態のリチウムリン酸化合物を含み、リチウムリン 酸化合物は、LiとPとNi、Co、Mn、Au、Ag、Pd、Cuから選ばれる何れか の元素M1'とOとB、Mg、A1、Si、Ti、V、Cr、Fe、Zn、Ga、Ge、 Nb、Mo、In、Sn、Sb、Te、W、Os、Bi、Gd、Tb、Dy、Hf、Ta 、Zrから選ばれる少なくとも1種の添加元素M3とを含有するアモルファス状態のリチ ウムリン酸化合物を含む。また、正極活物質は、アモルファス状態のリチウムリン酸化合 物を含み、リチウムリン酸化合物は、上記式(2)で表されるリチウムリン酸化合物であ る。これらのアモルファス状態のリチウムリン酸化合物は、アモルファス状態で、高いイ オン伝導度を有する正極活物質として機能する。

【発明の効果】 【0021】

本技術によれば、アモルファス状態で、高いイオン伝導度を有する正極活物質を用いた

10

20

30

40

固体電解質電池およびアモルファス状態で、高いイオン伝導度を有する正極活物質を提供 できる。 【図面の簡単な説明】 [0022]【図1】本技術の第1の実施の形態による固体電解質電池の構成を示す図である。 【図2】本技術の第2の実施の形態による固体電解質電池の構成を示す図である。 【図3】参考例1の正極活物質膜の断面のTEM像および電子回折図形である 【図4】参考例1の充放電曲線を示すグラフである。 【図5】実施例1の充放電曲線を示すグラフである。 【図6】実施例2の充放電曲線を示すグラフである。 【図7】実施例3の充放電曲線を示すグラフである。 【図8】実施例4の充放電曲線を示すグラフである。 【図9】実施例5の充放電曲線を示すグラフである。 【図10】実施例6の充放電曲線を示すグラフである。 【図11】試験例1におけるニッケルの組成比および容量をプロットしたグラフである。 【図12】試験例1における酸素の組成比および容量をプロットしたグラフである。 【図13】ニッケルの組成比と酸素の組成比をプロットしたグラフである。 【図14】試験例2の測定結果を示すグラフである。 【図15】サンプル1についての充放電曲線を示すグラフである。 【図16】サンプル2についての充放電曲線を示すグラフである。 【図17】サンプル2についての放電曲線を示すグラフである。 【図18】サンプル2についての充放電曲線を示すグラフである。 【図19】サンプル2についての充放電曲線を示すグラフである。 【図20】サンプル2についての充放電曲線を示すグラフである。 【図21】サンプル2についての充放電曲線を示すグラフである。 【図22】サンプル2についての放電曲線を示すグラフである。 【図23】サンプル3についての放電曲線を示すグラフである。 【図24】実施例7~実施例8および参考例2についての充放電曲線を示すグラフである 【図25】実施例9についての充放電曲線を示すグラフである。 【図26】実施例10についての充放電曲線を示すグラフである。 【図27】実施例11についての充放電曲線を示すグラフである。 【図28】実施例12についての充放電曲線を示すグラフである。 【図29】実施例13~実施例15および参考例3について、充放電回数に対する放電容 量をプロットしたグラフである。 【図30】実施例16~実施例19および参考例3について、充放電回数に対する放電容 量をプロットしたグラフである。 【図31】実施例20~実施例23および参考例3について、充放電回数に対する放電容 量をプロットしたグラフである。 【発明を実施するための形態】 [0023]以下、本技術の実施の形態について図面を参照して説明する。説明は、以下の順序で行 う。なお、実施の形態の全図において、同一または対応する部分には同一の符号を付す。 1.第1の実施の形態(固体電解質電池の第1の例) 2.第2の実施の形態(固体電解質電池の第2の例) 3.他の実施の形態(変形例) [0024]

第1の実施の形態

図1は本技術の第1の実施の形態による固体電解質電池の構成を示す。この固体電解質 電池は、例えば充電および放電可能な固体電解質二次電池である。図1Aはこの固体電解 50

(5)

10

30

40

質電池の平面図である。図1Bは図1Aの線X - Xに沿った断面を示す断面図である。図 1Cは図1Aの線Y - Yに沿った断面を示す断面図である。 【0025】

図1に示すように、この固体電解質電池は、基板10の上に無機絶縁膜20が形成され、無機絶縁膜20上に、正極側集電体膜30と、正極活物質膜40と、固体電解質膜50と、負極電位形成層64と、負極側集電体膜70とがこの順で積層された積層体を有する。この積層体の全体を覆うように、例えば、紫外線硬化樹脂から構成された全体保護膜80が形成されている。なお、全体保護膜80上に無機絶縁膜20が形成されていてもよい。この固体電解電池は、正極側層と負極側層と正極側層および負極側層の間にある固体電解質層とを備えたものである。この固体電解質電池では、正極側層は、固体電解質層を境界として固体電解質層である正極活物質層である正極活物質膜40と、正極側集電体層である正極側集電体膜30とを含む。この固体電解質電池では、負極側層は、固体電解質層を境界として固体電解質層より負極側にある。図1に示す例では、魚極側層は、例えば、固体電解質層である固体電解質層を境界として固体電解質層を見からして固体電解質層を境界として固体電解質層を境界として固体電解質層がでは、負極側層は、例えば、固体電解質層である固体電解質膜50より負極側にある負極電位形成層64と、負極側集電体層である負極側集電体膜70とを含む。

【0026】

(基板)

基板10としては、例えば、ポリカーボネート(PC)樹脂基板、フッ素樹脂基板、ポ リエチレンテレフタレート(PET)基板、ポリプチレンテレフタレート(PBT)基板 ²⁰ 、ポリイミド(PI)基板、ポリアミド(PA)基板、ポリスルホン(PSF)基板、ポ リエーテルスルホン(PES)基板、ポリフェニレンスルフィド(PPS)基板、ポリエ ーテルエーテルケトン(PEEK)基板、ポリエチレンナフタレート(PEN)、シクロ オレフィンポリマー(COP)等を使用することができる。この基板の材質は特に限定さ れるものではないが、吸湿性が低く耐湿性を有する基板がより好ましい。

[0027]

(正極側集電体膜30)

正極側集電体膜30を構成する材料としては、Cu、Mg、Ti、Fe、Co、Ni、 Zn、Al、Ge、In、Au、Pt、Ag、Pd等、又は、これらの何れかを含む合金 を使用することができる。

【0028】

(正極活物質膜40)

正極活物質膜40は、アモルファス状態のリチウムリン酸化合物で構成される。例えば、正極活物質膜40は、LiとPとNi、Co、Mn、Au、Ag、Pdから選ばれる何れかの元素M1とOとを含有するアモルファス状態のリチウムリン酸化合物で構成される

[0029]

このリチウムリン酸化合物は、正極活物質として以下の優れた特性を有する。すなわち 、対Li⁺/Liに対して高い電位を有する。電位の平坦性に優れる、すなわち組成変化 に伴う電位変動が小さい。リチウムの組成比も大きいので高容量である。高い電気伝導性 を有する。結晶質の正極活物質のように充放電の繰り返しによる結晶構造の崩壊などもな いので、充放電サイクル特性も優れている。また、アニ・ルレスで形成できるため、プロ セスの簡素化、歩留まりの向上、樹脂基板の利用を可能とする。

正極活物質膜40は、例えば、上述したようなリチウムリン酸化合物として、式(1) で表されるリチウムリン酸化合物で構成されていてもよい。

[0031]

式(1)

Li_xNi_yPO₇

(式中、 x はリチウムの組成比を示す。 y はニッケルの組成比を示す。 z は酸素の組成比 50

を示す。 x は 0 < x < 8 . 0 である。 y は 2 . 0 y 1 0 である。 z は酸素の組成比を 示す。 z は N i 、 P の組成比に応じて酸素が安定に含まれる比となる。) 【 0 0 3 2 】

式(1)において、リチウムの組成比×の範囲は、0 < x < 8 であることが好ましい。 リチウムの組成比×の上限は、特に限定されないが、電位が保たれる限界がリチウムの組 成比×の上限値となる。確認できた範囲では、リチウムの組成比×は、8未満であること が好ましい。また、リチウムの組成比×の範囲は、1.0 × < 8 であることがより好ま しい。リチウムの組成比×が、1.0未満であると、インピーダンスが大きく充放電でき なくなるからである。

【0033】

10

式(1)において、Niの組成比yの範囲は、十分な充放電容量が得られる点から、2 .0 y 10.0であることが好ましい。例えば、Niの組成比yが2.0未満である と、充放電容量が急激に小さくなってしまう。Niの組成比yの上限は、特に限定されな いが、Niの組成比yが4を超えると徐々に充放電容量が低下してしまう。最大容量の半 分程度を目安にすると、Niの組成比yは10以下が好ましい。なお、耐久性、イオン伝 導度などの側面で利点がある場合は、充放電容量を犠牲にして、10.0を超えた組成比 にしてもよい。

【0034】

式(1)において、酸素の組成比zは、Niの組成比とPの組成比に応じて安定に含まれる比となる。

20

30

【 0 0 3 5 】

正極活物質膜40は、アモルファス状態の式(2)で表されるリチウムリン酸化合物で 構成されていてもよい。

[0036]

式(2)

Li, Cu, PO₄

(式中、×はリチウムの組成比を示す。yは銅の組成比を示す。)

【0037】

アモルファス状態の式(2)で表されるリチウム複合酸化物は、正極活物質として以下 の優れた特性を有する。すなわち、対Li⁺/Liに対して高い電位を有する。電位の平 坦性に優れる、すなわち組成変化に伴う電位変動が小さい。リチウムの組成比も大きいの で高容量である。高い電気伝導性を有する。結晶質の正極活物質のように充放電の繰り返 しによる結晶構造の崩壊などもないので、充放電サイクル特性も優れている。また、アニ - ルレスで形成できるため、プロセスの簡素化、歩留まりの向上、樹脂基板の利用を可能 とする。

[0038]

式(2)で表されるリチウムリン酸化合物において、リチウムの組成比×の範囲は、例 えば、0.5 × < 7.0であり、5 < × < 7.0であってもよい。

【 0 0 3 9 】

式(2)で表されるリチウムリン酸化合物において、銅の組成比yの範囲は、十分な充 放電容量が得られる点から、1.0 y 4.0が好ましい。特に銅の組成比yが1.0 未満であると、充放電容量が急激に小さくなってしまう。銅の組成比yの上限は、特に限 定されないが、組成比yが3を超えると徐々に充放電容量が低下してしまう。最大容量の 半分程度を目安とすると4以下が好ましいが、耐久性、イオン伝導度などの側面で利点が ある場合は充放電容量を犠牲にして4以上の組成とすることも可能である。また、式(2))で表されるリチウムリン酸化合物において、銅の組成比yの下限は、良好な充放電サイ クル特性を得られる点から、2.2 yであることがより好ましい。

【0040】

ところで、二次電池において、エネルギー密度の向上には正極活物質の高容量化が不可 欠である。例えば、リチウムイオン二次電池等に使用される高容量正極活物質としては、

(7)

岩塩型層状構造、スピネル型構造に大別される金属複合酸化物(例えば、Li_xCoO₂、 Li_xNiO₂、Li_xMn₂O₄等)が挙げられ、これにより高容量化が図られている。 【0041】

(8)

しかし、これらの正極活物質は、結晶構造を有するためサイクル数に伴う構造崩壊が進むこと、また、内部インピーダンスが高いため反応電子数を上げることが難しい。また、スピネル型構造に分類されるL i_x Mn₂O₄の場合、活物質内に過剰にLiを含有させると1 < X < 2 では、ヤーンテラーイオン(Mn³⁺)による体積膨張・収縮が起こることで電位が低下することが知られている。(例えば、J.M. Tarascan, J. Electrochem. Soc, 138,2864 (1991)、T.Ohzuku, J. Electrochem. Soc, 137,769 (1990)参照) 【0042】

これに対して、本技術の正極活物質は、アモルファス状態で充放電駆動が可能であり、 Liの挿入脱離による、体積膨張、収縮を緩和でき、構造変化を抑制できる。また、本技術の正極活物質は、例えば、上記の式(1)や式(2)の正極活物質のように、広範囲で Liを含有できるため、高容量化が可能である。例えば、式(1)では、リチウム組成比 x = 8 未満まで含有でき、式(2)では、リチウム組成比 x = 7 未満まで含有できる。 【0043】

なお、全固体二次電池では、集電体、正極活物質、電解質、負極を堆積する必要がある ため、界面抵抗の低減、正極活物質の内部抵抗の低減が不可欠である。界面抵抗は、Li イオンパスの形成が寄与し、Liイオンの拡散が容易なほど低減される。電解質のイオン 伝導率の向上が主な解決策であるが、各層の表面均一性、密着性といった界面制御も特性 の向上につながる。正極活物質の内部抵抗については、内部インピーダンスを下げなけれ ば、厚膜化ができない。全固体二次電池の場合、膜厚が電池容量に比例することから正極 活物質を厚く成膜しなければならない。よって、正極内部のインピーダンスを低減させる ことが高容量化につながる。本技術の正極活物質は、層状構造を有するLiCoO₂より も内部インピーダンスが低いことがわかっている。

[0044]

正極活物質膜40は、LiとPとNi、Co、Mn、Au、Ag、Pdから選ばれる何 れかの元素M1と、Ni、Co、Mn、Au、Ag、Pd、Cuから選ばれる少なくとも 1種の元素M2(ただしM1 M2である)とOとを含有するアモルファス状態のリチウ ムリン酸化合物で構成されていてもよい。このようなリチウムリン酸化合物は、例えば、 元素M1、元素M2を適切に選択することにより、より特性の優れた正極活物質を得るこ とができる。例えば、LiとPとNi(元素M1)とCu(元素M2)とOとを含有する アモルファス状態のリチウムリン酸化合物で正極活物質膜40を構成した場合には、充放 電サイクル特性をより向上することができる。例えば、LiとPとNi(元素M1)とP d(元素M2)とOとを含有するアモルファス状態のリチウムリン酸化合物で正極活物質 膜40を構成した場合には、容量をより向上できると共に充放電サイクル特性をより向上 することができる。例えば、LiとPとNi(元素M1)とAu(元素M2)とOとを含 有するアモルファス状態のリチウムリン酸化合物で正極活物質膜40を構成した場合には、 な放電サイクル特性をより向上することができる。

【0045】

正極活物質膜40は、LiとPとNi、Co、Mn、Au、Ag、Pdから選ばれる何 れかの元素M1と、Ni、Co、Mn、Au、Ag、Pd、Cuから選ばれる少なくとも 1種の元素M2(ただしM1 M2である)とB、Mg、Al、Si、Ti、V、Cr、 Fe、Zn、Ga、Ge、Nb、Mo、In、Sn、Sb、Te、W、Os、Bi、Gd 、Tb、Dy、Hf、Ta、Zrから選ばれる少なくとも1種の添加元素M3とOとを含 有するアモルファス状態のリチウムリン酸化合物で構成されていてもよい。

【0046】

正極活物質膜40は、LiとPとNi、Co、Mn、Au、Ag、Pd、Cuから選ば れる何れかの元素M1'とB、Mg、Al、Si、Ti、V、Cr、Fe、Zn、Ga、 Ge、Nb、Mo、In、Sn、Sb、Te、W、Os、Bi、Gd、Tb、Dy、Hf

10

20

【0047】

添加元素M3は、これのみをリチウムリン酸化合物に含有させても、そのリチウムリン 酸化合物は正極活物質として使用できない。すなわち、正極活物質膜40をLiとPと添 加元素M3のみとOとを含有するアモルファス状態のリチウムリン酸化合物で構成した場 合には、電池駆動しない。一方、添加元素M3は、元素M1および元素M2(M1 M2) または元素M1'と共にリチウムリン酸化合物に含有させた場合、そのリチウムリン酸 化合物は、正極活物質として使用でき、さらに添加する元素種の選択によっては、正極活 物質としての特性を向上できる。すなわち、添加元素M3を元素M1および元素M2(M 1 M2)または元素M1'と共にリチウムリン酸化合物に含有させたもので正極活物質 膜40を構成した場合でも、電池駆動に影響を与えない。さらに、添加元素M3を元素M 1および元素M2(M1 M2)または元素M1'と共にリチウムリン酸化合物に含有さ せたもので正極活物質膜40を構成した場合、添加する元素種の選択によっては、容量や サイクル特性などの向上や内部インピーダンスの低下などの効果がある。 【0048】

添加元素M3として好ましいものは、例えば、以下のものが考えられる。すなわち、− 般にイオン伝導は、導伝性を含む構造を乱すことでイオンが動きやすくなると考えられて いる。実際にLi₃PО₄の固体電解質は、窒素をドープしてLi₃PО₃₇N₀₃のように 一部を置換することでイオン伝導度が上昇することが知られている。一方、結晶材料の場 合にはイオンの伝導経路をできるだけ整った構造(結晶)で形成するが、その結晶の内部 の材料を一部置換して空孔を生じさせ、イオン伝導を上げる手法がとられている。したが って、固体電解質内部でリチウムが移動しやすい経路を増やすという観点では共通する面 があり、結晶材料でイオン伝導度を向上させた材料はアモルファス材料でも有効なことが 多く、そのようなイオン伝導度を向上させた材料の添加物(添加元素)は本技術のアモル ファス正極活物質(アモルファス状態のリチウムリン酸化化合物)でも同様に有効である ことが考えられる。結晶材料でイオン伝導度を向上させた材料であるリチウム酸化物固体 電解質材料としては、Li_{1.3}Al_{0.3}Ti_{1.7}(PO₄)₃(LATP)の他に、Li_{0.5}L a_{0.5}TiO₃、Li_{3.5}Zn_{0.35}GeO₄など多くの材料が挙げられる。したがって、これ らの材料の添加元素であるA1、Ti、La、Zn、Ge、その他Si、V、W、Ga、 Ta、Zr、Cr、Pdは、本技術のアモルファス正極活物質でも同様にイオン伝導度な どの特性をより改善でき有効であることが考えられる。

【0049】

例えば、LiとPとNi(元素M1')と、AlおよびTiの少なくとも1種(添加元 素M3)とOとを含有するアモルファス状態のリチウムリン酸化合物で正極活物質膜40 を構成した場合には、内部インピーダンスを低下することができると共に、優れた高レー トの放電特性が得られる。内部インピーダンスが低下することにより、高速放電時の電位 変化が少なくなり、より高電位の電池を実現できる。さらに、内部インピーダンスが低い ことで、放電エネルギーと充電エネルギーとの比(放電エネルギー/充電エネルギー)が 1に近づくことにより、エネルギーロスが低下しエネルギー効率が高くなり、かつ、充放 電時のジュール熱が低下するために発熱が抑えられる効果が見込まれる。

【 0 0 5 0 】

この正極活物質膜40は、結晶質相が含まれず、完全にアモルファス単相の薄膜である。この正極活物質膜40が、アモルファス単相であることは、透過型電子顕微鏡(TEM; transmission electron microscope)で断面を観察することで確認できる。すなわち、この正極活物質膜40を透過型電子顕微鏡(TEM)で断面を観察すると、そのTEM像において、結晶粒が存在しない状態を確認できる。また、電子線回折像からも確認できる

10

20

30

固体電解質膜50を構成する材料として、リン酸リチウム(Li₃ PO₄)、リン酸リチ ウム(Li₃ PO₄)に窒素を添加したLi₃ PO_{4-x}N_x(一般に、Li PONと呼ばれて いる。)、Li_xB₂O_{3-y}N_y、Li₄SiO₄-Li₃PO₄、Li₄SiO₄-Li₃VO₄等 を使用することができる。

【0052】

(負極電位形成層64)

負極電位形成層64としては、例えば、Mn、Co、Fe、P、Ni、Siのうち1種 以上を含む酸化物を用いることができる。この酸化物としては、より具体的には、LiC oO₂、LiMn₂O₄などが挙げられる。この固体電解質電池では、製造時点に、負極活 物質膜を形成することなく、これに換えて負極電位形成層64を形成している。負極活物 質は充電と共に負極側に生じる。負極側に生じるのは、Li金属または固体電解質膜50 の負極側界面のLiが過剰に含まれる層(以下、Li過剰層という)である。この過剰に 堆積されるLi(Li過剰層)を負極活物質として利用しながら、充放電特性を損なわず に充放電の繰返しに対して高い耐久性を有する。

【0053】

負極電位形成層64は、電池の初期充電の際にLiを一部取り込むものの、その後の充 放電の過程でLi含有量が一定値に保たれ、且つ、これによりLiの負極側集電体膜への 拡散を抑え、負極側集電体膜70の劣化を抑えることによって、繰り返し充放電特性を極 めて良好にし、更に、Liの負極側集電体膜70へ拡散による充電量の損失を最小限に抑 える効果がある。もし、負極電位形成層64がなければ、Liが負極側集電体膜70へ拡 散してしまい、電池の充放電に伴うLiの総量を一定値に保持することができないので、 充放電特性が劣化してしまう。

20

10

【0054】

なお、正極活物質膜40の厚さに対応して、固体電解質膜50の負極側界面に形成され るLi過剰層の厚さは変化するが、負極電位形成層64は、固体電解質膜50の負極側界 面に形成されるLi過剰層に対する保護膜として十分に機能すればよいので、負極電位形 成層64の膜厚は、Li過剰層の厚さには直接関係せず、正極活物質膜40の厚さに依存 しない。

【0055】

この固体電解質電池では、負極活物質の容量が正極活物質内のLi量よりも少ない場合 30 には、負極活物質に入りきらないLiが界面に析出してLi過剰層をなしこれが負極活物 質として機能することを利用する。この固体電解質電池では、負極電位形成層64の膜厚 を正極活物質膜40よりも十分に薄く形成して、充電されていない状態では実質的に負極 活物質が存在しない状態としている。

[0056]

負極電位形成層64は、負極活物質として利用される材料でもよいので、この場合には 、より正確にいえば、一部は負極活物質として機能し、残りはLi過剰層に対する保護膜 として機能する。負極電位形成層64の膜厚が正極活物質膜40よりも十分に薄い場合に は、その殆どが保護膜として使用される。

【0057】

40

この固体電解質電池では、負極電位形成層64を正極活物質膜40の膜厚よりも十分に 薄く形成して、界面に析出してなり負極活物質として機能するLi過剰層が、電池駆動の 半分以上を担っている構成を有している。

【 0 0 5 8 】

(負極側集電体膜70)

負極側集電体膜70を構成する材料としては、Cu、Mg、Ti、Fe、Co、Ni、 Zn、A1、Ge、In、Au、Pt、Ag、Pd等、又は、これらの何れかを含む合金 を使用することができる。

【0059】

(無機絶縁膜20)

無機絶縁膜20を構成する材料は、吸湿性が低く耐湿性を有する膜を形成することがで きる材料であればよい。このような材料として、Si、Cr、Zr、Al、Ta、Ti、 Mn、Mg、Znの酸化物又は窒化物又は硫化物の単体、或いは、これらの混合物を使用 することができる。より具体的には、Si₃N₄、SiO₂、Cr₂O₃、ZrO₂、Al₂O₃ 、TaO₂、TiO₂、Mn₂O₃、MgO、ZnS等、或いは、これらの混合物を使用する

[0060]

(固体電解質電池の製造方法)

上述した固体電解質電池は例えば以下のようにして製造する。

【0061】

まず、基板10上に無機絶縁膜20を形成する。次に、無機絶縁膜20上に、正極側集 電体膜30、正極活物質膜40、固体電解質膜50、負極電位形成層64、負極側集電体 膜70を順次形成し、これにより、積層体が形成される。次に、この積層体及び無機絶縁 膜20の全体を覆うように、例えば、紫外線硬化樹脂からなる全体保護膜80が、基板(有機絶縁基板)10の上に形成される。以上の一連の工程によって、本技術の第1の実施 の形態による固体電解質電池を形成することができる。

[0062]

(薄膜の形成方法)

無機絶縁膜20、正極側集電体膜30、正極活物質膜40、固体電解質膜50、負極電 位形成層64、負極側集電体膜70の形成方法について説明する。

【 0 0 6 3 】

各薄膜は、例えば、PVD(Physical Vapor Deposition:物理気相成長)法あるいは CVD(Chemical Vapor Deposition:化学気相成長)法などの気相法により形成できる 。また、電気めっき、無電界めっき、塗布法、ゾル - ゲル法などの液相法により形成でき る。また、SPE(固相エピタキシー)法、LB(Langmuir-Blodgett:ラングミュアー ブロジェット)法などの固相法により形成することができる。

[0064]

PVD法は、薄膜化する薄膜原料を熱やプラズマなどのエネルギーで一旦蒸発・気化し、基板上に薄膜化する方法である。 PVD法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、MBE(分子線エキピタシー)法、レーザアブレーション法等が挙げられる。

【0065】

CVD法は、ガスとして供給される薄膜の構成材料に対して、熱、光、プラズマなどの エネルギーを加えて原料ガス分子の分解・反応・中間生成物を形成し、基板表面での吸着 、反応、離脱を経て薄膜を堆積させる方法である。

【0066】

C V D 法としては、例えば、熱C V D 法、 M O C V D (Metal Organic Chemical Chemi cal Vapor Deposition: 有機金属気相成長) 法、 R F プラズマC V D 法、光C V D 法、レ ーザC V D 法、 L P E (Liquid Phase Epitaxy) 法などが挙げられる。

【0067】

上述の薄膜形成方法によって、所望の構成の無機絶縁膜20、正極側集電体膜30、正 極活物質膜40、固体電解質膜50、負極電位形成層64、負極側集電体膜70を形成す ることは、当業者にとって容易である。すなわち、当業者は、薄膜原料、薄膜形成方法、 薄膜形成条件等を適宜選択することによって、所望の構成の無機絶縁膜20、正極活物質 膜40、固体電解質膜50、負極電位形成層64、負極側集電体膜70を容易に形成でき る。

【0068】

(効果)

本技術の第1の実施の形態では、正極活物質膜40は、アモルファス状態の、LiとP とNi、Co、Mn、Au、Ag、Pdから選ばれる何れかの元素M1とOとを含むリチ 50

10

30

ウムリン酸化合物で構成する。これにより、優れた特性を有する固体電解質電池を得ることができる。

【0069】

また、本技術の第1の実施の形態では、正極活物質膜40はアニールレスでも正極活物 質として機能する。これにより、基板10として高価な耐熱ガラスを用いる必要がないの で、製造コストも低減することができる。

【 0 0 7 0 】

2.第2の実施の形態

本技術の第2の実施の形態による固体電解質電池について説明する。この固体電解質電 池は、例えば充電および放電可能な固体電解質二次電池である。図2は、本技術の第2の 実施の形態による固体電解質電池の構成を示す。図2Aは、この固体電解質電池の平面図 である。図2Bは、図2Aの線X-Xに沿った断面を示す断面図である。図2Cは、図2 Aの線Y-Yに沿った断面を示す断面図である。

【0071】

この固体電解質電池は、基板10の上に無機絶縁膜20が形成され、無機絶縁膜20上に、正極側集電体膜30、正極活物質膜40、固体電解質膜50、負極活物質膜60、負極側集電体膜70がこの順で積層された積層体を有する。この積層体および無機絶縁膜2 0の全体を覆うように例えば、紫外線硬化樹脂から構成された全体保護膜80が形成されている。なお、全体保護膜80上に無機絶縁膜20が形成されていてもよい。この固体電解電池は、正極側層と負極側層と、正極側層と負極側層との間にある固体電解質層とを備えたものである。この固体電解質電池では、正極側層は、固体電解質層を境界として固体電解質層である正極化関係電体膜30とを含む。この固体電解質電池では、負極側層は、固体電解質層を境界として固体電解質層より負極側にある。図2に示す例では、正極側層は、固体電解質層を境界として固体電解質層より負極側にある。図2に示す例では、負極側層は、固体電解質層を境界として固体電解質層を境界として固体電解質層を境界として固体電解質層をした個人のと、正極側

[0072]

基板10、無機絶縁膜20、正極活物質膜40、固体電解質膜50、負極側集電体膜7 0および全体保護膜80は、第1の実施の形態と同様であるので詳細な説明を省略する。 負極活物質膜60は以下の構成を有する。

【0073】

(負極活物質膜)

負極活物質膜60を構成する材料は、リチウムイオンを吸蔵および離脱させ易く、負極 活物質膜に多くのリチウムイオンを吸蔵および離脱させることが可能な材料であればよい 。このような材料として、Sn、Si、Al、Ge、Sb、Ag、Ga、In、Fe、C o、Ni、Ti、Mn、Ca、Ba、La、Zr、Ce、Cu、Mg、Sr、Cr、Mo 、Nb、V、Zn等の何れかの酸化物を使用することができる。また、これら酸化物を混 合して用いることもできる。

【0074】

負極活物質膜60の材料は具体的には、例えば、シリコン - マンガン合金(Si - Mn)、シリコン - コバルト合金(Si - Co)、シリコン - ニッケル合金(Si - Ni)、 五酸化ニオブ(Nb₂O₅)、五酸化バナジウム(V₂O₅)、酸化チタン(TiO₂)、酸 化インジウム(In₂O₃)、酸化亜鉛(ZnO)、酸化スズ(SnO₂)、酸化ニッケル (NiO)、Snが添加された酸化インジウム(ITO)、Alが添加された酸化亜鉛(AZO)、Gaが添加された酸化亜鉛(GZO)、Snが添加された酸化スズ(ATO) 、F(フッ素)が添加された酸化スズ(FTO)等である。また、これらを混合して用い ることもできる。また、負極活物質膜60を構成する材料として、Li金属を用いてもよ い。

[0075]

10

20

30

(固体電解質電池の製造方法)

上述した固体電解質電池は例えば以下のようにして製造する。

【0076】

まず、基板10上に無機絶縁膜20を形成する。次に、無機絶縁膜20上に、正極側集 電体膜30、正極活物質膜40、固体電解質膜50、負極活物質膜60、負極側集電体膜 70を順次形成し、これにより、積層体が形成される。次に、この積層体及び無機絶縁膜 20の全体を覆うように、例えば、紫外線硬化樹脂からなる全体保護膜80が、基板10 の上に形成される。以上の一連の工程によって、本技術の第2の実施の形態による固体電 解質電池を形成することができる。

【0077】

(効果)

10

第2の実施の形態は、第1の実施の形態と同様の効果を有する。

【実施例】

【0078】

以下、実施例により本技術を具体的に説明するが、本技術はこれらの実施例のみに限定 されるものではない。

【 0 0 7 9 】

〔参考例1、実施例1~実施例6、比較例1~10〕

<参考例1>

参考例1として、Li_xCu_yPO₄を正極活物質膜とした固体電解質電池について説明 20 する。図1に示す構成を有する固体電解質電池を作製した。基板10として厚さ1.1m mのポリカーボネート(PC)基板を用いた。基板10上に無機絶縁膜20として、SC Z(SiO₂-Cr₂O₃-ZrO₂)を成膜した。

[0080]

無機絶縁膜20上に金属マスクを配して、所定領域に正極側集電体膜30として、正極 活物質膜40、固体電解質膜50、負極電位形成層64、負極側集電体膜70の順に成膜 し積層体を形成した。正極側集電体膜30としてTi膜、正極活物質膜40としてはLi _xCu_yPO₄膜、固体電解質膜50としてLi₃PO_{4-x}N_x膜、負極電位形成層64として LiCoO₂膜、負極側集電体膜70としてTi膜を形成した。 【0081】

30

無機絶縁膜20および積層体を構成する各薄膜の成膜条件は、以下のようにした。なお 、基板10は基板加熱をせず、基板ホルダーを20 で水冷し成膜を行った。

【 0 0 8 2 】

(無機絶縁膜20)

無機絶縁膜20の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アネルバ社製、C-3103)

ターゲット組成: SCZ(SiO₂ 35at%(アトミックパーセント) + Cr₂O₃ 30at% + ZrO₂ 35at%)

ターゲットサイズ: 6インチ

スパッタリングガス: Ar100sccm、0.13Pa

スパッタリングパワー:1000W(RF)

【0083】

(正極側集電体膜30)

正極側集電体膜30の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型)

ターゲット組成:Ti

ターゲットサイズ: 4インチ

スパッタリングガス:Ar70sccm、0.45Pa

スパッタリングパワー:1000W(DC)

膜厚:100nm

[0084](正極活物質膜40) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:Li₃PO₄およびCuのコスパッタ ターゲットサイズ: 4インチ スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.20Pa スパッタリングパワー:L i_3 PO₄600W(RF)、Cu50W(DC) 膜厚:350nm 10 [0085](固体電解質膜50) 固体電解質膜50の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:Li₃PO₄ ターゲットサイズ: 4インチ スパッタリングガス: A r 2 0 s c c m + N₂ 2 0 s c c m、0.26 P a スパッタリングパワー:600W(RF) 膜厚:400nm [0086]20 (負極電位形成層64) 負極電位形成層64の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:LiCo〇。 ターゲットサイズ: 4インチ スパッタリングガス: (Ar80%+O220%混合ガス)20sccm、0.20Pa スパッタリングパワー:300W(RF) 膜厚:10nm [0087](負極側集電体膜70) 30 負極側集電体膜70の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:Ti ターゲットサイズ: 4インチ スパッタリングガス: Ar70sccm、0.45Pa スパッタリングパワー:1000W(DC) 膜厚: 2 0 0 n m [0088]最後に、全体保護膜80を、紫外線硬化樹脂(ソニーケミカル&インフォメーションデ バイス製、型番SK3200)を用いて形成し、さらに紫外線硬化樹脂上に、上記と同様 40 の成膜条件で無機絶縁膜を形成した。以上により、参考例1の固体電解質電池を得た。す なわち、下記の膜構成を有する参考例1の固体電解質電池を得た。 [0089](固体電解質電池の膜構成) ポリカーボネート基板 / S C Z (5 0 n m) / T i (1 0 0 n m) / L i _x C u _v P O₄(350 nm) / Li₃PO_{4-x}N_x(400 nm) / LiCoO₂(10 nm) / Ti(20 0 n m) / 紫外線硬化樹脂(20µm) / SCZ(50 n m) [0090]「正極活物質膜40の分析1 (XPS分析) 正極活物質膜40の分析を以下のようにして行った。正極活物質膜40の成膜条件と同 50

ーの成膜条件で、正極活物質膜40と同様の単層膜を石英ガラス上に成膜した。そして、 この単層膜の組成分析をX線光電子分光法(X線光電子分光法(XPS);X-ray photoe lectron spectroscopy)により行った。その結果、この単層膜の組成はLi_{2.2}Cu_{2.2}P O₄₀であった。

[0091]

(T E M 分析)

また、この単層膜の断面を透過型電子顕微鏡(TEM; transmission electron micros cope)で観察した。測定結果を図3に示す。図3Aは透過型電子顕微鏡により観察したTEM像を示し、図3Bは電子回折図形を示す。

[0092]

10

20

図3Aに示すようにTEM像において結晶粒が確認されず、図3Bに示すように電子回 折図形は、アモルファスを示すハローリングが観察された。これにより、正極活物質膜4 0は、アモルファスであることを確認できた。

【0093】

(充放電試験)

参考例1の固体電解質電池の充放電試験を行った。充電は充電電流50µA、充電カットオフ電圧5Vで行った。放電は放電電流50µA、放電カットオフ電圧2Vで行った。 なお、50µAは5C(0.2時間で理論容量を充放電する電流値)に相当する。図4に 測定結果を示す。なお、図4において、線c_xは充電曲線を示す。添字×は奇数字であり 、線c_xが「(x+1)/2」回目の充電の充電曲線であることを示す。線d_yは放電曲線 を示す。添字yは偶数字であり、線d_yが初期充電後のy/2回目の放電の放電曲線であ ることを示す。

[0094]

図4に示すように、参考例1の固体電解質電池では、3V付近での放電電位の平坦性に 優れていた。また、この正極活物質は充放電の繰り返しに対しても良好な特性を示した。 【0095】

< 実施例 1 >

図1に示す構成を有する固体電解質電池を作製した。基板10として厚さ1.1mmの ポリカーボネート(PC)基板を用いた。基板10上に無機絶縁膜20として、SiNを 成膜した。

【0096】

無機絶縁膜20上に金属マスクを配して、所定領域に、正極側集電体膜30、正極活物 質膜40、固体電解質膜50、負極電位形成層64、負極側集電体膜70の順に成膜し積 層体を形成した。具体的には、正極側集電体膜30としてTi膜、正極活物質膜40とし てLi_xNi_yPO_z膜、固体電解質膜50としてLi₃PO_{4-x}N_x膜、負極電位形成層64 としてLiCoO₂膜、負極側集電体膜70としてTi膜を形成した。

[0097]

無機絶縁膜20および積層体を構成する各薄膜の成膜条件は、以下のようにした。なお 、基板10は基板加熱をせずに成膜を行った。

【0098】

(無機絶縁膜20)

無機絶縁膜20の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アネルバ社製、C-3103)

ターゲット組成:Si

ターゲットサイズ: 6インチ

スパッタリングガス: A r 6 0 s c c m、N₂ 3 0 s c c m、0.11 P a

スパッタリングパワー: 1 5 0 0 W (D C)

【0099】

(正極側集電体膜30)

正極側集電体膜30の成膜は、下記のスパッタリング装置および成膜条件で行った。 50

30

スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:Ti ターゲットサイズ: 4インチ スパッタリングガス: Ar70sccm、0.45Pa スパッタリングパワー:1000W(DC) 膜厚:100nm [0100](正極活物質膜40) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 10 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:Li₃PО₄およびNiのコスパッタ ターゲットサイズ: 4インチ スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.20Pa スパッタリングパワー: L i_3 P O₄ 6 0 0 W (R F)、N i 1 5 0 W (D C) 膜厚:340nm [0101](固体電解質膜50) 固体電解質膜50の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) 20 ターゲット組成:LiュPO₄ ターゲットサイズ: 4インチ スパッタリングガス:Ar20sccm+N。 20sccm、0.26Pa スパッタリングパワー:600W(RF) **膜厚:400nm** [0102](負極電位形成層64) 負極電位形成層64の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:LiCoO。 30 ターゲットサイズ: 4インチ スパッタリングガス:(Ar80%+〇。20%混合ガス) 20sccm、0.20P а スパッタリングパワー: 300W(RF)膜厚:10nm [0103] (負極側集電体膜70) 負極側集電体膜70の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:Ni 40 ターゲットサイズ: 4インチ スパッタリングガス: Ar70sccm、0.45Pa スパッタリングパワー:1000W(DC) 膜厚: 2 0 0 n m [0104]最後に、全体保護膜80を、紫外線硬化樹脂(ソニーケミカル&インフォメーションデ バイス製、型番SK3200)を用いて形成し、さらに全体保護膜80上に無機絶縁膜を 形成した。以上により、実施例1の固体電解質電池を得た。すなわち、下記の膜構成を有 する実施例1の固体電解質電池を得た。 [0105](固体電解質電池の膜構成)

(16)

ポリカーボネート基板 / S i N (5 0 n m) / T i (1 0 0 n m) / L i _x N i _y P O_z (3 4 0 n m) / L i ₃ P O_{4-x} N _x (4 0 0 n m) / L i C o O₂ (1 0 n m) / N i (2 0

0 n m) / 紫外線硬化樹脂(20µm) / SiN(50 n m)

[0106] [正極活物質膜40の分析] (XPS分析) 正極活物質膜40の分析を以下のようにして行った。正極活物質膜40の成膜条件と同 一の成膜条件で、正極活物質膜40と同様の単層膜を石英ガラス上に成膜した。そして、 この単層膜の組成分析をX線光電子分光法(X線光電子分光法(XPS);X-ray photoe lectron spectroscopy)により行った。その結果、この単層膜の組成はLi。。Ni₄ ₃P 0,であった。 [0107](XRD分析) XRD分析からは明確なピークが得られず、結晶性は高くないことが示された。製法が 参考例1とほぼ同等であることから、この材料はアモルファスであると考えられる。 [0108](TEM分析) また、この単層膜を透過型顕微鏡(TEM)で観察したところ、参考例1と同様、TE M像において結晶粒が確認されず、電子回折図形はアモルファスを示すハローリングが観 察された。これにより、正極活物質膜40は、アモルファスであることを確認できた。 [0109](充放電試験) 実施例1の固体電解質電池の充放電試験を行った。充電は充電電流50µA、充電カッ トオフ電圧4.6Vで行った。放電は放電電流50µA、放電カットオフ電圧2Vで行っ た。なお、50µAは6C(0.1時間で理論容量を充放電する電流値)に相当する。図 5に測定結果を示す。なお、図5において、線cnは充電曲線を示す。添字nは、線cn がn回目の充電の充電曲線であることを示す。線dkは放電曲線を示す。添字kは、線d kが初期充電後の k 回目の放電の放電曲線であることを示す。(以下の図 6 ~ 図 7 につい ても同様。) [0110]図5に示すように、実施例1の固体電解質電池では、3V以上の電位で電位変化の直進 性に優れ、この正極活物質は充放電の繰り返しに対しても良好な特性を示した。 [0111]< 実施例 2 > 正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例1と同様にして、固体 電解質電池を作製した。 [0112](正極活物質膜40) 正極活物質膜40の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:Li₃PO₄およびMnのコスパッタ ターゲットサイズ: 4インチ スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.20Pa スパッタリングパワー:L i_3 PO₄600W(RF)、Mn200W(DC) 膜厚:320nm [0113]Li、Mn、PO,中のMnの組成は、参考例1におけるLi。っCuっっPO4中のCuの 組成と同程度である。参考例1と実施例1の正極活物質のスパッタレートはほぼ同一であ る。 [0114]

10

30

20

40

(充放電試験)

実施例2の固体電解質電池について、実施例1と同様にして、充放電試験を行った。測 定結果を図6に示す。

【0115】

図6に示すように、充放電電位が得られており、Li_xMn_yPO_zが、正極活物質として機能することが示された。充放電の繰り返しによって、電位の低下があり、充放電の繰り返しに対する耐久性が高いとはいえないが、数回の充放電用途に適する。

【0116】

< 実施例 3 >

正極活物質膜40を以下の成膜条件で成膜した点以外は、実施例1と同様にして、固体 ¹⁰ 電解質電池を作製した。

【0117】

(正極活物質膜)

正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。

スパッタリング装置(アルバック社製、SMO-01特型)

ターゲット組成:Li₃PO₄およびAgのコスパッタ

ターゲットサイズ: 4インチ

スパッタリングガス: Ar(80%) + O₂(20%) 20sccm、0.20Pa

スパッタリングパワー:Li₃PO₄600W(RF)、Ag35W(DC)

膜厚:320nm

[0118]

L i _x A g _y P O _z中の A g の組成は、参考例 1 における L i _{2.2} C u _{2.2} P O ₄中の C u の 組成と同程度である。参考例 1 と実施例 2 の正極活物質のスパッタレートはほぼ同一であ っ

る。

- 【0119】
- (充放電試験)

実施例3の固体電解質電池について、実施例1と同様にして、充放電試験を行った。測 定結果を図7に示す。

【0120】

図7に示すように、初回放電では高い容量が得られた。また、充放電可能であり、放電 ³⁰ 電位に3V近い電位のプラトーが得られている。充放電の繰り返しに対する耐久性は高い とはいえないが、数回の充放電用途に適する。

【0121】

< 実施例4 >

正極活物質膜40を以下の成膜条件で成膜した点以外は、実施例1と同様にして、固体 電解質電池を作製した。

【0122】

(正極活物質膜)

正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。

スパッタリング装置(アネルバ社製、 C - 3 1 0 3)

40

20

ターゲット組成: L i 3 P O4 および L i C o O2 のコスパッタ

ターゲットサイズ: 6インチ

スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.10Pa スパッタリングパワー:Li₃PO₄1000W(RF)、LiCoO₂1000W(RF 、

)

膜厚: 2 5 0 n m

【0123】

L i _x C o _y P O _z 中の C o の組成は、参考例 1 における L i _{2.2} C u _{2.2} P O ₄ 中の C u と 同程度である。

【0124】

(充放電試験)

実施例4の固体電解質電池について、充放電試験を行った。なお、充電は充電電流50 µA、充電カットオフ電圧5.0Vで行った。放電は放電電流50µA、放電カットオフ 電圧2Vで行った。なお、50µAは6C(0.1時間で理論容量を充放電する電流値) に相当する。測定結果を図8に示す。

【0125】

図8に示すように3V以上の高い放電電位、10回の繰り返し充放電まで劣化のほとん どない良好な充放電特性が得られた。

[0126**]**

< 実施例 5 >

10

20

40

正極活物質膜40を以下の成膜条件で成膜した点以外は、実施例1と同様にして、固体 電解質電池を作製した。

【0127】

(正極活物質膜)

正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。

スパッタリング装置(アネルバ社製、C-3103)

ターゲット組成: L i₃ P O₄および A u のコスパッタ

ターゲットサイズ: 6インチ

スパッタリングガス: $Ar(80\%) + O_{2}(20\%) = 20 s c c m < 0 . 10 P a$

スパッタリングパワー:Li₃PO₄1000W(RF)、Au170W(DC)

膜厚: 2 5 0 n m

【0128】

Li_xAu_yPO_z中のAuの組成は、参考例1におけるLi_{2.2}Cu_{2.2}PO₄中のCuと 同程度となるようにAuのスパッタパワーを調整した。

【0129】

(充放電試験)

実施例5の固体電解質電池について、実施例4と同様にして、充放電試験を行った。測 定結果を図9に示す。

【0130】

図9に示すように、3V以上の高い放電電位、80回の繰り返し放電まで容量劣化の少 30 ない良好な結果が得られた。

【0131】

< 実施例 6 >

正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例1と同様にして、固体 電解質電池を作製した。

【0132】

(正極活物質膜)

正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。

スパッタリング装置(アネルバ社製、C-3103)

ターゲット組成:Li₃PO₄およびPdのコスパッタ

ターゲットサイズ: 6インチ

スパッタリングガス: Ar(80%) + O₂(20%) 20sccm、0.10Pa

スパッタリングパワー:Li₃PO₄1000W(RF)、Pd65W(DC)

膜厚: 2 3 8 n m

【0133】

Li_xPd_yPO_z中のPdの組成は、参考例1におけるLi_{2.2}Cu_{2.2}PO₄中のCuと 同程度となるようにPdのスパッタパワーを調整した。

【0134】

(充放電試験)

実施例6の固体電解質電池について、実施例4と同様にして、充放電試験を行った。測 50

(19)

定結果を図10に示す。

【0135】

図10に示すように、放電電位は3V以上の部分と2V以上の部分に分かれるが、容量 は充分高く、実用的な電池が得られた。また、充放電の繰り返しに対する耐久性も高い。 【0136】

(参考例1および実施例1~実施例6の正極活物質容量)

なお、正極活物質容量の比較を容易にするため、参考例1および実施例1~実施例6に ついて、1回目の充放電の放電容量と正極活物質膜の膜密度とに基づき計算した初期正極 活物質容量を表1に示す。なお、表1中のLiMPOは、LiとPと元素M(Ni、Co 、Mn、Au、Ag、PdまたはCu)とOとを含むリチウムリン酸化合物を略称したも のである。

[0137**]**

【表1】

	LiMPO	初期正極活物質容量(mAh/g)
参考例1	LiCuPO	129
実施例1	LiNiPO	250
実施例2	LiMnPO	80
実施例3	LiAgPO	120
実施例4	LiCoPO	190
実施例5	LiAuPO	135
実施例6	LiPdPO	166

【0138】

<比較例1>

正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例1と同様にして、固体 電解質電池を作製した。

【0139】

(正極活物質膜)

正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。

スパッタリング装置(アネルバ社製、 C - 3 1 0 3)

ターゲット組成:Li₃PO₄およびMgOのコスパッタ

ターゲットサイズ: 6インチ

スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.10Pa

スパッタリングパワー: L i $_{3}$ P O $_{4}$ 8 0 0 W (R F) 、 M g O 1 4 0 0 W (R F)

膜厚:180nm

- 【0140】
- <比較例2>

正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例1と同様にして、固体 電解質電池を作製した。

【0141】

(正極活物質膜)

正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。

- スパッタリング装置(アネルバ社製、C-3103)
- ターゲット組成:Li₃PO₄およびVのコスパッタ

ターゲットサイズ: 6インチ

スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.10Pa

スパッタリングパワー:Li₃PO₄1000W(RF)、V650W(RF)

膜厚:170nm

<比較例3>

正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例1と同様にして、固体 電解質電池を作製した。 10

20

30

[0142](正極活物質膜) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アネルバ社製、C-3103) ターゲット組成:Li3PO4およびCrのコスパッタ ターゲットサイズ: 6インチ スパッタリングガス: Ar(80%) + O₂(20%) 20sccm、0.10Pa スパッタリングパワー:Li₃PO₄1000W(RF)、Cr350W(RF) 膜厚:190nm 10 [0143] <比較例4> 正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例1と同様にして、固体 電解質電池を作製した。 [0144](正極活物質膜) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アネルバ社製、C-3103) ターゲット組成: L i ₃ P O ₄および Z n O のコスパッタ ターゲットサイズ: 6インチ 20 スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.10Pa スパッタリングパワー:Li₃PO₄1000W(RF)、 ΖnO780W(RF) 膜厚:240nm [0145]<比較例5> 正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例1と同様にして、固体 電解質電池を作製した。 [0146](正極活物質膜) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 30 スパッタリング装置(アネルバ社製、C-3103) ターゲット組成:Li₃PO₄およびGa₂O₃のコスパッタ ターゲットサイズ: 6インチ スパッタリングガス: Ar(80%) + O₂(20%) 20 s c c m、0.10 P a スパッタリングパワー:Li₃PO₄1000W(RF)、Ga₂O₃700W(RF) 膜厚: 2 2 0 n m [0147] <比較例6> 正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例1と同様にして、固体 電解質電池を作製した。 40 [0148] (正極活物質膜) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アネルバ社製、C-3103) ターゲット組成:Li₃PO₄およびIn₂O₃のコスパッタ ターゲットサイズ: 6インチ スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.10Pa スパッタリングパワー:Li₃PO₄1000W(RF)、In₂O₃470W(RF) 膜厚: 2 6 5 n m [0149] 50 <比較例7>

(21)

正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例1と同様にして、固体 電解質電池を作製した。 [0150] (正極活物質膜) スパッタリング装置(アネルバ社製、C-3103) ターゲット組成:LiュPO₄およびSnO₂のコスパッタ ターゲットサイズ: 6インチ スパッタリングガス: Ar(80%) + O₂(20%) 20 s c c m、0.10 P a スパッタリングパワー: $Li_3PO_41000W(RF)$ 、 SnO₂200W(RF) 10 膜厚: 2 4 0 n m [0151]<比較例8> 正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例1と同様にして、固体 電解質電池を作製した。 [0152] (正極活物質膜) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アネルバ社製、C-3103) ターゲット組成:Li₃PO₄およびSbのコスパッタ 20 ターゲットサイズ: 6インチ スパッタリングガス: Ar(80%) + O₂(20%) 20sccm、0.10Pa スパッタリングパワー:L i ₃ P O₄ 1 0 0 0 W (R F) 、 S b 7 0 W (R F) 膜厚: 2 3 0 n m [0153]<比較例9> 正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例1と同様にして、固体 電解質電池を作製した。 [0154]正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 30 (正極活物質膜) スパッタリング装置(アネルバ社製、C-3103) ターゲット組成:LiュPO₄およびHfO₂のコスパッタ ターゲットサイズ: 6インチ スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.10Pa スパッタリングパワー:Li₃PO₄1000W(RF)、HfO₂1000W(RF) 膜厚:160nm **[**0155**]** <比較例10> 正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例1と同様にして、固体 40 電解質電池を作製した。 [0156] (正 極 活 物 質 膜) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アネルバ社製、C-3103) ターゲット組成:Li₃PO₄およびWのコスパッタ ターゲットサイズ: 6インチ スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.10Pa スパッタリングパワー:L i ₃ P O₄ 1 0 0 0 W (R F)、W 1 5 0 W (R F) 膜厚: 2 3 0 n m 50 [0157]

比較例1~比較例10について、実施例1と同様にして、充放電試験を行った結果、いずれも容量が極端に小さく、正極容量に換算すると1-10mAh/gにとどまった。この容量はLiPONのみを電極ではさんで充放電試験を行った結果とほぼ同一であった。したがって、LiとMとPとOとを含むリチウムリン酸化合物(Mは、Mg、V、Cr、Zn、Ga、In、Sn、Sb、HfまたはWである)は、正極活物質としては機能しないことが分かった。

【0158】

(試験例1)

正極活物質膜を構成する、Li_xNi_yPO_zの組成比y、zを変えた複数のサンプル(固体電解質電池)を作製し、このサンプルの容量を測定した。

【0159】

サンプルの膜構成は、実施例1と同様の構成とした。すなわち、ポリカーボネート基板 /SiN(50nm)/Ti(100nm)/Li_xNi_yPO_z(340nm)/Li₃P O_{4-x}N_x(400nm)/LiCoO₂(10nm)/Ni(200nm)/紫外線硬化 樹脂(20µm)/SiN(50nm)

[0160]

サンプルごとに、正極活物質膜40の成膜条件において、スパッタリングパワーを適宜 変えて、正極活物質膜40を構成するLi_xNi_yPO_zのNiの組成比y、酸素の組成比 zがそれぞれ異なる複数のサンプルを作製した。作製した複数のサンプルごとに、実施例 1と同様の条件で充放電を行い、この際の充放電容量を各サンプルごとに求めた。測定結 果を図11に示す。

【0161】

図11に示すように、正極活物質膜40を構成するLi_xNi_yPO_zの組成比yが、2 未満または10を超えると、エネルギー密度がピークの半分となってしまう。したがって 、Li_xNi_yPO_zのニッケルの組成比yは、2以上10以下が好ましいことが分かった 。また、このときの酸素の組成zをプロットしたものを図12に示し、Pの組成を1とし たときのNiの組成を横軸、Pの組成を1としたときのOの組成を縦軸として、プロット したグラフを図13に示す。グラフより以下のことがわかる。Niの組成が上がると、こ れと共に酸素の組成が上がっている。酸素の組成はNi、Pの組成に対応した最適な量と なる。

30

10

20

【0162】

<試験例2>

正極活物質膜40を構成するLi_xCu_yPO₄の銅の組成比yを変えた複数のサンプル (固体電解質電池)を作製し、このサンプルの充放電容量を測定した。

[0163]

サンプルの膜構成は、参考例1と同様の構成とした。すなわち、ポリカーボネート基板 /SCZ(50nm)/Ti(100nm)/Li_xCu_yPO₄(350nm)/Li₃P O₄N_x(400nm)/LiCoO₂(10nm)/Ti(200nm)/紫外線硬化樹 脂(20µm)/SCZ(50nm)とした。

【0164】

サンプルごとに、正極活物質膜40の成膜条件において、スパッタリングパワーを適宜 変えて、正極活物質膜40を構成するLi_xCu_yPO₄の銅の組成比yがそれぞれ異なる 複数のサンプルを作製した。作製した複数のサンプルごとに、実施例1と同様の条件で充 放電を行い、この際の充放電容量を各サンプルごとに求めた。測定結果を図14に示す。 【0165】

図14に示すように、正極活物質膜40を構成するLi_xCu_yPO₄の銅の組成比yが 1.0より小さくなると、容量が急激に低下してしまう。したがって、正極活物質膜40 を構成するLi_xCu_yPO₄の銅の組成比yは、1.0以上が好ましいことが確認できた 。また、銅の組成比yが1.0以上2.2以下までは、容量が増加し、2.2付近を超え ると、単位重量あたりの容量が低下した。これは、正極活物質内の銅の組成比yが増加す

ることによって重量密度が上がる一方で、含有できるリチウムの組成比×が低下したから である。また、銅の組成比yが4.0を超えると、容量は、最大の容量を得ることができ る銅の組成比y=2.2付近の容量の半分以下となってしまう。以上より、Li_×CuP_y O₄の銅の組成比yは、1.0 y 4.0であることが好ましいことが分かった。

(24)

[0166**]**

(試験例3)

以下に説明するようにして、Li_xCu_yPO₄のリチウム組成比 x の限界量について検 討した。

【0167】

<サンプル1>

10

まず、サンプル1の固体電解質電池を作製した。この固体電解質電池は、SiO₂膜付きSi基板上に、正極側集電体膜としてのTi膜と、正極活物質膜としてのLi_{2.2}Cu₂ .8PO₄膜と、固体電解質膜としてのLi₃PO₄膜と、負極側集電体膜としてのCu膜お よびTi膜とをこの順で積層した、下記膜構成を有するものである。なお、この固体電解 質電池は、作製時には、負極活物質が存在しないが、充電により、固体電解質膜の負極側 の界面にLiが析出し、これを負極活物質として利用するものである。

【0168】

(固体電解質電池の膜構成)

SiO₂膜付きSi基板 / Ti(100nm) / Li_{2.2}Cu_{2.8}PO₄(362nm) / Li₃PO₄(546nm) / Cu(20nm) / Ti(100nm) 20

【0169】

サンプル1の固体電解質電池は、以下のようにして作製した。すなわち、SiO₂膜付 きSi基板上に金属マスクを配して、所定領域に、正極側集電体膜としてのTi膜と、正 極活物質膜としてのLi_{2.2}Cu_{2.8}PO₄膜と、固体電解質膜としてのLi₃PO₄膜と、 負極側集電体膜としてのCu膜と、Ti膜とをこの順に成膜した。これにより、サンプル 1の固体電解質電池を得た。なお、この固体電解質電池の作製中アニール過程は存在しな い。

【0170】

(正極側集電体膜)

正極側集電体膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 30 スパッタリング装置(アルバック社製、SMO-01特型)

ターゲット組成:Ti

ターゲットサイズ: 4インチ

スパッタリングガス: A r 7 0 s c c m、 0 . 4 5 P a

スパッタリングパワー: 1 0 0 0 W (D C)

膜厚:100nm

【0171】

(正極活物質膜)

正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。

スパッタリング装置(アルバック社製、SMO-01特型)

ターゲット組成:Li₃PO₄およびCuのコスパッタ

ターゲットサイズ: 4インチ

スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.20Pa

スパッタリングパワー: L i_{3} P O $_{4}$ 6 0 0 W (R F)、 C u 6 0 W (D C)

膜厚:362nm

【0172】

(固体電解質膜)

固体電解質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:Li₃PО₄

50

ターゲットサイズ: 4インチ スパッタリングガス: Ar(80%) + O₂(20%) 20sccm、0.20Pa スパッタリングパワー:600W(RF) 膜厚:546nm **[**0173**]** (負極側集電体膜) (Cu膜) Cu膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) 10 ターゲット組成:Cu ターゲットサイズ: 4インチ スパッタリングガス: A r 7 0 s c c m、0.45 P a スパッタリングパワー: 1000W(DC) 膜厚: 2 0 n m [0174](T i 膜) スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:Ti ターゲットサイズ: 4インチ 20 スパッタリングガス: Ar70sccm、0.45Pa スパッタリングパワー:1000W(DC) 膜厚:100nm [0175] (充放電試験) サンプル1の固体電解質電池の充放電試験を行った。充電は充電電流50µA、充電力 ットオフ電圧5Vで行った。放電は放電電流50µA、放電カットオフ電圧2Vで行った 図15に充放電曲線を示す。 [0176] この測定結果において、正極活物質膜の膜密度を3.26g/ccとして計算すると、 30 正極容量は約130mAh/gを示した。 [0177] <サンプル2> 次に、サンプル2の固体電解質電池を作製した。この固体電解質電池は、SiОっ膜付 きSi基板上に、正極側集電体膜としてのTi膜と、正極活物質膜としてのLi_{2,2}Cu₂ _{.8}PO₄膜と、固体電解質膜としてのLi₃PO₄膜と、Li膜とをこの順で積層した、下 記膜構成を有する固体電解質電池である。 [0178] (固体電解質電池の膜構成) SiO₂膜付きSi基板 / Ti(100nm) / Li_{2.2}Cu_{2.8}PO₄(362nm) / 40 Li₃PO₄(546nm)/Li(1500nm) [0179] サンプル2の固体電解質電池は、以下のようにして作製した。すなわち、SiO。膜付 きSi基板上に金属マスクを配して、所定領域に、下記成膜条件で、正極側集電体膜とし てのTi膜と、正極活物質膜としてのLi_{2.2}Cu_{2.8}PO₄膜と、固体電解質膜としての Li₃PО₄膜と、Li膜とをこの順に成膜した。これにより、サンプル2の固体電解質電 池を得た。なお、この固体電解質電池の作製中アニール過程は存在しない。 [0180]

(成膜条件)

T i 膜、L i_{2.2}C u_{2.8}PO₄膜、L i₃PO₄膜の成膜条件は、サンプル1と同様とした。L i 膜の成膜は、下記の成膜条件で行った。

[0181]

(Li膜)

ベルジャー型抵抗加熱式蒸着装置

蒸着源:Li

蒸着速度: 5 . 0 8 n m / s e c 、到達真空度: 0 . 0 0 4 P a

膜厚:1500nm

[0182]

作製したサンプル2の固体電解質電池について、作製時のLi_{2.2}Cu_{2.8}PO₄膜に、 Liを積極的に挿入するため、以下の充放電を行った。

【0183】

(充放電1回目)

まず、1回目の充放電を行った。充電は充電電流50µA、充電カットオフ電圧5.5 Vで行った。放電は放電電流50µA、放電カットオフ電圧2Vで行った。このときの充 放電曲線を図16に示す。

【0184】

この充放電において、正極活物質膜の膜密度を3.26g/ccとして計算すると正極 容量は約140mAh/gを示した。すなわち、1回目の放電では、Li膜を形成してい ない(サンプル1)とほぼ同じ正極容量を示し、Li膜のLiは、1回目の放電後におい て、正極側へ移動していないことを確認した。

【0185】

(Li積極挿入のための放電)

次に、放電を行い、約4µAh/cm²に相当する量のLi膜のLiを、Li_{2.2}Cu_{2.} ₈PO₄膜に積極的に挿入した。このときの放電曲線を図17に示す

【0186】

(充放電2回目)

次に、2回目の充放電を行った。充電は充電電流50µA、充電カットオフ電圧5.5 Vで行った。放電は放電電流50µA、放電カットオフ電圧1.8Vで行った。このとき の充放電曲線を図18に示す。

【0187】

図18に示すように、2回目の充電において、充電容量は20.8µAh/cm²を示 0た。この充電容量は、1回目の放電の放電容量(16.8µAh/cm²)と、Li積 極挿入のための放電の放電容量(4.0µAh/cm²)との合計に相当する。すなわち 、2回目の充電により、Li_xCu_{2.8}PO₄膜からLiが引き抜かれ、「Li_{2.2}Cu_{2.8} PO₄膜のLi量(以下、作製時のLi量)」と「Li積極挿入のための放電により挿入 0たLi量」との合計量のLiが、負極側に移動したことが確認できる。

【0188】

また、2回目の放電において、放電容量は24.3µAh/cm²を示した。この放電 容量は、「2回目の充電の充電容量(20.8µAh/cm²)+3.5µAh/cm²」 に相当する。すなわち、2回目の放電により、負極側から、「作製時のLi量」と「Li 積極挿入放電により挿入したLi量」と「3.5µAh/cm²に相当するLi量(2回 目の放電によりさらに挿入したLi量)」との合計量のLiが、正極側へ移動したことが 確認できる。

40

50

[0189]

(充放電3回目)

次に、3回目の充放電を行った。充電は充電電流50µA、充電カットオフ電圧5.5 Vで行った。放電は放電電流50µA、放電カットオフ電圧1.6Vで行った。図19に 充放電曲線を示す。

【0190】

図 1 9 に示すように、 3 回目の充電において、充電容量は 2 4 . 5 µ A h / c m²を示 した。この充電容量は、 2 回目の放電の放電容量(2 4 . 3 µ A h / c m²)にほぼ相当

10

する。すなわち、3回目の充電により、Li_xCu_{2.8}PO₄膜からLiが引き抜かれ、「 作製時のLi量」と「Li積極挿入のための放電により挿入したLi量」と「2回目の放 電によりさらに挿入したLi量」との合計量のLiが、負極側に移動したことが確認でき る。

【0191】

また、3回目の放電において、放電容量は28.9µAh/cm²を示した。この放電 容量は、「3回目の充電の充電容量(24.5µAh/cm²)+4.4µAh/cm²」 に相当する。すなわち、3回目の放電により、負極側から、「作製時のLi量」と「Li 積極挿入放電により挿入したLi量」と「2回目の放電によりさらに挿入したLi量」と 「4.4µAh/cm²に相当するLi量(3回目の放電によりさらに挿入したLi量) 」との合計量のLiが、正極側へ移動したことが確認できる。

【0192】

(充放電4回目)

次に、充電電流50µA、充電カットオフ電圧5.5Vの条件の充電を行った後、放電 電流50µAで放電容量が50.0µAh/cm²になるまで放電を行った。このときの 充放電曲線を図20に示す。

【0193】

図20に示すように、4回目の充電において、充電容量は28.9µAh/cm²を示した。この充電容量は、3回目の放電容量に相当する。すなわち、4回目の充電により、 i_xCu_{2.8}PO₄膜からLiが引き抜かれ、3回目の放電により正極側に移動したLi量 が、負極側へ移動したことが確認できる。

【0194】

また、4回目の放電の放電容量50.0µAh/cm²は、「4回目の充電の充電容量 (28.9µAh/cm²)+21.1µAh/cm²」に相当する。すなわち、4回目の 放電により、負極側から、「作製時のLi量」と「Liを積極挿入するための放電により 挿入したLi量」と「2回目の放電によりさらに挿入したLi量」と「3回目の放電によ りさらに挿入したLi量」と「21.1µAh/cm²に相当するLi量(4回目の放電 によりさらに挿入したLi量)」との合計量のLiが、正極側へ移動したことが確認できる。

【0195】

(充放電5回目)

最後に、充電電流50µA、充電カットオフ電圧6.0Vの条件の充電、放電電流50 µA、放電カットオフ電圧1.0Vの放電を行った。図21に充放電曲線を示す。

【0196】

また、5回目の放電の、比容量(mAh/g)およびLi_xCu_{2.8}PO₄のリチウム組 成比xを横軸にした放電曲線を図22Aおよび図22Bに示す。図22に示すように、こ のLi_xCu_{2.8}PO₄のアモルファス正極活物質材料は、Liがx=約7まで挿入可能な 高容量正極活物質材料であることが示せた。また、放電曲線は、2.9~2.0V領域と 、1.8~1.3V領域と、1.2V領域とに分けられた。

【0197】

(試験例4)

以下に説明するようにして、Li_xNi_yPO_zのリチウム組成比×の限界量について検討した。

【0198】

<サンプル3>

まず、サンプル3の固体電解質電池を作製した。この固体電解質電池は、SiO₂膜付 きSi基板上に、正極側集電体膜としてのTi膜と、正極活物質膜としてのLi_{2.4}Ni₆ .9PO_{6.4}膜と、固体電解質膜としてのLi₃PO₄膜と、Li膜とをこの順で積層した、 下記膜構成を有する固体電解質電池である。

[0199]

50

10

20

30

SiO₂膜付きSi基板 / Ti(100nm) / Li_{2.4}Ni_{6.9}PO_{6.4}(329nm) /Li₃PO₄(546nm)/Li(1000nm) [0200]サンプル3の固体電解質電池は、以下のようにして作製した。すなわち、SiO。膜付 きSi基板上に金属マスクを配して、所定領域に、正極側集電体膜としてのTi膜と、正 極活物質膜としてのLi_{2.4}Ni_{6.9}PO_{6.4}膜と、固体電解質膜としてのLi₃PO₄膜と 、L i 膜とをこの順に成膜した。これにより、サンプル3の固体電解質電池を得た。なお 、この固体電解質電池の作製中アニール過程は存在しない。 [0201]10 (正極側集電体膜) 正極側集電体膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:Ti ターゲットサイズ: 4インチ スパッタリングガス: Ar70sccm、0.45Pa スパッタリングパワー: 1 0 0 0 W (D C) 膜厚:100nm [0202](正極活物質膜) 20 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:Li₃PO₄およびNiのコスパッタ ターゲットサイズ: 4インチ スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.20Pa スパッタリングパワー: $Li_3PO_4600W(RF)$ 、Ni150W(DC)膜厚:329nm [0203](固体電解質膜) 固体電解質膜50の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) 30 ターゲット組成:LiュPO₄ ターゲットサイズ: 4インチ スパッタリングガス: Ar(80%) + O₂(20%) 20 s c c m、0.20 P a スパッタリングパワー:600W(RF) 膜厚: 4 0 0 n m [0204](Li膜) ベルジャー型抵抗加熱式蒸着装置 蒸着源:Li 40 蒸着速度: 5 . 0 8 n m / s e c 、到達真空度: 0 . 0 0 4 P a 膜厚:1000nm [0205]作製後、サンプル3についても、試験例3と同様、充電および放電を繰り返し、Li膜 のLiを、Li_{2.4}Ni_{6.9}PO_{6.4}膜に積極的に挿入していき、最終的には、比容量(m A h / g) および L i _x N i _{6.9} P O _{6.4}のリチウム組成比 x を横軸にした放電曲線を求め た。この放電曲線を図23Aおよび図23Bに示す。 [0206] 図23に示すように、このLi_xNi_{6.9}PO_{6.4}は、Liをx=約8まで挿入可能な高 容量正極活物質材料であることが示せた。 [0207]

〔 実施例 7 ~ 実施例 8 、参考例 2 〕 < 実施例 7 > 正極活物質膜40を以下の成膜条件で成膜し、負極電位形成層64を以下の成膜条件で 成膜した点以外は、実施例1と同様にして、固体電解質電池を作製した。 [0208](正極活物質膜) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アネルバ社製、C-3103) ターゲット組成:LiュPO₄、LiNiO₂およびCuのコスパッタ 10 ターゲットサイズ: 6インチ スパッタリングガス:Ar(80%)+O₂(20%) 15sccm、0.20Pa スパッタリングパワー:Li₃PО $_4$ 700W(RF)、LiNiO $_9$ 700W(RF)、 Cu21W(DC)膜厚:300nm [0209](負極電位形成層64) 負極電位形成層64の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アネルバ社製、C-3103) ターゲット組成:LiNiO2 20 ターゲットサイズ: 6インチ スパッタリングガス: (Ar80%+O220%混合ガス) 15sccm、0.20P スパッタリングパワー: 1000W(RF) 膜厚: 6 n m [0210]< 実施例 8 > 正極活物質膜40を以下の成膜条件で成膜し、負極電位形成層64を以下の成膜条件で 成 膜 した 点 以 外 は 、 実 施 例 1 と 同 様 に して 、 固 体 電 解 質 電 池 を 作 製 し た 。 [0211]30 (正極活物質膜) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アネルバ社製、C-3103) ターゲット組成:LiュPO₄およびLiNiO₂のコスパッタ ターゲットサイズ: 6インチ スパッタリングガス: Ar(80%) + O₂(20%) 15 s c c m、0.20 P a スパッタリングパワー:Li₃PO₄700W(RF)、Ni700W(RF) 膜厚:300nm [0212](負極電位形成層64) 40 負極電位形成層64の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アネルバ社製、C-3103) ターゲット組成:LiNiO。 ターゲットサイズ: 6インチ スパッタリングガス:(Ar80%+O₂20%混合ガス) 15sccm、0.20P а スパッタリングパワー: 1000W(RF) 膜厚: 5 n m [0213] <参考例2> 正極活物質膜40を以下の成膜条件で成膜した点以外は、実施例1と同様にして、固体 50

(29)

電解質電池を作製した。

【0214】

(正極活物質膜)

正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アネルバ社製、C-3103)

ターゲット組成:Li₃PO₄およびCuのコスパッタ

ターゲットサイズ: 6インチ

スパッタリングガス: Ar(80%) + O₂(20%) 20sccm、0.20Pa

スパッタリングパワー:Li₃PO₄1000W(RF)、Cu54W(DC)

膜厚:300nm

10

【0215】 (充放電試験)

実施例7、実施例8、参考例2の各固体電解質電池の充放電試験を行った。充電は充電 電流(実施例7:90µA(8.8C)、実施例8:64µA(6.2C)、参考例2: 32µA(4.9C))で行った。放電は放電電流(実施例7:90µA(8.8C)、 実施例8:64µA(6.2C)、参考例2:32µA(4.9C))で行った。充電カ ットオフ電圧および放電カットオフ電圧は、各実施例および参考例ごとに適宜所定電圧に 設定した。上記の充放電を繰り返し、充放電回数に対する放電容量(初期容量(1回目の 放電の放電容量)に対する比)をプロットした。測定結果を図24に示す。図24中、線 aは実施例7の測定結果を示し、線bは実施例8の測定結果を示し、線cは参考例2の測 定結果を示す。なお、図24中、LiCuPOは、LiとPとCuとOとを含むリチウム リン酸化合物を略称したものである。LiNiPOは、LiとPとNiとOとを含むリチ ウムリン酸化合物を略称したものである。

【0216】

図24に示すように、Li、P、O以外の元素としてCuおよびNiを含むリチウムリン酸化合物で正極活物質膜を構成した実施例7では、Li、P、O以外の元素としてCu のみを含むリチウムリン酸化合物やLi、P、O以外の元素としてNiのみを含むリチウ ムリン酸化合物で正極活物質膜を構成した実施例8や参考例3より、耐久性(充放電サイ クル特性)がより優れていた。すなわち、Li、P、O以外の元素として、適切な2種の 金属元素を含有したリチウムリン酸化合物は、より特性の優れた正極活物質であることが 確認できた。

30

20

〔実施例9~実施例12〕

< 実施例 9 >

正極活物質膜40を以下の成膜条件で成膜した点以外は、実施例1と同様にして、固体 電解質電池を作製した。なお、形成される正極活物質膜において、A1の組成については スパッタリングパワーに比例した量が添加されているものと考えられる。この例では、A 1のスパッタリングパワーをNiのスパタッリングパワーの1/4程度としており、Ni の1/4程度のA1が添加されたものと考えられる。

40

(正 極 活 物 質 膜)

[0218]

正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。

スパッタリング装置(アルバック社製、SMO-01特型)

ターゲット組成:LiュPO₄、NiおよびA1のコスパッタ

ターゲットサイズ: 4インチ

スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.20Pa スパッタリングパワー:Li₃PO₄600W(RF)、Ni130W(DC)、A130 W(DC)

膜厚: 6 4 0 n m

【0219】

(充放電試験)

実施例9の固体電解質電池の充放電試験を行った。充放電曲線を図25に示す。図25 中、線t₁~t₄は、以下の充放電条件による充電曲線または放電曲線を示すものである。 線t₁:充電電流200µA(15C)、充電カットオフ電圧5V、線t₂:放電電流20 0µA(15C)、放電カットオフ電圧2V、

線 t₃: 充電電流 2 0 0 µ A (1 5 C)、充電カットオフ電圧 5 V、線 t₄: 放電電流 1 4 0 0 µ A (1 0 0 C)、放電カットオフ電圧 1 . 5 V

[0220]

15Cの放電曲線、100Cの放電曲線に示すように、LiとPとNiと添加元素M3 ¹⁰ (Al)とOとを含むリチウムリン酸化合物では、非常に放電速度が速く、また、100 Cの高速放電時にも十分高い放電電圧が保たれており、容量も充電容量と同程度得られて おり、高速放電でも充放電効率が良好に保たれていた。

【0221】

< 実施例10>

正極活物質膜40を以下の成膜条件で成膜した点以外は、実施例1と同様にして、固体 電解質電池を作製した。

【0222】

(正極活物質膜)

正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。

スパッタリング装置(アルバック社製、SMO-01特型)

ターゲット組成:Li₃PO₄およびNiのコスパッタ

ターゲットサイズ: 4インチ

スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.20Pa スパッタリングパワー:Li₃PO₄600W(RF)、Ni150W(DC) 膜厚:330nm

[0223]

実施例10の固体電解質電池の充放電試験を行った。実施例9と同様、充電は低速で行った。実施例10では実施例9より正極活物質膜の膜厚が薄く、インピーダンスが高いため充電電流は50µAとした。これに対して放電電流を3種類変化しており、50µA、300µA、800µAとした。これらはそれぞれ順におよそ5C、30C、80Cに相当する。充放電曲線を図26に示す。図26中、線h₁~h₆は、以下の充放電条件による充電曲線または放電曲線を示すものである。

線 h₁:充電電流 5 0 µ A (5 C)、充電カットオフ電圧 5 V、線 h₂:放電電流 5 0 µ A (5 C)、放電カットオフ電圧 2 V

線h₃:充電電流50µA(5C)、充電カットオフ電圧5V、線h₄:放電電流300 µA(30C)、放電カットオフ電圧2V

線 h₅:充電電流 5 0 µ A (5 C)、充電カットオフ電圧 5 . 5 V、線 h₆:放電電流 8 0 0 µ A (8 0 C)、放電カットオフ電圧 1 . 4 V

【0224】

図26に示すように、30C相当の放電までは、放電電位が放電中一定であり実用的だ が、80Cの放電では、放電初期に2V近くまで電池が低下しており、放電が進むと若干 電位が上がる現象が確認された。これは内部インピーダンスによる電位低下が原因となっ ている。正極活物質膜の膜厚は、実施例9よりも薄いため、よりインピーダンスの影響を 受けづらい状況で、実施例10の方が、電位低下が大きいという結果であった。すなわち 、LiとPとNiと添加元素M3(A1)とOとを含むリチウムリン酸化合物を用いた実 施例9と、LiとPとNiとOとを含むリチウムリン酸化合物を用いた実施例10との比 較により、リチウムリン酸化合物において、Niの他に添加元素M3(A1)を含有させ ることによる効果が明確に確認できた。 【0225】

40

20

< 実施例11>

正極活物質膜40を以下の成膜条件で成膜した点以外は、実施例1と同様にして、固体 電解質電池を作製した。なお、実施例11では、ターゲットとして、Li₃PO₄の代わり に、一般的な固体電解質として知られているLATP(Li_{1.3}Al_{0.3}Ti_{1.7}(PO₄) ₃)とA1、Ti、P、Oの組成が同一のもの、すなわち、(Li₃PO₄)₃Al_{0.3}Ti₁ _{.7}の焼結体を用いた。このようにして、Ti、A1をLiとPとNiとOとを含有するリ チウムリン酸化合物内に添加するが、Niの組成がPに対して2倍以上10倍の間である ため、Ti、A1ともに微量添加となっている。また、A1の量はTi量の1/5以下で あり、この実施例11の正極活物質膜40を構成するリチウムリン酸化合物ではTiが中 心添加物となっている。

10

(正極活物質膜)

正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型)

ターゲット組成:(Li₃PО₄)₃Al_{0.3}Ti_{1.7}(LATP)、およびNiのコスパッ タ

ターゲットサイズ: 4インチ

スパッタリングガス: Ar(80%) + O₂(20%) 20sccm、0.20Pa

スパッタリングパワー:LATP600W(RF)、Ni150W(DC)

膜厚: 7 4 n m

【0227】

(間欠充放電)

充放電時に間欠充放電を行い、OCV(開放電圧)での電位変化を観察した。その条件 は次の通りである。30秒の充電もしくは放電(CC電流駆動)の後、充電もしくは放電 電流を停止し、その状態で5分間電位を測定した。その後、充電もしくは放電電流を流し 、30秒後に停止した。これを繰り返し、充電もしくは放電終止条件まで続けた。この際 、電流を停止した直後の電位変化が、充電または放電中に電池内部にかかっている内部抵 抗(内部インピーダンス)と考えられ、放電時にはそれが放電電圧の低下の要因の1つと なる。すなわち、内部抵抗が小さい方が、放電電位が高いため実用上好ましい。図27に 実施例11の充放電曲線を示す。

【0228】

図27に示すように、充放電電流を停止した際のOCV電位変化は、特に充電初期、放 電終了近くで特に小さくなっている。内部インピーダンスが低いということは、充電時に はジュール熱によるエネルギーロスが少なく、また、放電時には放電電圧が高いというメ リットが確認できた。

【 0 2 2 9 】

< 実施例12>

正極活物質膜40を以下の成膜条件で成膜した点以外は、実施例1と同様にして、固体 電解質電池を作製した。

[0230]

(正極活物質膜)

正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型)

ターゲット組成:Li₃PO₄およびNiのコスパッタ

ターゲットサイズ: 4インチ

スパッタリングガス: Ar(80%) + O_2 (20%) 20 s c c m、0.20 P a スパッタリングパワー: L i $_3$ P O $_4$ 600 W (R F)、N i 150 W (D C)

膜厚:94nm

【0231】

(間欠充放電)

30

20

実施例11と同様の条件で、間欠充放電を行い、OCV(開放電圧)での電位変化を観 察した。図28に実施例12の充放電曲線を示す。図28に示すように、実施例10と比 較すると間欠放電時の電圧変化が大きく、内部インピーダンスが高いことが明確であった 。また、これが原因で放電電位が全体的に0.5V程度低くなっていた。したがって、L iとPとNiと添加元素M3(AlおよびTi)とOとを含むリチウムリン酸化合物を用 いた実施例11と、LiとPとNiとOとを含むリチウムリン酸化合物を用いた実施例1 2 との比較により、リチウムリン酸化合物において、Niの他に添加元素M3(A1およ びTi)を含有させることによる効果が明確に確認できた。 [0232]〔参考例3、実施例13~実施例15〕 10 <参考例3> 負極電位形成層64を形成しなかった。正極活物質膜40を以下の成膜条件で成膜した 。以上の点以外は、実施例1と同様にして、固体電解質電池を作製した。 [0233] (正極活物質膜) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:Li₃PO₄およびCuのコスパッタ ターゲットサイズ: 4インチ 20 スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.20Pa スパッタリングパワー:Li₃PO₄1kW(RF)、Cu65W(DC) 膜厚:300nm [0234]< 実施例13> 正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例3と同様にして、固体 電解質電池を作製した。 [0235](正極活物質膜) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 30 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:LiュPO₄、CuおよびZnOのコスパッタ ターゲットサイズ: 4インチ スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.20Pa スパッタリングパワー:Li₃PO₄1kW(RF)、Cu43W(DC)、ΖnO380 W(RF)膜厚:300nm [0236]< 実施例14> 正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例3と同様にして、固体 40 電解質電池を作製した。 [0237] (正 極 活 物 質 膜) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:LiュPO₄、CuおよびPdのコスパッタ ターゲットサイズ: 4インチ スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.20Pa スパッタリングパワー:Li₃PO₄1kW(RF)、Cu43W(DC)、Pd50W(RF) 膜厚: 3 0 0 n m 50

[0238]

< 実施例15 >

正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例3と同様にして、固体 電解質電池を作製した。

【0239】

(正極活物質膜)

正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。

スパッタリング装置(アルバック社製、SMO-01特型)

ターゲット組成:Li₃PО₄、CuおよびAuのコスパッタ

ターゲットサイズ: 4インチ

10

スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.20Pa スパッタリングパワー:Li₃PO₄1kW(RF)、Cu43W(DC)、Au60W(RF)

膜厚:300nm

[0240]

(充放電試験)

実施例13~実施例15、参考例3の各固体電解質電池の充放電試験を行った。充電は 充電電流32µAで行い、放電は放電電流32µAで行った。充電カットオフ電圧および 放電カットオフ電圧は、各実施例および参考例ごとに適宜所定電圧に設定した。上記の充 放電を繰り返し、充放電回数に対する放電容量(初期容量に対する比)をプロットした。 測定結果を図29に示す。

20

【0241】 図29に示すように、LiとPとNiとAuとOとを含むリチウムリン酸化合物で正極 活物質膜を構成した実施例14では、LiとPとCuとを含むリチウムリン酸化合物で正 極活物質膜を構成した参考例3より、繰り返し充放電特性(充放電サイクル特性)が良好 であった。LiとPとCuとPdとOとを含むリチウムリン酸化合物で正極活物質膜を構 成した実施例15では、LiとPとCuとを含むリチウムリン酸化合物で正極活物質膜を 構成した実施例より、初期容量が大きく、繰り返し充放電特性(充放電サイクル特性)が 良好であった。また、LiとPとCuとZn(添加元素M3)とOとを含むリチウムリン 酸化合物で正極活物質膜を構成した実施例13では、LiとPとCuとを含むリチウムリ ン酸化合物で正極活物質膜を構成した参考例より、繰り返し充放電特性(充放電サイクル 特性)が良好であった。

30

40

【0242】

〔実施例16~実施例23〕

< 実施例16 >

正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例3と同様にして、固体 電解質電池を作製した。

[0243]

(正極活物質膜)

正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型)

ターゲット組成:Li₃PO₄、CuおよびVのコスパッタ

ターゲットサイズ: 4インチ

スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.20Pa スパッタリングパワー:Li₃PO₄1kW(RF)、Cu43W(DC)、V650W(RF)

膜厚: 3 0 0 n m

【 0 2 4 4 】

< 実施例17 >

正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例3と同様にして、固体 50

(34)

電解質電池を作製した。 [0245](正 極 活 物 質 膜) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:Li₃PO₄、CuおよびCrのコスパッタ ターゲットサイズ: 4インチ スパッタリングガス: Ar(80%) + O₂(20%) 20 s c c m、0.20 P a スパッタリングパワー:Li₃PO₄1kW(RF)、Cu43W(DC)、Cr300W 10 (RF)膜厚:300nm [0246]< 実施例18 > 正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例3と同様にして、固体 電解質電池を作製した。 [0247](正極活物質膜) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) 20 ターゲット組成: L i 3 P O 4、 C u および H f O 2 のコスパッタ ターゲットサイズ: 4インチ スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.20Pa スパッタリングパワー: Li₃PO₄1 kW(RF)、Cu43W(DC)、HfO₂60 0 W (RF)膜厚:300nm [0248] < 実施例19> 正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例3と同様にして、固体 電解質電池を作製した。 30 [0249](正極活物質膜) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:Li₃PО₄、CuおよびWのコスパッタ ターゲットサイズ: 4インチ スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.20Pa スパッタリングパワー:Li₃PO₄1kW(RF)、Cu43W(DC)、W70W(R F) 膜厚:300nm 40 [0250]< 実施例 2 0 > 正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例3と同様にして、固体 電解質電池を作製した。 [0251](正極活物質膜) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:LiュPO₄、CuおよびGa₂Oュのコスパッタ ターゲットサイズ: 4インチ スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.20Pa 50

スパッタリングパワー:Li₃PO₄1kW(RF)、Cu43W(DC)、Ga₂O₃40 0W(RF)膜厚:300nm [0252]< 実施例 2 1 > 正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例3と同様にして、固体 電解質電池を作製した。 [0253](正極活物質膜) 10 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:LiュPOィ、CuおよびInュOュのコスパッタ ターゲットサイズ: 4インチ スパッタリングガス: Ar(80%) + O₂(20%) 20sccm、0.20Pa スパッタリングパワー:Li₃PO₄1kW(RF)、Cu43W(DC)、In₂O₃20 0W(RF)膜厚: 3 0 0 n m [0254]< 実施例 2 2 > 20 正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例3と同様にして、固体 電解質電池を作製した。 [0255](正極活物質膜) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) ターゲット組成:Li₃PO₄、CuおよびSnOのコスパッタ ターゲットサイズ: 4インチ スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.20Pa スパッタリングパワー:Li₃PO₄1kW(RF)、Cu43W(DC)、SnO100 30 W(RF) 膜厚:300nm [0256]< 実施例23> 正極活物質膜40を以下の成膜条件で成膜した点以外は、参考例3と同様にして、固体 電解質電池を作製した。 [0257](正極活物質膜) 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。 スパッタリング装置(アルバック社製、SMO-01特型) 40 ターゲット組成:Li₃PO₄、CuおよびSbのコスパッタ ターゲットサイズ: 4インチ スパッタリングガス:Ar(80%)+O₂(20%) 20sccm、0.20Pa スパッタリングパワー:Li₃PO₄1kW(RF)、Cu43W(DC)、Sb50W(RF) 膜厚: 3 0 0 n m [0258] (充放電試験) 実施例16~実施例23の各固体電解質電池の充放電試験を行った。充電は充電電流3 2 µ A で行い、放電は放電電流 3 2 µ A で行った。充電カットオフ電圧および放電カット オフ電圧は、各実施例および参考例ごとに適宜所定電圧に設定した。上記の充放電を繰り 50

返し、充放電回数に対する放電容量(初期容量に対する比)をプロットした。測定結果を 図30および図31に示す。なお、レファレンスとして参考例3の測定結果を併せて示す

【 0 2 5 9 】

図30および図31に示すように、実施例16~実施例23によれば、添加元素M3と してCr、V、Hf、W、Ga、In、Sn、Sbを含むリチウムリン酸化合物で構成し た正極活物質膜を備えた固体電解質電池では、添加元素M3による改善効果が小さかった 。特にCr、V、Ga、Sn、Sbについては、改善効果はみられなかった。一方で、N ずれも電池駆動は保っており、特にW、Cr、Inを含むリチウムリン酸化合物で構成し た正極活物質膜を備えた固体電解質電池では、初期容量が高く、組成調整により改善効果 が得られる可能性があることが考えられる。

【 0 2 6 0 】

(実施例7、実施例14、実施例17、実施例19の正極活物質容量)

なお、正極活物質容量の比較を容易にするため、実施例7、実施例14、実施例17、 実施例19について、1回目の充放電の放電容量と正極活物質膜の膜密度とに基づき計算 した初期正極活物質容量を表2に示す。なお、実施例7、実施例14、実施例17、実施 例19は、実施例7~実施例19のうち比較的高い容量を示したものである。表2中のL iCuMPOは、LiとPとCuと元素M(Ni、Pd、CrまたはW)とOとを含むリ チウムリン酸化合物を略称したものである。

【0261】

【表2】

	LiCuMPO	初期正極活物質容量(mAh/g)
実施例7	LiCuNiPO	135
実施例14	LiCuPdPO	119
実施例17	LiCuCrPO	120
実施例19	LiCuWPO	117

【0262】

3.他の実施の形態

本技術は、上述した本技術の実施の形態に限定されるものでは無く、本技術の要旨を逸 脱しない範囲内で様々な変形や応用が可能である。例えば固体電解質電池の膜構成は、上 述したものに限定されるものではない。例えば、第1~第2の実施の形態において、無機 絶縁膜を省略した構成としてもよい。第1の実施の形態において、負極電位形成層を省略 した構成としてもよい。

[0263]

また、積層体の複数が順次、積層されて形成され、直列に電気的に接続され、全体保護 膜80によって被覆された構成とすることもできる。また、基板の上に、積層体の複数が 並置されて形成され、並列または直列に電気的に接続され、全体保護膜80によって被覆 された構成とすることもできる。

[0264]

また、例えば、固体電解質電池の構造は、上述の例に限定されるものではない。例えば 40 、基板10に導電性材料を用いて正極側集電体膜30を省略した構造を有する固体電解質 電池などにも適用が可能である。また、例えば、正極集電体材料からなる金属板で、正極 側集電体膜30を構成してもよい。負極集電体材料からなる金属板で負極側集電体膜70 を構成してもよい。

【0265】

本技術によるアモルファス正極活物質材料は、材料費が安価でアニールが不要であるこ とから製造費用も安価であり、製造の自由度が大きく、薄膜電池の他にも微粒子表面の被 膜といった用途にも適している。

【0266】

また、本技術は、以下の構成をとることもできる。

50

30

20

(1)

正極活物質と、

固体電解質と

を備え、

上記正極活物質は、LiとPとNi、Co、Mn、Au、Ag、Pdから選ばれる何れ かの元素M1とOとを含有するアモルファス状態のリチウムリン酸化合物を含む固体電解 質電池。

(2)

上記リチウムリン酸化合物は、さらに、Ni、Co、Mn、Au、Ag、Pd、Cuか 10 ら選ばれる少なくとも1種の元素M2(ただし、M1 M2)を含有するものである(1)に記載の固体電解質電池。

(3)

上記リチウムリン酸化合物は、さらに、B、Mg、Al、Si、Ti、V、Cr、Fe 、 Z n 、 G a 、 G e 、 N b 、 M o 、 I n 、 S n 、 S b 、 T e 、 W 、 O s 、 B i 、 G d 、 T b、 D y、 H f、 T a、 Z r から選ばれる少なくとも 1 種の添加元素 M 3 を含有するもの である(2)に記載の固体電解質電池。

(4)

上記リチウムリン酸化合物は、式(1)で表されるリチウムリン酸化合物である(1) に記載の固体電解質電池。

式(1)

Li, Ni, PO,

(式中、×はリチウムの組成比を示す。∨はニッケルの組成比を示す。zは酸素の組成比 を示す。×は0 < x < 8 . 0 である。 y は 2 . 0 y 1 0 である。 z は酸素の組成比を 示す。zはNi、Pの組成比に応じて酸素が安定に含まれる比となる。)

(5)

上記正極活物質を含む正極活物質層と、

上記固体電解質を含む固体電解質層と

を備えた(1)に記載の固体電解質電池。

(6)

上記正極活物質層を有する正極側層と、

負極側層と

を備え、

上記固体電解質層は、上記正極側層と上記負極側層との間にある(5)に記載の固体電 解質電池。

(7)

上記負極側層は、負極集電体層と、負極側電位形成層とで構成され、

充電時に上記固体電解質層の負極側の界面にリチウム過剰層が形成される(6)に記載 の固体電解質電池。

(8)

40 上記正極側層は、上記正極活物質層と、正極集電体層とで構成された(6)~(7)の 何れかに記載の固体電解質電池。

(9)

上記負極側層は、負極集電体層で構成され、

充電時に上記固体電解質層の負極側の界面にリチウム過剰層が形成される(6)および (8)の何れかに記載の固体電解質電池。

(10)

基板をさらに備え、

上記基板上に、上記正極側層と、上記負極側層と、上記固体電解質層とを含む積層体が 形成された(6)~(9)の何れかに記載の固体電解質電池。

(11)

20

上記基板が樹脂基板である(10)に記載の固体電解質電池。

(12)

少なくとも上記正極活物質層が、薄膜で形成された(5)~(11)の何れかに記載の 固体電解質電池。

(13)

上記正極側層、上記負極側層および上記固体電解質層が、薄膜で形成された(6)~(12)の何れかに記載の固体電解質電池。

(14)

LiとPとNi、Co、Mn、Au、Ag、Pdから選ばれる何れかの元素M1とOと を含有するリチウムリン酸化合物であって、該リチウムリン酸化合物はアモルファス状態 ¹⁰ である正極活物質。

(15)

正極活物質と、

固体電解質と

を備え、

上記正極活物質層は、LiとPとNi、Co、Mn、Au、Ag、Pd、Cuから選ば れる何れかの元素M1'と、B、Mg、Al、Si、Ti、V、Cr、Fe、Zn、Ga 、Ge、Nb、Mo、In、Sn、Sb、Te、W、Os、Bi、Gd、Tb、Dy、H f、Ta、Zrから選ばれる少なくとも1種の添加元素M3とOとを含有するアモルファ ス状態のリチウムリン酸化合物を含む固体電解質電池。

(16)

LiとPとNi、Co、Mn、Au、Ag、Pd、Cuから選ばれる何れかの元素M1 'とB、Mg、Al、Si、Ti、V、Cr、Fe、Zn、Ga、Ge、Nb、Mo、I n、Sn、Sb、Te、W、Os、Bi、Gd、Tb、Dy、Hf、Ta、Zrから選ば れる少なくとも1種の添加元素M3とOとを含有するリチウムリン酸化合物であって、該 リチウムリン酸化合物はアモルファス状態である正極活物質。

(17)

正極活物質と、

固体電解質と

を備え、

上記正極側層および上記負極側層との間に形成された固体電解質層と

を備え、

上記正極活物質層は、アモルファス状態のリチウムリン酸化合物を含み、

上記リチウムリン酸化合物は、式(2)で表されるリチウムリン酸化合物である固体電 解質電池。

式(2)

Li,Cu,PO4

(式中、×はリチウムの組成比を示す。 y は銅の組成比を示す。×は5.0 < × < 7.0 である。)

(18)

式(2)で表されるリチウムリン酸化合物であって、

該リチウムリン酸化合物はアモルファス状態である正極活物質。

式(2)

Li_xCu_yPO₄

(式中、×はリチウムの組成比を示す。yは銅の組成比を示す。×は5.0<×<7.0
 である。)

【符号の説明】

【0267】

10・・・基板

20 ・・・ 無機絶縁膜

50

20

30

3 0 · · · 正極側集電体膜
4 0 · · · 正極活物質膜
5 0 · · · 自体電解質膜
6 0 · · · 負極活物質膜
6 4 · · · 負極電位形成層
7 0 · · · 負極側集電体膜
8 0 · · · 全体保護膜

В

【図9】

【図10】

【図14】

140

60

40

20

0

0

0.5 1.0

1.5

1.5 2.0 2.5 3.0 Cu Content(y:Li_xCu_yPO4)

3.0

3.5

4.0

4.5

【図16】

【図17】

【図18】

700 $Q/mAhg^{-1}$

【図24】

【図30】

【図29】

フロントページの続き

- (51) Int.CI. F I H 0 1 M 4/66 (2006.01) H 0 1 M 4/66 A
- (72)発明者 津田 沙織東京都港区港南1丁目7番1号 ソニー株式会社内

審查官 青木 千歌子

(56)参考文献 特開平08-162151(JP,A) 特開平06-275277(JP,A) 特開2010-205718(JP,A) 特開2008-112635(JP,A) 特開2010-13536(JP,A) 特開2001-13536(JP,A) 特開2009-259853(JP,A) 特開2005-158673(JP,A)

(58)調査した分野(Int.Cl., D B 名)

H01M 4/00 - 4/62