# ${\bf (19)}\ World\ Intellectual\ Property\ Organization$

International Bureau





(43) International Publication Date 26 July 2007 (26.07.2007)

(10) International Publication Number WO 2007/084557 A2

(51) International Patent Classification:

 C07D 471/04 (2006.01)
 C07D 495/10 (2006.01)

 A61K 31/506 (2006.01)
 A61K 31/517 (2006.01)

 A61K 31/53 (2006.01)
 A61P 25/00 (2006.01)

 A61P 29/00 (2006.01)
 A61P 37/00 (2006.01)

(21) International Application Number:

PCT/US2007/001225

(22) International Filing Date: 17 January 2007 (17.01.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/759,367 17 January 2006 (17.01.2006) US 60/842,471 6 September 2006 (06.09.2006) US

(71) Applicant (for all designated States except US): VERTEX PHARMACEUTICALS INCORPORATED [US/US]; 130 Waverly St., Cambridge, MA 02139 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FARMER, Luc [CA/US]; 19 Howe Lane, Foxboro, MA 02035 (US). MARTINEZ-BOTELLA, Gabriel [ES/US]; 5291 Washington Street, West Roxbury, MA 02132 (US). PIERCE, Albert [US/US]; 295 Harvard Street, Apt. 308, Cambridge, MA 02138 (US). SALITURO, Francesco [US/US]; 25 Baker Drive, Marlboro, MA 01752 (US). WANG, Jian [CN/US]; 15 Elliot Street, Newton, MA

02461 (US). **WANNAMKER, Marion** [US/US]; 375 Harvard Road, Stow, MA 01775 (US). **WANG, Tiansheng** [US/US]; 2 Dunbar Way, Concord, MA 01742 (US).

- (74) Agent: BROWN, Karen, E.; Vertex Pharmaceutical Incorporated, 130 Waverly Street, Cambridge, MA 02139 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: AZAINDOLES USEFUL AS INHIBITORS OF JANUS KINASES

(57) Abstract: The present invention relates to compounds useful as inhibitors of protein kinases, particularly of JAK family kinases. The invention also provides pharmaceutically acceptable compositions comprising said compounds and methods of using the compositions in the treatment of various disease, conditions, or disorders.



WO 2007/084557 PCT/US2007/001225

# AZAINDOLES USEFUL AS INHIBITORS OF JANUS KINASES

### TECHNICAL FIELD OF THE INVENTION

**I0101]** The present invention relates to compounds useful as inhibitors of Janus kinases (JAK). The invention also provides pharmaceutically acceptable compositions comprising the compounds of the invention and methods of using the compositions in the treatment of various disorders.

### **BACKGROUND OF THE INVENTION**

In Janus kinases (JAK) are a family of tyrosine kinases consisting of JAK1, JAK2, JAK3 and TYK2. The JAKs play a critical role in cytokine signaling. The down-stream substrates of the JAK family of kinases include the signal transducer and activator of transcription (STAT) proteins. JAK/STAT signaling has been implicated in the mediation of many abnormal immune responses such as allergies, asthma, autoimmune diseases such as transplant rejection, rheumatoid arthritis, amyotrophic lateral sclerosis and multiple sclerosis as well as in solid and hematologic malignancies such as leukemias and lymphomas. JAK2 has also been implicated in myeloproliferative disorders, which include polycythemia vera, essential thrombocythemia, chronic idiopathic myelofibrosis, myeloid metaplasia with myelofibrosis, chronic myeloid leukemia, chronic myelomonocytic leukemia, chronic eosinophilic leukemia, hypereosinophilic syndrome and systematic mast cell disease.

[0103] Accordingly, there is a great need to develop compounds useful as inhibitors of protein kinases. In particular, it would be desirable to develop compounds that are useful as inhibitors of JAK family kinases.

### **SUMMARY OF THE INVENTION**

[0104] It has now been found that compounds of this invention, and pharmaceutically acceptable compositions thereof, are effective as inhibitors of protein kinases, particularly the JAK family kinases. These compounds have the general formula I:

$$R^2$$
 $X^1$ 
 $R^1$ 
 $X^2$ 
 $X^3$ 
 $X^4$ 
 $X^4$ 

or a pharmaceutically acceptable salt thereof, wherein  $X^1$ ,  $R^1$ ,  $R^2$  and  $R^3$  are as defined herein.

**[0105]** These compounds, and pharmaceutically acceptable compositions thereof, are useful for treating or lessening the severity of a variety of disorders, including proliferative disorders, cardiac disorders, neurodegenerative disorders, autoimmune disorders, conditions associated with organ transplantation, inflammatory disorders, or immunologically mediated disorders in a patient.

**I01061** The compounds and compositions provided by this invention are also useful for the study of JAK kinases in biological and pathological phenomena; the study of intracellular signal transduction pathways mediated by such kinases; and the comparative evaluation of new kinase inhibitors.

### **DETAILED DESCRIPTION OF THE INVENTION**

Definitions and General Terminology

As used herein, the following definitions shall apply unless otherwise indicated. For purposes of this invention, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, and the Handbook of Chemistry and Physics, 75<sup>th</sup> Ed. 1994. Additionally, general principles of organic chemistry are described in "Organic Chemistry", Thomas Sorrell, University Science Books, Sausalito: 1999, and "March's Advanced Organic Chemistry", 5<sup>th</sup> Ed., Smith,

M.B. and March, J., eds. John Wiley & Sons, New York: 2001, the entire contents of which are hereby incorporated by reference.

As described herein, compounds of the invention may optionally be substituted with one or more substituents, such as are illustrated generally above, or as exemplified by particular classes, subclasses, and species of the invention. It will be appreciated that the phrase "optionally substituted" is used interchangeably with the phrase "substituted or unsubstituted." In general, the term "substituted", whether preceded by the term "optionally" or not, refers to the replacement of one or more hydrogen radicals in a given structure with the radical of a specified substituent. Unless otherwise indicated, an optionally substituted group may have a substituent at each substitutable position of the group. When more than one position in a given structure can be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at each position.

As described herein, when the term "optionally substituted" precedes a list, said term refers to all of the subsequent substitutable groups in that list. If a substituent radical or structure is not identified or defined as "optionally substituted", the substitutent radical or structure is unsubstituted. For example, if X is halogen; optionally substituted C<sub>1-3</sub>alkyl or phenyl; X may be either optionally substituted alkyl or optionally substituted phenyl. Likewise, if the term "optionally substituted" follows a list, said term also refers to all of the substitutable groups in the prior list unless otherwise indicated. For example: if X is halogen, C<sub>1-3</sub>alkyl or phenyl wherein X is optionally substituted by J<sup>X</sup>, then both C<sub>1-3</sub>alkyl and phenyl may be optionally substituted by J<sup>X</sup>. As is apparent to one having ordinary skill in the art, groups such as H, halogen, NO<sub>2</sub>, CN, NH<sub>2</sub>, OH, or OCF<sub>3</sub> would not be included because they are not substitutable groups.

preferably those that result in the formation of stable or chemically feasible compounds. The term "stable", as used herein, refers to compounds that are not substantially altered when subjected to conditions to allow for their production, detection, and, preferably, their recovery, purification, and use for one or more of the purposes disclosed herein. In some embodiments, a stable compound or chemically feasible compound is one that is not substantially altered when kept at a temperature of 40°C or less, in the absence of moisture or other chemically reactive conditions, for at least a week.

4

The term "aliphatic" or "aliphatic group", as used herein, means a straight-chain (i.e., unbranched) or branched, substituted or unsubstituted hydrocarbon chain that is completely saturated or that contains one or more units of unsaturation. Unless otherwise specified, aliphatic groups contain 1-20 aliphatic carbon atoms. In some embodiments, aliphatic groups contain 1-10 aliphatic carbon atoms. In other embodiments, aliphatic groups contain 1-8 aliphatic carbon atoms. In still other embodiments, aliphatic groups contain 1-6 aliphatic carbon atoms, and In yet other embodiments, aliphatic groups contain 1-4 aliphatic carbon atoms. Suitable aliphatic groups include, but are not limited to, linear or branched, substituted or unsubstituted alkyl, alkenyl, or alkynyl groups. Further examples of aliphatic groups include methyl, ethyl, propyl, butyl, isopropyl, isobutyl, vinyl, and sec-butyl.

hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic, that has a single point of attachment to the rest of the molecule, and wherein any individual ring in said bicyclic ring system has 3-7 members. Unless otherwise specified, the term "cycloaliphatic" refers to a monocyclic C<sub>3</sub>-C<sub>8</sub> hydrocarbon or bicyclic C<sub>8</sub>-C<sub>12</sub> hydrocarbon. Suitable cycloaliphatic groups include, but are not limited to, cycloalkyl, cycloalkenyl, and cycloalkynyl. Further examples of aliphatic groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, cycloheptyl, and cycloheptenyl.

herein refers to a monocyclic, bicyclic, or tricyclic ring system in which one or more ring members are an independently selected heteroatom and that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic, that has a single point of attachment to the rest of the molecule. In some embodiments, the "heterocycle", "heterocyclyl" or "heterocyclic" group has three to fourteen ring members in which one or more ring members is a heteroatom independently selected from oxygen, sulfur, nitrogen, or phosphorus, and each ring in the system contains 3 to 7 ring members.

**[0114]** Examples of heterocyclic rings include, but are not limited to, the following monocycles: 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydrothiophenyl, 3-tetrahydrothiophenyl, 2-morpholino, 3-morpholino, 4-morpholino, 2-thiomorpholino,

3-thiomorpholino, 4-thiomorpholino, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 1-tetrahydropiperazinyl, 2-tetrahydropiperazinyl, 3-tetrahydropiperazinyl, 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 3-pyrazolinyl, 4-pyrazolinyl, 5-pyrazolinyl, 1-piperidinyl, 2-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 2-thiazolidinyl, 3-thiazolidinyl, 4-thiazolidinyl, 1-imidazolidinyl, 2-imidazolidinyl, 4-imidazolidinyl, 5-imidazolidinyl; and the following bicycles: 3-1H-benzimidazol-2-one, 3-(1-alkyl)-benzimidazol-2-one, indolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, benzothiolane, benzodithiane, and 1,3-dihydro-imidazol-2-one.

[0115] The term "heteroatom" means one or more of oxygen, sulfur, nitrogen, phosphorus, or silicon, including any oxidized form of nitrogen, sulfur, phosphorus, or silicon, the quaternized form of any basic nitrogen, or a substitutable nitrogen of a heterocyclic ring, for example N (as in 3,4-dihydro-2*H*-pyrrolyl), NH (as in pyrrolidinyl) or NR<sup>+</sup> (as in N-substituted pyrrolidinyl).

[0116] The term "unsaturated", as used herein, means that a moiety has one or more units of unsaturation.

[0117] The term "aryl" used alone or as part of a larger moiety as in "aralkyl", "aralkoxy", or "aryloxyalkyl", refers to monocyclic, bicyclic, and tricyclic carbocyclic ring systems having a total of six to fourteen ring members, wherein at least one ring in the system is aromatic, wherein each ring in the system contains 3 to 7 ring members and that has a single point of attachment to the rest of the molecule. The term "aryl" may be used interchangeably with the term "aryl ring". Examples of aryl rings would include phenyl, naphthyl, and anthracene.

The term "heteroaryl", used alone or as part of a larger moiety as in "heteroaralkyl" or "heteroarylalkoxy", refers to monocyclic, bicyclic, and tricyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic, at least one ring in the system contains one or more heteroatoms, wherein each ring in the system contains 3 to 7 ring members and that has a single point of attachment to the rest of the molecule. The term "heteroaryl" may be used interchangeably with the term "heteroaryl ring" or the term "heteroaromatic".

[0119] Further examples of heteroaryl rings include the following monocycles: 2-furanyl, 3-furanyl, N-imidazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl,

N-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, pyridazinyl (e.g., 3-pyridazinyl), 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, tetrazolyl (e.g., 5-tetrazolyl), triazolyl (e.g., 2-triazolyl and 5-triazolyl), 2-thienyl, 3-thienyl, pyrazolyl (e.g., 2-pyrazolyl), isothiazolyl, 1,2,3-oxadiazolyl, 1,2,5-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,3-triazolyl, 1,2,3-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, pyrazinyl, 1,3,5-triazinyl, and the following bicycles: benzimidazolyl, benzofuryl, benzothiophenyl, indolyl (e.g., 2-indolyl), purinyl, quinolinyl (e.g., 2-quinolinyl, 3-quinolinyl, 4-quinolinyl), and isoquinolinyl (e.g., 1-isoquinolinyl, 3-isoquinolinyl).

[0120] In some embodiments, an aryl (including aralkyl, aralkoxy, aryloxyalkyl and the like) or heteroaryl (including heteroaralkyl and heteroarylalkoxy and the like) group may contain one or more substituents. Suitable substituents on the unsaturated carbon atom of an aryl or heteroaryl group are selected from those listed in the definitions of R<sup>2</sup> and R<sup>4</sup> below. Other suitable substituents include: halogen; -R°; -OR°; -SR°; 1,2-methylenedioxy; 1,2-ethylenedioxy; phenyl (Ph) optionally substituted with R°; -O(Ph) optionally substituted with R°; -(CH<sub>2</sub>)<sub>1-2</sub>(Ph), optionally substituted with R°; -CH=CH(Ph), optionally substituted with R°; -NO<sub>2</sub>; -CN; -N(R°)<sub>2</sub>; -NR°C(O)R°;  $-NR^{\circ}C(S)R^{\circ}; -NR^{\circ}C(O)N(R^{\circ})_{2}; -NR^{\circ}C(S)N(R^{\circ})_{2}; -NR^{\circ}CO_{2}R^{\circ}; -NR^{\circ}NR^{\circ}C(O)R^{\circ};$ -NR°NR°C(O)N(R°)<sub>2</sub>; -NR°NR°CO<sub>2</sub>R°; -C(O)C(O)R°; -C(O)CH<sub>2</sub>C(O)R°; -CO<sub>2</sub>R°;  $-C(O)R^{\circ}$ ;  $-C(S)R^{\circ}$ ;  $-C(O)N(R^{\circ})_2$ ;  $-C(S)N(R^{\circ})_2$ ;  $-OC(O)N(R^{\circ})_2$ ;  $-OC(O)R^{\circ}$ ;  $-C(O)N(OR^{\circ})_2$  $R^{\circ}$ ;  $-C(NOR^{\circ}) R^{\circ}$ ;  $-S(O)_{2}R^{\circ}$ ;  $-S(O)_{3}R^{\circ}$ ;  $-SO_{2}N(R^{\circ})_{2}$ ;  $-S(O)R^{\circ}$ ;  $-NR^{\circ}SO_{2}N(R^{\circ})_{2}$ ; -NR°SO<sub>2</sub>R°; -N(OR°)R°; -C(=NH)-N(R°)<sub>2</sub>; or -(CH<sub>2</sub>)<sub>0-2</sub>NHC(O)R°; wherein each independent occurrence of  $R^{\circ}$  is selected from hydrogen, optionally substituted  $C_{1-6}$ aliphatic, an unsubstituted 5-6 membered heteroaryl or heterocyclic ring, phenyl, -O(Ph), or -CH<sub>2</sub>(Ph), or, two independent occurrences of R°, on the same substituent or different substituents, taken together with the atom(s) to which each R° group is bound, form a 5-8-membered heterocyclyl, aryl, or heteroaryl ring or a 3-8-membered cycloalkyl ring, wherein said heteroaryl or heterocyclyl ring has 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur. Optional substituents on the aliphatic group of R° are selected from NH<sub>2</sub>, NH(C<sub>1-4</sub>aliphatic), N(C<sub>1-4</sub>aliphatic)<sub>2</sub>, halogen, C<sub>1-4</sub>aliphatic, OH,

O(C<sub>1-4</sub>aliphatic), NO<sub>2</sub>, CN, CO<sub>2</sub>H, CO<sub>2</sub>(C<sub>1-4</sub>aliphatic), O(haloC<sub>1-4</sub> aliphatic), or haloC<sub>1-4</sub> aliphatic, wherein each of the foregoing C<sub>1-4</sub>aliphatic groups of R° is unsubstituted.

In some embodiments, an aliphatic or heteroaliphatic group, or a non-aromatic heterocyclic ring may contain one or more substituents. Suitable substituents on the saturated carbon of an aliphatic or heteroaliphatic group, or of a non-aromatic heterocyclic ring are selected from those listed above for the unsaturated carbon of an aryl or heteroaryl group and additionally include the following: =O, =S, =NNHR\*, =NN(R\*)<sub>2</sub>, =NNHC(O)R\*, =NNHCO<sub>2</sub>(alkyl), =NNHSO<sub>2</sub>(alkyl), or =NR\*, where each R\* is independently selected from hydrogen or an optionally substituted C<sub>1-6</sub> aliphatic. Optional substituents on the aliphatic group of R\* are selected from NH<sub>2</sub>, NH(C<sub>1-4</sub> aliphatic), N(C<sub>1-4</sub> aliphatic)<sub>2</sub>, halogen, C<sub>1-4</sub> aliphatic, OH, O(C<sub>1-4</sub> aliphatic), NO<sub>2</sub>, CN, CO<sub>2</sub>H, CO<sub>2</sub>(C<sub>1-4</sub> aliphatic), O(halo C<sub>1-4</sub> aliphatic), or halo(C<sub>1-4</sub> aliphatic), wherein each of the foregoing C<sub>1-4</sub>aliphatic groups of R\* is unsubstituted.

In some embodiments, optional substituents on the nitrogen of a non-[0122] aromatic heterocyclic ring include -R<sup>+</sup>, -N(R<sup>+</sup>)<sub>2</sub>, -C(O)R<sup>+</sup>, -CO<sub>2</sub>R<sup>+</sup>, -C(O)C(O)R<sup>+</sup>, - $C(O)CH_2C(O)R^+$ ,  $-SO_2R^+$ ,  $-SO_2N(R^+)_2$ ,  $-C(=S)N(R^+)_2$ ,  $-C(=NH)-N(R^+)_2$ , or  $-NR^+SO_2R^+$ ; wherein R<sup>+</sup> is hydrogen, an optionally substituted C<sub>1-6</sub> aliphatic, optionally substituted phenyl, optionally substituted -O(Ph), optionally substituted -CH<sub>2</sub>(Ph), optionally substituted -(CH<sub>2</sub>)<sub>1-2</sub>(Ph); optionally substituted -CH=CH(Ph); or an unsubstituted 5-6 membered heteroaryl or heterocyclic ring having one to four heteroatoms independently selected from oxygen, nitrogen, or sulfur, or, two independent occurrences of R<sup>+</sup>, on the same substituent or different substituents, taken together with the atom(s) to which each R<sup>+</sup> group is bound, form a 5-8-membered heterocyclyl, aryl, or heteroaryl ring or a 3-8membered cycloalkyl ring, wherein said heteroaryl or heterocyclyl ring has 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur. Optional substituents on the aliphatic group or the phenyl ring of R<sup>+</sup> are selected from NH<sub>2</sub>, NH(C<sub>1-4</sub> aliphatic), N(C<sub>1-4</sub> aliphatic)<sub>2</sub>, halogen, C<sub>1-4</sub> aliphatic, OH, O(C<sub>1-4</sub> aliphatic), NO<sub>2</sub>, CN, CO<sub>2</sub>H, CO<sub>2</sub>(C<sub>1-4</sub> aliphatic), O(halo C<sub>1-4</sub> aliphatic), or halo(C<sub>1-4</sub> aliphatic), wherein each of the foregoing C<sub>1-4</sub>aliphatic groups of R<sup>+</sup> is unsubstituted.

[0123] As detailed above, in some embodiments, two independent occurrences of  $R^{\circ}$  (or  $R^{+}$ , or any other variable similarly defined herein), may be taken together with the atom(s) to which each variable is bound to form a 5-8-membered

heterocyclyl, aryl, or heteroaryl ring or a 3-8-membered cycloalkyl ring. Exemplary rings that are formed when two independent occurrences of R° (or R<sup>+</sup>, or any other variable similarly defined herein) are taken together with the atom(s) to which each variable is bound include, but are not limited to the following: a) two independent occurrences of R° (or R<sup>+</sup>, or any other variable similarly defined herein) that are bound to the same atom and are taken together with that atom to form a ring, for example, N(R°)<sub>2</sub>, where both occurrences of R° are taken together with the nitrogen atom to form a piperidin-1-yl, piperazin-1-yl, or morpholin-4-yl group; and b) two independent occurrences of R° (or R<sup>+</sup>, or any other variable similarly defined herein) that are bound to different atoms and are taken together with both of those atoms to form a ring, for example where a phenyl group is substituted with two occurrences of OR°

OR°, these two occurrences of R° are taken together with the oxygen atoms to which they are bound to form a fused 6-membered oxygen containing ring:

It will be appreciated that a variety of other rings can be formed when two independent occurrences of  $R^o$  (or  $R^+$ , or any other variable similarly defined herein) are taken together with the atom(s) to which each variable is bound and that the examples detailed above are not intended to be limiting.

In some embodiments, an alkyl or aliphatic chain can be optionally interrupted with another atom or group. This means that a methylene unit of the alkyl or aliphatic chain is optionally replaced with said other atom or group. Examples of such atoms or groups would include, but are not limited to, -NR-, -O-, -S-, -CO<sub>2</sub>-, -OC(O)-, -C(O)CO-, -C(O)NR-, -C(=N-CN), -NRCO-, -NRC(O)O-, -SO<sub>2</sub>NR-, -NRSO<sub>2</sub>-, -NRC(O)NR-, -OC(O)NR-, -NRSO<sub>2</sub>NR-, -SO-, or -SO<sub>2</sub>-, wherein R is defined herein. Unless otherwise specified, the optional replacements form a chemically stable compound. Optional interruptions can occur both within the chain and at either end of the chain; i.e. both at the point of attachment and/or also at the terminal end. Two optional replacements can also be adjacent to each other within a chain so long as it results in a chemically stable compound. Unless otherwise specified, if the replacement or interruption occurs at the terminal end, the replacement atom is bound to an H on the

terminal end. For example, if -CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> were optionally interrupted with -O-, the resulting compound could be -OCH<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>OCH<sub>3</sub>, or -CH<sub>2</sub>CH<sub>2</sub>OH.

[0125] As described herein, a bond drawn from a substituent to the center of one ring within a multiple-ring system (as shown below), represents substitution of the substituent at any substitutable position in any of the rings within the multiple ring system. For example, Figure a represents possible substitution in any of the positions shown in Figure b.

Figure a Figure b
$$\begin{array}{ccc}
x & x & x \\
x & x & x
\end{array}$$

[0126] This also applies to multiple ring systems fused to optional ring systems (which would be represented by dotted lines). For example, in Figure c, X is an optional substituent both for ring A and ring B.

$$A B \rightarrow X$$

Figure c

[0127] If, however, two rings in a multiple ring system each have different substituents drawn from the center of each ring, then, unless otherwise specified, each substituent only represents substitution on the ring to which it is attached. For example, in Figure d, Y is an optionally substituent for ring A only, and X is an optional substituent for ring B only.

$$A B \rightarrow X$$

Figure d

Unless otherwise stated, structures depicted herein are also meant to include all isomeric (e.g., enantiomeric, diastereomeric, and geometric (or conformational)) forms of the structure; for example, the R and S configurations for each asymmetric center, (Z) and (E) double bond isomers, and (Z) and (E) conformational isomers. Therefore, single stereochemical isomers as well as enantiomeric,

diastereomeric, and geometric (or conformational) mixtures of the present compounds are within the scope of the invention.

Unless otherwise stated, all tautomeric forms of the compounds of the invention are within the scope of the invention. Additionally, unless otherwise stated, structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a <sup>13</sup>C- or <sup>14</sup>C-enriched carbon are within the scope of this invention. Such compounds are useful, for example, as analytical tools or probes in biological assays.

## Description of Compounds of the Invention

[0130] The present invention relates to a compound of formula I:

or a pharmaceutically acceptable salt thereof, wherein

R<sup>3</sup> is H, Cl or F;

X<sup>1</sup> is N or CR<sup>4</sup>;

R<sup>2</sup> is H, F, R', OH, OR', COR', COOH, COOR', CONH<sub>2</sub>, CONHR', CON(R')<sub>2</sub>, or CN; R<sup>4</sup> is H, F, R', OH, OR', COR', COOH, COOR', CONH<sub>2</sub>, CONHR', CON(R')<sub>2</sub>, or CN; or R<sup>2</sup> and R<sup>4</sup>, taken together, form a 5-7 membered aryl or heteroaryl ring optionally substituted with 1-4 occurrences of R<sup>10</sup>;

R' is a  $C_{1-3}$  aliphatic optionally substituted with 1-4 occurrences of  $R^5$ ;

each R<sup>5</sup> is independently selected from halogen, CF<sub>3</sub>, OCH<sub>3</sub>, OH, SH, NO<sub>2</sub>, NH<sub>2</sub>, SCH<sub>3</sub>, NCH<sub>3</sub>, CN or unsubstituted C<sub>1-2</sub> aliphatic, or two R<sup>5</sup> groups, together with the carbon to which they are attached, form a cyclopropyl ring or C=O;

each R<sup>10</sup> is independently selected from halogen, OCH<sub>3</sub>, OH, NO<sub>2</sub>, NH<sub>2</sub>, SH, SCH<sub>3</sub>, NCH<sub>3</sub>, CN or unsubstituted C<sub>1-2</sub>aliphatic;

$$R^{1}$$
 is  $R^{14}$   $R^{14}$ 

R" is H or is a -C<sub>1-2</sub> aliphatic optionally substituted with 1-3 occurrences of  $R^{11}$ ; each  $R^{11}$  is independently selected from halogen, OCH<sub>3</sub>, OH, SH, NO<sub>2</sub>, NH<sub>2</sub>, SCH<sub>3</sub>, NCH<sub>3</sub>, CN, CON( $R^{15}$ )<sub>2</sub> or unsubstituted C<sub>1-2</sub> aliphatic, or two  $R^{11}$  groups, together

with the carbon to which they are attached, form a cyclopropyl ring or C=O;

 $R^6$  is a  $C_{1-4}$  aliphatic optionally substituted with 1-5 occurrences of  $R^{12}$ ;

each R<sup>12</sup> is independently selected from halogen, OCH<sub>3</sub>, OH, NO<sub>2</sub>, NH<sub>2</sub>, SH, SCH<sub>3</sub>, NCH<sub>3</sub>, CN or unsubstituted C<sub>1-2</sub>aliphatic, or two R<sup>12</sup> groups, together with the carbon to which they are attached, form a cyclopropyl ring;

Ring A is a 4-8 membered saturated nitrogen-containing ring comprising up to two additional heteroatoms selected from N, O or S and optionally substituted with 1-4 occurrences of R<sup>13</sup>;

each R<sup>13</sup> is independently selected from halogen, R', NH<sub>2</sub>, NHR', N(R')<sub>2</sub>, SH, SR', OH, OR', NO<sub>2</sub>, CN, CF<sub>3</sub>, COOR', COOH, COR', OC(O)H, OC(O)R', CONH<sub>2</sub>, CONHR', CON(R')<sub>2</sub>, NHC(O)R' or NR'C(O)R'; or any two R<sup>13</sup> groups, on the same substituent or different substituents, together with the atom(s) to which each R<sup>13</sup> group is bound, form a 3-7 membered saturated, unsaturated, or partially saturated carbocyclic or heterocyclic ring optionally substituted with 1-3 occurrences of R<sup>5</sup>;

 $R^8$  is  $C_{1-4}$  aliphatic optionally substituted with 1-5 occurrences of  $R^{12}$ ;

 $R^9$  is  $C_{1-2}$  alkyl; or

R<sup>8</sup> and R<sup>9</sup> are taken together to form a 3-7 membered carbocyclic or heterocyclic saturated ring optionally substituted with 1-5 occurrences of R<sup>12</sup>;

R<sup>14</sup> is H or unsubstituted C<sub>1-2</sub> alkyl:

 $R^{15}$  is H or unsubstituted  $C_{1\text{--}2}$  alkyl; and

 $R^7$  is a  $C_{2-3}$  aliphatic or cycloaliphatic optionally substituted with up to 6 occurrences of F.

[0131] In one embodiment, a compound of the invention has one of formulae I-A or I-B:

$$R^2$$
 $R^4$ 
 $R^3$ 
 $R^3$ 

[0132] In one embodiment,  $R^3$  is H or Cl. In a further embodiment,  $R^3$  is Cl. In a further embodiment,  $R^3$  is H.

[0133] In one embodiment,  $R^2$  is H, F, R', OH or OR'. In a further embodiment,  $R^2$  is H or F.

**[0134]** In one embodiment, the compound is of formula **I-A** and  $R^4$  is H, F, R', OH or OR'. In another embodiment,  $R^4$  is H or F. In a further embodiment,  $R^4$  is F and  $R^2$  is H. In another embodiment,  $R^2$  is F and  $R^4$  is H. In another embodiment,  $R^2$  and  $R^4$  are both H. In a further embodiment,  $R^3$  is Cl. In an alternative embodiment,  $R^3$  is H.

[0135] In another embodiment, the compound is of formula I-A and  $R^2$  and  $R^4$  are taken together to form a 6-membered aryl ring. In a further embodiment,  $R^3$  is Cl. In an alternative embodiment,  $R^3$  is H.

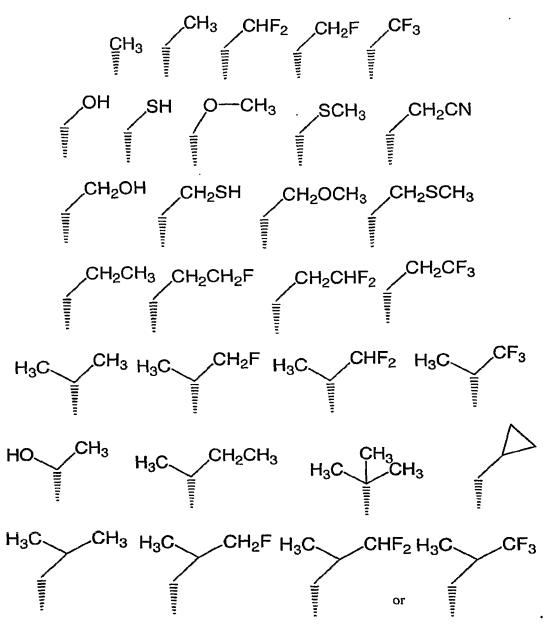
[0136] In another embodiment, R<sup>7</sup> is CH<sub>2</sub>CH<sub>3</sub>, CH<sub>2</sub>CF<sub>3</sub>, CH<sub>2</sub>CHF<sub>2</sub>, CH<sub>2</sub>CH<sub>2</sub>F, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, CH<sub>2</sub>CH<sub>2</sub>CF<sub>3</sub>, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>F or CH<sub>2</sub>CH<sub>2</sub>CHF<sub>2</sub>. In a further embodiment, R<sup>7</sup> is CH<sub>2</sub>CH<sub>3</sub>, CH<sub>2</sub>CF<sub>3</sub>, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> or CH<sub>2</sub>CH<sub>2</sub>CF<sub>3</sub>. In yet a further embodiment, R<sup>7</sup> is CH<sub>2</sub>CF<sub>3</sub>.

[0137] In another embodiment, R" is H or CH<sub>3</sub>. In a further embodiment, R" is H.

[0138] In another embodiment,  $R^{14}$  is H. In yet another embodiment,  $R^{15}$ , if present, is H. In another embodiment,  $R^{15}$  is absent.

[0139] In another embodiment, the invention provides a compound of formula II:

wherein  $X^{1A}$  is N, CH or CF and  $R^{1A}$  is


further embodiment, R<sup>7</sup> is CH<sub>2</sub>CH<sub>3</sub>, CH<sub>2</sub>CF<sub>3</sub>, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> or CH<sub>2</sub>CH<sub>2</sub>CF<sub>3</sub>. In yet a further embodiment, R<sup>7</sup> is CH<sub>2</sub>CF<sub>3</sub>.

[0140] In another embodiment, the invention provides a compound of formula III:

wherein X<sup>1A</sup> is N, CH or CF and R<sup>1A</sup> is

further embodiment,  $R^7$  is  $CH_2CH_3$ ,  $CH_2CF_3$ ,  $CH_2CH_2CH_3$  or  $CH_2CH_2CF_3$ . In yet a further embodiment,  $R^7$  is  $CH_2CF_3$ .

[0141] In another embodiment of any of formulae I, II or III, R<sup>6</sup> is selected from



[0142] In a further embodiment, R<sup>6</sup> is selected from

HO 
$$CH_3$$
  $H_3C$   $CH_2CH_3$   $H_3C$   $CH_3$   $H_3C$   $CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_4$   $CH_5$   $CH_5$   $CH_5$   $CH_5$   $CH_5$   $CH_6$   $CH_7$   $CH_8$   $CH_8$ 

In yet a further embodiment, R<sup>6</sup> is selected from [0143]

In another embodiment of any of formulae I, II or III, Ring A is [0144]

 $R^{13}$ , is H or  $R^{13}$ .

In a further embodiment, Ring A is [0145]

$$-\frac{(R^{13})_{0-3}}{\frac{1}{2}} - \frac{(R^{13})_{0-4}}{\frac{1}{2}} - \frac{(R^{13})_{0-3}}{\frac{1}{2}} - \frac{(R^{13})_{0$$

[0146]

In one embodiment, each  $R^{13}$  is independently selected from halogen, R',  $NH_2$ , NHR',  $N(R')_2$ , SH, SR', OH, OR',  $NO_2$ , CN,  $CF_3$ , COOR', COOH, COR', OC(O)R' or NHC(O)R'; or any two  $R^{13}$  groups, on the same substituent or different substituents, together with the atom(s) to which each  $R^{13}$  group is bound, form a 3-7 membered saturated, unsaturated, or partially saturated carbocyclic or heterocyclic ring optionally substituted with 1-3 occurrences of  $R^5$ .

[0148] In one embodiment of this invention,  $R^{13}$  is absent. In another embodiment, Ring A is substituted with one occurrence of  $R^{13}$ . In a further embodiment, the one occurrence of  $R^{13}$  is OH, CH<sub>3</sub>, F, OR' or NHR'. In yet a further embodiment, R' is  $C_{1-2}$  alkyl or  $C_{2-3}$  alkenyl. In another embodiment,  $R^{13}$  is OH.

[0149] In another embodiment of any of formulae I, II or III, R<sup>8</sup> and R<sup>9</sup> are taken together to form a ring selected from

$$(R^{12})_{0-1} \qquad (R^{12})_{0-3} \qquad (R^{12})_{0-3} \qquad (R^{12})_{0-4}$$

wherein one or more carbon atoms in of said ring are optionally and independently replaced by N, O or S.

[0150] In another embodiment of any of formulae I, II or III, R<sup>8</sup> and R<sup>9</sup> are

[0151] In a further embodiment, R<sup>8</sup> and R<sup>9</sup> are

[0152] In yet a further embodiment, R<sup>8</sup> and R<sup>9</sup> are

$$H_3C$$
  $CH_3$   $CH_3$ 

[0153] In still a further embodiment,  $R^8$  and  $R^9$  are

In another embodiment, the invention provides a compound of formulae I, IA, IB, II or III, wherein said compound inhibits a JAK kinase with a lower  $K_i$  (i.e., is more potent) than said compounds inhibits one or more kinases selected from Aurora-1 (AUR-B), Aurora-2 (AUR-A), Src, CDK2, Flt-3 or c-Kit. In another embodiment, the invention provides a compound of formulae I, IA, IB, II or III, wherein said compound inhibits JAK3 with a lower  $K_i$  than said compound inhibits one or more kinases selected from JAK2, Aurora-1, Aurora-2, Src, CDK2, Flt-3 or c-Kit.

In another embodiment, the invention provides a compound of any of formulae I, IA, IB, II or III, wherein said compound inhibits JAK3 with a  $K_i$  of less than 0.1  $\mu$ M. In a further embodiment, the invention provides a compound of any of formulae I, IA, IB, II or III, wherein said compound inhibits JAK3 with a  $K_i$  of less than 0.01  $\mu$ M. In another embodiment, the invention provides a compound of any of formulae I, IA, IB, II or III, wherein said compound inhibits JAK3 with a  $K_i$  of less than 0.01  $\mu$ M and inhibits Aurora-2 with a  $K_i$  that is at least 5-fold higher than the  $K_i$  of JAK3. In a further

18

embodiment, the the invention provides a compound of any of formulae I, IA, IB, II or III, wherein said compound inhibits JAK3 with a  $K_i$  of less than 0.01  $\mu$ M and inhibits Aurora-2 with a  $K_i$  that is at least 10-fold higher than the  $K_i$  of JAK3.

[0156] In another embodiment, the invention provides a compound of formulae I, IA, IB, II or III, wherein said compound inhibits JAK3 in a cellular assay with an IC<sub>50</sub> of less than 5  $\mu$ M. In a further embodiment, said compound inhibits JAK3 in a cellular assay with an IC<sub>50</sub> of less than 1  $\mu$ M.

In another embodiment, said compound inhibits JAK3 in a cellular [0157] assay with an IC50 that is at least 5-fold less than said compound inhibits one or more kinases selected from JAK2, Aurora-1, Aurora-2, Src, CDK2, Flt-3 or c-Kit in a cellular assay. In another embodiment, the invention provides a compound of formulae I, IA, IB, II or III, wherein said compound inhibits JAK3 in a cellular assay with an IC50 of less than 5 µM, wherein the IC<sub>50</sub> of JAK2 is at least 5-fold higher than the IC<sub>50</sub> of JAK3. In a further embodiment, said compound inhibits JAK3 in a cellular assay with an IC50 of less than 1 µM, wherein the IC<sub>50</sub> of JAK2 is at least 5-fold higher than the IC<sub>50</sub> of JAK3. In a further embodiment, said compound inhibits JAK3 in a cellular assay with an IC50 of less than 5 µM, wherein the IC50 of JAK2 is at least 10-fold higher than the IC50 of JAK3. In a further embodiment, said compound inhibits JAK3 in a cellular assay with an IC50 of less than 1 µM, wherein the IC<sub>50</sub> of JAK2 is at least 10-fold higher than the IC<sub>50</sub> of JAK3. In yet a further embodiment, the invention provides a compound of formulae I, IA, IB, II or III, wherein said compound inhibits JAK3 in a cellular assay with an IC<sub>50</sub> of less than 1 μM, wherein the IC<sub>50</sub> of JAK2 is at least 5-fold higher than the IC<sub>50</sub> of JAK3, and wherein said compound inhibits JAK3 with a Ki of less than 0.01 µM and inhibits Aurora-2 with a Ki that is at least 5-fold higher than the Ki of JAK3. In yet a further embodiment, said compound inhibits JAK3 in a cellular assay with an IC50 of less than 1 μM, wherein the IC<sub>50</sub> of JAK2 is at least 10-fold higher than the IC<sub>50</sub> of JAK3, and wherein said compound inhibits JAK3 with a Ki of less than 0.01 µM and inhibits Aurora-2 with a K<sub>i</sub> that is at least 10-fold higher than the K<sub>i</sub> of JAK3.

[0158] In another embodiment, the invention provides a compound of Table 1, Table 2 or Table 3:

Table 1

| Table 1     |                                           |              |
|-------------|-------------------------------------------|--------------|
| 1           | 2                                         | 3            |
|             | F H O N N N N N N N N N N N N N N N N N N | HZ H         |
| 4           | 5                                         | 6            |
|             | F F O O O O O O O O O O O O O O O O O O   | CI N H P F F |
| 7           | 8                                         | 9            |
| H N H O F F | CI NH FF                                  | CI NH FF     |
| 10          | 11                                        | 12           |
| CI NH H F F | CI N H F                                  | CI NH PFF    |

| 13                                                       | 14                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CI NH PF                                                 | F F N.H O N.H | CI N H F F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16  FF  N-H  O  H  N  N  N  H  N  N  H  N  H  N  H  N  N | 17  F H F  N H H F  N H F  F F                    | 18  F F F N N H N N H O CI N H O C C C C C C C C C C C C C C C C C C |
| 19                                                       | 20                                                | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CI N H H F F                                             | H-Z-H Z-H Z-H Z-H Z-H Z-H Z-H Z-H Z-H Z-          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| F N H H N F N N N N N N N N N N N N N N                  | 23                                                | 24  F H N H O  CI N H O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| 25                                        | 26                                      | 67           |
|-------------------------------------------|-----------------------------------------|--------------|
| F_F                                       |                                         | 27           |
| CI NH | F H N N N N N N N N N N N N N N N N N N | CI N H F F F |
| 28                                        | 29                                      | 30           |
| CI NH H F F                               | F H H N N N H                           | SS HNN H     |
| 31                                        | 32                                      | 33           |
| F H N H N N H                             | T Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | E H H N.H    |
| 34                                        | 35                                      | 36           |
| CI NH H                                   | F F N-H O H N N H                       | F F N.H      |

| 37                                                                         | . 38                                              | 39                                                         |
|----------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------|
| CI NH FFF                                                                  |                                                   | H.Z. T. C. Z. T.                                           |
| 40  F F N-H O H N N H N H CI                                               | 41  NC  NC  NC  NC  NC  NC  NC  NC  NC  N         | 42  F F NH  O H  N N C IN  CI  N N H                       |
| 43  FFF  H  N  N  N  H  O  CI  N  N  H  O  H  O  O  O  O  O  O  O  O  O  O | 44  CI  N  H  N  H  N  H  F  F                    | 45  F H O N H                                              |
| 46  V N H F F                                                              | 47  F F N.H O H N N N N N N N N N N N N N N N N N | 48  F F H N N N H CI N H N H N H N H N H N H N H N H N H N |

| 49                                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51             |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| H CI N H                                | CI NH H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CI N H F       |
| 52                                      | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54             |
| CI NH H                                 | CI NH | C Z Z E        |
| 55                                      | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57             |
| CI NH                                   | TO NE LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CI ZH FF       |
| 58                                      | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60             |
| E P P P P P P P P P P P P P P P P P P P | H T Z T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H Z O O CI Z H |

| 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62                                                                        | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H N N N N N N N N N N N N N N N N N N N                                   | CI NH FFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 64  FH.NONH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65  H N N H  CI N H                                                       | 66  F  F  CI  Z  T  Z  T  CI  C  C  C  C  C  C  C  C  C  C  C  C |
| 67  F F F N N N H O N N H O N N H O N N H O N N H O N N N H O N N N H O N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68<br>F F N N N N N N N N N N N N N N N N N N                             | 69  F H H N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 70  FLAT OF A STATE OF | 71  F  N  H  N  CI  N  N  H  N  CI  N  N  H  N  N  N  N  N  N  N  N  N  N | 72  F H N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74                                            | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CI NH FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HO H      | TU U U U U U U U U U U U U U U U U U U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 76  HOHN HON N HON N H CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77  F  N  N  N  N  N  N  N  N  N  N  N  N     | 78  F  O=N=0  O=N=0  CI  N  CI |
| 79  F F NH  OH HN  OH NA  CI NA  NH  OH NA  OH NA | 80  F H N O O O O O O O O O O O O O O O O O O | 81  F  F  N  N  N  N  N  H  N  N  H  N  N  H  N  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 82  F  N  N  N  N  N  N  N  N  N  N  N  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83  F F F N:H  O H O H  CI N N H              | 84  F F CI Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| 85                                        | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87                                                |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| CI NO.H                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CI N H F F F                                      |
| 88  F F F O O O O O O O O O O O O O O O O | 89  F  H  N  N  N  N  N  N  N  N  N  N  N  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90  F  F  CI  N  H  CI  N  H                      |
| 91                                        | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93                                                |
| CI NA H.A.                                | CI N H F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CI N H F F                                        |
| 94                                        | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96                                                |
| CI N N H F F                              | E N.H<br>O | F F NH  OH  N  H  N  N  N  N  N  N  N  N  N  N  N |

| 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98                                         | 99                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|
| F H O H N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E H H H Z Z Z H                            | F H H H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101                                        | ID2                                     |
| TO3  F F F N.H  O H N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 104                                        | 105                                     |
| 106  F F F N-H  O N-H  O N-H  N N-H  N N-H  O N-H  N N-H  O N-H  N N-H  O N-H  N N-H  O N-H | TO7  F F F F N N N N N N N N N N N N N N N | 108                                     |

| 109                                           | 110                                                                               | 111                                                             |
|-----------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|
| E H H Z Z Z H                                 | CI ZH                                                                             | F H N H O                                                       |
| T112  F F H O H-N N N H                       | TITS  F F N H N N N N H N H H N N H N N H N N N N N N N N N N N N N N N N N N N N | 114  F F NH OHN NN CI                                           |
| 115                                           | 116                                                                               | 117                                                             |
| F F NH OH N N N N N N N N N N N N N N N N N   | F H D H N N N N N N N N N N N N N N N N N                                         | F F NH NO NH NO NH NH NO NH |
| 118                                           | 119                                                                               | 120                                                             |
| F F N.H N O N N N N N N N N N N N N N N N N N | CI NH OH                                                                          | F F N-H O H N N H N N H N N H N N N N N N N N                   |

| 121                                     | 122                                     | 123                                         |
|-----------------------------------------|-----------------------------------------|---------------------------------------------|
| F H N N N H                             | F H O N H                               | F F H O H N N N N N N N N N N N N N N N N N |
| F H N N N N N CI                        | 125                                     | 126  F F N H N H N H N H N H N H N H N H N  |
| 127                                     | 128                                     | 129                                         |
| F H N N N N N N N N N N N N N N N N N N | E H H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | CI N H F F F                                |
| 130                                     | 131                                     | 132                                         |
| F H N N N N N N N N N N N N N N N N N N | O Z H                                   | F H N N N N N N N N N N N N N N N N N N     |

| 133                                                 | 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 135                                     |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| CI N H F F F                                        | F F N.H  OH  NH  N | F H N H N H N H N H N H N H N H N H N H |
| 136                                                 | 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 138                                     |
| F F N.H  O H  N  N  N  N  N  N  N  N  N  N  N  N  N | CI NH FF                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
| 139                                                 | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 141                                     |
| CI N N H                                            | E H H Z Z Z H                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CI NH H O F F                           |
| 142                                                 | 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 144 .                                   |
| CI NH O                                             | CI NH H                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CI ZZH ZZH                              |

| 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 146                                        | 147                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|
| CI ZZ F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F H F F F F                                | F N H                                      |
| 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 149                                        | 150                                        |
| CI NH NH H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F F NH O H N N O N N N N N N N N N N N N N | F H N N O O                                |
| 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 152                                        | 153                                        |
| F F H O H N O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F F NH O H N N N N N N N N N N N N N N N N | F F NH O H N N N N N N N N N N N N N N N N |
| 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 155                                        | 156                                        |
| CI NATIONAL CITY OF THE PROPERTY OF THE PROPER | CI C   | CI N H F F F S S                           |

| 157                                                           | 158                                       | 159                                       |
|---------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| F N N N H N H N H F F F                                       | F P P P P P P P P P P P P P P P P P P P   | F F H O H N N C C N N H                   |
| 160                                                           | 161                                       | 162                                       |
| F F NH OHN NN NN CI NN NN H                                   | CI LN H                                   | F H O H N O Z N H                         |
| 163                                                           | 164                                       | 165                                       |
| CI Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                      | F H D D S S S S S S S S S S S S S S S S S | F N.H N N N N N N N N N N N N N N N N N N |
| 166                                                           | 167                                       | 168                                       |
| F R.H  OH  N  N  N  N  H  F  F  N  N  N  H  F  CI  N  N  H  F | CI NH F                                   | F F N.H O H H F CI N H                    |

| 169                                     | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 171                                                       |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| L L L L L L L L L L L L L L L L L L L   | CI NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CI NH O NH O                                              |
| F F N N N N N N N N N N N N N N N N N N | 173  F F N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 174  HNHO NHHO NHHO NHHO NHHO NHHO NHHO NH                |
| 175                                     | 176  F  H  N  CI  N  CI  N  H  N  N  H  N  N  H  N  N  H  N  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177                                                       |
| 178                                     | 179  HN N H O N H N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O N H O | 180  HN O HN N CI N HN N HN |

Table 2

| 404                                     |                                         |                                         |
|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| 181                                     | 182                                     | 183                                     |
| CI NH F                                 | F N N F F                               | F T N N N N N N N N N N N N N N N N N N |
| 184                                     | 185                                     | 100                                     |
| 104                                     | 100                                     | 186                                     |
| F N N N N N N N N N N N N N N N N N N N | F N H N H N H N H N H N H N H N H N H N | F N N N N N N N N N N N N N N N N N N N |
| 187                                     | 188                                     | 189                                     |
| F N N H                                 |                                         |                                         |
| 190                                     | 191                                     | 192                                     |
| F Z Z H                                 | CI Z H                                  | CI N H                                  |

| 193                     | 194         | 195                                     |
|-------------------------|-------------|-----------------------------------------|
|                         |             | F F N.H                                 |
| 196<br>cı               | 197         | 198<br>CI .                             |
| HN NH<br>NH<br>NH<br>NH | S N H O N H | H N N N N N N N N N N N N N N N N N N N |
| 199                     | , 200       | 201                                     |
| HN                      | F F         | F                                       |
| ONH<br>FFF              | F N H NO    | F N H                                   |
| NH<br>F-F<br>F          | F N N N     | 204<br>F F                              |

| 205                                     | 206                                     | 207                                     |
|-----------------------------------------|-----------------------------------------|-----------------------------------------|
|                                         | H N N N N N N N N N N N N N N N N N N N | H N N H                                 |
| 208<br>H                                | 209                                     | 210                                     |
| N H F F                                 | E Z H                                   | F N N N N N N N N N N N N N N N N N N N |
|                                         |                                         |                                         |
| 211                                     | 212                                     | 213                                     |
| E N N N N N N N N N N N N N N N N N N N |                                         |                                         |
| F N N N N N N N N N N N N N N N N N N N | H N N N N N N N N N N N N N N N N N N N |                                         |

| 217                                            | 218                                        | 219                                               |
|------------------------------------------------|--------------------------------------------|---------------------------------------------------|
| CI NH FF                                       | CI NH F                                    | E N H H H H H H H H H H H H H H H H H H           |
| 220  CI  N  N  N  N  N  N  N  N  N  N  N  N  N | 221  N  N  N  N  N  N  N  N  N  N  N  N  N | 222<br>CI<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>H |
| 223                                            | 224                                        | 225                                               |
| HN NH                                          |                                            | F Z E                                             |
| 226                                            | 227                                        | 228  F _ F _ NH  O H-N                            |

| 229                                     | 230                                     | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F F H N N N N N N N N N N N N N N N N N | F Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | THE THE PERSON OF THE PERSON O |
| 232                                     | 233                                     | 234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CI ZH                                   | L H H H Z Z Z H                         | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 235                                     | 236                                     | 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HN HN H                                 | H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 238                                     | 239                                     | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| F H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | F F NH O HZ Z                           | F NH NH NN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| .241                                    | . 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 243                                      |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|                                         | H H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |
| 244                                     | 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 246                                      |
| F Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F T Z Z Z T                              |
| 247                                     | 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 249                                      |
| THE SERVICE STREET                      | CI NH H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CI N H H H H H                           |
| 250                                     | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 252                                      |
| CI NA H                                 | CI N H H N H H N H H N H H N H H N H H N H H N H H N H H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N H N | CI N H N H N H N H N H N H N H N H N H N |

| 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 254                                     | 255                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|
| CI NO H F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CI LN PH                                | F N N H                                 |
| 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 257                                     | 258                                     |
| CI NH |                                         | CI Z Z H                                |
| 259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 260                                     | 261                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E H H H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | E H H H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z |
| 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 263                                     | 264                                     |
| CI NH NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F N H F F F                             | F N N H F F                             |

| 265                                     | 266                                       | 267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CI NO NO. H                             | CI NO | GI N H F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 268                                     | 269                                       | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CI NH FF                                | CI NH F                                   | THE TOTAL STATE OF THE STATE OF |
| 271                                     | 272                                       | 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H N N N N N N N N N N N N N N N N N N N | F H N C I N H                             | CI N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 274                                     | 275                                       | 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| F P P P P P P P P P P P P P P P P P P P |                                           | F F N-H O H F F CI N H F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 277            | 278                                          | 279                                                         |
|----------------|----------------------------------------------|-------------------------------------------------------------|
| CI NH FF       | CI N N N N N N N N N N N N N N N N N N N     | HN-H O N-H O N-H O N-H O N-H F F                            |
| 280  CI NH F F | 281  H O III III III III III III III III III | 282<br>CI H N H N H                                         |
| 283            | 284  F H N H N H N H N H N H N H N H N H N H | 285  HNN HHO  NH  CI NH  NH  NH  NH  NH  NH  NH  NH  NH  NH |
| 286            | CI N F F F F                                 | 288  **********************************                     |

| 301     | 302     | 303      |
|---------|---------|----------|
|         | CI ZZ H | CI NH H  |
| 304     | 305     | 306      |
| CI N H  |         | CI NH FF |
| 307     | 308     | 309      |
| CI NH F | CI NH F | CI N H   |

Table 3

|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 310                                     | 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N H F F                                 | N H F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CI NH O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 313                                     | 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| T Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | CI CONTRACTOR OF THE PROPERTY | E C E Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 316                                     | 317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CI NEC HANDO                            | NH OHN CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F F NH OH NH |
| 319                                     | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CI N.H OH N.H                           | CI ZZ H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N H F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| 322                                     | 323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 324                                     |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                                         | THE TOTAL STATE OF THE STATE OF |                                         |
| 325                                     | 326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 327                                     |
| H-C=C                                   | E H H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
| 328                                     | 329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 330                                     |
| Z T T Z T T T T T T T T T T T T T T T T | H H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T C C T T T T T T T T T T T T T T T T T |
| 331                                     | 332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 333                                     |
| T T T T T T T T T T T T T T T T T T T   | H N H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NEC N N N N N N N N N N N N N N N N N N |

| 346                                   | 347                                        | 348                                   |
|---------------------------------------|--------------------------------------------|---------------------------------------|
| L L L L L L L L L L L L L L L L L L L | F H H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z    | N H                                   |
| 349<br>CI<br>N<br>N<br>H              | 350  F F H N N H N N H N N N N N N N N N N | 351<br>H.O. H. D. Z. H.               |
| 352                                   | 353                                        | 354                                   |
| N H O H                               | CI N N N N N N N N N N N N N N N N N N N   |                                       |
| 355                                   | 356                                        | 357                                   |
| CI NH CEC.H                           | HZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z     | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z |

| 358                                     | 359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 360                                      |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| E H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | CI N H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F H N N H                                |
| 361                                     | 362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 363                                      |
| F H H N F F F                           | T T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TE T |
| 364                                     | 365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 366                                      |
| T T T Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | CI NATE OF THE PROPERTY OF THE | F Z H                                    |
| 367                                     | 368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 369                                      |
| N H F F F                               | F F F F F F F F F F F F F F F F F F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F H N N N N N N N N N N N N N N N N N N  |

| 370                                     | 371                                   | 372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F F F F F F F F F F F F F F F F F F F   | E E E E E E E E E E E E E E E E E E E | TZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 373                                     | 374                                   | 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H H L L L L L L L L L L L L L L L L L L |                                       | H H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 376                                     | 377                                   | 378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| P P P P P P P P P P P P P P P P P P P   | L Z L                                 | THE SECOND SECON |
| 379                                     | 380                                   | 381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                                       | F F                                   | l F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| 382                 | 200                |                                        |
|---------------------|--------------------|----------------------------------------|
| 302                 | 383                | 384                                    |
|                     | F_F                | F <sub>V</sub> F                       |
|                     | F >                | F \                                    |
| HN N                | HN                 | ни                                     |
|                     |                    |                                        |
| , "                 | \_N, _f            | LN                                     |
| o NH                | N.                 |                                        |
| , ND                | )_N                | )=N                                    |
| <u>-</u>            |                    |                                        |
| F                   | N N                | N N                                    |
| 385                 | 386                | 387                                    |
| -                   |                    | 307                                    |
| F F                 | F                  |                                        |
| (                   | % √ F              | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  |
| NH                  | ) H                |                                        |
| H                   | EN N               | F N T V F                              |
| N N N               | N TH               | N H O                                  |
| )_N                 |                    |                                        |
|                     |                    |                                        |
| N H                 | N N N              | N H                                    |
|                     | Н                  |                                        |
| 388                 | 389                | 390                                    |
| \                   | , <u>~</u>         |                                        |
|                     |                    | <b>M</b>                               |
| HN                  | HN                 | HN I                                   |
|                     | KKI                |                                        |
|                     |                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
| o N <sub>H</sub> '  | °>\\\              | O NH                                   |
|                     | и́н `              |                                        |
| _ ʃ "               | FF                 | [                                      |
| F -                 | Ė                  | F∕F                                    |
| 391                 | 392                | 393                                    |
|                     | j i                |                                        |
| <b>1</b>            | 9                  | 9. /-                                  |
| HN                  | _ >_N <sub>H</sub> | ) N                                    |
|                     |                    |                                        |
|                     | N <sub>H</sub>     | N, NH                                  |
| o≯√ <sub>nH</sub> . |                    | )                                      |
| _ ^N <sub>H</sub>   |                    |                                        |
| ا لا                |                    |                                        |
| ; /                 |                    |                                        |

| 394              | 395                                   | 396                                     |
|------------------|---------------------------------------|-----------------------------------------|
| N H N H          | T T T T T T T T T T T T T T T T T T T |                                         |
| H 207            | 398                                   | 399                                     |
| 397  F H N N N H | P P P P P P P P P P P P P P P P P P P | N N H                                   |
| 400              | 401                                   | 402                                     |
| H H H            | H H H H H H H H H H H H H H H H H H H | N H H H H H H H H H H H H H H H H H H H |
| 403              | 404                                   | 405                                     |
| N H F F          | N H F F F                             | N H F F F                               |

.....

Uses, Formulation and Administration

Pharmaceutically acceptable compositions

[0159] In another embodiment, the invention provides a pharmaceutical composition comprising a compound of formulae I, IA, IB, II or III.

[0160] In a further embodiment, the composition additionally comprising a therapeutic agent selected from a chemotherapeutic or anti-proliferative agent, an anti-inflammatory agent, an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating destructive bone disorders, an agent for treating liver disease, an anti-viral agent, an agent for treating blood disorders, an agent for treating diabetes, or an agent for treating immunodeficiency disorders.

Composition comprising a compound of this invention or a pharmaceutically acceptable derivative thereof and a pharmaceutically acceptable carrier, adjuvant, or vehicle. The amount of compound in the compositions of this invention is such that is effective to measurably inhibit a protein kinase, particularly a JAK family kinase, in a biological sample or in a patient. Preferably the composition of this invention is formulated for administration to a patient in need of such composition. Most preferably, the composition of this invention is formulated for oral administration to a patient.

[0162] The term "patient", as used herein, means an animal, preferably a mammal, and most preferably a human.

[0163] Accordingly, in another aspect of the present invention, pharmaceutically acceptable compositions are provided, wherein these compositions comprise any of the compounds as described herein, and optionally comprise a pharmaceutically acceptable carrier, adjuvant or vehicle. In certain embodiments, these compositions optionally further comprise one or more additional therapeutic agents.

It will also be appreciated that certain of the compounds of present invention can exist in free form for treatment, or where appropriate, as a pharmaceutically acceptable derivative thereof. According to the present invention, a pharmaceutically acceptable derivative includes, but is not limited to, pharmaceutically acceptable prodrugs, salts, esters, salts of such esters, or any other adduct or derivative which upon administration to a patient in need is capable of providing, directly or

indirectly, a compound as otherwise described herein, or a metabolite or residue thereof. As used herein, the term "inhibitorily active metabolite or residue thereof" means that a metabolite or residue thereof is also an inhibitor of a JAK family kinase.

[0165] As used herein, the term "pharmaceutically acceptable salt" refers to those salts which are, within the scope of sound medical judgement, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like.

Pharmaceutically acceptable salts are well known in the art. For [0166] example, S. M. Berge et al., describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1-19, incorporated herein by reference. Pharmaceutically acceptable salts of the compounds of this invention include those derived from suitable inorganic and organic acids and bases. Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and N<sup>+</sup>(C<sub>1-4</sub>alkyl)<sub>4</sub> salts. This invention also envisions the quaternization of any basic nitrogen-containing groups of the compounds disclosed herein. Water or oil-soluble or dispersable products may be obtained by such quaternization. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium,

quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, loweralkyl sulfonate and aryl sulfonate.

PCT/US2007/001225

As described above, the pharmaceutically acceptable compositions of the present invention additionally comprise a pharmaceutically acceptable carrier, adjuvant, or vehicle, which, as used herein, includes any and all solvents, diluents, or other liquid vehicle, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired. Remington's Pharmaceutical Sciences, Sixteenth Edition, E. W. Martin (Mack Publishing Co., Easton, Pa., 1980) discloses various carriers used in formulating pharmaceutically acceptable compositions and known techniques for the preparation thereof. Except insofar as any conventional carrier medium is incompatible with the compounds of the invention, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutically acceptable composition, its use is contemplated to be within the scope of this invention.

[0168] Some examples of materials which can serve as pharmaceutically acceptable carriers include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, or potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, wool fat, sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil; safflower oil; sesame oil; olive oil; corn oil and soybean oil; glycols; such a propylene glycol or polyethylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other nonPCT/US2007/001225

toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator.

[0169] The term "measurably inhibit", as used herein means a measurable change in kinase activity, particularly JAK kinase activity, between a sample comprising a compound of this invention and a JAK kinase and an equivalent sample comprising JAK kinase in the absence of said compound.

[0170] The compositions of the present invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term "parenteral" as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intraocular, intrahepatic, intralesional and intracranial injection or infusion techniques. Preferably, the compositions are administered orally, intraperitoneally or intravenously. Sterile injectable forms of the compositions of this invention may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1,3butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium.

For this purpose, any bland fixed oil may be employed including [0171] synthetic mono- or di-glycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceuticallyacceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents that are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions. Other commonly used surfactants, such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are

commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.

The pharmaceutically acceptable compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions. In the case of tablets for oral use, carriers commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added.

[0173] Alternatively, the pharmaceutically acceptable compositions of this invention may be administered in the form of suppositories for rectal administration. These can be prepared by mixing the agent with a suitable non-irritating excipient that is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug. Such materials include cocoa butter, beeswax and polyethylene glycols.

[0174] The pharmaceutically acceptable compositions of this invention may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.

Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation.

Topically-transdermal patches may also be used.

For topical applications, the pharmaceutically acceptable compositions may be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutically acceptable compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers.

Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.

For ophthalmic use, the pharmaceutically acceptable compositions may be formulated, e.g., as micronized suspensions in isotonic, pH adjusted sterile saline or other aqueous solution, or, preferably, as solutions in isotonic, pH adjusted sterile saline or other aqueous solution, either with or without a preservative such as benzylalkonium chloride. Alternatively, for ophthalmic uses, the pharmaceutically acceptable compositions may be formulated in an ointment such as petrolatum. The pharmaceutically acceptable compositions of this invention may also be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.

[0178] Most preferably, the pharmaceutically acceptable compositions of this invention are formulated for oral administration.

Liquid dosage forms for oral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.

[0180] Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic

parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.

59

[0181] The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.

In order to prolong the effect of a compound of the present invention, it is often desirable to slow the absorption of the compound from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the compound then depends upon its rate of dissolution that, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered compound form is accomplished by dissolving or suspending the compound in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices of the compound in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of compound to polymer and the nature of the particular polymer employed, the rate of compound release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the compound in liposomes or microemulsions that are compatible with body tissues.

[0183] Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.

[0184] Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium

citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar--agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.

Io185] Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polethylene glycols and the like.

The active compounds can also be in micro-encapsulated form with one or more excipients as noted above. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical formulating art. In such solid dosage forms the active compound may be admixed with at least one inert diluent such as sucrose, lactose or starch. Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline cellulose. In the case of capsules, tablets and pills, the dosage forms

waxes.

Osage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. The active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation, ear drops, and eye drops are also contemplated as being within the scope of this invention. Additionally, the present invention contemplates the use of transdermal patches, which have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms can be made by dissolving or dispensing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.

In the compounds of the invention are preferably formulated in dosage unit form for ease of administration and uniformity of dosage. The expression "dosage unit form" as used herein refers to a physically discrete unit of agent appropriate for the patient to be treated. It will be understood, however, that the total daily usage of the compounds and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment. The specific effective dose level for any particular patient or organism will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed, and like factors well known in the medical arts.

[0189] The amount of the compounds of the present invention that may be combined with the carrier materials to produce a composition in a single dosage form

will vary depending upon the host treated, the particular mode of administration.

Preferably, the compositions should be formulated so that a dosage of between 0.01 - 100 mg/kg body weight/day of the inhibitor can be administered to a patient receiving these compositions.

[0190] Depending upon the particular condition, or disease, to be treated or prevented, additional therapeutic agents, which are normally administered to treat or prevent that condition, may also be present in the compositions of this invention. As used herein, additional therapeutic agents that are normally administered to treat or prevent a particular disease, or condition, are known as "appropriate for the disease, or condition, being treated".

**[0191]** For example, chemotherapeutic agents or other anti-proliferative agents may be combined with the compounds of this invention to treat proliferative diseases and cancer. Examples of known chemotherapeutic agents include, but are not limited to, Gleevec<sup>TM</sup>, adriamycin, dexamethasone, vincristine, cyclophosphamide, fluorouracil, topotecan, taxol, interferons, and platinum derivatives.

Other examples of agents the inhibitors of this invention may also be [0192] combined with include, without limitation: treatments for Alzheimer's Disease such as Aricept® and Excelon®; treatments for Parkinson's Disease such as L-DOPA/carbidopa, entacapone, ropinrole, pramipexole, bromocriptine, pergolide, trihexephendyl, and amantadine; agents for treating Multiple Sclerosis (MS) such as beta interferon (e.g., Avonex® and Rebif®), Copaxone®, and mitoxantrone; treatments for asthma such as albuterol and Singulair<sup>®</sup>; agents for treating schizophrenia such as zyprexa, risperdal, seroquel, and haloperidol; anti-inflammatory agents such as corticosteroids, TNF blockers, IL-1 RA, azathioprine, cyclophosphamide, and sulfasalazine; immunomodulatory and immunosuppressive agents such as cyclosporin, tacrolimus, rapamycin, mycophenolate mofetil, interferons, corticosteroids, cyclophophamide, azathioprine, and sulfasalazine; neurotrophic factors such as acetylcholinesterase inhibitors, MAO inhibitors, interferons, anti-convulsants, ion channel blockers, riluzole, and anti-Parkinsonian agents; agents for treating cardiovascular disease such as betablockers, ACE inhibitors, diuretics, nitrates, calcium channel blockers, and statins; agents for treating liver disease such as corticosteroids, cholestyramine, interferons, and anti-viral agents; agents for treating blood disorders such as corticosteroids, antileukemic agents, and growth factors; and agents for treating immunodeficiency disorders such as gamma globulin.

[0193] The amount of additional therapeutic agent present in the compositions of this invention will be no more than the amount that would normally be administered in a composition comprising that therapeutic agent as the only active agent. Preferably the amount of additional therapeutic agent in the presently disclosed compositions will range from about 50% to 100% of the amount normally present in a composition comprising that agent as the only therapeutically active agent.

Uses of the Compounds and Compositions

[0194] In one embodiment, the invention provides a method of inhibiting JAK kinase activity in a patient, comprising administering to said patient a compound or composition of the invention.

In another embodiment, the invention comprises a method of treating or lessening the severity of a JAK-mediated condition or disease in a patient. The term "JAK-mediated disease", as used herein means any disease or other deleterious condition in which a JAK family kinase, in particular JAK2 or JAK3, is known to play a role. In a further embodiment, the invention comprises a method of treating a JAK3-mediated disease. Such conditions include, without limitation, immune responses such as allergic or type I hypersensitivity reactions, asthma, autoimmune diseases such as transplant rejection, graft versus host disease, rheumatoid arthritis, amyotrophic lateral sclerosis, and multiple sclerosis, neurodegenerative disorders such as familial amyotrophic lateral sclerosis (FALS), as well as in solid and hematologic malignancies such as leukemias and lymphomas.

In another embodiment, the invention provides a method of treating or lessening the severity of a disease of condition selected from a proliferative disorder, a cardiac disorder, a neurodegenerative disorder, an autoimmune disorder, a condition associated with organ transplant, an inflammatory disorder, an immune disorder or an immunologically mediated disorder, comprising administering to said patient a compound or composition of the invention.

[0197] In a further embodiment, the method comprises the additional step of administering to said patient an additional therapeutic agent selected from a chemotherapeutic or anti-proliferative agent, an anti-inflammatory agent, an

immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating diabetes, or an agent for treating immunodeficiency disorders, wherein said additional therapeutic agent is appropriate for the disease being treated and said additional therapeutic agent is administered together with said composition as a single dosage form or separately from said composition as part of a multiple dosage form.

[0198] In one embodiment, the disease or disorder is allergic or type I hypersensitivity reactions, asthma, diabetes, Alzheimer's disease, Huntington's disease, Parkinson's disease, AIDS-associated dementia, amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease), multiple sclerosis (MS), schizophrenia, cardiomyocyte hypertrophy, reperfusion/ischemia, stroke, baldness, transplant rejection, graft versus host disease, rheumatoid arthritis, amyotrophic lateral sclerosis, and multiple sclerosis, and solid and hematologic malignancies such as leukemias and lymphomas. In a further embodiment, said disease or disorder is transplant rejection. In another embodiment, said disease or disorder is rheumatoid arthritis.

In another embodiment, a compound or composition of this invention may be used to treat a myeloproliferative disorder. In one embodiment, the myeloproliferative disorder is polycythemia vera, essential thrombocythemia, or chronic idiopathic myelofibrosis. In another embodiment, the myeloproliferative disorder is myeloid metaplasia with myelofibrosis, chronic myeloid leukemia (CML), chronic myelomonocytic leukemia, chronic eosinophilic leukemia, hypereosinophilic syndrome, systematic mast cell disease, atypical CML or juvenile myelomonocytic leukemia.

In another embodiment, the invention provides for the use of a compound of formulae I, IA, IB, II or III to treat a JAK-mediated disease. In a further embodiment, the invention provides for the use of said compound to treat any of the diseases discussed above. In another embodiment, the invention provides for the use of a compound of formulae I, IA, IB, II or III for the manufacture of a medicament for treating a JAK-mediated disease. In a further embodiment, the invention provides for the use of said compound for the manufacture of a medicament for treating any of the diseases discussed above.

[0201] In another embodiment, the invention provides a method of inhibiting JAK kinase activity in a biological sample, comprising contacting said biological sample with a compound or composition of the invention.

The term "biological sample", as used herein, means an ex vivo sample, and includes, without limitation, cell cultures or extracts thereof; tissue or organ samples or extracts thereof; biopsied material obtained from a mammal or extracts thereof; and blood, saliva, urine, feces, semen, tears, or other body fluids or extracts thereof.

Inhibition of kinase activity, particularly JAK kinase activity, in a biological sample is useful for a variety of purposes that are known to one of skill in the art. Examples of such purposes include, but are not limited to, blood transfusion, organtransplantation, biological specimen storage, and biological assays.

In certain embodiments of the present invention an "effective amount" of the compound or pharmaceutically acceptable composition is that amount effective for treating or lessening the severity of one or more of the aforementioned disorders. The compounds and compositions, according to the method of the present invention, may be administered using any amount and any route of administration effective for treating or lessening the severity of the disorder or disease. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the infection, the particular agent, its mode of administration, and the like.

[0205] In an alternate embodiment, the methods of this invention comprise the additional step of separately administering to said patient an additional therapeutic agent. When these additional therapeutic agents are administered separately they may be administered to the patient prior to, sequentially with or following administration of the compositions of this invention.

The compounds of this invention or pharmaceutical compositions thereof may also be used for coating an implantable medical device, such as prostheses, artificial valves, vascular grafts, stents and catheters. Vascular stents, for example, have been used to overcome restenosis (re-narrowing of the vessel wall after injury). However, patients using stents or other implantable devices risk clot formation or platelet activation. These unwanted effects may be prevented or mitigated by pre-coating the

Go2071 Suitable coatings and the general preparation of coated implantable devices are described in US Patents 6,099,562; 5,886,026; and 5,304,121. The coatings are typically biocompatible polymeric materials such as a hydrogel polymer, polymethyldisiloxane, polycaprolactone, polyethylene glycol, polylactic acid, ethylene vinyl acetate, and mixtures thereof. The coatings may optionally be further covered by a suitable topcoat of fluorosilicone, polysaccarides, polyethylene glycol, phospholipids or combinations thereof to impart controlled release characteristics in the composition. Implantable devices coated with a compound of this invention are another embodiment of the present invention. The compounds may also be coated on implantable medical devices, such as beads, or co-formulated with a polymer or other molecule, to provide a "drug depot", thus permitting the drug to be released over a longer time period than administration of an aqueous solution of the drug.

Methodology for Synthesis and Characterization of Compounds

[0208] The compounds of this invention may be prepared in general by methods known to those skilled in the art for analogous compounds or by those methods depicted in the Examples below. See, e.g., the examples described in WO 2005/095400, which is herein incorporated by reference in its entirety.

All references provided in the Examples are herein incorporated by reference. As used herein, all abbreviations, symbols and conventions are consistent with those used in the contemporary scientific literature. See, e.g., Janet S. Dodd, ed., The ACS Style Guide: A Manual for Authors and Editors, 2nd Ed., Washington, D.C.: American Chemical Society, 1997, herein incorporated in its entirety by reference.

#### **EXAMPLES**

## **Example 1: Preparation of Compounds of the Invention**

General Synthetic Scheme

#### Step 1

To a stirred solution of Boc-valine (1; R<sub>1</sub> is Me; 3.8 g, 0.02 mol), EDC (4.63 g, 0.024 mol), HOBt (4.0 g, 0.026 mol), DIEA (10.5 mL, 0.06 mol) in 100 mL of DCM is added trifluoroethylamine HCl (2.92 g, 0.022 mol). The reaction mixture is stirred for 16 h. It is concentrated to dryness and redissolved in EtOAc, washed successively with 0.5N HCl, saturated aqueous solution of NaHCO<sub>3</sub> and brine. The organic layer is dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated *in vacuo* to give 5.4g (98%) of 2 as a white solid.

#### Step 2

Compound 2 (5.32 g, 0.0197 mol) is deprotected with a 1:1 mixture of DCM/TFA at rt for 45 min. Concentration to dryness gives the intermediate amine that is used directly for the next step. A mixture of 5-fluoro-2,4-dichloropyrimidine (3; R is F; 3.28 g, 0.0197 mol), the crude amine TFA salt (5.25 g, 0.0197 mol) and DIEA (10.27 mL, 0.059 mol) are stirred in isopropanol at rt for 16 h. The reaction mixture is concentrated *in vacuo* and redissolved in EtOAc, washed successively with 0.5N HCl, saturated aqueous solution of NaHCO<sub>3</sub> and brine. The organic layer is dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated *in vacuo* to give a crude oil that is subjected to chromatography (50% EtOAc / 50% hexanes) to yield the desired compound 4.

# Step 3

[0212] A mixture of 5 (30 mg, 0.075 mmol; prepared according to WO 2005/095400), 4 (23 mg, 0.075 mmol), Pd (Ph<sub>3</sub>P)<sub>4</sub> (9 mg, 0.0078 mmol) and sodium carbonate 2M (115 uL, 0.23 mmol) in 1 mL of DME is microwaved at 150°C for 10 minutes. The reaction mixture is filtered through a short pad of silica gel with 30% EtOAc-70% hexanes as eluent to provide, after concentration to dryness, the crude intermediate that is used directly for the next step.

The crude intermediate is dissolved in 1 mL of dry methanol and 200 uL of sodium methoxide in methanol 25% was added. The reaction mixture is stirred at 60°C for 1 h and quenched with 6N HCl (154 uL). The mixture is dried under a flow of nitrogen and purified by reverse phase HPLC (10-60 MeCN/ water w/0.5% TFA) to provide the desired material of formula 6a.

Compounds of formulae **6b** and **6c** may be prepared in an analogous manner using the appropriate starting reagents. For instance, a compound of formula **6b** may generally be made by substituting *tert*-butyl 2-(2,2,2-trifluoroethylcarbamoyl) pyrrolidine-1-carboxylate for compound **1**, while a compound of formula **6c** may generally be made by substituting *tert*-butyl 2-(2,2,2-trifluoroethylcarbamoyl)propan-2-ylcarbamate for compound **1**.

### **Example 2: Analytical Results**

Tables 4, 5 and 6 below depicts exemplary H-NMR data (NMR) and liquid chromatographic mass spectral data, reported as mass plus proton (M+H), as determined by electrospray, and retention time (RT) for certain compounds of the present invention, wherein compound numbers in Tables 4, 5 and 6 correspond to the compounds depicted in Tables 1, 2 and 3, respectively (empty cells indicate that the test was not performed):

Table 4

| Cmpd # | M+H    | RT   | NMR                                                                                                                                          |
|--------|--------|------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | 442.90 | 2.20 | DMSO-d6: 12.4 (br s, 1H); 8.7 (dd, 1H); 8.65 (s, 1H); 8.25 (m, 2H); 8.2 (m, 1H); 4.8 (d, 1H); 4.0-3.8 (m, 4H); 2.3 (m, 1H); 2.05-1.9 (m, 3H) |
| 2      | 442.90 | 2.20 | DMSO-d6: 12.4 (br s, 1H); 8.7 (dd, 1H); 8.65 (s, 1H); 8.25                                                                                   |

| Cmpd # | M+H     | RT       | NMR                                                                                                                   |
|--------|---------|----------|-----------------------------------------------------------------------------------------------------------------------|
|        |         |          | (m, 2H); 8.2 (m, 1H); 4.8 (d, 1H); 4.0-3.8 (m, 4H); 2.3 (m,                                                           |
|        |         |          | 1H); 2.05-1.9 (m, 3H)                                                                                                 |
| 3      | 430.90  | 2.50     | (CD3OD) 1.7 (s, 6H), 3.8 (m, 2H), 8.15 (s, 1H), 8.2 (d,                                                               |
|        | 4.50.50 |          | 1H), 8.25 (m, 1H), 8.5 (t, 1H), 8.85 (d, 1H)                                                                          |
|        |         |          | (CD3OD) 1.9 (s, 6H), 3.8 (m, 2H), 7.75 (t, 1H), 7.9 (d,                                                               |
| 4      | 463.00  | 1.90     | 1H), 8.05 (t, 1H), 8.35 (d, 1H), 8.55 (d+t, 2H), 8.7 (s, 1H),                                                         |
|        |         |          | 8.85 (d, 1H)<br>DMSO-d6: 8.92 (m, 1H); 8.60 (m, 2H); 8.32 (s, 1H); 8.18                                               |
| 5      | 399.00  | 1.70     | (m, 1H); 6.65 (m, 1H); 6.72 (m, 1H); 4.80 (m, 1H); 4.00                                                               |
| ر      | 399.00  | 1.70     | (m, 2H); 1.42 9d, 3H)                                                                                                 |
|        |         |          | DMSO-d6: 8.70 (dd, 1H); 8.65 *s, 1H); 8.28 (m, 2H); 8.20                                                              |
| 6      | 417.00  | 2.40     | (m, 1H); 7.90 (m, 1H); 4.62 (m, 1H); 3.88 (m, 2H); 1.41 (d,                                                           |
|        |         |          | 3H)                                                                                                                   |
|        |         |          | DMSO-d6: 8.86 (m, 1H); 8.76(m, 1H); 8.55 (m, 1H); 8.40                                                                |
| 7      | 449.00  | 2.10     | (m, 1H); 7.96 (m, 1H); 7.85 (m, 1H); 7.70 (m, 1H); 5.00                                                               |
|        |         |          | (m, 1H); 3.98 (m, 2H); 1.58 (d, 3H)                                                                                   |
|        |         | 1.70     | DMSO-d6: 12.3 (br s, 1H); 8.7 (s, 1H); 8.6 (t, 1H); 8.3 (m,                                                           |
| 8      | 459.30  | 1.70     | 2H); 8.2 (m, 1H); 4.75 (m, 1H); 4.4 (m, 1H); 4.05-3.7 (m,                                                             |
|        |         |          | 5H); 1.9 (m, 1H)<br>DMSO-d6: 12.3 (br s, 1H); 8.8 (m, 1H); 8.7 (s, 1H); 8.3                                           |
| 9      | 457.30  | 2.20     | (m, 2H); 8.2 (m, 1H); 4.3 (m, 1H); 4.05-3.8 (m, 4H); 2.25                                                             |
|        | 437.30  | 2.20     | (m, 1H); 2.1 (m, 1H); 1.7 (m, 1H); 1.15 (m, 3H)                                                                       |
|        |         |          | DMSO-d6: 12.35 (br s, 1H); 8.8 (m, 1H); 8.65 (s, 1H); 8.25                                                            |
| 10     | 459.30  | 1.80     | (m, 2H); 8.15 (m, 1H); 4.6 (m, 1H); 4.3 (m, 1H); 4.05 (m,                                                             |
|        |         |          | 1H); 3.9-3.8 (m, 3H); 1.95 (m, 2H)                                                                                    |
|        |         |          | DMSO-d6: 12.35 (br s, 1H); 8.95 (m, 1H); 8.7 (s, 1H); 8.3                                                             |
| 11     | 455.30  | 2.10     | (m, 2H); 8.2 (m, 1H); 4.9 (m, 1H); 4.1-3.9 (m, 4H); 1.8-1.6                                                           |
|        |         |          | (m, 2H); 0.75 (m, 1H); 0.4 (m, 1H)                                                                                    |
| 10     | 450.20  | 1.70     | DMSO-d6: 12.3 (br s, 1H); 8.7 (s, 1H); 8.6 (t, 1H); 8.25 (m, 2H); 8.15 (m, 1H); 4.75 (m, 1H); 4.4 (m, 1H); 4.05-      |
| 12     | 459.30  | .30 1.70 | 3.65 (m, 5H); 1.9 (m, 1H)                                                                                             |
|        |         |          | DMSO-d6: 12.3 (br s, 1H); 8.8 (m, 1H); 8.7 (s, 1H); 8.3                                                               |
| 13     | 459.30  | 1.70     | (m, 2H); 8.2 (m, 1H); 4.8 (m, 1H); 4.45 (m, 1H); 4.05-3.65                                                            |
|        | 100.00  |          | (m, 4H); 2.25 (m, 1H); 1.9 (m, 1H)                                                                                    |
|        |         |          | DMSO-d6: 12.9 (br s, 1H); 8.9 (m, 1H); 8.6 (m, 2H); 8.4                                                               |
| 14     | 425.00  | 1.70     | (s, 1H); 8.35 (m, 1H); 6.7 (m, 1H); 4.9 (m, 1H); 4.1-3.9 (m,                                                          |
| 1 14   | 423.00  | 1.70     | 2H); 3.8 (m, 1H); 3.65 (m, 1H); 2.4 (m, 1H); 2.15-1.95 (m,                                                            |
|        | 161     | 2.10     | 3H)                                                                                                                   |
| 15     | 461.30  | 2.10     | DMSO 46, 12.0 (h. s. 110, 9.85 (m. 110, 9.6 (m. 210), 9.35                                                            |
|        |         |          | DMSO-d6: 12.9 (br s, 1H); 8.85 (m, 1H); 8.6 (m, 2H); 8.35 (s, 1H); 8.3 (m, 1H); 6.7 (m, 1H); 4.9 (m, 1H); 4.1-3.9 (m, |
| 16     | 425.00  | 1.70     | 2H); 3.75 (m, 1H); 3.6 (m, 1H); 2.4 (m, 1H); 2.15-1.95 (m,                                                            |
|        |         |          | 3H)                                                                                                                   |
| 17     | 461.30  | 2.20     |                                                                                                                       |
| ļ ———— |         |          | DMSO d6: 13.0 ppm (bs, 1H), 9.0 (t, 1H), 8.7 (s, 1H), 8.6                                                             |
| 18     | 427.20  | 1.90     | (s, 1H), 8.4 (s, 1H), 8.2 (d, 1H), 6.8 (bs, 1H), 4.8 (t, 1H),                                                         |

WO 2007/084557 PCT/US2007/001225

| Cmpd # | M+H    | RT   | NMR                                                                                                                                                                                                      |
|--------|--------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |        |      | 4.1 (m, 1H), 3.8 (m, 2H), 2.3 (m, 1H), 1.05 (d, 3H), 1.0 (d, 3H)                                                                                                                                         |
| 19     | 441.20 | 2.00 | DMSO d6: 13.0 ppm (bs, 1H), 9.0 (t, 1H), 8.7 (s, 2H), 8.4 (s, 1H), 8.1 (d, 1H), 6.6 (d, 1H), 4.8 (t, 1H), 3.8-4.2 (m, 4H), 1.7 (bs, 2H), 1.0 (d, 3H), 0.9 (d, 3H)                                        |
| 20     | 445.20 | 2.90 | DMSO d6: 12.4 ppm (bs, 1H), 8.8 (t, 1H), 8.7 (s, 1H), 8.3 (s, 1H), 8.2 (d, 2H), 7.6 (d, 1H), 4.5 (t, 1H), 3.9-4.1 (m, 2H), 2.2 (m, 1H), 1.0 (d, 3H), 0.9 (d, 3H)                                         |
| 21     | 459.20 | 3.00 | DMSO d6: 12.4 ppm (bs, 1H), 8.8 (t, 1H), 8.7 (s, 1H), 8.3 (m, 3H), 7.8 (d, 1H), 4.7 (t, 1H), 3.9 (m, 2H), 1.9 (m, 1H), 1.8 (m, 1H), 1.6 (m, 1H), 1.0 (d, 3H), 0.9 (d, 3H)                                |
| 22     | 473.20 | 3.40 | DMSO d6: 8.7 ppm (t, 1H), 8.6 (s, 1H), 8.4 (s, 1H), 8.35 (s, 1H), 8.3 (s, 1H), 7.9 (d, 1H), 4.7 (t, 1H), 4.0 (m, 2H), 3.9 (s, 3H), 1.9 (m, 1H), 1.8 (m, 1H), 1.7 (m, 1H), 1.0 (d, 3H), 0.9 (d, 3H)       |
| 23     | 431.10 | 2.50 | DMSO d6: 12.4 (bs, 1H), 8.8 (t, 1H), 8.7 (s, 1H), 8.3 (s, 1H), 8.25 (dd, 2H), 7.7 (bs, 1H), 4.5 (q, 1H), 3.8-4.0 (m, 2H), 1.9 (q, 2H), 1.0 (t, 3H)                                                       |
| 24     | 413.10 | 1.80 | DMSO d6: 12.9 ppm (bs, 1H), 9.0 (t, 2H), 8.65 (s, 1H), 8.6 (s, 1H), 8.4 (s, 1H), 8.1 (d, 1H), 6.7 (bs, 1H), 4.7 (m, 1H), 3.8-4.2 (m, 2H), 1.9 (m, 2H), 1.0 (t, 3H)                                       |
| 25     | 439.20 | 2.00 | 1H NMR (CD3OD, 500 MHz): 1.53-2.05 (m, 6H), 2.45-2.53 (m, 1H), 3.46-3.59 (m, 1H), 3.83-4.32 (m, 3H), 7.06 (s, br., 1H), 8.18 (d, 1H), 8.38 (d, 1H), 8.42 (s, 1H), 8.83 (s, br., 1H)                      |
| 26     | 457.10 | 3.20 | 1H NMR (CD3OD, 500 MHz): 1.57-2.03 (m, 6H), 2.37-2.44 (m, 1H), 3.50-3.57 (m, 1H), 3.90-4.09 (m, 2H), 4.49-4.57 (m, 1H), 5.38 (s, br., 1H), 8.26 (s, 1H), 8.28 (d, 1H), 8.31 (d, 1H), 8.60 (d, 1H)        |
| 27     | 429.30 | 2.30 | (CD3OD) 1.3 (m, 2H), 1.8 (m, 2H), 3.9 (m, 2H), 8.25 (m, 3H), 8.6 (t, 1H), 8.8 (d,1H)                                                                                                                     |
| 28     | 439.20 | 1.90 | DMSO d6: 13.0 ppm (bs, 1H), 9.0 (s, 1H), 8.7 (s, 1H), 8.6 (s, 1H), 8.4 (s, 1H), 8.2 (d, 1H), 6.7 (s, 1H), 4.9 (d, 1H), 3.9-4.1 (m, 3H), 1.9 (q, 1H), 1.6 (q, 1H), 0.9 (bs, 1H), 0.5 (m, 2H), 0.2 (m, 2H) |
| 29     | 457.10 | 2.80 | DMSO d6: 12.4 ppm (bs, 1H), 8.8 (t, 1H), 8.7 (s, 1H), 8.3 (s, 1H), 8.25 (m, 2H), 7.8 (bs, 1H), 4.7 (q, 1H), 3.8-4.0 (m, 3H), 1.9 (m, 1H), 1.6 (m, 1H), 0.9 (m, 1H), 0.4 (m, 2H), 0.2 (m, 2H)             |
| 30     | 459.10 | 1.90 | DMSO d6: 12.9 ppm (bs, 1H), 9.0 (s, 1H), 8.7 (s, 1H), 8.6 (s, 1H), 8.4 (s, 1H), 8.2 (d, 1H), 6.7 (s, 1H), 4.9 (s, 1H), 3.9-4.1 (m, 2H), 2.5-2.7 (m, 2H), 2.1 (m, 3H), 2.0 (s, 3H)                        |
| 31     | 477.10 | 2.70 | DMSO d6: 12.4 ppm (bs, 1H), 8.8 (t, 1H), 8.7 (s, 1H), 8.3 (s, 2H), 8.25 (s, 1H), 7.9 (s, 1H), 4.8 (q, 1H), 3.8-4.0 (m, 2H), 2.5-2.7 (m, 2H), 2.2 (m, 2H), 2.1 (s, 3H)                                    |
| 32     | 458.10 | 1.90 | (d4-methanol) 8.71 (s, 1H), 8.24 (d, 1H), 8.20 (s, 1H), 8.15                                                                                                                                             |

| Cmpd #   | M+H          | RT            | NMR                                                                                                                  |                                                           |
|----------|--------------|---------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|          |              |               | (s, 1H), 5.11 (br s, 1H), 4.32 (d, 1H), 4.01-3.55 (m, 4 H),                                                          |                                                           |
|          |              |               | 3.17 (dd, 1H), 3.11-2.95 (m, 2H)                                                                                     |                                                           |
|          |              |               | (d4-methanol) 8.72 (d, 1H), 8.28 (d, 1H), 8.22 (s, 1H), 8.21                                                         |                                                           |
| 33       | 440.10       | 1.40          | (d, 1H), 6.65 (d, 1H), 5.25 (br s, 1H), 4.12-3.87 (m, 3 H),                                                          |                                                           |
|          |              |               | 3.57 (d, 1H), 3.44 (dd, 1H), 3.14-2.82 (m, 3 H)                                                                      |                                                           |
|          |              |               | DMSO-d6: 12.4 (s, 1H); 8.65 (s, 1H); 8.35-8.25 (m, 3H);                                                              |                                                           |
| 34       | 457.00       | 3.00          | 8.1 (s, 1H); 3.95-3.8 (m, 2H); 3.7 (m, 2H); 2.05 (m, 4H);                                                            |                                                           |
|          |              |               | 1.65 (s, 3H).                                                                                                        |                                                           |
| 35       | 483.10       | 2.80          |                                                                                                                      |                                                           |
| 36       | 469.10       | 2.50          | DMSO d6 12.5 (bs, 1H); 9.0 (m, 1H); 8.7 (m, 3H); 8.3 (m,                                                             |                                                           |
| 30       | 409.10       | 2.50          | 1H); 4.8 (bs, 1H); 4.0-3.5 (m, 4); 2.3 (m, 1H); 2.0 (m, 3H)                                                          |                                                           |
|          |              |               | 1H NMR (CD3OD, 500 MHz): 2.42-2.52 (m, 1H), 2.80-                                                                    |                                                           |
| 37       | 411.10       | 2.10          | 2.93 (m, 1H), 3.89-4.14 (m, 2H), 4.27-4.37 (m, 2H), 5.09-                                                            |                                                           |
| 37       | 411.10       | 2.10          | 5.16 (m, 1H), 7.34 (d, 1H), 8.18 (d, 1H), 8.30 (s, 1H), 8.50                                                         |                                                           |
| İ        |              | ·             | (s, 1H), 8.66 (s, 1H)                                                                                                |                                                           |
|          |              | ļ             | 1H NMR (CD3OD, 500 MHz): 3.46-3.69 (m, 2H), 3.88-                                                                    |                                                           |
| 38       | 459.10       | 2.90          | 4.04 (m, 3H), 4.13-4.52 (m, 3H), 4.83-4.90 (m, 1H), 6.47                                                             |                                                           |
| 30       | 439.10       | 2.50          | (d, 1H), 7.44 (d, 1H), 8.00 (d, 1H), 8.14 (d, 1H), 8.27-8.35                                                         |                                                           |
| <u> </u> |              |               | (m, 2H), 8.68 (s, 1H)                                                                                                |                                                           |
|          |              |               | (d4-methanol) 8.74 (d, 1H), 8.42 (d, 1H), 8.25 (s, 1H), 8.23                                                         |                                                           |
| 39       | 458.10       | 1.80          | (d, 1H), 5.62 (br s, 1H), 4.62 (d, 1H), 4.04-3.95 (m, 3H),                                                           |                                                           |
| l        |              |               | 3.66 (ddd, 1H), 3.46 (dd, 1H), 3.41-3.34 (m, 2H)                                                                     |                                                           |
| 40       | 440.10       | 1.40          | (d4-methanol) 8.72 (d, 1H), 8.28 (d, 1H), 8.22 (s, 1H), 8.21                                                         |                                                           |
| 40       | 440.10       | 1.10          | (d, 1H), 6.65 (d, 1H), 5.26 (br s, 1H), 4.10-2.84 (m, 8H)                                                            |                                                           |
|          |              |               | (d4-methanol) 8.72 & 8.70 (2d, 1H), 8.31 & 8.27 (2d, 1H),                                                            |                                                           |
| 41       | 525.10       | 2.70          | 8.21 (d, 1H), 8.18 & 8.14 (2s, 1H), 7.35, 7.24 (2d, 1H),                                                             |                                                           |
|          |              | <u> </u>      | 5.36 (br s, 1H), 4.51-3.52 (m, 10 H)                                                                                 |                                                           |
| 1        | 508.10       | 508.10 1.80   | (d4-methanol) 8.73 & 8.70 (2d, 1H), 8.36 & 8.33 (2d, 1H),                                                            |                                                           |
| 42       |              |               |                                                                                                                      |                                                           |
|          | <b>_</b>     | <del> </del>  | br s, 1H), 4.51-3.51 (m, 10 H)                                                                                       |                                                           |
|          | 427.10       |               |                                                                                                                      | DMSO d6: 13.0 ppm (bs, 1H), 9.0 (s, 1H), 8.6 (d, 2H), 8.4 |
| 43       |              | 427.10   1.90 | (s, 1H), 8.2 (d, 1H), 6.7 (s, 1H), 4.8 (s, 1H), 3.8-4.2 (m,                                                          |                                                           |
|          | <del></del>  | <u> </u>      | 3H), 1.9 (m, 2H), 1.4-1.5 (m, 2H), 0.9 (t, 3H)                                                                       |                                                           |
|          | 1            | 0.50          | DMSO d6: 12.4 ppm (s, 1H), 8.8 (t, 1H), 8.7 (s, 1H), 8.3                                                             |                                                           |
| 44       | 445.10       | 2.70          | (m, 3H), 7.8 (bs, 1H), 4.6 (q, 1H), 3.8-4.0 (m, 2H), 1.8 (m,                                                         |                                                           |
|          | <del> </del> |               | 2H), 1.3-1.5 (m, 2H), 0.9 (t, 3H)                                                                                    |                                                           |
|          | 105.10       | 25.10 2.20    | DMSO-d6: 12.45 (s, 1H); 8.65 (s, 1H); 8.5 (m, 1H); 8.3 (m,                                                           |                                                           |
| 45       | 425.10       |               | 2H); 8.2 (m, 1H); 5.9 (t, 1H); 4.8 (d, 1H); 4.0 (m, 1H); 3.85                                                        |                                                           |
| <u> </u> |              |               | (m, 1H); 3.6-3.4 (m, 2H); 2.25 (m, 1H); 2.0 (m, 3H)                                                                  |                                                           |
| 46       | 443.10       | 0.50          | DMSO 1.9 (m, 2H), 2.3 (q, 2H), 2.75 (bq, 2H), 3.8 (m,                                                                |                                                           |
|          |              | 2.50          | 2H), 8(d, 1H), 8.15 (overlap bt, bs, 2H), 8.25 (s, 1H), 8.3                                                          |                                                           |
|          | <del></del>  | <del></del>   | (d, 1H), 8.7 (s, 1H), 12.3 (bs, 1H)                                                                                  |                                                           |
|          |              |               | DMSO-d6: 13.0 (br s, 1H); 8.7-8.6 (m, 3H); 8.4 (m, 1H); 8.3 (m, 1H); 6.75 (d, 0.7H); 6.3 (d, 0.3H); 5.9 (t, 1H); 4.9 |                                                           |
| 47       | 407.10       | 1.60          | (d, 0.7H); 4.65 (0.3H); 4.05-3.6 (m, 2H); 2.35 (m, 1H);                                                              |                                                           |
|          |              |               |                                                                                                                      |                                                           |
|          | _1           |               | 2.05 (m, 3H).                                                                                                        |                                                           |

| Cmpd # | M+H    | RT   | NMR                                                                                                                                                                                                                                                                                                                                       |
|--------|--------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 48     | 413.10 | 1.70 | (CD3OD) 1.75 (s, 6H), 3.85 (m, 2H), 6.75 (d, 1H), 8.05 (d, 1H), 8.3 (d, 1H), 8.5 (d, 1H), 8.65 (bt, 1H), 8.8 (s, 1H)                                                                                                                                                                                                                      |
| 49     | 389.10 | 2.00 | DMSO-d6: 12.4 (br s, 1H); 8.65 (s, 1H); 8.3 (m, 2H); 8.25 (m, 1H); 8.05 (m, 1H); 4.7 (d, 1H); 3.95 (m, 1H); 3.8 (m, 1H); 3.5 (m, 1H); 3.1 (m, 1H); 2.25 (m, 1H); 2.0 (m, 3H); 0.95 (m, 3H)                                                                                                                                                |
| 50     | 457.10 | 2.70 | H NMR (500 MHz, Methanol-d4) 8.76 (d, J = 2.3 Hz, 1H), 8.48 (t, J = 6.2 Hz, 1H), 8.31 - 8.29 (m, 3H), 3.82 (m, 2H), 3.31 (qn, Methanol-d4), 2.55 - 2.53 (m, 2H), 2.27 - 2.24 (m, 2H), 1.88 (m, 4H)                                                                                                                                        |
| 51     | 471.10 | 3.07 |                                                                                                                                                                                                                                                                                                                                           |
| 52     | 371.20 | 1.50 | DMSO-d6: 13.0 (s, 1H); 8.75-8.6 (m, 2H); 8.4 (m, 1H); 8.3 (m, 1H); 8.2 (m, 1H); 6.75 (d, 0.7H) 6.35 (d, 0.3H); 4.85 (d, 0.7H); 4.55 (d, 0.3H); 3.8-3.6 (m, 2H); 3.2-3.0 (m, 2H); 2.35 (m, 1H); 2.05 (m, 3H); 1.05 (dd, 0.7H); 0.95 (dd, 2.3H)                                                                                             |
| 53     | 439.20 | 1.80 | DMSO-d6: 12.85 (br s, 1H); 8.7 (s, 1H); 8.5 (s, 1H); 8.4-8.35 (m, 2h); 8.3 (d, 1H); 6.7 (m, 1h); 3.95-3.7 (m, 4H); 2.15 (m, 4H); 1.7 (s, 3H)                                                                                                                                                                                              |
| 54     | 456.80 | 2.95 | DMSO-d6: 12.25 (br s, 1H); 8.7 (s, 1H); 8.3 (m, 3H); 8.0 (m, 1H); 4.1-3.7 (m, 4H); 2.05 (m, 4H); 1.6 (s, 3H)                                                                                                                                                                                                                              |
| 55     | 439.20 | 1.80 | DMSO-d6: 12.85 (br s, 1H); 8.7 (s, 1H); 8.5 (s, 1H); 8.4-8.35 (m, 2h); 8.3 (d, 1H); 6.7 (m, 1h); 3.95-3.7 (m, 4H); 2.15 (m, 4H); 1.7 (s, 3H)                                                                                                                                                                                              |
| 56     | 469.10 | 2.00 | DMSO-d6: 9.30 (m, 1H); 8.70 (s, 1H); 8.35 (m, 1H); 8.28 (m, 2H); 4.75 (m, 1H); 3.40 (m, 2H); 2.25 (m, 2H); 2.00 (m, 4H)                                                                                                                                                                                                                   |
| 57     | 497.10 | 2.70 | DMSO-d6: 8.80 (m, 2H); 8.55 (s, 1h); 8.28 (m, 2H); 4.80 (m, 1H); 4.24 (m, 2H); 3.80 (m, 4H); 2.20 (m, 1H); 1.90 (m, 23H); 1.20 (t, 2H)                                                                                                                                                                                                    |
| 58     | 441.10 | 2.00 | H NMR (500 MHz, DMSO-d6) 12.9 (bs, 1H), 9.00 (s, 1H), 8.66 (s, 1H), 8.63 (s, 1H), 8.41 (d, J = 2.0 Hz, 1H), 8.16 (d, J = 6.2 Hz, 1H), 6.80 (s, 1H), 4.81 (s, 1H), 4.11 - 4.06 (m, 1H), 3.87 (m, 2H), 2.00 (s, 1H), 1.66 (s, 1H), 1.27 - 1.21 (m, 1H), 0.98 (d, J = 6.4 Hz, 3H), 0.92 (t, J = 7.2 Hz, 3H)                                  |
| 59     | 459.10 | 3.10 | H NMR (500 MHz, DMSO-d6) 12.40 (s, 1H), 8.80 (t, J = 6.3 Hz, 1H), 8.71 (d, J = 2.4 Hz, 1H), 8.34 (d, J = 2.8 Hz, 1H), 8.29 (s, 1H), 8.27 (d, 1H), 7.58 (d, J = 6.2 Hz, 1H), 4.57 (t, J = 8.0 Hz, 1H), 4.04 - 3.98 (m, 1H), 3.89 - 3.83 (m, 1H), 2.05 - 1.99 (m, 1H), 1.65 - 1.60 (m, 1H), 1.33 - 1.23 (m, 1H), 0.96 (d, 3H), 0.88 (t, 3H) |
| 60     | 441.10 | 2.00 | H NMR (500 MHz, DMSO-d6) 13.0 (bs, 1H), 8.98 (s, 1H), 8.66 (s, 1H), 8.62 (s, 1H), 8.41 (d, J = 1.9 Hz, 1H), 8.17 (d, J = 6.3 Hz, 1H), 6.84 (s, 1H), 4.90 (s, 1H), 4.08 - 4.07 (m, 1H), 3.88 (m, 2H), 2.11 - 2.08 (m, 1H), 1.50 (t, J = 6.9 Hz, 1H), 1.27 (m, 1H), 1.00 (d, J = 6.9 Hz, 3H), 0.92 (q, J = 7.5)                             |

| Cmpd # | M+H    | RT   | NMR                                                                                                                                                                                                                                                                                                                     |
|--------|--------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |        |      | Hz, 3H)                                                                                                                                                                                                                                                                                                                 |
| 61     | 459.10 | 3.10 | H NMR (500 MHz, DMSO-d6) 12.38 (s, 1H), 8.76 (t, J = 6.3 Hz, 1H), 8.70 (d, J = 2.4 Hz, 1H), 8.28 (m, J = 4.2 Hz, 3H), 8.28 (s, 1H), 7.36 (d, J = 5.7 Hz, 1H), 4.72 (t, 1H), 4.02 - 3.85 (m, 2H), 2.05 (q, J = 6.8 Hz, 1H), 1.54 - 1.49 (m, 1H), 1.27 - 1.21 (m, 1H), 0.99 (d, J = 6.8 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H) |
| 62     | 441.10 | 2.00 | H NMR (500 MHz, DMSO-d6) 13.01 (s, 1H), 9.05 (s, 1H), 8.78 (s, 1H), 8.64 (s, 1H), 8.42 (d, J = 2.0 Hz, 1H), 8.16 (d, J = 6.4 Hz, 1H), 6.91 (s, 1H), 4.89 (d, J = 8.0 Hz, 1H), 4.15 - 4.07 (m, 1H), 3.82 - 3.85 (m, 1H), 1.08 (s, 9H)                                                                                    |
| 63     | 459.10 | 3.30 | H NMR (500 MHz, DMSO-d6) 12.41 (s, 1H), 8.85 (t, J = 6.3 Hz, 1H), 8.74 (d, J = 2.4 Hz, 1H), 8.31 (d, 1H), 8.29 (s, 2H), 6.86 (d, J = 7.8 Hz, 1H), 4.77 (d, J = 8.8 Hz, 1H), 4.09 - 4.02 (m, 1H), 3.88 - 3.82 (m, 1H), 1.08 (s, 9H)                                                                                      |
| 64     | 429.10 | 2.39 | 1H NMR (CD3OD, 500 MHz): 2.45-2.52 (m, 1H), 2.91-3.00 (m, 1H), 3.89-4.14 (m, 2H), 4.50-4.61 (m, 2H), 5.25-5.30 (m, 1H), 8.23-8.30 (m, 3H), 8.63 (s, 1H)                                                                                                                                                                 |
| 65     | 373.40 | 1.90 | DMSO-d6: 12.9 (br s, 1H); 8.7 (s, 1H); 8.6 (s, 1H); 8.4 (s, 1H); 8.3 (s, 1H); 8.15 (m, 1H); 6.8 (s, 1H); 4.6 (s, 1H); 3.1 (m, 1H); 2.7 (m, 1H); 2.25 (m, 1H); 1.1-0.95 (m, 9H)                                                                                                                                          |
| 66     | 425.10 | 2.20 | H NMR (500 MHz, Methanol-d4) 8.73 (d, J = 2.0 Hz, 1H), 8.46 (s, 1H), 8.40 (s, 1H), 8.35 (d, J = 2.1 Hz, 1H), 8.10 (d, J = 7.2 Hz, 1H), 6.75 (d, J = 7.2 Hz, 1H), 3.85 (m, 2H), 3.01 - 2.97 (m, 2H), 2.44 - 2.39 (m, 2H), 2.16 (m, 2H)                                                                                   |
| 67     | 409.20 | 1.80 | DMSO-d6: 13.0 (br s, 1H); 8.75 (m, 1H); 8.65 (s, 1H); 8.6 (s, 1H); 8.4 (s, 1h); 8.15 (d, 1H); 6.8 (m, 1h); 6.05 (t, 1H); 4.75 (m, 1H); 3.75-3.5 (m, 2H); 2.25 (m, 1H); 1.1-0.95 (m, 6H)                                                                                                                                 |
| 68     | 456.60 | 3.83 | 1H NMR (CD3OD, 500 MHz): 1.68-2.00 (m, 6H), 2.26-2.33 (m, 1H), 3.49-3.58 (m, 1H), 3.84-4.02 (m, 2H), 4.45-4.53 (m, 1H), 5.36-5.42 (m, 1H), 6.71 (d, 1H), 8.11-8.39 (m, 4H), 8.86-8.92 (m, 1H)                                                                                                                           |
| 69     | 497.80 | 1.79 | 1H NMR (CD3OD, 500 MHz): 3.38-4.35 (m, 10H), 4.67 (d, 1H), 5.19-5.54 (m, 1H), 6.80-7.07 (m, 1H), 8.23-8.80 (m, 4H)                                                                                                                                                                                                      |
| 70     | 525.80 | 2.08 | 1H NMR (CD3OD, 500 MHz): 1.29 (d, 6H), 3.43-4.30 (m, 7H), 4.68 (d, 1H), 4.86-4.94 (m, 1H), 5.44 (s, br., 1H), 7.01 (s, br., 1H), 8.23-8.58 (m, 4H)                                                                                                                                                                      |
| 71     | 523.80 | 2.05 | 1H NMR (CD3OD, 500 MHz): 3.40-4.30 (m, 7H), 4.53-4.74 (m, 3H), 5.19-5.54 (m, 3H), 5.92-6.01 (m, 1H), 6.98 (s, br., 1H), 8.24-8.57 (m, 4H)                                                                                                                                                                               |
| 72     | 459.50 | 2.99 | 10.5 (s, 1H), 8.74 (d, 1H), 8.39 (s, 1H), 8.35 (d, 1H), 8.28 (d, 1H), 7.20 (m, 1H), 6.73 (s, 1H), 4.5-4.8 (s, 6H), 3.98 (m, 1H), 3.68 (m, 1H), 2.32 (m, 1H), 1.70 (s, 3H), 1.08 (dd, 6H) (CD3CN)                                                                                                                        |

| Cmpd # | M+H    | RT   | NMR                                                                                                                                                                                                                                          |
|--------|--------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 73     | 441.20 | 1.80 |                                                                                                                                                                                                                                              |
| 74     | 429.10 | 1.60 | H NMR (500 MHz, DMSO-d6) 12.95 (bs, 1H), 8.78 (s, 1H), 8.65 (s, 1H), 8.59 (s, 1H), 8.39 (d, J = 1.8 Hz, 1H), 8.17 (d, J = 4.8 Hz, 1H), 6.90 (s, 1H), 5.30 (s, 1H), 4.74 (s, 1H), 4.21 (s, 1H), 4.04 - 3.80 (m, 2H), 1.21 (d, J = 5.7 Hz, 3H) |
| 75     | 423.00 | 1.80 | H NMR (500 MHz, DMSO-d6) 12.95 (bs, 1H), 9.07 (s, 1H), 8.63 (s, 1H), 8.60 (s, 1H), 8.40 (d, J = 2.1 Hz, 1H), 8.20 (s, 1H), 6.75 (s, 1H), 4.99 (s, 1H), 4.05 - 3.83 (m, 2H), 2.98 (t, J = 2.4 Hz, 1H), 2.80 (d, J = 7.3 Hz, 2H)               |
| 76     | 429.10 | 1.60 | H NMR (500 MHz, DMSO-d6) 12.96 (s, 1H), 8.79 (s, 1H), 8.65 (s, 1H), 8.61 (s, 1H), 8.40 (d, J = 2.1 Hz, 1H), 8.20 - 8.17 (m, 1H), 6.91 (s, 1H), 5.25 (bs, 1H), 4.75 (s, 1H), 4.21 (s, 1H), 4.04 - 3.88 (m, 2H), 1.22 (d, J = 6.2 Hz, 3H)      |
| 77     | 482.40 | 1.69 | 1H NMR (CD3OD, 500 MHz): 2.08 (s, 3H), 3.18-4.97 (m, 9H), 6.87-7.08 (m, 1H), 8.24-8.59 (m, 4H)                                                                                                                                               |
| 78     | 518.40 | 1.83 | 1H NMR (CD3OD, 500 MHz): 2.93 (s, 3H), 3.18-4.97 (m, 9H), 7.00-7.10 (m, 1H), 8.26-8.56 (m, 4H)                                                                                                                                               |
| 79     | 526.50 | 2.00 | 1H NMR (CD3OD, 500 MHz): 0.98 (t, 3H), 1.67-1.74 (m, 2H), 3.18-4.90 (m, 11H), 6.86-7.00 (m, 1H), 8.24-8.59 (m, 4H)                                                                                                                           |
| 80     | 540.50 | 2.12 | 1H NMR (CD3OD, 500 MHz): 0.97 (d, 6H), 1.91-2.01 (m, 1H), 3.18-4.90 (m, 11H), 6.86-7.00 (m, 1H), 8.24-8.59 (m, 4H)                                                                                                                           |
| 81     | 482.50 | 1.61 | 1H NMR (CD3OD, 500 MHz): 2.08 (s, 3H), 3.18-4.97 (m, 9H), 6.87-7.08 (m, 1H), 8.24-8.59 (m, 4H)                                                                                                                                               |
| 82     | 518.40 | 1.82 | 1H NMR (CD3OD, 500 MHz): 2.93 (s, 3H), 3.18-4.97 (m, 9H), 7.00-7.10 (m, 1H), 8.26-8.56 (m, 4H)                                                                                                                                               |
| 83     | 441.20 | 1.50 | DMSO-d6: 12.85 (br s, 1H); 9.05 (s, 0.3H); 8.9 (s, 0.7H); 8.7 (m, 0.3H); 8.65-8.5 (m, 1.7H); 8.4-8.25 (m, 2H); 6.75 (m, 0.7H); 6.2 (m, 0.3H); 4.9 (m, 0.7H); 4.7 (m, 0.3H); 4.5 (m, 1H); 4.05-3.5 (m, 5H); 2.05 (m, 1H)                      |
| 84     | 473.10 | 2.20 | DMSO-d6: 12.35 (br s, 1H); 8.7 (s, 1H); 8.35-8.1 (m, 4H); 6.4 (m, 1H); 4.7 (dd, 1H); 4.0 (m, 2H); 3.8 (m, 2H); 3.15 (m, 1H); 2.25 (m, 1H); 2.0 (m, 3H)                                                                                       |
| 85     | 459.10 | 2.00 | DMSO-d6: 12.3 (br s, 1H); 8.8 (s, 1H); 8.7 (m, 1H); 8.3 (m, 2H); 8.15 (m, 1H); 4.85 (m, 1H); 4.45 (m, 1H); 4.05-3.7 (m, 5H); 1.9 (m, 1H)                                                                                                     |
| 86     | 413.20 | 2.30 | H NMR (500 MHz, DMSO) 12.63 (s, 1H), 8.87 - 8.86 (bs, 1H), 8.61 (m, 2H), 8.35 - 8.31 (m, 2H), 7.25 (d, J = 4.8 Hz, 1H), 5.39 (q, J = 7.1 Hz, 1H), 3.95 - 3.81 (m, 2H), 3.18 (s, 3H), 1.43 (d, J = 6.9 Hz, 3H)                                |
| 87     | 431.20 | 2.70 | H NMR (500 MHz, DMSO) 12.38 (s, 1H), 8.70 - 8.65 (m, 2H), 8.32 (d, J = 6.9 Hz, 1H), 8.29 (dd, J = 2.4, 2.8 Hz, 2H), 5.16 (q, J = 7.0 Hz, 1H), 3.95 - 3.86 (m, 2H), 3.17 (d, J = 4.2 Hz, 3H), 1.46 (d, J = 7.0 Hz, 3H)                        |

| Cmpd #      | M+H    | RT       | NMR                                                                                                                 |
|-------------|--------|----------|---------------------------------------------------------------------------------------------------------------------|
| <u> </u>    |        |          | DMSO-d6: 12.6 (m, 1H); 8.60 (m, 1H); 8.50 (m, 1H); 8.30                                                             |
| 88          | 400.10 | 2.30     | (m, 1H); 8.25 (m, 1H); 4.50 (m, 1H); 3.80 (m, 2H); 1,42                                                             |
|             |        |          | (m, 3H)                                                                                                             |
|             |        |          | H NMR (500 MHz, DMSO) 12.41 (s, 1H), 8.78 (t, J = 6.3                                                               |
|             |        |          | Hz, 1H), 8.71 (d, $J = 2.4$ Hz, 1H), 8.36 (d, 1H), 8.33 (d,                                                         |
| 89          | 441.20 | 2.10     | 1H), 8.30 (d, $J = 2.4$ Hz, 1H), 4.86 (d, $J = 10.4$ Hz, 1H),                                                       |
|             |        |          | 3.98 - 3.88 (m, 2H), $3.20$ (d, $J = 4.9$ Hz, 3H), $2.44 - 2.40$                                                    |
|             |        |          | (m, 1H), 1.04 (d, J = 6.5 Hz, 3H), 0.90 (d, J = 6.7 Hz, 3H)                                                         |
|             |        |          | H NMR (500 MHz, DMSO) 12.98 (s, 1H), 8.87 (bs, 1H),                                                                 |
| 90          | 459.10 | 3.40     | 8.70 (s, 2H), 8.42 (d, 1H), 8.38 (d, 1H), 5.4 (bs, 1H), 3.97 -                                                      |
| 90          | 439.10 | 3.40     | 3.89 (m, 2H), 3.14 (bs, 3H), 2.51 - 2.42 (m, 1H), 1.03 (bs,                                                         |
|             |        |          | 3H), $0.86$ (d, $J = 6.7$ Hz, $3H$ )                                                                                |
|             |        |          | 10.95 (s, 1H), 8.68 (s, 1H), 8.51 (s, 1H), 8.36 (s, 1H), 8.28                                                       |
| 91          | 459.40 | 2.95     | (d, 1H), 7.25 (m, 2H), 4.1-4.5 (s, 8H), 3.95 (m, 1H), 3.69                                                          |
|             | 432.40 | 247,3    | (m, 1H), 2.39 (m, 1H), 1.72 (s, 3H), 1.09 (dd, 6H)                                                                  |
|             |        | •        | (CD3CN)                                                                                                             |
|             |        |          | 10.69 (s, 1H), 8.70 (d, 1H), 8.48 (s, 1H), 8.41 (d, 1H), 8.28                                                       |
| 92          | 445.40 | 2.70     | (d, 1H), 7.34 (s, 1H), 7.23 (m, 1H), 3.75-4.2 (m, 26H), 2.20                                                        |
| ·           |        | <u> </u> | (m, 2H), 1.72 (s, 3H), 0.93 (t, 3H) (CD3CN)                                                                         |
|             |        |          | DMSO-d6: 12.3 (br s, 1H); 8.85 (s, 1H); 8.65 (s, 1H); 8.3                                                           |
| 93          | 487.30 | 2.10     | (m, 2H); 8.15 (s, 1H); 4.75 (dd, 1H); 4.25 (m, 1H); 4.05-3.8                                                        |
| <u> </u>    | 400.40 | 0.00     | (m, 4H); 3.6-3.45 (m, 3H); 2.0 (m, 1H); 1.1 (dd, 3H)                                                                |
| 94          | 499.40 | 2.20     | DMCO 46 10 2 (b - 11D 0 1 0 2 ( 5D 6 75 (                                                                           |
| 95          | 469.40 | 1.90     | DMSO-d6: 12.3 (br s, 1H); 9.1-8.3 (m, 5H); 6.75 (m, 0.7H); 6.2 (m, 0.3H); 4.85 (m, 0.7H); 4.6 (m, 0.3H); 4.3        |
| 93          | 409.40 | 1.90     | (m, 1H); 4.1-3.5 (m, 7H); 2.1 (m, 1H); 1.1 (dd, 3H)                                                                 |
| 96          | 481.40 | 2.00     | (III, 111), 4.1-3.3 (III, 711), 2.1 (III, 111), 1.1 (dd, 311)                                                       |
| <del></del> | 401.40 | 2.00     | DMSO-d6: 12.6 (m, 1H); 8.82 (m, 0.5H); 8.75 (s, 0.5H);                                                              |
|             |        |          | 8.62 (m, 1H); 8.58 (s, 0.5H); 8.48 (m, 1H); 8.38 (m, 0.5H);                                                         |
| 97          | 426.10 | 2.51     | 8.35 (m, 0.5H); 8.22 (m, 0.5H); 4.65-4.55 (m, 1H); 3.80-                                                            |
|             |        |          | 3.60 (m, 4H); 2.25 (m, 1H); 1.90 (m, 3H)                                                                            |
|             |        |          | DMSO-d6: 12.6 (m, 1H); 8.95 (s, 0.5H); 8.70 (m, 0.5H);                                                              |
| 98          | 414.10 | 2.52     | 8.50 (m, 0.5H); 8.40 (0.5H); 8.20 (m, 2.0H); 8.10-7.90 (m,                                                          |
|             |        |          | 1H)                                                                                                                 |
|             |        |          | H NMR (500 MHz, DMSO-d6) 13.07 (s, 1H), 9.17 (s, 1H),                                                               |
|             | ]<br>[ | ļ        | 8.69 - 8.66 (m, 3H), $8.61$ (m, 1H), $8.39$ (d, $J = 2.2$ Hz, 1H),                                                  |
| 99          | 427.10 | 1.80     | 8.20 (d, $J = 7.1$ Hz, 1H), 6.78 (d, $J = 6.9$ Hz, 1H), 3.83 -                                                      |
|             |        |          | 3.78 (m, 2H), 2.14 - 2.07 (m, 1H), 2.01 - 1.94 (m, 1H), 1.61                                                        |
|             |        |          | (s, 3H), 0.88 (t, J = 7.5 Hz, 3H)                                                                                   |
|             |        |          | H NMR (500 MHz, DMSO-d6) 12.36 (s, 1H), $8.68$ (d, $J =$                                                            |
|             |        |          | 2.4 Hz, 1H), 8.41 (t, $J = 6.4$ Hz, 1H), 8.30 - 8.27 (m, 2H),                                                       |
| 100         | 445.10 | 2.70     | 8.11 (s, 1H), 7.53 (s, 1H), 3.85 - 3.72 (m, 2H), 2.19 - 2.15                                                        |
|             |        |          | (m, 1H), $1.99 - 1.95$ (m, 1H), $1.55$ (s, 3H), $0.81$ (t, $J = 7.5$                                                |
|             |        | <u> </u> | Hz, 3H)                                                                                                             |
| 101         | 473.21 | 2.55     | DMSO-d6: 12.3 (br s, 1H); 8.8 (s, 1H); 8.7 (s, 1H); 8.3 (m, 2H); 8.15 (m, 1H); 8.75 (m, 1H); 4.15 (m, 1H); 4.1.3.75 |
| <u> </u>    | L      | 1        | 2H); 8.15 (m, 1H); 8.75 (m, 1H); 4.15 (m, 1H); 4.1-3.75                                                             |

| Cmpd # | M+H    | RT   | NMR                                                                                                                                                                                                                                                   |
|--------|--------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |        |      | (m, 4H); 3.45 (m, 4H); 2.0 (m, 1H)                                                                                                                                                                                                                    |
| 102    | 487.23 | 2.70 | DMSO-d6: 12.3 (br s, 1H); 8.8 (s, 1H); 8.7 (s, 1H); 8.3 (m, 2H); 8.15 (m, 1H); 4.75 (m, 1H); 4.2 (m, 1H); 4.05-4.75 (m, 4H); 3.5 (m, 3H); 2.0 (m, 1H); 1.1 (dd, 3H)                                                                                   |
| 103    | 455.10 | 1.70 |                                                                                                                                                                                                                                                       |
| 104    | 500.10 | 1.90 |                                                                                                                                                                                                                                                       |
| 105    | 499.10 | 2.90 | DMSO-d6: 12.35 (br s, 1H); 8.85 (s, 1H); 8.65 (s, 1H); 8.3 (m, 2H); 8.15 (m, 1H); 5.9 (m, 1H); 5.3 (d, 1H); 5.15 (d, 1H); 4.8 (m, 1H); 4.3 (m, 1H); 4.05 (m, 2H); 4.0-3.8 (m, 5H); 2.0 (m, 1H)                                                        |
| 106    | 455.10 | 1.70 |                                                                                                                                                                                                                                                       |
| 107    | 427.40 | 1.80 | 10.07 (s, 1H), 8.83 (d, 1H), 8.26 (d, 1H), 8.22 (d, 1H), 8.13 (d, 1H), 7.20 (m, 1H), 6.38 (d, 1H), 6.00 (s, 1H), 3.88 (m, 1H), 3.77 (m, 1H), 1.95 (m, 2H), 1.57 (s, 3H), 0.91 (t, 3H) (CD3CN)                                                         |
| 108    | 359.40 | 1.65 |                                                                                                                                                                                                                                                       |
| 109    | 395.40 | 1.77 |                                                                                                                                                                                                                                                       |
| 110    | 441.40 | 1.91 | 10.01 (s, 1H), 8.71 (d, 1H), 8.23 (d, 1H), 8.17 (d, 1H), 8.12 (d, 1H), 7.16 (m, 1H), 6.40 (d, 1H), 5.86 (s, 1H), 3.97 (m, 1H), 3.61 (m, 1H), 1.53 (s, 3H), 1.02 (dd, 6H) (CD3CN)                                                                      |
| 111    | 414.10 | 2.50 | DMSO-d6: 12.65 (m, 1H); 8.95 (s, 0.5H);,8.72 (m, 0.5H);<br>8.70 (m, 0.5H); 8.50 (m, 1H); 8.48 (m, 0.5H); 8.40 (m,<br>0.5H); 8.30 (m, 1H); 8.28 (m, 0.5H); 8.03 (m, 0.5H); 4.45<br>(m, 1H); 3.80 (m, 2H); 1.75 (m, 2H); 1.00 (m, 3H)                   |
| 112    | 440.10 | 2.70 | DMSO-d6: 12.68 (m, 1H); 8.98 (s, 0.5H); 8.68 (s, 0.5H); 8.58 (s, 0.5H); 8.48 (s, 0.5H); 8.43 (s, 0.5H); 8.35-8.15 (m, 3.5H); 3.75 (m, 2H); 2.15 (m, 2H); 2.02 (m, 2H); 1.65 (m, 4H)                                                                   |
| 113    | 426.10 | 2.60 | DMSO-d6: 12.55 (m, 1H); 8.95 (m, 0.5H); 8.68 (m, 0.5H); 8.62 (m, 0.5H); 8.56 (m, 0.5H); 8.52 (m, 0.5H); 8.45 (m, 0.5H); 8.40 (m, 0.5H); 8.35 (m, 1H); 8.22 (0.5H); 8.16 (m, 1H); 3.80 (m, 2H); 2.70 (m, 1H); 2.40 (m, 1H); 2.25 (m, 2H); 1.88 (m, 2H) |
| 114    | 512.10 | 1.80 | DMSO-d6: 12.5 (bs, 1H); 8.95 (bs, 1H); 8.50 (m, 2H); 8.32 (m, 2H); 6.80 (m, 1H); 4.50 (m, 1H); 4.00-3.40 (m, 10H); 1.15 (t, 3H)                                                                                                                       |
| 115    | 540.10 | 2.10 |                                                                                                                                                                                                                                                       |
| 116    | 496.10 | 1.70 | DMSO-d6: 12.6 (m, 1H); 8.95 (m, 1H); 8.50 (m, 2H); 8.32 (m, 2H); 6.80 (m, 1H); 4.50 (m, 1H); 4.00-3.40 (m, 10): 1.15 (t, 3H)                                                                                                                          |
| 117    | 508.10 | 1.70 |                                                                                                                                                                                                                                                       |
| 118    | 522.20 | 1.90 |                                                                                                                                                                                                                                                       |
| 119    | 459.30 | 1.70 | DMSO-d6: 12.35 (br s, 1H); 8.8 (m, 1H); 8.65 (s, 1H); 8.3 (m, 2H); 8.15 (m, 1H); 4.8 (m, 1H); 4.4 (m, 1H); 4.05-3.7 (m, 4H); 2.3 (m, 1H); 1.95 (m, 1H)                                                                                                |
| 120    | 441.40 | 1.70 | DMSO-d6: 12.9 (br s, 1H); 9.05 (m, 0.3H); 8.9 (m, 0.7H);                                                                                                                                                                                              |

| Cmpd # | M+H      | RT                                     | NMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------|----------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |          | ······································ | 8.7-8.5 (m, 2H); 8.4-8.25 (m, 2H); 6.75 (m, 0.7H); 6.2 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |          |                                        | 0.3H); 4.95 (m, 0.7H); 4.7 (m, 0.3H); 4.5 (m, 1H); 4.05-3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |          |                                        | (m, 4H); 2.4 (m, 1H); 2.05 (m, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |          |                                        | 10.1 (s, 1H), 8.89 (s, 1H), 8.29 (m, 3H), 7.27 (s, 1H), 6.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | 4.7.7.00 | 0.00                                   | (d, 1H), 3.88 (m, 2H), 3.30 (s, 6H), 1.86 (m, 1H), 1.57 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 121    | 425.00   | 2.03                                   | 1H), 1.43 (m, 1H), 1.19 (m, 1H) (CD3CN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 122    | 461.30   | 2.40                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 123    | 443.30   | 1.90                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 124    | 487.40   | 2.20                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 125    | 479.40   | 2.30                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 126    | 443.30   | 1.90                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |          |                                        | H NMR (500 MHz, MeOD) $8.79$ (d, $J = 2.3$ Hz, $1H$ ), $8.51$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |          |                                        | (t, J = 6.4  Hz, 1H), 8.48  (s, 1H), 8.35  (d,  J = 2.3  Hz, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 127    | 439.17   | 1.84                                   | 8.06 (d, $J = 7.2$ Hz, 1H), $6.73$ (d, $J = 7.2$ Hz, 1H), $3.87$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |          |                                        | 3.81 (m, 2H), 2.56 - 2.52 (m, 2H), 2.25 - 2.20 (m, 2H), 1.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |          |                                        | - 1.86 (m, 4H), 0.00 (TMS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |          |                                        | H NMR (500 MHz, DMSO) 8.66 (s, 1H), 8.62 (s, 1H), 8.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 128    | 141.40   | 2.20                                   | (s, 1H), 8.38 (d, $J = 2.0 \text{ Hz}$ , 1H), 8.18 (d, $J = 7.0 \text{ Hz}$ , 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 128    | 441.40   | 2.20                                   | 6.81 (s, 1H), 4.09 - 3.78 (m, 2H), 2.18 - 2.16 (m, 2H), 2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |          |                                        | (m, 2H), 0.77 (t, J = 7.4 Hz, 6H), 0.00 (TMS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 129    | 459.40   | 2.40                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 130    | 461.30   | 2.40                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 131    | 377.30   | 1.67                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |          |                                        | H NMR (500 MHz, MeOD) $8.70$ (d, $J = 2.2$ Hz, $1H$ ), $8.48$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |          |                                        | (s, 1H), 8.36 (d, J = 2.3 Hz, H), 8.12 (d, J = 7.2 Hz, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |          |                                        | 7.59 (d, J = 8.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, 2H *0.7 equiv p-TsOH), 7.37 (d, J = 9.2 Hz, |
| 132    | 441.09   | 441.09 1.65                            | 8.0  Hz, $2H*0.7  equiv p-TsOH$ ), $6.76  (d, J = 7.2  Hz$ , $1H$ ),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 132    |          |                                        | 4.41 (d, $J = 9.6$ Hz, 1H), $4.22$ (d, $J = 9.5$ Hz, 1H), $4.07$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |          |                                        | 4.04 (m, 2H), 3.88 - 3.83 (m, 2H), 2.88 - 2.82 (m, 1H), 2.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |          |                                        | - 2.43 (m, 1H), 2.43 (s, 3H*0.7 equiv p-TsOH), 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | <u></u>  |                                        | (TMS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 133    | 443.30   | 2.86                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 134    | 441.16   | 1.50                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |          | İ                                      | DMSO-d6: 12.8 (br s, 1H); 9.05-8.85 (m, 1H); 8.8-8.4 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 135    | 455.10   | 1.80                                   | 2H); 8.35 (m, 2H); 6.75 (m, 0.8H); 6.2 (m, 0.2H); 4.85 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |          | }                                      | 0.8H); 4.6 (m, 0.2H); 4.2 (m, 1H); 4.0 (m, 1H); 3.9-3.6 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |          |                                        | 3H); 3.3 (s, 3H); 2.2 (m, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |          |                                        | DMSO-d6: 12.9 (br s, 1H); 8.75-8.25 (m, 5H); 6.75 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 136    | 455.10   | 1.80                                   | 0.8H); 8.45 (m, 0.2H); 4.95 (m, 0.8H); 4.75 (m, 0.2H); 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |          | ļ                                      | (m, 1H); 4.1-3.7 (m, 4H); 3.2 (s, 3H); 2.3 (m, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |          |                                        | DMSO-d6: 12.35 (br s, 1H); 8.65 (m, 1H); 8.45 (dd, 1H);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 137    | 473.10   | 2.00                                   | 8.25 (m, 2H); 8.15 (m, 1H); 4.8 (d, 1H); 4.1 (m, 1H); 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |          |                                        | (m, 1H); 3.9 (m, 1H); 3.85 (m, 2H); 3.2 (s, 3H); 2.2 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 122    | 207.00   | 1.74                                   | 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 138    | 397.00   | 1.74                                   | (500 MHz, CD3OD) 8.57 (t, J=6.2 Hz, 1H), 8.50 (s, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Cmpd #   | M+H      | RT        | NMR                                                                  |                                                     |
|----------|----------|-----------|----------------------------------------------------------------------|-----------------------------------------------------|
|          |          | <u> </u>  | 8.48 (d, J=2.6 Hz, 1H), 8.3 (d, J=1.2 Hz, 1H), 8.05 (d, J=           |                                                     |
|          | Į        |           | 7.2 Hz, 1H), 6.7 (d, J=7.2 Hz, 1H), 3.86-3.8 (m, 2H), 1.74           |                                                     |
|          | 1        |           | (s, 6H), 0 (TMS)                                                     |                                                     |
|          |          |           | H NMR (500 MHz, DMSO) 12.24 (s, 1H), 8.69 (s, 1H),                   |                                                     |
| 139      | 445.10   | 3.30      | 8.32 (d, $J = 6.9$ Hz, 1H), $8.24$ (m, 2H), $8.15$ (s, 1H), $3.68$ - |                                                     |
|          | ,,,,,,,, |           | 3.63 (m, 2H), 3.20 (s, 1H), 1.51 (s, 1H)                             |                                                     |
|          |          |           | H NMR (500 MHz, DMSO) 12.7 (bs, 1H), 8.82 (s, 1H),                   |                                                     |
|          |          |           | 8.34 - 8.30 (m, 2H), $8.16$ (s, 1H), $8.07$ (d, $J = 6.2$ Hz, 1H),   |                                                     |
| 140      | 427.10   | 1.80      | 6.63 (d, $J = 6.2$ Hz, 1H), $3.77 - 3.70$ (m, 2H), $3.06$ (s, 3H),   |                                                     |
| <u> </u> |          |           | 1.56 (s, 6H)                                                         |                                                     |
|          |          |           | DMSO-d6: 12.2 (m, 1H); 8.60 (m, 1H); 8.22 (s, 1H); 8.18              |                                                     |
| 141      | 431.10   | 2.50      | (s, 1H); 8.10 (s, 1H); 7.70 (m, 1H); 5.16 (m, 1H); 4.18 (m,          |                                                     |
| ^-^      | 102123   |           | 2H); 3.3(s, 2.5H); 2.9 (s, 0.5H); 1.35 (m, 3H)                       |                                                     |
|          |          |           | DMSO-d6: 12.5 (m, 1H); 8.70 (m, 1H); 8.30 (m, 2H); 8.18              |                                                     |
| 142      | 413.10   | 1.80      | (m, 2H); 6.42 (m, 1H); 5.25 (m, 1H); 4.20 (m, 2H); 3.30 (s,          |                                                     |
|          |          |           | 2.5H); 2.90 (s, 0.5H); 1.32 (m, 3H)                                  |                                                     |
| 143      | 413.10   | 1.84      |                                                                      |                                                     |
| 144      | 377.10   | 1.70      |                                                                      |                                                     |
| 145      | 395.10   | 1.74      |                                                                      |                                                     |
| 146      | 428.10   | 2.00      |                                                                      |                                                     |
| 147      | 411.10   | 2.00      |                                                                      |                                                     |
| 148      | 497.10   | 2.40      |                                                                      |                                                     |
| 149      | 554.00   | 2.20      |                                                                      |                                                     |
|          |          |           | DMSO-d6: 12.7 (m, 1H); 8.92 (m, 1H); 8.60 (m, 1H); 8.42              |                                                     |
| 150      | 498.00   | 1.80      | (m, 1H); 8.32 (m, 1H); 8.28 (m, 1H); 6.80 (m, 1H); 5.20              |                                                     |
| ļ        |          |           | (m, 1H); 4.30-3.60 (m, 8H); 3.55 (m, 3H)                             |                                                     |
|          |          |           | DMSO-d6: 12.5 (m, 1H); 8.90 (m, 1H); 8.55 (m, 1H); 8.42              |                                                     |
| 151      | 512.00   | 1.90      | (m, 1H); 8.32 (m, 1H); 8.30 (m, 1H); 6.70 (m, 1H); 5.20              |                                                     |
|          |          |           | (m, 1H); 4.35-3.55 (m, 10H); 1.15 (t, 3H)                            |                                                     |
| 152      | 526.10   | 2.00      | •                                                                    |                                                     |
| 153      | 526.00   | 2.00      |                                                                      |                                                     |
| 154      | 540.10   | 2.10      |                                                                      |                                                     |
| 155      | 540.10   | 2.10      |                                                                      |                                                     |
|          |          |           | DMSO-d6: 12.35 (br s, 1H); 8.9 (m, 1H); 8.7 (s, 1H); 8.4-            |                                                     |
| 156      | 532.80   | 3.10      | 8.1 (m, 3H); 4.85 (dd, 1H); 4.35-4.1 (m, 2H); 4.0-3.7 (m,            |                                                     |
|          |          |           | 2H); 3.3 (m, 4H); 2.85 (m, 1H); 2.4 (m, 1H)                          |                                                     |
| 1        | 1        |           | DMSO-d6: 12.35 (br s, 1H); 8.9 (m, 1H); 8.7 (s, 1H); 8.35            |                                                     |
| 157      | 546.90   | 3.20      | -8.15 (m, 3H); 4.9 (dd, 1H); 4.1-3.75 (m, 4H); 3.1-2.9 (m,           |                                                     |
|          |          |           | 5H); 2.15 (m, 1H); 1.95 (m, 2H)                                      |                                                     |
| 158      | 493.90   | 1.70      |                                                                      |                                                     |
| 159      | 522.00   | 1.90      |                                                                      |                                                     |
| 160      | 524.00   | 1.90      |                                                                      |                                                     |
| 161      | 538.00   | 2.10      |                                                                      |                                                     |
| 162      | 511.00   | 511.00 1. | 1.70                                                                 | DMSO-d6: 12.8 (m, 1H); 8.90 (m, 1H); 8.55 z9m, 2H); |
| 102      | 311.00   | 1.,0      | 8.35 (, 2H); 6.80 (m, 1H); 5.25 (, 1H); 4.20-3.60 (m, 8H);           |                                                     |

| Cmpd # | M+H    | RT   | NMR                                                                                                                                                                                                                                                                  |
|--------|--------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |        |      | 2.62 (s, 6H)                                                                                                                                                                                                                                                         |
| 163    | 525.00 | 1.80 |                                                                                                                                                                                                                                                                      |
| 164    | 560.00 | 2.20 | ·                                                                                                                                                                                                                                                                    |
| 165    | 508.00 | 1.80 |                                                                                                                                                                                                                                                                      |
| 166    | 443.00 | 1.60 | DMSO-d6: 12.8 (br s, 1H); 8.95-8.65 (m, 1H); 8.65-8.45 (m, 2H); 8.4-8.25 (m, 2H); 6.75 (m, 0.7H); 6.25 (m, 0.3H); 5.5 (d, 1H); 5.05 (m, 0.7H); 4.85 (m, 0.3H); 4.2-3.7 (m, 4H); 2.8-2.55 (m,1H); 2.5-2.35 (m, 1H)                                                    |
| 167    | 460.90 | 1.80 | DMSO-d6: 12.75 (br s, 1H); 9.0 (m, 1H); 8.65-8.3 (m, 4H); 6.7 (m, 1H); 5.15 (m, 1H); 4.2 (m, 2H); 4.0 (m, 1H); 3.85 (m, 1H); 3.1 (m, 1H); 2.6 (m, 1H)                                                                                                                |
| 168    | 443.00 | 1.60 | DMSO-d6: 12.8 (br s, 1H); 9.2-8.9 (m, 1H); 8.7-8.45 (m, 2H); 8.4-8.3 (m, 2H); 6.75 (m, 0.7H); 6.25 (m, 0.3H); 5.55 (d, 1H); 5.0 (m, 0.7H); 4.8 (m, 0.3H); 4.2-3.7 (m, 4H); 2.9-2.7 (m, 1H); 2.3-2.1 (m, 1H)                                                          |
| 169    | 403.10 | 2.20 | DMSO-d6: 12.45 (s, 1H); 8.7 (s, 1H); 8.3 (m, 2H); 8.25 (m, 1H); 8.0 (dd, 1H); 4.7 (m, 1H); 3.95 (m, 1H); 3.8 (m, 1H); 3.05 (m, 1H); 2.95 (m, 1H); 2.25 (m, 1H); 2.0 (m, 3H); 1.4 (m, 2H); 0.75 (m, 3H).                                                              |
| 170    | 385.10 | 1.70 | DMSO-d6: 12.9 (br s, 1H); 8.7-8.6 (m, 2H); 8.4 (m, 1H); 8.3 (m, 1H); 8.15 (m, 1H); 6.7 (d, 0.7H); 6.3 (d, 0.3H); 4.85 (d, 0.7H); 4.5 (0.3H); 4.05-3.6 (m, 2H); 3.2-3.05 (m, 1H); 2.9 (m, 1H); 2.35 (m, 1H); 2.05 (m, 3H); 1.5-1.3 (m, 2H); 0.8 (m, 1H); 0.7 (m, 2H). |
| 171    | 387.40 | 2.00 | DMSO-d6: 12.95 (br s, 1H); 8.7 (s, 1H); 8.6 (s, 1H); 8.4 (s, 1H); 8.3 (s, 1H); 8.15 (m, 1H); 6.8 (s, 1H); 4.65 (s, 1H); 3.2 (m, 1H); 3.0 (m, 1H); 2.25 (m, 1H); 1.45 (m, 2H); 1.1-0.95 (m, 6H); 0.85 (m, 3H).                                                        |
| 172    | 457.10 | 2.40 | DMSO-d6: 12.35 (br s, 1H); 8.7 (s, 1H); 8.3-8.25 (m, 3H); 8.2 (m, 1H); 4.65 (d, 1H); 4.0 (m, 1H); 3.8 (m, 1H); 3.5-3.3 (m, 2H); 2.4-2.2 (m, 3H); 2.0 (m, 3H).                                                                                                        |
| 173    | 439.20 | 1.70 | DMSO-d6: 12.9 (br s, 1H); 8.7-8.65 (m, 2H); 8.45-8.25 (m, 3H); 6.75 (d, 0.8H); 6.3 (d, 0.2H); 4.85 (d, 0.8H); 4.55 (d, 0.2H); 4.05-3.55 (m, 4H); 2.4-2.25 (m, 3H); 2.1-2.0 (m, 3H).                                                                                  |
| 174    | 441.40 | 2.00 |                                                                                                                                                                                                                                                                      |
| 175    | 373.40 | 1.74 |                                                                                                                                                                                                                                                                      |
| 176    | 427.30 | 1.87 | ·                                                                                                                                                                                                                                                                    |
| 177    | 401.10 | 2.00 | DMSO-d6: 12.45 (s, 1H); 8.7 (s, 1H); 8.3 (m, 2H); 8.25 (s, 1H); 8.15 (s, 1H); 4.6 (d, 1H); 3.9 (m, 1H); 3.8 (m, 1H); 2.6 (m, 1H); 2.25 (m, 1H); 1.95 (m, 3H); 0.6 (m, 2H); 0.4 (m, 1H); 0.35 (m, 1H).                                                                |
| 178    | 383.10 | 1.60 | DMSO-d6: 13.0 (br s, 1H); 8.65 (m, 1H); 8.6 (s, 1H); 8.4 (m, 1H); 8.35-8.2 (m, 2H); 6.75 (d, 0.7H); 6.3 (d, 0.3H); 4.8 (d, 0.7H); 4.5 (0.3H); 4.05-3.6 (m, 2H); 2.7-2.55 (m, 1H); 2.35 (m, 1H); 2.05 (m, 3H); 0.7-0.2 (m, 4H).                                       |

| Cmpd # | M+H    | RT   | NMR                                                                                                                                                                                               |
|--------|--------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 179    | 385.40 | 1.90 | DMSO-d6: 12.95 (br s, 1H); 8.7 (s, 1H); 8.6 (s, 1H); 8.4 (s, 1H); 8.35 (s, 1H); 8.15 (m, 1H); 6.8 (s, 1H); 4.6 (s, 1H); 2.7 (m, 1H); 2.25 (m, 1H); 1.05-0.95 (m, 6H); 0.65 (m, 2H); 0.45 (m, 2H). |
| 180    | 371.40 | 1.65 |                                                                                                                                                                                                   |

# Table 5

| Cmpd # | M+H      | RT       | NMR                                                                      |
|--------|----------|----------|--------------------------------------------------------------------------|
| 181    | 473.1    | 1.9      |                                                                          |
| 182    | 415.1    | 1.8      | (500  MHz, DMSO) 12.22  (s, 1H), 8.42  (dd, J = 2.8, 9.9)                |
| į į    |          |          | [Hz, 1H), 8.37 (t, J = 6.4 Hz, 1H), 8.26 - 8.25 (m, 2H), 8.10]           |
|        |          |          | [(d, J = 2.5  Hz, 1H), 3.78 - 3.71  (m, 2H), 1.57  (s, 6H), 0.00]        |
|        |          |          | (TMS)                                                                    |
| 183    | 361.1    | 1.6      | (500  MHz, DMSO) 12.27  (s, 1H), 8.47  (dd, J = 2.8, 9.8)                |
|        |          |          | [Hz, 1H), 8.25 (d, J = 3.0 Hz, 2H), 8.19 (d, J = 2.2 Hz, 1H), ]          |
|        |          |          | 7.75 (t, $J = 5.6$ Hz, 1H), $7.56$ (bs, 1H), $3.02 - 2.99$ (m,           |
|        |          |          | 2H), $1.56$ (s, $6H$ ), $0.77$ (t, $J = 7.1$ Hz, $3H$ ), $0.00$ (TMS)    |
| 184    | 379.1    | 1.6      | (500  MHz, DMSO) 12.3  (s, 1H), 8.45  (dd, J = 2.8, 9.8  Hz,)            |
| 1      |          | ŀ        | 1H), 8.25 (m, 2H), 8.19 (bs, 1H), 8.05 (t,1H), 7.7 (bs, 1H),             |
|        |          |          | 4.2 (dt, 2H, under water), 3.2 (dq, 2H), 1.6 (s, 6H), 0.00               |
|        |          | <u> </u> | (TMS)                                                                    |
| 185    | 397.1    | 1.7      | (500  MHz, DMSO) 12.28  (s, 1H), 8.44  (dd, J = 2.8, 9.9)                |
|        |          |          | Hz, 1H), $8.27$ (d, $J = 4.4$ Hz, 2H), $8.19$ (t, $J = 5.9$ Hz, 1H),     |
|        |          |          | 8.15 (d, $J = 2.5$ Hz, 1H), $7.69$ (bs, 1H), $5.7$ (tt, $J = 48$ Hz, $J$ |
|        |          |          | = 4.3 Hz, 1H), 3.39 - 3.31 (m, 2H), 1.57 (s, 6H), 0.00                   |
| ļ      |          | ·        | (TMS)                                                                    |
| 186    | 375.1    | 1.7      |                                                                          |
| 187    | 361.1    | 2.04     |                                                                          |
| 188    | 379.1    | 2.21     |                                                                          |
| 189    | 343.1    | 2.04     |                                                                          |
| 190    | 357.1    | 2.3      |                                                                          |
| 191    | 457      | 2.9      | (DMSO-d6) 12.35 (s, 1H); 8.7 (d, 1H); 8.4-8.25 (m, 3H);                  |
| ļ      |          | <b>]</b> | 8.1 (s, 1H); 4.1 (m, 1H); 3.95 (m, 1H); 3.85 (m, 1H); 3.7                |
|        |          | <u> </u> | (m, 1H); 2.05 (m, 4H); 1.65 (s, 3H).                                     |
| 192    | 439      | 1.7      | (DMSO-d6) 12.9 (s, 1H); 8.75-8.65 (m, 1.1H); 8.55 (m,                    |
| ļ      | ļ        | (        | 0.9H); 8.45-8.15 (m, 3H); 6.7 (m, 0.9H); 6.1 (m, 0.1H);                  |
| Į      | i        | {        | 4.15 (m, 0.1H); 3.95 (m, 0.9H); 3.8 (m, 3H); 2.2-2.05 (m,                |
|        |          |          | 4H); 1.75-1.6 (m, 3H).                                                   |
| 193    | 455.1    | 1.8      | (500 MHz, DMSO) 12.95 (s, 1H), 8.71 (s, 1H), 8.59 (bd,                   |
|        |          |          | 2H), $8.36$ (d, $J = 2.2$ Hz, 1H), $8.23$ (d, $J = 6.9$ Hz, 1H),         |
|        |          | ļ        | 6.82 (s, 1H), $3.82 - 3.77$ (m, 4H), $3.66$ (t, $J = 10.5$ Hz,           |
|        | <u> </u> | <u></u>  | 4H), 2.27 - 2.20 (m, 2H), 2.20 - 2.08 (m, 2H), 0.00 (TMS)                |

| Cmpd # | M+H      | RT      | NMR                                                                                                                                      |
|--------|----------|---------|------------------------------------------------------------------------------------------------------------------------------------------|
| 194    | 439.1    | 1.7     | (500 MHz, DMSO) 12.89 (s, 1H), 8.61 (m, 2H), 8.46 (d, J                                                                                  |
| }      |          |         | = 9.6  Hz, 1H), 8.36  (s, 1H), 8.22  (d, J = 6.9  Hz, 1H), 6.82                                                                          |
| ļ ,    | i        |         | (bd, 1H), 3.81 - 3.79 (m, 4H), 3.67 - 3.63 (m, 2H), 2.23 (t,                                                                             |
|        |          |         | J = 10.2  Hz, 2H), 2.12 (m, 2H), 0.00 (TMS)                                                                                              |
| 195    | 409.1    | 1.8     |                                                                                                                                          |
| 196    | 427.08   | 1.7     |                                                                                                                                          |
| 197    | 528.9    | 2       | (DMSO-d6) 12.5 (br s, 1H); 8.9 (m, 1H); 8.65 (m, 1H);                                                                                    |
|        |          |         | 8.4-8.3 (m, 3H); 6.75 (m, 0.5H); 6.5 (m, 0.5H); 4.9 (m,                                                                                  |
| ļ      |          |         | 1H); 4.1-3.7 (m, 4H); 3.1-2.9 (m, 5H); 2.2 (m, 1H); 1.95                                                                                 |
|        |          |         | (m, 2H).                                                                                                                                 |
| 198    | 409.1    | 1.9     | (500 MHz, MeOD) 8.91 (d, J = 2.2 Hz, 1H), 8.72 (s, 1H),                                                                                  |
|        | i        |         | 8.55 (d, J = 8.3 Hz, 1H), 8.38 (d, J = 2.2 Hz, 1H), 8.03 (t, J                                                                           |
|        |          |         | = 7.6 Hz, 2H), 7.88 (d, J = 8.3 Hz, 1H), 7.74 (t, J = 7.8 Hz,                                                                            |
| l l    |          |         | 1H), 3.21 - 3.15 (m, 2H), 1.87 (s, 6H), 0.89 (t, J = 7.2 Hz,                                                                             |
| 199    | 447.1    | 1.79    | (3H).<br>(500 MHz, MeOD) 8.73 (s, 1H), 8.63 (d, J = 9.5 Hz, 1H),                                                                         |
| 199    | 44/.1    | 1.79    | 8.57 (m, 2H), 8.33 (s, 1H), 8.03 (m, 1H), 7.89 (d, J = 8.4                                                                               |
| 1      |          | [<br>]  | Hz, 1H), 7.74 (t, J = 7.7 Hz, 1H), 3.82 (m, 2 H), 2.66 (s,                                                                               |
|        |          |         | 1.3H), 1.88 (s, 6H). (Peak at 2.66 is unidentified.)                                                                                     |
| 200    | 397.1    | 1.65    | (500 MHz, DMSO-d6) 12.90 (s, 1H), 9.05 (s, 1H), 8.66 (s,                                                                                 |
| 200    | 397.1    | 1.03    | 1H), 8.40 (s, 1H), 8.37 (s, 1H), 8.16 (d, J = 6.4 Hz, 1H),                                                                               |
|        |          |         | 6.73 (s, 1H), $4.75$ (s, 1H), $4.08 - 4.01$ (m, 2H), $3.87$ (d, J =                                                                      |
|        |          |         | 6.5 Hz, 1H), 1.93 - 1.83 (m, 2H), 1.00 (t, J = 7.4 Hz, 3H),                                                                              |
|        | <u>.</u> | i       | 0.00 (TMS)                                                                                                                               |
| 201    | 445      | 1.7     | (DMSO-d6) 12.75 (br s, 1H); 9.0 (dd, 1H); 8.55 (s, 1H);                                                                                  |
|        |          | }       | 8.45-8.25 (m, 3H); 6.7 (m, 1H); 5.2 (m, 1H); 4.2 (m, 2H);                                                                                |
| į .    |          |         | 4.05-3.7 (m, 2H); 3.1 (m, 1H); 2.6 (m, 1H).                                                                                              |
| 202    | 441      | 2.7     | (DMSO-d6) 12.25 (br s, 1H); 8.4 (d, 1H); 8.35 (dd, 1H);                                                                                  |
|        |          | į       | 8.3 (d, 1H); 8.25 (s, 1H); 8.1 (s, 1H); 4.1 (m, 1H); 3.95                                                                                |
|        |          | ł       | (m, 1H); 3.8 (m, 1H); 3.7 (m, 1H); 2.1-2.0 (m, 4H); 1.65                                                                                 |
|        |          |         | (s, 3H).                                                                                                                                 |
| 203    | 423      | 1.7     | (DMSO-d6) 12.8 (br s, 1H); 8.5-8.2 (m, 5H); 6.7 (m, 1H);                                                                                 |
|        |          |         | 4.0-3.7 (m, 4H); 2.2-2.0 (m, 4H); 1.7 (s, 3H).                                                                                           |
| 204    | 427      | 1.5     | (DMSO-d6) 12.85 (br s, 1H); 9.2-9.0 (m, 1H); 8.7-8.6 (m,                                                                                 |
|        | ļ        |         | 1H); 8.4 (m, 3H); 6.85 (m, 0.8H); 6.25 (m, 0.2H); 5.55 (d,                                                                               |
|        | (        |         | 1H); 5.05 (dd, 0.8H); 4.8 (m, 0.2H); 4.2-3.6 (m, 4H); 2.8                                                                                |
|        | 400.1    |         | (m, 1H); 2.3-2.15 (m, 1H).                                                                                                               |
| 205    | 423.1    | 2       |                                                                                                                                          |
| 206    | 441.1    | 2       | (500 MILT DMSO) 12 17 (- 11T) 9 97 (- 11T) 9 90 9 60                                                                                     |
| 207    | 459.1    | 2.1     | (500 MHz, DMSO) 13.17 (s, 1H), 8.87 (s, 1H), 8.80 - 8.60                                                                                 |
|        |          |         | (m, 2H), 8.40 - 8.30 (m, 2H), 8.05 - 7.94 (m, 1H), 7.89 (d,                                                                              |
|        |          | 1       | J = 8.3 Hz, 1H), 7.70 (m, 1H), 5.70 (tt, J = 15.1, 3.9 Hz, 1H), 3.40 - 3.30 (m, 2H), 2.38 - 2.31 (m, 1H), 2.07 (m,                       |
|        |          |         | (1H), $3.40 - 3.30$ ( $1H$ , $2H$ ), $2.38 - 2.31$ ( $1H$ , $1H$ ), $2.07$ ( $1H$ ), $1.70$ (s, $3H$ ), $0.89$ (t, $J = 7.5$ Hz, $3H$ ). |
| L      | L        | <u></u> | 1111), 1.10 (3, 311), 0.07 (1, J - 1.3 112, 311).                                                                                        |

| Cmpd # | М+Н   | RT   | NMR                                                                                                                                                                                                                                                                                 |
|--------|-------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 208    | 477.1 | 2.2  | (500 MHz, DMSO) 8.85 (s, 1H), 8.67 - 8.55 (m, 3H), 8.39 (s, 1H), 7.99 (m, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.69 (m, 1H), 3.86 - 3.71 (m, 2H), 2.40 - 2.34 (m, 1H), 2.10 - 2.06 (m, 1H), 1.70 (s, 3H), 0.89 (t, J = 7.5 Hz, 3H).                                                       |
| 209    | 359.1 | 1.6  | (500 MHz, MeOD) 8.48 (dd, J = 2.8, 9.3 Hz, 1H), 8.43 (s, 1H), 8.35 - 8.33 (m, 1H), 8.28 - 8.27 (m, 1H), 3.21 (q, J = 7.2 Hz, 2H), 1.77 - 1.75 (m, 2H), 1.29 (m, 2H), 0.97 (t, J = 7.2 Hz, 3H).                                                                                      |
| 210    | 395.1 | 1.7  | (500 MHz, DMSO) 12.35 (s, 1H), 8.57 (s, 1H), 8.39 (d, J = 6.1 Hz, 2H), 8.31 (d, J = 3.9 Hz, 1H), 8.27 - 8.25 (m, 2H), 5.95 - 5.71 (m, 1H), 3.45 - 3.37 (m, 2H), 1.53 (br, 2H), 1.16 (br, 2H).                                                                                       |
| 211    | 413   | 1.8  | (500 MHz, MeOD) 8.46 - 8.43 (m, 2H), 8.37 (t, J = 4.8 Hz, 1H), 8.27 - 8.26 (m, 1H), 3.90 - 3.83 (m, 2H), 1.82 (m, 2H), 1.38 (m, 2H). Multiplet (0.47H) at 8.71, identified as an exchangeable proton that did not fully exchange, which decreased to 0.38H after 1 h.               |
| 212    | 373.1 | 1.72 | (500 MHz, DMSO-d6) 13.04 (s, 1H), 9.16 (d, J = 3.2 Hz, 1H), 8.82 (s, 1H), 8.66 (d, J = 3.0 Hz, 1H), 8.39 (d, J = 2.0 Hz, 1H), 8.15 (d, J = 7.0 Hz, 1H), 7.64 (d, J = 7.2 Hz, 1H), 6.68 (d, J = 7.1 Hz, 1H), 3.88 - 3.84 (m, 1H), 1.60 (s, 6H), 0.84 (d, J = 6.2 Hz, 6H), 0.00 (TMS) |
| 213    | 405.1 | 1.6  | (500 MHz, MeOD) 8.83 (d, J = 2.3 Hz, 1H), 8.58 (s, 1H), 8.35 (d, J = 2.3 Hz, 1H), 8.18 (m, 1H), 4.21 (t, J = 4.8 Hz, 1H), 4.11 (t, J = 4.8 Hz, 1H), 3.37 - 3.32 (m, 2H), 2.58 (s, 3H), 2.27 (s, 3H), 1.79 (s, 6H).                                                                  |
| 214    | 423   | 1.71 | (500 MHz, MeOD) 8.79 (d, J = 2.3 Hz, 1H), 8.58 (s, 1H), 8.36 (d, J = 2.3 Hz, 1H), 8.29 (m, 1H), 5.67 - 5.43 (m, 1H), 3.48 - 3.38 (m, 2H), 2.58 (s, 3H), 2.27 (s, 3H), 1.79 (s, 6H).                                                                                                 |
| 215    | 441   | 1.8  | (500 MHz, MeOD) 8.77 (d, J = 2.3 Hz, 1H), 8.56 (s, 1H), 8.44 - 8.34 (m, 1H), 8.34 (d, J = 2.2 Hz, 1H), 3.86 - 3.79 (m, 2H), 2.58 (s, 3H), 2.28 (s, 3H), 1.79 (s, 6H).                                                                                                               |
| 216    | 471   | 2.9  | (500 MHz, DMSO) 12.32 (s, 1H), 8.69 (m, 2H), 8.28 - 8.13 (m, 3H), 4.9 - 4.75 (m, 1H), 4.7 - 4.5 (m, 1H), 3.95 - 3.75 (m, 3H), 2.15 - 1.95 (m, 1H), 1.87 (m, 2H), 1.6 (s, 1H), 1.44 - 1.41 (m, 1H), 1.1 - 0.85 (m, 3H)                                                               |
| 217    | 439   | 1.8  | (500 MHz, MeOD) 8.77 (s, 1H), 8.22 - 8.19 (m, 3H), 6.40 (s, 1H), 4.69 (s, 1H), 4.32 (bs, 1H), 4.01 - 3.91 (m, 2H), 2.43 - 2.38 (m, 1H), 2.27 - 2.16 (m, 2H), 1.86 - 1.82 (m, 1H), 1.45 (d, J = 6.0 Hz, 3H)                                                                          |
| 218    | 457   | 2.7  | (500 MHz, MeOD) 8.78 - 8.77 (m, 1H), 8.20 (d, J = 2.1 Hz, 1H), 8.15 - 8.10 (m, 2H), 4.90 (d, J = 9.4 Hz, 1H), 3.94 - 3.82 (m, 2H), 2.58 -2.40 (m, 1H), 2.24 - 2.21 (m, 1H), 2.0 - 2.1 (m, 1H), 1.82 (m, 1H), 1.50 (d, 1H), 1.4 - 1.23 (m, 3H)                                       |

| Cmpd # | M+H      | RT       | NMR                                                                                                                    |
|--------|----------|----------|------------------------------------------------------------------------------------------------------------------------|
| 219    | 452.9    | 2        | (500 MHz, MeOD) 8.76 (s, 1H), 8.21 - 8.17 (m, 3H), 6.40                                                                |
|        |          |          | (d, J = 5.9 Hz, 1H), 4.90 (d, J = 9.1 Hz, 1H), 4.04 - 3.88                                                             |
|        |          |          | (m, 2H), 3.63 (s, 1H), 2.53 - 2.39 (m, 1H), 2.22 - 2.11 (m,                                                            |
|        |          |          | [3H), 2.01 - 1.92 (m, 1H), 1.60 - 1.45 (m, 1H), 1.08 (t, $J = [$                                                       |
|        |          |          | 7.2  Hz, 2H, 1.01  (t, J = 7.1  Hz, 1H),                                                                               |
| 220    | 469.1    | 1.84     | (500 MHz, DMSO) 13.52 - 13.35 (br, 1H), 13.12 - 12.96                                                                  |
|        |          |          | (br, 1H), 9.07 - 8.61 (br, 1H), 8.93 (s, 1H), 8.37 (s, 1H),                                                            |
|        |          |          | 8.07 - 7.54 (m, 2H), 7.40 - 7.27 (br, 1H), 3.02 - 2.97 (m,                                                             |
|        |          |          | (2H), 1.71 (s, 6H), 0.72 (t, $J = 7.1$ Hz, 3H).                                                                        |
| 221    | 487.1    | 1.85     | (500  MHz, MeOD) 8.93 (d, J = 2.3  Hz, 1H), 8.61 (s, 1H),                                                              |
|        |          |          | 8.37 (d, J = 2.2 Hz, 1H), 8.21 (m, 1H), 7.98 (s, 1H), 7.31                                                             |
|        |          |          | (s, 1H), $4.20$ (t, $J = 4.8$ Hz, 1H), $4.11$ (t, $J = 4.9$ Hz, 1H),                                                   |
|        |          |          | 4.07 (s, 3H), 4.06 (s, 3H), 3.36 - 3.35 (m, 2H), 1.87 (s,                                                              |
|        | 505.1    | 10       | (6H).                                                                                                                  |
| 222    | 505.1    | 1.9      | (500 MHz, MeOD) 8.89 (d, J = 2.3 Hz, 1H), 8.61 (s, 1H),                                                                |
|        | :        |          | 8.37 (d, J = 2.3 Hz, 1H), 8.33 (m, 1H), 7.99 (s, 1H), 7.32                                                             |
|        |          |          | (s, 1H), 5.67 - 5.43 (m, 1H), 4.07 (s, 3H), 4.06 (s, 3H),                                                              |
| 202    | 402      | 1.0      | 3.35 - 3.33 (m, 2H), 1.87 (s, 6H).                                                                                     |
| 223    | 483      | 1.9      | (500 MHz, MeOD) 8.91 (d, J = 2.3 Hz, 1H), 8.62 (s, 1H), 8.37 (d, J = 2.3 Hz, 1H), 7.98 (s, 1H), 7.31 (s, 1H), 4.07 (s, |
| į      |          |          | 3H), 4.07 (s, 3H), 3.12 - 3.08 (m, 2H), 1.86 (s, 6H), 1.33 -                                                           |
| Į      |          | <br>     | 1.25 (m, 2H), 0.62 (t, J = 7.5 Hz, 3H).                                                                                |
| 224    | 329.05   | 1.4      | (500  MHz, MeOD) 8.49  (d, J = 3.2  Hz, 1H), 8.45 - 8.40                                                               |
| 224    | 329.03   | 1.4      | (m, 1H), 8.33 (d, J = 1.5 Hz, 1H), 8.03 (d, J = 7.1 Hz, 1H),                                                           |
| Į.     |          |          | 6.69 (d, J = 6.9 Hz, 1H), 4.77 - 4.75 (m, 1H), 3.3 (m                                                                  |
| l      |          |          | overlap with meoh signal, 2H), 1.61 (d, 7.1 Hz, 3H), 1.10                                                              |
| l      | ļ        |          | (t, J = 7.2  Hz, 3H), 0.00  (TMS)                                                                                      |
| 225    | 346.93   | 1.4      | (-,                                                                                                                    |
| 226    | 365      | 1.4      | (500  MHz, MeOD) 8.49  (s, 1H), 8.41  (d, J = 7.9  Hz, 1H),                                                            |
|        |          |          | 8.33 - 8.32 (m, 1H), $8.04$ (d, $J = 6.9$ Hz, 1H), $6.70$ (d, $J =$                                                    |
| l      | ļ        |          | 6.6  Hz, $1H$ ), $5.84$ (t, $J = 55.8  Hz$ , $1H$ ), $3.74 - 3.44$ (2m,                                                |
| 1      |          |          | 2H), 1.63 (d, J = 7.2 Hz, 3H), 0.00 (TMS)                                                                              |
| 227    | 383      | 1.6      |                                                                                                                        |
| 228    | 391.1    | 2.3      | (500 MHz, DMSO) 12.96 (s, 1H), 8.65 (s, 1H), 8.42 - 8.38                                                               |
|        |          |          | (m, 2H), 8.25 (s, 1H), 8.20 (d, J = 7.0 Hz, 1H), 6.68 (d, J = 1.0 Hz, 1H)                                              |
|        |          |          | 6.8  Hz, 1H, 5.76  (t, J = 56.1  Hz, 1H), 3.43 - 3.37  (m, 2H),                                                        |
|        |          |          | 2.81 - 2.78 (m, 2H), 2.30 (dd, J = 8.6, 18.9 Hz, 2H), 2.01                                                             |
|        | <u> </u> |          | (qn, J = 8.1 Hz, 2H), 0.00 (TMS)                                                                                       |
| 229    | 409.1    | 2.4      | (500 MHz, DMSO) 12.91 (s, 1H), 8.62 (s, 1H), 8.46 (s,                                                                  |
|        | ļ        |          | 1H), 8.41 (d, $J = 8.8$ Hz, 1H), 8.36 (s, 1H), 8.20 (d, $J = 6.7$                                                      |
|        | ļ        |          | Hz, 1H), $6.66$ (d, $J = 6.6$ Hz, 1H), $3.82 - 3.79$ (m, 2H),                                                          |
|        |          |          | 2.84 (m, 2H), 2.32 - 2.28 (m, 2H), 2.02 - 1.95 (m, 2H),                                                                |
| L      | <u> </u> | <u> </u> | 0.00 (TMS)                                                                                                             |

| Cmpd # | M+H                                   | RT            | NMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------|---------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 230    | 369.2                                 | 1.6           | (500 MHz, DMSO) 12.92 (s, 1H), 8.63 (s, 1H), 8.47 (d, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | · · · · · · · · · · · · · · · · · · · |               | = 8.5  Hz, 1H, 8.37  (s, 1H), 8.18  (d, J = 6.8  Hz, 1H), 7.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                       |               | (s, 1H), $6.65$ (d, $J = 6.5$ Hz, 1H), $2.97$ (m, 2H), $2.79$ (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                       |               | 2H), 2.26 (m, 2H), 2.00 (m, 2H), 1.23 (dd, J = 6.9, 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ļ      |                                       |               | Hz, 2H), $0.54$ (t, $J = 7.1$ Hz, 3H), $0.00$ (TMS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 231    | 373.1                                 | 1.76          | (500 MHz, DMSO-d6) 13.02 (s, 1H), 8.99 (s, 1H), 8.76 (s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                                       |               | 1H), 8.63 (s, 1H), 8.39 (d, $J = 2.3 \text{ Hz}$ , 1H), 8.16 (d, $J = 6.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                       |               | Hz, 1H , 7.92 (s, 1H), 6.75 (d, $J = 4.9 Hz, 1H$ ), 3.07 - 3.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                       |               | (m, 2H), 2.10 - 1.93 (m, 2H), 1.58 (s, 3H), 0.86 (t, J = 7.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                       | <del>, </del> | Hz, 3H), 0.81 (s, 3H), 0.00 (TMS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 232    | 391.1                                 | 1.77          | (500 MHz, DMSO-d6) 13.66 - 13.49 (m, 1H), 12.96 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                       |               | 12.93 (m, 1H), $8.76$ (s, 1H), $8.57$ (d, $J = 10.2$ Hz, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                       |               | 8.37 (s, 1H), 8.16 - 8.13 (m, 2H), 6.68 (d, J = 9.6 Hz, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                       | 1             | 4.21 (d, J = 51.9 Hz, 2H), 3.28 (q, J = 5.4 Hz, 2H), 2.10 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                                       |               | 1.94 (m, 2H), 1.57 (s, 3H), 0.87 (t, J = 7.5 Hz, 3H), 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 222    | 409.1                                 | 1 07          | (TMS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 233    | 409.1                                 | 1.87          | (500 MHz, DMSO-d6) 13.02 (s, 1H), 9.05 (s, 1H), 8.70 (s, 1H), 8.62 (s, 1H), 8.39 (d, J = 2.2 Hz, 1H), 8.35 (s, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                                       |               | 8.18 (d, $J = 7.0 \text{ Hz}$ , 1H), 6.75 (d, $J = 5.6 \text{ Hz}$ , 1H), 5.86 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Į į    |                                       |               | 5.64 (m, 1H), 3.43 - 3.37 (m, 2H), 2.12 - 1.93 (m, 2H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Į ,    |                                       |               | 1.59 (s, 3H), 0.88 (t, J = 7.5 Hz, 3H), 0.00 (TMS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 234    | 387.1                                 | 1.87          | (500 MHz, DMSO-d6) 13.56 (s, 1H), 12.89 (s, 1H), 8.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 254    | 367.1                                 | 1.07          | (s, 1H), $8.57$ (s, 1H), $8.36$ (s, 1H), $8.16$ (d, $J = 6.8$ Hz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                       |               | 1H), 6.63 (s, 1H), 3.24 (s, 3H), 2.94 (s, 2H), 2.20 - 1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                       | ļ             | (m, 2H), 1.57 (s, 3H), 0.87 (t, J = 7.4 Hz, 3H), 0.75 (s, J = 7.4 Hz |
|        |                                       |               | 3H), 0.00 (TMS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 235    | 523.1                                 | 1.9           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 236    | 355.2                                 | 1.8           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 237    | 373.1                                 | 1.8           | (D) 500 (C) 10 50 ( D) 50 ( D) 50 ( D) 50 ( D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 238    | 398                                   | 2.6           | (DMSO-d6) 12.56 (m, 1H); 8.80 (m, 0.5H); 8.55 (s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                       |               | 0.5H); 8.50 (s, 0.5H); 8.45 (m, 1.0H); 8.40-8.30 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                                       |               | 1.5H); 8.28 (m, 1.5H); 8.10 (m, 0.5H); 3.80 (m, 2H); 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 239    | 410.9                                 | 1.7           | (m, 6H)<br>(500 MHz, DMSO) (warmed at 100 C) 12.26 (s, 1H), 8.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 239    | 410.9                                 | 1.7           | (d, $J = 2.2 \text{ Hz}$ , 1H), 8.43 (bs, 1H), 8.38 (s, 1H), 8.29 (d, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| į.     |                                       | :             | (d, J = 2.2  Hz, 111), 8.43 (d, J = 6.3  Hz, 111), 8.13 (bt, 111), 6.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                       | :             | (d, J = 6.3  Hz, 1H), 3.93 - 3.83  (m, 2H), 1.62 - 1.60  (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | [                                     |               | 2H), 1.23 - 1.17 (m, 2H), 0.0(TMS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 240    | 395                                   | 1.6           | (500 MHz, CD3OD, RT) 8.8 (m, 0.6 H), 8.65 (bt, 1H), 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                       |               | (s, 1H), 8.45 (bd, 1H), 8.25 (m, 1.3H), 8.1 (d, 0.8 H), 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | 1                                     | 1             | (d, 1H), 3.9 (m, 2H), 1.8 (bm, 2H), 1.35 (bm, 2H), 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                                       |               | (TMS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 241    | 371.1                                 | 1.76          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 242    | 393.1                                 | 1.77          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 243    | 411.1                                 | 1.86          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

WO 2007/084557 PCT/US2007/001225 85

| Cmpd # | M+H   | RT       | NMR                                                                                                                    |
|--------|-------|----------|------------------------------------------------------------------------------------------------------------------------|
| 244    | 341.1 | 1.5      | (500 MHz, MeOD, rt, contains conformers) 8.77 (dd, J =                                                                 |
|        |       |          | 2.8, 9.2  Hz, 0.29H, 8.54 - 8.49  (m, 1.66H), 8.31  (d, J =                                                            |
|        |       |          | 1.5 Hz, 1H), $8.26 - 8.24$ (m, $0.3$ H), $8.10$ (dd, $J = 4.3$ , $7.2$                                                 |
|        |       |          | Hz, 0.82H), 6.70 (d, $J = 7.3$ Hz, 0.29H), 6.66 (dd, $J = 4.3$ ,                                                       |
|        |       |          | 7.2 Hz, 0.71H), 3.27 - 3.18 (m, 2H), 1.77 - 1.72 (m, 2H),                                                              |
|        |       |          | 1.28 - 1.24 (m, 2H), $1.09$ (t, $J = 7.1$ Hz, $0.98$ H), $0.96$ (t, $J$                                                |
|        |       |          | = 7.1  Hz, 2.2 H).                                                                                                     |
| 245    | 359.1 | 1.6      | (500 MHz, MeOD, rt, contains conformers) 8.82 - 8.72                                                                   |
|        |       | l        | (m, 0.26H), 8.50 (m, 1.67H), 8.43 - 8.31 (m, 1.84H), 8.25                                                              |
|        |       |          | (br, 0.26H), 8.10 (d, $J = 6.4$ Hz, 0.72H), 6.70 - 6.65 (m,                                                            |
|        |       |          | 1H), 4.48 - 4.25 (m, 2H), 3.49 - 3.37 (m, 2H), 1.80 (m,                                                                |
| 1      |       | }        | 2H), 1.27 (br, 2H).                                                                                                    |
| 246    | 377.1 | 1.65     | (500 MHz, MeOD, rt, contains conformers) 8.77 (dd, J =                                                                 |
|        |       |          | 2.8, 9.1 Hz, 0.28H), 8.57 - 8.45 (m, 2.29H), 8.32 (d, J =                                                              |
|        |       | 1        | 1.5 Hz, 1H), $8.27 - 8.26$ (m, $0.29$ H), $8.11$ (dd, $J = 4.0$ , $7.1$                                                |
|        |       |          | Hz, 0.74H), 6.72 (d, $J = 7.3$ Hz, 0.29H), 6.68 (d, $J = 7.1$                                                          |
|        |       |          | Hz, 0.73H), 5.89 - 5.60 (m, 1H), 3.59 - 3.47 (m, 2H), 1.80                                                             |
|        |       |          | - 1.76 (m, 2H), 1.34 - 1.30 (m, 2H).                                                                                   |
| 247    | 355.1 | 1.6      | (500 MHz, MeOD, rt, contains conformers) 8.77 (dd, J =                                                                 |
|        |       |          | 2.8, 9.3 Hz, 0.28H), 8.56 - 8.50 (m, 1.68H), 8.31 (d, J =                                                              |
| ·      |       |          | 1.5 Hz, 1H), 8.26 (dd, $J = 4.4$ , 7.2 Hz, 0.28H), 8.10 (dd, $J$                                                       |
|        |       | }        | = 4.4, 7.2  Hz, 0.75 H), 6.72 - 6.70  (m, 0.29 H), 6.67  (m, 0.29 H)                                                   |
|        |       |          | 0.72H), 3.18 - 3.12 (m, 2H), 1.77 - 1.72 (m, 2H), 1.50 (m,                                                             |
|        |       |          | 0.6H), 1.38 (m, 1.57H), 1.29 - 1.24 (m, 2H), 0.87 (t, J =                                                              |
|        |       |          | 7.4 Hz, 0.92H), 0.67 (t, $J = 7.3$ Hz, 2.2H).                                                                          |
| 248    | 460.9 | 2.7      | (DMSO-d6) 12.4 (s, 1H); 8.9 (m, 1H); 8.65 (s, 1H); 8.35                                                                |
|        |       |          | (d, 1H); 8.3 (s, 1H); 8.2 (m, 1H); 5.5 (d, 1H); 4.9 (dd, 1H);                                                          |
|        |       | <u> </u> | 4.3-3.8 (m, 4H); 2.7 (m, 1H); 2.2-2.0 (m, 1H).                                                                         |
| . 249  | 478.9 | 2.9      | (DMSO-d6) 12.4 (s, 1H); 8.9 (m, 1H); 8.65 (s, 1H); 8.4 (d,                                                             |
|        |       |          | 1H); 8.3 (m, 1H); 8.2 (m, 1H); 5.05 (m, 1H); 4.3 (m, 2H);                                                              |
| }      |       |          | 3.9 (m, 2H); 3.0 (m, 1H); 2.5 (m, 1H).                                                                                 |
| 250    | 373   | 1.59     | (500 MHz, MeOD) 8.81 (d, J = 2.1 Hz, 1H), 8.45 (s, 1H),                                                                |
|        |       |          | 8.36 (d, $J = 2.1$ Hz, 1H), 7.99 (s, 1H), 3.98 (s, 1H), 3.19                                                           |
|        |       |          | (q, J = 7.2  Hz, 2H), 2.31 (s, 3H), 1.79 (s, 6H), 0.90 (t, J = 1.2)                                                    |
|        |       |          | 7.2 Hz, 3H).                                                                                                           |
| 251    | 391   | 1.61     | (500  MHz, DMSO) 13.07 - 12.73  (br, 1H), 8.83  (d, J = 2.0)                                                           |
|        |       | }        | Hz, 1H), 8.55 (s, 1H), 8.36 (d, $J = 1.8$ Hz, 1H), 8.12 (s,                                                            |
|        |       |          | 1H), 8.09 (br, 1H), 4.18 (t, $J = 5.1$ Hz, 1H), 4.08 (t, $J = 5.1$                                                     |
|        |       |          | Hz, 1H), $3.27$ (q, J = $5.3$ Hz, 1H), $3.22$ (q, J = $5.3$ Hz, 1H),                                                   |
|        |       |          | 2.24 (s, 3H), 1.65 (s, 6H).                                                                                            |
| 252    | 409.1 | 1.69     | (500  MHz, MeOD) 8.79  (d, J = 2.1  Hz, 1H), 8.44  (s, 1H),                                                            |
|        |       |          | 8.37  (d, J = 2.0 Hz, 1H),  8.32  (br, 1H),  8.01  (s, 1H),  5.58                                                      |
|        |       | 1        | (m, 1H), 3.48 - 3.42 (m, 2H), 2.31 (s, 3H), 1.79 (s, 6H).                                                              |
| 253    | 427.1 | 1.77     | (500 MHz, MeOD) 8.78 (s, 1H), 8.46 (br, 1H), 8.42 (s,                                                                  |
|        |       | ~~~      | (366 MHz, MeOD) 8.78 (s, 111), 8.40 (df, 111), 8.42 (s, 111), 8.35 (s, 111), 8.01 (s, 111), 3.85 - 3.82 (m, 211), 2.32 |
|        |       |          | (s, 3H), 1.79 (s, 6H). Unidentified peak at d 1.94.                                                                    |
| I      |       | <u> </u> | 1(5) 544), 1.77 (a, 011). Omdonemed peak at d 1.74.                                                                    |

| Cmpd # | M+H   | RT   | NMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 254    | 387   | 1.66 | (500  MHz, MeOD) 8.81  (d, J = 2.0  Hz, 1H), 8.45  (s, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |       |      | 8.36 (d, J = 2.0 Hz, 1H), 8.00 (s, 1H), 3.98 (s, 1H), 3.12 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |       |      | 3.09 (m, 2H), 2.31 (s, 3H), 1.79 (s, 6H), 1.33 (m, 2H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       | ,    | 0.67 (t, J = 7.4 Hz, 3H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 255    | 344   | 2    | (500  MHz, MeOD) 8.79  (br,  0.27H), 8.59  (d,  J = 8.9  Hz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | ·     |      | 0.69H), 8.53 (s, 1H), 8.47 (s, 1H), 8.24 (s, 1H), 3.17 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |       |      | 2H), 1.66 (s, 6H), 1.08 (br, 0.93H), 0.91 (m, 2.14H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 256    | 385   | 1.9  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 257    | 403   | 1.8  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 258    | 421   | 2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 259    | 399.1 | 2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 260    | 428   | 2.7  | (500 MHz, MeOD) 9.07 (s, 0.33H), 8.78 (s, 0.56H), 8.57 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| į      |       | ļ    | 8.31 (m, 3.58H), 3.88 (m, 2H), 2.18 (m, 1H), 2.05 - 2.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |       |      | (m, 1H), 1.66 (m, 3H), 0.96 (t, J = 7.4 Hz, 3H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 261    | 412   | 2.5  | (500 MHz, MeOD) 8.80 (m, 0.35H), 8.56 - 8.47 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |       |      | 3.2H), 8.40 (m, 0.36H), 8.26 (m, 1H), 3.85 (m, 2H), 2.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |       |      | (m, 1H), 2.04 (m, 1H), 1.66 (m, 3H), 0.96 (t, J = 7.5 Hz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |       |      | 3H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 262    | 360   | 2.1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 263    | 445   | 2.4  | (DMSO-d6) 12.3 (br s, 1H); 8.9 (m, 1H); 8.4 (d, 1H);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| }      |       |      | 8.35 (d, 1H); 8.25 (s, 1H); 8.2 (s, 1H); 5.5 (d, 1H); 4.9 (dd,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |       |      | 1H); 4.3-3.75 (m, 4H); 2.7 (m, 1H); 2.2-2.0 (m, 1H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 264    | 463   | 2.8  | (DMSO-d6) 12.3 (br s, 1H); 8.9 (dd, 1H); 8.4-8.3 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |       |      | 2H); 8.25-8.2 (m, 2H); 5.05 (d, 1H); 4.35 (m, 2H); 3.9 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |       |      | 2H); 3.0 (m, 1H); 2.5 (m, 1H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 265    | 432.2 | 2.6  | (CD3CN) 10.40 (s, 1H), 8.80 (s, 1H), 8.29 (m, 3H), 6.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | }     |      | (m, 1H), 5.22 (m, 1H), 4.79 (m, 1H), 4.43 (dt, 2H), 3.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |       |      | (dt, 2H), 2.54 (m, 1H), 2.43 (m, 1H), 2.39 (m, 1H), 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | 1.50  |      | (m, 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 266    | 450.2 | 2.7  | (CD3CN) 10.48 (s, 1H), 8.79 (s, 1H), 8.30 (m, 3H), 7.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ,      | 1     |      | (t, 1H), 5.90 (tt, 1H), 5.24 (m, 1H), 5.83 (m, 1H), 3.60 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| İ      | Ì     |      | 2H), 2.53 (m, 1H), 2.42 (m, 1H), 2.36 (m, 1H), 2.21 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 267    | 460.0 | 2.96 | (CD2CN) 10.28 (c. 111) 8.70 (c. 111) 8.20 (m. 21) 7.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 267    | 468.2 | 2.86 | (CD3CN) 10.38 (s, 1H), 8.79 (s, 1H), 8.29 (m, 3H), 7.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1      |       | ļ    | (t, 1H), 5.21 (m, 1H), 4.83 (m, 1H), 3.99 (m, 1H), 3.86 (m, 1H), 2.51 (m, 1H), 2.45 (m, 1H), 2.35 (m, 1H), 2.20 (m, 1H), 2.35 (m, 1H), 2.30 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m, 1H), 3.86 (m |
| 1      |       |      | 1H), 2.51 (m, 1H), 2.45 (m, 1H), 2.35 (m, 1H), 2.20 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 268    | 450.1 | 1.88 | 1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 269    | 450.1 | 1.93 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 270    | 374.1 | 2.3  | (500 MHz, MeOD) 9.05 (s, 0.32H), 8.84 (s, 0.65H), 8.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 210    | 3,7.1 | 2.3  | (s, 1H), 8.43 (s, 1H), 8.29 (s, 1H), 3.27 - 3.17 (m, 2H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1      | 1     |      | 2.18 - 2.10 (m, 1H), 2.07 - 2.00 (m, 1H), 1.64 (m, 3H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       |      | 1.08 (m, 1H), 0.95 (t, J = 7.4 Hz, 5H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| L      | L     |      | 11.00 (III, 111), 0.75 (t, 3 - 1.7 114, 711).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Cmpd #   | M+H     | RT             | NMR                                                                                                                  |
|----------|---------|----------------|----------------------------------------------------------------------------------------------------------------------|
| 271      | 358     | 2.1            | (500 MHz, MeOD) 8.78 (br, 0.33H), 8.58 (d, J = 8.6 Hz,                                                               |
|          | 1       |                | 0.81H), 8.53 (s, 1H), 8.46 (s, 1H), 8.24 (s, 1H), 3.26 - 3.16                                                        |
|          |         |                | (m, 2H), 2.17 - 2.13 (m, 1H), 2.01 (m, 1H), 1.71 - 1.57 (m,                                                          |
|          |         |                | (3H), $0.95$ (t, $J = 7.5$ Hz, $6H$ ).                                                                               |
| 272      | 450     | 2.4            | (500 MHz, MeOD) 8.87 (s, 1H), 8.56 (bt, 1H), 8.53 (s,                                                                |
|          |         |                | 1H), 8.43 (d, $J = 6.9 Hz$ , $1H$ ), 8.35 (d, $J = 2.2 Hz$ , $1H$ ),                                                 |
|          |         |                | 6.91 (d, $J = 6.7$ Hz, 1H), $5.09$ (apparent d, 1H), $4.86$                                                          |
| 1        |         |                | (apparent d, 1H), 4.02 - 3.96 (m, 1H), 3.87 - 3.81 (m, 1H),                                                          |
|          |         |                | 2.03 (m, 1H), 1.88 - 1.80 (m, 2H), 1.48 - 1.43 (m, 1H),                                                              |
|          |         |                | 0.00 (TMS)                                                                                                           |
| 273      | 464.1   | 2.5            | (500 MHz, MeOD) 8.86 (d, J = 2.1 Hz, 1H), 8.44 (t, 1H),                                                              |
|          |         |                | 8.40 (s, 1H), $8.37$ (d, $J = 6.6$ Hz, 1H), $8.31$ (d, $J = 2.2$ Hz,                                                 |
|          |         |                | 1H), 6.52 (bs, 1H), 4.85 (s, 2H), 3.93 (m, 2H), 2.86 (m,                                                             |
|          |         |                | 2H), 2.72 (m, 2H), 2.25 (m, 1H), 2.06 (m, 1H), 0.00                                                                  |
|          |         |                | (TMS)                                                                                                                |
| 274      | 428     | 2.4            | (DMSO-d6) (rotational mixture about 1.3:1): 12.6 (m,                                                                 |
|          | {       |                | 1H); 9.0 (dd, 0.6H); 8.8 (dd, 0.4H); 8.65-8.3 (m, 4H); 5.6-                                                          |
| 1        | Ì       |                | 5.35 (m, 1H); 4.8 (t, 0.6H); 4.7 (t, 0.4H); 4.35 (m, 0.4H);                                                          |
| Ì        |         |                | 4.2 (m, 0.6H) 4.1-3.7 (m, 3H); 2.75-2.6 (m, 1H); 2.25-                                                               |
|          |         |                | 2.05 (m, 1H).                                                                                                        |
| 275      | 428     | 2.3            | (DMSO-d6) (rotational mixture about 1.3:1): 12.6 (m,                                                                 |
|          |         |                | 1H); 8.7-8.25 m, 5H); 5.5-5.3 (m, 1H); 4.9 (d, 0.6H); 4.75                                                           |
|          | 1       |                | (d, 0.4H); 4.1-3.7 (m, 4H); 2.75-2.6 (m, 1H); 2.4-2.3 (m,                                                            |
|          |         | \- <del></del> | (DMSO-d6) (rotational mixture about 1.3:1): 12.7 (m,                                                                 |
| 276      | 444     | 2.5            | (DMSO-do) (rotational mixture about 1.5.1). 12.7 (iii, 1H); 9.0-8.3 (m, 5H); 5.6-5.4 (m, 1H); 4.8 (t, 0.6H); 4.7 (t, |
| 1        |         | }              | 0.4H); 4.4-3.75 (m, 4H); 2.8-2.6 (m, 1H); 2.25-2.05 (m,                                                              |
| -        |         |                | 1H).                                                                                                                 |
| 277      | 473     | 2.3            | (DMSO-d6) 12.35 (m, 1H); 8.75-8.6 (m, 2H); 8.35-8.15                                                                 |
| 2//      | 4/3     | 2.5            | (m, 3H); 4.75 (m, 1H); 4.0-3.7 (m, 4H); 2.3 (m, 1H); 2.0                                                             |
|          | ł       | ·              | (m, 1H); 1.35 (s, 3H).                                                                                               |
| 278      | 487     | 2.5            | (DMSO-d6) 12.35 (m, 1H); 8.75-8.6 (m, 2H); 8.35-8.15                                                                 |
| 1 2/0    |         |                | (m, 3H); 4.75 (m, 1H); 4.0-3.7 (m, 4H); 2.3 (m, 1H); 2.0                                                             |
|          |         |                | (m, 1H); 1.6 (m, 2H); 1.0 (m, 3H).                                                                                   |
| 279      | 468.1   | 1.59           |                                                                                                                      |
| 280      | 455     | 1.5            | (DMSO-d6) 13.05-12.9 (m, 1H); 8.8-8.25 (m, 5H); 6.75                                                                 |
|          |         |                | (m, 0.7H); 6.35 (m, 0.3H); 4.95 (m, 0.7H); 4.75 (m, 0.3H);                                                           |
|          |         |                | 4.05-3.6 (m, 4H); 2.4-2.1 (m, 2H); 1.4 (m, 3H).                                                                      |
| 281      | 469     | 1.6            | (DMSO-d6) 13.0-12.9 (m, 1H); 8.8-8.25 (m, 5H); 6.7 (m,                                                               |
| 1        | Ì       |                | 0.7H); 6.3 (m, 0.3H); 5.05-4.8 (m, 1H); 4.1-3.6 (m, 4H);                                                             |
| <b>}</b> |         |                | 2.4-2.05 (m, 2H); 1.75-1.6 (m, 2H); 1.05-0.9 (m, 3H).                                                                |
| 282      | 392.9   | 2.7            | (500  MHz, MeOD) 8.80  (d, J = 2.3  Hz, 1H), 8.35  (s, 1H),                                                          |
|          | 1       |                | 8.33 (s, 1H), $8.28$ (d, $J = 2.3$ Hz, 1H), $3.19$ (q, $J = 7.2$ Hz,                                                 |
|          | <u></u> |                | 2H), 1.74 (s, 6H), 0.93 (t, $J = 7.2  Hz$ , 3H).                                                                     |

| Cmpd # | M+H                                     | RT   | NMR                                                                         |
|--------|-----------------------------------------|------|-----------------------------------------------------------------------------|
| 283    | 410.9                                   | 2.7  | (500  MHz, MeOD) 8.81  (d, J = 2.3  Hz, 1H), 8.35  (s, 1H),                 |
| 200    | 122                                     |      | 8.33 (s, 1H), $8.28$ (d, $J = 2.2$ Hz, 1H), $8.19 - 8.17$ (m,               |
|        |                                         | ;    | 0.33H), $4.23$ (dt, $J = 47.4$ , $5.1$ Hz, $2H$ ), $3.42$ (dt, $J = 25.5$ , |
|        |                                         |      | 5.1 Hz, 2H), 1.75 (s, 6H).                                                  |
| 284    | 439.9                                   | 1.9  | (500 MHz, MeOD) 8.72 (s, 1H), 8.57 - 8.53 (m, 2H), 8.45                     |
| 201    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |      | (s, 1H), 8.26 (s, 1H), 3.85 - 3.78 (m, 2H), 1.75 (s, 6H).                   |
| 285    | 428                                     | 2.8  | (500 MHz, MeOD) 9.07 (d, J = 1.9 Hz, 0.53H), 8.81 -                         |
| 203    | ,_,                                     |      | 8.78  (m, 0.84H), 8.55  (d, J = 10.5  Hz, 1H), 8.45  (d, J =                |
|        |                                         |      | 15.6 Hz, 1H), 8.30 (s, 1H), 4.56 - 4.52 (m, 1H), 4.06 -                     |
|        |                                         |      | 4.00 (m, 1H), 3.89 - 3.84 (m, 1H), 2.34 - 2.24 (m, 1H),                     |
|        | <b>(</b>                                |      | 1.12 - 1.06 (m, 6H).                                                        |
| 286    | 428.9                                   | 2.9  | (500 MHz, MeOD) 8.79 (d, J = 2.3 Hz, 1H), 8.36 (s, 1H),                     |
| 200    |                                         |      | 8.33 - 8.28 (m, 2.8H), 5.64 (tt, J = 56.5, 4.2 Hz, 1H), 3.51                |
|        |                                         |      | - 3.43 (m, 2H), 1.74 (s, 6H).                                               |
| 287    | 446.9                                   | 3    | (500  MHz, MeOD) 8.78  (d, J = 2.3  Hz, 1H), 8.45  (t, J =                  |
| 207    |                                         |      | 6.1 Hz, 1H), 8.34 (s, 1H), 8.25 (d, J = 3.3 Hz, 2H), 3.86 -                 |
|        |                                         |      | 3.44 (m. 2H), 1.73 (s, 6H).                                                 |
| 288    | 437.96                                  | 2.9  | (500 MHz, MeOD) 9.24 (m, 0.5H), 8.87 - 8.73 (m,                             |
| 200    | 1                                       |      | 0.27H), 8.62 - 8.29 (m, 2.7H), 7.76 - 7.37 (m, 0.46H),                      |
|        | }                                       |      | 3.86 - 3.76 (m, 2H), 1.80 - 1.50 (m, 6H).                                   |
| 289    | 403.5                                   | 2.9  | (DMSO-d6) 12.3 (br s, 1H); 8.7 (s, 1H); 8.3-8.2 (m, 2H);                    |
| 200    | 1                                       |      | 8.1 (s, 1H); 7.65 (m, 1H); 4.1-3.85 (m, 2H); 3.15-2.9 (m,                   |
|        | 1                                       |      | 2H); 2.1-1.9 (m, 4H); 1.6 (s, 3H); 0.8 (m, 3H).                             |
| 290    | 421.5                                   | 2.9  | (DMSO-d6) 12.3 (br s, 1H); 8.7 (s, 1H); 8.25 (m, 2H); 8.1                   |
| 2,0    |                                         | 1    | (s, 1H); 7.95 (m, 1H); 4.35-4.05 (m, 3H); 3.95 (m, 1H);                     |
|        |                                         | 1    | 3.35-3.2 (m, 2H); 2.1-1.9 (m, 4H); 1.6 (s, 3H).                             |
| 291    | 439.5                                   | 3    | (DMSO-d6) 12.3 (br s, 1H); 8.7 (s, 1H); 8.3 (m, 2H);                        |
|        |                                         |      | 8.15-8.05 (m, 2H); 5.8 (dd, 1H); 4.1 (m, 1H); 3.9 (m, 1H);                  |
|        |                                         |      | 3.4 (m, 2H); 2.1-1.9 (m, 4H); 1.6 (s, 3H).                                  |
| 292    | 417.1                                   | 2.7  | (DMSO-d6) 12.3 (s, 1H); 8.7 (s, 1H); 8.25 (m, 2H); 8.1 (s,                  |
|        | }                                       | 1    | 1H); 7.7 (dd, 1H); 4.1 (m, 1H); 3.9 (m, 1H); 3.1-2.8 (m,                    |
|        |                                         |      | 2H); 2.1-1.9 (m, 4H); 1.6 (s, 3H); 1.35-1.15 (m, 2H); 0.6                   |
| ł      |                                         |      | (m, 3H).                                                                    |
| 293    | 455.1                                   | 2.09 |                                                                             |
| 294    | 483.1                                   | 2.42 |                                                                             |
| 295    | 453                                     | 2.02 |                                                                             |
| 296    | 410.3                                   | 1.75 |                                                                             |
| 297    | 407.1                                   | 2.3  | (DMSO-d6): 12.45 (br s, 1H); 8.7 (s, 1H); 8.4-8.2 (m,                       |
|        |                                         |      | 4H); 5.5 (d, 1H); 4.75 (t, 1H); 4.25-3.9 (m, 2H); 3.2-3.0                   |
|        |                                         |      | (m, 2H); 2.6-2.0 (m, 2H); 1.0 (m, 3H).                                      |
| 298    | 421.2                                   | 2.5  | (DMSO-d6) 12.4 (br s, 1H); 8.7 (s, 1H); 8.4-8.2 (m, 4H);                    |
|        |                                         |      | 5.5 (d. 1H); 4.75 (t. 1H); 4.25-3.9 (m, 2H); 3.8 (m, 1H);                   |
|        |                                         |      | 3.0 (m, 1H); 2.3-2.0 (m, 2H); 1.45-1.2 (m, 2H); 0.75 (m,                    |
|        |                                         | 1    | 3H).                                                                        |

| Cmpd # | M+H   | RT  | NMR                                                       |
|--------|-------|-----|-----------------------------------------------------------|
| 299    | 425.1 | 2.3 | (DMSO-d6) 12.4 (br s, 1H); 8.7 (s, 1H); 8.6 (m, 1H);      |
|        |       |     | 8.35-8.2 (m, 3H); 5.5 (d, 1H); 4.8 (t, 1H); 4.45 (m, 1H); |
|        |       |     | 4.3-3.9 (m, 3H); 3.3 (m, 1H); 2.7 (m, 1H); 2.3-2.0 (m,    |
|        |       |     | 2H).                                                      |
| 300    | 443.1 | 2.5 | (DMSO-d6) 12.4 (br s, 1H); 8.8-8.6 (m, 2H); 8.4-8.2 (m,   |
|        | !     |     | 3H); 5.9 (dd, 1H); 5.5 (d, 1H); 4.85 (t, 1H); 4.3-3.9 (m, |
|        |       |     | 2H); 2.75-2.0 (m, 4H).                                    |
| 301    | 441.1 | 2.6 |                                                           |
| 302    | 465.2 | 1.9 |                                                           |
| 303    | 411.2 | 1.8 |                                                           |
| 304    | 447.2 | 1.8 |                                                           |
| 305    | 425.2 | 1.9 |                                                           |
| 306    | 437.2 | 1.8 |                                                           |
| 307    | 455.2 | 2   |                                                           |
| 308    | 437.2 | 1.9 |                                                           |
| 309    | 457.1 | 1.8 | (DMSO-d6) 12.3 (br s, 1H); 8.75 (s, 1H); 8.35-8.2 (m,     |
| 1      |       |     | 3H); 8.1 (s, 1H); 6.45 (m, 1H); 5.55 (m, 1H); 4.2-3.7 (m, |
|        |       |     | 4H); 2.4-2.2 (m, 2H); 1.7 (s, 3H).                        |

## Table 6

| Cmpd # | M+H    | RT   | NMR                                                                                                                                                                           |
|--------|--------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 310    | 409.00 | 1.80 | DMSO-d6: 12.25 (br s, 1H); 8.8 (m, 1H); 8.7 (m, 1H); 8.35-8.3 (m, 2H); 8.2 (m, 1H); 7.2 (m, 1H); 4.85 (d, 1H); 4.0 (m, 1H); 3.95-3.8 (m, 3H); 2.35 (m, 1H); 2.1-1.85 (m, 3H). |
| 311    | 409.00 | 1.80 | DMSO-d6: 12.25 (br s, 1H); 8.8 (m, 1H); 8.7 (m, 1H); 8.35-8.3 (m, 2H); 8.2 (m, 1H); 7.2 (m, 1H); 4.85 (d, 1H); 4.0 (m, 1H); 3.95-3.8 (m, 3H); 2.35 (m, 1H); 2.1-1.85 (m, 3H). |
| 312    | 444.90 | 2.20 | 500MHz DMSO-d6 @60C: 12.8(br m,1H), 8.85(m,1H), 8.8(m,1H), 8.65(s,1H), 8.3(d,1H), 8.25(1H), 7.75(br m,1H), 7.3(d,1H), 4.85(m,1H),3.9(m,2H), 3.0(d m,2H), 2.2(s,3H)            |
| 313    | 495.00 | 2.30 |                                                                                                                                                                               |
| 314    | 438.00 | 2.00 | 500MHz MeOD-d4: 8.68(m,1H), 8.5(s,1H), 8.35(s,1H), 8.1(d.1H),6.71(d,1H), 4.04(m,1H), 3.99m,1H), 2.7(t,2H), 2.4(m,1H), 2.24(m,1H)                                              |
| 315    | 456.00 | 2.80 | 500MHz MeOD-d4: 8.66(s,1H), 8.4(s,1H), 8.35(d,1H), 8.3(d,1H),5.45(m,1H,parially ex), 5.04(m,1H), 4.01m,1H), 3.93(m,1H), 2.73(t,2H), 2.5(m,1H), 2.32(m,1H)                     |
| 316    | 488.00 | 2.10 | 500MHz MeOD-d4: 8.77(s,1H), 8.71(s,1H), 8.5(d,1H), 8.35(s.1H), 8.02(t,1H), 7.88(d,1H), 7.71(t,1H), 5.25(m,1H), 4.02(m,1H), 3.90(m,1H)2.73(t,2H), 2.6(m,1H), 2.5(m,1H)         |
| 317    | 482.00 | 2.70 | DMSO d5 12.8 (bs, 1H); 8.7 (bs, 1H); 8.5 (m, 2H); 8.4 (s, 1H); 7.7 (s, 1H); 6.9 (s, 1H); 4.8 (m, 1H); 3.8 (m, 2H); 3.6                                                        |

| Cmpd# | M+H      | RT     | NMR                                                                                                |
|-------|----------|--------|----------------------------------------------------------------------------------------------------|
|       |          |        | (m, 3H); 29 (m, 2H); 2.0 (m, 2H); 1.2 (m, 2H)                                                      |
|       |          |        | DMSO d5 12.6 (bs, 1H); 8.8 (bs, 1H); 8.7 (m, 2H); 8.4 (s,                                          |
| 318   | 496.10   | 2.90   | 1H); 7.7 (s, 1H); 6.9 (s, 1H); 4.8 (m, 1H); 3.8 (m, 2H); 3.6                                       |
|       |          |        | (m, 2H); 3.5 (m, 5H); 2.0 (m, 2H); 1.2 (t, 3H)                                                     |
|       |          |        | DMSO d5 12.6 (bs, 1H); 8.9 (bs, 1H); 8.6 (m, 2H); 8.4 (s,                                          |
| 319   | 510.10   | 3.10   | 1H); 7.8 (s, 1H); 4.7 (m, 1H); 3.9 (m, 2H); 3.7 (m, 2H); 3.3                                       |
|       |          |        | (m, 2H); 2.0 (m, 2H); 1.5 (m, 2H); 0.9 (t, 3H)                                                     |
|       |          |        | DMSO d5 12.6 (bs, 1H); 8.8 (bs, 1H); 8.6 (m, 2H); 8.4 (s,                                          |
| 320   | 508.10   | 3.00   | 1H); 7.7 (s, 1H); 4.7 (m, 1H); 4.0 (m, 2H); 3.8 (m, 2H); 2.9                                       |
|       |          |        | (s, 1H); 2.0 (m, 2H); 1.9 (m, 3H); 0.8 (t, 2H); 0.6 (m, 1H)                                        |
| 201   | 404.00   | 1 50   | (d4-methanol) 8.86 (d, 1H), 8.40 (d, 1H), 8.29 (d, 1H), 8.25                                       |
| 321   | 424.20   | 1.50   | (s, 1H), 7.30 (dd, 1H), 5.65 (br s, 1H), 4.62 (d, 1H), 4.03-                                       |
|       |          |        | 3.35 (m, 7H) DMSO-d6: 12.5 (s, 1H); 8.7 (s, 1H); 8.3 (m, 3H); 7.9 (d,                              |
| 322   | 403.10   | 2.10   | 1H); 4.65 (d, 1H); 3.95 (m, 1H); 3.85 (m, 2H); 2.25 (m,                                            |
| 322   | 405.10   | 2.10   | 111), 4.03 (d, 111), 5.93 (lll, 111), 5.83 (lll, 211), 2.23 (lll, 111); 2.0 (m, 3H); 1.05 (m, 3H). |
|       |          |        | (500 MHz, DMSO-d6) d 12.31 (s, 1H), 8.79 (s, 1H), 8.65                                             |
|       |          | :<br>: | (d, $J = 7.8 \text{ Hz}$ , 1H), 8.61 (t, $J = 6.3 \text{ Hz}$ , 1H), 8.38 (d, $J = 4.1$            |
| 323   | 395.10   | 1.70   | Hz, 1H), 8.29 (dd, $J = 4.7$ , 1.5 Hz, 1H), 8.24 (s, 1H), 7.15                                     |
| 323   | 373,10   | 1.70   | (dd, J = 7.9, 4.7 Hz, 1H), , 3.81 (m, 2H), 1.57 (t, 2H), 1.19                                      |
|       |          |        | (t, 2H)                                                                                            |
|       |          |        | DMSO-d6: 13.0 (br s, 1H); 8.7-8.6 (m, 2H); 8.4 (m, 1H);                                            |
|       |          |        | 8.3 (m, 1H); 8.15 (d, 0.3H); 8.0 (d, 0.7H); 6.75 (d, 0.7H);                                        |
| 324   | 385.20   | 1.70   | 6.3 (d, 0.3H); 4.85 (d, 0.7H); 4.5 (0.3H); 4.0-3.85 (m, 1H);                                       |
| 1     |          |        | 3.8-3.6 (m, 2H); 2.35 (m, 1H); 2.05 (m, 3H); 1.1 (dd, 2H);                                         |
|       |          |        | 0.95 (dd, 4H).                                                                                     |
|       |          |        | DMSO-d6: 12.4 (br s, 1H); 8.65 (s, 1H); 8.55 (m, 1H); 8.3                                          |
| 325   | 399.10   | 2.10   | (m, 2H); 8.25 (s, 1H); 4.7 (d, 1H); 3.95 (m, 1H); 3.85 (m,                                         |
|       |          |        | 2H); 3.8 (m, 1H); 3.0 (s, 1H); 2.25 (m, 1H); 2.0 (m, 3H).                                          |
|       | 177.00   | 0.60   | CD3OD/CDCl3: 1.68 (6H, s), 2.14 (2H, m), 3.38 (2H, m),                                             |
| 326   | 452.39   | 3.60   | 7.98 (1H, t), 8.22 (1H, s), 8.28 (1H, s), 8.54 (1H, s), 8.83                                       |
|       |          |        | (1H, s)                                                                                            |
| 327   | 438.41   | 3.56   | CD3OD/CDCl3: 1.70 (6H, s), 3.81 (2H, m), 7.59 (1H, m),                                             |
| 327   | 436.41   | 3.30   | 8.22 (1H, s), 8.26 (1H, s), 8.45 (1H, t), 8.58 (1H, s), 8.81 (1H, s)                               |
|       |          |        | DMSO-d6/CD3OD/CDCl3: 1.58 (6H, s), 3.12 (1H, s), 3.75                                              |
| 328   | 404.34   | 3.23   | (2H, m), 7.21 (1H, m), 8.19 (1H, s), 8.28 (1H, m), 8.45                                            |
| 320   | 101.54   | 3.23   | (1H, t), 8.69 (1H, s), 8.71 (1H, d)                                                                |
|       |          |        | MeOD: 1.75 (6H, s), 2.16 (2H, m), 3.35 (2H, m), 8.34 (2H,                                          |
| 329   | 470.35   | 3.24   | s), 8.48 (1H, s), 8.75 (1H, s), 8.85 (1H, s)                                                       |
|       |          |        | DMSO-d6: 12.8 (s, 1H); 8.7-8.5 (m, 3H); 8.4-8.25 (m, 2H);                                          |
| 330   | 381.20   | 1.50   | 6.7 (m, 0.7H) 6.3 (m, 0.3H); 4.8 (m, 0.7H); 4.6 (m, 0.3H);                                         |
|       |          |        | 4.0-3.6 (m, 4H); 2.95 (m, 1H); 2.35 (m, 1H); 2.05 (m, 3H).                                         |
|       |          |        | DMSO-d6: 12.9 (br s, 1H); 8.8 (s, 1H); 8.7 (s, 1H); 8.6 (s,                                        |
| 331   | 383.20   | 1.70   | 1H); 8.4 (s, 1H); 8.15 (m, 1H); 6.8 (s, 1H); 4.7 (s, 1H);                                          |
|       | <u> </u> |        | 4.05-3.85 (m, 2H); 3.1 (s, 1H); 2.25 (m, 1H); 1.1-0.95 (m,                                         |

| Cmpd # | M+H    | RT   | NMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------|--------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |        |      | 6H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |        |      | DMSO-d6: 12.95 (br s, 1H); 8.7 (s, 1H); 8.6 (s, 1H); 8.4 (s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 332    | 387.40 | 2.00 | 1H); 8.15 (m, 2H); 6.8 (s, 1H); 4.6 (s, 1H); 3.9 (m, 1H);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |        |      | 2.25 (m, 1H); 1.1-0.95 (m, 12H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | _ [    |      | DMSO-d6: 12.35 (br s, 1H); 8.77 (dd, 1H); 8.65 (s, 1H);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 333    | 400.20 | 2.00 | 8.3 (m, 2H); 8.2 (s, 1H); 4.7 (d, 1H); 4.1 (m, 2H); 3.95 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |        |      | 1H); 3.8 (m, 1H); 2.25 (m, 1H); 2.0 (m, 3H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |        |      | DMSO-d6: 12.9 (br s, 1H); 8.95 (dd, 1H); 8.75 (m, 0.4H); 8.6 (m, 1.6H); 8.4-8.3 (m, 2H); 6.75 (d, 0.8H); 6.35 (d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 334    | 382.20 | 1.50 | 0.2H); 4.9 (d, 0.8H); 4.65 (d, 0.2H); 4.2-4.0 (m, 2H); 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |        |      | (m, 1H); 3.6 (m, 1H); 2.35 (m, 1H); 2.1-2.0 (m, 3H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 007.40 | 2.00 | (m, 1H); 5.0 (m, 1H); 2.55 (m, 1H); 2.1 2.0 (m, 5H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 335    | 387.40 | 2.00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 336    | 403.40 | 1.90 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 337    | 385.40 | 1.80 | DMSO-d6: 8.60 (m, 2H); 8.30 (s, 1H); 8.23 (bs, 1H); 5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 020    | 511.00 | 2.50 | (m, 2H); 4.38 (m, 2H); 4.10 (m, 2H); 3.38 (m, 4H); 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 338    | 511.20 | 2.50 | (m, 1H); 1.90-2.00 (m, 3H); 1.32 (t, 3H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 339    | 421.30 | 2.00 | (111, 111), 1130 2100 (111, 022), 110 (11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 340    | 455.20 | 2.10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 340    | 433.20 | 2.10 | DMSO-d6: 13.0 (bs, 1H); 8.55 (m, 1H); 8.45 (m, 1H); 8.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 341    | 439.20 | 1.90 | (m, 1H); 6.72 (m, 1H); 5.60 (m, 1H); 4.20-3.70 (m, 5H);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 341    | 439.20 | 1.90 | 3.30 (s, 3H); 2.00 (m, 3H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |        |      | DMSO-d6: 8.30 (m, 1H); 8.30 (m, 3H); 7.70 (m, 1H); 5.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 342    | 457.10 | 2.40 | (m, 1H); 4.20-3.70 (m, 5H); 3.30 (s, 3H); 2.00 (m, 3H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |        |      | (500  MHz, DMSO) 12.83  (s, 1H), 9.30  (s, 1H), 8.61  (t, J =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | 379.20 | 204  | 7.6 Hz, 2H), 8.37 (d, $J = 4.5$ Hz, 1H), 8.17 (d, $J = 7.1$ Hz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 343    |        | 2.04 | 1H), $7.27$ (dd, $J = 4.7$ , $7.7$ Hz, 1H), $6.69$ (d, $J = 6.9$ Hz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |        |      | 1H), 3.79 - 3.76 (m, 2H), 1.63 (s, 6H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |        |      | DMSO-d6: 12.5 (m, 1H); 8.95 (m, 0.5 H); 8.78 (m, 0.5H);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 344    | 366.10 | 1.87 | 8.65 (m, 0.5H); 8.52 (m, 0.5H); 8.48 (s, 1H); 8.32-8.25 (m, 0.5H); 8.65 (m, 0.5H); 8.52 (m, 0.5H); 8.48 (s, 1H); 8.32-8.25 (m, 0.5H); 8.65 (m, 0.5H); 8.48 (s, 1H); 8.32-8.25 (m, 0.5H); 8.52 (m, 0.5H); 8.48 (s, 1H); 8.32-8.25 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8.52 (m, 0.5H); 8. |
| 344    | 300.10 | 1.07 | 2H); 8.30 (m, 1.5H); 8.12 (m, 1H); 7.20 (m, 1H); 4.54 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |        |      | 1H); 3.80 (m, 2H); 1.32 (m, 3H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | ]      |      | (500 MHz, DMSO-d6) 12.20 (s, 1H), 8.67 (dd, J = 1.4, 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |        | 1.00 | Hz, 1H), 8.43 (t, $J = 6.2$ Hz, 1H), 8.32 - 8.28 (m, 2H), 8.10 (s, 1H), 7.5 (bs, 1H), 7.20 (dd, $J = 4.7$ , 7.9 Hz, 2H), 3.81 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 345    | 411.20 | 1.90 | (s, 1H), 7.5 (bs, 1H), 7.20 (dd, 3 = 4.7, 7.9 112, 211), 5.61<br>3.73 (m, 2H), 2.20 - 2.16 (m, 1H), 1.99 - 1.95 (m, 1H), 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |        |      | (s, 3H), 0.82 (t, $J = 7.5$ Hz, 3H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |        |      | (S, 5H), 0.82 (t, 3 = 7.5 Hz, 5H)<br>(DMSO-d6, 300 MHz) 11.95 (bs, 1H), 8.7 (d, 1H), 8.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |        |      | (m, 2H), 8.12 (d, 1H), 8.02 (d, 1H), 7.28 (s, 1H), 7.13 (dd,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 346    | 393.20 | 1.60 | 1H), 6.38 (bd, 1H), 3.75 (m, 2H), 2.06 (m, 1H), 1.83 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | 555.25 |      | 1H), 1.46 (s, 3H), 0.8 (t, 3H);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        | _    | (500 MHz, MeOD) 8.87 (d, $J = 8.1$ Hz, 1H), 8.60 (t, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |        |      | 8.36 (d, 1H), 8.27 - 8.26 (m, 2H), 7.39 (dd, J = 5.0, 8.0 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 347    | 425.27 | 2.25 | 1H), 3.86 (m, 2H), 2.29 (t, $J = 7.5$ Hz, 4H), 0.87 (t, $J = 7.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |        |      | Hz, 6H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 348    | 407.20 | 1.67 | (500 MHz, DMSO-d6) d 12.81 (s,1H), 8.92 (s, 1H), 8.68-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Cmpd #  | M+H      | RT   | NMR                                                                                                                                              |
|---------|----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Cinpa " |          |      | 8.57 (m, 3H), 8.38 (d, J = 3.3 Hz, 1H), 8.17 (d, 1H), 7.30 -                                                                                     |
| }       |          |      | 7.27 (m, 1H), 6.82 (d, 1H), 3.82-3.74 (m, 2H), 2.26-2.12                                                                                         |
|         |          |      | (m, 2H), 2.12-2.05 (m, 2H), 0.82 - 0.78 (m, 6H)                                                                                                  |
| 349     | 373.40   | 1.74 |                                                                                                                                                  |
|         | 373.10   |      | CD3CN: 9.89 (s, 1H), 8.79 (d, 1H), 8.27 (m, 1H), 8.19 (d,                                                                                        |
| 350     | 407.40   | 1.72 | 1H), 8.10 (d, 1H), 7.18 (m, 2H), 6.49 (d, 1H), 5.80 (s, 1H),                                                                                     |
| 330     | 407.40   | 1.,2 | 3.97 (m, 1H), 3.59 (m, 1H), 1.53 (s, 3H), 1.02 (dd, 6H)                                                                                          |
|         |          |      | DMSO-d6: 12.2 (br s, 1H); 8.85 (m, 1H); 8.7 (d, 1H); 8.3                                                                                         |
| 351     | 425.40   | 1.40 | (m, 2H); 8.15 (m, 1H); 7.2 (m, 1H); 4.9 (dd, 1H); 4.45 (m,                                                                                       |
| 331     | 723.70   | 1.40 | 1H); 4.05-3.7 (m, 4H); 2.3 (m, 1H); 1.95 (m, 1H).                                                                                                |
|         |          |      | DMSO-d6: 12.8 (br s, 1H); 9.1 (m, 1H); 8.7-8.6 (m, 2H);                                                                                          |
|         |          |      | 8.45-8.3 (m, 2H); 7.4 (m, 0.3H); 7.3 (m, 0.7H); 6.85 (d,                                                                                         |
| 352     | 407.40   | 1.40 | 0.7H); 6.35 (d, 0.3H); 5.1 (dd, 0.7H); 4.8 (dd, 0.3H); 4.5                                                                                       |
|         |          | }    | (m, 1H); 4.2-3.6 (m, 4H); 2.4 (m, 1H); 2.1 (m, 1H).                                                                                              |
| 353     | 401.40   | 1.95 | (111, 111), 11.2 3.0 (111, 112), 21. (111, 112), 21.                                                                                             |
|         | 387.40   | 1.87 |                                                                                                                                                  |
| 354     | 369.30   | 1.69 |                                                                                                                                                  |
| 355     | 409.40   | 2.25 |                                                                                                                                                  |
| 356     |          | 1.90 |                                                                                                                                                  |
| 357     | 423.30   | 1.80 |                                                                                                                                                  |
| 358     | 405.40   | 1.00 | DMSO-d6: 12.7 (br s, 1H); 8.8 (s, 1H); 8.7-8.2 (s, 3H); 6.5                                                                                      |
|         |          |      | (m, 0.8H); 6.2 (m, 0.2H); 4.2 (m, 0.3H); 4.0 (m, 0.7H); 3.8-                                                                                     |
| 0.50    | 200.10   | 1.00 | 3.6 (m, 2H); 3.4 (m, 1H); 3.2-3.05 (m, 1H); 2.7 (m, 2H);                                                                                         |
| 359     | 399.10   | 1.80 | 2.2 (m, 3H); 2.05 (m, 1H); 1.7 (s, 2.7H); 1.6 (s, 0.3H); 1.0                                                                                     |
|         | <u> </u> |      | (m, 0.3H); 0.7 (m, 2.7H).                                                                                                                        |
|         |          |      | DMSO-d6: 11.92 (m, 1H); 8.72 (bs, 1H); 8.22 (m, 1H);                                                                                             |
| 260     | 270.20   | 1.60 | 8.05 (m, 2H); 7.42 (m, 1H); 7.18 (m, 1H); 6.32 (bs, 1H);                                                                                         |
| 360     | 379.20   | 1.00 | 5.22 (m, 1H); 4.20 (m, 2H); 3.32 (s, 3H); 1.35 (m, 3H)                                                                                           |
|         |          |      | DMSO-d6: 11.9 (m, 1H); 8.55 (m, 1H); 8.25 (m, 1H); 8.18                                                                                          |
|         |          |      | (m, 1H); 7.98 (m, 1H); 7.65 (m, 1H); 7.15 (m, 1H); 5.15                                                                                          |
| 361     | 397.10   | 1.90 | (m, 1H); 4.18 (m, 2H); 3.30 (s, 2.5H); 2.90 (s, 0.5H); 1.35                                                                                      |
|         | Į        |      | (m, 3H)                                                                                                                                          |
| 362     | 357.10   | 1.51 | (111, 511)                                                                                                                                       |
| 362     | 343.10   | 1.40 |                                                                                                                                                  |
| 364     | 361.10   | 1.41 |                                                                                                                                                  |
| 365     | 391.10   | 1.85 |                                                                                                                                                  |
| 303     | 371.10   | 1.05 | (500 MHz, DMSO) 12.83 (s, 1H), 9.2 (bs, 1H), 9.07 (s,                                                                                            |
|         |          |      | 1H), 8.68 (d, $J = 7.8$ Hz, 1H), 8.61 (s, 1H), 8.42 (d, $J = 4.6$                                                                                |
|         |          | 1    | Hz, 1H), 8.15 (d, $J = 7.1$ Hz, 1H), 7.35 (dd, $J = 4.8$ , 7.8 Hz,                                                                               |
| 366     | 393.10   | 1.60 | 1H), $6.86$ (d, $J = 7.2$ Hz, 1H), $4.86$ (t, $J = 6.3$ Hz, 1H), $4.12$                                                                          |
|         |          |      | -4.04 (m, 1H), $3.90 - 3.85$ (m, 1H), $2.31$ (t, $J = 6.6$ Hz,                                                                                   |
| İ       |          |      | 1H), 1.02 (d, 6H)                                                                                                                                |
| -       | -        |      | (500  MHz, DMSO) 12.36  (s, 1H), 8.86  (t, J = 6.3  Hz, 1H),                                                                                     |
|         |          |      | 8.72 (dd, $J = 1.4$ , $7.9$ Hz, 1H), $8.35 - 8.31$ (m, 3H), $7.86$ (s,                                                                           |
| 367     | 410.91   | 2.10 | 1H), 7.26 (dd, $J = 4.7, 7.9$ Hz, 1H), 4.60 (t, $J = 7.6$ Hz, 1H),                                                                               |
|         |          |      | 4.04 - 3.96 (m. 1H), $3.90 - 3.83$ (m. 1H), $2.28$ (td, $J = 13.8$ ,                                                                             |
| 367     | 410.91   | 2.10 | 1H), $7.26$ (dd, $J = 4.7$ , $7.9$ Hz, 1H), $4.60$ (t, $J = 7.6$ Hz, 1H), $4.04 - 3.96$ (m, 1H), $3.90 - 3.83$ (m, 1H), $2.28$ (td, $J = 13.8$ ) |

| Cmpd #     | M+H    | RT   | NMR                                                                                                                                                                                                                                                                 |
|------------|--------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |        |      | 6.9 Hz, 1H), 1.02 (t, 6H),                                                                                                                                                                                                                                          |
| 368        | 474.00 | 1.60 |                                                                                                                                                                                                                                                                     |
| 369        | 490.00 | 1.80 |                                                                                                                                                                                                                                                                     |
| 370        | 504.10 | 1.90 |                                                                                                                                                                                                                                                                     |
| 371        | 477.00 | 1.50 |                                                                                                                                                                                                                                                                     |
| 372        | 491.00 | 1.60 |                                                                                                                                                                                                                                                                     |
| 373        | 409.00 | 1.40 | DMSO-d6: 12.9 (m, 1H); 8.95-8.85 (m, 1H); 8.8-8.65 (m, 2H); 8.55-8.3 (m, 2H); 7.4 (m, 0.3H); 7.3 (m, 0.7H); 6.85 (d, 0.7H); 6.5 (d, 0.3H); 5.55 (d, 1H); 5.2 (d, 0.7H); 5.0 (d, 0.3H); 4.3-3.8 (m, 4H); 2.8-2.6 (m, 1H); 2.5-2.4 (m, 1H).                           |
| 374        | 427.00 | 1.60 | DMSO-d6: 12.8 (br s, 1H); 9.1 (m, 1H); 8.7-8.35 (m, 4H); 7.3 (m, 1H); 6.8 (m, 0.7H); 6.5 (m, 0.3H); 5.3 (m, 0.7H); 5.1 (m, 0.3H); 4.3 (m, 2H); 3.9 (m, 2H); 3.15 (m, 1H); 2.65 (m, 1H).                                                                             |
| 375        | 409.00 | 1.40 | DMSO-d6: 12.9 (m, 1H); 9.25-9.1 (m, 1H); 8.75-8.6 (m, 2H); 8.45-8.35 (m, 2H); 7.4 (m, 0.3H); 7.3 (m, 0.7H); 6.9 (d, 0.7H); 6.3 (d, 0.3H); 5.6 (d, 1H); 5.1 (dd, 0.7H); 4.9 (dd, 0.3H); 4.5 (m, 0.3H); 4.2 (m, 0.7H); 4.3-3.6 (m, 3H); 2.8 (m, 1H); 2.3-2.1 (m, 1H). |
| 376        | 343.10 | 1.37 | (,, (,).                                                                                                                                                                                                                                                            |
| 377        | 361.10 | 1.48 |                                                                                                                                                                                                                                                                     |
| 378        | 325.10 | 1.37 |                                                                                                                                                                                                                                                                     |
| 379        | 339.10 | 1.49 |                                                                                                                                                                                                                                                                     |
| 380        | 397.10 | 1.60 |                                                                                                                                                                                                                                                                     |
| 381        | 379.10 | 1.99 |                                                                                                                                                                                                                                                                     |
| 382        | 429.35 | 1.70 | (500 MHz, MeOD) 8.83 (d, J = 8 Hz, 2H), 8.68 (s, 1H), 8.59 - 8.57 (m, 2H), 8.42 - 8.41 (m, 1H), 8.07 - 8.03 (m, 1H), 7.90 (dd, J = 4.4, 8.2 Hz, 1H), 7.77 - 7.73 (m, 1H), 7.41 (m, 1H), 3.83 - 3.76 (m, 2H), 1.88 (s, 6H).                                          |
| 383        | 423.00 | 2.10 | DMSO-d6: 12.3 (s, 1H); 8.7 (d, 1H); 8.45-8.25 (m, 3H); 8.15 (s, 1H); 7.25 (m, 1H); 4.15 (m, 1H); 4.0 (m, 1H); 3.85 (m, 1H); 3.7 (m, 1H); 2.05 (m, 4H); 1.75 (s, 3H).                                                                                                |
| 384        | 405.10 | 1.50 | DMSO-d6: 12.8 (s, 1H); 8.8-8.2 (m, 5H); 7.4 (m, 0.2H); 7.25 (m, 0.8H); 6.8 (d, 0.8H); 6.15 (d, 0.2H); 4.2 (m, 0.2H); 3.95 (m, 0.8H); 3.8 (m, 3H); 2.2-2.0 (m, 4H); 1.8-1.6 (m, 3H).                                                                                 |
| 385        | 488.00 | 1.70 |                                                                                                                                                                                                                                                                     |
| 386        | 380.00 | 1.90 | DMSO-d6: 12.4 (bs, 1H); 8.92 (m, 0.5H); 8.62 (m, 0.5H); 8.50 (s, 0.5H); 8.42 (s, 0.5H); 8.40-8.20 (m, 4H); 7.20 (m, 0.5H); 7.15 (m, 0.5H); 3.72 (m, 2H); 1.45 (m, 6H)                                                                                               |
| 387<br>388 | 421.10 | 1.50 | (500 MHz, DMSO) 12.81 (s, 1H), 8.65 - 8.56 (m, 3H), 8.36 (d, J = 4.4 Hz, 1H), 8.22 (d, J = 6.9 Hz, 1H), 7.26 (dd, J = 4.7, 7.9 Hz, 1H), 6.85 (d, J = 6.4 Hz, 1H), 3.80 (bm, 4H), 3.66 - 3.62 (m, 2H), 2.26 - 2.22 (m, 2H), 2.15 (m, 2H), 0.00 (TMS)                 |
| 200        | 433.30 | 1.68 | (500  MHz, MeOD) 8.88  (dd, J = 1.5, 8.1  Hz, 1H), 8.60  (s,                                                                                                                                                                                                        |

| Cmpd # | M+H    | RT       | NMR                                                                                                                      |
|--------|--------|----------|--------------------------------------------------------------------------------------------------------------------------|
|        |        |          | 1H), $8.40$ (d, $J = 3.1$ Hz, 1H), $8.32 - 8.26$ (m, 1H), $7.99$ (s,                                                     |
|        |        |          | 1H), 7.40 (dd, $J = 4.7$ , 8.0 Hz, 1H), 7.31 (s, 1H), 4.19 (t, $J =$                                                     |
|        |        |          | 4.8 Hz, 1H), 4.11 - 4.09 (m, 1H), 4.07 (s, 3H), 4.07 (s, 3H),                                                            |
|        |        |          | 3.35 - 3.32 (m, 2H), 1.87 (s, 6H), 1.38 - 1.29 (m, 2H,                                                                   |
|        |        |          | impurity).                                                                                                               |
|        | 489.00 | 1.78     | (500 MHz, MeOD) 8.82 (dd, J = 1.4, 8.1 Hz, 1H), 8.58 (s,                                                                 |
| 389    |        |          | 1H), 8.52 (m, 1H), 8.40 (d, J = 3.2 Hz, 1H), 8.00 (s, 1H),                                                               |
|        |        |          | 7.39  (dd, J = 4.7, 8.0  Hz, 1H), 7.32  (s, 1H), 4.08  (s, 3H),                                                          |
|        |        |          | 4.07 (s, 3H), 3.80 - 3.77 (m, 2H), 1.87 (s, 6H).                                                                         |
| 390    | 471.10 | 1.70     | (500  MHz, MeOD) 8.85  (dd, J = 1.4, 8.1  Hz, 1H), 8.60  (s, )                                                           |
|        |        |          | 1H), 8.42 - 8.40 (m, 1H), 8.37 - 8.30 (m, 1H), 8.00 (s, 1H),                                                             |
|        |        |          | 7.40 (dd, $J = 4.7$ , 8.0 Hz, 1H), 7.32 (s, 1H), 5.64 - 5.41 (m,                                                         |
|        |        |          | 1H), 4.08 (s, 3H), 4.07 (s, 3H), 3.44 (m, 2H), 1.87 (s, 6H).                                                             |
|        | 449.20 | 1.70     | (500 MHz, MeOD) 8.88 - 8.87 (m, 1H), 8.59 (s, 1H), 8.40                                                                  |
| 391 .  |        |          | (d, J = 3.3 Hz, 1H), 8.03 - 8.02 (m, 1H), 7.99 (s, 1H), 7.40                                                             |
|        |        |          | (dd, J = 4.7, 8.1 Hz, 1H), 7.31 (s, 1H), 4.07 (s, 3H), 4.07 (s, 3H)                                                      |
|        |        |          | 3H), 3.07 (m, 2H), 1.86 (s, 6H), 1.29 (m, 2H), 0.61 (t, J =                                                              |
| 200    |        |          | 7.5 Hz, 3H).                                                                                                             |
| 392    | 339.10 | 1.45     |                                                                                                                          |
| 393    | 353.10 | 1.56     |                                                                                                                          |
| 394    | 357.10 | 1.47     |                                                                                                                          |
| 395    | 375.10 | 1.56     | DMSO 46, 12.25 (c. 111), 9.05 (m. 111), 9.7 (d. 111), 9.25                                                               |
|        | 427.00 | 1.90     | DMSO-d6: 12.25 (s, 1H); 8.95 (m, 1H); 8.7 (d, 1H); 8.35 (d, 1H); 8.3 (m, 1H); 8.2 (m, 1H); 7.25 (dd, 1H); 5.5 (d,        |
| 396    |        |          | (d, 1H), 8.5 (lli, 1H), 8.2 (lli, 1H); 7.25 (dd, 1H); 3.5 (d, 1H); 4.95 (dd, 1H); 4.3-3.75 (m, 4H); 2.7 (m, 1H); 2.2-2.0 |
|        |        |          | (m, 1H).                                                                                                                 |
|        | 445.00 | 2.30     | DMSO-d6: 12.15 (s, 1H); 8.9 (m, 1H); 8.65 (d, 1H); 8.35                                                                  |
| 397    |        |          | (d, 1H); 8.3 (m, 1H); 8.15 (m, 1H); 7.2 (m, 1H); 5.1 (m,                                                                 |
|        |        |          | 1H); 4.3 (m, 2H); 3.9 (m, 2H); 3.0 (m, 1H); 2.5 (m, 1H).                                                                 |
|        | 394.00 | 2.10     | (500  MHz, MeOD) 9.14  (m, 0.25H), 8.95  (d, J = 6.7  Hz,                                                                |
| 200    |        |          | 0.66H), 8.59 - 8.41 (m, 3.64H), 7.45 (m, 1H), 3.84 (m, 2H),                                                              |
| 398    |        |          | 2.21 - 2.18 (m, 1H), 2.05 - 2.02 (m, 1H), 1.67 (m, 3H), 0.97                                                             |
| 1      |        |          | (t, J = 7.3 Hz, 3H).                                                                                                     |
| 399    | 325.90 | 1.60     |                                                                                                                          |
|        | 340.00 | 1.80     | (500 MHz, MeOD) 9.07 (br, 0.24H), 8.54 (s, 1H), 8.46 (s,                                                                 |
| 400    |        |          | 1H), $8.36$ (d, $J = 4.3$ Hz, 1H), $7.39 - 7.36$ (m, 1H), $3.25 -$                                                       |
| 400    |        |          | 3.15 (m, 2H), 2.19 - 2.00 (m, 2H), 1.65 (m, 3H), 0.97 - 0.90                                                             |
|        |        |          | (m, 6H).                                                                                                                 |
|        | 410.10 | 2.10     | DMSO-d6 (rotational mixture about 1.3:1): 12.45 (m, 1H);                                                                 |
| 401    |        |          | 9.05 -8.3 (m, 5H); 7.3-7.2 (m, 1H); 5.6-5.4 (m, 1H); 4.8 (t,                                                             |
|        |        |          | 0.6H); 4.7 (t, 0.4H); 4.45 3.75 (m, 4H); 2.8-2.6 (m, 1H);                                                                |
|        |        | <u> </u> | 2.25-2.1 (m, 1H).                                                                                                        |
|        | 410.10 | 2.00     | DMSO-d6 (rotational mixture about 1.3:1): 12.45 (m, 1H);                                                                 |
| 402    |        |          | 8.8-8.3 m, 5H); 7.3-7.15 (m, 1H); 5.5-5.35 (m, 1H); 4.9 (d,                                                              |
|        |        |          | 0.6H); 4.75 (d, 0.4H); 4.15-3.8 (m, 4H); 2.75-2.6 (m, 1H);                                                               |
|        | 1      | <u> </u> | 2.4-2.3 (m, 1H).                                                                                                         |

| Cmpd # | M+H    | RT   | NMR |
|--------|--------|------|-----|
| 403    | 392.10 | 2.00 |     |
| 404    | 409.10 | 1.50 |     |
| 405    | 409.00 | 1.50 |     |

#### Example 3: JAK3 Inhibition Assay

[0216] Compounds were screened for their ability to inhibit JAK3 using the assay shown below. Reactions were carried out in a kinase buffer containing 100 mM HEPES (pH 7.4), 1 mM DTT, 10 mM MgCl<sub>2</sub>, 25 mM NaCl, and 0.01% BSA. Substrate concentrations in the assay were 5  $\mu$ M ATP (200 uCi/ $\mu$ mole ATP) and 1  $\mu$ M poly(Glu)<sub>4</sub>Tyr. Reactions were carried out at 25°C and 1 nM JAK3.

[0217] To each well of a 96 well polycarbonate plate was added 1.5  $\mu$ l of a candidate JAK3 inhibitor along with 50  $\mu$ l of kinase buffer containing 2  $\mu$ M poly(Glu)<sub>4</sub>Tyr and 10  $\mu$ M ATP. This was then mixed and 50  $\mu$ l of kinase buffer containing 2 nM JAK3 enzyme was added to start the reaction. After 20 minutes at room temperature (25°C), the reaction was stopped with 50  $\mu$ l of 20% trichloroacetic acid (TCA) that also contained 0.4 mM ATP. The entire contents of each well were then transferred to a 96 well glass fiber filter plate using a TomTek Cell Harvester. After washing, 60  $\mu$ l of scintillation fluid was added and <sup>33</sup>P incorporation detected on a Perkin Elmer TopCount.

#### Example 4: JAK2 Inhibition Assay.

[0218] The assays were as described above in Example 3 except that JAK-2 enzyme was used, the final poly(Glu)<sub>4</sub>Tyr concentration was 15  $\mu$ M, and final ATP concentration was 12  $\mu$ M.

All compounds depicted in Tables 1, 2 and 3 were found to inhibit [0219] JAK3 with a Ki of less than 0.1 µM except for compounds 22, 35, 56, 68, 177, 223, 310, 317, 318, 319, 320, 321, 322, 326, 336, 337, 338, 339, 340, 351, 356, 367, 369, 370, 388, and 390. All Table 1, 2 and 3 compounds inhibited JAK3 with a Ki of less than 2.0 µM except for compounds 68 and 319. All Table 1, 2 and 3 compounds were found to inhibit JAK2 with a Ki of less than 0.5  $\mu M$  except for compounds 9, 22, 35, 56, 57, 68, 310, 317, 38, 319, 320, 321, 336, 338, 339, 340, 348, 351, 356, 367 and 372. All Table 1, 2 and 3 compounds inhibited JAK2 with a Ki of less than 5.0 µM except for compounds 68, 318 and 319.

WO 2007/084557 PCT/US2007/001225 96

### **Example 5: JAK3 Cellular Inhibition Assay**

HT-2 clone A5E cells (ATCC Cat. # CRL-1841) were grown and 102201 maintained at 37°C in a humidified incubator in cell culture medium (RPMI 1640 supplemented with 2 mM L-glutamine adjusted to contain 1.5 g/L sodium bicarbonate, 4.5 g/L glucose, 10 mM HEPES, 1.0 mM sodium pyruvate, 0.05 mM 2-mercaptoethanol, 10% fetal bovine serum, and 10% by volume rat T-STIM factor [Fisher Scientific Cat # CB40115] with Con A). On the day of the experiment, HT-2 cells were washed, resuspended at a density of 5 x 10<sup>6</sup> cells per ml in fresh cell culture medium without T-STIM and incubated for 4 hours without T-STIM. After four hours, 50  $\mu$ l (0.25 x 10<sup>6</sup>) cells) of the resuspended cells were added to each well of a 96 well plate. Serial dilutions of compounds were made in DMSO and then added to RPMI. 100 µl of the diluted compounds were added to each well and the plates were incubated for 1 hour at 37°C. 50 µl of recombinant murine interleukin-2 (rmIL-2) at 40ng/ml (R & D systems Inc. Cat # 402-ML) was added and the plates were incubated for 15 minutes at 37°C.

[0221] The plates were then centrifuged for 5 minutes at 1000 rpm, the supernatant was aspirated and 50  $\mu$ l of 3.7% formaldehyde in phosphate buffered saline (PBS) was added per well. The plates were incubated for 5 minutes at room temperature on a plate shaker. The plates were again centrifuged at 1000 rpm for 5 minutes. The supernatant was aspirated, 50  $\mu$ l of 90% methanol was added to each well, and the plate was incubated on ice for 30 minutes. The supernatant was aspirated and the plate washed with PBS. 25 μl per well of 1:10 diluted Phospho STAT-5 (Y694) PE conjugated antibody (PS-5 PE antibody; Becton-Dickinson Cat. # 61256) was added to the plates and the plates were incubated for 45 minutes at room temperature on a plate shaker. 100 µl PBS was added and the plates were centrifuged. The supernatant was aspirated and the cells resuspended in 100  $\mu$ l PBS. The plate was then read on a 96 well FACS reader (Guava PCA-96).

[0222] Compounds of the invention were found to inhibit JAK3 in this assay. Example 6: JAK2 Cellular Inhibition Assay

[0223] TF-1 cells (ATCC Cat. # CRL-2003) were grown and maintained at 37°C in a humidified incubator in cell culture medium (RPMI 1640 supplemented with 2 mM L-glutamine adjusted to contain 1.5 g/L sodium bicarbonate, 4.5 g/L glucose, 10 mM HEPES, 1.0 mM sodium pyruvate, 10% fetal bovine serum and recombinant human granulocyte-macrophage colony stimulating factor [rhGMCSF, R&D Systems Inc. Cat. # 215-GM]). On the day of the experiment, TF-1 cells were washed, resuspended at a density of  $5 \times 10^6$  cells per ml in fresh cell culture medium without rhGMCSF and incubated for 4 hours without rhGMCSF. After four hours,  $50 \mu l$  (0.25 x  $10^6$  cells) of the resuspended cells were added to each well of a 96 well plate. Serial dilutions of compounds were made in DMSO and then added to RPMI.  $100 \mu l$  of the diluted compounds were added to each well and the plates were incubated for 1 hour at  $37^{\circ}$ C.  $50 \mu l$  of rhGMCSF at 10 ng/ml was added and the plates were incubated for 15 minutes at  $37^{\circ}$ C. The plates were then processed for FACS analysis as detailed above in Example 5. Compounds of the invention were found to inhibit JAK2 in this cellular assay.

While we have described a number of embodiments of this invention, it is apparent that our basic examples may be altered to provide other embodiments which utilize the compounds and methods of this invention. Therefore, it will be appreciated that the scope of this invention is to be defined by the appended claims rather than by the specific embodiments that have been represented by way of example above.

#### **CLAIMS**

We claim:

1. A compound of formula (I):

or a pharmaceutically acceptable salt thereof, wherein:

R<sup>3</sup> is H. Cl or F:

X<sup>1</sup> is N or CR<sup>4</sup>:

R<sup>2</sup> is H, F, R', OH, OR', COR', COOH, COOR', CONH<sub>2</sub>, CONHR', CON(R')<sub>2</sub>, or CN; R<sup>4</sup> is H, F, R', OH, OR', COR', COOH, COOR', CONH<sub>2</sub>, CONHR', CON(R')<sub>2</sub>, or CN; or R<sup>2</sup> and R<sup>4</sup>, taken together, form a 5-7 membered aryl or heteroaryl ring optionally substituted with 1-4 occurrences of R<sup>10</sup>:

R' is a C<sub>1-3</sub> aliphatic optionally substituted with 1-4 occurrences of R<sup>5</sup>;

each R<sup>5</sup> is independently selected from halogen, CF<sub>3</sub>, OCH<sub>3</sub>, OH, SH, NO<sub>2</sub>, NH<sub>2</sub>, SCH<sub>3</sub>, NCH<sub>3</sub>, CN or unsubstituted C<sub>1-2</sub> aliphatic, or two R<sup>5</sup> groups, together with the carbon to which they are attached, form a cyclopropyl ring or C=O;

each R<sup>10</sup> is independently selected from halogen, OCH<sub>3</sub>, OH, NO<sub>2</sub>, NH<sub>2</sub>, SH, SCH<sub>3</sub>, NCH<sub>3</sub>, CN or unsubstituted C<sub>1-2</sub>aliphatic;

$$\mathbb{R}^{1}$$
 is  $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{R}^{10}$   $\mathbb{$ 

R" is H or is a -C<sub>1-2</sub> aliphatic optionally substituted with 1-3 occurrences of R<sup>11</sup>; each R<sup>11</sup> is independently selected from halogen, OCH<sub>3</sub>, OH, SH, NO<sub>2</sub>, NH<sub>2</sub>, SCH<sub>3</sub>, NCH<sub>3</sub>, CN, CON(R<sup>15</sup>)<sub>2</sub> or unsubstituted C<sub>1-2</sub> aliphatic, or two R<sup>11</sup> groups, together with the carbon to which they are attached, form a cyclopropyl ring or C=O; R<sup>6</sup> is a C<sub>1-4</sub> aliphatic optionally substituted with 1-5 occurrences of R<sup>12</sup>;

- each R<sup>12</sup> is independently selected from halogen, OCH<sub>3</sub>, OH, NO<sub>2</sub>, NH<sub>2</sub>, SH, SCH<sub>3</sub>, NCH<sub>3</sub>, CN or unsubstituted C<sub>1-2</sub>aliphatic, or two R<sup>12</sup> groups, together with the carbon to which they are attached, form a cyclopropyl ring;
- Ring A is a 4-8 membered saturated nitrogen-containing ring comprising up to two additional heteroatoms selected from N, O or S and optionally substituted with 1-4 occurrences of R<sup>13</sup>;
- each R<sup>13</sup> is independently selected from halogen, R', NH<sub>2</sub>, NHR', N(R')<sub>2</sub>, SH, SR', OH, OR', NO<sub>2</sub>, CN, CF<sub>3</sub>, COOR', COOH, COR', OC(O)R' or NHC(O)R'; or any two R<sup>13</sup> groups, on the same substituent or different substituents, together with the atom(s) to which each R<sup>13</sup> group is bound, form a 3-7 membered saturated, unsaturated, or partially saturated carbocyclic or heterocyclic ring optionally substituted with 1-3 occurrences of R<sup>5</sup>;

 $R^8$  is  $C_{1-4}$  aliphatic optionally substituted with 1-5 occurrences of  $R^{12}$ ;

R<sup>9</sup> is C<sub>1-2</sub> alkyl; or

R<sup>8</sup> and R<sup>9</sup> are taken together to form a 3-7 membered carbocyclic or heterocyclic saturated ring optionally substituted with 1-5 occurrences of R<sup>12</sup>;

R<sup>14</sup> is H or unsubstituted C<sub>1-2</sub> alkyl;

R<sup>15</sup> is H or unsubstituted C<sub>1-2</sub> alkyl; and

 $R^7$  is a  $C_{2-3}$  aliphatic or cycloaliphatic optionally substituted with up to 6 occurrences of F.

2. The compound according to claim 1, wherein the compound has formula I-A:

3. The compound according to either of claims 1 or 2, wherein R<sup>3</sup> is H or Cl.

- 4. The compound according to claim 3, wherein R<sup>3</sup> is Cl.
- 5. The compound according to claim 3, wherein R<sup>3</sup> is H.
- 6. The compound according to any one of claims 1-5, wherein R<sup>2</sup> is H, F, R', OH or OR'.
- 7. The compound according to claim 6, wherein R<sup>2</sup> is H or F.
- 8. The compound according to any one of claims 1-5, wherein the compound is of formula I-A and  $R^4$  is H, F, R', OH or OR', or  $R^2$  and  $R^4$  are taken together to form a 6-membered aryl ring.
- 9. The compound according to claim 8, wherein R<sup>4</sup> is H or F.
- 10. The compound according to claim 9, wherein if  $R^4$  is F, then  $R^2$  is H and if  $R^2$  is F, then  $R^4$  is H.
- 11. The compound according to claim 9, wherein R<sup>2</sup> and R<sup>4</sup> are both H.
- 12. The compound according to either of claims 10 or 11, wherein R<sup>3</sup> is Cl.
- 13. The compound according to either of claims 10 or 11, wherein R<sup>3</sup> is H.
- 14. The compound according to any one of claims 1-13, wherein R<sup>7</sup> is CH<sub>2</sub>CH<sub>3</sub>, CH<sub>2</sub>CF<sub>3</sub>, CH<sub>2</sub>CHF<sub>2</sub>, CH<sub>2</sub>CH<sub>2</sub>F, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, CH<sub>2</sub>CH<sub>2</sub>CF<sub>3</sub>, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>F or CH<sub>2</sub>CH<sub>2</sub>CHF<sub>2</sub>.
- 15. The compound according to claim 14, wherein R<sup>7</sup> is CH<sub>2</sub>CH<sub>3</sub>, CH<sub>2</sub>CF<sub>3</sub>, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> or CH<sub>2</sub>CH<sub>2</sub>CF<sub>3</sub>.
- 16. The compound according to claim 15, wherein R<sup>7</sup> is CH<sub>2</sub>CF<sub>3</sub>.

- 17. The compound according to any one of claims 1-16, wherein R" is H or CH<sub>3</sub>.
- 18. The compound according to claim 17, wherein R" is H.
- 19. The compound according to any one of claims 1-18, wherein R<sup>14</sup> is H.
- 20. The compound according to any one of claims 1-19, wherein R<sup>15</sup> is H.
- 21. The compound according to claim 1, wherein the compound is of formulae II or III:

wherein  $X^{1A}$  is N, CH or CF and  $R^{1A}$  is

- 22. The compound according to claim 21, wherein R<sup>7</sup> is CH<sub>2</sub>CH<sub>3</sub>, CH<sub>2</sub>CF<sub>3</sub>, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> or CH<sub>2</sub>CH<sub>2</sub>CF<sub>3</sub>.
- 23. The compound according to claim 22, wherein R<sup>7</sup> is CH<sub>2</sub>CF<sub>3</sub>.
- 24. The compound according to any one of claims 1-23, wherein R<sup>6</sup> is selected from

25. The compound according to claim 24, wherein R<sup>6</sup> is selected from

26. The compound according to claim 25, wherein R<sup>6</sup> is selected from

27. The compound according to any one of claim 1-23, wherein Ring A is

28. The compound according to claim 27, wherein Ring A is

$$-\frac{1}{5} - \frac{(R^{13})_{0-3}}{\sqrt{2}} - \frac{(R^{13})_{0-4}}{\sqrt{2}} - \frac{(R^{13})_{0-3}}{\sqrt{2}} - \frac{(R^$$

29. The compound according to claim 28, wherein Ring A is

- 30. The compound according to claim 29, wherein R<sup>13</sup> is absent.
- 31. The compound according to claim 29, wherein Ring A is substituted with one occurrence of R<sup>13</sup>.
- 32. The compound according to claim 31, wherein R<sup>13</sup> is OH, CH<sub>3</sub>, F, OR' or NHR'.
- 33. The compound according to claim 32, wherein R' is  $C_{1-2}$  alkyl or  $C_{2-3}$  alkenyl.
- 34. The compound according to claim 32, wherein R<sup>13</sup> is OH.
- 35. The compound according to any one of claims 1-23, wherein R<sup>8</sup> and R<sup>9</sup> are taken together to form a ring selected from

$$(R^{12})_{0-1} \qquad (R^{12})_{0-3} \qquad (R^{12})_{0-3} \qquad (R^{12})_{0-3}$$

wherein one or more carbon atoms in of said ring are optionally and independently replaced by N, O or S.

36. The compound according to any one of claims 1-23, wherein R<sup>8</sup> and R<sup>9</sup> are

$$H_3C$$
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 

37. The compound according to claim 36, wherein R<sup>8</sup> and R<sup>9</sup> are

$$H_3C$$
  $CH_3$   $H_3C$   $CH_3$   $H_3C$   $CH_3$   38. The compound according to claim 37, wherein R<sup>8</sup> and R<sup>9</sup> are

- 39. The compound according to any one of claims 21-38, wherein X<sup>1A</sup> is CH or CF.
- 40. A compound selected from Table 1, Table 2 or Table 3.
- 41. A pharmaceutical composition comprising a compound according to any one of claims 1-40 and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- 42. The composition according to claim 41, additionally comprising a therapeutic agent selected from a chemotherapeutic or anti-proliferative agent, an anti-inflammatory agent, an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating destructive bone disorders, an agent for treating liver disease, an anti-viral agent, an agent for treating blood disorders, an agent for treating diabetes, or an agent for treating immunodeficiency disorders.

- 43. A method of inhibiting JAK kinase activity in a biological sample, comprising contacting said biological sample with a compound according to any one of claims 1-40 or with a composition according to either of claims 41 or 42.
- 44. A method of inhibiting JAK kinase activity in a patient, comprising administering to said patient a compound according to any one of claims 1-40 or with a composition according to either of claims 41 or 42.
- 45. A method of treating or lessening the severity of a disease of condition selected from a proliferative disorder, a cardiac disorder, a neurodegenerative disorder, an autoimmune disorder, a condition associated with organ transplantation, an inflammatory disorder, or an immunologically mediated disorder in a patient, comprising the step of administering to said patient a compound according to any one of claims 1-40 or with a composition comprising said compound.
- 46. The method of claim 45, comprising the additional step of administering to said patient an additional therapeutic agent selected from a chemotherapeutic or anti-proliferative agent, an anti-inflammatory agent, an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating diabetes, or an agent for treating immunodeficiency disorders, wherein said additional therapeutic agent is appropriate for the disease being treated.
- 47. The method according to claim 45, wherein the disease or disorder is allergic or type I hypersensitivity reactions, asthma, diabetes, Alzheimer's disease, Huntington's disease, Parkinson's disease, AIDS-associated dementia, amyotrophic lateral sclerosis (AML, Lou Gehrig's disease), multiple sclerosis (MS), schizophrenia, cardiomyocyte hypertrophy, reperfusion/ischemia, stroke, baldness, transplant rejection, graft versus host disease, rheumatoid arthritis, a solid malignancy, a hematologic malignancy, a leukemia, a lymphoma and a myeloproliferative disorder.

- 48. The method according to claim 47, wherein said disease or disorder is asthma.
- 49. The method according claim 47, wherein said disease or disorder is transplant rejection.
- 50. The method according claim 47, wherein said disease or disorder is rheumatoid arthritis.