-/

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 95/27247
GOGF 9/38 Al . -~
(43) International Publication Date: 12 October 1995 (12.10.95)
(21) International Application Number: PCT/US95/04132 | (81) Designated States: JP, KR, European patent (AT, BE, CH, DE,
DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 4 April 1995 (04.04.95)
Published
(30) Priority Data: : With international search report,
08/224,328 4 April 1994 (04.04.94) Us Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(71) Applicant: S-MOS SYSTEMS, INC. [US/US]; 2460 North
First Street, San Jose, CA 95131 (US).

(72) Inventors: IADONATO, Kevin, R.; 678 Galleon Court, San
Jose, CA 95133 (US). DEOSARAN, Trevor, A.; Apartment
C, 982 South Wolfe Road, Sunnyvale, CA 94086 (US).
GARG, Sanjiv; 46820 Sentinel Drive, Fremont, CA 94539
(US).

(74) Agents: JANOFSKY, Eric, B. et al.; S-Mos Systems, Inc., 2460
North First Street, San Jose, CA 95131 (US).

(54) Title: SYSTEM AND METHOD FOR ASSIGNING TAGS TO CONTROL INSTRUCTION PROCESSING IN A SUPERSCALAR
‘ PROCESSOR

r238

234 INSTRUCTION
R s L SOURCE 102
| iy 1
= CONTROL i
3 Tor | “loaic ~103
y !
T TAG O 280 \201 228 226 202 !
i TAG Y |
TAG 6 - 1
s W olfes) P |
[TAG4 ENRE Nats AP°RoD 216 A-D) 214 |
TR |
1 .
! TGl _a10 READ P 2 REQISTER i
< ADDRESSES —_— i
BOTTOM \-zao 0-7 READ DATA i
SLO 204 0-7 i
206 (TAG FIFO) '
b A |
TAGMONTOR~“ |
N 240~ SYSTEM 222 i
S . - _—
SUPER SCALAR-" Y
UNIT 104

(57) Abstract

A tag monitoring system for assigning tags to instructions. A source supplies instructions to be executed by a functional unit. A
register file stores information required for the execution of each instruction. A queue having a plurality of slots containing tags which are
used for tagging the instructions. The tags are arranged in the queue in an order specified by the program order of their corresponding
instructions. A control unit monitors the completion of executed instructions and advances the tags in the queue upon completion of an
executed instruction. The register file stores an instruction’s information at a location in the register file defined by the tag assigned to that
instruction. The register file also contains a plurality of read address enable ports and corresponding read output ports. Each of the slots
from the queue is coupled to a corresponding one of the read address enable ports. Thus, the information for each instruction can be read
out of the register file in program order.

applications under the PCT.

AT

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cdte d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Treland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

-\

%

10

15

20

WO 95/27247

System and Method for Assigning Tags to Control
Instruction Processing in a Superscalar Processor

Background of the Invention

1. Field of the Invention

The present invention relates generally to superscalar computers, and
more particularly, a system and method for using tags to control instruction

execution in a superscalar reduced instruction set computer (RISC).

2. Related Art

Processors used in conventional computer systems typically execute
program instructions one at a time, in sequential order. The process of
executing a single instruction involves several sequential steps. The first step
generally involves fetching the instruction from a memory device. The second
step generally involves decoding the instruction, and assembling any operands.

The third step generally involves executing the instruction, and storing
the results. Some processors are designed to perform each step in a single
cycle of the processor clock. Alternatively, the processor may be designed so
that the number of processor clock cycles per step depends on the particular
instruction.

To improve performance, modern computers commonly use a technique

known as pipelining. Pipelining involves the overlapping of the sequential

PCT/US95/04132

10

15

20

25

30

WO 95/27247

steps of the execution process. For example, while the processor is
performing the execution step for one instruction, it might simultaneously
perform the decode step for a second instruction, and perform a fetch of a
third instruction. Pipelining can thus decrease the execution time for a
sequence of instructions.

Another class of processors improve performance by overlapping the
sub-steps of the three sequential steps discussed above are called
superpipelined processors.

Still another technique for improving performance involves executing
multiple instructions simultaneously. Processors which utilize this technique
are generally referred to as superscalar processors. The ability of a
superscalar processor to execute two or more instructions simultaneously
depends on the particular instructions being executed. For example, two
instructions which both require the use of the same, limited processor resource
(such as a floating point unit) cannot be executed simultaneously. This type
of conflict is known as a resource dependency. Additionally, an instruction
which uses the result produced by the execution of another instruction cannot
be executed at the same time as the other instruction. An instruction which
depends on the result of another instruction is said to have a data dependency
on the other instruction. Similarly, an instruction set may specify that
particular types of instructions must execute in a certain order relative to each
other. These instructions are said to have procedural dependencies.

A third technique for improving performance involves executing
instructions out of program order. Processors which utilize this technique are
generally referred to as out-of-order processors. Usually, out-of-order
processors are also superscalar processors. Data dependencies and procedural
dependencies limit out-of-order execution in the same way that they limit
superscalar execution.

From here on, the term "superscalar processor” will be used to refer

to a processor that is: capable of executing multiple instructions

PCT/US95/04132

10

15

20

25

30

WO 95/27247

simultaneously, or capable of executing instructions out of program order, or
capable of doing both.

For executing instructions either simultaneously or out of order, a
superscalar processor must contain a system called an Execution Unit. The
Execution Unit contains multiple functional units for executing instructions
(e.g., floating point multiplier, adder, etc.). Scheduling control is needed to
dispatch instructions to the multiple functional units. With in-order issue, the
processor stops decoding instructions whenever a decoded instruction creates
a resource conflict or has a true dependency or an output dependency on a
uncompleted instruction. As a result, the processor is not able to look ahead
beyond the instructions with the conflict or dependency, even though one or
more subsequent instructions might be executable. To overcome this
limitation, processors isolate the decoder from the execution stage, so that it
continues to decode instructions regardless of whether they can be executed
immediately. This isolation is accomplished by a buffer between the decode
and execute stages, called an instruction window.

To take advantage of lookahead, the processor decodes instructions and
places them into the window as long as there is room in the window and, at
the same time, examines instructions in the window to find instructions that
can be executed (that is, instructions that do not have resource conflicts or
dependencies). The instruction window serves as a pool of instructions, giving
the processor lookahead ability that is constrained only by the size of the
window and the capability of the instruction source. Thus, out-of-order issue
requires a buffer, called an instruction window between the decoder and
functional units; and the instruction window provides a snap-shot of a piece
of the program that the computer is executing.

After the instructions have finished executing, instructions must be
removed from the window so that new instructions can take their place.
Current designs employ an instruction window that utilizes a First In First Out
queue (FIFO). In certain designs, the new instructions enter the window and

completed instructions leave the window in fixed size groups. For example,

PCT/US95/04132

10

15

20

25

30

WO 95/27247

an instruction window might contain eight instructions (I0-17) and instructions
may be changed in groups of four. In this case, after instructions I0, I1, 12
and I3 have executed, they are removed from the window at the same time
four new instructions are advanced into the window. Instruction windows
where instructions enter and leave in fixed size groups are called "Fixed
Advance Instruction Windows. "

In other types of designs, the new instructions enter the window and
completed instructions leave the window in groups of various sizes. For
example, an instruction window might contain eight instructions (10-17) and
may be changed in groups of one, two or three. In this case, after any of
instructions I0, I1 or 12 have executed, they can be removed from the window
and new instructions can be advanced into the window. Instruction windows
where instructions enter and leave in groups of various sizes are called
"Variable Advance Instruction Windows."

Processors that use Variable Advance Instruction Windows (VAIW)
tend to have higher performance than processors that have Fixed Advance
Instruction Windows (FAIW). However, fixed advance instruction windows
are easier for a processor to manage since a particular instruction can only
occupy a fixed number of locations in the window. For example, in an
instruction window that contains eight instructions (I0-17) and where
instructions can be added or removed in groups of four, an instruction can
occupy only one of two locations in the window (e.g., I0 and 14). In a
variable advance instruction windows, that instruction could occupy all of the
locations in the window at different times, thus a processor that has a variable
advance instruction window must have more resources to track each
instruction’s position than a processor that has a fixed advance instruction
window.

Current designs use large queues to implement the instruction window.
The idea of using queues is disadvantageous, for many reasons including: a
large amount of chip area resources are dedicated to a plurality of queues

especially when implementing a variable advance instruction window; there is

PCT/US95/04132

10

15

20

25

WO 95/27247

limited flexibility in designing a system with more than one queue; and control
logic for directing data in queues is complex and inflexible.

Therefore, what is needed is a technique to "track" or monitor
instructions as they move through the window. The system must be flexible

and require a small area on a chip.
Summary of the Invention

The present invention is directed to a technique for monitoring
instruction execution of multiple instructions in parallel and out of program
order using a system that assigns tags to the multiple instructions and
maintains an instruction window that contains the multiple instructions. The
system is a component of a superscalar unit which is coupled between a source
of instructions and functional units which execute the instructions. The
superscalar unit is in charge of maintaining the instruction window, directing
instructions to the various functional units in the execution unit, and, after the
instructions are executed, receiving new instructions from the source.

The present invention employs a tag monitor system, which is a part
of the superscalar unit. The tag monitor system includes: a register file and
a queue that operates on a First-In-First-Out basis (the queue is a multiple-
advance, multiple output, recycling FIFO). The queue is coupled to the
register file. The register file is coupled to the instruction source and is used
to store instruction information (i.e., the resource requirements of each
instruction). When an instruction is sent from the instruction source to the
register file it is assigned a tag that is not currently assigned to any other
instruction. The instruction information is then stored in the register file at an
address location indicated by the tag of the instruction. Once an instruction’s
information is stored in the register file, it is said to be "in the instruction
window." The tags of each instruction in the instruction window are stored
in the queue. The tags are arranged in the queue in the same order as their

corresponding instructions are arranged in the program.

PCT/US95/04132

10

15

20

25

30

WO 95/27247

When an instruction is finished, the queue advances and the tag of the
instruction is'!effectively pushed out the bottom of the queue. The tag can then
be reassigned to a new instruction that enters the instruction window.
Accordingly, the tag is sent back to the top of the queue (in other words, it is
recycled). It is also possible for several tags to be recycled at the same time
when several instructions finish at the same time. Ina preferred embodiment,
instructions are required to finish in order. This is often necessary to prevent
an instruction from incorrectly overwriting the result of another instruction.
For example, if a program contains two instructions that write to the same
location of memory, then the instruction that comes first in the program should
write to the memory before the second. Thus, the results of instructions that
are executed out of order must be held in some temporary storage area and the
instructions themselves must remain in the instruction window until all
previous instructions have been executed. When a group of instructions is
completed, all of their results are moved from the temporary storage area to
their real destinations. Then the instructions are removed from the window
and their tags are recycled.

The register file has write ports where new instruction information is
received from the instruction source. The register file has a number of write
ports equal to the number of new instructions that can be added to the window
at one time. The register file has one entry for each instruction in the
window. The register file also has one output port for every instruction in the
window. Associated with each output port is an address port. The address
port is used to select which register file entry’s contents will be output on its
corresponding output port.

The queue has an output for each slot (e.g., specific buffer location in
the queue) that shows the value of the tag stored in that slot. These outputs
are connected to the read address ports of the register file. This connection
causes the register file to display an entry’s contents on its corresponding
output port when a tag valve is presented by the queue to the read address

ports. The outputs of the register file are sent to various locations in the

PCT/US95/04132

10

15

20

25

30

WO 95/27247

superscalar unit and execution units where the instruction information is used
for instruction scheduling, instruction execution, and the like.

It is possible that some of the locations in the instruction window may
be empty at any given time. These empty window locations are called
"bubbles."” Bubbles sometimes occur when an instruction leaves the window
and the instruction source cannot immediately send another instruction to
replace it. If there are bubbles in the window, then some of the entries in the
register file will contain old or bogus instruction information. Since all of the
data in the register file is always available, there needs to be some way to
qualify the data in the register file.

According to the present invention, a "validity bit" is associated with
each entry in the instruction window to indicate if the corresponding
instruction information in the register file is valid. These validity bits can be
held in the tag FIFO with the tags. There is one validity bit for each tag in
the FIFO. These bits are updated each time a tag is recycled. If, when a tag
is recycled, it gets assigned to a valid instruction, then the bit is asserted.
Otherwise it is deasserted.

The validity bits are output from the tag monitor system along with the
outputs of the register file. They are sent to the same locations as the outputs
of the register file so that the superscalar unit or execution units will know if
they can use the instruction information.

A feature of the present invention is that an instruction window can be
maintained without storing instruction information in large queues. This
simplifies design and increases operational flexibility. For example, for a
window containing 7 instructions, the tag monitor system would contain a
queue with n entries and a register file with n entries and n output ports. If
each output of the queue is connected to its corresponding read address port
on the register file (e.g., output 0 connected to read address port 0, output 1
connected to read address port 1, etc.) then the register file outputs will
"display" (i.e., make available at the output ports) the information for each

instruction in the window in program order (e.g., output port 0 will show

PCT/US95/04132

10

15

20

25

WO 95/27247

instruction 0’s information, output port 1 will show instruction 1’s
information, etc.). When the window advances, the queue advances and the
addresses on the read address ports change. This causes the outputs of the
register file to change to reflect the new arrangement of instructions in the
window. It is necessary for the instruction information to be displayed in
order on the register file outputs so that it can be sent to the rest of the
superscalar unit in order. The superscalar unit needs to know the order of the
instructions in the window so that it can schedule their execution and their
completion.

Further features and advantages of the present invention, as well as the
structure and operation of various embodiments of the present invention, are

described in detail below with reference to the accompanying drawings.

Brief Description of the Drawings

Fig. 1 shows a representative block diagram of a superscalar
environment of the present invention.

Fig. 2 shows a representative block diagram of a tag monitoring system
of the present invention.

Fig. 3 shows a representative operational flowchart for tag monitoring
according to the tag monitoring system of Fig. 2.

Fig. 4 shows a tag monitor system that contains two register files.

Fig. 5 shows a diagram of a simple FIFO.

Fig. 6 shows a diagram of a simple FIFO with multiple outputs.

Fig. 7 is a FIFO with multiple output terminals.

-Fig. 8 shows a recycling FIFO.

Fig. 9 shows a multiple advance FIFO.

Fig. 10 shows a recycling, multiple-advance FIFO.

PCT/US95/04132

WO 95/27247 PCT/US95/04132

, Detailed Description of the Invention

r

1.0 System Environment

Fig. 1 is a block diagram of a superscalar environment 101.

Superscalar environment 101 includes: an instruction source 102, a

5 superscalar unit 104 and a functional unit 106. Superscalar unit 104 controls

the execution of instructions by functional unit 106. Functional unit 106 may

include a floating point unit (not shown), an integer unit (not shown), a

load/store unit (not shown) and other such hardware commonly used by

processors depending on the desired application. Specific implementations of

10 instruction source 102 and functional unit 106 would be apparent to a person

skilled in the relevant art.

Instruction source 102 sends instruction information to superscalar unit

104 via a bus 103. The superscalar unit 104 then issues the instructions to

functional unit 106. Generally, superscalar unit 104 monitors functional unit

15 106 availability and checks for dependencies between instructions. Once the

instructions are completed, instruction source 102 sends more instruction
information to superscalar unit 104.

The buses shown in Fig. 1 represent data and control signals. Bus and

instruction size may vary depending on the application. The remaining

20 discussion will be focused on a tag monitor system, which tracks instructions

for superscalar unit 104.
2.0 Structure and Operation of the Tag Monitor System
A. Structure

Fig. 2 shows a block diagram of a tag monitor System 222 located

25 within a portion of superscalar unit 104 (shown as the inner dashed line in

10

15

20

25

30

WO 95/27247

-10-

Fig. 2). Tag monitor system 222 includes: a register file 202, a tag FIFO
204 and control logic 207.

Tag FIFO 204 is a multiple advance, multiple output, recycling FIFO
that stores tags in a plurality of slots 206. The term "multiple advance” means
that the FIFO can be advanced any number of slots at a time. For example,
a multiple advance 4-slot FIFO can be advanced 0-3 slots at a time. The term
"multiple output" means that the contents of each slot of the FIFO are
available. A tag is a unique label that superscalar unit 104 assigns to each
instruction as it enters the instruction window. Tag FIFO 204 has one slot
206 for each instruction in the window. Each slot 206 has an output 232 that
indicates (i.e., outputs) the value of the tag in the corresponding slot 206.
Each slot 206 also has a validity bit that indicates whether the instruction
assigned to the tag in the slot 206 is valid. In a preferred embodiment, tag
FIFO 204 contains eight slots 206. Each of these slots 206 contains a unique
binary number (tag) ranging from 0 to 7. For example a tag is three bits
(e.g., 000, 001, 010, etc.) which, with the validity bit, causes each slot to
hold four bits. Thus each output 232 is four bits wide. Each slot 206 of tag
FIFO 204 is loaded with a unique tag when the chip is powered-on or reset.

Once a tag is assigned to an instruction, it will remain with that
instruction until the instruction is removed from the window. Once an
instruction is removed from the window, its tag is sent back to the top 212 of
tag FiFO 204. The tag sent to top 212 can be reassigned to a new instruction
that enters the window. In this fashion, tags are "recycled" or are recirculated
in tag FIFO 204. Generally, tags advance through the tag FIFO 204 from top
212 to bottom 210. Thus, FIFO 204 is called a recycling queue.

Register file 202 is coupled to tag FIFO 204 and instruction source
102. Register file 202 stores instruction information sent by instruction source
102. The following are examples of the type of information that can be sent
from instruction source 102 to register file 202: decoded instruction
information; instruction functional unit requirements; the type of operation to

be performed by the instruction; information specifying a storage location

PCT/US95/04132

10

15

20

25

30

WO 95/27247

-11-

where instruction results are to be stored; information specifying a storage
location where instruction operands are stored; information specifying a target
address of a control flow instruction; and information specifying immediate
data to be used in an operation specified by the instruction.

Register file 202 includes: a write data port 214, a write address port
216, a write enable port 218, a read address port 220, and a read data port
224,

Write data port 214 receives instruction information from instruction
source 102 via bus 103. Write address ports 216 specify what addressable
location in register file 202 the instruction information that is received through
write data ports 214 is to be stored. Write address ports 216 are coupled to
control logic 207 via a bus 226. Write enable ports 218 indicate when to
write data from instruction source 102 into register file 202. Write enable
ports are coupled to control logic 207 via bus 228. In a preferred embodiment
(shown in Fig. 2) register file 202 has four write data ports 214 labeled A
through D. Write data ports 214 have corresponding write address ports 216
labeled A through D, and corresponding write enable ports 218 also labeled
A through D.

Read address port 220 is coupled to tag FIFO 204 via bus 230. Bus
230 carries outputs 232 of each slot 206 of tag FIFO 204. Read address ports
220 select the instruction information that will be accessed through read data
ports 224. Each read address port 220 has a corresponding read data port
224. In a preferred embodiment (shown in Fig. 2), the instruction window
has eight entries (i.e., the depth of tag fifo 204) and register file 202 has one
read address port 220 and one read data port 224 for each instruction in the
window. Read address ports 220 are labeled O through 7 and their
corresponding read data ports 224 are also labeled 0 through 7.

Typically, register file 202 is connected to other elements (e.g. an
issuer not shown) located within superscalar environment 101.

Control logic 207 is comprised of logic circuits. Control logic 207
monitors functional unit 106 via a bus 234 and bus 230 from tag FIFO 204.

PCT/US95/04132

10

15

20

25

30

WO 95/27247

-12-

Control logic 207 signals instruction source 102 via bus 238 to send new
instruction information to register file 202 as instructions leave the window.
Control logic 207 indicates how many new instructions that instruction source
102 should send. In a preferred embodiment (shown in Fig. 2), the maximum
number of instructions that can be sent is four, which corresponds to the total
number of write data ports 214 in register file 202. Control logic 207 will
also synchronize tag FIFO 204 via a bus 236 to advance as instructions leave
the window. Thus, under command of control logic 207, tag FIFO 204
advances by as many steps as the number of instructions that leave the window
at one time. The control logic 207 also maintains the validity bits stored in
tag FIFO 204 via bus 236. The circuit implementation for control logic 207
would be apparent to a person skilled in the relevant art. For example,
currently well known and commercially available logic synthesis and layout
systems can be used to convert a behavioral description (e.g., Verilog or
V.H.D.L.) to a silicon or chip design.

Note that the bit width of the various buses disclosed herein may
support parallel or serial address or data transfer, the selection of which is
implementation specific, as would be apparent to a person skilled in the
relevant art.

It is also possible for the tag monitor system to contain more than one
register file. In a preferred embodiment, the instruction information is
distributed among many register files. For example, one register file contains
the destination register addresses of each instruction. Another contains the
functional unit requirements of each instruction and so on. One advantage to
using multiple register files is that it allows the designer to use smaller register
files which can be located near where their contents are used. This can make
the physical design of the processor easier. The register files’ read and write
addresses are all connected together and come from the same source. The
write data of the register files still comes from the instruction source.

However, not all of the register files have to hold all of the information for

PCT/US95/04132

10

15

20

25

30

WO 95/27247

-13-

each instruction. The outputs of each register file only go to where the data
held in that register file is needed.

Fig. 4 shows a tag monitor system 222 that contains two register files
202a and 202b. In a preferred embodiment, only a portion of each
instruction’s information is stored in each register file 202a and 202b. So the
data sent on bus 103 from the instruction source 102 is divided. One portion
103a is sent to register file 202a and the other 103b is sent to register file
202b. Both register files 202a and 202b are connected to buses 226 and 228
that provide control signals from the control logic 207 and to bus 230 that
profides the outputs from tag FIFO 204. The outputs of register files 202a
and 202b are provided on separate buses 240a and 240b to different locations
throughout the superscalar unit 104.

The tag FIFO 204 will now be described with the reference to example
embodiments.

Fig. 5 shows a diagram of a FIFO 500. FIFO 500 holds four pieces
of data in its four slots 504, 508, 512 and 516. The four slots are connected
via buses 506, 510 and 514. FIFO 500 has an input 502 and and output 518
through which data enters and leaves the FIFO 500.

FIFO 500 behaves like a queue with four positions. When FIFO 500
advances, any data in slot 516 leaves FIFO 500 through output 518. Data in
slot 512 moves to slot 516 via bus 514. Data in slot 508 moves to slot 512
via bus 510. Data in slot 504 moves to slot 508 via bus 506, and data on the
input 502 moves into slot 504. Each of these data transfers happens whenever
FIFO 500 advances.

Fig. 6 shows a diagram of a FIFO 600 with multiple outputs. FIFO
600 is structured much like FIFO 500 in Fig. 5. Data enters FIFO 600
through an input 602, moves through four slots 604, 610, 616 and 622 and
then out through an output 626. The difference between FIFO 500 and FIFO
600 is that the data stored in each slot 604, 610, 616 and 622 is visible on
(i.e., can be read four) corresponding buses 606, 612, 618 or 624 from the

time that it enters a respective slot until FIFO 600 advances again. Outputs

PCT/US95/04132

10

15

20

25

30

WO 95/27247

-14-

606, 612, 618 or 624 allow the user to know what data is stored in FIFO 600
at any given time.

In a preferred embodiment, data stored in slots 604, 610, 616 and 622
is continuously visible on each slot’s output bus (i.e., on buses 608, 614, 620
and 626). In this situation, buses 606, 612, 618 or 624 are unnecessary. An
example of this embodiment is shown in Fig. 7. Buses 706, 710 and 714 are
used to convey data between slots 1 and 4 (704, 708, 712 and 716,
respectively) and also indicate the contents of slots 1, 2 and 3, 704, 708 and
712 respectively. Output bus 718 always permits the contents of slot 716 to
be read.

Fig. 8 shows a recycling FIFO 800. Recycling FIFO 800 also
functions much like FIFO 500 in Fig. 5. Recycle FIFO 800 comprises four
slots 804, 804, 812 and 816. The main difference is that when FIFO 800
advances, data in slot 816 moves to slot 804. Since FIFO 800 has no means
for inputting new data into slot 804, it must be designed so that when turned
on or reset, each slot 804, 808, 812 and 816 is initialized with some value.
These initial ifalues then circulate through FIFO 800 until reinitialized in a
known manner.

Sometimes it is necessary to advance a FIFO by more than one step at
atime. Since the FIFO inputs one piece of data each time the FIFO advances
on step, the FIFO must also have as many inputs as the maximum number of
steps that the FIFO can advance. The FIFO must have some means besides
buses to carry the data from each slot or input to the correct destination.

Fig. 9 shows a multiple advance FIFO 900. FIFO 900 is capable of
advancing 1, 2, 3 or 4 steps (i.e., slots) at one time. FIFO 900 has four
inputs 902, 904, 906 and 908, and four slots 914, 922, 930 and 938. When
FIFO 900 advances by four steps, the data on input 902 goes to slot 938, input
904 goes to slot 930, input 906 goes to slot 922 and input 908 goes to slot
914. When FIFO 900 advances by three steps, data in slot 914 goes to slot
938, input 902 goes to slot 930, input 904 goes to slot 922 and input 906 goes
to slot 914. In this case, the data on input 908 does not enter FIFO 900.

PCT/US95/04132

10

15

20

25

30

WO 95/27247

-15-

When FIFO 900 advances by two steps, data in slot 922 goes to slot 938, data
in slot 914 goes to slot 930, input 902 goes to slot 922 and input 904 goes to
slot 914. Finally, as in the simple FIFO case, when the FIFO advances by
one step, the data in slot 930 goes to slot 938, the data in slot 922 goes to slot
930, the data in slot 914 goes to slot 922 and the data on input 902 goes to
slot 914.

In order to advance more than one step at a time, each slot and the
outputs of some slots must be switchably connected to go to more than one
other slot. Therefore, FIFO 900 has four multiplexers: MUX1, MUX2,
MUX3 and MUX4, shown at 910, 918, 926 and 934, respectively. These
multiplexers are used to select the data that goes into each slot when FIFO 900
advances. Inputs to each multiplexer are the data that might need to go to its
correspdnding slot. For example, depending on the number of steps that FIFO
900 advances, the data from slot 914, slot 922, slot 930 or input 902 might go
to slot 938. Thus the inputs to 934 are the outputs from slot 916, slot 924,
slot 932 and input 902. The structure and operation of the logic circuits
necessary to control the multiplexers 910, 918, 926 and 934 would be
apparent to a person skilled in the relevant art.

It is also possible to design a multiple advance FIFO that recycles its
contents. This FIFO is a combination of the FIFOs shown in Fig.s 8 and 9.
A diagram of a recycling, multiple-advance FIFO 1000 is shown in Figure 10.
FIFO 1000 is capable of being advanced one, two or three steps at a time.
Since FIFO 1000 has four stages (slots 1-4, labeled 1006, 1014, 1022 and
1030, respectively), advancing by four steps is logically the same as not
advancing at all. Thus, since it never has to advance by four steps, the
structure of the multiplexers in the recycling, multiple advance FIFO 1000 is
different from that shown in the multiple advance FIFO 900. FIFO 1000 is
also a multiple output FIFO like FIFO 700 shown in Fig. 7. Furthermore,
like the recycling FIFO 800 in Fig. 8, FIFO 1000 must also have some means

for initialization.

PCT/US95/04132

10

15

20

25

WO 95/27247

-16-

The FIFOs shown in Figs. 5, 6, 7, 8, 9 and 10 are all shown with four
stages as an éxample. It is, of course, possible to modify these designs so that
they contain a number of slots other than four. These modifications would be

apparent to a person skilled in the relevant art.
B. Operation

Fig. 3 is a flowchart illustrating the operation of tag monitor system
222. Operational steps 310-312 will be described with reference to hardware
elements of Figs. 1 and 2.

Operation starts at a step 301. In a step 302, control logic 207 sends
a request data signal 238 requesting instruction source 102 to send instruction
information. Control logic 207 requests information for a number of
instructions equal to the number of empty spaces in the instruction window.
In a preferred embodiment, in effect, control logic 207 determines how many
new instructions can be added to the instruction window, and then requests
sufficient instruction information from instruction source 102 to refill the
empty top slots of the queue. There is a maximum number of instructions
whose information can be sent that is less than the number of spaces in the
window.

In a step 304, actuate write enable and write address, assign tag and
update validity bits. Control logic 207 sends an enable signal on bus 226 and
an address signal on bus 228 to write enable port 218 and write address port
216, respectively. The addresses on each port 216 specify where the
instruction information on the corresponding data port 214 should be stored
in register file 202 during a step 306. Instruction information is sent from
instruction source 102 to register file 202 via bus 103. Typically, the total
number of enable bits on bus 226 equals the maximum number of instructions
whose information can be sent at one time, which in the preferred embodiment

is four.

PCT/US95/04132

10

15

20

25

30

WO 9527247

-17-

The address where each instruction’s information is stored in register
file 202 is specified by the tag of that instruction. Since the data on write data
ports 214 does not always need to be stored in register file 202, control logic
207 uses enable signals on bus 228 to select only the data that needs to be
written. For example; if there is only one empty space at the top of the
instruction window, then control logic 207 will send the tag contained in top
slot 212 of the queue on bus 228 to write address port 216A and assert write
enable port 218A via bus 226. This operation causes only the instruction
information on write data port 214A to be stored in register file 202 in a
location specified by the tag in top slot 212 of tag FIFO 204. If there are two
empty spaces in the instruction window, then control logic 207 will send two
enables to ports 218A and 218B and the two tags at the top of the window will
be sent to write address ports 216A and 216B (the tag in top slot 212 going
to 216B), thus causing the instruction information on ports 214A and 214B to
be stored in register file 202. When an instruction’s information is stored in
a location in register file 202 specified by a tag, the instruction is said to have
been "assigned” that tag. Control logic 207 also updates the validity bits in
tag FIFO 204 during step 304. If instruction source 102 cannot supply an
instruction for every request made in step 302, control logic 207 will only
assert the validity bits of the tags that were assigned to valid instructions in
step 304. For those tags that do not get assigned, their validity bits will
remain unasserted until they are assigned to a valid instruction.

In a step 308, all of the contents of register file 202 are read through
read data ports 224. It is contemplated to use less than all the contents of
register file 202. The data that is to be read from register file 202 is specified
by the addresses presented to register file 202 through read address ports 220.
The data is then used in the execution of some or all of the instructions in the
window. In a preferred embodiment, read address 220 is always asserted. In
other words, there is always a tag in each slot 206.

In a decisional step 310, control logic 207 determines if any of the

instructions executed in step 308 are ready to retire. If no instruction retires,

PCT/US95/04132

10

15

20

WO 95/27247

-18-

data will continue to be read out of register file 202 and the instructions in the
window will continue to be executed, as indicated by the "NO" path 311 of
decisional step 310. If an instruction does retire, control logic 207 will
receive information indicating the number of instructions that are retiring via
bus 234 as shown in a step 312. The information received on bus 234 comes
from a retirement unit (not shown). The details of the retirement unit are not
relevant to carry-out the present invention. (An example, however, of an
instruction retirement unit is disclosed in co-pending U.S. application Ser. No.
07/877,451, filed 5/15/92.) Control logic 207 then indicates, via bus 236,
how many steps tag FIFO 204 should advance.

Referring to Fig. 2, if one instruction retires, then tag FIFO 204 will
advance by one step. Tag 1 will move from bottom 210 to top 212 into Tag
0’s current location, and all other tags will be advanced accordingly. When
Tag 1 is moved from the bottom 210 to the top 212, its validity bit is
deasserted. Tag 1 will be reassigned to the next new instruction to enter the
instruction window. Tag 2 should be located at bottom 210 of tag FIFO 204
after step 312. The operation of tag monitor system 222 will continue by
returning to operational step 302 discussed above via branch 314.

While various embodiments of the present invention have been
described above, it should be understood that they have been presented by way
of example, and not limitation. Thus the breadth and scope of the present
invention should not be limited by any of the above-described exemplary
embodiments, but should be defined only in accordance with the following

claims and their equivalents.

PCT/US95/04132

10

15

20

25

WO 95/27247

-19-

What Is lezimed Is:

1. A method for implementing a variable advance instruction window that
receives and stores in a register file instruction information from a source of
instructions, the method comprising the steps of:

determining how many new instructions can have related instruction
information stored in the register file;

assigning a tag to each new instruction such that the tag of a particular
instruction remains the same while the information related to that instruction
is in the register file;

storing information related to each instruction in the register file in a
location specified by the tag assigned to that instruction, said register file
comprising a plurality of registers, a plurality of read address ports and a
plurality of read data ports;

storing each tag in a slot of a queue, said queue comprising a number
of slots equal to the maximum number of instructions that can have instruction
information in the register file at a given time, wherein the tags are positioned
in the queue in the same order as instruction information for each instruction
is stored in the register file, said queue further comprising a slot output for
each slot, each slot output permitting the tag in the corresponding slot to be
accessed;

accessing one of said slots via the corresponding slot output; and

passing the tag stored in that slot to a particular one of said plurality
of read address ports of the register file to cause the register file to output at
a particular read data port corresponding to said particular read address port,

the information related to the instruction corresponding to that tag.

2. The method according to claim 1, further comprising the step of
advancing said queue a number of slots equal to the number of new

instructions determined to be added to the register file.

PCT/US95/04132

10

15

20

WO 95/27247

-20-

3. The method according to claim 1, wherein said step for storing the

information comprises storing decoded instruction information.

4. The method according to claim 1, wherein said step for storing the

information comprises storing a memory address of the instruction.

5. The method according to claim 3, wherein said step for storing the
decoded instruction information comprises storing information specifying

functional unit requirements.

6. The method according to claim 3, wherein said step for storing the
decoded instruction information comprises storing information specifying a

type of operation to be performed.

7. The method according to claim 3, wherein said step for storing the
decoded instruction information comprises storing information specifying a

storage location where instruction results are to be stored.

8. The method according to claim 3, wherein said step for storing the
decoded instruction information comprises storing information specifying a

storage location where instruction operands are stored.

9. The method according to claim 3, wherein said step for storing the
decoded instruction information comprises storing information specifying a

target address of an instruction.

10. The method according to claim 3, wherein said step for storing the
decoded instruction information comprises storing information specifying

immediate data to be used in an operation specified by the instruction.

PCT/US95/04132

10

15

20

WO 9527247

21-

11. The method according to claim 3, wherein said step for storing the
decoded instruction information comprises storing information specifying

functional unit requirements in a second register file.

12. The method according to claim 3, wherein said step for storing the
decoded instruction information comprises storing information specifying a

type of operation to be performed in a second register file.

13. The method according to claim 3, wherein said step for storing the
decoded instruction information comprises storing information specifying a
storage location where instruction results are to be stored in a second register
file.

14. The method according to claim 3, wherein said step for storing the
decoded instruction information comprises storing information specifying a

storage location where instruction operands are stored in a second register file.

15. The method according to claim 3, wherein said step for storing the
decoded instruction information comprises storing information specifying a

target address of a control flow instruction in a second register file.

16. The method according to claim 3, wherein said step for storing the
decoded instruction information comprises storing information specifying
immediate data to be used in an operation specified by the instruction in a

second register file.

17. The method according to claim 3, further comprising the step of storing
a valid bit for each tag in said queue, wherein when valid bit is set if the

instruction corresponding to the tag associated with the valid bit is valid.

PCT/US95/04132

10

15

20

25

WO 95/27247

22

18. The method according to claim 1, wherein said step for storing the

information comprises storing instructions.

19. A system for implementing a variable advance instruction window,
which receives and stores in a register file instruction information from a
source of instructions, comprising:

control means for determining how many new instructions can have
related instruction information added to the register file and for assigning a tag
to each new instruction such that the tag of a particular instruction remains
constant while the information related to that instruction is in the register file;

the register file, coupled to said control means, for storing information
related to each instruction in a location in said register file, said location
specified by the tag assigned to that instruction, said register file comprising
a plurality of registers forming said locations, a plurality of read address ports,
and a plurality of read data ports, wherein each read address port has a
corresponding read data port;

the recycling queue, coupled to said control means and said register
file, having a plurality of slots, each of said slots containing a unique tag that
corresponds to an address of a location in said register file, said recycling
queue further comprising a slot output for each slot, each slot output
permitting the tag in the corresponding slot to be accessed;

wherein the tag stored in a slot is passed to a particular one of said

plurality of read address ports of the register file to cause the register

file to output at a corresponding read data port, the instruction

information stored in the register file location corresponding to that

tag.

20. The system according to claim 19, wherein said control means
advances said tags in said recycling queue a number of slots equal to the

number of new instructions added to the register file.

PCT/US95/04132

10

15

20

25

WO 95/27247

23-

21. A method for implementing a variable advance instruction window that
receives and stores in a memory element instruction information from a source
of instructions, the method comprising the steps of:

assigning a tag to each new instruction that has related information that
enters into said memofy element, wherein each tag comprises a value
corresponding to a unique address in said memory element;

storing information related to each instruction in said memory element
at the address identified by its corresponding tag;

placing the tag in a slot at the top of a recycling queue such that the
order of tags entering the recycling queue correspond to the order of
instruction information entering said memory element and the order of the tags
in the slots of the recycling queue identify the proper order of instruction
information that is read out of said memory element; and

recycling the tag associated with an executed instruction leaving said
memory element and assigning said recycled tag to a new instruction entering

said memory element.

22. The method of claim 21, further comprising the step of determining

how many new instructions are able to enter the memory element.

23. The method of claim 22, wherein the tag further comprises a validity
bit that signifies whether the tag has been assigned to an instruction that enters

said memory element.

24. A system for implementing a variable advance instruction window,
which receives and stores in a memory element instruction information from
a source of instructions, comprising:

a recycling queue comprising a plurality of slots;

a memory element for storing information related to an instruction at
an address identified by a tag, said memory element further comprising a

plurality of read address ports and a plurality of read data ports;

PCT/US95/04132

10

15

20

25

WO 95/27247

24-

means for assigning a tag to each new instruction that has related
information that enters into said memory element, wherein each tag comprises
a value corresponding to a unique address in said memory element;

means for placing the tag on said recycling queue such that the order
of tags entering the slots of said recycling queue correspond to the order that
instruction information enters said memory element;

means for providing the tag values in said recycling queue to said read
address ports to define the order that the instruction information in said
memory element is read out of said read data ports; and

means for assigning a recycled tag to a new piece of instruction

information that enters said memory element.

25. The system of claim 24, further comprising means for determining how

many new instructions are able to enter the memory element.

26. The system of claim 25, wherein the tag further comprises a validity
bit that signifies whether the tag has been assigned to an instruction that enters

said memory element.

27. A method for implementing a variable advance instruction window that
receives and stores in a register file instruction information from a source of
instructions, the method comprising the steps of:

determining how many new instructions can have related instruction
information stored in the register file;

assigning a tag to each new instruction such that the tag of a particular
instruction remains the same while the information related to that instruction
is in the register file;

storing information related to each instruction in the register file in a
location specified by the tag assigned to that instruction, said register file
comprising a plurality of registers, a plurality of read address ports and a

plurality of read data ports;

PCT/US95/04132

10

15

20

25

30

WO 95/27247

5.

storing each tag in a slot of a queue, said queue comprising a number
of slots equal to the maximum number of instructions that can have instruction
information in the register file at a given time, wherein the tags are positioned
in the queue in the same order as instruction information for each instruction
is stored in the register'ﬁle, said queue further comprising a slot output for
each slot, each slot output permitting the tag in the corresponding slot to be
accessed; and

passing the tags stored in the slots of said queue to the plurality of read
address ports of the register file to cause the register file to output, at the
plurality of read data ports of the register file, the information related to the
instructions in the order that the information related to the instructions were

stored in the register file.

28. A system for implementing a variable advance instruction window,
which receives and stores in a register file instruction information from a
source of instructions, comprising:

control means for determining how many new instructions can have
related instruction information added to the register file and for assigning a tag
to each new instruction such that the tag of a particular instruction remains
constant while the information related to that instruction is in the register file;

the register file, coupled to said control means, for storing information
related to each instruction in a location in the register file, said location
specified by the tag assigned to that instruction, the register file comprising a
plurality of registers forming said locations, a plurality of read address ports,
and a plurality of read data ports, wherein each read address port has a
corresponding read data port;

the recycling queue, coupled to said control means and the register file,
having a plurality of slots, each of said slots containing a unique tag that
corresponds to an address of a location in the register file, said recycling
queue further comprising a slot output for each slot, each slot output

permitting the tag in the corresponding slot to be accessed;

PCT/US95/04132

WO 95/27247 PCT/US95/04132

26-

wherein the tags stored in the slots of said recycling queue are passed
to said plurality of read address ports of the register file to cause the
register file to output, at said plurality of read data ports, the
instruction information stored in the register file in the order that the

instruction information was stored in the register file.

WO 95/27247 PCT/US95/04132

1N /7
102\ 1;3 1047 1052 1067

INSTRUCTION SUPER SCALAR FUNCTIONAL
SOURCE UNIT UNIT

FIG. 1

ol 302

REQUEST NUMBER OF
INSTRUCTION(S) DESIRED
FROM IFU

2 —

ACTUATE WRITE ENABLE AND
WRITE ADDRESS AND ASSIGN TAG

304

314

— WRITE DATA FROM _| /~ 306
IFU TO REGISTER FILE

ol s 308

READ DATA FROM READ PORTS;
ISSUE AND EXECUTE INSTRUCTIONS

310

INSTRUCTIONS
RET)IRE

YES / 312

RECEIVE RETIREMENT STATUS
SIGNAL ADVANCE FIFO

FIG. 3

SUBSTITUTE SHEET (RULE 26)

PCT/US95/04132

WO 95/27247

2/ 7

—— e e G e Gt et e —— — — — — e — t— — — — — — — S oo

¢ O pOL LINN
,—HVIVOS H3dNS
— e e e e e —————————————,r—,— e,
222 WILSAS ovz
-~ HOLINOW OV
A I]
“ ‘ (eE|ER2\AN 902 |
! viva .%qmm voe 1078
_ /-0 0ee / |
_ 714 \ / $3553HAQV [\ WOLLOE ~ v _
!) avay Ole L OVL |
| H31SI19D3Y yae 0ce _
_ 2 OVl _
! € DVl |
I | vie a-v gle 812 a-v v YL
_ v1va s353LaQY S37gVYNI . o< “
| ALIHM ALIHM 311HM - 9 w |
oY _
2oz ez ZHVL |
I
_ 922 822 L0¢ N\ 4 \o VL |
| _
_ e0L~ ollaley ke L _
| JOH1INOD [dO !
! 9g2 J |
L o o e e e e e e e e e e e e e e e . —— — —— - — — — —— — o —— o —] e e e e e = — ——— ——— — — —— — — — — — —
304HNOS SNLYLS

SUBSTITUTE SHEET (RULE 26)

PCT/US95/04132

WO 95/27247

- A

Y0l LINN

,—HVIvOS 43dNS

222 INLSAS ny
-~ HOLINOW 9V eove qove
| (Odid ©vl) 902 |
! £-0 l 0z 02 1Lo07s!
_ vlva avay /-0 A ./ _
! 3714 7 / SISSIHAAQY | _\,_O%P%m\/ v
I H31S1934d ey2Z epze av3ad I OVL
_ 2 OVL
|
! q-y ¥ gy BB g-v d0ce € DVL
| levie - - -
_ v.1va s3ssadaav ST1gvN3 { Z——| v OVl
| 3LIHM ETEI JLIEM S OVl
9 DYL
| ariz | aotz | (azl] Z5v1
| nmomw —eg0r | 2202~ 1 2025 | ke 0 DVL
! 922 — e
" qeot gec — o107 JoL
! 0L~ JOHLNOD 1
_ 9ee
L o e e e e e e b e e e e e e e o e o — — —— —— —— ———— —— —— =] e e e e e e = — s o ——— —
'30HNOS SNLVLS
0l noILonHLSNI [.y pez/ INIWIHILIY

'SUBSTITUTE SHEET (RULE 26)

WO 9527247 PCT/US95/04132

4’7

900N INpuT %0 INPUT

l'\ 502

602

606

=

@) O O
nitintinkls
w N —

2
D

OT1 ~—>504 —~— 604

l/\ 506

SL SL
SLOT2 |~—>508
S

612

f

SL

l’\510

618
LOT3 }~_512 Al SL 616
'F\ 514 620
' 624
SLOT4 }~—516 SLOT4 |~—622
l,\, 518 r\ 626
OUTPUT OUTPUT

FIG. 5 FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 95/27247 PCT/US95/04132

5/7
2
700 \ INPUT 800 \ | /- 80
i'\ 702 l
SLOT1 |p~—704 SLOT1 p—~—1804
<—i/\706 —— 806
\d
SLOT2 p~—708 SLOT?2 {—~_ 808
4——i/\(7 ‘0 l’\mo A
SLOT 3 ~—712 SLOT 3 ~—— 812
‘—{ 714 lr\ 814
SLOT 4 —~—716 SLOT 4 —~—816
i‘\~718 l

OUTPUT

FIG. 7 FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 95/27247 PCT/US95/04132

6/7
INPUT1 INPUT2 INPUT3 INPUT 4 900

—N
910
904 —__|
MUX1 { / 912

914
| | | C

SLOT 1
I

L 020 \ 916

918 Mux2 [|
922
(

SLOT 2

-

r——

I >
926 —/-\EX 3 ’ Y L 924
, f 028
/ 930

SLOT 3
< >
| é 932
r- 938
3
SLOT 4

FIG. 9 o

SUBSTITUTE SHEET (RULE 26)

WO 95/27247 PCT/US95/04132

/7 1000

‘ [
1002

MUX 1 1004

-

i <—1ooe
SLOT 1
+ |
1010 | \. 1008
‘—'\ MUX 2 / 1012
C 1014
v
SLOT 2

Y

‘ C

1018-/\ MUX'3 / (1020
/1022

1016

SLOT 3
l 4——>
L 1024
1026
(1030
SLOT 4

FIG. 10 I \~1032

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Int. .donal Application No

PCT/US 95/04132

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 GO6F9/38

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X IEEE MICRO, 1-8,
vol. 11, no. 3, June 1991 US, 19-21,
page 10-13, 63-73 XP 000237231 24,27,28
V. POPESCU ET AL. 'The Metaflow
Architecture'
see page 63, left column, line 42 - page
64, left column, line 38; figures 2,3
P,X WO-A-94 16385 (SMOS SYSTEMS INC.) 21 July 1-28
1994
see claims 1-10
P,X W0-A-94 16384 (SMOS SYSTEMS INC.) 21 July 1-28
1994
see claims 1-4,10
-)==

m Further documents are listed in the continuation of box C.

m Patent family members are listed in annex.

® Special categories of cited documents :

‘A" document defining the general state of the art which is not
considered to be of particuiar refevance

E’ earlicr document but published on or after the international
filing date

°L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"0" document referring to an oral disclosure, use, exhibition or
other means

"P* document published prior to the international filing date but
later than the priority date claimed

-1

x*

&

later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
gm;ts, such combination being obvious to a person skilled
in the art.

document member of the same patent family

Date of the actual completion of the international search

7 July 1995

Date of mailing of the international search report

10. 08 95

Name and mailing address of the I[SA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Thibaudeau, J

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Ink .ional Application No

PCT/US 95/04132

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

CLIFFS, NEW JERSEY, US
see page 139 - page 142

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A MIKE JOHNSON 'SUPERSCALAR MICRPROCESSOR 1,19,21,
DESIGN' , PRENTICE HALL , ENGLEWOOD 24,27,28

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inw .onal Application No

PCT/US 95/04132

Patent document Publication Patent family Publication
cited in search report date member(s) date
W0-A-9416385 21-07-94 NONE
W0-A~9416384 21-07-94 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

