US 20100228540A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2010/0228540 A1

Bennett

(43) Pub. Date:

Sep. 9, 2010

(54)

(735)

(73)

@
(22)

(63)

METHODS AND SYSTEMS FOR
QUERY-BASED SEARCHING USING SPOKEN
INPUT

Ian M. Bennett, Palo Alto, CA
us)

Inventor:

Correspondence Address:
PATENTBEST

4600 ADELINE ST., #101
EMERYVILLE, CA 94608 (US)

Assignee: PHOENIX SOLUTIONS, INC.,
Palo Alto, CA (US)

Appl. No.: 12/783,969

Filed: May 20, 2010

Related U.S. Application Data

Continuation of application No. 10/653,039, filed on
Aug. 29, 2003, now Pat. No. 7,725,307, which is a
continuation-in-part of application No. 09/439,145,
filed on Nov. 12, 1999, now Pat. No. 6,633,846, which
is a continuation-in-part of application No. 09/439,

SRE:
Client-side 5

Speech

Input

Animated
Character
to Guide
User

157

Speech
Output

Text-to-Speech
Engine
159

 CLIENT-SIDE
S 1807

D

(52)
&7

173, filed on Nov. 12, 1999, now Pat. No. 6,665,640,
which is a continuation-in-part of application No.
09/439,174, filed on Nov. 12, 1999, now Pat. No.
7,050,977, which is a continuation-in-part of applica-
tion No. 09/439,060, filed on Nov. 12, 1999, now Pat.
No. 6,615,172.

Publication Classification

Int. Cl1.

GO6F 17/27 (2006.01)

GI10L 15/04 (2006.01)

US.CL .. 704/9; 704/251; 704/E15.001
ABSTRACT

Systems and methods for query-based searching using spo-
ken input are disclosed. In systems and methods according to
embodiments of the invention, continuous speech natural lan-
guage queries are accepted from a user using a client device.
Speech processing tasks are divided between the client device
and one or more server systems. Once user speech is recog-
nized, the system searches one or more data repositories
containing queries for at least one query that matches the
recognized speech and returns information related to the

query.

SRE:
Server-side 182

Recognized
Speech - Text
Text-to-Query
Converter 184

Database
Processor &
Interface 186

Customized
SQL Query

Natural-
;N Language
Engine 190

Database
188

SERVER-SIDE

US 2010/0228540 A1

Sep. 9,2010 Sheet 1 of 34

Patent Application Publication

08!
JaIS-HIAHIS

3aIS-IN3ND

851

— suibug
a8} : wndino
aseqered yoeedg-ol-mel oo3dS
i 06} auibug |
abenbuen T
-fesneN 751 _."
A1en© 708 s 198N
pezILOoISND apING 0} i
JepoeieyD
areuwiu
98] oeoepalU| parewiuy
B 10S5920.d
eseqeleq
1
8L JeUBAUOD
fend-01-1xo 1L
X8l - yosads | SSE
peziubooay apIs-jusi] nduj
. -34S yosads

=81 opIs-1ones

eI — =
BT

} b4 ot

US 2010/0228540 A1

Sep. 9,2010 Sheet 2 of 34

Patent Application Publication

o

wo“
A

way) BuiAe(dsip Jeije suonewiue J810RIBYD 0 '8

Juabe aoeuelUl
0} }198ys Auadoud ubissy saipadoid juabe jo5)
1a8lqo
108lqo yuis Jersibay uis AnopN seby ajearn

SJUBAS au) a|pueBY 0} YUISAIONIUBDY 2

Je10RIBYD uopdo aoepaU)
Jusbe ayy Mousg °9 1apoereyo usby Jo10RIBYD
0} SPUBIWOD PPY °G 185
@l isenbai pue JONIBS
‘Q| 1810esRYD ‘Oj) JejorIeyd weby jo | | Aresqy woo
ay} jo yyed Buifjioads sourSU) szifemu) “ |
Aq 19101840 8y} pEOT] alEaI 'z
Jueby S peo ‘g

UO0ISSOS JOUIBJU| 1] H Mau uelsS ‘¢

8|puBY UOIOBULOD 0)
snjejs yoeqiied 18g 2

uo1oduL0D
13UI8)U|
uadp 1

yooads
ajeiqies ‘olpne
areiqied

20UB|IS 8)eIqied
» yosads
oleiqied ¢

o1y
uoneinbijuo) 9

laziuBooal
azl|emu|

aZileniul 4s 't

NOLLYOINNINWOD | |

OI907 WILSAS 3AIS-1IN3ITO

Ve 84nbi

US 2010/0228540 A1

Sep. 9,2010 Sheet 3 of 34

oz 1| soe ¥
; ¥4 P Pl
— 0 3|I} elep 90I0A lanlas P
H SLL ysibu3 Mn '/ asuodsal 0} (uonsenb

: P 19/I9S 8y} 10} AN 'E sJasn) eyep

9yl puegs ‘2

LNIOV . "dL1H Buisn

SI 0} ejep passaidwoosap ay} ssed g JoUIBlU| BIA JBAISS 0} pUas 0} 3jgiiedwod

P S1J1 Jey} Os S8JAQ JO Wealls ay) apooud ‘|

; wlioy passaldwoo e

Jlomsue oyl

baid edo -
sseIdwooun 'z () 1senbaiduHuedO : "NOILYDIINNININGD

Ul JoAI9S BU} WOJ} JamsuR
1S9q 8y} 6AI1809Y °|

Patent Application Publication

() peadiousoy : "NOILYIINNWINOD v0c
: P punoj sl 8oUsyis nuUN
902 S10J08A D4 Ol Ydsads Peauod) g
JOAIOS Emt POAIBOBI lomsue
P g passaiduiooap 50IN0S LBIS 2 19poo
¢ Joamsue ay) yeadg g oU} SAI908Y | aledalq "L
(eads : INFOV S (yosads ayy 8zIuBoos)) IYS
02 H3IAYIS WOH4 HAIMSNY 3AIR03H; | 80¢ HO33dS 43asn IAIFD3Y
g00¢ ‘lonuoo Buissaid Aq syeads Jasn usym pue se pajeiiul ss800id siy] "SSo00.d aAleIay UR SI SIY L

OID0TWALSAS 3AIS-INAMD

ge onbi

US 2010/0228540 A1

Sep. 9,2010 Sheet 4 of 34

Patent Application Publication

aoealu| uaby esealey /7

. aoepslU| soBLB|
P | duisAmoN jusby . ;i
L JeisiBeiun 9 198Us ao.a v_c_mz:ozac.mm,q
Pl aseslay ‘G asea|oy v
Juobe aoepolU| aoepalU|
! . layoeieyd spuewwo? P
il peojun g osealon - i P
: led "2 osealay 'L

uonezieniul jo
auny 8y} 1e pajeald
SI YoIYMm UOISSes
JoulBlu| 84} 8S0|D 2

PELVER
Yum paysiiqess
UoN}9aUU0D
oy} ‘o'l 8|puey
1auIBlu| By} 9S0D |

14 %4

yooads
Joy siepeweled
i | auibuipjoy aq |m
] yotym ‘aanjonas ey
i | o} paubisse Liowaw
8y} ajeoojleed 'q

ssaoo0id uonezyenul
aliym pajesald
s103[qo ay} 8y8je(‘B

NOILYOINNWINOD | | 3uS

JIO0TNFLSAS JAIS-LNIINTO

Dc ainbiH

Patent Application Publication Sep. 9,2010 Sheet S of 34 US 2010/0228540 A1

Fig. 2D

Client-side Initialization

tsRge 200A '
1. SR Initialize 2. Calibrate speech & | | :
i || Allocate | Create source & .| Calibrate Silence until |
{ | |[memory 200 |coder objects 221] silence is detected | :
5 i ! 222 : :
i || Load Configuration 3
file 221A /Jonfnguratlog .'31'?3 5
:MS Agent 220B 3. Load MS Agent
1. Initialize 2.Create - | Load the character | | :
COM library »| instance of Agent |, | py specifying path | || :
Pio|228 Server 294 of the character file, $-1-] :
y character ID, and | |{ —4, ¢
b request ID 225(|! :
: |ACS |
: || File |
v 4. Get 5. Add commands 6. Show the | oo5A |
: character .| to Agent character agént character S
: interface 226 option 227 228
7. AgentNotifySink to handle the events 8. Display :
5 Crea_le Agent Register sink Character &
: notify sink - object 230 || execute , :
: object 229 —— specified :
: Animations o33 | :
; Get Agent Assign property i !
: property oa1 > sheet to Agent :
interface <21 232 : ;
i [Communication 220¢
D 2. Set callback 3. Start new HTTP || !
: é'ogg:;ilgr:er;it4 status to the internet session with | | :
— connection 235 the server 236 : :

Patent Application Publication Sep. 9,2010 Sheet 6 of 34 US 2010/0228540 A1

F I g . 3 Encoded

Speech . .

f,f)’m User Client-side It rative Process \'\//;FQ%?SA
Receive User Speech (when User speaks through microphone by clicking :
i | on Start button)
= 240

i SRE | Communication
2 Start . | [1.Encode MFCC | |2.send
> 1. Prepare |—» Source i | |vectors to make it encoded
i | Coder 048 249| |] compatible to datato [
— send at server servenygo| |
using HTTP 251 = i
3. Convert 3. Wait for
speech into response from
MFCC vectors | | s er\eer a
= | 253
Receive Answer (from Server side) 243
' MS AGENT 244 iSpeakBest ||
: 1. Receive 2. Articulate the §sunable Answer| ;
uncompressed Received Answer | :
Answer 254 255] ¢
"""" 245 TEXT-TO-SPEECH ENGINE|
Natural :
Language Voice Text-Eto-$peech
Data File 256 nginé 257
' COMMUNICATION 246 |
1. Receive the 3. Pass
| "Best" Answer 2. Uncompress || Answerto
] from server the Answer MS Agent
1 (compressed) [~ o559 og0 |
258

Best Answer from Server

Patent Application Publication Sep. 9,2010 Sheet 7 of 34 US 2010/0228540 A1

Fig. 4
Client-side Un-Initialization

: SRE 270 §
i1, Delete Objects and 5

il De-allocate Memory 5

a. Deallocate the b. Delete all the :
: il | memory objects created in 5
; i| |assigned to the »| the initialization :
' : Object h0|d|ng process :
: :| |the parameters :
: for speech 273 274 :
E | COMMUNICATION 271
: i 1. Close the Internet 2. Close the
: connection previously Internet Session ' :
: established with created at the time :
server 21_—’ of initialization 54
i [MS AGENT 272 | |
1. Release 2. Release 3. Unload the 4. Release
: Commands »| Character Agent »! sink object P
: Interface P
5 Interface 277 578 279 Interface&g B
' 5. Release 6. Unregister 7. Release :
»| Property Sheet | .| Agent Notify Agent

Interface 281| [sink 282 Interface 283 5

US 2010/0228540 A1

Sep. 9,2010 Sheet 8 of 34

Patent Application Publication

9pIS-1onI8S Je JHS JO
Jusuodwos painquUisiq

v¥09
sjoslqo gyg 03 paubisse

Y09 spoalgo

Aowew sjeoo|es(

3HS °8i8led

»

X3} JO Wioj ay) ul yoeads nmN_cmo"umm

v09

3JHS IZIVILINI-NN

v

gcoo s10109

s 004N Eo“w VED9 soinos
spiom 8z1ubooal TI [BUIDIXD Ly

0] s10]190A LU0} S10}00A

004N Sse8v0.d O04 pesd

H233dS 3ZINDOOI3IY '€

©c09

awreu ajy jewwielb

lewwelr) peo’

A

alweu ajlj Aieuonalg

: sweu
_ i uonoeg

G09 saweu uonoas i seideyn
pue igjdeyo ‘@sin02| i igg Jnoo

Buisn seweu fg¢+———
3|l Jepeo| pue |
Jewwe.b ajedaid

J 3

4209 3209 dco9 sypelqo
WIWH PBOT *—1" (ieuonaig peor L 3ys aeald
K

snem— —‘ Yob-ZaYet
009 s)23lqo 3HS ploy | 9¢09 a2Inog AI<|mqm. Aeig

0} Alowal 81es0||y [ewsixg ajeal) 3YS peoT
=55 JYS 3ZINVILIN| ‘2
009

TOG 1uslo woy
paAladal |
S10J09A DD4IN SJI0J00A
apooag’l| i OJO4W
i pepoou

auwreu a|qe}-uooas
aweu o|qey-19)deyd
aweu gQ-9sInod (8J0N

US 2010/0228540 A1

| /56 956 S56 ‘pIomAay
dN Wolj paAladal SPIoM dN yoes Jaye Aenp () Hv3N yim pajesedess
: 8U1 8101S 0} PalEOO|IE l———{ 1OS Y1 O} PIOM A5) | Aland 1OS 9y} 0} SpIOM
- Aowaw sy} 9814 '9'€ ANV 8jeusjesuo?) 'G'e 89S0y} 81eudleou0) ‘v'e
m -
=] !
N i
= w — €56 dN —
& W 56 dN ay} ul jussaid spiom ay) 2G6
72 ay} ul Juesaud isi le—— {I€ 10} paiinbal se yonw se dN 8y1 Ui Juasald spiom
= piom syl 8o '€g Aowasw ay} 8ye0||Y '2'E Jo Jaquinu 8yt 18y "|L'g
S
o 18l n_z au) ur Juasaid dpN jo Jaquinu o} AjaAnels)l ssesold siy) wioped ‘¢
T B
wnn
156 uswWolels 056 eieopaid SNIVLNOD
(dN) 3SEIUg UNoN 103713S paionssuod sy} Mx <+ 8y} Buisn juswiolels |
alWiBeU 8|qe) 8leus|edsuc) g JOS 1D313S 1onjsuo) |
A1enb JOS pling/eziwoisn)
IS dN®
A1land TOS Jo pling aweN sjqe —

gy 614

Patent Application Publication

Patent Application Publication Sep. 9,2010 Sheet 10 of 34 US 2010/0228540 A1

Fig. 4C

Server-side DBProcess DLL

700 Best Answer ID ;
| m .. _1_@
Databaseg CONNECT TO SQL FETCH ANSWERPATH USING
i i SERVERDATABASE P BeEST ANSWER NUMBER
Name | i
Table | i 5 Build i1 |Receive best record
Name > naer';]zerver Connection | | | number 716A
P ’ —™| string |
database i l
name s41a 711g| i | |Fetehthe | |« Open file using
— path of the path fetched
! i i | Answer from recordset
Connect to the SQL | il I'r:e u§|n% L Read contents
Server Database 7q1¢| || e give of file containing
L=~ :i|record the answer
R L P
: 7168 716C|! !
712 '
i EXECUTE SQL QUERY i Compress answer
SQL Pl .
Query i | Receive SQL Query | i | 2;;gnttra”5m't to16D .
ERg 712A] | /160
Execute the SQL { Record Set 5
Query 710g| |
* Extract total records
from recordset :
* Allocate memory to i SQL
stored paired Query
gquestions i
* Store paired question |
in array 713 | :
... NLOS Databace
; Construct SQL 717
Answer | Query . 710
- ;

...

NP List from NLE

Patent Application Publication Sep. 9,2010 Sheet 11 of 34 US 2010/0228540 A1

Fig. 4D

Note: PQ - Paired Question |nt rfac Logic betwe n
NP- Noun Phrase NLE and DBProcess.DLL Best
Red Line-1/0 Answer
NP list of Number

Paired Questions from DB l PQ
813 GET NP LIsT /815
FOR PAIRED GET BEST ANSWER ID
880 GET NP LIST FOR QUESTION ABest
THE USER'S QUESTION . Answer
Receive the NP List from |\, mper:
Receive the | | Get the PQs from Question i
question L, NP list DBProcess.dll yand PQ
| Jfromclient | using 8134| |||815A Compare NP list
7 agoA| |NLE oo |
: _— 880B || Y i Compare NP of [
Get NP List i user's question with !
o| 45 using NLE i PQfromDBtofind ||
5 : 813B : out the best suitable ;|
2 3) i question present in i |i
g NP List of A] the DB
User's Question NP List [[
Question
Paired Questions
S Yo ¥ ”
{1 900 INITIALIZE GROUPER ; 9b. Tokenize » 9¢. Tag all the
: | RESOURCES . | the words from tokens 909C
| Initialize Initialize | | |the giventext
Token —» Tagger ; 9098
Resources Resources | |
900A 900B | | 1
l——l 9d. Group all
tagged tokens
Initialize Create § to form the NP
Grouper | | Grouper 909D
resources |
900C 900D
{ | 9E. UN-INITIALIZE GROUPER RESOURCES OBJECT AND FREE THE |
’ RESOURCES ’
Free token Free tagger Free grouper NLE
resources > resources > resources :
S09EA 909EB 909EC

US 2010/0228540 A1

Sep. 9,2010 Sheet 12 of 34

Patent Application Publication

0005
3N
dN | i xal 4
uonsanyd uonsanp Eow__z EWMP
palied paited o ©
Y Y
g00s
— {ovpajul 94a/37IN
uonsanp
A 188N
Asnp
PNIsuU0D T
... P TaTe} uondag
, v00s < Jaydeyn
h J asino)
allemsuy Y H0S IdVSi jenes
SUOBIIUNWIWOY

19MSLY 1S9 @— |

sseo0id gd

All[l SIOJ09A
, 204N

papooug

US 2010/0228540 A1

Sep. 9,2010 Sheet 13 of 34

Patent Application Publication

ST g g [hea| [Rhieg| [Eheq|[Zrueg
V-0 v-D V-0 v-0 vo || vo
;ﬁ A 3
801 80L 80Z
“lieg | | Mg | | *ired eil A1 n
...... aed | |..]1% ey red
v-O v-O
‘ : v-O vo || voO
b
107 907 S0Z
uu cHuonosg || Huonoss || YCuonoes | | CCuonoag uonoas Yluoyoag | "] Ctuonoesg || +Huonoes
) T) i)
v mchwamco Tt BOL G dey 0L | Jadeyn
y A
TO0Z
ISHNOD

9614

US 2010/0228540 A1

Sep. 9,2010 Sheet 14 of 34

Patent Application Publication

v80L
SOA ON ON GGe 1eyolep aweNuonoas
SOA ON ON GgGe leydlep V.0,
aweNJaydeyn
Vv90L vS0L Yv0L VYE0L YeoL Vi0L
¢a3IX3IAN| ATY AHYWIHG TINN zIS 3dAl vivQ INVN Q1314

v b1

US 2010/0228540 A1

Sep. 9,2010 Sheet 15 of 34

Patent Application Publication

YeL
SOA ON ON - ale UOIROIIPON 10 31
(573
SBA ON ON - a1e(uoleal) Jo areq
el
SOA ON ON 0S Jeyolep loyeal)d
e
SaA ON ON 562 Jeyorep yiedlamsuy
0gL
(xal1-find) saA ON ON ol xa] uonsenppalied
6cl
SOA ON SOA 562 Jeyorepn Sl Jemsuy
8ez
SOA JNDINN CN GGe JBYJdIEA aweN” uonoes
2L _
SOA 3NODINN ON S ey al 1smsuy
92z
SOA SBA ON labayu| Qi iedeyn
Gcl vel gel 2l 12z 02z
$Q3AX3IAN| ATH AHVYWIHY TINN 3zIg 3adA] viv(q AnvN a3

dZ

paljipous Jo pabueyd useq sey JUsU0d YoIym Uo aje(

~r
o
M~

uoneI PO Jo 8eq

US 2010/0228540 A1

pappe ugaq Sey JUsjuod Yaiym uo sje(q

uoneasn o 8eq

10]e810 JUSU0D JO BWeN 101319
uwn|od snolaaid ay} ul paiols JBIoMSU
suonsanb paje|jal ay) 0} JomMsue ay} SURjUOD YoIym ‘oji} 1xa) Jo yied ay) suiejuon) Uied v
yledlamsuy uwnjog 1xau ayj ul psioys| 0€L
s1 yjed asoym Jamsue paje}s. ay} 1o} suoisanb JO SUOBUIqUIOD 810U IO BUO SUIBIUO0YD) uonssnppaled
lamsue ay} Jo uonduosap Uoys vy 4 9|1 Jamsuy

Sep. 9,2010 Sheet 16 of 34

Aey Arewud speuws aq 0} sey
gemsuy yum Buoje pjay siy| ‘sbuojaq pioosai Jeinoiued sy} ysiym 0} Uol08s JO SWEN

oo
I~

aWweN " uoIoasg

@OUSIUBAUOD 18SN 10} pajuswaIoul Ajjesljewolne - 1abajul uy

N~
I~

aliamsuy

uonduoseq

O
~

pIeld

Patent Application Publication

0/ b

US 2010/0228540 A1

Sep. 9,2010 Sheet 17 of 34

Patent Application Publication

25/
ON ON ON - aleq uones)ipoN—Jo8leq
167 I;
ON ON ON - ayeq uonealn jo 91eq
057
ON ON ON 0S Jeyolepn Jojeal)d
V.
ON ON ON GG2 leysiep Uledq 1amsuy
8V,
(1xa1-IIn4) SOA ON ON 9l xa1 uonssnppalied
vl _
ON ON SOA GG Jeyolep 3l 1emsuy
ovL
SOA SO\ ON G leyn Al lemsuy
5572 7Y 5274 Azl K74 ovZ
a3ax3an| ABVIVIEY TINN 3z1S adA] viv(Q a4

a/ ‘b4

US 2010/0228540 A1

Sep. 9,2010 Sheet 18 of 34

Patent Application Publication

08
yosedg

jo sued
usalb
jo seseiyd
joisn

(s8]
(=,
[oe)

suaxo .
joisn

9

8
Joadnoin

y08

Jobbey

/

S08

¢08
J8ziuexNo

g b4

susyol
1o} yosadg
Jo sued

xa] induj

008

US 2010/0228540 A1

Sep. 9,2010 Sheet 19 of 34

Patent Application Publication

veos

SUdNO |
j03s1

4/

49908
lazAjeuy

V108
JBUWIWIBIS

VY208

6 DI

vo08

SUSY0| PIOM
10} yosoads

10 sped

v&o8

suayo)
PIOM
10} swalg

18ZjUd0

xa] nduj

US 2010/0228540 A1

Sep. 9,2010 Sheet 20 of 34

Patent Application Publication

7101
‘saoe|d £ ‘| anjeaks)y :gpiom

sade|d g ‘uanjealay
saoe|d /| ‘Gonealay

aseqeleq

oL b4

3svav.ivqg

‘sooeid ¢ ‘Lonjeakey : L piom mmeﬁw_ - Jannugns Aisnb oy
i yues jeuondo P pawngal 1S jnsaey
Xopul xoL-nd pue sanjen fay
@O_m~mo Xo]-||h4 QBU.NCB 0 JosmoYy ¥001 A1anb 10 th xal-jiny
€10 - oy Buissed jjeo

Z001) awip NNy

8001

H Josmoy $5900I1d
r——————— - . ga 310 esied E00F Mianb uspumey
" 2101 f > alepljep
1 | suwbugz yoieag “
| _ H3AINOHJ NI 3UAWNOD
" STI0T T 1x31-11N4
! auibug xapu| I 8001
| \ \enp > ANIONT P
| (Vvrror Woddns| | ixas-ynyg N TYNOILYI13Y
_ Buiisnp _ 2001 108
b e e - sg|qe] wajsAg

0L0} eolneS yoless 10S - LOOI TIOT
JoNNSuon 1xa |
uwnjon) @i enbiun Y S 18S ynsay
A.
a|ge] Jasn y
0001
HOSS300Hd

Patent Application Publication Sep. 9,2010 Sheet 21 of 34 US 2010/0228540 A1

Fig. 11A
|

Speech
Recognition of
User's Query 1101

|
v v

|

|
|
: Send Recognized Send Recognized
! Speech to NLE Speech to
! 1107 DBProcess 1102
| v
: Customize SQL Query
[Extract Noun Phrases Construct using NP &
: * Tokenize string SQL Predicates 1103 7

J * Tagtokens ¢

Step 1 of 2€ * Group tokens

) P 1108 Execute SQL
|
| Query 1104
: Y
i Store User's 3
: Query Stored Answers Recordset
: NP in NLE 1109 returned by SQL Full-Text
: Search 1105}

N

|
[Copy User's Query Y
: NP to DBProcess Send Recordset to
| 1110 NLE in form of
|

Array 1106

Patent Application Publication Sep. 9,2010 Sheet 22 of 34 US 2010/0228540 A1

® Fig. 11B

«

A
For each question in Array of
recordset Extract Noun Phrases
* Tokenize string

* Tag tokens

* Group tokens 1111

y

Compute NP for

Question 1112

Last
Question
in Array?
1113

f

stored question ~

Advance to Next Question:
'"Questloni = Question i1

1118

Yes

Compute:
NP

NP

user question 1114

4

Store Answer
1115

Last
Stored
Question?

Advance to Next
Question:

Ques'(ioni =

Question .
+1 1119

Identify stored
question with
maximum NP 1117A

Patent Application Publication

Sep. 9,2010 Sheet 23 of 34

Fig. 11C

|dentify
Matching

Stored
Question

1120

Extract path of
ID for Answer

1121]

l

Extract Answer
from File

1122

Compress and
send to Client

1123

US 2010/0228540 A1

US 2010/0228540 A1

Sep. 9,2010 Sheet 24 of 34

Patent Application Publication

ovzL—T
0821

2 ,m.:..ow ue g | |) I
ki ﬂ - .

10algo ue s11eyAA

ssB|0 91 J9enNSqy Ue auyacy
sS8|0 9seq 19e.41SQy U8 51 TeYAA
Jsoyonnsuod Adoo urejdxg
J0annsuoa Adoo siyeym

i sseja e auyaq

ssgppeuedxg T |

Atouly a0y suonsaub ajgereae o1 Sae FWAMO[[O]

‘uonsanb unoX yse

pue Mou 0s op aseald Meads 01 211D, U0 PayIlo Juaney hok J'p

X0g umopdoip QYIHL Wol lemsue anok 36 0}

| uoRIIS Ay

i 39919s 10U J1 uonsanh INoA jse pue peads 03 Y3110, U DI PUNT'E

] "xoq umopdo.ip

A, ANODIS wol mouy 03 193a4d nok yaym tsydeyd sy 19912s°z

i xaq umopdolp | SyId wol Aenb 1nok Jo ssinaD atp1091es’)L
| -, 1eajo sygnop 1ok Bumsb 10) mn__.r/

!

SSB|J U S11RYAA ™~

L621

dieH sew@ASy 05 meiR wpd and |

| N
; oecl
m b K3 SYF pead O3 ueyly pies M@M
~ smdgsniao)| L ;| 1PUYM O3 USISH 0 A5€3 ST 3] 3
7 - =
4Ix3 .m.Em:c_q‘ SHUIM mN_E\.m:Oﬂﬂ aping _mcrnzo q‘ qs, o gmmmqﬁ wv,:_n_‘: g E«s.wmﬁnc_oﬁ,\ L _.I‘_m>\m.u_:\\wrm vm,mm L'e9/s: rl_\& mmm{ﬁﬁ(—
Uy ew s408|In4 | sjeuueyn Aioisiy m&ﬂw)ﬂu yoiessg awoH ysauad daig L jumeslng o pPeg —
= [T = =) (23] & & & +- =

1310|dx 3 12UIa1U| YOSOIIIW - Wiy abeduiew/ |1 J9a/sblu//gi2 ke €61 £977- A

olcl 002t

US 2010/0228540 A1

Sep. 9,2010 Sheet 25 of 34

Patent Application Publication

diaH 10} aw oBII0D

o8t} Ovd -

:

osel

!

syoog e

saloBayen) asmolg

w09 alISgom
ovEl /
Aunwwo) ue|d a11S asjurIENy) | ssaneS HID /
CmSQEonC/ saon \r:ozo:«.%o_m:_\,_meoom) //
oeel” oter” 00g !

omm—l_\

diaH | ojuf uneooy _

gL b4

US 2010/0228540 A1

Sep. 9,2010 Sheet 26 of 34

Patent Application Publication

dioH 10} aW 10B1U0D

owﬁp\

0291 S58PIA)

09} S0 -

0svi
N spioosy)

21ISNI

6ypl6upl6
yphblie .
@ 'pp oy Wood 8jisgem
INaien} 99999
OviL ppp Inaien}
\ Aunwwo?) ueld als ogjueient)y | SO2IM9S HID /
CQ:&EOO% sa9 co_uo:<%o_m3_>_F s)oog /
AL , —J
\ | ozt 0wk ooy}
06YL" hep—{ dieH | oju} Junoooy |

tL bl

US 2010/0228540 A1

Sep. 9,2010 Sheet 27 of 34

Patent Application Publication

dieH 10} sw 10BILOD

ovsi

W09 8)ISqoM

ommr//

splooay

~

Aunwwon ue|d s asjueIENy) | S9OIMSS YD /
1eiIndwo) | sg) | uondony [oisny | syoog
NG I i) LD D B Ny
0¢s| 0]8<]

0£s Fl_

dieH

| o :803

Gl b4

US 2010/0228540 A1

Sep. 9,2010 Sheet 28 of 34

Patent Application Publication

diaH 10} 8w 10BIU0D

) 2]

wOod'a)iIsgom /

0991~ ﬁ||,t®9_< -]

0991
J

SISy

Anunwwon UBld AIIS sojueieny | s8oMIBS YD /
saindwoy | sg) | uondny | oisny | syoog
ﬁ % A %\ y(— _J /Oom_,
0c9l 0191

0es —_

disH

_ oju| _E:ooo<_

91 b4

US 2010/0228540 A1

i 0BLL
w %v__%&m_yo:_m_,,m*_g
L staawpsydAmdAibluyl

i

mav»_v__aa&m_\so:_m.: (pay
xge_hxw_haiaa_m_e_:

0LLF gunqy o

R G

091

i

dieH 10} sw oRUoD

i

vwnqy

Sep. 9,2010 Sheet 29 of 34

052 1|
™ sapL

@ W02 8lISgom

orLl
Ajunwwon ue|d g agjuelent) $3JIAIBS HIH /

CE:QEQO san &(co:o:,q%o_m:_\,_%mv_oom) 0021
oze1”” ok

08/ F_ disH | oju] Junoooy _

ZL b4

Patent Application Publication

US 2010/0228540 A1

Sep. 9,2010 Sheet 30 of 34

Patent Application Publication

0061
siybiy

JO |lI INCA »

['e-T SN pues »

0881 SO0I0AUf.

Xe}] soeg.
suondp

usWAed «

0/81
apIiny Alunwwo)

0981 piomssed Jo ssaippy
[lew-3 inoA abueyn «
suonduosSgns JINOA MBIA »
SJ8PIO INOA MBIA

uNoooY
oA ebeuey 0} MOH «

2 JUNOJJY
apINy S ,18]18S «
apIng s Jappig «
pauels bumen «

" puoAag pue WOY BUSYSM «
SOJUOIJOB|T «

sawen) 9 SA0| «

SINOY-QO pue $3j00q Olpny «
AAQ PUE SHA ‘08pIA «

£oijod suinay N0«
abeyoed INoA Buoes] «
0S8 SeIoNod pue sajey «

0V81

SjuBY2IBN BUI-UQ JaylQ »
SOeOYINED YD) »

009 JUlid-JO-IN0
Angejieay g buioud .
NOUD-HID 1O HOUD-1 BIA
e Buiddoys eip «

sgD JISN =
0E81 $)00g
0B8T |ouedsy :
us BpnAy «
uoljewIOU

oc_ommw_ spie)) Buipusg «
Aiunod se|dwes punog o} Bulusysi «

foljod Aoeaud woa apsqap

apin) fuiddoysg ajeg .
suonsanp paysy Ajjuenbai «
ozar SIONSIA WI] 181«

uoljewlou| Juepodwy JsyiQ «
S19SN [BUOHBUISIU| JO »

OJu| JuswAed »

digH uonony «

JUNOJDY INOA »

Buiddiyg «

BupspiQ «

sdi] yoseag.

OT8T SIOMSIA owi] 1siide

081

abed awoH
woo'a)IsSgam

V8l

bi

dieH

US 2010/0228540 A1

Sep. 9,2010 Sheet 31 of 34

Patent Application Publication

0c61 .| [0g8T | 0r6t m

i | 061 6

L _ '+ M

Koljod Aoentd speojumoq Buog

W05 BUSTE % so|dweg punos spies Buipuss |

Hsasm 0} Bulusisn . T 1anoosiq ‘prenualse ‘esip 1deosoe apn, L

89\
siied 1afsuy - uonseny
omm—/
0S61
{SAAa
pue S8)18SSBJ08PIA INOA ale Jeuwlio) JeUM "6
¢48pIo 0981

| 810j0Qq 8w 10§ aoud Sy} WU NOA ue) ;Wa) adoing
siyy jo ANjigejieAe ey) Inode oW |9} noA ued 'g B N 8yl ul siswiolsny 'g
& W9l SIyl Incge a10w awl |9} asesld noA uen /2 sdi] uonebinen "2

¢ sbupoud-siw (noge op noA op leym ‘g Adljod
ov6t ;Ao110d suinas InoA Jnoge Jeym s foeand ¢siybiy Jo g ‘9
£$)00q uld-Jo-1N0 J18pI0 | Op MOH '+ 18pIQ Ue 89e|d 'S
;seasiano diys noA op Bupug ¢
puy ¢Buiddoys 1o} sbireyd noA op yonw moH '€ asjueIeny AIIN2aS ‘£
spleoupaio AW esn oy aes 1is| 2 sawy] Asalleg ‘2
it £1daooe noA op sjuswiAed Jo SWOy JBUM 'L JUBAA NOA JBUM pUId "L

a9juBIEND
Buiddoys sjes Ov4 SIONSIA swWi] isiid

g8l biH

Patent Application Publication Sep. 9,2010 Sheet 32 of 34 US 2010/0228540 A1

Fig. 19

Computing Semantic Distance
between User Query and Stored Qu estion

Metric #1 - Compute Similarity Metric, T
Z Wk Wi
T =cos (Vug, V) = Similarity (UQ,R) = : el :
w 2 w 2
—1996 \/g(uqk) §(rk)

l

Metric #2 - Compute Coverage Metric, C

C = the percentage of the number of terms in the
user question that appear in each of the records
returned by the SQL search.

1997

Metric #3 - Compute Semantic Distance Metric, W

W= sem (T, T,)= I(q,d) +1(d,q)

[To 1 +1T4 |

Composite Metric = M ~ Semantic Distance

M=(tT+cC+wW)
t+c+w)

1995

where t, ¢, w are weights for
1999 each T, C and W respectively

Patent Application Publication Sep. 9,2010 Sheet 33 of 34 US 2010/0228540 A1

Fig. 20

Populating the Speech Lattice with
Semantically Variant Questions

Input User
question (UQ)
2010

Y

Parse (UQ) into parts of
speech (POS)

l

Extract synonyms for each
parsed word

2020

2030

2000

Y

Prepare random questions
using parsed words
2040

Y
Verify & obtain
disambiguated set of
questions using WSD
2050 methods

Y

Create speech lattice using
disambiguated sets of variant

2060 questions

Buisssooid onuewsas
JONPIOAA 0} 06 uayy Huel awes sy aary suonsenb g uey; aiow :A i
Od
10 pn) uonsanb pslog|as ay) 01 Bulpuodsallod lomsue ayl uINdY ‘9
Od P3199|9s Yum 9 dajs 0} 0r) 21008
uwmcm_r_ Byl Ulim Dd 24l 19919S DN 2y} pue sPHd dU) Uoam}aq
SUJ9A ‘SdN 8y} Jo suosiuedwod op usy| ‘yseeds JO sued snoleA
ay) o) Jasred 3N Buisn sd Buiurews. syy esoduwiodsep moN ‘g
annosipe "6°8 yoeads jo yed xau
o} yIm ¢ Jeadal usy) | < SIS Ynsal ay ji 9s|3 o
gdaisojobuayl | ==sl1asynsarayly °q
‘g days 0} 06 pue sy Dd
snoinaid ay) 0} HaABI UBY} O == S1)aS JNsa1 dy})| ‘B 0012

US 2010/0228540 A1

sqlanpy
usy} ‘saniasipy usy) ‘sqiap b-a - yosads Jo ped pauiajaid \
1Xau 8y} 404 ajeoipaid SNIVLNOD 2yl Buisn jos ynsai ay) anp 4
y'dejsojob uayy | <sliasynsal syl ji sy p
9 awﬁ ojob uay} | ==sI}os ynsai 8y} | 2
(yorew yoaap ou)
Buissasoid ozcmEmm J9NpIop 01 0B ‘winjarou i1 - 883 'q
1X31334d 8snuayj 0 == sl jos ynsas ay} §| e
SUNON
pue sdN 40} areoipaid SNIVLNOD aul Buisn aseqgelep a1 Alend ‘e
Aelie oljul 210is pue
yoeads jo sued Jayio ncm squan ‘seselyd unou ol PN esodwodsg g
9 dajs 01 ob ‘yoyew e s alayy §|
'ON 10eXe 8y} 10} Sm.o_voa 3N 2ul Buisn eseqerep ay1 Aient) 1

Sep. 9,2010 Sheet 34 of 34

Buissanold abenbBue |einjeN pased-onuewas
pue -soyisiels :wypiobly 3N pajesbaju)

Buissasold paseq-sonsnels
pue -dljuewag paseq-1oaNpPIOA S2UIqWOD Jeyl wyiliobly SON paelbajuj

Lz ‘b1

Patent Application Publication

US 2010/0228540 Al

METHODS AND SYSTEMS FOR
QUERY-BASED SEARCHING USING SPOKEN
INPUT

RELATED APPLICATIONS

[0001] The present application claims priority to and is a
continuation-in-part of all of the following applications:

[0002] 1) Ser. No. 09/439,145 entitled Distributed Real
Time Speech Recognition System, attorney docket no.
PHO 99-001;

[0003] 2) Ser. No. 09/439,173 entitled Speech Based
Learning/Training System, attorney docket no. PHO
99-002;

[0004] 3) Ser. No. 09/439,174 entitled Internet Server
with Speech Support for Enhanced Interactivity—attor-
ney docket no. PHO 99-003;

[0005] 4) Ser. No. 09/439,060 entitled Intelligent Query
Engine For Processing Voice Based Queries—attorney
docket no. PHO 99-004, now U.S. Pat. No. 6,615,172;

[0006] The above are hereby incorporated by reference
herein.

FIELD OF THE INVENTION
[0007] The invention relates to a system and an interactive

method for rapidly and accurately processing speech queries
through the use of statistical processing and semantic decod-
ing. The system is particularly applicable to INTERNET
based applications for e-learning, e-commerce, e-support,
search engines and the like, so that a user can intelligently
engage in a real-time question/answer session that emulates a
human dialog experience.

BACKGROUND OF THE INVENTION

[0008] The INTERNET, and in particular, the World-Wide
Web (WWW), is growing in popularity and usage for both
commercial and recreational purposes, and this trend is
expected to continue. This phenomenon is being driven, in
part, by the increasing and widespread use of personal com-
puter systems and the availability of low cost INTERNET
access.

[0009] The emergence of inexpensive INTERNET access
devices and high speed access techniques such as ADSL,
cable modems, satellite modems, and the like, are expected to
further accelerate the mass usage of the WWW.

[0010] Accordingly, it is expected that the number of enti-
ties offering services, products, etc., over the WWW will
increase dramatically over the coming years. Until now, how-
ever, the INTERNET “experience” for users has been limited
mostly to non-voice based input/output devices, such as key-
boards, intelligent electronic pads, mice, trackballs, printers,
monitors, etc. This presents somewhat of a bottleneck for
interacting over the WWW for a variety of reasons.

[0011] First, there is the issue of familiarity. Many kinds of
applications lend themselves much more naturally and flu-
ently to a voice-based environment. For instance, most people
shopping for audio recordings are very comfortable with
asking a live sales clerk in a record store for information on
titles by a particular author, where they can be found in the
store, etc. While it is often possible to browse and search on
one’s own to locate items of interest, it is usually easier and
more efficient to get some form of human assistance first, and,
with few exceptions, this request for assistance is presented in
the form of a oral query. In addition, many persons cannot or

Sep. 9, 2010

will not, because of physical or psychological barriers, use
any of the aforementioned conventional I/O devices. For
example, many older persons cannot easily read the text pre-
sented on WWW pages, or understand the layout/hierarchy of
menus, or manipulate a mouse to make finely coordinated
movements to indicate their selections. Many others are
intimidated by the look and complexity of computer systems,
WWW pages, etc., and therefore do not attempt to use online
services for this reason as well.

[0012] Thus, applications which can mimic normal human
interactions are likely to be preferred by potential on-line
shoppers and persons looking for information over the
WWW. It is also expected that the use of voice-based systems
will increase the universe of persons willing to engage in
e-commerce, e-learning, etc. To date, however, there are very
few systems, if any, which permit this type of interaction, and,
ifthey do, it is very limited. For example, various commercial
programs sold by IBM (VIAVOICE™) and Kurzweil
(DRAGON™) permit some user control of the interface
(opening, closing files) and searching (by using previously
trained URLs) but they do not present a flexible solution that
can be used by a number of users across multiple cultures and
without time consuming voice training. Typical prior efforts
to implement voice based functionality in an INTERNET
context can be seen in U.S. Pat. No. 5,819,220 incorporated
by reference herein.

[0013] Another issue presented by the lack of voice-based
systems is efficiency. Many companies are now offering tech-
nical support over the INTERNET, and some even offer live
operator assistance for such queries. While this is very advan-
tageous (for the reasons mentioned above) it is also extremely
costly and inefficient, because a real person must be
employed to handle such queries. This presents a practical
limit that results in long wait times for responses or high labor
overheads. An example of this approach can be seen U.S. Pat.
No. 5,802,526 also incorporated by reference herein. In gen-
eral, a service presented over the WWW is far more desirable
ifitis “scalable,” or, in other words, able to handle an increas-
ing amount of user traffic with little if any perceived delay or
troubles by a prospective user.

[0014] In a similar context, while remote learning has
become an increasingly popular option for many students, it
is practically impossible for an instructor to be able to field
questions from more than one person at a time. Even then,
such interaction usually takes place for only a limited period
of time because of other instructor time constraints. To date,
however, there is no practical way for students to continue a
human-like question and answer type dialog after the learning
session is over, or without the presence of the instructor to
personally address such queries.

[0015] Conversely, another aspect of emulating a human-
like dialog involves the use of oral feedback. In other words,
many persons prefer to receive answers and information in
audible form. While a form of this functionality is used by
some websites to communicate information to visitors, it is
not performed in a real-time, interactive question-answer dia-
log fashion so its effectiveness and usefulness is limited.
[0016] Yet another area that could benefit from speech-
based interaction involves so-called “search” engines used by
INTERNET users to locate information of interest at web
sites, such as the those available at YAHOO®.com, METAC-
RAWLER®.com, EXCITE®.com, etc. These tools permit
the user to form a search query using either combinations of
keywords or metacategories to search through a web page

US 2010/0228540 Al

database containing text indices associated with one or more
distinct web pages. After processing the user’s request, there-
fore, the search engine returns a number of hits which corre-
spond, generally, to URL pointers and text excerpts from the
web pages that represent the closest match made by such
search engine for the particular user query based on the search
processing logic used by search engine. The structure and
operation of such prior art search engines, including the
mechanism by which they build the web page database, and
parse the search query, are well known in the art. To date,
applicant is unaware of any such search engine that can easily
and reliably search and retrieve information based on speech
input from a user.

[0017] There are a number of reasons why the above envi-

ronments (e-commerce, e-support, remote learning, INTER-

NET searching, etc.) do not utilize speech-based interfaces,

despite the many benefits that would otherwise flow from

such capability. First, there is obviously a requirement that the
output of the speech recognizer be as accurate as possible.

One of the more reliable approaches to speech recognition

used at this time is based on the Hidden Markov Model

(HMM)—a model used to mathematically describe any time

series. A conventional usage of this technique is disclosed, for

example, in U.S. Pat. No. 4,587,670 incorporated by refer-
ence herein. Because speech is considered to have an under-
lying sequence of one or more symbols, the HMM models
corresponding to each symbol are trained on vectors from the
speech waveforms. The Hidden Markov Model is a finite set
of states, each of which is associated with a (generally multi-
dimensional) probability distribution. Transitions among the
states are governed by a set of probabilities called transition
probabilities. In a particular state an outcome or observation
can be generated, according to the associated probability
distribution. This finite state machine changes state once
every time unit, and each time t such that a state j is entered,

a spectral parameter vector O, is generated with probability

density B(O,). It is only the outcome, not the state visible to

an external observer and therefore states are “hidden” to the
outside; hence the name Hidden Markov Model. The basic
theory of HMMs was published in a series of classic papers by

Baum and his colleagues in the late 1960’s and early 1970’s.

HMMs were first used in speech applications by Baker at

Carnegie Mellon, by Jelenik and colleagues at IBM in the late

1970’s and by Steve Young and colleagues at Cambridge

University, UK in the 1990’s. Some typical papers and texts

are as follows:

[0018] 1. L. E. Baum, T. Petrie, “Statistical inference for
probabilistic functions for finite state Markov chains”,
Ann. Math. Stat., 37: 1554-1563, 1966

[0019] 2.L.E.Baum, “An inequality and associated maxi-
mation technique in statistical estimation for probabilistic
functions of Markov processes”, Inequalities 3: 1-8, 1972

[0020] 3. J. H. Baker, “The dragon system—An Over-

view”, IEEE Trans. on ASSP Proc., ASSP-23(1): 24-29, Feb-

ruary 1975

[0021] 4. F. Jeninek et al, “Continuous Speech Recogni-
tion: Statistical methods™ in Handbook of Statistics, I, P.
R. Kristnaiad, Ed. Amsterdam, The Netherlands, North-
Holland, 1982

[0022] 5.L.R.Bahl,F.Jeninek, R. L. Mercer, “A maximum
likelihood approach to continuous speech recognition”,
IEEE Trans. Pattern Anal. Mach. Intel., PAMI-5: 179-190,
1983

Sep. 9, 2010

[0023] 6. J. D. Ferguson, “Hidden Markov Analysis: An
Introduction”, in Hidden Markov Models for Speech, Insti-
tute of Defense Analyses, Princeton, N.J. 1980.

[0024] 7.H.R.Rabiner and B. H. Juang, “Fundamentals of
Speech Recognition”, Prentice Hall, 1993

[0025] 8. H. R. Rabiner, “Digital Processing of Speech
Signals”, Prentice Hall, 1978

[0026] More recently research has progressed in extending

HMM and combining HMMs with neural networks to speech

recognition applications at various laboratories. The follow-

ing is a representative paper:

[0027] 9. Nelson Morgan, HervéBourlard, Steve Renals,
Michael Cohen and Horacio Franco (1993), Hybrid Neural
Network/Hidden Markov Model Systems for Continuous
Speech Recognition. Journal of Pattern Recognition and
Artificial Intelligence, Vol. 7, No. 4 pp. 899-916. Also in .
Guyon and P. Wang editors, Advances in Pattern Recogni-
tion Systems using Neural Networks, Vol. 7 of a Series in
Machine Perception and Artificial Intelligence. World Sci-
entific, February 1994.

[0028] All of the above are hereby incorporated by refer-
ence. While the HMM-based speech recognition yields very
good results, contemporary variations of this technique can-
not guarantee a word accuracy requirement of 100% exactly
and consistently, as will be required for WWW applications
for all possible all user and environment conditions. Thus,
although speech recognition technology has been available
for several years, and has improved significantly, the techni-
cal requirements have placed severe restrictions on the speci-
fications for the speech recognition accuracy that is required
for an application that combines speech recognition and natu-
ral language processing to work satisfactorily.

[0029] In contrast to word recognition, Natural language

processing (NLP) is concerned with the parsing, understand-

ing and indexing of transcribed utterances and larger linguis-
tic units. Because spontaneous speech contains many surface
phenomena such as distluencies,—hesitations, repairs and
restarts, discourse markers such as ‘well” and other elements
which cannot be handled by the typical speech recognizer, it
is the problem and the source of the large gap that separates
speech recognition and natural language processing tech-
nologies. Except for silence between utterances, another
problem is the absence of any marked punctuation available
for segmenting the speech input into meaningful units such as
utterances. For optimal NLP performance, these types of
phenomena should be annotated at its input. However, most
continuous speech recognition systems produce only a raw
sequence of words. Examples of conventional systems using

NLP are showninU.S. Pat. Nos. 4,991,094, 5,068,789, 5,146,

405 and 5,680,628, all of which are incorporated by reference

herein.

[0030] Second, most of the very reliable voice recognition

systems are speaker-dependent, requiring that the interface be

“trained” with the user’s voice, which takes a lot of time, and

is thus very undesirable from the perspective of a WWW

environment, where a user may interact only a few times with

a particular website. Furthermore, speaker-dependent sys-

tems usually require a large user dictionary (one for each

unique user) which reduces the speed of recognition. This
makes it much harder to implement a real-time dialog inter-
face with satisfactory response capability (i.e., something that
mirrors normal conversation—on the order of 3—5 seconds
is probably ideal). At present, the typical shrink-wrapped
speech recognition application software include offerings

US 2010/0228540 Al

from IBM (VIAVOICE™) and Dragon Systems
(DRAGON™), While most of these applications are
adequate for dictation and other transcribing applications,
they are woefully inadequate for applications such as NLQS
where the word error rate must be close to 0%. In addition
these offerings require long training times and are typically
are non client-server configurations. Other types of trained
systems are discussed in U.S. Pat. No. 5,231,670 assigned to
Kurzweil, and which is also incorporated by reference herein.

[0031] Another significant problem faced in a distributed
voice-based system is a lack of uniformity/control in the
speech recognition process. In a typical stand-alone imple-
mentation of a speech recognition system, the entire SR
engine runs on a single client. A well-known system of this
type is depicted in U.S. Pat. No. 4,991,217 incorporated by
reference herein. These clients can take numerous forms
(desktop PC, laptop PC, PDA, etc.) having varying speech
signal processing and communications capability. Thus, from
the server side perspective, it is not easy to assure uniform
treatment of all users accessing a voice-enabled web page,
since such users may have significantly disparate word rec-
ognition and error rate performances. While a prior art refer-
ence to Gould et al.—U.S. Pat. No. 5,915,236—discusses
generally the notion of tailoring a recognition process to a set
of available computational resources, it does not address or
attempt to solve the issue of how to optimize resources in a
distributed environment such as a client-server model. Again,
to enable such voice-based technologies on a wide-spread
scale it is far more preferable to have a system that harmo-
nizes and accounts for discrepancies in individual systems so
that even the thinnest client is supportable, and so that all
users are able to interact in a satisfactory manner with the
remote server running the e-commerce, e-support and/or
remote learning application.

[0032] Two references that refer to a distributed approach
for speech recognition include U.S. Pat. Nos. 5,956,683 and
5,960,399 incorporated by reference herein. In the first of
these, U.S. Pat. No. 5,956,683—Distributed Voice Recogni-
tion System (assigned to Qualcomm) an implementation of a
distributed voice recognition system between a telephony-
based handset and a remote station is described. In this imple-
mentation, all of the word recognition operations seem to take
place at the handset. This is done since the patent describes
the benefits that result from locating of the system for acoustic
feature extraction at the portable or cellular phone in order to
limit degradation of the acoustic features due to quantization
distortion resulting from the narrow bandwidth telephony
channel. This reference therefore does not address the issue of
how to ensure adequate performance for a very thin client
platform. Moreover, it is difficult to determine, how, if at all,
the system can perform real-time word recognition, and there
is no meaningful description of how to integrate the system
with a natural language processor.

[0033] The second of these references—U.S. Pat. No.
5,960,399—Client/Server Speech Processor/Recognizer (as-
signed to GTE) describes the implementation of a HMM-
based distributed speech recognition system. This reference
is not instructive in many respects, however, including how to
optimize acoustic feature extraction for a variety of client
platforms, such as by performing a partial word recognition
process where appropriate. Most importantly, there is only a
description of a primitive server-based recognizes that only
recognizes the user’s speech and simply returns certain key-
words such as the user’s name and travel destination to fill out

Sep. 9, 2010

adedicated form on the user’s machine. Also, the streaming of
the acoustic parameters does not appear to be implemented in
real-time as it can only take place after silence is detected.
Finally, while the reference mentions the possible use of
natural language processing (column 9) there is no explana-
tion of how such function might be implemented in a real-
time fashion to provide an interactive feel for the user.
[0034] Companies such as Nuance Communications and
Speech Works which up till now are the leading vendors that
supply speech and natural language processing products to
the airlines and travel reservations market, rely mainly on
statistical and shallow semantics to understand the meaning
of what the users says. Their successful strategy is based on
the fact that this shallow semantic analysis will work quite
well in the specific markets they target. Also to their advan-
tage, these markets require only a limited amount to language
understanding.

[0035] For future and broader applications such as cus-
tomer relationship management or intelligent tutoring sys-
tems, a much deeper understanding of language is required.
This understanding will come from the application of deep
semantic analysis. Research using deep semantic techniques
is today a very active field at such centers as Xerox Palo Alto
Research Center (PARC), IBM, Microsoft and at universities
such as Univ. of Pittsburg [Litman, 2002], Memphis
[Graesser, 2000], Harvard [Grosz, 1993] and many others.
[0036] In atypical language understanding system there is
typically a parser that precedes the semantic unit. Although
the parser can build a hierarchical structure that spans a single
sentence, parsers are seldom used to build up the hierarchical
structure of the utterances or text that spans multiple sen-
tences. The syntactic markings that guide parsing inside a
sentence is either weak or absent in a typical discourse. So for
a dialog-based system that expects to have smooth conversa-
tional features, the emphasis of the semantic decoder is not
only on building deeper meaning structures from the shallow
analyses constructed by the parser, but also on integrating the
meanings of the multiple sentences that constitute the dialog.
[0037] Up till now there are two major research paths taken
in deep semantic understanding of language: informational
and intentional. In the informational approach, the focus is on
the meaning that comes from the semantic relationships
between the utterance-level propositions (e.g. effect, cause,
condition) whereas with the intentional approach, the focus is
on recognizing the intentions of the speaker (e.g. inform,
request, propose).

[0038] Work following the informational approach focuses
on the question of how the correct inferences are drawn dur-
ing comprehension given the input utterances and back-
ground knowledge. The earliest work tried to draw all pos-
sible inferences [Reiger, 1974; Schank, 1975; Sperber &
Wilson, 1986] and in response to the problem of combinato-
rial explosion in doing so, later work examined ways to con-
strain the reasoning [Delong, 1977; Schank et al., 1980;
Hobbs, 1980]. In parallel with this work, the notions of con-
versational implicatures (Grice, 1989) and accomodation
[Lewis, 1979] were introduced. Both are related to inferences
that are needed to make a discourse coherent or acceptable.
These parallel lines of research converged into abductive
approaches to discourse interpretation [e.g., Appelt & Pol-
lack, 1990; Charniak, 1986; Hobbs et al., 1993; McRoy &
Hirst, 1991; Lascarides & Asher, 1991; Lascarides & Ober-
lander, 1992; Rayner & Alshawi, 1992]. The informational
approach is central to work in text interpretation.

US 2010/0228540 Al

[0039] The intentional approach draws from work on the
relationship between utterances and their meaning [Grice,
1969] and work on speech act theory [Searle, 1969] and
generally employs artificial intelligence planning tools. The
early work considered only individual plans [e.g., Power,
1974; Perrault & Allen, 1980; Hobbs & Evans, 1980; Grosz&
Sidner, 1986; Pollack, 1986] whereas now there is progress
on modeling collaborative plans with joint intentions [Grosz
& Kraus, 1993; Lochbaum, 1994]. It is now accepted that the
intentional approach is more appropriate for conversational
dialog-based systems since the collaborative aspect of the
dialog has to be captured and retained.
[0040] Present research using deep semantic techniques
may employ a semantic interpreter which uses prepositions as
its input propositions extracted by semantic concept detectors
of'a grammar-based sentence understanding unit. It then com-
bines these propositions from multiple utterances to form
larger units of meaning and must do this relative to the context
in which the language was used.

[0041] In conversational dialog applications such as an

intelligent tutoring system (I'TS), where there is a need for a

deep understanding of the semantics of language, hybrid

techniques are used. These hybrid techniques combine statis-
tical methods (e.g., Latent Semantic Analysis) for comparing

student inputs with expected inputs to determine whether a

question was answered correctly or not [e.g., Graesser et al.,

1999] and the extraction of thematic roles based on the

FrameNet [Baker, et al, 1998] from a student input [Gildea &

Jurafsky, 2001].

[0042] The aforementioned cited articles include:

[0043] Appelt, D. & Pollack, M. (1990). Weighted abduc-
tion for plan ascription. Menlo Park, Calif.: SRI Interna-
tional. Technical Note 491.

[0044] Baker, Collin F., Fillmore, Charles J., and Lowe,
John B. (1998): The Berkeley FrameNet project. I Pro-
ceedings of the COLING-ACL, Montreal, Canada.

[0045] Charniak, E. (1993). Statistical Language Analysis.
Cambridge: Cambridge University Press.

[0046] Daniel Gildea and Daniel Jurafsky. 2002. Automatic
Labeling of Semantic Roles. Computational Linguistics
28:3, 245-288.

[0047] Delong, G. (1977). Skimming newspaper stories by
computer. New Haven, Conn.: Department of Computer
Science, Yale University. Research Report 104.

[0048] FrameNet: Theory and Practice. Christopher R.
Johnson et al, http:/www.icsi.berkeley.edu/~framenet/
book/book.html

[0049] Graesser, A. C., Wiemer-Hastings, P., Wiemer-Hast-
ings, K., Harter, D., Person, N., and the TRG (in press).
Using latent semantic analysis to evaluate the contributions
of students in AutoTutor. Interactive Learning Environ-
ments.

[0050] Graesser, A., Wiemer-Hastings, K., Wiemer-Hast-
ings, P., Kreuz, R., & the Tutoring Research Group (2000).
AutoTutor: A simulation of a human tutor, Journal of Cog-
nitive Systems Research, 1,35-51.

[0051] Grice, H. P. (1969). Utterer’s meaning and inten-
tions. Philosophical Review, 68(2):147-177.

[0052] Grice, H. P. (1989). Studies in the Ways of Words.
Cambridge, Mass.: Harvard University Press.

[0053] Grosz, B. & Kraus, S. (1993). Collaborative plans
for group activities. In Proceedings of the Thirteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI
’93), Chambery, France (vol. 1, pp. 367-373).

Sep. 9, 2010

[0054] Grosz, B. J. & Sidner, C. L. (1986). Attentions,
intentions and the structure of discourse. Computational
Linguistics, 12, 175-204.

[0055] Hobbs, J. & Evans, D. (1980). Conversation as
planned behavior. Cognitive Science 4(4), 349-377.

[0056] Hobbs, J. & Evans, D. (1980). Conversation as
planned behavior. Cognitive Science 4(4), 349-377.

[0057] Hobbs, I., Stickel, M., Appelt, D., & Martin, P.
(1993). Interpretation as abduction. Artificial Intelligence
63(1-2), 69-142.

[0058] Lascarides, A. & Asher, N. (1991). Discourse rela-
tions and defeasible knowledge. In Proceedings of the 29th
Annual Meeting of the Association for Computational Lin-
guistics (ACL *91), Berkeley, Calif. (pp. 55-62).

[0059] Lascarides, A. & Oberlander, J. (1992). Temporal
coherence and defeasible knowledge. Theoretical Linguis-
tics, 19.

[0060] Lewis,D.(1979).Scorekeepinginalanguage game.
Journal of Philosophical Logic 6,339-359.

[0061] Litman, D. J., Pan, Shimei, Designing and evaluat-
ing an adaptive spoken dialogue system, User Modeling
and User Adapted Interaction, 12,2002.

[0062] Lochbaum, K. (1994). Using Collaborative Plans to
Model the Intentional Structure of Discourse. PhD thesis,
Harvard University.

[0063] McRoy, S. & Hirst, G. (1991). An abductive account
of repair in conversation. AAAI Fall Symposium on Dis-
course Structure in Natural Language Understanding and
Generation, Asilomar, Calif. (pp. 52-57).

[0064] Perrault, C. & Allen, J. (1980). A plan-based analy-
sis of indirect speech acts. American Journal of Computa-
tional Linguistics, 6(3-4), 167-182.

[0065] Pollack, M. (1986). A model of plan inference that
distinguishes between the beliefs of actors and observers.
In Proceedings of 24” Annual Meeting of the Association
for Computational Linguistics, New York (pp. 207-214).

[0066] Power, R. (1974). A Computer Model of Conversa-
tion. PhD. thesis, University of Edinburgh, Scotland.

[0067] Rayner, M. & Alshawi, H. (1992). Deriving data-
base queries from logical forms by abductive definition
expansion. In Proceedings of the Third Conference of
Applied Natural Language Processing, Trento, Italy (pp.
1-8).

[0068] Reiger, C. (1974). Conceptual Memory: A Theory
and Computer Program for Processing the Meaning Con-
tent of Natural Language Utterances. Stanford, Calif.:
Stanford Artificial Intelligence Laboratory. Memo AIM-
233.

[0069] Schank, R. (1975). Conceptual Information Pro-
cessing. New York: Elsevier.

[0070] Schank, R., Lebowitz, M., & Birnbaum, L. (1980).
An integrated understander. American Journal of Compu-
tational Linguistics, 6(1).

[0071] Searle, J. (1969). Speech Acts: An Essay in the Phi-
losophy of Language. Cambridge: Cambridge University
Press.

[0072] Sperber, D. & Wilson, D. (1986). Relevance: Com-
munication and Cognition. Cambridge, Mass.: Harvard
University Press.

[0073] Theabovearealso incorporated by reference herein.

US 2010/0228540 Al

SUMMARY OF THE INVENTION

[0074] An object of the present invention, therefore, is to
provide an improved system and method for overcoming the
limitations of the prior art noted above;

[0075] A primary object of the present invention is to pro-
vide a word and phrase recognition system that is flexibly and
optimally distributed across a client/platform computing
architecture, so that improved accuracy, speed and uniformity
can be achieved for a wide group of users;

[0076] A further object of the present invention is to pro-
vide a speech recognition system that efficiently integrates a
distributed word recognition system with a natural language
processing system, so that both individual words and entire
speech utterances can be quickly and accurately recognized
in any number of possible languages;

[0077] A related object of the present invention is to pro-
vide an efficient query response system so that an extremely
accurate, real-time set of appropriate answers can be given in
response to speech-based queries;

[0078] Yet another object of the present invention is to
provide an interactive, real-time instructional/learning sys-
tem that is distributed across a client/server architecture, and
permits a real-time question/answer session with an interac-
tive character;

[0079] A related object of the present invention is to imple-
ment such interactive character with an articulated response
capability so that the user experiences a human-like interac-
tion;

[0080] Still a further object of the present invention is to
provide an INTERNET website with speech processing capa-
bility so that voice based data and commands can be used to
interact with such site, thus enabling voice-based e-com-
merce and e-support services to be easily scaleable;

[0081] Another object is to implement a distributed speech
recognition system that utilizes environmental variables as
part of the recognition process to improve accuracy and
speed;

[0082] A further object is to provide a scaleable query/
response database system, to support any number of query
topics and users as needed for a particular application and
instantaneous demand;

[0083] Yet another object of the present invention is to
provide a query recognition system that employs a two-step
approach, including a relatively rapid first step to narrow
down the list of potential responses to a smaller candidate set,
and a second more computationally intensive second step to
identify the best choice to be returned in response to the query
from the candidate set;

[0084] A further object of the present invention is to pro-
vide a natural language processing system that facilitates
query recognition by extracting lexical components of speech
utterances, which components can be used for rapidly iden-
tifying a candidate set of potential responses appropriate for
such speech utterances;

[0085] Another related object of the present invention is to
provide a natural language processing system that facilitates
query recognition by comparing lexical components of
speech utterances with a candidate set of potential response to
provide an extremely accurate best response to such query.
[0086] Still another object of the present invention is to
provide a natural language processing system which uses
semantic decoding as part of a process for comprehending a
question posed in a speech utterance;

Sep. 9, 2010

[0087] One general aspect of the present invention, there-
fore, relates to a natural language query system (NLQS) that
offers a fully interactive method for answering user’s ques-
tions over a distributed network such as the INTERNET or a
local intranet. This interactive system when implemented
over the worldwide web (WWW) services of the INTERNET
functions so thata client or user can ask a question in a natural
language such as English, French, German or Spanish and
receive the appropriate answer at his or her personal computer
also in his or her native natural language.

[0088] The system is distributed and consists of a set of
integrated software modules at the client’s machine and
another set of integrated software programs resident on a
server or set of servers. The client-side software program is
comprised of a speech recognition program, an agent and its
control program, and a communication program. The server-
side program is comprised of a communication program, a
natural language engine (NLE), a database processor (DB-
Process), an interface program for interfacing the DBProcess
with the NLE, and a SQL database. In addition, the client’s
machine is equipped with a microphone and a speaker. Pro-
cessing of the speech utterance is divided between the client
and server side so as to optimize processing and transmission
latencies, and so as to provide support for even very thin client
platforms.

[0089] Inthe context of an interactive learning application,
the system is specifically used to provide a single-best answer
to a user’s question. The question that is asked at the client’s
machine is articulated by the speaker and captured by a
microphone that is built in as in the case of a notebook
computer or is supplied as a standard peripheral attachment.
Once the question is captured, the question is processed par-
tially by NLQS client-side software resident in the client’s
machine. The output of this partial processing is a set of
speech vectors that are transported to the server via the
INTERNET to complete the recognition of the user’s ques-
tions. This recognized speech is then converted to text at the
server.

[0090] After the user’s question is decoded by the speech
recognition engine (SRE) located at the server, the question is
converted to a structured query language (SQL) query. This
query is then simultaneously presented to a software process
within the server called DBProcess for preliminary process-
ing and to a Natural Language Engine (NLE) module for
extracting the noun phrases (NP) of the user’s question. Dur-
ing the process of extracting the noun phrase within the NLE,
the tokens of the users’ question are tagged. The tagged
tokens are then grouped so that the NP list can be determined.
This information is stored and sent to the DBProcess process.
[0091] In the DBProcess, the SQL query is fully custom-
ized using the NP extracted from the user’s question and other
environment variables that are relevant to the application. For
example, in a training application, the user’s selection of
course, chapter and or section would constitute the environ-
ment variables. The SQL query is constructed using the
extended SQL Full-Text predicates—CONTAINS, FREET-
EXT, NEAR, AND. The SQL query is next sent to the Full-
Text search engine within the SQL database, where a Full-
Text search procedure is initiated. The result of this search
procedure is recordset of answers. This recordset contains
stored questions that are similar linguistically to the user’s
question. Each of these stored questions has a paired answer
stored in a separate text file, whose path is stored in a table of
the database.

US 2010/0228540 Al

[0092] The entire recordset of returned stored answers is
then returned to the NLE engine in the form of an array. Each
stored question of the array is then linguistically processed
sequentially one by one. This linguistic processing consti-
tutes the second step of a 2-step algorithm to determine the
single best answer to the user’s question. This second step
proceeds as follows: for each stored question that is returned
in the recordset, a NP of the stored question is compared with
the NP of the user’s question. After all stored questions of the
array are compared with the user’s question, the stored ques-
tion that yields the maximum match with the user’s question
is selected as the best possible stored question that matches
the user’s question. The metric that is used to determine the
best possible stored question is the number of noun phrases.
[0093] The stored answer that is paired to the best-stored
question is selected as the one that answers the user’s ques-
tion. The ID tag of the question is then passed to the DBPro-
cess. This DBProcess returns the answer which is stored in a
file.

[0094] A communication link is again established to send
the answer back to the client in compressed form. The answer
once received by the client is decompressed and articulated to
the user by the text-to-speech engine. Thus, the invention can
be used in any number of different applications involving
interactive learning systems, INTERNET related commerce
sites, INTERNET search engines, etc.

[0095] Computer-assisted instruction environments often
require the assistance of mentors or live teachers to answer
questions from students. This assistance often takes the form
of organizing a separate pre-arranged forum or meeting time
that is set aside for chat sessions or live call-in sessions so that
at a scheduled time answers to questions may be provided.
Because of the time immediacy and the on-demand or asyn-
chronous nature of on-line training where a student may log
on and take instruction at any time and at any location, it is
important that answers to questions be provided in a timely
and cost-effective manner so that the user or student can
derive the maximum benefit from the material presented.
[0096] This invention addresses the above issues. It pro-
vides the user or student with answers to questions that are
normally channeled to a live teacher or mentor. This invention
provides a single-best answer to questions asked by the stu-
dent. The student asks the question in his or her own voice in
the language of choice. The speech is recognized and the
answer to the question is found using a number of technolo-
gies including distributed speech recognition, full-text search
database processing, natural language processing and text-to-
speech technologies. The answer is presented to the user, as in
the case of a live teacher, in an articulated manner by an agent
that mimics the mentor or teacher, and in the language of
choice—FEnglish, French, German, Japanese or other natural
spoken language. The user can choose the agent’s gender as
well as several speech parameters such as pitch, volume and
speed of the character’s voice.

[0097] Other applications that benefit from NLQS are
e-commerce applications. In this application, the user’s query
for a price of a book, compact disk or for the availability of
any item that is to be purchased can be retrieved without the
need to pick through various lists on successive web pages.
Instead, the answer is provided directly to the user without
any additional user input.

[0098] Similarly, it is envisioned that this system can be
used to provide answers to frequently-asked questions
(FAQs), and as a diagnostic service tool for e-support. These

Sep. 9, 2010

questions are typical of a give web site and are provided to
help the user find information related to a payment procedure
or the specifications of, or problems experienced with a prod-
uct/service. In all of these applications, the NLQS architec-
ture can be applied.

[0099] A number of inventive methods associated with
these architectures are also beneficially used in a variety of
INTERNET related applications.

[0100] Although the inventions are described below in a set
of preferred embodiments, it will be apparent to those skilled
in the art the present inventions could be beneficially used in
many environments where it is necessary to implement fast,
accurate speech recognition, and/or to provide a human-like
dialog capability to an intelligent system.

BRIEF DESCRIPTION OF THE DRAWINGS

[0101] FIG. 1isablock diagram of a preferred embodiment
of a natural language query system (NLQS) of the present
invention, which is distributed across a client/server comput-
ing architecture, and can be used as an interactive learning
system, an e-commerce system, an e-support system, and the
like;

[0102] FIGS. 2A-2C are a block diagram of a preferred
embodiment of a client side system, including speech captur-
ing modules, partial speech processing modules, encoding
modules, transmission modules, agent control modules, and
answer/voice feedback modules that can be used in the afore-
mentioned NLQS;

[0103] FIG. 2D is a block diagram of a preferred embodi-
ment of a set of initialization routines and procedures used for
the client side system of FIG. 2A-2C;

[0104] FIG. 3isablock diagram of a preferred embodiment
of a set of routines and procedures used for handling an
iterated set of speech utterances on the client side system of
FIG. 2A-2C, transmitting speech data for such utterances to a
remote server, and receiving appropriate responses back from
such server;

[0105] FIG. 4isablock diagram of a preferred embodiment
of a set of initialization routines and procedures used for
un-initializing the client side system of FIG. 2A-2C;

[0106] FIG. 4A is a block diagram of a preferred embodi-
ment of a set of routines and procedures used for implement-
ing a distributed component of a speech recognition module
for the server side system of FIG. 5;

[0107] FIG. 4B is a block diagram of a preferred set of
routines and procedures used for implementing an SQL query
builder for the server side system of FIG. 5;

[0108] FIG. 4C is a block diagram of a preferred embodi-
ment of a set of routines and procedures used for implement-
ing a database control process module for the server side
system of FIG. 5;

[0109] FIG. 4D is a block diagram of a preferred embodi-
ment of a set of routines and procedures used for implement-
ing a natural language engine that provides query formulation
support, a query response module, and an interface to the
database control process module for the server side system of
FIG. 5;

[0110] FIG. 5isablock diagram of a preferred embodiment
of a server side system, including a speech recognition mod-
ule to complete processing of the speech utterances, environ-
mental and grammar control modules, query formulation
modules, a natural language engine, a database control mod-
ule, and a query response module that can be used in the
aforementioned NLQS;

US 2010/0228540 Al

[0111] FIG. 6 illustrates the organization of a full-text data-
base used as part of server side system shown in FIG. 5;
[0112] FIG. 7A illustrates the organization of a full-text
database course table used as part of server side system shown
in FIG. 5 for an interactive learning embodiment of the
present invention;

[0113] FIG. 7B illustrates the organization of a full-text
database chapter table used as part of server side system
shown in FI1G. 5 for an interactive learning embodiment of the
present invention;

[0114] FIG. 7C describes the fields used in a chapter table
used as part of server side system shown in FIG. 5 for an
interactive learning embodiment of the present invention;
[0115] FIG. 7D describes the fields used in a section table
used as part of server side system shown in FIG. 5 for an
interactive learning embodiment of the present invention;
[0116] FIG. 8 is a flow diagram of a first set of operations
performed by a preferred embodiment of a natural language
engine on a speech utterance including Tokenization, Tagging
and Grouping;

[0117] FIG.9is aflow diagram of the operations performed
by a preferred embodiment of a natural language engine on a
speech utterance including stemming and Lexical Analysis
[0118] FIG. 10 is a block diagram of a preferred embodi-
ment of a SQL database search and support system for the
present invention;

[0119] FIGS.11A-11C are flow diagrams illustrating steps
performed in a preferred two step process implemented for
query recognition by the NLQS of FIG. 2;

[0120] FIG. 12 is an illustration of another embodiment of
the present invention implemented as part of a Web-based
speech based learning/training System;

[0121] FIGS. 13-17 are illustrations of another embodi-
ment of the present invention implemented as part of a Web-
based e-commerce system;

[0122] FIG. 18 is an illustration of another embodiment of
the present invention implemented as part of a voice-based
Help Page for an E-Commerce Web Site.

[0123] FIG. 19 depicts a quasi-code implementation of an
integrated speech processing method using both statistical
and semantic processing in accordance with the present
invention;

[0124] FIG. 20 illustrates a method for populating a speech
lattice with semantic variants in accordance with the teach-
ings of the present invention;

[0125] FIG. 21 illustrates a method for computing the clos-
est semantic match between user articulated questions and
stored semantic variants of the same.

DETAILED DESCRIPTION OF THE INVENTION
Overview

[0126] As alluded to above, the present inventions allow a
user to ask a question in a natural language such as English,
French, German, Spanish or Japanese at a client computing
system (which can be as simple as a personal digital assistant
or cell-phone, or as sophisticated as a high end desktop PC)
and receive an appropriate answer from a remote server also
in his or her native natural language. As such, the embodiment
of'the invention shown in FIG. 1 is beneficially used in what
can be generally described as a Natural Language Query
System (NLQS) 100, which is configured to interact on a

Sep. 9, 2010

real-time basis to give a human-like dialog capability/expe-
rience for e-commerce, e-support, and e-learning applica-
tions.

[0127] The processing for NLQS 100 is generally distrib-
uted across a client side system 150, a data link 160, and a
server-side system 180. These components are well known in
the art, and in a preferred embodiment include a personal
computer system 150, an INTERNET connection 160A,
160B, and a larger scale computing system 180. It will be
understood by those skilled in the art that these are merely
exemplary components, and that the present invention is by
no means limited to any particular implementation or combi-
nation of such systems. For example, client-side system 150
could also be implemented as a computer peripheral, a PDA,
as part of a cell-phone, as part of an INTERNET-adapted
appliance, an INTERNET linked kiosk, etc. Similarly, while
an INTERNET connection is depicted for data link 1604, itis
apparent that any channel that is suitable for carrying data
between client system 150 and server system 180 will suffice,
including a wireless link, an RF link, an IR link, a LAN, and
the like. Finally, it will be further appreciated that server
system 180 may be a single, large-scale system, or a collec-
tion of smaller systems interlinked to support a number of
potential network users.

[0128] Initially speech input is provided in the form of a
question or query articulated by the speaker at the client’s
machine or personal accessory as a speech utterance. This
speech utterance is captured and partially processed by
NLQS client-side software 155 resident in the client’s
machine. To facilitate and enhance the human-like aspects of
the interaction, the question is presented in the presence of an
animated character 157 visible to the user who assists the user
as a personal information retriever/agent. The agent can also
interact with the user using both visible text output on a
monitor/display (not shown) and/or in audible form using a
text to speech engine 159. The output of the partial processing
doneby SRE 155 is a set of speech vectors that are transmitted
over communication channel 160 that links the user’s
machine or personal accessory to a server or servers via the
INTERNET or a wireless gateway that is linked to the
INTERNET as explained above. At server 180, the partially
processed speech signal data is handled by a server-side SRE
182, which then outputs recognized speech text correspond-
ing to the user’s question. Based on this user question related
text, a text-to-query converter 184 formulates a suitable query
that is used as input to a database processor 186. Based on the
query, database processor 186 then locates and retrieves an
appropriate answer using a customized SQL query from data-
base 188. A Natural Language Engine 190 facilitates struc-
turing the query to database 188. After a matching answer to
the user’s question is found, the former is transmitted in text
form across data link 160B, where it is converted into speech
by text to speech engine 159, and thus expressed as oral
feedback by animated character agent 157.

[0129] Because the speech processing is broken up in this
fashion, it is possible to achieve real-time, interactive,
human-like dialog consisting of a large, controllable set of
questions/answers. The assistance of the animated agent 157
further enhances the experience, making it more natural and
comfortable for even novice users. To make the speech rec-
ognition process more reliable, context-specific grammars
and dictionaries are used, as well as natural language process-
ing routines at NLE 190, to analyze user questions lexically.
While context-specific processing of speech data is known in

US 2010/0228540 Al

the art (see e.g., U.S. Pat. Nos. 5,960,394, 5,867,817, 5,758,
322 and 5,384,892 incorporated by reference herein) the
present inventors are unaware of any such implementation as
embodied in the present inventions. The text of the user’s
question is compared against text of other questions to iden-
tify the question posed by the user by DB processor/engine
(DBE) 186. By optimizing the interaction and relationship of
the SR engines 155 and 182, the NLP routines 190, and the
dictionaries and grammars, an extremely fast and accurate
match can be made, so that a unique and responsive answer
can be provided to the user.

[0130] On the server side 180, interleaved processing fur-
ther accelerates the speech recognition process. In simplified
terms, the query is presented simultaneously both to NLE 190
after the query is formulated, as well as to DBE 186. NLE 190
and SRE 182 perform complementary functions in the overall
recognition process. In general, SRE 182 is primarily respon-
sible for determining the identity of the words articulated by
the user, while NLE 190 is responsible for the linguistic
morphological analysis of both the user’s query and the
search results returned after the database query.

[0131] Aftertheuser’s query is analyzed by NLE 190 some
parameters are extracted and sent to the DBProcess. Addi-
tional statistics are stored in an array for the 2"/ step of
processing. During the 2" step of 2-step algorithm, the
recordset of preliminary search results are sent to the NLE
160 for processing. At the end of this 2" step, the single
question that matches the user’s query is sent to the DBPro-
cess where further processing yields the paired answer that is
paired with the single best stored question.

[0132] Thus, the present invention uses a form of natural
language processing (NLP) to achieve optimal performance
in a speech based web application system. While NLP is
known in the art, prior efforts in Natural Language Processing
(NLP) work nonetheless have not been well integrated with
Speech Recognition (SR) technologies to achieve reasonable
results in a web-based application environment. In speech
recognition, the result is typically a lattice of possible recog-
nized words each with some probability of fit with the speech
recognizer. As described before, the input to a typical NLP
system is typically a large linguistic unit. The NLP system is
then charged with the parsing, understanding and indexing of
this large linguistic unit or set of transcribed utterances. The
result of this NLP process is to understand lexically or mor-
phologically the entire linguistic unit as opposed to word
recognition. Put another way, the linguistic unit or sentence of
connected words output by the SRE has to be understood
lexically, as opposed to just being “recognized”.

[0133] As indicated earlier, although speech recognition
technology has been available for several years, the technical
requirements for the NLQS invention have placed severe
restrictions on the specifications for the speech recognition
accuracy that is required for an application that combines
speech recognition and natural language processing to work
satisfactorily. In realizing that even with the best of condi-
tions, it might be not be possible to achieve the perfect 100%
speech recognition accuracy that is required, the present
invention employs an algorithm that balances the potential
risk of the speech recognition process with the requirements
of'the natural language processing so that even in cases where
perfect speech recognition accuracy is not achieved for each
word in the query, the entire query itself is nonetheless rec-
ognized with sufficient accuracy.

Sep. 9, 2010

[0134] This recognition accuracy is achieved even while
meeting very stringent user constraints, such as short latency
periods of 3 to 5 seconds (ideally—ignoring transmission
latencies which can vary) for responding to a speech-based
query, and for a potential set of 100-250 query questions. This
quick response time gives the overall appearance and expe-
rience of a real-time discourse that is more natural and pleas-
ant from the user’s perspective. Of course, non-real time
applications, such as translation services for example, can
also benefit from the present teachings as well, since a cen-
tralized set of HMMs, grammars, dictionaries, etc., are main-
tained.

General Aspects of Speech Recognition Used in the Present
Inventions

[0135] General background information on speech recog-
nition can be found in the prior art references discussed above
and incorporated by reference herein. Nonetheless, a discus-
sion of some particular exemplary forms of speech recogni-
tion structures and techniques that are well-suited for NLQS
100 is provided next to better illustrate some of the charac-
teristics, qualities and features of the present inventions.
[0136] Speech recognition technology is typically of two
types—speaker independent and speaker dependent. In
speaker-dependent speech recognition technology, each user
has a voice file in which a sample of each potentially recog-
nized word is stored. Speaker-dependent speech recognition
systems typically have large vocabularies and dictionaries
making them suitable for applications as dictation and text
transcribing. It follows also that the memory and processor
resource requirements for the speaker-dependent can be and
are typically large and intensive.

[0137] Conversely speaker-independent speech recogni-
tion technology allows a large group of users to use a single
vocabulary file. It follows then that the degree of accuracy that
can be achieved is a function of the size and complexity of the
grammars and dictionaries that can be supported for a given
language. Given the context of applications for which NLQS,
the use of small grammars and dictionaries allow speaker
independent speech recognition technology to be imple-
mented in NLQS.

[0138] The key issues or requirements for either type—
speaker-independent or speaker-dependent, are accuracy and
speed. As the size of the user dictionaries increase, the speech
recognition accuracy metric—word error rate (WER) and the
speed of recognition decreases. This is so because the search
time increases and the pronunciation match becomes more
complex as the size of the dictionary increases.

[0139] The basis of the NLQS speech recognition system is
a series of Hidden Markov Models (HMM), which, as alluded
to earlier, are mathematical models used to characterize any
time varying signal. Because parts of speech are considered to
be based on an underlying sequence of one or more symbols,
the HMM models corresponding to each symbol are trained
on vectors from the speech waveforms. The Hidden Markov
Model is a finite set of states, each of which is associated with
a (generally multi-dimensional) probability distribution.
Transitions among the states are governed by a set of prob-
abilities called transition probabilities. In a particular state an
outcome or observation can be generated, according to an
associated probability distribution. This finite state machine
changes state once every time unit, and each time t such that
a state j is entered, a spectral parameter vector O, is generated
with probability density B,(O,). Itis only the outcome, not the

US 2010/0228540 Al

state which is visible to an external observer and therefore
states are “hidden” to the outside; hence the name Hidden
Markov Model.

[0140] Inisolated speech recognition, it is assumed that the

sequence of observed speech vectors corresponding to each
word can each be described by a Markov model as follows:

0=0,,05,...07 (1-1
[0141] where O,isaspeechvector observed attimet. The
isolated word recognition then is to compute:
arg max{P(w,l0)} (1-2)
[0142] By using Bayes’ Rule,
{P(w10)}=[P(OIw)P(w,))/P(O) (1-3)
[0143] Inthe general case, the Markov model when applied

to speech also assumes a finite state machine which changes
state once every time unit and each time that a state j is
entered, a speech vector o, is generated from the probability
density b, (0,). Furthermore, the transition from state i to state
j is also probabilistic and is governed by the discrete prob-
ability a,;.

[0144] For a state sequence X, the joint probability that O is
generated by the model M moving through a state sequence X
is the product of the transition probabilities and the output
probabilities. Only the observation sequence is known—the
state sequence is hidden as mentioned before.

[0145] Given that X is unknown, the required likelihood is
computed by summing over all possible state sequences X=x
1), x(2), %x(3), .. . x(T), that is

P(O‘A’I)Zx{ax(oy(l)ﬂb ®) (Ot)ax(t)x(t+l)}

[0146] Given a set of models corresponding to words M;;
equation 1-2 is solved by using 1-3 and also by assuming that:

P(Olw)=P(OIM;)
} and

[0147] All of this assumes that the parameters {ai]
{b,(0,)} are known for each model M,. This can be done, as
explained earlier, by using a set of training examples corre-
sponding to a particular model. Thereafter, the parameters of
that model can be determined automatically by a robust and
efficient re-estimation procedure. So if a sufficient number of
representative examples of each word are collected, then a
HMM can be constructed which simply models all of the
many sources of variability inherent in real speech. This
training is well-known in the art, so it is not described at
length herein, except to note that the distributed architecture
of'the present invention enhances the quality of HMMs, since
they are derived and constituted at the server side, rather than
the client side. In this way, appropriate samples from users of
different geographical areas can be easily compiled and ana-
lyzed to optimize the possible variations expected to be seen
across a particular language to be recognized. Uniformity of
the speech recognition process is also well-maintained, and
error diagnostics are simplified, since each prospective useris
using the same set of HMMs during the recognition process.
[0148] To determine the parameters of a HMM from a set of
training samples, the first step typically is to make a rough
guess as to what they might be. Then a refinement is done
using the Baum-Welch estimation formulae. By these formu-
lae, the maximum likelihood estimates of i, (where p, is mean
vector and 2, is covariance matrix) is:

HjZETF le(l)O/[ETt: 1Lin)o,]

Sep. 9, 2010

[0149] A forward-backward algorithm is next used to cal-
culate the probability of state occupation L (t). If the forward
probability a; (t) for some model M with N states is defined
as:

aH=Ploy, .. ., 0,x(1)=/1M)
[0150]
sion:

aj(l):[ENilizza(l_ Day/bi(o)

[0151] Similarly the backward probability can be com-
puted using the recursion:

ﬁj(l)ZENi 1j:2aijbj(ot+l)(l+1)

[0152] Realizing that the forward probability is a joint
probability and the backward probability is a conditional
probability, the probability of state occupation is the product
of the two probabilities:

(OB, (O-POx(0)IM)
[0153]
Li-1/P e (0B,(0)]

[0154] where P=P(OIM)
[0155] To generalize the above for continuous speech rec-
ognition, we assume the maximum likelihood state sequence
where the summation is replaced by a maximum operation.
Thus for a given model M, let ¢;j (t) represent the maximum
likelihood of observing speech vectors o, to 0, and being used
in state j at time t:

G, (O=max{j(1)(z-1)+log(ory) }+log(b;(0)

[0156] Expressing this logarithmically to avoid underflow,
this likelihood becomes:

This probability can be calculated using the recur-

Hence the probability of being in state j at a time t is:

W (0=max{u, (- +log (o)} +og(b,(0,)

[0157] This is also known as the Viterbi algorithm. It can be
visualized as finding the best path through a matrix where the
vertical dimension represents the states of the HMM and
horizontal dimension represents frames of speech i.e. time.
To complete the extension to connected speech recognition, it
is further assumed that each HMM representing the underly-
ing sequence is connected. Thus the training data for continu-
ous speech recognition should consist of connected utter-
ances; however, the boundaries between words do not have to
be known.

[0158] To improve computational speed/efficiency, the Vit-
erbi algorithm is sometimes extended to achieve convergence
by using what is known as a Token Passing Model. The token
passing model represents a partial match between the obser-
vation sequence o, to o, and a particular model, subject to the
constraint that the model is in state j at time t. This token
passing model can be extended easily to connected speech
environments as well if we allow the sequence of HMMs to be
defined as a finite state network. A composite network that
includes both phoneme-based HMMs and complete words
can be constructed so that a single-best word can be recog-
nized to form connected speech using word N-best extraction
from the lattice of possibilities. This composite form of
HMM-based connected speech recognizer is the basis of the
NLQS speech recognizer module. Nonetheless, the present
invention is not limited as such to such specific forms of
speech recognizers, and can employ other techniques for
speech recognition if they are otherwise compatible with the

US 2010/0228540 Al

present architecture and meet necessary performance criteria
for accuracy and speed to provide a real-time dialog experi-
ence for users.

[0159] The representation of speech for the present inven-
tion’s HMM-based speech recognition system assumes that
speech is essentially either a quasi-periodic pulse train (for
voiced speech sounds) or a random noise source (for unvoiced
sounds). It may be modeled as two sources—one a impulse
train generator with pitch period P and a random noise gen-
erator which is controlled by a voice/unvoiced switch. The
output of the switch is then fed into a gain function estimated
from the speech signal and scaled to feed a digital filter H(z)
controlled by the vocal tract parameter characteristics of the
speech being produced. All of the parameters for this
model—the voiced/unvoiced switching, the pitch period for
voiced sounds, the gain parameter for the speech signal and
the coefficient of the digital filter, vary slowly with time. In
extracting the acoustic parameters from the user’s speech
input so that it can evaluated in light of a set of HMMs,
cepstral analysis is typically used to separate the vocal tract
information from the excitation information. The cepstrum of
a signal is computed by taking the Fourier (or similar) trans-
form of the log spectrum. The principal advantage of extract-
ing cepstral coefficients is that they are de-correlated and the
diagonal covariances can be used with HMMs. Since the
human ear resolves frequencies non-linearly across the audio
spectrum, it has been shown that a front-end that operates in
a similar non-linear way improves speech recognition perfor-
mance.

[0160] Accordingly, instead of a typical linear prediction-
based analysis, the front-end of the NLQS speech recognition
engine implements a simple, fast Fourier transform based
filter bank designed to give approximately equal resolution on
the Mel-scale. To implement this filter bank, a window of
speech data (for a particular time frame) is transformed using
a software based Fourier transform and the magnitude taken.
Each FFT magnitude is then multiplied by the corresponding
filter gain and the results accumulated. The cepstral coeffi-
cients that are derived from this filter-bank analysis at the
front end are calculated during a first partial processing phase
of'the speech signal by using a Discrete Cosine Transform of
the log filter bank amplitudes. These cepstral coefficients are
called Mel-Frequency Cepstral Coefficients (MFCC) and
they represent some of the speech parameters transferred
from the client side to characterize the acoustic features of the
user’s speech signal. These parameters are chosen for a num-
ber of reasons, including the fact that they can be quickly and
consistently derived even across systems of disparate capa-
bilities (i.e., for everything from a low power PDA to a high
powered desktop system), they give good discrimination,
they lend themselves to a number of useful recognition
related manipulations, and they are relatively small and com-
pact in size so that they can be transported rapidly across even
a relatively narrow band link. Thus, these parameters repre-
sent the least amount of information that can be used by a
subsequent server side system to adequately and quickly
complete the recognition process.

[0161] To augment the speech parameters an energy term in
the form of the logarithm of the signal energy is added.
Accordingly, RMS energy is added to the 12 MFCC’s to make
13 coeflicients. These coefficients together make up the par-
tially processed speech data transmitted in compressed form
from the user’s client system to the remote server side.

Sep. 9, 2010

[0162] The performance of the present speech recognition
system is enhanced significantly by computing and adding
time derivatives to the basic static MFCC parameters at the
server side. These two other sets of coefficients—the delta
and acceleration coefficients representing change in each of
the 13 values from frame to frame (actually measured across
several frames), are computed during a second partial speech
signal processing phase to complete the initial processing of
the speech signal, and are added to the original set of coeffi-
cients after the latter are received. These MFCCs together
with the delta and acceleration coefficients constitute the
observation vector O, mentioned above that is used for deter-
mining the appropriate HMM for the speech data.

[0163] The delta and acceleration coefficients are com-
puted using the following regression formula:

4728 1[Cro=Ce)/ 2% ,07

[0164] where d, is a delta coefficient at time t computed
in terms of the corresponding static coefficients:

dz:[CHe—sze]/ze

[0165] Inatypical stand-alone implementation of a speech
recognition system, the entire SR engine runs on a single
client. In other words, both the first and second partial pro-
cessing phases above are executed by the same DSP (or
microprocessor) running a ROM or software code routine at
the client’s computing machine.

[0166] In contrast, because of several considerations, spe-
cifically—cost, technical performance, and client hardware
uniformity, the present NLQS system uses a partitioned or
distributed approach. While some processing occurs on the
client side, the main speech recognition engine runs on a
centrally located server or number of servers. More specifi-
cally, as noted earlier, capture of the speech signals, MFCC
vector extraction and compression are implemented on the
client’s machine during a first partial processing phase. The
routine is thus streamlined and simple enough to be imple-
mented within a browser program (as a plug in module, or a
downloadable applet for example) for maximum ease of use
and utility. Accordingly, even very “thin” client platforms can
be supported, which enables the use of the present system
across a greater number of potential sites. The primary
MFCCs are then transmitted to the server over the channel,
which, for example, can include a dial-up INTERNET con-
nection, a LAN connection, a wireless connection and the
like. After decompression, the delta and acceleration coeffi-
cients are computed at the server to complete the initial
speech processing phase, and the resulting observation vec-
tors O, are also determined.

[0167] General Aspects of Speech Recognition Engine
[0168] The speech recognition engine is also located on the
server, and is based on a HTK-based recognition network
compiled from a word-level network, a dictionary and a set of
HMMs. The recognition network consists of a set of nodes
connected by arcs. Each node is either a HMM model
instance or a word end. Each model node is itself a network
consisting of states connected by arcs. Thus when fully com-
piled, a speech recognition network consists of HMM states
connected by transitions. For an unknown input utterance
with T frames, every path from the start node to the exit node
of the network passes through T HMM states. Each of these
paths has log probability which is computed by summing the
log probability of each individual transition in the path and
the log probability of each emitting state generating the cor-
responding observation. The function of the Viterbi decoder

US 2010/0228540 Al

is find those paths through the network which have the highest
log probability. This is found using the Token Passing algo-
rithm. In a network that has many nodes, the computation
time is reduced by only allowing propagation of those tokens
which will have some chance of becoming winners. This
process is called pruning.

Natural Language Processor

[0169] Inatypical natural language interface to a database,
the user enters a question in his/her natural language, for
example, English. The system parses it and translates it to a
query language expression. The system then uses the query
language expression to process the query and if the search is
successful, a recordset representing the results is displayed in
English either formatted as raw text or in a graphical form.
For a natural language interface to work well involves a
number of technical requirements.

[0170] For example, it needs to be robust—in the sentence
‘What’s the departments turnover’ it needs to decide that the
word whats=what’s=what is. And it also has to determine that
departments=department’s. In addition to being robust, the
natural language interface has to distinguish between the
several possible forms of ambiguity that may exist in the
natural language—lexical, structural, reference and ellipsis
ambiguity. All of these requirements, in addition to the gen-
eral ability to perform basic linguistic morphological opera-
tions of tokenization, tagging and grouping, are implemented
within the present invention.

[0171] Tokenization is implemented by a text analyzer
which treats the text as a series of tokens or useful meaningful
units that are larger than individual characters, but smaller
than phrases and sentences. These include words, separable
parts of words, and punctuation. Each token is associated with
an offset and a length. The first phase of tokenization is the
process of segmentation which extracts the individual tokens
from the input text and keeps track of the offset where each
token originated in the input text. The tokenizer output lists
the offset and category for each token. In the next phase of the
text analysis, the tagger uses a built-in morphological ana-
lyzer to look up each word/token in a phrase or sentence and
internally lists all parts of speech. The output is the input
string with each token tagged with a parts of speech notation.
Finally the grouper which functions as a phrase extractor or
phrase analyzer, determines which groups of words form
phrases. These three operations which are the foundations for
any modern linguistic processing schemes, are fully imple-
mented in optimized algorithms for determining the single-
best possible answer to the user’s question.

SQL Database and Full-Text Query

[0172] Another key component of present system is a SQL-
database. This database is used to store text, specifically the
answer-question pairs are stored in full-text tables of the
database. Additionally, the full-text search capability of the
database allows full-text searches to be carried out.

[0173] While alarge portion of all digitally stored informa-
tion is in the form of unstructured data, primarily text, it is
now possible to store this textual data in traditional database
systems in character-based columns such as varchar and text.
In order to effectively retrieve textual data from the database,
techniques have to be implemented to issue queries against

Sep. 9, 2010

textual data and to retrieve the answers in a meaningful way
where it provides the answers as in the case of the NLQS
system.

[0174] There are two major types of textual searches: Prop-
erty—This search technology first applies filters to docu-
ments in order to extract properties such as author, subject,
type, word count, printed page count, and time last written,
and then issues searches against those properties; Full-text—
this search technology first creates indexes of all non-noise
words in the documents, and then uses these indexes to sup-
port linguistic searches and proximity searches.

[0175] Two additional technologies are also implemented
in this particular RDBMs: SQL Server also have been inte-
grated: A Search service—a full-text indexing and search
service that is called both index engine and search, and a
parser that accepts full-text SQL extensions and maps them
into a form that can be processed by the search engine.

[0176] The four major aspects involved in implementing
full-text retrieval of plain-text data from a full-text-capable
database are: Managing the definition of the tables and col-
umns that are registered for full-text searches; Indexing the
data in registered columns—the indexing process scans the
character streams, determines the word boundaries (this is
called word breaking), removes all noise words (this also is
called stop words), and then populates a full-text index with
the remaining words; Issuing queries against registered col-
umns for populated full-text indexes; Ensuring that subse-
quent changes to the data in registered columns gets propa-
gated to the index engine to keep the full-text indexes
synchronized.

[0177] The underlying design principle for the indexing,
querying, and synchronizing processes is the presence of a
full-text unique key column (or single-column primary key)
on all tables registered for full-text searches. The full-text
index contains an entry for the non-noise words in each row
together with the value of the key column for each row.

[0178] When processing a full-text search, the search
engine returns to the database the key values of the rows that
match the search criteria.

[0179] The full-text administration process starts by desig-
nating a table and its columns of interest for full-text search.
Customized NLQS stored procedures are used first to register
tables and columns as eligible for full-text search. After that,
a separate request by means of a stored procedure is issued to
populate the full-text indexes. The resultis that the underlying
index engine gets invoked and asynchronous index popula-
tion begins. Full-text indexing tracks which significant words
are used and where they are located. For example, a full-text
index might indicate that the word “NLQS” is found at word
number 423 and word number 982 in the Abstract column of
the DevTools table for the row associated with a ProductID of
6. This index structure supports an efficient search for all
items containing indexed words as well as advanced search
operations, such as phrase searches and proximity searches.
(An example of a phrase search is looking for “white
elephant,” where “white” is followed by “elephant”. An
example of a proximity search is looking for “big” and
“house” where “big” occurs near “house”.) To prevent the
full-text index from becoming bloated, noise words such as
“a,” “and,” and “the” are ignored.

[0180] Extensions to the Transact-SQL language are used
to construct full-text queries. The two key predicates that are
used in the NLQS are CONTAINS and FREETEXT.

US 2010/0228540 Al

[0181] The CONTAINS predicate is used to determine
whether or not values in full-text registered columns contain
certain words and phrases. Specifically, this predicate is used
to search for:

[0182] A word or phrase.

[0183] The prefix of a word or phrase.

[0184] A word or phrase that is near another.

[0185] A word thatis an inflectional form of another (for

example, “drive” is the inflectional stem of “drives,”
“drove,” “driving,” and “driven”).
[0186] A set of words or phrases, each of which is

assigned a different weighting.
[0187] The relational engine within SQL Server recognizes
the CONTAINS and FREETEXT predicates and performs
some minimal syntax and semantic checking, such as ensur-
ing that the column referenced in the predicate has been
registered for full-text searches. During query execution, a
full-text predicate and other relevant information are passed
to the full-text search component. After further syntax and
semantic validation, the search engine is invoked and returns
the set of unique key values identifying those rows in the table
that satisfy the full-text search condition. In addition to the
FREETEXT and CONTAINS, other predicates such as AND,
LIKE, NEAR are combined to create the customized NLQS
SQL construct.

Full-Text Query Architecture of the SQL Database

[0188] The full-text query architecture is comprised of the
following several components—Full-Text Query component,
the SQL Server Relational Engine, the Full-Text provider and
the Search Engine.

[0189] The Full-Text Query component of the SQL data-
base accept a full-text predicate or rowset-valued function
from the SQL Server; transform parts of the predicate into an
internal format, and sends it to Search Service, which returns
the matches in a rowset. The rowset is then sent back to SQL
Server. SQL Server uses this information to create the result-
set that is then returned to the submitter of the query.

[0190] The SQL Server Relational Engine accepts the
CONTAINS and FREETEXT predicates as well as the CON-
TAINSTABLE() and FREETEXTTABLE() rowset-valued
functions. During parse time, this code checks for conditions
such as attempting to query a column that has not been reg-
istered for full-text search. If valid, then at run time, the
ft_search_condition and context information is sent to the
full-text provider. Eventually, the full-text provider returns a
rowset to SQL Server, which is used in any joins (specified of
implied) in the original query. The Full-Text Provider parses
and validates the ft_search_condition, constructs the appro-
priate internal representation of the full-text search condition,
and then passes it to the search engine. The result is returned
to the relational engine by means of a rowset of rows that
satisfy ft_search_condition.

Client Side System 150
[0191] Client Side System 150
[0192] The architecture of client-side system 150 of Natu-

ral Language Query System 100 is illustrated in greater detail
in FIGS. 2A-2C. Referring to FIG. 2A, the three main pro-
cesses effectuated by Client System 150 are illustrated as
follows: Initialization process 200A consisting of SRE 201,
Communication 202 and Microsoft (MS) Agent 203 routines;
at FIG. 2B an iterative process 200B consisting of two sub-

Sep. 9, 2010

routines: a) Receive User Speech 208—made up of SRE 204
and Communication 205; and b) Receive Answer from Server
207—made up of MS Speak Agent 206, Communication 209,
Voice data file 210 and Text to Speech Engine 211. Finally, in
FIG. 2C un-initialization process 200C is made up of three
sub-routines: SRE 212, Communication 213, and MS Agent
214. Each of the above three processes are described in detail
in the following paragraphs. It will be appreciated by those
skilled in the art that the particular implementation for such
processes and routines will vary from client platform to plat-
form, so that in some environments such processes may be
embodied in hard-coded routines executed by a dedicated
DSP, while in others they may be embodied as software
routines executed by a shared host processor, and in still
others a combination of the two may be used.

Initialization at Client System 150

[0193] The initialization of the Client System 150 is illus-
trated in FIG. 2D and is comprised generally of 3 separate
initializing processes: client-side Speech Recognition Engine
220A, MS Agent 220B and Communication processes 220C.

Initialization of Speech Recognition Engine 220A

[0194] Speech Recognition Engine 155 is initialized and
configured using the routines shown in 220A. First, an SRE
COM Library is initialized. Next, memory 220 is allocated to
hold Source and Coder objects, are created by a routine 221.
Loading of configuration file 221A from configuration data
file 221B also takes place at the same time that the SRE
Library is initialized. In configuration file 221B, the type of
the input of Coder and the type of the output of the Coder are
declared. The structure, operation, etc. of such routines are
well-known in the art, and they can be implemented using a
number of fairly straightforward approaches. Accordingly,
they are not discussed in detail herein. Next, Speech and
Silence components of an utterance are calibrated using a
routine 222, in a procedure that is also well-known in the art.
To calibrate the speech and silence components, the user
preferably articulates a sentence that is displayed in a text box
on the screen. The SRE library then estimates the noise and
other parameters required to find e silence and speech ele-
ments of future user utterances.

Initialization of MS Agent 220B

[0195] The software code used to initialize and set up a MS
Agent 220B is also illustrated in FIG. 2D. The MS Agent
220B routine is responsible for coordinating and handling the
actions of the animated agent 157 (FIG. 1). This initialization
thus consists of the following steps:

[0196] 1. Initialize COM library 223. This part of the
code initializes the COM library, which is required to
use ActiveX Controls, which controls are well-known in
the art.

[0197] 2. Create instance of Agent Server 224—this part
ofthe code creates an instance of Agent ActiveX control.

[0198] 3. Loading of MS Agent 225—this part of the
code loads MS Agent character from a specified file
225A containing general parameter data for the Agent
Character, such as the overall appearance, shape, size,
etc.

[0199] 4. Get Character Interface 226—this part of the
code gets an appropriate interface for the specified char-

US 2010/0228540 Al

acter; for example, characters may have different con-
trol/interaction capabilities that can be presented to the
user.

[0200] 5. Add Commands to Agent Character Option
227—this part of the code adds commands to an Agent
Properties sheet, which sheet can be accessed by click-
ing on the icon that appears in the system tray, when the
Agent character is loaded e.g., that the character can
Speak, how he/she moves, TTS Properties, etc.

[0201] 6. Show the Agent Character 228—this part of the
code displays the Agent character on the screen so it can be
seen by the user;

[0202] 7. AgentNotitfySink—to handle events. This part of
the code creates AgentNotifySink object 229, registers it at
230 and then gets the Agent Properties interface 231. The
property sheet for the Agent character is assigned using rou-
tine 232.

[0203] 8. Do Character Animations 233—This part of the
code plays specified character animations to welcome the
user to NLQS 100.

[0204] The above then constitutes the entire sequence
required to initialize the MS Agent. As with the SRE routines,
the MS Agent routines can be implemented in any suitable
and conventional fashion by those skilled in the art based on
the present teachings. The particular structure, operation, etc.
of'such routines is not critical, and thus they are not discussed
in detail herein.

[0205] In a preferred embodiment, the MS Agent is config-
ured to have an appearance and capabilities that are appropri-
ate for the particular application. For instance, in a remote
learning application, the agent has the visual form and man-
nerisms/attitude/gestures of a college professor. Other visual
props (blackboard, textbook, etc.) may be used by the agent
and presented to the user to bring to mind the experience of
being in an actual educational environment. The characteris-
tics of the agent may be configured at the client side 150,
and/or as part of code executed by a browser program (not
shown) in response to configuration data and commands from
aparticular web page. For example, a particular website ofter-
ing medical services may prefer to use a visual image of a
doctor. These and many other variations will be apparent to
those skilled in the art for enhancing the human-like, real-
time dialog experience for users.

Initialization of Communication Link 160A

[0206] Initialization of Communication Link 160A

[0207] The initialization of Communication Link 160A is
shown with reference to process 220C FIG. 2D. Referring to
FIG. 2D, this initialization consists of the following code
components: Open INTERNET Connection 234—this part
of the code opens an INTERNET Connection and sets the
parameter for the connection. Then Set Callback Status rou-
tine 235 sets the callback status so as to inform the user of the
status of connection. Finally Start New HTTP INTERNET
Session 236 starts a new INTERNET session. The details of
Communications Link 160 and the set up process 220C are
not critical, and will vary from platform to platform. Again, in
some cases, users may use a low-speed dial-up connection, a
dedicated high speed switched connection (T1 for example),
an always-on xDSL connection, a wireless connection, and
the like.

Iterative Processing of Queries/Answers

[0208] As illustrated in FIG. 3, once initialization is com-
plete, an iterative query/answer process is launched when the

Sep. 9, 2010

user presses the Start Button to initiate a query. Referring to
FIG. 3, the iterative query/answer process consists of two
main sub-processes implemented as routines on the client
side system 150: Receive User Speech 240 and Receive User
Answer 243. The Receive User Speech 240 routine receives
speech from the user (or another audio input source), while
the Receive User Answer 243 routine receives an answer to
the user’s question in the form of text from the server so that
it can be converted to speech for the user by text-to-speech
engine 159. As used herein, the term “query” is referred to in
the broadest sense to refer, to either a question, acommand, or
some form of input used as a control variable by the system.
For example, a query may consist of a question directed to a
particular topic, such as “what is a network” in the context of
a remote learning application. In an e-commerce application
a query might consist of acommand to “list all books by Mark
Twain” for example. Similarly, while the answer in a remote
learning application consists of text that is rendered into
audible form by the text to speech engine 159, it could also be
returned as another form of multi-media information, such as
a graphic image, a sound file, a video file, etc. depending on
the requirements of the particular application. Again, given
the present teachings concerning the necessary structure,
operation, functions, performance, etc., of the client-side
Receive User Speech 240 and Receiver User Answer 243
routines, one of ordinary skill in the art could implement such
in a variety of ways.

[0209] Receive User Speech—As illustrated in FIG. 3, the
Receive User Speech routine 240 consists of a SRE 241 and
a Communication 242 process, both implemented again as
routines on the client side system 150 for receiving and par-
tially processing the user’s utterance. SRE routine 241 uses a
coder 248 which is prepared so that a coder object receives
speech data from a source object. Next the Start Source 249
routine is initiated. This part of the code initiates data retrieval
using the source Object which will in turn be given to the
Coder object. Next, MFCC vectors 250 are extracted from the
Speech utterance continuously until silence is detected. As
alluded to earlier, this represents the first phase of processing
of'the input speech signal, and in a preferred embodiment, it
is intentionally restricted to merely computing the MFCC
vectors for the reasons already expressed above. These vec-
tors include the 12 cepstral coefficients and the RMS energy
term, for a total of 13 separate numerical values for the par-
tially processed speech signal.

[0210] In some environments, nonetheless, it is conceiv-
able that the MFCC delta parameters and MFCC acceleration
parameters can also be computed at client side system 150,
depending on the computation resources available, the trans-
mission bandwidth in data link 160A available to server side
system 180, the speed of a transceiver used for carrying data
in the data link, etc. These parameters can be determined
automatically by client side system upon initializing SRE 155
(using some type of calibration routine to measure resources),
or by direct user control, so that the partitioning of signal
processing responsibilities can be optimized on a case-by-
case basis. In some applications, too, server side system 180
may lack the appropriate resources or routines for completing
the processing of the speech input signal. Therefore, for some
applications, the allocation of signal processing responsibili-
ties may be partitioned differently, to the point where in fact
both phases of the speech signal processing may take place at
client side system 150 so that the speech signal is com-

US 2010/0228540 Al

pletely—rather than partially—processed and transmitted for
conversion into a query at server side system 180.

[0211] Againin a preferred embodiment, to ensure reason-
able accuracy and real-time performance from a query/re-
sponse perspective, sufficient resources are made available in
a client side system so that 100 frames per second of speech
data can be partially processed and transmitted through link
160A. Since the least amount of information that is necessary
to complete the speech recognition process (only 13 coeffi-
cients) is sent, the system achieves a real-time performance
that is believed to be highly optimized, because other laten-
cies (i.e., client-side computational latencies, packet forma-
tion latencies, transmission latencies) are minimized. It will
be apparent that the principles of the present invention can be
extended to other SR applications where some other method-
ology is used for breaking down the speech input signal by an
SRE (i.e., non-MFCC based). The only criteria is that the SR
processing be similarly dividable into multiple phases, and
with the responsibility for different phases being handled on
opposite sides of link 160A depending on overall system
performance goals, requirements and the like. This function-
ality of the present invention can thus be achieved on a sys-
tem-by-system basis, with an expected and typical amount of
optimization being necessary for each particular implemen-
tation.

[0212] Thus, the present invention achieves a response rate
performance that is tailored in accordance with the amount of
information that is computed, coded and transmitted by the
client side system 150. So in applications where real-time
performance is most critical, the least possible amount of
extracted speech data is transmitted to reduce these latencies,
and, in other applications, the amount of extracted speech
data that is processed, coded and transmitted can be varied.

[0213] Communication—transmit communication module
242 is used to implement the transport of data from the client
to the server over the data link 160A, which in a preferred
embodiment is the INTERNET. As explained above, the data
consists of encoded MFCC vectors that will be used at then
server-side of the Speech Recognition engine to complete the
speech recognition decoding. The sequence of the communi-
cation is as follows:

[0214] OpenHTTPRequest 251—this part of the code first
converts MFCC vectors to a stream of bytes, and then pro-
cesses the bytes so that it is compatible with a protocol known
as HTTP. This protocol is well-known in the art, and it is
apparent that for other data links another suitable protocol
would be used.
[0215] 1. Encode MFCC Byte Stream 251—this part of
the code encodes the MFCC vectors, so that they can be
sent to the server via HTTP.

[0216] 2. Send data 252—this part of the code sends
MFCC vectors to the server using the INTERNET con-
nection and the HTTP protocol.

[0217] Wait for the Server Response 253—this part of the
code monitors the data link 160A a response from server side
system 180 arrives. In summary, the MFCC parameters are
extracted or observed on-the-fly from the input speech signal.
They are then encoded to a HTTP byte stream and sent in a
streaming fashion to the server before the silence is
detected—i.e. sent to server side system 180 before the utter-
ance is complete. This aspect of the invention also facilitates
a real-time behavior, since data can be transmitted and pro-
cessed even while the user is still speaking.

Sep. 9, 2010

[0218] Receive Answer from Server 243 is comprised of
the following modules as shown in FIG. 3.: MS Agent 244,
Text-to-Speech Engine 245 and receive communication mod-
ules 246. All three modules interact to receive the answer
from server side system 180. As illustrated in FIG. 3, the
receive communication process consists of three separate
processes implemented as a receive routine on client side
system 150: a Receive the Best Answer 258 receives the best
answer over data link 160B (the HT TP communication chan-
nel). The answer is de-compressed at 259 and then the answer
is passed by code 260 to the MS Agent 244, where it is
received by code portion 254. A routine 255 then articulates
the answer using text-to-speech engine 257. Of course, the
text can also be displayed for additional feedback purposes on
amonitor used with client side system 150. The text to speech
engine uses a natural language voice data file 256 associated
with it that is appropriate for the particular language applica-
tion (i.e., English, French, German, Japanese, etc.). As
explained earlier when the answer is something more than
text, it can be treated as desired to provide responsive infor-
mation to the user, such as with a graphics image, a sound, a
video clip, etc.

Uninitialization

[0219] The un-initialization routines and processes are
illustrated in FIG. 4. Three functional modules are used for
un-initializing the primary components of the client side sys-
tem 150; these include SRE 270, Communications 271 and
MS Agent 272 un-initializing routines. To un-initialize SRE
220A, memory that was allocated in the initialization phase is
de-allocated by code 273 and objects created during such
initialization phase are deleted by code 274. Similarly, as
illustrated in FIG. 4, to un-initialize Communications module
220C the INTERNET connection previously established with
the server is closed by code portion 275 of the Communica-
tion Un-initialization routine 271. Next the INTERNET ses-
sion created at the time of initialization is also closed by
routine 276. For the un-initialization of the MS Agent 220B,
as illustrated in FIG. 4, MS Agent Un-initialization routine
272 first releases the Commands Interface 227 using routine
277. This releases the commands added to the property sheet
during loading of the agent character by routine 225. Next the
Character Interface initialized by routine 226 is released by
routine 278 and the Agent is unloaded at 279. The Sink Object
Interface is then also released 280 followed by the release of
the Property Sheet Interface 281. The Agent Notify Sink 282
then un-registers the Agent and finally the Agent Interface
283 is released which releases all the resources allocated
during initialization steps identified in FIG. 2D.

[0220] It will be appreciated by those skilled in the art that
the particular implementation for such un-initialization pro-
cesses and routines in FIG. 4 will vary from client platform to
client platform, as for the other routines discussed above. The
structure, operation, etc. of such routines are well-known in
the art, and they can be implemented using a number of fairly
straightforward approaches without undue effort. Accord-
ingly, they are not discussed in detail herein.

Description of Server Side System 180

Introduction

[0221] A high level flow diagram of the set of preferred
processes implemented on server side system 180 of Natural
Language Query System 100 is illustrated in FIG. 11A

US 2010/0228540 Al

through FIG. 11C. In a preferred embodiment, this process
consists of a two step algorithm for completing the processing
of the speech input signal, recognizing the meaning of the
user’s query, and retrieving an appropriate answer/response
for such query.

[0222] The 1% step as illustrated in FIG. 11A can be con-
sidered a high-speed first-cut pruning mechanism, and
includes the following operations: after completing process-
ing of the speech input signal, the user’s query is recognized
at step 1101, so that the text of the query is simultaneously
sent to Natural Language Engine 190 (FIG. 1) at step 1107,
and to DB Engine 186 (also FIG. 1) at step 1102. By “recog-
nized” in this context it is meant that the user’s query is
converted into a text string of distinct native language words
through the HMM technique discussed earlier.

[0223] At NLE 190, the text string undergoes morphologi-
cal linguistic processing at step 1108: the string is tokenized
the tags are tagged and the tagged tokens are grouped Next the
noun phrases (NP) of the string are stored at 1109, and also
copied and transferred for use by DB Engine 186 during a DB
Process at step 1110. As illustrated in FIG. 11A, the string
corresponding to the user’s query which was sent to the DB
Engine 186 at 1102, is used together with the NP received
from NLE 190 to construct an SQL Query at step 1103. Next,
the SQL query is executed at step 1104, and a record set of
potential questions corresponding to the user’s query are
received as a result of a full-text search at 1105, which are
then sent back to NLE 190 in the form of an array at step 1106.
[0224] As can be seen from the above, this first step on the
server side processing acts as an efficient and fast pruning
mechanism so that the universe of potential “hits” corre-
sponding to the user’s actual query is narrowed down very
quickly to a manageable set of likely candidates in a very
short period of time.

[0225] Referring to FIG. 11B, in contrast to the first step
above, the 2" step can be considered as the more precise
selection portion of the recognition process. It begins with
linguistic processing of each of the stored questions in the
array returned by the full-text search process as possible
candidates representing the user’s query. Processing of these
stored questions continues in NLE 190 as follows: each ques-
tion in the array of questions corresponding to the record set
returned by the SQL full-text search undergoes morphologi-
cal linguistic processing at step 1111: in this operation, a text
string corresponding to the retrieved candidate question is
tokenized, the tags are tagged and the tagged tokens are
grouped. Next, noun phrases of the string are computed and
stored at step 1112. This process continues iteratively at point
1113, and the sequence of steps at 1118,1111, 1112, 1113 are
repeated so that an NP for each retrieved candidate question is
computed and stored. Once an NP is computed for each of the
retrieved candidate questions of the array, a comparison is
made between each such retrieved candidate question and the
user’s query based on the magnitude of the NP value at step
1114. This process is also iterative in that steps 1114, 1115,
1116, 1119 are repeated so that the comparison of the NP for
each retrieved candidate question with that of the NP of the
user’s query is completed. When there are no more stored
questions in the array to be processed at step 1117, the stored
question that has the maximum NP relative to the user’s
query, is identified at 1117 A as the stored question which best
matches the user’s query.

[0226] Notably, it can be seen that the second step of the
recognition process is much more computationally intensive

Sep. 9, 2010

than the first step above, because several text strings are
tokenized, and a comparison is made of several NPs. This
would not be practical, nonetheless, if it were not for the fact
that the first step has already quickly and efficiently reduced
the candidates to be evaluated to a significant degree. Thus,
this more computationally intensive aspect of the present
invention is extremely valuable, however because it yields
extremely high accuracy in the overall query recognition
process. In this regard, therefore, this second step of the query
recognition helps to ensure the overall accuracy of the system,
while the first step helps to maintain a satisfactory speed that
provides a real-time feel for the user.

[0227] Asillustrated in FIG. 11C, the last part of the query/
response process occurs by providing an appropriate match-
ing answer/response to the user. Thus, an identity of a match-
ing stored question is completed at step 1120. Next a file path
corresponding to an answer of the identified matching ques-
tion is extracted at step 1121. Processing continues so that the
answer is extracted from the file path at 1122 and finally the
answer is compressed and sent to client side system 150 at
step 1123.

[0228] The discussion above is intended to convey a gen-
eral overview of the primary components, operations, func-
tions and characteristics of those portions of NLQS system
100 that reside on server side system 180. The discussion that
follows describes in more detail the respective sub-systems.

Software Modules Used in Server Side System 180

[0229] The key software modules used on server-side sys-
tem 180 of the NLQS system are illustrated in FIG. 5. These
include generally the following components: a Communica-
tion module 500—identified as CommunicationServer ISAPI
500A (which is executed by SRE Server-side 182—FIG. 1
and is explained in more detail below), and a database process
DBProcess module 501 (executed by DB Engine 186—FIG.
1). Natural language engine module 500C (executed by NLE
190—FIG. 1) and an interface 500B between the NLE pro-
cess module 500C and the DBProcess module 500B. As
shown here, CommunicationServerISAPI 500A includes a
server-side speech recognition engine and appropriate com-
munication interfaces required between client side system
150 and server side system 180. As further illustrated in FIG.
5, server-side logic of Natural Language Query System 100
also can be characterized as including two dynamic link
library components: CommunicationServer[SAPI 500 and
DBProcess 501. The CommunicationServer]ASPI 500 is
comprised of 3 sub-modules: Server-side Speech Recogni-
tion Engine module 500A; Interface module 500B between
Natural Language Engine modules 500C and DBProcess
501; and the Natural Language Engine modules 500C.
[0230] DB Process 501 is a module whose primary function
is to connect to a SQL database and to execute an SQL query
that is composed in response to the user’s query. In addition,
this module interfaces with logic that fetches the correct
answer from a file path once this answer is passed to it from
the Natural Language Engine module 500C.

Speech Recognition Sub-System 182 on Server-Side System
180

[0231] The server side speech recognition engine module
500A is a set of distributed components that perform the
necessary functions and operations of speech recognition
engine 182 (FIG. 1) at server-side 180. These components can

US 2010/0228540 Al

be implemented as software routines that are executed by
server side 180 in conventional fashion. Referring to FIG. 4 A,
a more detailed break out of the operation of the speech
recognition components 600 at the server-side can be seen as
follows:

[0232] Within a portion 601 of the server side SRE module
500A, the binary MFCC vector byte stream corresponding to
the speech signal’s acoustic features extracted at client side
system 150 and sent over the communication channel 160 is
received. The MFCC acoustic vectors are decoded from the
encoded HTTP byte stream as follows: Since the MFCC
vectors contain embedded NULL characters, they cannot be
transferred in this form to server side system 180 as such
using HTTP protocol. Thus the MFCC vectors are first
encoded at client-side 150 before transmission in such a way
that all the speech data is converted into a stream of bytes
without embedded NULL characters in the data. At the very
end of the byte stream a single NULL character is introduced
to indicate the termination of the stream of bytes to be trans-
ferred to the server over the INTERNET 160A using HTTP
protocol.

[0233] As explained earlier, to conserve latency time
between the client and server, a smaller number of bytes (just
the 13 MFCC coefficients) are sent from client side system
150 to server side system 180. This is done automatically for
each platform to ensure uniformity, or can be tailored by the
particular application environment—i.e., such as where it is
determined that it will take less time to compute the delta and
acceleration coefficients at the server (26 more calculations),
than it would take to encode them at the client, transmit them,
and then decode them from the HTTP stream. In general,
since server side system 180 is usually better equipped to
calculate the MFCC delta and acceleration parameters, this is
a preferable choice. Furthermore, there is generally more
control over server resources compared to the client’s
resources, which means that future upgrades, optimizations,
etc., can be disseminated and shared by all to make overall
system performance more reliable and predictable. So, the
present invention can accommodate even the worst-case sce-
nario where the client’s machine may be quite thin and may
just have enough resources to capture the speech input data
and do minimal processing.

Dictionary Preparation & Grammar Files

[0234] Referring to FIG. 4A, within code block 605, vari-
ous options selected by the user (or gleaned from the user’s
status within a particular application) are received. For
instance, in the case of a preferred remote learning system,
Course, Chapter and/or Section data items are communi-
cated. In the case of other applications (such as e-commerce)
other data options are communicated, such as the Product
Class, Product Category, Product Brand, etc. loaded for view-
ing within his/her browser. These selected options are based
on the context experienced by the user during an interactive
process, and thus help to limit and define the scope—i.e.
grammars and dictionaries that will be dynamically loaded to
speech recognition engine 182 (FIG. 1) for Viterbi decoding
during processing of the user speech utterance. For speech
recognition to be optimized both grammar and dictionary
files are used in a preferred embodiment. A Grammar file
supplies the universe of available user queries; i.e., all the
possible words that are to be recognized. The Dictionary file
provides phonemes (the information of how a word is pro-
nounced—this depends on the specific native language files

Sep. 9, 2010

that are installed—for example, UK English or US English)
of'each word contained in the grammar file. It is apparent that
if all the sentences for a given environment that can be rec-
ognized were contained in a single grammar file then recog-
nition accuracy would be deteriorated and the loading time
alone for such grammar and dictionary files would impair the
speed of the speech recognition process.

[0235] To avoid these problems, specific grammars are
dynamically loaded or actively configured as the current
grammar according to the user’s context, i.e., as in the case of
aremote learning system, the Course, Chapter and/or Section
selected. Thus the grammar and dictionary files are loaded
dynamically according to the given Course, Chapter and/or
Section as dictated by the user, or as determined automati-
cally by an application program executed by the user.
[0236] The second code block 602 implements the initial-
ization of Speech Recognition engine 182 (FIG. 1). The
MEFCC vectors received from client side system 150 along
with the grammar filename and the dictionary file names are
introduced to this block to initialize the speech decoder.
[0237] As illustrated in FIG. 4A, the initialization process
602 uses the following sub-routines: A routine 6024 for load-
ing an SRE library. This then allows the creation of an object
identified as External Source with code 6024 using the
received MFCC vectors. Code 602¢ allocates memory to hold
the recognition objects. Routine 6024 then also creates and
initializes objects that are required for the recognition such
as: Source, Coder, Recognizer and Results Loading of the
Dictionary created by code 602¢, Hidden Markov Models
(HMMs) generated with code 602f; and [Loading of the Gram-
mar file generated by routine 602g.

[0238] Speech Recognition 603 is the next routine invoked
as illustrated in FIG. 4A, and is generally responsible for
completing the processing of the user speech signals input on
the client side 150, which, as mentioned above, are preferably
only partially processed (i.e., only MFCC vectors are com-
puted during the first phase) when they are transmitted across
link 160. Using the functions created in External Source by
subroutine 6025, this code reads MFCC vectors, one at a time
from an External Source 6034, and processes them in block
6035 to realize the words in the speech pattern that are sym-
bolized by the MFCC vectors captured at the client. During
this second phase, an additional 13 delta coefficients and an
additional 13 acceleration coefficients are computed as part of
the recognition process to obtain a total of 39 observation
vectors O, referred to earlier. Then, using a set of previously
defined Hidden Markov Models (HMMs), the words corre-
sponding to the user’s speech utterance are determined in the
manner described earlier. This completes the word “recogni-
tion” aspect of the query processing, which results are used
further below to complete the query processing operations.
[0239] It will be appreciated by those skilled in the art that
the distributed nature and rapid performance of the word
recognition process, by itself, is extremely useful and may be
implemented in connection with other environments that do
not implicate or require additional query processing opera-
tions. For example, some applications may simply use indi-
vidual recognized words for filling in data items on a com-
puter generated form, and the aforementioned systems and
processes can provide a rapid, reliable mechanism for doing
SO.

Once the user’s speech is recognized, the flow of SRE 182
passes to Un-initialize SRE routine 604 where the speech
engine is un-initialized as illustrated. In this block all the

US 2010/0228540 Al

objects created in the initialization block are deleted by rou-
tine 604a, and memory allocated in the initialization block
during the initialization phase are removed by routine 6044.

[0240] Again, it should be emphasized that the above are
merely illustrative of embodiments for implementing the par-
ticular routines used on a server side speech recognition sys-
tem of the present invention. Other variations of the same that
achieve the desired functionality and objectives of the present
invention will be apparent from the present teachings.

Database Processor 186 Operation—DBProcess

[0241] Construction of an SQL Query used as part of the
user query processing is illustrated in FIG. 4B, a SELECT
SQL statement is preferably constructed using a conventional
CONTAINS predicate. Module 950 constructs the SQL query
based on this SELECT SQL statement, which query is used
for retrieving the best suitable question stored in the database
corresponding to the user’s articulated query, (designated as
Question here). A routine 951 then concatenates a table name
with the constructed SELECT statement. Next, the number of
words present in each Noun Phrase of Question asked by the
user is calculated by routine 952. Then memory is allocated
by routine 953 as needed to accommodate all the words
present in the NP. Next a word List (identifying all the distinct
words present in the NP) is obtained by routine 954. After
this, this set of distinct words are concatenated by routine 955
to the SQL Query separated with a NEAR () keyword. Next,
the AND keyword is concatenated to the SQL Query by
routine 956 after each NP. Finally memory resources are freed
by code 957 so as to allocate memory to store the words
received from NP for any next iteration. Thus, at the end of
this process, a completed SQL Query corresponding to the
user’s articulated question is generated.

[0242] Connection to SQL Server—As illustrated in FIG.

4C, after the SQL Query is constructed by routine 710, a

routine 711 implements a connection to the query database

717 to continue processing of the user query. The connection

sequence and the subsequent retrieved record set is imple-

mented using routines 700 which include the following:
[0243] 1. Server and database names are assigned by

routine 711A to a DBProcess member variable

[0244] 2. A connection string is established by routine
711B;
[0245] 3. The SQL Server database is connected under

control of code 711C

[0246] 4. The SQL Query is received by routine 712A
[0247] 5. The SQL Query is executed by code 712B
[0248] 6. Extractthe total number of records retrieved by

the query—713

[0249] 7. Allocate the memory to store the total number
of paired questions—713

[0250] 8. Store the entire number of paired questions into
an array—713

[0251] Oncethe Best Answer ID is received at 716 FIG. 4C,
from the NLE 14 (FIG. 5), the code corresponding 716C
receives it passes it to code in 716B where the path of the
Answer file is determined using the record number. Then the
file is opened 716C using the path passed to it and the contents
of the file corresponding to the answer is read. Then the

Sep. 9, 2010

answer is compressed by code in 716D and prepared for
transmission over the communication channel 160B (FIG. 1).

NLQS Database 188—Table Organization

[0252] FIG. 6 illustrates a preferred embodiment of a logi-
cal structure of tables used in a typical NLQS database 188
(FIG.1). When NLQS database 188 is used as part of NLQS
query system 100 implemented as a remote learning/training
environment, this database will include an organizational
multi-level hierarchy that consists typically of a Course 701,
which is made of several chapters 702, 703, 704. Each of
these chapters can have one or more Sections 705, 706, 707 as
shown for Chapter 1. A similar structure can exist for Chapter
2, Chapter 3 . . . Chapter N. Each section has a set of one or
more question—answer pairs 708 stored in tables described
in more detail below. While this is an appropriate and prefer-
able arrangement for a training/learning application, it is
apparent that other implementations would be possible and
perhaps more suitable for other applications such as e-com-
merce, e-support, INTERNET browsing, etc., depending on
overall system parameters.

[0253] It can be seen that the NLQS database 188 organi-
zation is intricately linked to the switched grammar architec-
ture described earlier. In other words, the context (or environ-
ment) experienced by the user can be determined at any
moment in time based at the selection made at the section
level, so that only a limited subset of question-answer pairs
708 for example are appropriate for section 705. This in turn
means that only a particular appropriate grammar for such
question-answer pairs may be switched in for handling user
queries while the user is experiencing such context. In a
similar fashion, an e-commerce application for an INTER-
NET based business may consist of a hierarchy that includes
a first level “home” page 701 identifying user selectable
options (product types, services, contact information, etc.), a
second level may include one or more “product types” pages
702, 703, 704, a third page may include particular product
models 705, 706, 707, etc., and with appropriate question-
answer pairs 708 and grammars customized for handling
queries for such product models. Again, the particular imple-
mentation will vary from application to application, depend-
ing on the needs and desires of such business, and a typical
amount of routine optimization will be necessary for each
such application.

Table Organization

[0254] In a preferred embodiment, an independent data-
base is used for each Course. Each database in turn can
include three types of tables as follows: a Master Table as
illustrated in FIG. 7A, at least one Chapter Table as illustrated
in FIG. 7B and at least one Section Table as illustrated in FIG.
7C.

[0255] As illustrated in FIG. 7A, a preferred embodiment
of a Master Table has six columns—Field Name 701 A, Data
Type 702A, Size 703A, Null 704 A, Primary Key 705A and
Indexed 706 A. These parameters are well-known in the art of
database design and structure. The Master Table has only two
fields—Chapter Name 707A and Section Name 708A. Both
ChapterName and Section Name are commonly indexed.
[0256] A preferred embodiment of a Chapter Table is illus-
trated in FIG. 7B. As with the Master Table, the Chapter Table
has six (6) columns—Field Name 720, Data Type 721, Size
722, Null 723, Primary Key 724 and Indexed 725. There are

US 2010/0228540 Al

nine (9) rows of data however, in this case,—Chapter_ID 726,
Answer_ID 727, Section Name 728, Answer_Tide 729,
PairedQuestion 730, AnswerPath 731, Creator 732, Date of
Creation 733 and Date of Modification 734.
[0257] An explanation of the Chapter Table fields is pro-
vided in FIG. 7C. Each of the eight (8) Fields 720 has a
description 735 and stores data corresponding to:
[0258] AnswerlD 727—an integer that is automatically
incremented for each answer given for user convenience
[0259] Section_Name 728—the name of the section to
which the particular record belongs. This field along
with the AnswerlD is used as the primary key
[0260] Answer_Title 729—A short description of the
tide of the answer to the user query
[0261] PairedQuestion 730—Contains one or more
combinations of questions for the related answers whose
path is stored in the next column AnswerPath
[0262] AnswerPath 731—contains the path of a file,
which contains the answer to the related questions stored
in the previous column; in the case of a pure question/
answer application, this file is a text file, but, as men-
tioned above, could be a multi-media file of any kind
transportable over the data link 160
[0263] Creator 732—Name of Content Creator
[0264] Date_of Creation 733—Date on which content
was created
[0265] Date of Modification 734—Date on which con-
tent was changed or modified
[0266] A preferred embodiment of a Section Table is illus-
trated in FIG. 7D. The Section Table has six (6) columns—
Field Name 740, Data Type 741, Size 742, Null 743, Primary
Key 744 and Indexed 745. There are seven (7) rows of data—
Answer_ID 746, Answer_Title 747, PairedQuestion 748,
AnswerPath 749, Creator 750, Date of Creation 751 and Date
of Modification 752. These names correspond to the same
fields, columns already described above for the Master Table
and Chapter Table.
[0267] Again, this is a preferred approach for the specific
type of learning/training application described herein. Since
the number of potential applications for the present invention
is quite large, and each application can be customized, it is
expected that other applications (including other learning/
training applications) will require and/or be better accommo-
dated by another table, column, and field structure/hierarchy.
[0268] Search Service and Search Engine—A query text
search service is performed by an SQL Search System 1000
shown in FIG. 10. This system provides querying support to
process full-text searches. This is where full-text indexes
reside.
[0269] In general, SQL Search System determines which
entries in a database index meet selection criteria specified by
a particular text query that is constructed in accordance with
anarticulated user speech utterance. The Index Engine 1011B
is the entity that populates the Full-Text Index tables with
indexes which correspond to the indexable units of text for the
stored questions and corresponding answers. It scans through
character strings, determines word boundaries, removes all
noise words and then populates the full-text index with the
remaining words. For each entry in the full text database that
meets the selection criteria, a unique key column value and a
ranking value are returned as well. Catalog set 1013 is a
file-system directory that is accessible only by an Adminis-
trator and Search Service 1010. Full-text indexes 1014 are
organized into full-text catalogs, which are referenced by

Sep. 9, 2010

easy to handle names. Typically, full-text index data for an
entire database is placed into a single full-text catalog.
[0270] The schema for the full-text database as described
(FIG. 7, FIG. 7A, FIG. 7B, F1G. 7C, FIG. 7D) is stored in the
tables 1006 shown in FIG. 10. Take for example, the tables
required to describe the structure the stored question/answer
pairs required for a particular course. For each table—Course
Table, Chapter Table, Section Table, there are fields—column
information that define each parameters that make up the
logical structure of the table. This information is stored in
User and System tables 1006. The key values corresponding
to those tables are stored as Full-Text catalogs 1013. So when
processing a full-text search, the search engine returns to the
SQL Server the key values of the rows that match the search
criteria. The relational engine then uses this information to
respond to the query.
[0271] Asillustrated in FIG. 10, a Full-Text Query Process
is implemented as follows:
[0272] 1. A query 1001 that uses a SQL full-text con-
struct generated by DB processor 186 is submitted to
SQL Relational Engine 1002.
[0273] 2. Queries containing either a CONTAINS or
FREETEXT predicate are rewritten by routine 1003 so
that a responsive rowset returned later from Full-Text
Provider 1007 will be automatically joined to the table
that the predicate is acting upon. This rewrite is a mecha-
nism used to ensure that these predicates are a seamless
extension to a traditional SQL Server. After the com-
piled query is internally rewritten and checked for cor-
rectness in item 1003, the query is passed to RUN TIME
module 1004. The function of module 1004 is to convert
the rewritten SQL construct to a validated run-time pro-
cess before it is sent to the Full-Text Provider, 1007.
[0274] 3. After this, Full-Text Provider 1007 is invoked,
passing the following information for the query:
[0275] a. A ft_search_condition parameter (this is a
logical flag indicating a full text search condition)
[0276] b. A name of a full-text catalog where a full-
text index of a table resides

[0277] c. A locale ID to be used for language (for
example, word breaking)

[0278] d.Identities of a database, table, and column to
be used in the query

[0279] e. If the query is comprised of more than one
full-text construct; when this is the case Full-text pro-
vider 1007 is invoked separately for each construct.

[0280] 4.SQL Relational Engine 1002 does not examine
the contents of ft_search_condition. Instead, this infor-
mation is passed along to Full-text provider 1007, which
verifies the validity of the query and then creates an
appropriate internal representation of the full-text search
condition.

[0281] 5. The query request/command 1008 is then
passed to Querying Support 1011A.

[0282] 6. Querying Support 1012 returns a rowset 1009
from Full-Text Catalog 1013 that contains unique key
column values for any rows that match the full-text
search criteria. A rank value also is returned for each
()

[0283] 7. The rowset of key column values 1009 is
passed to SQL Relational Engine 1002. If processing of
the query implicates either a CONTAINSTABLE() or
FREETEXTTABLE() function, RANK values are
returned; otherwise, any rank value is filtered out.

US 2010/0228540 Al

[0284] 8. The rowset values 1009 are plugged into the
initial query with values obtained from relational data-
base 1006, and a result set 1015 is then returned for
further processing to yield a response to the user.

[0285] At this stage of the query recognition process, the
speech utterance by the user has already been rapidly con-
verted into a carefully crafted text query, and this text query
has been initially processed so that an initial matching set of
results can be further evaluated for a final determination of the
appropriate matching question/answer pair. The underlying
principle that makes this possible is the presence of a full-text
unique key column for each table that is registered for full-
text searches. Thus when processing a full-text search, SQL
Search Service 1010 returns to SQL server 1002 the key
values of the rows that match the database. In maintaining
these full-text databases 1013 and full text indexes 1014, the
present invention has the unique characteristic that the full-
text indices 1014 are not updated instantly when the full-text
registered columns are updated. This operation is eliminated,
again, to reduce recognition latency, increase response speed,
etc. Thus, as compared to other database architectures, this
updating of the full-text index tables, which would otherwise
take a significant time, is instead done asynchronously at a
more convenient time.

Interface Between NLE 190 and DB Processor 188

[0286] The result set 1015 of candidate questions corre-
sponding to the user query utterance are presented to NLE
190 for further processing as shown in FIG. 4D to determine
a “best” matching question/answer pair. An NLE/DBProces-
sor interface module coordinates the handling of user queries,
analysis of noun-phrases (NPs) of retrieved questions sets
from the SQL query based on the user query, comparing the
retrieved question NPs with the user query NP, etc. between
NLE 190 and DB Processor 188. So, this part of the server
side code contains functions, which interface processes resi-
dent in both NLE block 190 and DB Processor block 188. The
functions are illustrated in FIG. 4D; As seen here, code rou-
tine 880 implements functions to extract the Noun Phrase
(NP) list from the user’s question. This part of the code
interacts with NLE 190 and gets the list of Noun Phrases in a
sentence articulated by the user. Similarly, Routine 813
retrieves an NP list from the list of corresponding candidate/
paired questions 1015 and stores these questions into an
(ranked by NP value) array. Thus, at this point, NP data has
been generated for the user query, as well as for the candidate
questions 1015. As an example of determining the noun
phrases of a sentence such as: “What issues have guided the
President in considering the impact of foreign trade pokey on
American businesses?” NLE 190 would return the following
as noun phrases: President, issues, impact of foreign trade
policy, American businesses, impact, impact of foreign trade,
foreign trade, foreign trade policy, trade, trade policy, policy,
businesses. The methodology used by NLE 190 will thus be
apparent to those skilled in the art from this set of noun
phrases and noun sub-phrases generated in response to the
example query.

[0287] Next, a function identified as Get Best Answer 1D
815 is implemented. This part of the code gets a best answer
ID corresponding to the user’s query. To do this, routines
813A, 813B first find out the number of Noun phrases for
each entry in the retrieved set 1015 that match with the Noun
phrases in the user’s query. Then routine 8154 selects a final

Sep. 9, 2010

result record from the candidate retrieved set 1015 that con-
tains the maximum number of matching Noun phrases.

[0288] Conventionally, nouns are commonly thought of as
“naming” words, and specifically as the names of “people,
places, or things”. Nouns such as John, London, and com-
puter certainly fit this description, but the types of words
classified by the present invention as nouns is much broader
than this. Nouns can also denote abstract and intangible con-
cepts such as birth, happiness, evolution, technology, man-
agement, imagination, revenge, politics, hope, cookery, sport,
and literacy. Because of the enormous diversity of nouns
compared to other parts of speech, the Applicant has found
that it is much more relevant to consider the noun phrase as a
key linguistic metric. So, the great variety of items classified
as nouns by the present invention helps to discriminate and
identify individual speech utterances much easier and faster
than prior techniques disclosed in the art.

[0289] Following this same thought, the present invention
also adopts and implements another linguistic entity—the
word phrase—to facilitate speech query recognition. The
basic structure of a word phrase—whether it be a noun
phrase, verb phrase, adjective phrase—is three parts—|pre-
Head string], [Head] and [post-Head string]. For example, in
the minimal noun phrase—"“the children,” “children” is clas-
sified as the Head of the noun phrase. In summary, because of
the diversity and frequency of noun phrases, the choice of
noun phrase as the metric by which stored answer is linguis-
tically chosen, has a solid justification in applying this tech-
nique to the English natural language as well as other natural
languages. So, in sum, the total noun phrases in a speech
utterance taken together operate extremely well as unique
type of speech query fingerprint.

[0290] The ID corresponding to the best answer corre-
sponding to the selected final result record question is then
generated by routine 815 which then returns it to DB Process
shown in FIG. 4C. As seen there, a Best Answer 1D 1 is
received by routine 716A, and used by a routine 716B to
retrieve an answer file path. Routine 716C then opens and
reads the answer file, and communicates the substance of the
same to routine 716D. The latter then compresses the answer
file data, and sends it over data link 160 to client side system
150 for processing as noted earlier (i.e., to be rendered into
audible feedback, visual text/graphics, etc.). Again, in the
context of a learning/instructional application, the answer file
may consist solely of a single text phrase, but in other appli-
cations the substance and format will be tailored to a specific
question in an appropriate fashion. For instance, an “answer”
may consist of a list of multiple entries corresponding to a list
of responsive category items (i.e., a list of books to a particu-
lar author) etc. Other variations will be apparent depending
on the particular environment.

Natural Language Engine 190

[0291] Again referring to FIG. 4D, the general structure of
NL engine 190 is depicted. This engine implements the word
analysis or morphological analysis of words that make up the
user’s query, as well as phrase analysis of phrases extracted
from the query.

[0292] As illustrated in FIG. 9, the functions used in a
morphological analysis include tokenizers 802A, stemmers
804 A and morphological analyzers 806 A. The functions that
comprise the phrase analysis include tokenizers, taggers and
groupers, and their relationship is shown in FIG. 8.

US 2010/0228540 Al

[0293] Tokenizer 802A is a software module that functions
to break up text of an input sentence 801 A into a list of tokens
803A. In performing this function, tokenizer 802A goes
through input text 801A and treats it as a series of tokens or
useful meaningful units that are typically larger than indi-
vidual characters, but smaller than phrases and sentences.
These tokens 803A can include words, separable parts of
word and punctuation. Each token 803 A is given an offset and
a length. The first phase of tokenization is segmentation,
which extracts the individual tokens from the input text and
keeps track of the offset where each token originated from in
the input text. Next, categories are associated with each token,
based on its shape. The process of tokenization is well-known
in the art, so it can be performed by any convenient applica-
tion suitable for the present invention.

[0294] Following tokenization, a stemmer process 804 A is
executed, which can include two separate forms—inflec-
tional and derivational, for analyzing the tokens to determine
their respective stems 805A. An inflectional stemmer recog-
nizes affixes and returns the word which is the stem. A deri-
vational stemmer on the other hand recognizes derivational
affixes and returns the root word or words. While stemmer
804A associates an input word with its stem, it does not have
parts of speech information. Analyzer 806B takes a word
independent of context, and returns a set of possible parts of
speech 806A.

[0295] As illustrated in FIG. 8, phrase analysis 800 is the
next step that is performed after tokenization. A tokenizer 802
generates tokens from input text 801. Tokens 803 are assigned
to parts of a speech tag by a tagger routine 804, and a grouper
routine 806 recognizes groups of words as phrases ofa certain
syntactic type. These syntactic types include for example the
noun phrases mentioned earlier, but could include other types
if desired such as verb phrases and adjective phrases. Specifi-
cally, tagger 804 is a parts-of-speech disambiguator, which
analyzes words in context. It has a built-in morphological
analyzer (not shown) that allows it to identify all possible
parts of speech for each token. The output of tagger 804 is a
string with each token tagged with a parts-of-speech label
805. The final step in the linguistic process 800 is the group-
ing of words to form phrases 807. This function is performed
by the grouper 806, and is very dependent, of course, on the
performance and output of tagger component 804.

[0296] Accordingly, at the end of linguistic processing 800,
a list of noun phrases (NP) 807 is generated in accordance
with the user’s query utterance. This set of NPs generated by
NLE 190 helps significantly to refine the search for the best
answer, so that a single-best answer can be later provided for
the user’s question.

[0297] The particular components of NLE 190 are shown in
FIG. 4D, and include several components. Each of these
components implement the several different functions
required in NLE 190 as now explained.

[0298] Initialize Grouper Resources Object and the Library
900—this routine initializes the structure variables required
to create grouper resource object and library. Specifically, it
initializes a particular natural language used by NLE 190 to
create a Noun Phrase, for example the English natural lan-
guage is initialized for a system that serves the English lan-
guage market. In turn, it also creates the objects (routines)
required for Tokenizer, Tagger and Grouper (discussed
above) with routines 900A, 900B, 900C and 900D respec-
tively, and initializes these objects with appropriate values. It

Sep. 9, 2010

also allocates memory to store all the recognized Noun
Phrases for the retrieved question pairs.

[0299] Tokenizing of the words from the given text (from
the query or the paired questions) is performed with routine
909B—here all the words are tokenized with the help of a
local dictionary used by NLE 190 resources. The resultant
tokenized words are passed to a Tagger routine 909C. At
routine 909C, tagging of all the tokens is done and the output
is passed to a Grouper routine 909D.

[0300] The Grouping of all tagged token to form NP list is
implemented by routine 909D so that the Grouper groups all
the tagged token words and outputs the Noun Phrases.
[0301] Un-initializing of the grouper resources object and
freeing of the resources, is performed by routines 909EA,
909EB and 909EC. These include Token Resources, Tagger
Resources and Grouper Resources respectively. After initial-
ization, the resources are freed. The memory that was used to
store all Noun Phrases are also de-allocated.

Additional Embodiments

[0302] Ina e-commerce embodiment of the present inven-
tion as illustrated in FIG. 13, aweb page 1300 contains typical
visible links such as Books 1310, Music 1320 so that on
clicking the appropriate link the customer is taken to those
pages. The web page may be implemented using HTML, a
Java applet, or similar coding techniques which interact with
the user’s browser. For example, if customer wants to buy an
album C by Artist Albert, he traverses several web pages as
follows: he first clicks on Music (FIG. 13, 1360), which
brings up page 1400 where he/she then clicks on Records
(F1G. 14, 1450). Alternatively, he/she could select CDs 1460,
Videos 1470, or other categories of books 1410, music 1420
or help 1430. As illustrated in FIG. 15, this brings up another
web page 1500 with links for Records 1550, with sub-catego-
ries—Artist 1560, Song 1570, Title 1580, Genre 1590. The
customer must then click on Artist 1560 to select the artist of
choice. This displays another web page 1600 as illustrated in
FIG. 16. On this page the various artists 1650 are listed as
illustrated—Albert 1650, Brooks 1660, Charlie 1670, Whyte
1690 are listed under the category Artists 1650. The customer
must now click on Albert 1660 to view the albums available
for Albert. When this is done, another web page is displayed
as shown in FIG. 17. Again this web page 1700 displays a
similar look and feel, but with the albums available 1760,
1770, 1780 listed under the heading Titles 1750. The cus-
tomer can also read additional information 1790 for each
album. This album information is similar to the liner notes of
a shrink-wrapped album purchased at a retail store. One
Album A is identified, the customer must click on the Album
A 1760. This typically brings up another text box with the
information about its availability, price, shipping and han-
dling charges etc.

[0303] When web page 1300 is provided with functionality
ofa NLQS ofthe type described above, the web page interacts
with the client side and server side speech recognition mod-
ules described above. In this case, the user initiates an inquiry
by simply clicking on a button designated Contact Me for
Help 1480 (this can be a link button on the screen, or akey on
the keyboard for example) and is then told by character 1440
about how to elicit the information required. If the user wants
Album A by artist Albert, the user could articulate “Is Album
A by Brooks available?”” in much the same way they would
ask the question of a human clerk at a brick and mortar
facility. Because of the rapid recognition performance of the

US 2010/0228540 Al

present invention, the user’s query would be answered in
real-time by character 1440 speaking out the answer in the
user’s native language. If desired, a readable word balloon
1490 could also be displayed to see the character’s answer and
so that save/print options can also be implemented. Similar
appropriate question/answer pairs for each page of the web-
site can be constructed in accordance with the present teach-
ings, so that the customer is provided with an environment
that emulates a normal conversational human-like question
and answer dialog for all aspects of the web site. Character
1440 can be adjusted and tailored according to the particular
commercial application, or by the user’s own preferences, etc.
to have a particular voice style (man, woman, young, old, etc.)
to enhance the customer’s experience.

[0304] Ina similar fashion, an articulated user query might
be received as part of a conventional search engine query, to
locate information of interest on the INTERNET in a similar
manner as done with conventional text queries. If a reason-
ably close question/answer pair is not available at the server
side (for instance, if it does not reach a certain confidence
level as an appropriate match to the user’s question) the user
could be presented with the option of increasing the scope so
that the query would then be presented simultaneously to one
or more different NLEs across a number of servers, to
improve the likelihood of finding an appropriate matching
question/answer pair. Furthermore, if desired, more than one
“match” could be found, in the same fashion that conven-
tional search engines can return a number of potential “hits”
corresponding to the user’s query. For some such queries, of
course, it is likely that real-time performance will not be
possible (because of the disseminated and distributed pro-
cessing) but the advantage presented by extensive supple-
mental question/answer database systems may be desirable
for some users.

[0305] It is apparent as well that the NLQS of the present
invention is very natural and saves much time for the user and
the e-commerce operator as well. In an e-support embodi-
ment, the customer can retrieve information quickly and effi-
ciently, and without need for a live customer agent. For
example, ata consumer computer system vendor related sup-
port site, a simple diagnostic page might be presented for the
user, along with a visible support character to assist him/her.
The user could then select items from a “symptoms” page
(i.e., a “monitor” problem, a “keyboard” problem, a “printer”
problem, etc.) simply by articulating such symptoms in
response to prompting from the support character. Thereafter,
the system will direct the user on a real-time basis to more
specific sub-menus, potential solutions, etc. for the particular
recognized complaint. The use of a programmable character
thus allows the web site to be scaled to accommodate a large
number of hits or customers without any corresponding need
to increase the number of human resources and its attendant
training issues.

[0306] As an additional embodiment, the searching for
information on a particular web site may be accelerated with
the use of the NLQS of the present invention. Additionally, a
significant benefit is that the information is provided in a
user-friendly manner through the natural interface of speech.
The majority of web sites presently employ lists of frequently
asked questions which the user typically wades item by item
in order to obtain an answer to a question or issue. For
example, as displayed in FIG. 13, the customer clicks on Help

Sep. 9, 2010

1330 to initiate the interface with a set of lists. Other options
include computer related items at 1370 and frequently asked
questions (FAQ) at 1380.

[0307] As illustrated in FIG. 18, a web site plan for typical
web page is displayed. This illustrates the number of pages
that have to be traversed in order to reach the list of Fre-
quently-Asked Questions. Once at this page, the user has to
scroll and manually identify the question that matches his/her
query. This process is typically a laborious task and may or
may not yield the information that answers the user’s query.
The present art for displaying this information is illustrated in
FIG. 18. This figure identifies how the information on a typi-
cal web site is organized: the Help link (FIG. 13, 1330)
typically shown on the home page of the web page is illus-
trated shown on FIG. 18 as 1800. Again referring to FIG. 18,
each sub-category of information is listed on a separate page.
For example, 1810 lists sub-topics such as ‘First Time Visi-
tors’, ‘Search Tips’, ‘Ordering’, ‘Shipping’, ‘Your Account’
etc. Other pages deal with ‘Account information’ 1860,
‘Rates and Policies’ 1850 etc. Down another level, there are
pages that deal exclusively with a sub-sub topics on a specific
page such as ‘First Time Visitors’ 1960, ‘Frequently Asked
Questions’ 1950, ‘Safe Shopping Guarantee’ 1940, etc. So if
a customer has a query that is best answered by going to the
Frequently Asked Questions link, he or she has to traverse
three levels of busy and cluttered screen pages to get to the
Frequently Asked Questions page 1950. Typically, there are
many lists of questions 1980 that have to be manually scrolled
through. While scrolling visually, the customer then has to
visually and mentally match his or her question with each
listed question. If a possible match is sighted, then that ques-
tion is clicked and the answer then appears in text form which
then is read.

[0308] In contrast, the process of obtaining an answer to a
question using a web page enabled with the present NLQS
can be achieved much less laboriously and efficiently. The
user would articulate the word “Help” (FIG. 13, 1330). This
would immediately cause a character (FIG. 13, 1340) to
appear with the friendly response “May I be of assistance.
Please state your question?”. Once the customer states the
question, the character would then perform an animation or
reply “Thank you, I will be back with the answer soon”. After
ashort period time (preferably not exceeding 5-7 seconds) the
character would then speak out the answer to the user’s ques-
tion. As illustrated in FIG. 18 the answer would be the answer
1990 returned to the user in the form of speech is the answer
that is paired with the question 1950. For example, the answer
1990: “We accept Visa, MasterCard and Discover credit
cards”, would be the response to the query 2000 “What forms
of payments do you accept?”

[0309] Another embodiment of the invention is illustrated
in FIG. 12. This web page illustrates a typical website that
employs NLQS in a web-based learning environment. As
illustrated in FIG. 12, the web page in browser 1200, is
divided into two or more frames. A character 1210 in the
likeness of an instructor is available on the screen and appears
when the student initiates the query mode either by speaking
the word “Help” into a microphone (FIG. 2B, 215) or by
clicking on the link ‘Click to Speak’ (FIG. 12, 1280). Char-
acter 1210 would then prompt the student to select a course
1220 from the drop down list 1230. If the user selects the
course ‘CPlusPlus’, the character would then confirm ver-
bally that the course “CPlusPlus” was selected. The character
would then direct the student to make the next selection from

US 2010/0228540 Al

the drop-down list 1250 that contains the selections for the
chapters 1240 from which questions are available. Again,
after the student makes the selection, the character 1210 con-
firms the selection by speaking. Next character 1210 prompts
the student to select ‘Section’ 1260 of the chapter from which
questions are available from the drop down list 1270. Again,
after the student makes the selection, character 1210 confirms
the selection by articulating the ‘Section’ 1260 chosen. As a
prompt to the student, a list of possible questions appear in the
list box 1291. In addition, tips 1290 for using the system are
displayed. Once the selections are all made, the student is
prompted by the character to ask the question as follows:
“Please ask your query now”. The student then speaks his
query and after a short period of time, the character responds
with the answer preceded by the question as follows: “The
answer to your question . . . is as follows: This procedure
allows the student to quickly retrieve answers to questions
about any section of the course and replaces the tedium of
consulting books, and references or indices. In short, it is can
serve anumber of uses from being a virtual teacher answering
questions on-the-fly or a flash card substitute.

[0310] From preliminary data available to the inventors, it
is estimate that the system can easily accommodate 100-250
question/answer pairs while still achieving a real-time feel
and appearance to the user (i.e., less than 10 seconds of
latency, not counting transmission) using the above described
structures and methods. It is expected, of course, that these
figures will improve as additional processing speed becomes
available, and routine optimizations are employed to the vari-
ous components noted for each particular environment.

Semantic Decoding

[0311] Inaddition to the semantic checking and validation
component noted above in connection with the SQL query,
another aspect of the present invention concerns semantic
decoding to determine the meaning of a speech utterance. As
discussed above, the algorithms of many current natural lan-
guage processing systems use a statistics-based linguistic
algorithm to find the correct matches between the user’s ques-
tion with a stored question to retrieve a single best answer.
However, many of such systems do not have the capability to
handle user questions that have semantic variations with a
given user question. For example, if the stored question is:
‘How do I reboot my system’, and the user’s question is:
‘What do I do when my computer crashes’, we could, with the
help of a lexical dictionary such as WordNet, establish that
there is a semantic relationship between ‘computer crash’ and
‘rebooting’. This would then allow us to understand the link
between ‘computer crash’ and ‘rebooting my system’.

[0312] WordNet is the product of a research project at Prin-
ceton University that has modeled the lexical knowledge of a
native speaker of English. For further information, the fol-
lowing URL can be used (using as www prefix) cogsci.prin-
ceton.edu/~wn/. WordNet has also been extended to several
other languages, including Spanish, Japanese, German and
French. The system has capabilities of both an on-line the-
saurus and an on-line dictionary. Information in WordNet is
organized as a network of nodes. Each of these word sense
nodes is a group of synonyms called synsets. Each sense of a
word is mapped to such a sense word—i.e. a synset,—the
basic building block, and all word sense nodes in WordNet are
linked by a variety of semantic relationships. The basic
semantic relationship in WordNet is synonymy. Although
synonomy is a semantic relationship between word forms, the

Sep. 9, 2010

semantic relationship that is most important in organizing
nouns is arelation between lexical concepts. This relationship
is called hyponymy. For example the noun robin is a hyponym
(subordinate) of the noun bird, or conversely bird is a hyper-
nym (superordinate) of robin. WordNet uses this semantic
relationship to organize nouns into a lexical hierarchy.
[0313] The input to the WordNet is a word or group of
words with a single meaning, e.g.. “co-operation”. The output
of'the WordNet is a synset (a set of synonym and their mean-
ings). The typical interfaces are:

[0314] findtheinfo(): Primary search function for Word-
Net database. Returns formatted search results in text
buffer. Used by WordNet interfaces to perform
requested search.

[0315] read_synset(): Reads synset from data file at byte
offset passed and return parsed entry in data structure
called parse_synset().

[0316] parse_synset(): Reads synset at the current byte
offset in file and returns the parsed entry in data struc-
ture.

[0317] getsstype(): Returns synset type code for string
passed.

[0318] GetSynsetForSense(char *sense_key): returns

the synset that contains the word sense sense_key and

NULL in case of error.
[0319] Thus, one approach to natural language processing
is to use a statistics-based implementation that relies on noun
phrases to establish how closely matched the user’s question
is with the stored question. One way in which such processing
can be improved is to expand the algorithm to incorporate the
capability to establish semantic relationship between the
words.
[0320] Inthe present invention therefore, WordNet-derived
metrics are used in parallel with a statistics-based algorithm
s0 as to enhance the accuracy of a NLQS Natural Language
processing Engine (NLE). Specifically, a speech utterance is
processed as noted above, including with a speech recognize;
to extract the words associated with such utterance. Very
briefly, an additional function based on rank and derived from
one or more metrics as follows:

First Metric:

[0321] 1. Compare each word of the user’s question in
the utterance with each word of the stored question. Ifu,
is the i word of the user’s question, and f, is the j* word
of the stored question, then the similarity score s
between the two words is S(u,, 1)) is equal to the mini-
mum lexical path distance between the two words being
compared [and can be later defined to take into account
some other constants related to the environment]

[0322] 2. So for the entire query we a word by word
comparison between the user’s question and the stored
question is carried out, to compute the following matrix,
where the user’s question has n words and the stored
questions have m words:

S(ur, fi) ... S, f)
S(ui, fi) =

S, 1) oo St fin)

US 2010/0228540 Al

[0323] Note: Some stored questions may have m words,
others m-1, or m-2, or m+1, or m+2 words . . . etc. So for the
matrices may be different order as we begin to compare the
user’s question with each stored question.

[0324] The first row of the matrix calculates the metric for
first word of the user’s question with each word of the stored
question. The second row would calculate the metric for the
second word of the user’s question with each word of the
stored question. The last row would calculate the metric for
the last word of the user’s question (u,,) with each word of the
stored question (f; .. .tof,).

[0325] In this way a matrix of coefficients is created
between the user’s question and the stored question.

[0326] The next step is to reduce this matrix to a single
value. We do this by choosing the maximum value of the
matrix between the user’s question and each stored question.
We can also employ averaging over all the words that make up
the sentence, and also introduce constants to account for other
modalities.

Second Metric:

[0327] Find the degree of coverage between the user’s
question and the stored question. We use WordNet to calcu-
late coverage of the stored questions, which will be measured
as a percentage of the stored questions covering as much as
possible semantically of the user’s question. Thus the cover-
age can represent the percentage of words in the user’s ques-
tion that is covered by the stored question.

Final Metric:

[0328] All of the above metrics are combined into a single
metric or rank that includes also weights or constants to adjust
for variables in the environment etc.

The NLQS Semantic Decoder—Description

[0329] As alluded to above, one type of natural language
processing is a statistical-based algorithm that uses noun
phrases and other parts of speech to determine how closely
matched the user’s question is with the stored question. This
process is now extended to incorporate the capability to estab-
lish semantic relationship between the words, so that correct
answers to variant questions are selected. Put another way, a
semantic decoder based on computations using a program-
matic lexical dictionary was used to implement this semantic
relationship. The following describes how WordNet-derived
metrics are used to enhance the accuracy of NLQS statistical
algorithms.

[0330] FIG.19illustrates a preferred method 1995 for com-
puting a semantic match between user-articulated questions
and stored semantic variants of the same. Specifically, a func-
tion is used based on rank and derived from one or more
metrics as follows:

[0331] Three metrics—term frequency, coverage and
semantic similarity are computed to determine the one and
only one paired question of a recordset returned by a SQL
search that is closest semantically to the user’s query. It will
be understood by those skilled in the art that other metrics
could be used, and the present invention is not limited in this
respect. These are merely the types of metrics that are useful
in the present embodiment; other embodiments of the inven-
tion may benefit from other well-known or obvious variants.
[0332] The first metric—the first metric, term frequency, a
long established formulation in information retrieval, uses the

Sep. 9, 2010

cosine vector similarity relationship, and is computed at step
1996. A document is represented by a term vector of the form:

R=(t,1,...1) (1)
[0333] where each t, identifies a content term assigned to a

record in a recordset
Similarly, a user query can be represented in vector form as:

V0= 95 - - - 9,) ()]

The term vectors of (1) and (2) is obtained by including in
each vector all possible content terms allowed in the system
and adding term weights. So if w, represents the weight of
term t in the record R or user query UQ, the term vectors can
be written as:

=t Wit Weii -« - 1L, W) 3
and

UO0=(g0 Wugo #q WY - - - U, Wor) Q)

[0334] A similarity value between the user query (UQ) and
the recordset (R) may be obtained by comparing the corre-
sponding vectors using the product formula:

t
Similarity (UQ, R) = Z Wagk - Wrk
k=1

[0335] A typical term weight using a vector length normal-
ization factor is:

Wik
- for the recordset

> (wa)?

vector

Wagk

3 (g

vector

for the user query

[0336] Using the cosine vector similarity formula we
obtain the metric T:

T = cos(Vug, V) = Similarity (UQ, R) =

t
Z Wagk Wri
K=l
t
25 2
(Wugi)* 2 (W)
k=1

k=1

Thus, the overall similarity between the user query (UQ) and
each of the records of the recordset (R) is quantified by taking
into account the frequency of occurrence of the different
terms in the UQ and each of the records in the recordset. The
weight for each term w, is related to the frequency of that term
in the query or the paired question of the recordset, and is
tidf=nxlog(M/n) where n is the number of times a term
appears, and M is the number of questions in the recordset and
user query. TIDF refers to term frequencyxinverse of docu-
ment frequency, again, a well-known term in the art. This
metric does not require any understanding of the text—it only

US 2010/0228540 Al

takes into account the number of times that a given term
appears in the UQ compared to each of the records.

[0337] The second metric—the second metric computed
during step 1997—C—corresponds to coverage, and is
defined as the percentage of the number of terms in the user
question that appear in each of the records returned by the
SQL search.

[0338] The third metric—the third metric computed at step
1998—W—is a measure of the semantic similarity between
the UQ and each of the records of the recordset. For this we
use WordNet, a programmatic lexical dictionary to compute
the semantic distance between two like parts of speech—e.g.
noun of UQ and noun of record, verb of UQ and verb of
record, adjective of UQ and adjective of record etc. The
semantic distance between the user query and the recordset is
defined as follows:

Sem(T,,, T,)=[I(ug,r)+I(ruq))/[Abs[T,]+Abs[T,]]

[0339] whereI(uq.r)and I(r,uq) are values corresponding to
the inverse semantic distances computed at a given sense and
level of WordNet in both directions.

[0340] Finally at step 1999 a composite metric M, is
derived from the three metrics—T, C and W as follows:

T +cC+wW)
T G+c+w

where t, ¢ and w are weights for the corresponding metrics T,
Cand W.

[0341] A standalone software application was then coded
to implement and test the above composite metric, M. A set of
several test cases was developed to characterize and analyze
the algorithm based on WordNet and NLQS natural language
engine and search technologies. Each of the test cases were
carefully developed and based on linguistic structures. The
idea here is that a recordset exists which simulates the
response from a SQL search from a full-text database. In a
NLQS algorithm of the type described above, the recordset
retrieved consists of a number of records greater than 1—for
example 5 or up to 10 records. These records are questions
retrieved from the full-text database that are semantically
similar to the UQ. The idea is for the algorithm to semanti-
cally analyze the user query with each record using each of
the three metrics—term frequency T, coverage C, and seman-
tic distance W to compute the composite metric M. Semantic
distance metric employs interfacing with the WordNet lexical
dictionary. The algorithm uses the computed value of the
composite metric to select the question in the recordset that
best matches the UQ.

[0342] For example a user query (UQ) and a recordset of 6
questions returned by the SQL search is shown below. Record
#4 is known to be the correct question that has the closest
semantic match with the UQ. All other records—1-3, 5, 6 are
semantically further away.

Test Case i Example

UQ: How tall is the
Eiffel Tower?

Recordset:

What is the height
of the Eiffel Tower?

L. PPPPPPPPPPPPPPPPPPP

Sep. 9, 2010
-continued

Test Case i Example

2.9999999999999999999 How high is the
Eiffel Tower?

3. ITITTITIITITITIITITT I T T The FEiffel Tower
stands how high?

4. CCCccceeeceecceece The Eiffel Tower is
how high?

5. trtttttttttttt ettt et How many stories
does the Eiffel

Tower have?
How high does the
Eiffel Tower stand?

6. uuuuuUUIIIUIULu I

Record #4 is designed manually to be semantically the closest to UQ.

[0343] Several test cases are created in which each test case
has a different UQ. Each UQ is linked to a recordset that has
1 record with the correct semantically matched question. That
matching question will have the closest semantic match to the
UQ than all the other 5 questions in the recordset.

[0344] The standalone application takes each of the test
cases one at a time and results are recorded for retrieval time
and recall while varying 2 parameters—number of senses and
number of levels. The recall determines the efficiency of the
algorithm and the metrics derived.

[0345] Following the functional testing using a standalone
software application, the integration with a NLQS system is
as follows:

[0346] Assume that the variant question (bold in example)
is the question with the closest semantic match with the user
query. Also assume that this question has a paired answer that
is the answer to the user query. Then the non-bold variants of
the recordset represent all the variant questions that can be
asked by the user. These non-bold variants are encoded into
the NLQS speech lattice, grammar and dictionaries. The user
can then query using any of the variant forms or the original
query using speech. The query will be speech recognized and
the bold question that is stored in the database will be
retrieved as the question pair. Then the corresponding answer
to the bold-question will be delivered via text-to-speech.
[0347] Atestsetof several testcases were then designed for
the functional testing of extending the capabilities to accu-
rately retrieve correct answers to user questions which varied
semantically with the original user query. As an example of a
test case is:

User Query Where are the next Olympic Games being held?
Semantic Where will the next Olympic Games be held?
Variants Who will next host the Olympics?
In which city will the next Olympics take place?
Which city will next host the Olympics?
Name the site of the next Olympics.
[0348] Other examples will be apparent to those skilled in

the art from the present teachings. For each application, a
different set of semantic variants tailored to such application
can be accommodated to improve an overall query/sentence
recognition accuracy.

Populating Speech Lattice with Semantic Variants

[0349] A complementary process to the above, of course, is
shown in FIG. 20, which illustrates a method for populating a
speech lattice with semantic variants. This procedure popu-

US 2010/0228540 Al

lates aNLQ system speech recognition lattice with a specified
number of variant questions of a given user question possible
for the domain. The basic approach taken by the invention is
that the capabilities of a NLE to process and correctly under-
stand user questions that are semantically similar to the stored
question, will enable a NLQS system to provide accurate
answers even for uttered questions that are only semantically
related to the stored questions.

[0350] To accommodate transcription of speech to text, a
typical NLQS distributed speech recognition engine uses a
word lattice as a grammar, to provide the complete range of
hypotheses, of all word sequences that could be spoken. This
word lattice can be derived from a manually-written BNF
(Backus Naur Form) or finite state grammar, or it could be in
the form of an N-gram grammar or statistical language model
(LM) which allows all logically possible (even linguistically
impossible) word sequences and which reduces the task per-
plexity via probabilistic modeling of the N-gram sequences,
so that the less likely sequences (observed less frequently or
never in a large training dataset) are discarded earlier in the
recognizer’s search procedure. Thus, the focus of this aspect
of'the invention is to generate a speech grammar that includes
all possible paraphrasings of the questions that an NLQS
query system knows how to answer.

[0351] The approach taken in the present invention is to
generate a smaller N-gram language model, by partitioning a
larger N-gram grammar into subsets using the words (and
phrases) in our question list along with their synonyms and
along with closed-class, grammatical function words that
could occur anywhere though they may not happen to be in
our target question list. The approach is automatic and statis-
tical rather than intuition-based manual development of lin-
guistic grammars. Given a large N-gram language model (say
for simplicity’s sake a bigram), the intention is to extract out
of the N-gram that subset which will cover the task domain.
[0352] Starting with the set oftarget questions for which we
aim to model all the paraphrases, we use a lexical database
(such as WordNet or a similarly capable database) to find a set
of synonyms and near-synonyms for each content word in
each question. Phrasal synonyms could also be considered,
perhaps in a second phase. The vocabulary, then, which our
sub-setted N-gram language model needs to cover, comprises
this full set of target content words and their semantic close
cousins, along with the entire inventory of closed-class words
of the language (grammar function words which might well
occur in any not-known-in-advance sentence).

[0353] Next, observation counts underlying a pre-existing
N-gram language model (LM), which is much larger and
more inclusive (having been trained on a large task-uncon-
strained dataset), can be copied into a sub-setted statistical
language model for those N-grams where each ofthe N words
are contained in the task vocabulary. Probabilities can then be
re-estimated (or re-normalized) using these counts, consider-
ing that row totals are much reduced in the sub-setted LM as
compared with the full LM.

[0354] The result is an N-gram statistical language model
that should cover the task domain. As usage accumulates and
experience grows, it is possible to make additions to the
vocabulary and adjustments to the N-gram probabilities
based on actual observed task-based data.

[0355] Insummary, the above procedure is implemented as
a tool—called a data preparation tool (DPT) for example. Its
function (much like a present NLQS data population tool that
is now used to populate the full-text database with question-

Sep. 9, 2010

answer pairs), would be to implement the steps of FIG. 20 to
create a speech grammar lattice that would allow recognition
of the semantic variants of the user’s question.

[0356] Therefore, as shown in FIG. 20, the basic steps of the
semantic variant question population process 2000 include:
1. Inputting user questions at step 2010 (UQ).

2. Parsing the input question into words or parts of speech at
step 2020;

3. Obtaining the synonyms for the parsed words at step 2030;
4. Using the synonym words to prepare a set of random
questions at step 2040;

5. Verifying and obtaining only the disambiguated set of
questions from the random questions at step 2050 using the
WordNet semantic decoding (WSD) methodology above.

6. Creating the speech recognition lattice file at step 2060
using the disambiguated set of questions. This lattice file is
then used to populate the NLQS Speech Recognition lattice.
[0357] In summary the above steps outline a procedure
implemented as a software application and used as an adjunct
to the semantics-based NLQS natural language engine (NLE)
to provide variant questions for any single user question.
Integration of Semantic Algorithm with a Statistics-Based
NLQS Algorithm

[0358] The semantic algorithm discussed above is easily
integrated and implemented along with a NLQS algorithm
described above. The integrated algorithm, which can be
thought of as a hybrid statistical-semantic language decoder,
is shown in FIG. 21. Entry points to the WordNet-based
semantic component of the processing are steps 35 and 7.
[0359] While the preferred embodiment is directed specifi-
cally to integrating the semantic decoder with embodiments
of'a NLQ system of the type noted above, it will be under-
stood that it could be incorporated within a variety of statis-
tical based NLQ systems. Furthermore, the present invention
can be used in both shallow and deep type semantic process-
ing systems of the type noted above.

APPENDIX

Key WordNet API Functions Used in the Program-
matic Interface to NLQS Algorithm

[0360] The key application programming interfaces which
can be used by a preferred embodiment with WordNet are:
1. wninit()

Explanation:

[0361] Top level function to open database files and mor-
phology exception lists.
2. 1s defined()

Explanation:

[0362] Setsabit for each search typethat is valid for search-
str in pos, and returns the resulting unsigned long integer.
Each bit number corresponds to a pointer type constant
defined in WNHOME/include/wnconsts.h.

[0363] 3. findtheinfo ds New
Explanation:
[0364] findtheinfo_ds returns a linked list data structures

representing synsets. Senses are linked through the nextss
field of a Synset data structure. For each sense, synsets that
match the search specified with ptr_type are linked through
the ptrlist field.

US 2010/0228540 Al

findtheinfo_ds is modified into the findtheinfo_ds_new func-
tion. The modified function will restrict the retrieval of syn-
onyms by searching the wordNet with limited number of
senses and traverses limited number of levels.

Explanation:

[0365] 4. traceptrs ds New

Explanation:

[0366] traceptrs_ds is a recursive search algorithm that
traces pointers matching ptr_type starting with the synset
pointed to by synptr. Setting depth to 1 when traceptrs_ds() is
called indicates arecursive search; 0 indicates a non-recursive
call. synptr points to the data structure representing the synset
to search for a pointer of type ptr_type. When a pointer type
match is found, the synset pointed to is read is linked onto the
nextss chain. Levels of the tree generated by a recursive
search are linked via the ptrlist field structure until NULL is
found, indicating the top (or bottom) of the tree.
traceptrs_ds is modified into the traceptrs_ds_new function.
The modified function will restrict the retrieval of synonyms
by searching the wordNet with limited number of senses and
traverses limited number of levels.

[0367] Again, the above are merely illustrative of the many
possible applications of the present invention, and it is
expected that many more web-based enterprises, as well as
other consumer applications (such as intelligent, interactive
toys) can utilize the present teachings. Although the present
invention has been described in terms of a preferred embodi-
ment, it will be apparent to those skilled in the art that many
alterations and modifications may be made to such embodi-
ments without departing from the teachings of the present
invention. It will also be apparent to those skilled in the art
that many aspects of the present discussion have been simpli-
fied to give appropriate weight and focus to the more germane
aspects of the present invention. The microcode and software
routines executed to effectuate the inventive methods may be
embodied in various forms, including in a permanent mag-
netic media, a non-volatile ROM, a CD-ROM, or any other
suitable machine-readable format. Accordingly, it is intended
that the all such alterations and modifications be included
within the scope and spirit of the invention as defined by the
following claims.

What is claimed is:

1.-28. (canceled)

29. A method for conducting a search using spoken input,

comprising:

accepting continuous user speech in the form of a natural
language query using a client device;

processing the user speech on the client device using a first
processing routine to form processed speech;

transmitting the processed speech to a server system using
an application-level Internet protocol;

recognizing the processed speech on the server system
using a second processing routine to form recognized
speech;

searching one or more data repositories containing plurali-
ties of queries to find at least one query that matches the
recognized speech; and

returning information associated with the at least one query
that matches the recognized speech to the client device.

30. The method of claim 29, further comprising initiating

the accepting after a button on the client device is depressed.

Sep. 9, 2010

31. The method of claim 29, wherein the processed speech
comprises speech in compressed form.

32. The method of claim 31, wherein the speech in com-
pressed form comprises a plurality of extracted features char-
acteristic of the user speech.

33. The method of claim 32, wherein the extracted features
comprise mel-frequency cepstral coefficients (MFCCs).

34. The method of claim 29, wherein the Internet protocol
comprises hypertext transfer protocol (HTTP).

35. The method of claim 29, wherein transmitting the pro-
cessed speech to the server system comprises transmitting the
processed speech to the server system in streaming packets.

36. A system for conducting a search using spoken input,
comprising:

a machine-readable medium encoded with an application
program in the form of machine-readable instructions
that, when executed, cause a client device to
accept continuous user speech in the form of a natural

language query using a client device,
process the user speech on the client device using a first
processing routine to form processed speech, and
transmit the processed speech to a server system using
an application-level Internet protocol;

a speech recognition engine that recognizes the processed
speech to form recognized speech; and

a search engine that searches one or more data repositories
containing pluralities of queries for at least one query
corresponding to the recognized speech and returns
information associated with the at least one query; and

a formatting and transmission routine that receives the
processed speech and returns the information associated
with the at least one query to the client device.

37. The system of claim 36, wherein the speech recognition
engine and the search engine reside in one or more server
systems.

38. The system of claim 36, wherein the information asso-
ciated with the at least one query comprises an answer asso-
ciated with the at least one query in the one or more data
repositories.

39. The system of claim 36, further comprising a natural
language engine that analyzes a set of candidate responses to
the at least one query that are returned by the search engine
and determines the information associated with the at least
one query that is returned.

40. The system of claim 39, wherein the information asso-
ciated with the at least one query comprises a single best
response.

41. The system of claim 36, wherein the processed speech
comprises a spectral representation of the user speech.

42. The system of claim 36, wherein the processed speech
comprises speech in compressed form.

43. The system of claim 42, wherein the speech in com-
pressed form comprises a plurality of extracted features char-
acteristic of the user speech.

44. The system of claim 43, wherein the extracted features
comprise mel-frequency cepstral coefficients (MFCCs).

45. The system of claim 36, wherein the Internet protocol
comprises hypertext transfer protocol (HTTP).

46. A system for conducting a search using spoken input,
comprising:

US 2010/0228540 Al

a first speech processing circuit on a first device that

accepts continuous user speech in the form of a natural
language query using a client device,

processes the user speech on the client device using a
first processing routine to form processed speech, and

transmit the processed speech to a second device using
an application-level Internet protocol;

a second speech processing device on a second device that
recognizes the processed speech to form recognized
speech;

a search engine that searches one or more data repositories
containing pluralities of queries for at least one query
corresponding to the recognized speech and returns
information associated with the at least one query; and

Sep. 9, 2010

a formatting and transmission circuit that receives the pro-
cessed speech and returns the information associated
with the at least one query to the first device.

47. The system of claim 46, further comprising a natural
language engine that processes the recognized speech using
both semantic decoding and statistical processing.

48. The system of claim 46, wherein the information asso-
ciated with the at least one query comprises at least one best
answer to the at least one query.

49. The system of claim 46, wherein the information asso-
ciated with the at least one query comprises a set of candidate
responses to the at least one query.

sk sk sk sk sk

