WORLD INTELLI

PCT

A A0 AR

WO 9604604A1

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

(11) International Publication Number:

WO 96/04604

Al
GOGF 15/16 (43) International Publication Date: 15 February 1996 (15.02.96)
(21) International Application Number: PCT/US95/09474 | (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH,
CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG,

(22) International Filing Date: 28 July 1995 (28.07.95)

(30) Priority Data:

08/283,572 1 August 1994 (01.08.94) Us

(71) Applicant (for all designated States except US): NCUBE
(US/US}; 110 Marsh Drive, Foster City, CA 94404-1184
(Us).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DUZETT, Robert, C.
[US/US]; 522 N.E. Geraldine Drive, Hillsboro, OR 97124
(US). KENOYER, Stanley, P. [US/US]J; Route 1, Box 199,
Forest Grove, OR 97116 (US).

(74) Agents: YOUNG, Barry, N. et al.; Gray Cary Ware &
Freidenrich, 400 Hamilton Avenue, Palo Alto, CA 94301-
1825 (US).

KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, §I, SK, TJ,
UA, US, UZ, VN, European patent (AT, BE, CH, DE, D
ES, FR, GB, GR, [E, IT, LU, MC, NL, PT, SE),
patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE,
SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

TEE

Published
With international search report.

(54) Title: NETWORK COMMUNICATION UNIT USING AN ADAPTIVE ROUTER

(57) Abstract

A parallel processor network comprised of a plurality of nodes,
each node including a processor containing a number of /O ports, and
a local memory. A communication path is established through a node
by comparing a target node address in a first address packet with a
processor ID of the node. If node address is equal to the target node
address a receive channel is allocated to the input port and a route
ready command is sent over an output port paired with the input port.
If the node address is not equal to the target node address, then a first
unallocated output port is selected from a port vector and the address
packet is forwarded to a next node over the selected output port.

upuoR| |veuoat
) T3
DMA BUFFERS AND LOGIC
g =< ; <
(FROM CPU) _PRB g g §
Sfl 8 RECEVE] CHANNELS
18
0y Wy
8 SOND
CHANNELS
wt- g
THROUGH
phivead 1 ROUTING
AND AND LOGC
SIGNALS
ROUTING i
AND EEEE E;Eg
sows | B8RS S8
2 OUTPUT PORT OPINS
= INPUT PORT IPNS
OUTPUT PORT OPINS
*‘— INPUT PORT PINS

applications under the PCT.

AT
AU
BB
BE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Ctte d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Taly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

T ortugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

35

WO 96/04604 PCT/US95/09474

-

NETWORK COMMUNICATION UNIT USING AN ADAPTIVE ROUTER

Cross-reference to Related Application
Copending application serial number 07/587,237 entitled "Network Communication Unit for use

In a High Performance Computer System" of Stephen R. Colley, et al., filed on September 24,
1990, assigned to nCUBE Corporation, the assignee of the present invention, and incorporated
herein by reference.

Bacqudund of the Invention

Field of the Invention
The invention relates to data-processing systems, and more particularly, to a communication

mechanism for use in a high-performance, parallel-processing system.

Description of the Prior Art
US patent 5,113,523 describes a parallel processor comprised of a plurality of processing

nodes, each node including a processor and a memory. Each processor includes means for
executing instructions, logic connected to the memory for interfacing the processor with the
memory and an internode communication mechanism. The internode communication
mechanism connects the nodes to form a first array of order n having a hypercube topology. A
second array of order n having nodes connected together in a hypercube topology is
interconnected with the first array to form an order n+1 array. The order n+1 array is made
up of the first and second arrays of order n, such that a parallel processor system may be
structured with any number of processors that is a power of two. A set of I/O processors are
connected to the nodes of the arrays by means of [/O channels. The internode communication
comprises a serial data channel driven by a clock that is common to all of the nodes.

The above-referenced Copending application SN 07/587,237, describes a fixed-routing
communication system in which each of the processors in the network described in US patent
5,113,523 is assigned a unique processor identification (ID). The processor IDs of two
processors connected to each other through port number n, vary only in the nth bit. A plurality

10

15

20

25

30

WO 96/04604 PCT/US95/09474

2-

of input ports and a plurality of output ports are provided at each node. Control means at one
of the input ports of the node receives address packets related to a current message from an
output port of another of the nodes. A data bus connects the input and output ports of the
node together such that a message received on any one input port is routed to any other
output port. A compare logic compares a node address in a first address packet with the
processor D of the node to determine the bit position of the first difference between the node
address in the first address packet and the processor ID of the node. The compare logic
includes means for activating for transmission of the message packet placed on the data bus
by the input port, the one of the plurality of output ports whose port number corresponds to
the bit position of the first difference, starting at bit n+1, where n is the number of the port on
which the message was received.

In the fixed routing scheme described in the above-referenced application SN 07/587,237, a
message from a given source to a given destination can take exactly one routing path, unless it
is forwarded, cutting through intermediate nodes and blocking on busy channels until the path
is established. The path taken is the dimension-order minimum-length path. While this scheme
is deadlock-free, it will not reroute messages around blocked or faulty nodes.

It is an object of the present invention to provide a new communication mechanism that will
route messages around blocked or faulty nodes in a parallel processor.

Summary of the invention

Briefly, the above object is accomplished in accordance with an embodiment of the present
invention by providing a maze adaptive routing mechanism. In a maze adaptive routing scheme
for a transmission from node A to node B, all minimum-length paths between the two nodes
are searched by a single-packet scout that attempts to find a free path.

One minimum path at a time is scouted, starting with the lowest-order uphill path and doing a
depth-first, helical traversal of the minimum-path graph until a free path to the destination is
found. If no free minimum-length path is found, other, non-minimum-length paths may be

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-3-

searched; or the central processing unit is interrupted so that software can restart the search
or implement some other policy.

In accordance with an aspect of the invention, a node address packet, used for finding and
establishing a route to a destination node, is provided with destination (target) node address,
plus other necessary control bits and parameters.

The invention has the advantage that the mechanism automatically routes around blocked or
disabled nodes.

The maze router also exhibits superior bandwidth usage and latency for most message mixes.
This is attributed to its exhaustive yet sequential approach to route searching. The maze router
eliminates the blockage of the fixed routing wormhole scheme, yet keeps route-search traffic to
a minimum.

Brief Description of the Drawings
The foregoing and other objects, features, and advantages of the invention will be apparent

from the following detailed description of a preferred embodiment of the invention, as illustrated
in the accompanying drawings wherein:

FIGURE 1 is a detailed block diagram of a communications unit in which the present invention
is embodied;

FIGURE 2 is block diagram of a receive channel shown in FIGURE 1,

FIGURE 3 is block diagram of a send channel shown in FIGURE 1,

FIGURE 4 is block diagram of an input port shown in FIGURE 1,

FIGURE 5 is block diagram of an output port shown in FIGURE 1,

FIGURE 6 is block diagram of routing registers and logic shown in FIGURE 1,

FIGURE 7 is a maze routing example in an eight processor network dimension 3 hyper cube;
Figure 8 is a graph of message latency versus percent of network transmitting data; for fixed
and adaptive routing.

Figure 9 is a diagram of an address packet;

10

15

20

25

30

WO 96/04604 PCT/US95/09474

Figure 10 is a diagram of a data packet;

FIGURE 11 is a diagram of a command packet;

FIGURE 12 is a flow diagram of the routing state of a send operation;

FIGURE 13 is a flow diagram of the routing state of an input port operation;
FIGURE 14 illustrates end-to-end acknowledge;

FIGURE 15 is a maze-route timing diagram wherein there are no blocked links; and,
FIGURE 16 is a maze-route timing diagram wherein there are blocked links.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Signal Line Definitions
The following is a summary of signal line abbreviations used in FIGURE 1 and their definitions:

CPU- Central Processing Unit.

CUTB- cut through bus by which commands, addresses and data are passed among ports and
channels.

IPINS- input pins.

MEMADR- Memory address bus.

MEMDAT- Memory data bus.

NODEID- Node identification -a unique code number assigned to each node processor to
distinguish a node from other nodes.

OPALL- output port allocation, one for each of 18 ports and 8 receive channels.

OPBSY- Output port busy -one line for each of 18 output ports and 8 receive channels to
indicate that the corresponding output port or channel is busy.

OPINS- output pins.

OPSELV- output port and receive channel select vector; routing logic indicates the output port
or channel selected.

PORTCUT- a vector indicating to which port, send channe! or receive channel to cut through.
PORTSRC- a vector indicating which input port or send channel requests a route.

PORTRT- a vector of candidate ports from an agent requesting a route.

PRB- Processor Bus - a data bus from the central processing unit (CPU).

RDMAADR- receive DMA address.

RDMADAT- receive DMA data.

10

15

20

25

30

WO 96/04604 PCT/US95/09474

SDMAADR- send DMA address.
SDMADAT- send DMA data.

Command Definitions

ETE-ack- End-to -end acknowledge - when a transmission has completed, backtracking takes
place in the reverse direction along the transmission route as ETE-ack logic retraces the path in
order to deallocate all ports in that path and delivers status to the originating send channel.

BOT- Beginning of Transmission - A signal generated by a send instruction to a sending
channel that indicates the beginning of a transmission.

EOM -End of message is a command delivered to the target node that indicates that this is the
end of a message.

EOT -End of transmission is a command delivered to the target node that indicates that this is
the last packet of this transmission.

ETE_ack -The End-to -end acknowledge command indicates a transmission was delivered
successfully to the target node. It includes a receive code set up by the software at the

receiver end.

ETE_nack -The End-to -end not acknowledge command indicates that a message was not
delivered successfully to the target node and returns status such as parity error or receive
count overflow.

ETE_en -The end-to-end enable signal is sent with the address packet to indicate that the end-
to-end logic at the receive channel in the target node is enabled.

Flush_path - is a flush command that deallocates and frees up all ports and channels in a path
to a target node.

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-6-

Reset_node - Reset_ node is a command that resets a node and its ports and channels to an
initial state.

Reset_CPU - Reset_CPU is a command that resets a CPU at a node but not its ports and
channels to an initial state.

Rev_rej - Receive reject is a path rejection command that indicates that no receive channel is
available at the target node.

Rev_rdy -Receive ready is a command that indicates that the receive channel is ready to
accept a transmission.

Route_rdy -Route ready is a command that indicates to a send channel that a requested route
to the target node and receive channel has been found and allocated for a transmission from
the send channel.

Route_reject -Route reject is a path rejection command that indicates that all attempted paths
to the target node are blocked.

Rt_ack - Route acknowledge is a path acknowledge command that indicates that the path that
a scout packet took to the target node is available and allocated (reserved).

Send_rdy -Send ready is a status register that indicates the send channels that are ready to
start a message or transmission.

Refer to FIGURE 1 which is a detailed block diagram of a communications unit in which the
present invention is embodied. A direct memory access (DMA) buffers and logic block (10) is
connected to a main memory (not shown) via memory address (memadr) and memory data
(memdat) buses. Eight receive (rcv) channels (12) are paired with eight send channels (14). A
routing registers and logic block (16) is connected to the send channels via Portrt and Opselv,
and to the receive channels via Opselv. A cut-through arbiter and signals block (18) is

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-7-

connected to the send and receive channels. A routing arbiter and signals block (20) is
connected to the send channels (14) and to the routing registers and logic (16). Eighteen
output por/input-port pairs (22) are connected to the cut-through arbiter and signals (18), the
routing arbiter and signals (20), and to the send and receive channels via Portcut, Cutb, and
Portsrc. A processor bus (prb) is connected from a central processing unit (not shown) to the
receive channels, the send channels, the routing registers and logic and to input and output
ports (22). The input ports are connected to the routing arbiter and signals block (20) and off-
chip via the input pins (lpins). The output ports are connected to the cut-through arbiter and
signals block (18) and off-chip via the output pins (Opins).

Receive Channel
Refer to FIGURE 2 which is block diagram of one of eight receive channels (12) shown in

FIGURE 1. Each receive channel includes a receive direct memory access register, RDMA,
(50), a receive status register, RSTAT, (52), a DMA four word-deep buffer DMABUF, (54) and
a receive source vector register, RSRCVEC, (56). The input port that cuts through transmission
data to this receive channel is indicated by the contents of the RSRCVEC register; which is
placed on the PORTCUT bus when the receive channel returns an ete-ack or ete-nak command.

An address packet or data packet is received from an input port over the cut through bus
CUTB. Data are buffered in the receive DMA buffer DMA BUF(54) before being written to
memory. An address and length to describe where in memory to place the data is stored in the
receive dma register (50). As data is received it is transferred over the data write bus DWB
to a memory controller along with the address DADR and word count DCNT.

The receive source vector register RSRCVEC is an indication of from which input port the data
was sent. An end to end (ETE) command, with end-to end (ETE) status, is sent back to the
sending port from the RSTAT register (52).

Send Channel

Refer to FIGURE 3 which is block diagram of one of eight send channels (14) shown in
FIGURE 1. Each send channel includes a send buffer DMA, SBDMA (58), send DMA register,
SMDA (60), send buffer path, SBPTH (62), send path register, SPTH (64), end-to-end buffer,

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-8-

ETEB (66), end-to-end register, ETE (68), DMA buffer, DMABUF (70), send port vector register,
SPORTVEC (72), send port select register, SPORTSEL (74) and send port alternate register,
SPORTALT (76).

The SDMA register (60) stores address and length fields, double queued with the SBDMA
register (58). The SPTH register (64) stores port vector and node address of the destination
(target) node, double queued with the SBPTH register (62). At the end of a transmission the
SBDMA register (58) is popped to the SDMA register (60) and the SBPTH register (62) is
popped to the SPTH register (64). At the end of a message the SBDMA only is popped, to the
SDMA register.

The ETE register (68) is the top of the end-to-end (ETE) queue and the ETEB register (66) is
the bottom of the end-to-end (ETE) queue. An end-to-end ETE is returned via the CUTBUS and
stored in the ETEB register (66). The ETEB is popped to the ETE if the ETE is empty or invalid.

CPU Instructions access the registers by means of the PRB bus. If a SDMA register is in use,
the information is placed in the buffer SBDMA(58). If SBDMA (58) is also full, a flag is set in
the CPU indicating that the send channel is full. (same for SPTH and SBPTH)

The send port vector SPORTVEC (72) is in a separate path in the send channel but is part of
the SPTH register. SPORTVEC stores a bit pattern indicating through which output ports the
transmission may be routed. The port vector is passed by means of the port route PORTRT
bus to the routing logic shown in FIGURE 6. A PORTSRC line is asserted to indicate which
channel or port is requesting the new route. If accepted, a vector, which is a one in a field of
zeros, is sent from the routing logic via the output port select OPSEL bus to the send port
select SPORTSEL register (74). The SPORTSEL register indicates the one selected output port.
The send channel sends an address packet, and/or data from the DMABUF (70), to the output
port via the cut through bus CUTB. The output port for the cut through is selected by placing
the port select vector SPORTSEL (74) on the port cut-through select bus PORTCUT.

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-0-

The SPORTVEC vector is inverted and the inverted vector is placed in the alternate port vector
register SPORTALT (76). If all attempted routes fail using the SPORTSEL register, the
SPORTALT register is transferred to the SPORTSEL to provide an alternate route select attempt.

The output port allocated OPALL lines, are activated to prevent another channel or port from
interfering with the selected (allocated) port.

Input Port
Refer to FIGURE 4 which is block diagram of an input port shown in FIGURE 1. Each input

port includes input data register, IDAT (78), input data buffer, IBUFDAT (80), input buffer
command, IBUFCMD (81), input back track data register, IBAKDAT (82), identification
difference register, IDDIF (84), input port source register, IPORTSRC (86), input port vector
register, IPORTVEC, (88) and input port select register, IPORTSEL (90).

Pairs of bits that are shifted out of an output port of a corresponding hypercube neighbor node
are shifted into the input port command IBUFCMD register (81) on the IPINS. At the front of a
packet is the packet type which indicates the size of the packet. If a short packet, it is shifted
into the middle of the IBUFDAT register (80). If it is backtrack command, the bits are shifted
into the IBAKDAT register (82). If an address is shifted in, it is compared with an address of
the node, NODEID. The result is a difference vector that is loaded into the IDDIF register (84). If
folding is enabled, the FOLDEN line is asserted and the ID bits corresponding to the folded port
are used to modify the difference vector IDDIF accordingly. The contents of the IDDIF register
are loaded into the input port vector register IPORTVEC (88) which is used to identify the next
minimum path ports through which a message may be routed. The IPORTVEC is sent to the
routing logic of FIGURE 6 via the port route bus PORTRT. At the same time, the input port
asserts its corresponding bit on PORTSRC, which is passed to the routing logic with port
routing.

The output port selected by the routing logic is indicated with the OPSELV bus, which is
written into the iportsel register. Also, the PORTSRC value is written into the srcvec register
of the iport corresponding to the selected oport. If a back track command is received at an

10

15

20

25

WO 96/04604 PCT/US95/09474

-10-

iport via the IBAKDAT register, SRCVEC selects the oport to which the back track data is sent.
Any time data is put out on the CUTB bus, the contents of the IPORTSEL register (90) or of
the SRCVEC register are put out on the PORTCUT bus to select the output port to receive the
data.

Output Port
Refer to FIGURE 5 which is block diagram of an output port shown in FIGURE 1. Each output

port includes output data register, ODAT (92), output data buffer, OBUFDAT (94), output
backtrack data register, OBAKDAT (96) and output acknowledge data register, OACKDAT (98).

An address or data packet arrives from an input port or send channel on the cut through bus
CUTB and is loaded into the output data ODAT register (92). The ODAT register is popped into
the output buffer data OBUFDAT register (94) if it is not busy. If ODAT is full, an output port
busy OPBSY line is asserted. The output backtrack data OBAKDAT register (96) stores
backtrack commands. The output acknowledge data OACKDAT register (98) stores packet
acknowledge commands. OBUFDAT register (94), OBAKDAT register (96), and OACKDAT
register (98) are shift registers that shift bits out of the OPINS every clock period, two pins
(bits) per clock period.

Routing Registers and Logic
Refer to FIGURE 6 which is block diagram of the routing registers and logic (16) shown in

FIGURE 1. The routing registers include node identification register, NODEID (100), termination
register, TERMIN (102), fold enable register, FOLDEN (104), output port allocation register, OPALL
(108), output port busy register, OPBSY (110), alternate mask register, ALTMSK (112), input
output mask, IOMSK (114), input output select, IOSEL (116), OPORTEN (118) and a routing find
first one (FFO) logic(120).

The NODEID register (100) contains the node address of this processor.

10

15

20

25

30

WO 96/04604 PCT/US95/09474

11-

The terminal register TERMIN (102) indicates which input ports are terminal ports. Terminal
ports do not compare address packets with the NODEID and any address packet that arrives at
such a port is accepted as having arrived at the target node.

The fold enable register FOLDEN (104) holds a vector which indicates which ports can be
folded. FOLDEN is considered by the routing FFO (120) when performing a wormhole routing
protocol, such that if the first port is not available but its folding partner is available, a route is
set up using the folded port; or when performing a maze routing protocol, such that the folding
partners of the PORTRT ports are also considered as potential routing candidates.

When a send channel or an input port is requesting a path, the PORTRT bus carries a vector
which indicates all the oports from which the routing logic may choose to form the next link in
the Xmission path. PORTSRC carries a vector which identifies from which channel the request
comes; and the OPALL vector indicates which output ports have already been allocated.

For a wormhole routing protocol, a find first one (FFO) is performed with the routing FFO (120)
on bits in the PORTRT vector, starting at the first bit position beyond the port (on the
PORTSRC bus) from which a request came, and wrapping around to bit position 0 and beyond
if necessary (this is a “helical’ search). The first “one’ bit indicates the output port through
which the next link in the route must be taken. If folding is enabled for this port (FOLDEN), the
folded output port corresponding to this one is also available for routing and is indicated in the
output vector of the FFO. This vector is masked with OPORTEN and OPALL to generate the
output port select vector on the OPSELV bus. If OPSELV is all zeroes, route selection has
failed, i.e. the output port required to route the next link is unavailable, and the send channel or
ioport must retry the routing request until the output port becomes available.

For a maze routing protocol, the PORTRT vector is first enhanced with any folded ports as
indicated by the FOLDEN register. It is then masked with OPALL and OPORTEN, before the
FFO is performed. As with the wormhole case, the FFO operation starts at the first bit position
beyond that indicated with the PORTSRC bus and wraps around as needed (" helical’ search).
Thus, for maze routing, the first available output port from the PORTRT vector will be selected

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-12-

and placed on the OPSELV bus. If none of the PORTRT ports is available, OPSELV will be zero
and the route selections has failed. If the route request was from a Send Channel, the Send
Channel will then place a route-rejection status in its ETE queue and interrupt the CPU. If the
route request was from an input port, a route-rejection command will be sent back to the
previous node in the path, via the output port paired with the requesting input port.

Routing Arbiter and Signals
The routing arbiter and signals (20) shown in FIGURE 1 is a find-first-one (FFO) chain. The last

port or send channel that was selected is saved. The next time a search is made, the search
starts just beyond that last position and a round-robin type of priority search is conducted.
Ports or send channels arbitrate for route select to get access to the routing logic (16) which
will select an output port to form the next link in an Xmission path. The cut-through arbiter
and signals logic (18) then is invoked.

Cut-through Arbiter and Signals

The cut-through arbiter and signals (18) shown in FIGURE 1 is a find first one (FFO) chain.
Cut-through port allocation priority is similar to that described in SN 07/587,237, but port
allocation priority is not hard-wired. The last port in the channel that was selected is saved.
The next time a search is made, the search starts just beyond that last position and a round-
robin type of priority search is conducted.

Maze Routing
Refer to FIGURE 7 which is a maze routing example in an eight processor network dimension 3

hyper cube. A source (src) node (000) attempts a transmission to a destination or target node
(111) by sending scout packets along route search paths indicated by broken lines. Scout
packets encounter blocked links illustrated by the mark "+". Links from 001 to 101 and from
011 to 111 are blocked in this example. A route ready acknowledge path is illustrated by the
solid line from node 111 through nodes 110 and 010, back to the source node 000. The
message is then sent out to the target node 111 over the path as illustrated by the bold solid
line.

10

15

20

25

30

WO 96/04604 PCT/US95/09474

13-

Cut-through hardware

To support multi-path routing, the receive and send channels (12, 14) are logically independent
of the communication ports (22). Each send and receive channe! therefore needs cut-through
logic to direct data to or from the selected port or ports. This cut-through logic is similar to
that described in SN 07/587,237, replicated for each of the 18 ports and 8 send and 8 receive
channels

Route-rejection logic
As a scout packet searches out a path, it must recognize a blocked or busy channel and

respond with a rejection packet that retraces and deallocates each channel in the nodes of the
scout packet 's path. The retracing is done using the same baktrak paths and logic used by
end-to-end acknowledge (ETE-ack)packets.

Maze route-selection and retry logic
The routes from any node along a path are selected by performing an exclusive OR (XOR) of a

destination node-ID with a node ID. This is just like cut-through port selection for a fixed-router
as described in SN 07/587,237, but all selected ports not already allocated, are potential paths,
rather than just the lowest one. The lowest unallocated port is selected by the routing logic.

A port rejection from an allocated path causes the corresponding cut-through cell to be
invalidated and the next selected port to be tried. If no valid port selections remain, a rejection
message is passed back to the previous node or Send channel in the path. A scout that arrives
successfully at the destination node is directed to the next available Receive Channel and then
retraces its path as a path_ack message. If the send channel receives a path_ack message, it
can start transmitting the requested message along the selected path. if all potential paths are
rejected, the cpu is interrupted, at which time random wait and retry is invoked by the
software.

Refer to FIGURE 8 which is a graph of message latency versus percent of network transmitting
data. An adaptive maze router is represented by solid lines and a fixed wormhole router is
represented by broken lines. Three message mixes are plotted: small (16 packets) medium
(128 packets), and large (1024 packets). The vertical axis is message latency which is the

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-14-

number of packet time units to deliver the first packet. The horizontal axis is the percent of the
network that is transmitting data, that is, the percent of network bandwidth transmitting data.
The message mixes described in TABLE | are plotted for both routing types in the graph of

FIGURE 8.

TABLE |

LINE SMALL MEDIUM LARGE
PLOT MESSAGE MESSAGE MESSAGE

A 98% 0% 2%

B a0% 48% 2

C 0% 0 0%

D 0% 0% 100%

E 0& 100% 0%

F 100% 0% 0%

As shown in the graph of FIGURE 8, the maze router out-performs a fixed wormhole router in
most situations.

Message Protocols

End-to-End reporting

A transmission may optionally hold a path until an end-to-end (ETE) acknowledge is received
back at the source node from the destination (target) node. The ETE_ack or ETE_nak is sent
back along the same source to target path, but in the reverse direction, from target to source,
as the transmission that was delivered. The target to source path uses companion ports that
transmit in the other direction along a back-track routing network. The ETE_nak includes error
status that indicates "parity_error", "rcv_count_overflow", or "flushed". The ETE_ack includes a
6-bit status field set up by software at the receiver end. ETE packets are not queued behind
other messages along the companion path, but are inserted between normal message packets
using the back-track routing network. ETE packets are delivered to the send channel, at the
source node, that initiated the transmission.

Packet Formats
Messages are delivered via packets of different types. Every data transmission begins with a
32-bit address packet, followed by 72-bit data packets, which include 64 bits of data and 8

10

15

20

25

30

WO 96/04604

-15-

PCT/US95/09474

bits of packet overhead. Message data must be double-word aligned in memory. Commands
are delivered in 18-bit packets and are generated and interpreted by the hardware only.

Figure 9 is a diagram of an address (scout) packet (32 bits):

Start bits -2
Packet type -2
Node Address - 18

- Forward bit -1
Routing type - 3
Reserved -2
Acknowledge - 2
Parity -2

Figure 10 is a diagram of a data packet (72 bits):

Start bits -2
Packet type -2
Data - 64
Acknowledge - 2

Parity -2

FIGURE 11 is a diagram of a command packet (18 bits):
Start bits -2
Packet type -2
Command -4
Status -6
Acknowledge - 2
Parity -2

Routing types:

Bit0 indicates "oblivious" routing, i.e. only a single route is possible at

any intermediate node; non-adaptive.

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-16-

Bit1 indicates "progressive" routing, i.e. data wormholes behind the address -
there is no circuit probe(scout packet).

Bit2 indicates "alternate" routing, i.e. mis-route to non-minimum-path
neighbors when further routing is otherwise blocked.

000 = "maze" routing: exhaustive back-track using a circuit probe (scout packet)
001 = "helix" routing: n minimum path oblivious routes tried from the sender, using a circuit
probe

010 = RESERVED

011 = oblivious wormhole routing, (the only non-adaptive rt type)

100 = “alternate_maze": maze until source is fully blocked, then mis-route and

maze through neighbor nodes, in turn as necessary
101 = "alternate_helix": helix until source is fully blocked, then mis-route and
helix along non-minimum paths

110 = "hydra"; maze progressively (take 1st available minimum path port at each inter-
mediate node, wormholing data behind) until all paths are blocked, then mis- route and
maze from blocked node

111 = "oblivious_hydra": oblivious wormhole (take only 1st minimum path port at each
intermediate node, wormholing data behind) until path is blocked, then mis-route and maze
from blocked node.

Packet types:
00 = address
01 = data

10 = bak-trak routing_command(rt_rej,rcv_rej,fwd_rej,rt_ack,ETE_ack,ETE_nak)
11 = fwd_message_command (EOM,EOT flush,reset)

Commands:

10

15

20

25

30

WO 96/04604

-17-

stat cmd

x000x 0000 = packet acknowledge

000 0001 = route ack (path ack)

xo00x 0010 = route rejected (blocked) (path rejection)
xo00x 0011 = reserved

x00x0 0100 = rcv_channel rejected or hydra_route rejected
x00x1 0100 = parity_err flushed back

xooox 0101 = forwarded route rejected

ssssss 0110 = ETE ack (ssssss = rcv_code)

ssrrrr 0111 = ETE nack (rrrr= error status; ss=rcv code)
xooox 1000 = EOM

000 1001 = EOT - no ETE requested

xoox! 1001 = EQT - ETE requested

xo0ox 101x = reserved

xo00x 1100 = reset_CPU

xo00x 1101 = reset_node

x00x0 1110 = flush_path

001 1110 = parity_err flushed forward
000 1111 = reserved

Node Addressing

PCT/US95/09474

Processor IDs and destination addresses are 18-bit unique values, specifying one of 256K
possible nodes in the system. The 18-bit physical node address of a target node is included in
the address packet at the head of a message transmission, and as part of a "scout' packet

(circuit probe) when a maze route is being established.

Logical to physical node address conversion, node address checking, and port_vector
calculation for a new Transmission Send are done directly by system software.

Message Routing

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-18-

A message can be routed any of seven ways, as listed under routing types table in the packet
formats section above. A programmer selects the routing method via the routing-type field in
the operand of the "Set_Path" or "Send" instruction.

Oblivious wormhole routing is a “fixed" routing scheme. A message from a given source to a
given destination takes exactly one unique predetermined routing path. The path taken is the
lowest-order uphill minimum-length path. The message, node address followed immediately by
message data, worms its way toward the destination node, not knowing if the path is free and
never backing out, but blocking on busy ports as it encounters them and continuing on when
the busy port frees up.

Maze routing in accordance with the present invention is an adaptive routing scheme. For a
message from node_A to node_B, all minimum-length paths between the two nodes are
searched one at a time (actually, paths in which the first leg is non- minimum may optionally
be tried also) by a single-packet scout, starting with the lowest uphill path and doing a depth-
first helical traversal of the minimum-path graph until a free path to the destination is found.
The successful arrival of a scout packet at the destination establishes the path. Then, once a
path_acknowledge packet is delivered back to the sender, this reserved path is used to
transmit the message. If no free path is found, however, an interrupt is generated at the source
node, whereupon the software may retry the path search after an appropriate delay or use
alternate routing (and/or using a different set of first-leg paths).

Maze routing protocol

In a maze router, a transmission from a source (sender) node to a destination (target) node
cannot be accomplished until a path is established from a Send Channel at the source node to
a Receive Channel at the target node. The path is established as follows:

At the Sender node
Each of the source’s Send channels has associated with it a send_port_vector (SPORTVEC),

provided to it by the software via a Send instruction, which indicates the output ports of the
sender’s node through which the routing will initially be attempted. These ports may or may not

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-19-

start minimum-length paths. This first hop may thus route non-minimally, while all subsequent
hops will take only minimum paths to the target. In other words, the maze router does an
exhaustive search of minimum paths between a set of nodes, that set including the source
node and/or some number of its immediate accessible neighbors, and the target node.

A scout packet, including the node address of the target node, is sent out the first of the
source’s selected output ports which is enabled and free, and is thus delivered to a
neighboring node, the next node in a potential path to the target node. The path from the Send
Channel to the selected output port is now locked, reserved for the pending transmission,
unless a path_rejection packet is subsequently received on the corresponding input port. If the
selected output port receives a path_rejection packet, because all paths beyond the next node
are blocked, a new output port from the send_ port_vector will be selected, if available, and
the scout packet sent out that port. When no more send_port_vector output ports are available,
because they were blocked or rejected, an "all_paths_blocked" status is pushed into the ETE
queue for the respective Send channel, the CPU is interrupted, and the Send channel goes into
a wait state, waiting for software to clear it. If, however, a path_acknowledge packet is
received, it is passed back to the Send_DMA_Channel that initiated the search and the selected
path remains reserved for the subsequent transmission, which can now be started.

At the Target node

A node that receives a scout packet at one of its input ports first compares the target node
address from the scout packet with its own node ID. If they match, the scout packet has found
the target node. If a receive channel is free, the scout packet is delivered to it and a
path_acknowledge packet is sent all the way back to the source (sender) node, retracing the
successful legs of the scout’s path. If a receive channel is not available, a path_rejection
packét, encoded as a “rcv_ channel_ unavailable" command, is sent back to the source node
via the established path and the input port is freed-up.

At Intermediate nodes
If a receiving node’s node ID does not match the target node address, then this node is an
intermediate node and it will attempt to deliver the scout packet to the next (neighboring) node

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-20-

along a minimum-length path to the target node. The XOR of the target node address with this
node's node ID, the Hamming distance between them, indicates which output ports connect to
minimum paths, and is latched in the IPORTVEC register as the cut-through vector. The output
port paired with this input port, i.e. the link back to the node from where the scout just came,
is disqualified from the cut-through vector, thus preventing any cycles that could be caused by
non-minimal routes (which are allowed on the first hop). If folding is enabled, the bits
corresponding to the folded partners of the cut-through vector are also asserted. The scout
packet is sent out the first of the cut-through output ports, starting beyond this input port,
which is enabled and free. The path from the input port to the selected output port is reserved
for the pending transmission, unless and until a path_rejection packet is received on the output
port's companion input port. If a path_rejection packet is received, because all minimum paths
beyond the next node are blocked, a new cut-through port will be selected, if available, and the
scout packet sent out that port. When no more cut-through ports are available from this node,
a path_rejection packet is sent to the previous node, the one from which the scout packet got
here, and the input port is freed-up. If, however, a path_ acknowledge packet is received, it is
passed back to the source node via the established path and the selected path remains
reserved for the subsequent transmission.

The above process is continued recursively until a free path to the target is found and
established, or until all desired paths from the source node have been tried and failed.

Path_Cmd packets:
A scout returns path_rejection status to the previous node, or path _found status to the source

node, by sending back a path_cmd packet. Path_cmd packets are sent back along a path
using the path’s "companion” ports, just like an ETE packet. There are two kinds of path_cmd
packets. A “path_acknowledge" packet, indicating that the scout has established a path to the
destination node, is delivered all the way back to the source, leaving the path established for
the subsequent transmission. A "path_rejection" packet, indicating that the scout has been
completely blocked at an intermediate node, is delivered to the previous node in the path,
clearing the path (this last hop) along the way. A new path from that node may now be tried
or, if no new paths remain open from that node, it will in turn send a "path-rejection" packet to

10

15

20

25

30

WO 96/04604 PCT/US95/09474

21-

its antecedent node. If it has no antecedent node, i.e. it is the source node, the rejection packet
is placed into the ETE queue, the Send DMA channel goes into a wait state, and the CPU is
interrupted.

Routing Retry using Alternate Send Port Vector
If the routing logic fails to find a path using the given send_port_vector, an alternative set of
paths may optionally be attempted before interrupting the CPU.

When alternate routing is enabled, and after the initial set of routes has failed, the initial
send_port_vector is inverted and and'ed with the alternate_port_mask to create a new
send_port_vector. Then, a second attempt is made at finding a route, through neighboring
nodes that were not used in the initial try. If the alternate routes also fail, the CPU is then
interrupted in the usual manner.

Non-minimum paths through alternate send ports are exactly two hops longer than minimum,
since all routing is minimum after the first hop. If a source and destination node are separated
in j dimensions, the minimum path distance is j hops and the alternate path distance is j+2
hops.

Attempting alternate routes can be especially important for transmissions to target nodes that
are only a short distance away. For example, there is only one minimum-length path to a
connected neighbor, yet by attempting routes through all the other neighbors, there are a total
of n unique paths to any nearest neighbor in a cube of dimension n as described by the
alternate mask.

There is one Alternate_Port_Mask per node, but alternate routing is enabled on a per-
transmission basis (a bit in the path-setup operand of the SEND instruction).

Folding
Folding increases the number of output ports available for routing a message in a non-

maximum-size system. Any of the connections from the lower 8 output ports to the

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-22.

corresponding input ports of nearest_neighbor nodes, can be duplicated on the upper 8 output
ports, in reverse order, to the same nearest_neighbor nodes. In other words, any subset of the
interconnect network can be duplicated on otherwise unused upper ports.

If folding is enabled (see FOLDEN_register, figure 6), then when a port vector (PORTVEC) is
calculated at an intermediate node, any selected ports that are folded will enable their
respective companion ports to also be selected into the port vector.

At any hop of a wormhole route, either of the two folded ports, that duplicate the link for the
desired dimension, may be used. Folding thus greatly improves the chances of a wormhole
route finding its way to the target with minimal or no blocking.

For a maze route, folding increases the number of minimum-path links that can be tried at each
hop, and thus improves the chances of finding an open path.

Forwarding
The maze router finds a route to the forwarding node, reserves that path, then transmits the

next address (fetched from the message data) to that node, whereupon the address is maze-
routed from there to the new node. This can be repeated as long as new addresses are
forwarded, or until a route cannot be found, in which case the entire path is unraveled and
deallocated and a “forward_route_rejected" command is delivered to the send channel's ETE
queue. On the other hand, if a path to the final target node is established, the message data is
then transmitted normally from the source to the target.

Communication Direct Memory Access (DMA) Channels

A message is transmitted from a contiguous block of physical memory at the sender to a
contiguous block of physical memory at the receiver, in increments of double-words (64 bits).
To provide memory access and message and path control at both ends of the transmission,
there are eight Send DMA Channels and eight Receive DMA Channels at each processor.

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-23-

DMA channels are set up with the appropriate SEND or RECEIVE instruction. A Set_DMA
instruction is also provided to assist in setting up the DMA operand of the SEND or RECEIVE
instruction. The SEND and RECEIVE operands provide path control, messaging parameters,
addresses, etc. for the DMA channels and routing logic.

In order to reduce page-mode page-break limitations on DMA memory bandwidth, each
channel, send or receive, buffers up to 32 bytes of data. This corresponds to 4 double-word
(64-bit) memory accesses. Messages must be aligned on double-word boundaries and sized in
double-word-multiples.

Send_DMA

Each Send channel has associated with it a physical memory address and a message length,
stored in its DMA register, as well as a destination node ID and a send_port_vector, stored in
its Path register. The Send channels are double-buffered, such that the DMA and Path control
descriptors of the next message can be setup while the current one is being transmitted.
Communications software can use this feature to hide messaging overhead and to efficiently
implement send-chaining.

After a Send channel has been setup for a new transmission, it first enters the routing state to
establish a path to the target node. The path is established once the address packet is
transmitted to the output port, if routing progressively, or when a path_acknowledge packet is
received by the channel, if routing maze.

If the node address is forwarded, the send channel enters the forwarding state and transmits
address packets from the message data until the last address packet is not marked as
forwarded. If routing maze, the channel waits for a path_acknowledge after each address is
transmitted.

Once a Send channel establishes a path to the target node , it commences reading the
message data from memory and transmitting it along the path to the target node. As the
message data is fetched, the memory address is incremented and the message length is

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-24-

decremented, until the length counter reaches zero. When the send counter reaches zero, an
End-of-Message (EOM) or End-of-Transmission (EOT) packet is sent, depending on the EOT-
enable bit of the channel setup.

If it's an EOM, the DMA register is cleared and a new one popped in from the Send buffer. If
it's an EOT and ETE is not enabled, the DMA and Path registers are both cleared and reloaded
from the Send buffer. if it's an EQT and ETE is enabled, the Send channel is not cleared in any
way, but waits for the ETE packet. When the ETE packet arrives, it is pushed into the ETE
Queue, and the Send channe! (both registers) is cleared. The Send channe!l then moves on
directly to the next transmission (pops the Send buffer) if it's ready. Whenever the Send buffer
is popped due to an EOM or EOT condition, the CPU is also interrupted to indicate that a free
Send channel is now available. ETE also generates an interrupt if interrupt is enabled.

When maze routing, the ETE queue is also pushed with status information if a route could not
be found to the target node. In this case, the path_rdy bit is cleared, an ETE interrupt is raised,
but the DMA channel is not popped, cleared, or reloaded. A programmer can subsequently
clear the Send channel by writing to the corresponding DMA register.

An ongoing Send transmission can be stopped by clearing the DMA_rdy bit in the channel’s
DMA register. This stops the transmission, but leaves it in the transmitting state. The DMA_rdy
bit can be cleared by writing a 1 to the respective bit, corresponding to the send channel, of
the Send_rdy register (see Send Channel Status Registers).

A blocked or stopped Send transmission can be flushed by writing a 1 to the respective bit,
corresponding to the send channel, of the Send_transmission_rdy register (see Send Channel
Status Registers).

When a message is flushed, a flush-cmd packet traverses the allocated path, clearing and
deallocating the path behind it.

10

15

20

25

30

WO 96/04604 PCT/US95/09474

End-to-End Queue

For each Send channel there is an End-to-End (ETE) Queue, into which ETE status, from the
target node’s receive channel, or route_rejection or error status is pushed. When status is
pushed into the ETE queue, an ETE interrupt is generated. The queue is 2 entries deep and a
processor register, one for each send channel, contains both entries. A programmer can read
an ETE queue, without side effects, via a RDPR instruction. The programmer can then clear an
ETE entry by writing a zero into its valid bit, via a WRPR instruction (though they must be read
together, each entry in the queue can be written separately). When the first entry is cleared
(popped) in this way, the second entry is automatically copied into its place and cleared. The
Send channel cannot start a new transmission while the ETE Queue is full.

Send Operation

FIGURE 12 is a flow diagram of a send operation. From an idle state, the send channel enters
the routing state (200). The first unallocated output port is selected from the send port vector
(202). If a port is selected (204), the flow proceeds to block (206). The send channel
allocates the selected port, and sends the address packet out of the selected output port
(208). The send channel then waits for routing status to be returned via the route command
(210).

When the route command arrives, the status (212) is either route rejected or route established.

If at block (212) the status is route rejected, the send channel clears the corresponding bit in
the send port vector, clears port select, and deallocates the output port it had allocated at
block (206). If the send port vector is now reduced to 0, and alternate routing is not enabled
(205), or if enabled but this is not the first pass (207) through the sequence, the send
channel pushes route_rej status onto the ETE queue and if interrupt is enabled, the send
channel interrupts the CPU (218). The send channel then enters the idle state (220).

If at block (212) the route is established, route_ready is set (222) and the forward bit is
checked (223). If the forward bit is set, the forwarding state is entered (225). If not, the enter

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-26-

message transmission state is entered (224). The send channel transmits data to the target
node until the message count is 0.

If at block (204) a port is not selected, the flow proceeds to.). decision block (205). If
alternate routing is enabled, and this is a first pass through the flow sequence (207), the
SPORTVEC is made equal an inverted version of the initial send_port vector (209). Thus when
all initially attempted routes fail using the initial SPORTVEC, the inverted version provides an
alternate route select attempt as the flow proceeds to block (202). The first unallocated output
port is selected from the now inverted send port vector (202). If a port is selected (204), the
flow proceeds to block (206). If a port is not selected (204), the flow proceeds to block (205).
Alternate routing is enabled (205), but this is not the first pass (207) through the sequence, so
the flow proceeds to block (218).The send channel pushes route_rej status onto the ETE queue
and if interrupt is enabled, the send channel interrupts the CPU (218). The send channel then
enters the idle state (220).

Receive_DMA

Each Receive channel has associated with it a physical memory address and a message length
(also called the receive count), stored in its respective DMA register. it also has a rcv_status
register that includes error status and the receive code. As a message flows through the
channel, the address increments and the message length decrements, until the length counter
reaches zero or until an EOM/EQT packet is received.

If a Receive channel receives an EOM or EQT before the counter has reached zero, or
immediately after it reached zero, the message has successfully completed and the channel
returns to the idle state, clearing dma_rdy. If no receive errors occurred during the reception, a
rev_rdy interrupt is raised. Otherwise, a rcv_err interrupt is raised.

For example, if a parity error is detected anywhere along the transmission path, a parity_err
flush_message is delivered forward to the receive channel of the target (as well as back to the
send channel of the sender). The parity error or flush bits in the receive status field are set and
the target CPU is interrupted with a rcv_err interrupt by the receive channel.

10

15

20

25

30

WO 96/04604 PCT/US95/09474

27-

If the receive counter reaches zero, the message should be complete and the next packet
should be an EOM or EQT. If it is not, the rcv_count_overflow flag in the receive status field is
set, and all further packets are ignored, i.e. simply shifted into oblivion, until an EOM or EOT is
received, at which point a rcv_err interrupt is generated. The counter wraps and continues to
decrement (the address does not increment), thus providing a way for a programmer to
calculate how far the message overflowed.

A programmer can read the receive status, message count, etc. at any time, by simply reading
the processor registers associated with the channel.

Scatter/Gather at the Receive Channel

To facilitate fast “gather” functions at the receiver, the programmer can optionally set the
“ignore_EOM~ flag at the receive channel for a given transmission (see Receive instruction
description). Thus, the sender may gather disjoint bundles of data, as individual messages,
into a single transmission, and the receiver can be set up to ignore the message boundaries for
the length of the entire transmission, and thus store the bundles sequentially in a single DMA
operation, rather than taking an interrupt and setting up a new receive_DMA after every

message.

To implement a “scatter” function, the programmer can optionally set the “force_EOM” flag

at the receive channel. Thus, the sender may deliver a sequential block of data in one
message, and the receiver can be set up to force message boundaries for sub-lengths of the
transmission, and thus scatter the data in sub-blocks to different areas in memory. The receive
channel is set up with a length shorter than the incoming message, and when the length
counter drops to zero, the receive channel treats it as an EOM and blocks the incoming data
until new DMA parameters are set up by the programmer. This is especially useful for

DMAihg a message across virtual page boundaries that may map to disjoint physical memory
pages.

Routing From an Input Port

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-28-

FIGURE 13 is a flow diagram an address packet input port operation. The input port receives
an address packet (300) and computes the exclusive OR of the address in the address packet
with the Node ID of this node (302). The result is ID_diff. if ID_diff is 0 or if the input port is
designated as a terminal, then the flow proceeds to block (322). If not, then the flow proceeds
to block (306).

At block (306) the port vector (portVec) is generated and used to select the first unallocated
output port (308).

At block (310), if a port is not selected, then the input port sends a route_reject command via
the output port paired with this input port (335), and waits for a new address packet (336).

If a port is selected (310), then an address packet is forwarded to the next node via the
selected output port (312) and the port is allocated. The transmission path through this node is
now setup and the input port waits for routing status that will be supplied by an incoming
route command (314). A route command (316) will either indicate that the route is rejected or
that the route is ready. f rejected, the flow proceeds to block (318). If ready, the flow
proceeds to block (330).

At block (318), the receive channel clears the corresponding bit in the port vector, clears port
select, and deallocates the output port allocated at block (312). The input port selects the next
unallocated output port from the port vector (308) via the routing logic,and the flow proceeds
as described above.

At decision block (304), if the node ID is equal to the address in the address packet or this
port is terminal, then this node is the target node and the flow proceeds to block (322).

At block (322) the port vector (portVec) is generated and used to select the first ready receive
channel (324). If a channel is selected (326), then the input port allocates a receive channel to
receive the message (328). The input port sends a route ready (route_rdy) command via the
output port paired with this input port (330) and waits for message data to arrive (332).

10

15

20

25

WO 96/04604 PCT/US95/09474

-20-

At block (326), if a channel is not selected, then the input port sends a route_reject command
via the output port paired with this input port (335) and waits for a new address packet (336).

End to End Reporting
FIGURE 14 illustrates end-to-end acknowledge. At the source node (350), the send channel

sends a message packet out of an output port (352) to an intermediate node (355) that
receives the message at an input port (354). The message is sent by the intermediate node
(354) out of an output port (356). The message travels from node to node until the target node
(358) receives the message packet. A receive channel is allocated (362) and an ETE ack
message is sent back over the same path by using the output ports that are paired with the
respective input ports in the path (ports 361, 353, and 351). The message path is held until
the ETE ack is received at the source node and receive status is returned with the ETE ack. For
each Send channel there is an End-to-End (ETE) Queue, into which ETE status is pushed. When
End-to-End status is pushed into the ETE queue, a Send_rdy and ETE interrupt are generated,
depending on the status.

FIGURE 15 is a maze route timing diagram wherein there are no blocked links.

FIGURE 16 is a maze route timing diagram wherein there are blocked links and wherein
backtracking is invoked.

While the invention has been particularly shown and described with reference to preferred
embodiments thereof, it will be understood by those skilled in the art that the foregoing and
other changes in form and detail may be made therein without departing from the spirit and
scope of the invention.

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-30-

What is claimed is:
1. In a network of interconnected nodes;

each node including a processor;

each of said processors in said network being assigned a unique processor
identification (ID);

an apparatus for establishing a communication path through a node of said network
comprising:

a plurality of input ports;

a plurality of output ports;

control means at one of said input ports of a said node for receiving address packets
related to a current message transmitted from an output port of another of said nodes;

a router connected to said one input port and to said output ports;

registering means for registering said processor identification (ID);

comparing means connected to said control means and to said registering means for
comparing a target node address in an packet with said processor ID of said node stored in
said registering means;

said comparing means including means for creating a first condition provided that said
ID is equal to said target node address and, alternatively, a second condition provided that said
ID is not equal to said target node address;

a plurality of receive channels connected to said router;

allocation means connected to said comparing means and to said receive channels for
allocating to said one input port, said receive channel of said node upon occurrence of said
first condition that said node address is equal to said target node address; and,

first means connected to said comparing means and to said control means for sending
a route_ready command over said output port paired with said input port upon occurrence of
said first condition.

2. The combination in accordance with claim 1 further comprising:
a port vector,

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-31-

second means connected to said comparing means and to said router for selecting a
first output port from said port vector upon occurrence of said second condition that said
node address is not equal to said target node address; and,

third means connected to said second means and to said input port for forwarding said
address packet to a next node over said selected first unallocated output port.

3. The combination in accordance with claim 1 further comprising:

means for selecting a first unallocated output port connected to a third unallocated
node of said second node; and,

means for forwarding said address packet to said third unallocated node via said
selected first output port.

4. The combination in accordance with claim 2 further comprising:
means for selecting a first unaliocated output port connected to a third node; and,
means for forwarding said address packet to said third node via said selected first
output port.

5. In a network of interconnected nodes;

each node including a processor, and a plurality of input ports and a plurality of output
ports, each one of said input ports being paired with a corresponding one of said output
ports;

each of said processors in said network being assigned a unique processor
identification (ID);

a method of establishing a communication path through a node of said network
comprising steps of:

A. receiving at an input port of a first of said nodes a first address packet having a
target node address therein, said first address packet being related to a current message sent
from an output port of a second of said nodes;

B. comparing at said first node said target node address in said first address packet
with a processor ID of said first node;

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-32-

C. allocating said receive channel of said first node to receive a message upon a first
condition that said processor ID is the same as said target node address; and,

D. sending a route_rdy command to said second node over said output port paired with
said input port at said first node.

6. The method in accordanée with claim 5 comprising the further steps of:
E. selecting a first output port connected to a third node of said first node; and,
F. forwarding said address packet to said third node via said selected first output port.

7. The method in accordance with claim 6 comprising the further steps of:
G. receiving a route command;
H. sending a route_reject command via said output port paired with said input port.

8. A communication apparatus comprising:

a maze router mechanism;

a fixed-router mechanism;

mode selection means connected to said maze router mechanism and to said fixed-
router mechanism for selecting either said maze router mechanism or said fixed-router
mechanism; and,

an input port connected to said maze router mechanism and to said fixed-router
mechanism for receiving a node address packet that includes control information that enables
the finding and establishing of a route to a destination node from a source node.

9. A communication apparatus comprising:

a memory address bus;

a memory data bus;

a direct memory access buffers and logic block is connected to said memory address
bus and to said and memory data bus;

a plurality of receive channels;

a plurality of send channels;

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-33-

a plurality of routing registers connected to said send channels and to said receive
channels;

a cut-through arbiter connected to said plurality of receive channels and to said plurality
of send channels;

a routing arbiter connected to said plurality of send channels and to said routing
registers;

a processor bus connected from a central processing unit to said receive channels,
said send channels and said routing registers and logic;

a plurality of input ports;

a plurality of input pins;

said plurality of input ports being connected to said routing arbiter and to said input

pins;

a plurality of output ports; and,

a plurality of output pins;

said plurality output ports being connected to said cut-through arbiter and to said
output pins;

said plurality of input ports and said plurality of output ports being connected to said
cut-through arbiter, said routing arbiter, and to said send and receive channels.

10. The communication apparatus in accordance with claim 9 further comprising:

mode selection means connected to said cut-through arbiter and to said routing arbiter
for selecting either said cut-through arbiter or said routing arbiter;

one of said input ports including means for receiving a node address packet that
includes control information that enables the finding and establishing of a route to a destination
node from a source node.

11. A method comprising steps of:

A. selecting a first unallocated output port from a send port vector to provide a
selected output port;

B. allocating said selected output port to a send channel;

C. sending an address packet out of said selected output port to a target port;

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-34-

D. receiving at said send channel a route command containing routing status returned
from said target port, said routing status specifying either route rejected or route established;

E. clearing a bit corresponding to said selected output port in said send port vector
upon a condition that said routing status is route rejected; and,

F. deallocating said selected output port from said send channel.

12. The method in accordance with claim 11 comprising the further steps of:
G. pushing route_rej status onto an end-to-end (ETE) queue upon a condition that said
step E results in said send port vector being reduced to zero.

13. The method in accordance with claim 11 wherein said address packet includes a forward
bit, said method comprising the further steps of:

G. setting a route_ready status upon a condition that a route is established;

H. entering a forwarding state upon a condition that said forward bit is set in said
address packet; and, .

|. entering a message transmission state upon a condition that said forward bit is not
set in said address packet.

14. A method comprising steps of:

A. receiving an address packet at an input port, said input port being part of a node
having a node ID, said address packet including an address;

B. computing an exclusive OR of said address in said address packet with said Node
ID, a result of said exclusive OR being a port vector;

C. selecting a first unallocated output port specified in said port vector to provide a
selected output port upon a condition that said result is not equal to zero;

D. forwarding an address packet to a next node via said selected output port,

E. receiving routing status at said receive channel via an input port, said routing status
being supplied by an incoming route command, said route command indicating either that a
route is rejected or that said route is ready;

F. clearing a bit in said port vector corresponding to said output port upon a condition
that said route command indicates that a route is rejected; and,

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-35-
G. deallocating said output port from said input port.

15. The method in accordance with claim 14 comprising the further steps of:
l. sending a route_rdy command via an output port paired with said input port upon a
condition that said route command indicates that a route is ready.

16. The method in accordance with claim 14 comprising the further steps of:

l. sending a route_reject command via an output port paired with said input port upon
a condition that said step C of selecting a first unallocated output port specified in said port
vector to provide selected output port results in no port being selected.

17. The method in accordance with claim 14 comprising the further steps of:

|. generating a port vector upon a condition that said result is equal to zero;

J. selecting a first ready receive channel using said port vector to provide a port select
vector;

K. selecting a first unallocated input port specified in said port select vector to provide
selected output port;

L. allocating said first ready receive channel to receive a message upon a condition
that an input port is selected; and

M. sending a route_rdy command via an output port paired with said input port.

18. The method in accordance with claim 11 comprising the further steps of:

G. inverting said send port vector to provide an alternate send port vector upon a
condition that said routing status is route rejected; and,

H. using said alternate send port vector to select a first unallocated output port from
said alternate send port vector to provide said selected output port.

19. A method of transmitting a message through a node comprising steps of:

A. storing a fold enable vector in a fold enable register, said fold enable vector
indicating by identification bits which ports are selected to be folded ports;

B. receiving a message packet that includes address bits at an input port of said node;

10

15

20

25

30

WO 96/04604 PCT/US95/09474

-36-

C. shifting said address bits into an address field of an input port command register;

D. comparing said address field with an identification address of said node resulting in
a difference vector,

E. loading said difference vector into an identification difference register;

F. asserting a FOLDEN line upon a condition that folding is enabled;

G. modifying said difference vector with said identification bits corresponding to said
folded ports;

H. loading said contents of said identification difference register into an input port
vector register;

|. using contents of said input port vector register to identify a next minimum path port
through which a message may be routed;

J. calculating a cut-through vector at an intermediate node; and,

K. storing a port cut vector indicating which port, send channel or receive channel to
cut through.

20. A method of message transmission between a plurality of nodes comprising steps of:

A. pairing each of a number of input ports at each node with an associated output port
of each node;

B. allocating an originating node send channel at an originating node;

C. sending a message packet out of an originating node output port selected by said
originating node send channel to a first intermediate node input port that is connected to said
originating node output port, said originating node output port being paired with an originating
node input port;

D. receiving said message at said first intermediate node input port, said first
intermediate node input port being paired with a first intermediate node output port;

E. connecting a second intermediate node output port to said first intermediate node
input port, said second intermediate node output port being paired with a second intermediate
node input port;

F. connecting said first intermediate node input port to said second intermediate node
output port;

10

WO 96/04604 PCT/US95/09474

-37-

G. receiving said message at a target node input port connected to said second
intermediate node output port, said target node input port being paired with a target node
output port that is connected to said second intermediate node input port;

H. allocating a target node receive channel at said target node;

. composing, at said target node receive channel, an end_to_end acknowledge
message containing receive status;

J. sending said end_to_end acknowledge said target node output port paired with said
target node input port, upon a condition that a message transmission has completed.

21. The method in accordance with claim 20 comprising further steps of:
K. disconnecting said second intermediate node output port from said first intermediate
node input port upon receipt of said end_to_end acknowledge message.

WO 96/04604 PCT/US95/09474

1 /11
MEMADR, lMEMDAT
10 T 1
DMA BUFFERS AND LOGIC
® q [] lr
o | — - =
23| 22
=135 ==
(FROM CPU) PRB B8] o>
® ® [)
19— 8 RECEIVE| CHANNELS
’_18 lr |r L] ® ? []
20 145
8 SEND
— s ¢ & CHANNELS 4 [
2
CuT- =
THROUGH 1
16—~ ROUTING
ARBITER REGISTERS
AND ¢ b AND LOGIC ¢ ¢ .
SIGNALS
ROUTING _
ARBITER ©
AND E 2| p|B el
sovis | 8|S (58 LEEE
24T § T JouPut PORT] § ¢ Y opins
$ ¢ ¢ $INPUT PORT ¢ + ¢ () IPINS
¢ OUTPUT PORT| ¢ ¢ OPINS
¢ o o o INPUT PORT » [IPINS
FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 96/04604

P>—== PORTCUT

>—= OPBSY

96y

PCT/US95/09474

~=—— PORTSRC

RSRCVEC

A

SBOMA

SDMA

62+

SBPTH

64

— — emam m— m——— b — v— —"" — o— o o— o m— ommm o m— o— oa—t —

O>———— PRB
P>———— PORTRT

OPSELY

PORTCUT
0PBSY

72

SPORTVEC

SPTH

66

ETEB

68+

|

ETE

70+

=

3)

@
o
S

4X DMABUF

4

SPORTSEL

16

SPORTALT

}_

FIG. 3
SUBSTITUTE SHEET (RULE 26)

WO 96/04604

PCT/US95/09474

3/11 —~s. o £
2] EoRlre @
xxnNnxxoaoo (a4
3 58592 °©
))
EL
By A 86~ AA G
IDAT IPORTSRC
80 'i 81
I IBUFDAT IBUFCMD 88 A
IPINS) ! IPORTVEC
L) 82
IBAKDAT e
a.
84~ A Ay AAA ~90
IDDIF [PORTSEL
I
==
S 2
FIG. 4
=]
3
| e
ODAT
I .
! L ‘
OBUFDAT = OPINS
%
OBAKDAT
98
OACKDAT —

FIG. 5
SUBSTITUTE SHEET (RULE 26)

WO 96/04604 PCT/US95/09474

4/11
(&)
S & » JED
[ou] 02: 9 aa)] m 8 <_::J x o
o > o o o a O o
= ’:‘5 L a. a (] O a. oo
|
100§ 1 } 108~
NODEID OPALL
110N 4
OPBSY
102~ / 12
TERMIN ALTMSK
\Y4
18 &
104 A S OPORTEN
FOLDEN
L
1205 ROUTING FFO
i
Lot
<
FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 96/04604 PCT/US95/09474

5/11
110
111 TARGET
------- NODE
010
101
000
SRC FIG. 7-MAZE ROUTING EXAMPLE

NODE

O(#PKT_LENGTHS TO DELIVER 1ST PACKET)

400
300 1
F
!
200 -+ N
!
/
/
{
/
100 -+ 7
__--=7D
,__’/,/V
10% 20% 30% 40% 50%
% OF NETWORK TRANSMITTING DATA
FIG. 8

SUBSTITUTE SHEET (RULE 26)

13vd YIVa - 0] "9

£ , 0¢ ,6C ,8 , 4,9 ,6 ,% ,€ ,2 , 12,0 ,6 ,8 ,

~~~~~~~~~~~~~~~
[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[o

PCT/US95/09474
)
~”

SLig LYvIS
b = 3dAL L13IXOVd

118 QUYMYO04 IDIIVd SSIHAAY - § 9|4
AdAL INLLNOY
d318vN3 113 S118 14viS

(3AY3S3Y 0 = 3dAL 13INOVd
00T MONNIY

ALNYd
_I.J Lt NYHL 0 SLIg SSIMaav
IR | '

WO 96/04604
o
s
2
o
»
(=}
U]
*
o

SUBSTITUTE SHEET (RULE 26)



PCT/US95/09474

WO 96/04604

M

13%0vd ONVANOD - || 9|4

SLI8 L¥v1S—
€ %0 ¢ = 3dAL 1INOVd —
ICTHONYOY
ALVd J SMLVLS /_ ea4_
IR R ERIE
G000 0080088800 SN

SUBSTITUTE SHEET (RULE 26)



WO 96/04604

PCT/US95/09474

8/ 1 ENTER SEND_CHANNEL }-200
ROUTING STATE

|
[STORTSEL = FIRST UNALLOCATEDJ/zoz

QUTPUT PORT FROM
SEND_PORT_VECTOR

ENABLED

YES 209
Z

VECTOR

|

218

SPORTVEC = INVERTED
INITAL SEND_PORT_

PUT ROUTE_REJ. |
STATUS INTO
ETE_QUEUE:
INTERRUPT

CPU IF ENABLED |

22"\[ENTER IDLE STATE]

24
A

[ CLEAR CORRESP. BIT
N SEND_PORT_ VECTOR:

ALLOCATE

206
SELECTED PORT

SEND ADDRESS PACKET
OUT THE SELECTED
OUTPUT PORT

i
WAIT FOR ROUTING

STATUS VIA
ROUTE_CMD

EF -

}210

ROUTE
ESTABLISHED

212

222
yd

( )
SET ROUTE_RDY
o J

224

[ ENTER MESSAGE |

CLEAR PORTSEL;
DEALLOCATE OUTPUT
PORT

TRANSMISSION
STATE

- J

FORWARDING
STATE

FIG. 12

SUBSTITUTE SHEET (RULE 26)



WO 96/04604

9/11

[INPUT PORT RECEIVES ]/300

ADDRESS PACKET
1

PCT/US95/09474

ID_DIFF = 302
ADDRESS XOR MY_NODEID

FIC. 13

((PORTVEC = ID_DIFF )/305
|
"3

PORTSEL = FIRST UNALLOCATED
308 QUTPUT PORT FROM PORTVEC

(MINUS BIT CORRESPONDING TO
THIS PORT)

PORTVEC = BITS)
AL CORRESP.

TO RCV_ DMA
| CHANNELS |

(" -
324 PORTSEL = FIRST]
READY RCV

CHANNEL

319 FORWARD ADDRESS PACKET
TO NEXT NODE VIA
SELECTED QUTPUT PORT;
ALLOCATE PORT

314 WAIT FOR ROUTING
STATUS VIA

ROUTE_CMD
}18 316
CLEAR CORRESP. BIT
IN PORTVEC,
CLEAR PORTSEL;
DEALLOCATE OUTPUT PORTJ ROUTE ROUTE

REJECTED READY

ALLOCATE RCV
CHANNEL TO
RECEIVE MESSAGE

330
N

SEND ROUTE_RDY CMD
VIA OUTPUT PORT
PAIRED W/ THIS
INPUT PORT

33 WAlT FOR
MESSAGE DATA

SEND ROUTE_REJECT
334 oD ViA OUTRUT PORT WAIT FOR NEW
PAIRED W/ THIS INPUT PORT ADDRESS PACKET

SUBSTITUTE SHEET (RULE 26)




WO 96/04604 PCT/US95/09474

10/11
350
352
0PORT()) \ MESSAGE SENT
'P9§£~@l/' — ETE ACKNOWLEDGE
SNDCHAN (M) f
3497 |  SOURCE
NODE
363 354
OPORT (1)
BT IPORT (1)
OPORT (J)
IPORT (J{f '
356 |
X
11 ETE RETURNEQ/,3%?
360 [I; 2 OPORTEK%
7 IPORT (K
MESSAGE RECEIVED| |
362 RCVCHAN (N)
TARGET
NODE

MESSSAGE PATH ——>
ETE RETURN PATH ——>

FIG. 14 END-TO-END ACKNOWLEDGE

SUBSTITUTE SHEET (RULE 26)



PCT/US95/09474
1/11

WO 96/04604

——I11 —— 0L -

] (-1 6 NN
v
T [T - g W
OV
(Q3L93r34 NN SIHL) @l_lll._ L NN
LI T T - ] 9 NI
XV (@ato3r3y wnn sy -] ¢ NN
N
(@3L93r34 AN siHL) [ ] vown
VN
ONINOVALYOYE ONY SN Q3X0018 — ONINLL LN0Y FZVA- g 9|4
HLONT] 39VSSIN AONALY HLvd AONALYT %mm eI
|

- a i -

1340vd OKO~ALNOY

L3OVd V1vQ 13%0vd SS3aay

_ _ m:mE-So NV 3LN0Y
LS T+ 1€ Tz IV [0 ] € INIT

—e——MHL-1ND v_o<
Ls I+ f¢ Tz JT1 o] | ] Z NN
OV
LS Iy le Tz TV T o] L1 1o
MOV

|~ | 3Inu

SYNIT @3X0078 ON — ONINLL 3LNOY FZVK -Gl 914

SUBSTITUTE SHEET (RULE 26)



INTERNATIONAL SEARCH REPORT

Inte. .onal Applicauon No

PCT/US 95/09474

A
IPC 6

. CLASSIFICATION OF SUBJECT MATTER

GO6F15/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than mimimum documentaton to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where pracucal, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Catwegory *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

PARALLEL COMPUTING,

vol. 20, no. 4, April 1994 AMSTERDAM NL,
pages 509-530, XP 000433524

M. SCHMIDT-VOIGT ‘'Efficient parallel
communication with the nCUBE 2S processor'

1,5

2-5

pages 6-14, XP 000201919
JOHN Y. NGAI

see page 7 - page 8

Y COMPUTER ARCHITECTURE NEWS,
vol. 19, no. 1, March 1991 NEW YORK US,

see page 511, line 3 - page 515; figures

'A framework for adaptative
routing in multicomputer networks'

_/_..

2-4,6-21
1,5

2-4,6-21

m Further documents are listed in the continuation of box C.

D Patent family members are listed in annex.

* Special categories of ated documents

"A" document defining the general state of the art which is not
considered to be of particular relevance

°E" earlier document but published on or after the international
filing date

“L" document which may throw doubts on prionity claim(s) or
which is ated to establish the publication date of another
citation or other special reason (as specified)

‘0" document referring to an oral disclosure, use, exhibition or
other means

“P” document published prior to the international filing date but
later than the pnonty date claimed

e

later document published after the international filing date
or prionty date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilied
in the art.

document member of the same patent family

Date of the actual completion of the international search

25 October 1995

Date of mailing of the international search report

10.11 o5

Name and mailing address of the ISA

Fax (+31-70) 340-3016

Authorized officer
European Patent Office, P.B. 5818 Patentiaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Soler, J

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2




INTERNATIONAL SEARCH REPORT

Intc aonal Applicaton No

PCT/US 95/09474

C.(Continuauon) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citauon of doc with indication, where appropnate, of the relevant passages

Relevant to claim No.

A

5TH ANNUAL EUROPEAN COMPUTER CONFERENCE,
May 1991 BOLOGNA,

pages 353-357,

J-L. BECHENNEC 'An efficient hardwired
router for a 3D mesh interconnection
network'

see the whole document

1-21

Form PCT/1SA/310 {(continuation of second sheet) (July 1992)

page 2 of 2




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

