
Printed by Jouve, 75001 PARIS (FR)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(19)

E
P

1 
37

7 
03

4
A

1
*EP001377034A1*
(11) EP 1 377 034 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
02.01.2004 Bulletin 2004/01

(21) Application number: 02014326.9

(22) Date of filing: 27.06.2002

(51) Int Cl.7: H04N 5/00, H04N 7/24,
G06F 9/455, G06F 9/45

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(71) Applicant: Thomson Licensing S.A.
92100 Boulogne Billancourt (FR)

(72) Inventors:
• Champel, Mary-Luc

35220 MARPIRE (FR)

• Cogne, Laurent
35320 La Couyere (FR)

• Lubbers, Willem
35000 Rennes (FR)

(74) Representative: Kohrs, Martin
Thomson multimedia
46, quai A. Le Gallo
92648 Boulogne Cedex (FR)

(54) Data processing device and method for interactive television

(57) A programmable data processing device for a
digital TV set-top box comprises:

- a loading engine (LE) for receiving portions of code
of a first type and/or data from a DSM-CC carousel
(DC),

- a storage means (C) for storing the portions re-
ceived by the loading engine,

- an execution engine (EE) for executing an applica-
tion embodied by the received portions; and

- a translating engine (TE) for translating the first type
code into a native code of the execution engine
(EE).

The translating engine (TE) is adapted to compile
at least a certain one of said received portions into native
code and to store the thus compiled portion in the stor-
age means (C), and to interpret other portions of code,
and the execution engine (EE) is adapted to process
compiled code and interpreted code within a same ap-
plication.



EP 1 377 034 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

[0001] The present invention relates to a data
processing device and method which are specifically
adapted for transmitting applications from a central sta-
tion of a network to a plurality of terminal stations and
carrying out the applications at the terminal stations, in
which network data rates for downlink transmission
(central to terminal stations) are far higher than for uplink
transmission (terminal stations to central station).
[0002] A typical network of this type is an interactive
TV network. In such a network, the terminal stations are
formed of TV sets equipped with a so-called set-top-box,
and the central station is a broadcasting station. In
downlink, Audio/Video data (AV data) and application
data are transmitted at a high rate to the individual TV
sets; uplink data rates are far lower and may be zero for
applications not requiring feedback to the broadcasting
station.
[0003] Although the topology of such a network is sim-
ilar to a common computer network with a plurality of
work-stations connected to a common server, the nature
of these networks poses a number of new problems.
One is that in an interactive TV network, the number of
terminal stations is extremely large, it may be a million
terminals or more. Whereas in a local computer net-
work, each terminal may be free to request a particular
application to be downloaded to it at any given time, al-
lowing the same in an interactive TV network would re-
quire prohibitively high data transmission capacities. In
the art of interactive television this problem is solved us-
ing the so-called DSM-CC (Digital Storage Media Com-
mand and Control) carousel. The DSM-CC carousel is
a data stream transmitted by the broadcasting station
along with the AV data in which a sequence of modules
is transmitted, each of the modules comprising code
and/or data of one or more applications that can be car-
ried out by the terminal stations. The transmission of this
sequence of modules is repeated endlessly. Since the
number of applications is limited, transmission of every
module is repeated after a certain time interval. In order
to be able to carry out an application, a terminal station
has to collect all modules belonging to this application.
[0004] If a terminal station starts to collect modules of
a given application only after having received an instruc-
tion from the user to launch this application, a noticeable
delay between the instruction and the launching may re-
sult which is annoying for the user.
[0005] In order to relieve the this problem, according
to the MHP (Multimedia Home Platform) standard of the
DVB (Digital Video Broadcast Forum, www.dvb.org), the
broadcasting station may transmit so-called pre-fetch
signalization which indicates, for each module transmit-
ted on the carousel, whether it might be worth while to
store this module at the terminal station because there
is a probability that this module may have to be executed
in the near future. Correspondingly, the terminal stations
may have a storage means for storing therein the mod-

ules specified by the pre-fetch signalization, so that in
case that such a module has to be executed, execution
can begin straight away, without having to wait for re-
transmission of the module.
[0006] This might be a satisfying solution if the code
broadcast on the DSM-CC carousel were a native code
that could be executed by the terminal stations without
need for further preliminary processing. But since the
use of native code would have the drawback of requiring
an extremely high degree of standardization of the ter-
minal stations and since there are many different man-
ufacturers of such terminal stations, for which such a
standardization is difficult to impose the industry seeked
to provide the terminal stations with a Java virtual ma-
chine and transmit the applications from the broadcast-
ing station to the terminal stations as Java intermediate
code. This solution has indeed the advantage to have
DVB-MHP applications running on any DVB-MHP plat-
form whatever the specific underlying hardware.
[0007] However, the price of this solution is the need
for a powerful Java virtual machine, implying significant
processor speed and an important amount of memory.
On the market, this need for a relatively expensive hard-
ware platform is commonly seen as an important draw-
back of the DVB-MHP solution to interactive digital tel-
evision and can be considered as a serious limit to the
quick expansion of the DVB-MHP solution.
[0008] In classical Java execution environments, ap-
plication processing speed is often gained by reducing
execution time. This is done by means of compilation of
Java classes to native code that can be directly carried
by a processor of the Java virtual machine and not to
intermediate code that must first be interpreted by the
machine before it can be executed.
[0009] In a digital TV network of the type described
above, it is obvious that such a compilation can only be
done at the terminal stations. If the broadcasting station
already transmitted a ready-compiled application, inter-
operability would be lost. If compilation is done at the
terminal station, execution speed can be improved, but
load latency will increase, because when the user has
given an instruction to launch a given application, he not
only has to wait until all modules of this application have
been received from the carousel, but, additionally, the
time required for their compilation.
[0010] The object of the present invention is, there-
fore, to provide a programmable data processing device
and a data processing method for use in a network in
which applications are transmitted by portions in a com-
mon stream, in which a small delay between inputting a
decision to launch an application and the actual start of
the application can be achieved without requiring high
processing power.
[0011] This object is achieved by a programmable da-
ta processing device comprising:

- a loading engine for receiving portions of code of a
first type and/or data from a stream in which said

1 2



EP 1 377 034 A1

3

5

10

15

20

25

30

35

40

45

50

55

portions are repeatedly transmitted,
- a storage means for storing the portions received

by the loading engine,
- an execution engine for executing an application

embodied by the reeived portions,
- a translating engine for translating the first type

code into a native code of the execution engine,
- characterised in that the translating engine is adapt-

ed to compile at least a certain one of said received
portions into native code and to store the thus com-
piled portion in the storage means, and to interpret
other portions of code, and that the execution en-
gine is adapted to process compiled code and in-
terpreted code within a same application.

[0012] This object is also achieved by a data process-
ing method, comprising the steps of:

- a) receiving portions of code of a first type and/ or
data from a stream in which said portions are re-
peatedly transmitted, wherein the set of portions
transmitted in said stream embodies one or more
data processing applications
- b) storing predetermined ones of said portions in
a storage means,
- c) in a translation engine, compiling at least one
of said portions comprising first type code into na-
tive code of an execution engine,
- d) in the execution engine, carrying out one of said
data processing applications by executing the com-
piled native code of the selected portions belonging
to said one application and by interpreting non-se-
lected portions of this application.

[0013] In this device and method, a delay in transmit-
ting parts of the code of a given application to the data
processing device can be made use of by having the
translating engine compile portions of code that have
already been received at the data processing device. As
soon as the complete code of an application has been
received, execution of the application can be started;
code portions that have not yet been compiled at that
time can be carried out by interpretation.
[0014] Preferably, execution of an application will be-
gin only when an instruction to this effect has been input
by a user. Before this happens, the device should best
have collected and compiled code portions of this appli-
cation already.
[0015] Already, the fact that, when execution is start-
ed, parts of the code are compiled increases execution
speed over that of a conventional device in which all
code is interpreted. In data processing devices in which
execution engine and translating engine share process-
ing power, the main reason for this speed increase is
that when interpreting, processing power is spent on
translating a portion of intermediate code into native
code of the execution engine each time this portion is
executed, whereas, when compiling, the code is trans-

lated once and for all, so that interpretation always ab-
sorbs processing power that might better be used for
execution of the application. But even in systems where
execution engine and translating engine do not compete
for processing power, a speed increase is possible be-
cause compiled code can be made more efficient than
interpreted code.
[0016] If the execution engine and the translating en-
gine of the device are physically separate units, a further
improvement can be achieved by having the translating
unit compile further portions of the code at execution
time of the application. This is possible without having
to provide a particularly powerful translation engine be-
cause when the execution engine carries out compiled
code, the translation engine has spare time that is avail-
able for compiling. In this way, the ratio of compiled to
interpreted codes will continue to increase during exe-
cution until, finally, all code of the application is com-
piled.
[0017] If the translating engine and the execution en-
gine are virtual devices implemented in a time sharing
fashion in a common processor, compilation can also
continue at execution time as described above, or, al-
ternatively, when compiled code is being executed, all
processing power of the common processor can be as-
signed to the execution engine.
[0018] Most advantageously, the translating engine is
adapted to select the code portions it compiles accord-
ing to signalling information it receives.
[0019] One source of said signalling information may
be the stream in which the portions of code are trans-
mitted. If the stream is a DSM-CC carousel, the pre-
fetch signalling conventionally transmitted in such a car-
ousel may be used as said signalling information. That
is, whereas conventionally, a DVB-MHP platform will on-
ly store a DSM-CC module specified by pre-fetch sig-
nalling in the form in which it was transmitted and will
eventually later interpret it, the data processing device
of the present invention may additionally compile such
a module.
[0020] Of course, the portions to be compiled might
also be fractions of a DSM-CC module. In that case, in
order to specify the fractions to be compiled, another
type of signalling information besides the DSM-CC pre-
fetch signalling would have to be transmitted on the car-
ousel. Such signalling information might be defined by
a person who develops the application based e.g. on
the relative frequency with which one or another portion
of code are executed or the expected increase in effi-
ciency of compiled code over interpreted code, which
may be different for various portions of code.
[0021] As an alternative or additionally, the translating
engine may receive signalling information indicating
portions of code to be compiled from the execution en-
gine. This is particularly useful at run time of an appli-
cation. Such an application may be composed of a plu-
rality of modules or portions, some of which may be ex-
ecuted hundreds of times and others not at all. Usually,

3 4



EP 1 377 034 A1

4

5

10

15

20

25

30

35

40

45

50

55

when an application is developed, it is possible to esti-
mate which portions of the code are executed frequently
and which are not. Compiling instructions for frequently
executed portions of code may be comprised in other
portions of the code of an application, e.g. in an initial-
izing portion, so that when the initializing portion is car-
ried out, signalling information according to these com-
piling instructions may be sent from the execution en-
gine to the translating engine.
[0022] The translating engine should further be adapt-
ed to decide whether to compile or to interpret a given
portion of first type code depending on signalling infor-
mation it receives from the execution engine. Namely,
the translating engine will also have to receive signalling
information specifying a certain address in the code
when the execution engine has to carry out a jump or
branch instruction to that address. If the corresponding
code portion is not yet compiled at the time the instruc-
tion has to be carried out, the translating engine will have
to interpret the code designated in the jump or branch
instruction in order to avoid a processing delay.
[0023] If a code portion comprising the target address
of the jump or branch instruction is under compilation at
the time the instruction is carried out, one possibility of
proceeding is that the translating engine ignores the sig-
nalling information from the execution engine requiring
interpretation and that it finishes compiling the code por-
tion. In that case the execution engine may have to wait
for some time before it can carry out the jump or branch
instructions, but this delay may be compensated by in-
creased processing speed afterwards.
[0024] An alternative possibility is that in such a case
the translating engine abandons compilation of this
code portion and starts interpreting it, in order to keep
the execution engine from waiting. It can also be provid-
ed that the translating engine chooses between these
two alternatives based on an estimate of the processing
time required for finishing compilation of the portion.
[0025] Further features and advantages of the
present invention become apparent from the subse-
quent description of preferred embodiments given in
connection with the appended drawings.

Fig. 1 is a schematic block diagram of a program-
mable data processing device according to
the present invention;

Fig. 2 is a first flow chart of processes carried out
by the device of Fig. 1;

Fig. 3 is a second flow chart of alternative proc-
esses carried out by the device of Fig. 1;

Figs. 4A, 4B show two possible embodiments of a
detail of Fig. 3; and

Fig. 5 is a block diagram of a second embodiment
of the device of the invention.

[0026] The data processing device, delimited by a
dashed frame in Fig. 1, comprises a loading engine LE,
a translating engine TE made up of a compiling engine
CE and an interpreting engine IE, a cache C and an ex-
ecution engine EE. The device is part of a set-top-box
for digital television.
[0027] The loading engine LE is adapted to receive
modules of code and data from a DSM-CC carousel DC.
In this carousel, a set of payload modules is cyclically
transmitted. There are two types of payload modules,
data modules represented as sheets of paper bearing
a letter D and code modules represented as sheets with
a letter I. Code and data modules will accordingly also
be referred to as I and D modules, respectively. Code in
the code modules I may belong one or more applications
that can be executed by the execution engine EE. The
code contained in the code modules I is an intermediate
code, i.e. a code which may be more compact than code
in a high level language in which the application was
originally written, but which is not executable by the ex-
ecution engine without prior translation. Preferably, the
high level language from which the intermediate code is
derived is the Java programming language. The use of
the intermediate code is necessary in order to ensure
operability of the code in a wide variety of set-top-boxes
made by different manufacturers.
[0028] There is a connection 1 between the loading
engine LE and the cache C by which the loading engine
LE may store I and D modules received from the carou-
sel DC in cache C. There is another connection 2 be-
tween the loading engine LE and the compiling engine
CE by which the loading engine LE may forward I mod-
ules to the compiling engine CE for compilation. The
compiling engine CE compiles these into modules of na-
tive code represented as sheets of paper bearing the
letter N, which, as shown in the Fig., can be forwarded
to cache C via a connection 3 or which may also be di-
rectly forwarded to the execution engine EE for imme-
diate execution via connection 4. The cache may thus
contain three types of modules, namely I, D and N mod-
ules.
[0029] When the execution unit EE carries out an ap-
plication, it informs the loading engine LE of a required
code module via connection 5. The loading engine LE
will then fetch the corresponding module from the cache
C and forward it to the execution engine EE via connec-
tion 6, if the module is compiled, or via connection 7 to
the interpreting engine IE, if the module is in intermedi-
ate code.
[0030] Obviously, each of the various engines of the
device may be a circuit distinct from the others, or one
or more of these engines may be embodied by a micro-
processor which, at different times, carries out the dif-
ferent tasks of the various engines as described above.
[0031] The processes executed by the various en-
gines of the device will now be described in detail refer-
ring to Figs. 2 and 3.
[0032] In this description, it is assumed that the device

5 6



EP 1 377 034 A1

5

5

10

15

20

25

30

35

40

45

50

55

of the invention is a set-top-box for digital television that
can execute various applications continuously transmit-
ted by the DSM-CC carousel according to the choice of
an operator.
[0033] Fig. 2 shows two processes preferred to as
process a and process b executed by the loading engine
LE and the compiling engine CE in a set-top-box imme-
diately after switching on, before an operator has cho-
sen an application to be executed. Processes a and b
are executed concurrently. In step a1 of process a, the
loading engine LE receives a module from the DSM-CC
carousel DC. The module can be an I module or a D
module. In step a2, the loading engine LE judges wheth-
er the module is accompanied by pre-fetch signaliza-
tion. In principle, the question of whether a module is
signalized to be pre-fetched is at the discretion of the
operator of the carousel DC. In general, a module will
at least be signalized to be pre-fetched if it contains code
or data that are necessary to begin execution of any of
the applications transmitted on carousel DC, for this will
allow the set-top-box to begin execution without delay,
as soon as the operator has chosen an application.
[0034] If the module is not signalized to be pre-
fetched, the loading engine will ignore it and will wait for
the next module to arrive.
[0035] If the module is signalized to be pre-fetched,
the loading engine LE will check in step a3 whether it is
present in the cache C already. If yes, the process may
return to step a1 to wait for the next module. Alternative-
ly, if there is a possibility of modules being updated be-
tween subsequent transmissions on the carousel DC, it
may be provided that the earlier version of the module
present in cache C is overwritten by the new one.
[0036] If the module is not present in the cache C, the
loading engine LE checks in step a4 whether there is
space available in cache C for storing it. If there is no
space available, the loading engine LE selects a module
stored in the cache which may be overwritten in step a5.
Selection criteria might be how long a module has been
stored in the cache C without being used. Alternatively,
the pre-fetch signalization might specify various priority
levels, and the module selected for overwritting might
have a lower pre-fetch priority level than the module cur-
rently received. If there is no module having a lower pre-
fetch priority level than the presently received one, the
latter one would have to be discarded. If there is space
available in the cache or if it has been made available
by selecting a module for overwriting, the presently re-
ceived module is stored in the cache in step a5, and the
loading engine LE is ready to receive another module
from the carousel DC.
[0037] Concurrently, the compiling engine CE cycli-
cally repeats the steps b1 of selecting an uncompiled
module, b2 of compiling it and b3 of storing the compiled
module in the cache C. As soon as the module is com-
piled, the storage space in cache C containing the orig-
inal intermediate code module is released, so that any
newly received module may be stored therein.

[0038] Processes a and b may be completely unsyn-
chronized; i.e. whenever the compiling engine CE has
finished step b3 for one module, it immediately returns
to step b1 and searches the cache C for another module
to be compiled. When there is more than one uncom-
piled module in the cache and there are pre-fetch priority
levels defined for these, the compiling engine CE will
always select the module having the highest priority.
[0039] When the loading engine LE and the compiling
engine CE are embodied in a single microprocessor or
other appropriate electronic circuit and share its
processing power, neither of processes a and b must
keep the microprocessor completely occupied. In this
case, it is preferable to have the microprocessor act as
the loading engine LE, e.g., triggered by an interrupt,
whenever a module is received and it has to be decided
whether to store the module or not, and to have it act as
the compiling engine CE whenever the loading engine
would be idle. I.e. process a is executed as a foreground
or high priority task, and process b is executed as a low
priority or background task which may be interrupted in
favor of process a whenever necessary.
[0040] In an alternative embodiment, the processes a
and b may also be synchronized, namely in that process
b is triggered when step a6 has been carried out, and
selects the module stored in step a6
[0041] If the processes a, b are synchronized, accord-
ing to a further alternative, step a6 may be dispensed
with, and instead of storing the received module in the
cache C, it is supplied directly from the loading engine
LE to the compiling engine CE and is written to the cache
C after compilation only.
[0042] Not synchronizing processes a and b may be
preferable if loading engine LE and compiling engine CE
share the processing power of a common processing
circuit and there is a risk that compilation of a module
may not be finished when a further module is received
accompanied by pre-fetch signalization. However, this
risk may be decreased by selecting the sequence in
which modules are transmitted on the carousel DC such
that modules to be pre-fetched are regularly inter-
spersed between modules without pre-fetch signaliza-
tion.
[0043] In general, the modules in the DSM-CC carou-
sel DC that are signalized to be pre-fetched will be the
modules comprising code and data necessary for start-
ing any of the various applications. Accordingly, if the
capacity of the cache is large enough, starting code por-
tions for all applications transmitted on the carousel DC
will be present in the cache in compiled form, so that
when an operator selects a particular application at the
set-top-box, execution of this application can com-
mence without delay. If the storage capacity of the cache
is large enough, other important modules of the various
applications may also be stored therein and, eventually,
be compiled. A code section is said to be important in
this context if it has a high probability of being executed
frequently and/or subsequently to the starting portion of

7 8



EP 1 377 034 A1

6

5

10

15

20

25

30

35

40

45

50

55

the application.
[0044] Since the DSM-CC carousel of a broadcasting
station may serve various set-top-boxes having different
cache storage capacities, the pre-fetch signalization
should preferably comprise a priority level indicating en-
abling the loading engine LE to select only the most im-
portant code portions for storing them in the cache.
[0045] When the operator chooses an application to
be executed on the set-top-box and inputs this choice,
there is a possibility that all code required for the appli-
cation is present in the cache already, be it in compiled
or uncompiled form. If so, process a can be stopped and
the execution engine EE will begin to run process c of
Fig. 3.
[0046] In most cases, however, not all code of the ap-
plication will be present in the cache, so that process a
replaced by a modified process a' of Fig. 3, the object
of which is to gather the missing code portions from the
carousel DC.
[0047] In process a', the loading engine LE receives
a module from the carousel DC in step a1'. If it is found
in step a2' that the same module is present in the cache
already, be it in compiled or uncompiled form, the proc-
ess returns to step a1' to wait for the next module. If the
module is not in the cache, step a3' checks whether the
received module is part of the application selected to be
executed. If it is, the process branches to step a6', de-
scribed later. If the answer is no, the loading engine LE
checks in step a4' whether it has received any control
information from the executing engine EE indicating that
this module might be wanted by the execution engine.
The execution engine might send such control informa-
tion concerning a specific module of a second applica-
tion not currently executed based on an instruction to
do so in the presently executed application, if there is a
possibility of the present application invoking said sec-
ond application.
[0048] If the answer in step a4' is yes, the process
branches to step a6', if not, step a5' checks whether the
module is signalized to be pre-fetched. If it is, the proc-
ess also switches to a6', if not, it returns to a1' to wait
for another module.
[0049] In step a6', the module is assigned a priority
level. If it is a pre-fetch signalized module and the pre-
fetch signalling specifies a priority level, this level may
be assigned. If the module belongs to the current appli-
cation or if it is wanted by the execution engine EE, it is
assigned a priority level higher than any pre-fetch sig-
nalling priority level.
[0050] Step a7' then checks whether there is cache
space available. If not, a module in cache C must be
selected for overwriting in step a8'. This selection takes
account of the priority level assigned to the present mod-
ule in step a6' and of the priority levels of modules al-
ready in the cache C. Since a module belonging to the
present application or wanted by the execution engine
always has a higher priority level then a pre-fetch sig-
nalized module that may belong to any other application,

these latter modules may always be overwritten in order
to be able to store a module of the current application
or a wanted module. If the priority of the present module
is so low, that there is no other module in the cache that
may be overwritten, the module will be discarded. If
there is free space available in the cache C, or if there
is a module in the cache C that may be overwritten, the
present module will be stored in the cache C in step a9'.
[0051] If the cache capacity is sufficient, all modules
of an application will be in cache C after one cycle of the
carousel DC.
[0052] While the loading engine LE is carrying out
process a', the compiling engine CE may continue proc-
ess b of Fig. 2, so that after a certain time, the complete
code of the selected application will be available in com-
piled form.
[0053] In an embodiment where the compiling engine
CE and execution engine EE share the processing pow-
er of common processing circuit, and processing power
is short, process b may also be stopped when execution
of the application begins.
[0054] Process c of Fig. 3 relates to the execution of
the selected application by execution unit EE.
[0055] In a first step c1, the execution unit EE will ex-
ecute the start module of the application. The start mod-
ule is assumed to be present in cache C in compiled
form. Eventually, it may become necessary for the exe-
cution unit EE to jump to another module of the code of
the application in step c2. To this end, the execution unit
EE sends control information to the loading engine LE
identifying the required module.
[0056] In step c3, the loading engine LE determines
whether this required module is present in cache C. If it
is not, it is necessary to wait until the module is received
from the carousel DC (step c4). If the module is present
in the cache, the loading engine LE further determines
whether the module is compiled or not (step c5). If the
module is compiled, the compiled code is forwarded di-
rectly from cache C to execution unit EE in step c6; oth-
erwise, it is forwarded to interpreting engine IE for inter-
pretation, and the interpreting engine feeds interpreted
instructions to execution engine EE in step c7. Execu-
tion of the compiled code or interpretation continues un-
til either the process reverts to step c2 in order to jump
to another module or the application is finished.
[0057] According to advanced embodiments of proc-
ess c, the dashed frame c' shown in the flow chart of
process c may comprise additional method steps shown
in Fig. 4A or 4B. Namely, if process b is continued con-
currently with process c, a situation may arise in which
the module to which the execution engine EE attempts
to jump in step c2 is being compiled by compilation en-
gine CE (step c10). In such a situation, there are two
possibilities of avoiding a conflict. As shown in Fig. 4A,
the execution engine EE may be obliged to wait until the
compilation engine CE has finished compiling the code
(step c11) and then branches to step c6 described
above. Alternatively, as shown in Fig. 4B, if a conflict is

9 10



EP 1 377 034 A1

7

5

10

15

20

25

30

35

40

45

50

55

recognized in step c10, compilation may be aborted in
step c11', and the module is interpreted in step c7.
[0058] In the embodiments described up to now, it has
been assumed that when the loading engine LE re-
ceives a module from the DSM-CC carousel DC, it will
use signalling information of the carousel such as the
pre-fetch signalling for deciding whether it is appropriate
to compile the received code module or not. Of course,
this is a simple and convenient way of carrying out the
present invention which has the advantage that it can
be employed with a conventional DSM-CC carousel
without requiring any modification in the signalling and
payload transferred by it.
[0059] In an advanced embodiment of the present in-
vention, payload modules are used as control informa-
tion that enables the device of the invention to decide
whether a received code module should be compiled or
not. To this end, a third type of payload module for the
DSM-CC carousel is provided. This module is referred
to as code analysis table in the following, and is repre-
sented by a sheet of paper bearing the letter T in Fig. 5.
[0060] A code analysis table T may contain

a) control information identifying intermediate code
modules I of the carousel or portions of such mod-
ules which should be pre-compiled. Compilation of
portions of a module may be advantageous be-
cause one I module of the carousel may comprise
code belonging to various applications, not all of
which it may be useful to pre-compile. Further,
among the code relating to a single application,
there may be portions that are likely to be executed
much more frequently than others. Accordingly, in
order to achieve optimum execution speed of an ap-
plication from the beginning, it may be wise to pre-
compile only the important portions of an I module,
leaving the less important ones for interpretation,
so that the processing time of the compilation en-
gine CE thus saved can be used for compiling im-
portant portions of another I module. These portions
may for example be single functions or methods of
the intermediate code.

This control information may also indicate pri-
ority levels for the compilation of the individual por-
tions. This enables the compiling engine first to
compile portions of an I module having maximum
priority level, then to compile portions having the
same priority level of other modules, and, as soon
as compilation time can be spared, to begin com-
piling portions of the modules having a lower priority
level.

b) compiling optimization information. This informa-
tion may give hints to the compilation engine CE on
how to compile a given portion of code in order to
achieve optimum system performance. Optimiza-
tion specified in this information may involve e.g.
function inlining, loop unrolling, register usage,

pipelining, switch rewriting, etc. This information
may be prepared by the developer of a given appli-
cation. It is not necessary that a set-top-box heeds
the compilation hints given in the T modules; if it
does not, it will also be able to compile correctly, but
if it does, it will be able to generate highly efficient
native code although the algorithm of the compiling
engine may be quite simple. According to its level
of sophistication, a set-top-box may therefore be
able to heed none, part or all of these hints.

[0061] By the present invention, the following main
advantages are achieved. First of all, due to the compi-
lation of at least part of the code of an application, the
execution speed of the application is strongly increased.
Interpretation of code is clearly slower than execution of
compiled code, and this is mainly due to the fact, that
when interpreting, processing power is spent on trans-
lating a portion of intermediate code into native code of
the execution engine EE each time this portion is exe-
cuted, whereas, when compiling, the code is translated
once and for all.
[0062] The invention is extremely efficient when bot-
tleneck parts of the application get compiled. In fact, it
may not be necessary to compile all parts of an appli-
cation when only some parts of it are causing a heavy
load on the execution engine. Obviously, when there are
portions of code repeated many times over, the increase
in efficiency achieved by compiling these may be con-
siderable. On the other hand, there may be portions of
code that are executed only once or have a low proba-
bility of being executed. For these, compilation will not
lead to an increase in efficiency, so that it may not be
worth while to compile them. A second advantage is that
in general, compilation makes a code more compact.
Accordingly, if code is compiled, it will be possible to
store more modules in a given cache size than without
compilation.
[0063] Thanks to the more efficient use of memory, it
becomes possible for a given MHP to host much more
applications simultaneously. From a user's point of view,
this makes the box appear more powerful.
[0064] Last but not least, by judiciously preparing the
code analysis table, the developer of an application has
increased control on how the code he writes is translat-
ed into native instructions of the execution engine. In
this way, highly efficient native code can be generated
using a rather simple compilation and/or interpreting en-
gine.

Claims

1. A programmable data processing device
comprising :

- a loading engine (LE) for receiving portions of
code of a first type and/or data from a stream

11 12



EP 1 377 034 A1

8

5

10

15

20

25

30

35

40

45

50

55

(DC) in which said portions are repeatedly
transmitted,

- a storage means (C) for storing the portions re-
ceived by the loading engine,

- an execution engine (EE) for executing an ap-
plication embodied by the reeived portions,

- a translating engine (TE) for translating the first
type code into a native code of the execution
engine (EE)

- characterised in that the translating engine
(TE) is adapted to compile at least a certain one
of said received portions into native code and
to store the thus compiled portion in the storage
means (C), and to interpret other portions of
code, and that the execution engine (EE) is
adapted to process compiled code and inter-
preted code within a same application.

2. The data processing device according to claim 1,
wherein the translating engine (TE) is adapted to
select said certain portions according to control in-
formation received by it.

3. The data processing device according to claim 1 or
2, wherein the stream (DC) is a DSM-CC carousel.

4. The data processing device according to claim 3,
wherein said portion is a DSM-CC module (I).

5. The data processing device according to claim 3,
wherein said portion is a fraction of a DSM-CC mod-
ule.

6. The data processing device according to one of
claims 2 to 5, wherein the translating engine (TE) is
adapted to receive said control information from
said stream (DC).

7. The data processing device according to claims 3,
4 and 6, wherein the control information is DSM-CC
pre-fetch signalling.

8. The data processing device according to claims 3
and 6 and one of claims 4 and 5, wherein the trans-
lating engine (TE) is adapted to extract the control
information from a payload module (T) of the
DSM-CC carousel (DC).

9. The data processing device according to claim 8,
wherein the translating engine (TE) is adapted to
extract compiling optimization information relating
to a portion of code to be compiled from said pay-
load module (T) and to heed the compiling optimi-
zation in the process of compiling said portion of
code.

10. The data processing device according to one of
claims 2 to 9, wherein the translating engine (TE) is

adapted to receive control information from the ex-
ecution engine (EE).

11. The data processing device according to one of
claims 1 to 10, wherein the translating engine (TE)
is adapted to decide whether to compile or to inter-
pret a given portion of first type code according to
control information received from the execution en-
gine (EE).

12. The data processing device according to claim 11,
wherein the translating engine (TE), during compi-
lation of a given first type code portion, is adapted
to ignore control information requiring said portion
to be interpreted, and to finish compiling the portion.

13. The data processing device according to claim 11,
wherein the translating engine (TE) , when receiv-
ing control information requiring a given first type
code portion to be interpreted during compilation of
said portion, is adapted to abandon the compilation
and to start interpreting the portion.

14. A data processing method, comprising the steps of:

- a) receiving (a1, a1') portions of code (I) of a
first type and/ or data (D) from a stream (DC)
in which said portions (I, D) are repeatedly
transmitted, wherein the set of portions trans-
mitted in said stream (DC) embodies one or
more data processing applications
- b) storing (a6, a9', b3) predetermined ones of
said portions in a storage means (C),
- c) in a translation engine (TE), compiling at
least one of said portions comprising first type
code (I) into native code (N) of an execution en-
gine (EE),
- d) in the execution engine (EE), carrying out
one of said data processing applications by ex-
ecuting (c6) the compiled native code (N) of the
selected portions belonging to said one appli-
cation and by interpreting (c7) non-selected
portions of this application.

15. The data processing method of claim 14, compris-
ing, between steps c and d, the step of receiving an
instruction from a user specifying the application to
be carried out in step d.

16. The data processing method according to claim 14
or 15, wherein in step c, said at least one portion is
selected (a2, a3', a4', a5') based on control infor-
mation supplied to the translation engine (TE).

17. The data processing method according to one of
claims 14 to 16, wherein the stream (DC) is a
DSM-CC carousel.

13 14



EP 1 377 034 A1

9

5

10

15

20

25

30

35

40

45

50

55

18. The data processing method according to claim 17,
wherein said portion is a DSM-CC module.

19. The data processing method according to claim 17,
wherein said portion is a fraction of a DSM-CC mod-
ule (I).

20. The data processing method according to one of
claims 16 to 19, wherein said control information is
received (a2, a5') from said stream (DC).

21. The data processing method according to claims 18
and 20, wherein the control information is DSM-CC
pre-fetch information.

22. The data processing method according to one of
claims 18 or 19 and claim 20, wherein the control
information is a payload module (T) of the DSM-CC
carousel (DC).

23. The data processing method of claim 22 wherein
the control information further comprises compiling
optimization information relating to a portion of code
to be compiled, and the translation engine heeds
the compiling optimization information when com-
piling said portion of code.

24. The data processing method according to one of
claims 14 to 19, wherein said control information is
received (a4') from said execution engine (EE).

25. The data processing method according to claim 24,
wherein the translating engine (TE) decides based
on said control information from the execution en-
gine (EE) whether to compile or to interpret a given
first type code portion.

26. The data processing method according to claim 25,
wherein if the translation engine (TE) receives con-
trol information requiring a given portion to be inter-
preted during compilation of said portion, it ignores
(c11) the control information and finishes compiling
the portion.

27. The data processing method according to claim 25,
wherein if the translation engine (TE) receives con-
trol information requiring a given portion to be inter-
preted during compilation of said portion, it aban-
dons the compilation (c11') and starts interpreting
the portion.

28. The data processing method according one of
claims 14 to 27 in which, after step c), memory
space allocated to the first type code of the com-
piled portion is released for overwriting.

15 16



EP 1 377 034 A1

10



EP 1 377 034 A1

11



EP 1 377 034 A1

12



EP 1 377 034 A1

13



EP 1 377 034 A1

14



EP 1 377 034 A1

15



EP 1 377 034 A1

16



EP 1 377 034 A1

17


	bibliography
	description
	claims
	drawings
	search report

