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MEASURING AND CORRECTING 
NON - IDEALITIES OF A SYSTEM 

TECHNICAL FIELD OF THE DISCLOSURE 
[ 0001 ] The present disclosure relates to the field of inte 
grated circuits , in particular to measuring and correcting 
non - idealities of a system . 

BACKGROUND 
[ 0002 ] In many electronics applications , an analog - to 
digital converter ( ADC ) converts an analog input signal to a 
digital output signal , e . g . , for further digital signal process 
ing or storage by digital electronics . Broadly speaking , 
ADCs can translate analog electrical signals representing 
real - world phenomenon , e . g . , light , sound , temperature , 
electromagnetic waves , or pressure for data processing pur 
poses . For instance , in measurement systems , a sensor 
makes measurements and generates an analog signal . The 
analog signal would then be provided to an ADC as input to 
generate a digital output signal for further processing . In 
another instance , a transmitter generates an analog signal 
using electromagnetic waves to carry information in the air 
or a transmitter transmits an analog signal to carry informa 
tion over a cable . The analog signal is then provided as input 
to an ADC at a receiver to generate a digital output signal , 
e . g . , for further processing by digital electronics . 
[ 0003 ] Due to their wide applicability in many applica 
tions , ADCs can be found in places such as broadband 
communication systems , audio systems , receiver systems , 
etc . Designing an ADC is a non - trivial task because each 
application may have different needs in performance , power , 
cost and size . ADCs are used in a broad range of applications 
including Communications , Energy , Healthcare , Instrumen 
tation and Measurement , Motor and Power Control , Indus 
trial Automation and Aerospace / Defense . As the applica 
tions needing ADCs grow , the need for fast yet accurate 
conversion also grows . Designing an ADC , especially an 
ADC which meets dynamic performance requirements and 
is low power , can be a complex and challenging task . 

[ 0011 ] FIGS . 7A - B illustrate using a plurality of open 
intervals to determine piecewise linear correction terms , 
according to some embodiments of the disclosure ; 
[ 0012 ] FIG . 8 illustrates an exemplary scheme for piece 
wise linear correction of static non - linearities , according to 
some embodiments of the disclosure ; 
[ 0013 ] FIG . 9 is a flow diagram illustrating a method for 
piecewise linear correction of static non - linearities , accord 
ing to some embodiments of the disclosure ; 
[ 0014 ] FIGS . 10A - D illustrate an exemplary scheme for 
detecting errors and performing piecewise linear correction 
of frequency / memory dependent errors , according to some 
embodiments of the disclosure ; 
[ 0015 ] FIG . 11 is a flow diagram illustrating a method for 
piecewise linear correction of frequency / memory dependent 
errors , according to some embodiments of the disclosure ; 
[ 0016 ] . FIG . 12A illustrate an exemplary scheme for 
detecting errors using open intervals , according to some 
embodiments of the disclosure ; 
[ 00171 FIG . 12B illustrates an exemplary scheme for per 
forming piecewise linear correction , according to some 
embodiments of the disclosure ; 
[ 0018 ] FIG . 13 is a flow diagram illustrating the method 
performed by the scheme in FIG . 12B , according to some 
embodiments of the disclosure ; 
0019 ) FIG . 14A illustrates an exemplary scheme for 
detecting errors using open intervals , according to some 
embodiments of the disclosure ; 
[ 0020 ] FIG . 14B - C illustrates an exemplary scheme for 
performing piecewise linear correction , according to some 
embodiments of the disclosure ; 
[ 0021 ] FIG . 15 is a flow diagram illustrating the method 
performed by the exemplary scheme shown in FIGS . 14 - B , 
according to some embodiments of the disclosure ; 
[ 0022 ] FIG . 16 illustrates an exemplary scheme for per 
forming piecewise linear correction , according to some 
embodiments of the disclosure ; 
[ 0023 ] FIG . 17 is a flow diagram illustrating the method 
performed by the scheme shown in FIG . 16 , according to 
some embodiments of the disclosure ; 
[ 0024 ] FIG . 18 is a flow diagram illustrating an exemplary 
method for determining correction terms , according to some 
embodiments of the disclosure . 

BRIEF DESCRIPTION OF THE DRAWING 
[ 0004 ] To provide a more complete understanding of the 
present disclosure and features and advantages thereof , 
reference is made to the following description , taken in 
conjunction with the accompanying figures , wherein like 
reference numerals represent like parts , in which : 
[ 0005 ) FIG . 1 illustrates an exemplary stage in a pipeline 
analog - to - digital converter ; 
[ 0006 ] FIG . 2 illustrates an exemplary stage in a pipeline 
analog - to - digital converter having an injected signal for 
measuring characteristics of the amplifier , according to some 
embodiments of the disclosure ; 
10007 ] FIG . 3 illustrates an ideal signal versus a signal 
having non - linearities ; 
[ 0008 ] FIG . 4 is a flow diagram illustrating a method for 
determining correction terms using the piecewise approach , 
according to some embodiments of the disclosure ; 
[ 0009 ] FIG . 5 illustrates an exemplary system for deter 
mining correction terms , according to some embodiments of 
the disclosure ; 
[ 0010 ] FIGS . 6A - B illustrate using two or three open 
intervals to determine correction terms , according to some 
embodiments of the disclosure ; 

DESCRIPTION OF EXAMPLE EMBODIMENTS 
OF THE DISCLOSURE 

[ 0025 ] Overview 
[ 0026 ] Many systems implement calibration schemes to 
measure and correct for the non - idealities . Such systems can 
be complex , which makes them impractical to implement 
since the cost can potentially outweigh the benefits of the 
calibration scheme . To implement efficient and effective 
calibration , non - idealities or errors of a system are detected , 
in foreground or in background , in a piecewise fashion based 
on , e . g . , correlations of an output signal with an uncorrelated 
random signal , where the correlation results are processed 
separately for different open intervals of an error signal . 
Second order and third order correction terms can be easily 
determined based on three open intervals . In various 
embodiments , the calibration scheme can detect and correct 
for linear errors , ( linear and non - linear ) memory / frequency 
dependent errors , static nonlinearity errors , Hammerstein 
style non - linearity errors , and Wiener - style non - linearity 
errors ( cross - terms ) . 
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[ 0027 ] Non - Linear Systems and Equalization 
[ 0028 ] In electronics design , it is often preferable to have 
a linear system or ideal system . For example , a linear 
amplifier with a particular gain should have an output that is 
proportional to the input across the whole range of the input 
or output . In reality , many amplifiers may not have a 
constant gain across the whole range of the input or output , 
resulting in a non - linear amplifier . For instance , some ampli 
fiers may have gain compression , meaning the gain at the 
ends of the range ( i . e . , near full scale ) is typically slightly 
smaller than the gain in the middle of the range . Non 
idealities , such as non - linearities or other types of errors can 
affect the performance of a system since these non - idealities 
can introduce errors . In many cases , improving the linearity 
of the system would typically require a more complex circuit 
design ( in many cases requiring more design time ) , or 
linearity might come at the expense of power efficiency . 
Besides linearity , some circuits must meet requirements 
such that the filter response is of a response type other than 
a linear filter response . 
[ 0029 ] Schemes for pre - distortion and post - distortion have 
been used to improve the linearity of a circuit , or more 
broadly , equalize the response of the circuit to achieve a 
desired filter response . These schemes model the circuit by 
sensing a signal and either adjusting an input signal ( i . e . , 
pre - distortion ) or correcting an output signal ( i . e . , post 
distortion ) to correct for the non - linearities or achieve the 
desired filter response . One example is digital pre - distortion 
used to linearize a response in an amplifier in a transmitter . 
Another example is digital post - distortion used to linearize 
a signal received in a wireless receiver . 
[ 0030 ] Many systems can be non - linear , or may need 
equalization , calibration , or correction . In audio systems , 
circuits and systems often have non - linear components , and 
the quality of audio signals , power consumption , and algo 
rithms processing audio signals can be greatly affected by 
linearity . In wired and wireless telecommunications , non 
linear circuits and propagation mediums are preferably 
linear . In control systems , algorithms often assume or 
require parts of the system to be linear to operate properly . 
In circuit design , components such as amplifiers are prefer 
ably linear or ideal ( i . e . , substantially free of undesirable 
errors ) . 
[ 0031 ] Example of Circuit Having Non - Idealities 
[ 0032 ] Analog - to - digital converters ( ADCs ) are electronic 
devices that convert a continuous physical quantity carried 
by an analog signal to a digital output or number that 
represents the quantity ' s amplitude ( or to a digital signal 
carrying that digital number ) . An ADC can be defined by the 
following application requirements : its bandwidth ( the range 
of frequencies of analog signals it can properly convert to a 
digital signal ) and its resolution ( the number of discrete 
levels the maximum analog signal can be divided into and 
represented in the digital signal ) . An ADC also has various 
specifications for quantifying ADC dynamic performance , 
including signal - to - noise - and - distortion ratio ( SINAD ) , 
effective number of bits ( ENOB ) , signal to noise ratio 
( SNR ) , total harmonic distortion ( THD ) , total harmonic 
distortion plus noise ( THD + N ) , and spurious free dynamic 
range ( SFDR ) . ADCs have many different designs , which 
can be chosen based on the application requirements and 
performance specifications . 
10033 ] One group of ADCs are multi - stage ADCs , such as 
pipeline ADCs and multi - stage noise shaping delta sigma 

ADCs . Through pipelining , each stage resolves parts of the 
digital output word with high throughput . FIG . 1 illustrates 
an exemplary stage in a pipeline analog - to - digital converter . 
A stage generates a residue signal , which represents a 
difference between the input to the stage ( “ INPUT ' ) and a 
reconstructed version of the input ( “ RECONSTRUCTED ” ) . 
In this particular example , the input is an analog signal . The 
input is digitized coarsely by a flash ADC 102 , and a digital 
output of the flash ADC 102 is converted back into an analog 
signal , i . e . , the reconstructed version of the input , by a 
digital - to - analog converter 104 . The residue is gained up by 
an appropriate factor by the amplifier 106 , and the gained up 
residue ( “ y ” ) is digitized by a next stage . 
[ 0034 ] In some cases , the actual linear gain of the ampli 
fier is different from the ideal linear gain . Even if an 
amplifier can be made as linear as possible , linear gain can 
still drift over time due to temperature , voltage , etc . FIG . 2 
illustrates an exemplary stage in a pipeline analog - to - digital 
converter having an injected signal for measuring charac 
teristics of the amplifier , according to some embodiments of 
the disclosure . One approach to addressing a linear gain 
error in the stage is to inject a single bit pseudo - random 
signal generated by DAC 202 based on a 1 - bit pseudo 
random number sequence as input to the DAC 202 
( “ RCAL ” ) . Both the single bit pseudo - random signal and the 
1 - bit pseudo - random number sequence are referred herein 
generally as RCAL , or 1 - bit PN . RCAL can be injected at the 
summing node in front of the input of amplifier 106 ( or some 
other circuit of interest ) . A digital weight of a bit of the 
RCAL signal can be measured ( e . g . , by a backend converter 
stage in a pipeline ADC ) at startup to establish a baseline 
measurement of the signal being injected . During operation , 
the RCAL signal can be subtracted out ( since the 1 - bit PN 
signal and a baseline measurement of the bit are known ) 
from a digital residue output y [ n ] ( i . e . , a digitized version of 
the residue output signal y ( t ) from amplifier 106 ) to generate 
an error signal . Note that the RCAL signal is not correlated 
with the signal being processed by the stage , and thus , the 
correlation of the error signal to the RCAL signal can 
provide an estimate of the linear gain or the linear gain error , 
e . g . , using an update algorithm for a least means squared 
filter . Any deviation in the digital weight of a bit of the 
RCAL signal from the baseline would appear in the corre 
lations , and is assumed to be from a change or deviation in 
the amplifier gain . An exemplary formula for deriving an 
estimating or updating of the linear gain estimate can be the 
following : 

0 [ n ] = x [ n – 1 ] + u * E [ ( yc - PN ) * PM ] ( 1 ) 

[ 0035 ] In equation ( 1 ) , a [ n ] represents the linear gain ; 
( yc - PN ) represents the error signal , which is the residue 
output signal minus the 1 - bit PN / RCAL signal . Since this 
update formula adaptively adjusts the residue output signal 
( i . e . , to drive the " error ” to zero as the estimate for the 
correction term improves ) , ( yc - PN ) represents the " cor 
rected ” residue output signal minus the 1 - bit PN / RCAL 
signal . The error signal ( yc - PN ) is correlated with the 
RCAL signal PN , i . e . , ( yc - PN ) * PN . If there are no devia 
tions from the ideal gain , the statistics of the correlations 
would have a zero mean . If there are deviations from the 
ideal gain , the statistics of many correlations , e . g . , E [ ( yc 
PN ) * PN ] , would have a non - zero mean . Based on the 
statistics on the correlations , a correction term to address 
deviations from an ideal gain can be determined and updated 
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( 3 ) 

over time . The weight of the 1 - bit PN / RCAL signal is fixed , 
and the adaptive calibration scheme illustrated by the update 
equation ( 1 ) aims to correct for gain errors of the system so 
that the 1 - bit PN / RCAL signal can be subtracted from the 
corrected residue perfectly ( i . e . , driving the “ error ” to zero ) . 
u is a parameter for step size in equation ( 1 ) , which governs 
how quickly the update algorithm updates . For instance , if 
the linear gain of the amplifier is expected to be 4 , the update 
algorithm can determine whether the linear gain of the 
amplifier is 4 . 1 , deviating from the ideal value of 4 . 
[ 0036 ] In some cases , the amplifier 106 may have ( linear ) 
frequency / memory dependent errors which depend on lead 
ing or lagging samples , and the update algorithm mentioned 
above would not be able to adequately account for those 
errors . More often than not , the amplifier 106 is not linear ( in 
addition to have an linear gain error or linear frequency / 
memory dependent errors ) , which means the gain of the 
amplifier 106 can vary non - linearly depending on the input , 
e . g . , compresses near full scale ( ends of the full range ) and 
have saturation effects , and even vary non - linearly depend 
ing on leading and / or lagging samples . The scheme men 
tioned above ( without any further modifications ) would not 
be able to adequately account for such non - linearities . 
[ 0037 ] FIG . 3 illustrates an ideal signal 302 versus a signal 
having non - linearities 304 . It can be seen from the FIGURE 
that signals experiences gain compression near the edges of 
its input / output range . At the signal peaks , the amplitude of 
the signal is smaller for the signal having non - linearities 304 
than the ideal signal 302 . Gain errors can cause integral 
non - linearity errors and tones . If the application requires 
high performance such as high SFDR , non - idealities in the 
amplifier of the stage can be very undesirable . While in some 
cases , one can trade off linearity with power , but one may 
not always want to make such a trade off when the appli 
cation requires low power operation . As circuit designs 
move into smaller process nodes and higher speeds , building 
a more ideal amplifier , buffer , or other circuit parts can 
become more challenging , thereby requiring a lot more 
effort to design . Even if the amplifier is designed to be as 
free of non - idealities as possible , non - idealities can appear 
over time due to temperature , voltage , aging , etc . 
[ 0038 ] Modeling a System 
[ 0039 ] Various models can be used to model the non 
idealities of a system . The model can be used for charac 
terizing a system and for determining correction terms 
usable to correct the signals to achieve a linear response or 
some other desirable response . 
[ 0040 ] The most basic non - linear error model is a static 
non - linearity model . The model implies that the non - linear 
effects of the system are dependent only on a current input 
to the device , which means the non - linear effects are con 
stant across frequency . An example of such model relating 
the input x [ n ] to the output y [ n ] can be as follows : 

y [ n ] = ox [ n ] + $ x [ n ] ( 2 ) 
10041 ] In equation ( 2 ) , a is the coefficient for the linear 
term , and B is the coefficient for the non - linear term . The 
static non - linearity model can have terms of different orders . 
x [ n ] is a first order term , x [ n ] ’ is a second order term , x [ n ] 
is a third order term , and so on . Typically odd - order non 
linearities ( gain compression for both positive and negative 
inputs ) dominate , while even - order nonlinearities ( different 
gain for positive vs negative ) are minimized by differential 
operation of a circuit . 

( 0042 ] Besides static non - linearity , some systems may 
have ( linear ) frequency / memory dependent errors , where the 
errors of system can depend on future or past input to the 
device . An example of such a model relating the input x [ n ] 
to the output y [ n ] can be expressed as follows : 

v [ ] = x [ n ] + – x [ n - 1 ] + B + 1x [ n + 1 ] 
[ 0043 ] In the model illustrated by equation ( 3 ) , the model 
expresses that the output y [ n ] can be dependent on leading 
samples of the input x [ n + T ] and lagging samples of the input 
x [ n - T ) . 
[ 0044 One exemplary non - linear error model is a Ham 
merstein model , which comprises a static non - linearity fol 
lowed by a finite impulse response ( FIR ) filter . An example 
of such model relating the input x [ n ] to the output y [ n ] can 
be expressed as follows : 

y [ n ] = ox [ n ] + B + 1 * [ n + 1 ] 3 + Box [ n ] 3 + B _ 1x [ n – 1 ] ; ( 4 ) 
[ 0045 ] In the model illustrated by equation ( 4 ) , the model 
expresses that the output y [ n ] can be dependent on leading 
samples of the input x [ n + T ] and lagging samples of the input 
x [ n - T ] . Such terms can be characterized as ( non - linear ) 
frequency / memory dependent error terms . A more compli 
cated Hammerstein model is the Parallel - Hammerstein 
model , which expands upon the Hammerstein model by 
summing parallel paths for linear and higher - order non 
linearities . 
[ 0046 ] Yet another exemplary non - linear error model is 
the Wiener non - linear model , which comprises an FIR filter 
followed by a static non - linearity . An example of such model 
relating the input x [ n ] to the output y [ n ] can be as follows : 

y [ n ] = Qx [ n ] + B + 1 * [ n + 1 ] + Box [ n ] ? + B _ 1x [ n – 1 ] + Y0 , 1 * [ n + 
| 1 ] x [ n ] + Y1 , ox [ n ] ̂ x [ n + 1 ] . ( 5 ) 

[ 0047 ] In the model illustrated by equation ( 5 ) , the model 
expresses that the output y [ n ] can be dependent not only on 
leading samples of the input x [ n + T ) and lagging samples of 
the input x [ n - T ] , the output y [ n ] can be dependent on 
" cross - terms ” , which are non - linear combinations of current 
sample x [ n ] , leading sample x [ n + T ] , and lagging sample 
x [ n - T ] of the input ( e . g . , 70 , 1 * [ n + 1 ] * x [ n ] and y1 , 0x [ n ] * x [ n + 
1 ] as seen in the example ) . 
[ 0048 ] In the examples explained above , the various terms 
effectively form a filter being applied to x [ n ] and x [ n ] passed 
through non - linear functions . A calibration scheme aims to 
estimate the filter so that corrections can be applied to 
correct the signal , so that the non - idealities are “ removed " or 
effects of which are reduced . Determining the coefficients 
for these various terms in the model is not trivial . With 
unlimited amount of computational resources , it is possible 
to readily determine these terms . However , it is counterpro 
ductive to expend computational resources when the goal is 
to linearize the circuit to ultimately reduce power consump 
tion . 
100491 . The present disclosure describes a digital calibra 
tion scheme for detecting and correcting for errors such as , 
linear gain error , ( linear and non - linear ) memory / frequency 
dependent error , static non - linearity error , Hammerstein 
style non - linearity errors , and Wiener - style non - linearity 
errors ( cross - terms ) . The digital calibration scheme per 
forms efficiently , and can be performed in the background 
( during normal operation of the circuit ) . Similar to the linear 
gain error detection scheme described in relation to FIG . 2 , 
a 1 - bit PN or RCAL signal can be used . Instead of just 
correcting for the linear gain error , the 1 - bit PN or RCAL 
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enables the above mentioned errors to be estimated . The 
1 - bit PN , or RCAL signal is injected at the summing node 
in front of the amplifier . If the amplifier has gain compres 
sion , RCAL signal present at the output of the amplifier is 
expected to be slightly bigger when the residue signal is 
zero , than when the residue signal is close to the ends of the 
range . The calibration scheme takes many samples measur 
ing this RCAL signal to estimate non - linearity of the ampli 
fier . 
[ 00501 To ensure the detection and correction schemes are 
efficient , a piecewise approach is used , where correction 
terms ( e . g . , gain and offset correction terms ) are determined 
based on correlations sorted according to an amplitude of the 
current sample of an error signal and potentially the neigh 
boring samples of an error signal ( or even product of current 
and neighboring samples of the error signal ) . The error 
signal , err [ n ] , can represent a corrected output signal ( e . g . , 
a corrected residue output signal ) with the 1 - bit PN / RCAL 
signal removed , i . e . , err [ n ] = yc [ n ] - PN [ n ] ) . The result is a 
highly scalable and efficient calibration scheme usable for a 
variety of non - ideal systems . 

closure , the intervals being used for piecewise estimation or 
error detection are open intervals , not closed intervals . 
Besides using an open interval , the 1 - bit PN / RCAL signal is 
preferably subtracted before applying the open interval 
threshold logic to minimize correlation between the 1 - bit 
PN / RCAL signal with the interval . 
[ 0053 ] Choice of open intervals and the number of open 
intervals L can vary depending on the type of error to be 
corrected . When a signal of interest , s [ k ] , has a full range 
centered around zero , exemplary open intervals can include : 

Sopenpos [ z ] : 0 < s [ k ] 
Sintl pos [ z ] : int [ 1 ] < s [ k ] 

Sini2 pos [ z ] : int [ 2 ] < s [ k ] 

Sopenneg [ z ] : s [ k ] < 0 
Sintlneg [ z ] : – int [ 1 ] > s [ k ] 
Sint2neg [ z ] : – int [ 2 ] > s [ k ] 

Piecewise Approach Using Open - Intervals 
[ 0051 ] A piecewise approach makes for a simple - to 
implement and efficient digital calibration scheme . The 
piecewise approach can be modified to account for different 
types of errors , by varying the signals used in the correla 
tions and varying the update algorithms . Such an approach 
may not have to assume model order or a particular type of 
model . However , designing an implementation for such 
approach is not so trivial . Consider the detection and cor 
rection of a static non - linearity , in which the non - linearity is 
only due to the amplitude of the current sample y [ n ] = ax 
[ n ] + ßx [ n ] . a is the nominal linear gain coefficient and ß is 
the non - linear gain coefficient . From the equation , one can 
see that the gain y [ n ] / x [ n ] depends on a constant plus the 
magnitude squared of the current sample . Typically ß would 
be negative for gain compression , i . e . saturation near full 
scale . The piecewise approach to detect and correct for 
non - idealities is to divide the error signal , e . g . , ( err [ n ] = yc 
[ n ] - PN [ n ] ) into a number of open intervals , i . e . , L overlap 
ping open intervals based on amplitude , detect the gain in 
each open interval , and apply a piecewise - linear gain cor 
rection ( and offset ) to the output of the circuit y [ n ] ( e . g . , 
residue signal ) based on closed intervals to correct for the 
non - idealities . 
[ 0052 ] A goal of implementing a piecewise estimation of 
the system is to determine the gain in each piece , or closed 
interval , of the signal range , so that the gain can be corrected 
in a piecewise fashion , where correction can be applied 
differently to each piece or closed interval of the signal 
range . However , detecting the gain in an interval of the error 
signal err [ n ] is not straightforward . For non - piecewise , 
linear gain calibration , the estimation of the gain would 
operate on the entire residue , i . e . , the entire error signal , and 
no intervals are applied , and uses the difference in statistics 
between when PN = + 1 and PN = - 1 to drive a gain correction 
loop . If the error signal err [ n ] is segmented into closed 
intervals ( e . g . , Sint closed [ Z ] : int [ 1 ] < s [ k ] < int [ 2 ] , s [ k ] being a 
signal of interest being segmented ) , the data where PN = + 1 
and PN = - 1 by definition overlap in each closed interval , and 
the statistics would reveal zero information . In other words , 
estimating the gain would be impossible if the statistics are 
accumulated based on closed intervals . In the present dis - 

[ 0054 ] In the set of interval definitions ( 6 ) above , Sopenpos 
[ z ] and Sopenneg [ z ] represents a positive open interval and a 
negative open interval of an “ unfiltered ” interval , which 
together comprises of all s [ k ] samples . int [ ] can store a list 
of threshold values in this example , a list of non - zero 
positive values dividing the range of the residue ) . s [ k ] would 
fall within a first positive interval Sintlpos [ z ] if amplitude of 
s [ k ] is greater than ( or greater than or equal to ) a first 
positive threshold value int [ 1 ] . s [ k ] would fall within a 
second positive interval Sint2pos [ z ] if amplitude of s [ k ] is 
greater than ( or greater than or equal to ) a second positive 
threshold value int [ 2 ] . s [ k ] would fall within a first negative 
interval Sintlneg [ z ] if amplitude of s [ k ] is less than ( or less 
than or equal to ) a first negative threshold value - int [ 1 ] . s [ k ] 
would fall within a second negative interval Sint2neg [ z ] if 
amplitude of s [ k ] is less than ( or less than or equal to ) a 
second negative threshold value - int [ 2 ] . One feature asso 
ciated with these open intervals is that they can overlap each 
other ( e . g . , two or more intervals can overlap each other ) . 
Phrased differently , one particular sample s [ k ] can fall under 
one or more open intervals . A reasonable number of positive 
intervals and a reasonable number of negative intervals can 
be used . The ( positive and negative ) threshold values divid 
ing the range can be selected on significant bit levels to 
lower cost and reduce unnecessary complexity . A square 
root interval spacing , or having more closely spaced interval 
thresholds near the ends of the ranges can provide for better 
calibration . 

[ 0055 ] In general , a circuit with even - order effects can 
mean that the non - linearities for the positive interval ( s ) is 
different from the negative interval ( s ) . Therefore , different 
correction terms would be needed for the positive intervals 
and negative intervals . 
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[ 0056 ] If even - order effects are expected to be negligible , 
then the intervals can be applied to the absolute value or the 
magnitude of the signal of interest s [ k ] : 

Sopen [ z ] : 0 < abs ( s [ k ] ) 
Sintl _ folded [ z ] : int [ 1 ] < abs ( s [ k ] ) 
Sint2 _ folded [ z ] : int [ 2 ] < abs ( s [ k ] ) 

[ 0057 ] The above intervals in the set of interval definitions 
( 7 ) mean that negative and positive values of s [ k ] having the 
same magnitude would get the same correction term ( s ) 
( assuming the positive intervals and the negative intervals 
have the same gain error ) . This simplification can reduce the 
number of intervals and circuitry needed for the calibration 
scheme . If the system utilizes differential circuit design , 
even - order non - linearities can be negligible . The dominant 
non - linearities would be due to odd - order distortion such as 
x° [ n ] ( e . g . , gain compression equally for positive and nega 
tive full - scale ) , and even - order effects would be negligible . 
While some of the examples herein makes this simplifica 
tion , it is understood by one skilled in the art that the 
teachings of the disclosure can be extended to account for 
the even - order non - linearities by using separate positive 
interval ( s ) and negative interval ( s ) . 
[ 0058 ] FIG . 4 is a flow diagram illustrating a method for 
determining correction terms of a system using the piece 
wise approach , according to some embodiments of the 
disclosure . The correction terms can be associated with any 
one or more of the following : linear errors , ( linear and 
non - linear ) memory / frequency dependent errors , static non 
linearity errors , Hammerstein - style non - linearity errors , and 
Wiener - style non - linearity errors ( cross - terms ) . 
[ 0059 ] A pseudo - random signal ( PN [ n ] ) is injected into a 
system . The system can be a circuit having non - linearities , 
such as a stage in a pipeline ADC where the residue 
amplifier may be non - linear . The pseudo - random signal 
would be injected at a part of the circuit , so that the 
pseudo - random signal can be processed along with another 
( normal or special ) input signal by the system . An example 
of injecting the pseudo - random signal into a stage of a 
pipeline ADC is illustrated by the RCAL DAC 202 of FIG . 
2 . Preferably , the pseudo - random signal is a 1 - bit pseudo 
random signal ( e . g . , 1 - bit PN or RCAL as explained with 
FIG . 2 ) . The pseudo - random signal can be generated from a 
1 - bit pseudo - random number sequence of + 1 ' s and - 1 ' s . 
The pseudo - random sequence can be digitally generated or 
provided from a memory . A digital - to - analog converter can 
convert the sequence into analog form suitable to be injected 
into the system . The pseudo - random signal is not correlated 
with the input signal , thus allows for non - idealities of the 
system to be measured . The pseudo - random signal is 
injected into the system , e . g . , at the summing node in front 
of the amplifier , or in front of a part of a circuit to be 
calibrated . The pseudo - random signal is then removed from 
a corrected output signal to obtain the error signal . 
[ 0060 ] In task 402 , a pseudo - random signal ( PN [ n ] ) 
injected in the system is removed , e . g . , from a corrected 
output signal of the system , to obtain a signal . The resulting 
signal is generally referred to as the error signal err [ n ] , 
because deviations from an ideal gain would appear in the 

error signal when the pseudo - random signal is not removed 
perfectly ( meaning the model is not perfect yet ) . In math 
ematical terms , this operation for removing the pseudo 
random signal can be represented by err [ n ] = yc [ n ] - PN [ n ] . 
yc [ n ] can be a " corrected ” output signal or “ corrected ” 
residue signal in the case of a residue producing circuit , i . e . , 
where yo [ n ] a signal that may already have some correction 
applied to it , when the calibration scheme uses an adaptive 
algorithm to update correction terms to drive the “ error ” to 
zero as it improves the error estimation . 
[ 0061 ] In task 404 , correlations of the error signal with the 
pseudo - random signal is performed , e . g . , by a correlation 
block or a multiplier . For instance , a sample of the pseudo 
random signal PN [ n ] is correlated with a sample of the error 
signal err [ n ] , e . g . , PN [ n ] * err [ n ] . A collection of correlations 
and its statistics can yield information for determining 
different correction terms . 
[ 0062 ] In task 406 , correction terms are updated based on 
the correlations accumulated based on different open inter 
vals of the error signal . Phrased differently , one or more 
correction terms are computed based on correlation results 
sorted based on the different open intervals of the error 
signal . For instance , statistics , based on the sorted correla 
tion results , such as mean , can yield information from which 
correction terms can be determined . The different open 
intervals is defined based on an amplitude of the error signal , 
e . g . , the " corrected ” residue of the residue producing circuit 
with the pseudo - random signal removed , or err [ n ] = yc [ n ] 
PN [ n ] . Performing or processing correlations in piecewise 
fashion makes for an efficient and less complex calibration 
scheme since linear gain correction terms can estimate or 
approximate a complex non - linear system . The correlations 
would yield non - idealities of the system that can be cali 
brated out . Many results of the correlations are stored , e . g . , 
grouped based on the different open intervals so that an 
averaging operation can be performed to extract the non 
idealities or errors of the system . Correction terms can be 
determined from the information extracted from the sorted 
correlations . The correlation operation , i . e . , the specific 
samples being used for the correlation , can differ depending 
on the type of error to be detected . The number of open 
intervals can vary . In some embodiments , the number of 
intervals can be determined based on the expected non 
linearity of the system . 
[ 0063 ] When a sufficient number of correlations have been 
performed and results have been accumulated for a particu 
lar open interval , an update equation can be used to update 
one or more correction terms for a closed interval corre 
sponding to the particular open interval . While correction 
term ( s ) are determined based on open intervals , the correc 
tion terms are separately applied to closed intervals corre 
sponding to the different open intervals . In other words , error 
information is estimated based on a plurality of overlapping 
open intervals , and that error information obtained from the 
overlapping open intervals is mapped into correction term ( s ) 
for a plurality of non - overlapping closed intervals . 
[ 0064 ] In some embodiments , the correction terms can 
calibrate for various types of gain errors of a stage in a 
pipeline ADC . The calibration scheme does not require a 
special input signal either ( although this algorithm can 
operate in the foreground with a special input signal ) , and 
the scheme can be performed in the background during the 
normal operation of the system . If the system is a stage in a 
pipeline ADC , the calibration scheme can operate in the 
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background during normal data conversion of the pipeline 
ADC . While it is not necessary , a large scale dither signal 
can be injected into the system to ensure a full range of the 
system is exercised to ensure correlations are being per 
formed across the entire range for all the different open 
intervals . 
[ 0065 ) FIG . 5 illustrates an exemplary system for deter 
mining correction terms , according to some embodiments of 
the disclosure . The system can be used to correct a circuit 
generating a signal . The calibration system can have a 
plurality of piecewise - linear detection open intervals with 
separate update loops running in parallel . The circuit can be 
a residue producing circuit in an analog - to - digital converter , 
as illustrated by FIGS . 1 - 2 , and thus the signal being 
generated by the circuit can be a residue signal . 
[ 0066 ] The system includes a circuit part , e . g . , a summa 
tion node 502 , for removing an injected signal ( “ PN [ n ] ” ) 
from a corrected output signal ( yo [ n ] ” ) . For a residue 
producing circuit , the corrected output signal can be a 
corrected residue signal . The injected signal is uncorrelated 
with the signal being processed by the circuit ( e . g . , a data 
signal being converted by a stage in a pipeline , some other 
kind of input to the circuit to be calibrated ) . The injected 
signal can be , e . g . , a pseudo - random signal , a 1 - bit 
PN / RCAL signal . In the residue producing circuit example , 
the injected signal is injected at an input of an amplifier of 
the residue producing circuit . The correction terms are 
associated with gain errors of the amplifier . As shown in the 
example illustrated by FIG . 5 , the injected signal PN [ n ] is 
removed from the corrected output signal yo [ n ] by the 
circuit part to generate an output signal err [ n ] as the error 
signal . The error signal is a “ corrected output error ” since the 
calibration scheme can continuously run over time to update 
the correction terms based on a corrected output signal 
ye [ n ] . 
[ 0067 ] In some embodiments , the system further includes 
threshold logic to determine whether an output signal from 
the circuit part ( e . g . , an error signal err [ n ] being generated 
by the circuit part ) falls with one or more open intervals . The 
threshold logic can generate a selection signal , e . g . , SEL [ n ] , 
or suitable set of signals for indicating whether the output 
signal from the circuit part , e . g . , err [ n ] , fall within one or 
more open intervals . Threshold logic , such as comparators , 
can be used to compare the error signal against different 
threshold values . The threshold logic , e . g . , open - intervals 
block 504 , enables the correlations , e . g . , PN [ n ] * err [ n ] , to be 
sorted into one or more open intervals so that correlations 
can be accumulated separately for the different open inter 
vals . In this particular digital circuit design , a signal can be 
generated for each open interval , where a “ 1 ” can indicate 
that the signal is within a particular open interval , and a “ O ” 
can indicate that the signal is not within a particular open 
interval . The threshold logic being implemented would 
differ depending on the number of open intervals to be used 
for modeling the system . In one example , the threshold logic 
operates on an absolute value ( " abs ( . ) ” or magnitude of the 
amplitude of the error signal ( e . g . , when even order effects 
are negligible ) . For a signal range centered around 0 , both 
the positive and negative values having the same magnitude 
can be sorted into the same open interval . Such an imple 
mentation or simplification is particularly useful for systems 
where even - order non - linearities do not dominate . 
[ 0068 ] The system further includes a correlation block 506 
to correlate the error signal against the injected signal ( e . g . , 

obtaining PN [ n ] * err [ n ] ) , wherein correction terms for lin 
earizing the circuit are generated based on correlations 
computed from the correlation block . The “ AND ” logic 
blocks , e . g . , AND blocks 508a - c , receiving the selection 
signal SEL [ n ] ( or suitable signals ) and the correlation results 
PN [ n ] * err [ n ] , can sort the correlation results based on one or 
more interval ( s ) in which the error signal falls . In the 
example shown , the sorted correlation results from correla 
tion block 506 can be provided to one or more separate 
update loops . One or more update loops can be included for 
processing correlation results within one or more open 
intervals to generate correction terms for correcting the 
circuit . 
[ 0069 ] In a non - linear system , the linear gain of the system 
vary as the amplitude of the signal varies . Linear gain can be 
estimated based on statistics of the correlation results of 
PN = + 1 and PN = - 1 . The correlation results sorted based on 
the open intervals would estimate the linear gain for the 
respective open intervals , and the correction terms estimated 
from these different sets of correlation results corresponding 
to the different open intervals would differ from each other 
in a non - linear system . In one example , two sets of corre 
lation results can be driven to be equal to each other to 
equalize the circuit . In another example , within an update 
loop , the correlation results can be accumulated to extract 
gain error within a particular open interval and update one 
or more correction terms accordingly . The specific imple 
mentation of the update loops depend on the calibration 
scheme and type of error to be detected . Exemplary cali 
bration schemes are described in relation to FIGS . 6 - 7 . 
10070 ] The piecewise calibration scheme works on pro 
cessing the calibration results separately to generate correc 
tion terms based on the different open intervals via one or 
more update loops . The one or more update loops can 
receive or process the correlation results collected or 
“ binned " based on the open intervals . In other words , the 
statistics of the correlation results where PN = + 1 and PN = - 1 
gathered for the open intervals can be used to update 
correction terms for correcting the circuit . 
[ 0071 ] Model Fitting for Non - Linearity Using Open Inter 
vals 
[ 0072 ] In many circuits , third order and possibly second 
order effects can dominate over higher orders . Therefore , it 
may be possible to correct primarily for third order distor 
tions , and perhaps also for second order distortions if 
even - order effects are not negligible . In such cases , the 
calibration scheme can simply use two open intervals , or 
three open intervals if second order distortions are to be 
accounted for . FIG . 6A - B illustrate using two or three open 
intervals to determine correction terms , according to some 
embodiments of the disclosure . In FIG . 6A , consider the 
ideal signal 602 ( solid line ) and the signal having non 
idealities 604 ( dotted line ) . Near the ends of the signal range , 
i . e . , a high end interval above “ THRESHOLD ” , and a low 
end interval below “ - THRESHOLD ” ( negative of the 
“ THRESHOLD ” ) , gain compression ( a third order , odd 
order effect ) makes the signal having non - idealities 604 
smaller than the ideal signal 602 at the high and low end 
intervals . If second order distortions ( an even - order effect ) 
are present , the gain in the high end interval would differ 
from the low end interval . 
[ 0073 ] Generally speaking , second and third order effects 
may cause the signal experience different gain in different 
parts of the range . For instance , third order effects can cause 
the signal to experience different gain near the edges of the 
range than the gain experienced near Zero amplitude . 
Accordingly , the gain experienced near zero amplitude can 
be used as reference , so that the gain across the range can be 
" equalized ” . In another instance , second order effects can 
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@ v _ 3 [ n ] = ( 8 ) 

Onain – 1 ] - terl ] = PN 1 ) – erraientow . * Paigestion ! = 0 

[ 0077 ] err [ 1 ] is the error signal ( e . g . , the corrected residue 
with the 1 - bit PN / RCAL signal removed , or ye [ n ] - PN [ n ] ) . 
In update equation ( 8 ) , errichllow [ 1 ] is the error signal within 
the " high - low " interval . PNJI ] is the 1 - bit PN / RCAL signal . 
err [ 1 ] * PN [ 1 ] is the reference term based on correlations 
performed with the “ unfiltered interval ” . errsicht [ 1 ] * 
PN highllow [ 1 ] is the high - low interval term based on corre 
lations performed with the “ high - low interval ” . This update 
loop is illustrated as the “ third - order correction loop ” in FIG . 
6B . As the update loop runs , and the system becomes more 
" equalized ” ; the correlations at the edges , i . e . , " the high - low 
interval ” would be closer to the correlations from the 
“ unfiltered interval ” . 
[ 0078 ] The update for the correction term would converge , 
as the update term , 

N - 1 

Mã [ err [ ] * PN [ ? ] – errhigh / low [ ? ] * PNhighllow [ / ] ] , 
0 

cause the signal to experience different gain in the positive 
range versus the negative range . The gain experienced in a 
high end interval or the low end interval can be used as a 
reference for each other , so that the gains in the positive 
range and the negative range can be “ equalized ” . To cali 
brate such a system , the update loop can force the gain of 
one open interval to be the same as a reference interval . As 
previously explained , the correlations can be run separately 
with the different open intervals . The separate correlations 
can estimate the gain for the open intervals ; one or more 
update loops can leverage the different gain estimated to 
equalize the circuit . 
[ 0074 ] FIG . 6B shows three sets of correlation results , 
e . g . , PN [ n ] * err?n ] , being accumulated : “ unfiltered interval ” , 
“ high end interval ” and “ low end interval ” . The unfiltered 
interval includes correlation results associated with all val 
ues of err [ n ] , i . e . , the open interval includes all samples of 
the error signal . The high end interval includes correlation 
results associated with values of err [ n ] > threshold value , i . e . , 
the open interval includes samples of the error signal greater 
than a first predetermined threshold value . The low end 
interval includes correlation results associated with values of 
err [ n ] < - threshold , i . e . , the open interval includes samples or 
the error signal whose values are below a second predeter 
mined threshold value ( the second predetermined threshold 
value being of the same magnitude with the first predeter 
mined threshold value but of opposite polarity ) . The corre 
lations accumulated for the different open intervals can be 
used in one or more update loops , e . g . , to estimate even 
order and odd - order effects . FIG . 6B illustrates how the 
correlation results can be used to drive the first order 
correction loop , the second order correction loop , and the 
third order correction loop . 
[ 0075 ] The unfiltered interval defined to include all 
samples of the error signal , i . e . , all correlation results of the 
error signal with the 1 - bit PN / RCAL signal , can be used for 
correcting first order effects . 
[ 0076 ] If the even - order effects are negligible and odd 
order effects dominate , the different overlapping intervals 
comprises : ( " unfiltered interval ” ) an interval including all 
samples ( of the error signal , “ err [ n ] ” ) , and ( “ high - low inter 
val " ) an interval including samples whose absolute value is 
above a first predetermined threshold value ( e . g . , 
“ THRESHOLD ” ) . Samples in the high end open interval 
and samples in the low end interval would fall within the 
same open interval ( “ high - low interval " ) . Updating the 
correction terms based on the correlations ( i . e . , separate sets 
of correlation results sorted based on the open intervals ) 
would involve updating correction terms based on ( 1 ) cor 
relations associated with interval including all samples , and 
( 2 ) correlations associated with an interval including 
samples whose absolute value is above a first predetermined 
threshold value . To correct for the third - order distortions , an 
update loop based on the separate sets of correlation results 
on the two open intervals mentioned above , can estimate 
gain for the respective intervals . Correlation results from the 
high end interval and the low end interval are combined for 
the high - low interval . The gain estimated on the “ unfiltered ” 
interval serves as the reference gain . The update loop can 
drive , e . g . , a third order static non - linearity correction term 
b _ [ r ) , until the gain estimate for “ high - low interval ” is 
equal to the reference gain estimated from the “ unfiltered 
interval ” . An exemplary update equation for the update loop 
can be as follows : 

in equation ( 8 ) , approaches 0 . 
[ 00791 . If the even - order effects are not negligible , the 
different overlapping intervals comprises : ( " unfiltered inter 
val ” ) an interval including all samples ( of the error signal , 
" err?nl ” ) , ( “ high interval " ) an interval including samples 
whose values are above a first predetermined threshold value 
( e . g . , “ THRESHOLD " ) , and ( “ low interval " ) an interval 
including samples whose values are below a second prede 
termined threshold value ( e . g . , " - THRESHOLD " ) . The 
“ unfiltered interval " can be omitted . Samples in the high end 
open interval and samples in the low end interval would fall 
into the respective / separate open intervals . Updating the 
correction terms based on the correlations would involve 
updating correction terms based on ( 1 ) correlations associ 
ated with an interval including samples whose values are 
above a first predetermined threshold value , and ( 2 ) corre 
lations associated with an interval including samples whose 
values are below a second predetermined threshold value . To 
correct for the even - order distortions , e . g . , second order 
distortions , the update loops from the separate sets of 
correlation results on the “ high interval ” and the “ low 
interval " mentioned above , can estimate gain for the respec 
tive intervals . The gain estimated on one of the " high end 
interval " or the “ low end interval " can serve as the reference 
gain . The update loop can drive , e . g . , the second order static 
non - linearity correction term b [ n ) until the gain estimate 
for “ low end interval ” is equal to the gain estimated from the 
“ high end interval ” . An exemplary update equation for the 
update loop can be as follows : 

@ K = 2 [ n ] = 
1 N - 1 

Ô k = 2 [ n – 1 ] - [ errhigh [ / ] * PNhigh [ l ] – errlow [ / ] * PNow [ / ] ] 

[ 0080 ] err [ 1 ] is the error signal ( e . g . , the corrected residue 
with the 1 - bit PN / RCAL signal removed , or yo [ n ] - PN [ n ] ) . 
In update equation ( 9 ) , errnigh [ l ] is the error signal within the 
“ high end interval ” . errowll ] is the error signal within the 
“ low end interval ” . errnigh [ 1 ] * PNhigh [ l ] and errow [ 1 ] * PNow 
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[ 1 ] are driven to be equal to each other . This update loop is 
illustrated as the “ second - order correction loop ” in FIG . 6B . 
As the update loop runs , and the system becomes more 
" equalized " ; the correlations in the high end interval would 
be closer to the correlations in the low end interval . The 
update for the correction term would converge , as the update 
term , 

j ) [ errnigh [ ? ] * PNhigh [ l ] – errlow [ Z ] * PNow [ / ] ] ? 
in equation ( 9 ) , approaches 0 . 
[ 0081 ] Piecewise Calibration without Model Fitting 
[ 0082 ] It is possible to divide up the signal range , e . g . , the 
error signal , into more intervals , making no assumptions for 
model order . Such a scheme can better correct for , e . g . , 
fourth order and fifth order distortions . In a piecewise 
fashion , one or more separate / parallel least means squared 
update loops can be run on different open intervals and 
piecewise linear correction can be applied to the closed 
intervals . 
[ 0083 ] FIG . 7A illustrates using a plurality of open inter 
vals to determine piecewise linear correction terms , accord 
ing to some embodiments of the disclosure . Similar to FIG . 
6 , ideal signal 702 ( solid line ) and the signal having non 
idealities 704 ( dotted line ) are shown . In this example , the 
different open intervals comprises : a plurality of first inter 
vals associated with different predetermined threshold val 
ues ( e . g . , 0 , “ THRESHOLD _ 1 ” , “ THRESHOLD _ 2 " , 
“ THRESHOLD _ 3 " in the example ) each including samples 
( e . g . , of the error signal ) whose values are above a prede 
termined threshold value corresponding to a particular first 
interval , and a plurality of second intervals associated with 
different predetermined threshold values ( e . g . , 0 , 
“ - THRESHOLD _ 1 ” , “ - THRESHOLD _ 2 ” , “ - THRESH 
OLD _ 3 " in the example ) each including samples ( e . g . , of the 
error signal ) whose values are below a predetermined 
threshold values corresponding to a particular second inter 
val . 
[ 0084 ] The open intervals are provided to sort correlation 
results associated with samples of the error signal , e . g . , 
err [ n ] , falling within one or more open intervals . The inter 
vals do not have to be evenly spaced across the range and 
any suitable number of intervals can be used . These param 
eters , i . e . , the predetermined threshold values , can be 
adjusted based on the expected nonlinearity of the system 
and desired complexity of the calibration system . If even 
order effects are negligible , the different open intervals 
comprises : an interval including all samples ( e . g . , of the 
error signal ) , and a plurality of intervals associated with 
different predetermined threshold values , each including 
samples ( e . g . , of the error signal ) whose absolute value is 
above a predetermined threshold value corresponding to a 
particular one of the intervals . 
[ 0085 ] Updating the correction terms based on the corre 
lations would involve estimating piecewise linear correction 
terms based on the different open intervals . As explained 
previously and illustrated by FIG . 7B , the 1 - bit PN / RCAL is 
subtracted from the corrected output , e . g . , yc [ n ] , to generate 
an error signal ( yc [ n ] - PN [ n ] = err [ n ] ) . Threshold logic , e . g . , 
open intervals is used to determine in which one or more 
open intervals the error signal err [ n ] falls . Logic can be 

applied to filter the correlation results based on the respec 
tive open intervals . An update loop can be run for each of the 
open intervals separately . Since the open intervals overlap , 
an open interval ' s update loop can not only update the gain 
correction term for its own open interval , the update loop 
can also update the gain correction for one or more intervals 
the open interval overlaps with . Viewed differently , as the 
outer open intervals fixes its gain ( appears more linear ) , the 
next inner open interval would see a corrected outer open 
interval and fixes itself . Phrased differently , the outer inter 
vals help the inner intervals converge . The result is a linear 
piecewise estimation of the non - linearity of the system , 
where non - linearities can be corrected with a linear correc 
tion . An exemplary update equation for an update loop is as 
follows : 

| < [ : L ; n + 1 ] = a [ : L ; n ] + * 2 [ vc [ x ] - PN [ x ] ) * PN [ ] ] ( 10 ) 
[ 0086 ] In the equation ( 10 ) , different correction terms are 
computed for L different open intervals . For instance , piece 
wise - linear correction terms can be computed separately for 
the L different open intervals . The error signal , i . e . , ( yc [ n ] 
PN [ n ] ) , can be correlated with the 1 - bit PN / RCAL signal . 
The correlation results can be filtered based on the L 
different open intervals . These update loops for the intervals 
can run in parallel . 
[ 0087 ] Generally speaking , the inner open intervals ( big 
ger ) can collect more samples or correlation results than the 
outer open intervals ( smaller ) . Once sufficient number of 
samples or correlation results have been collected and 
processed , digital circuitry can send an interrupt or any 
suitable signal to a state machine , digital processing cir 
cuitry , or an ( on - chip ) microprocessor , to compute correc 
tion terms . The state machine , digital processing circuitry , or 
microprocessor can write the correction terms to the cir 
cuitry so the correction terms can be applied for post 
distortion . 
[ 0088 ] Piecewise Correction and Offset to Avoid Discon 
tinuities 
[ 00891 . With correction terms estimated from the open 
intervals , the calibration scheme then applies the correction 
terms separately for closed intervals corresponding to the 
open intervals . For examples , piecewise linear correction 
terms can be applied . The output signal of the circuit ( i . e . , 
the signal to be distorted ) , is divided into closed intervals , 
and corresponding correction term ( s ) are applied . For a 
residue producing circuit , the output signal of the signal 
would be the residue signal . As an example , the following 
open intervals set ( 11 ) ( s [ k ] is a signal of interest ) : 

Sopen [ ] : 0 < abs ( s [ k ] ) 

Sint l _ folded [ z ] : int [ 1 ] < abs ( s [ k ] ) 

Sin12 _ Folded [ z ] : int [ 2 ] < abs ( s [ k ] ) ( 11 ) 
would correspond to the following closed intervals set ( 12 ) 
( respectively ) : 

Sclosed [ z ] : 0 < abs ( s [ k ] ] < int [ 1 ] 
Sintl _ closed [ z ] : int [ 1 ] < abs ( s [ k ] ) < int [ 2 ] 

Sint2 _ closed [ z ] : int [ 2 ] < abs ( s [ k ] ) < int [ 3 ] ( 12 ) 
[ 0090 ] These closed intervals seen in interval definitions 
set ( 12 ) no longer overlap , but uses the same interval 
threshold points as the detection path . FIG . 8 illustrates an 
exemplary scheme for piecewise linear correction of static 
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k ] ] 

non - linearities on closed intervals , according to some 
embodiments of the disclosure . The circuit takes in the 
output of the circuit , y [ n ] , and generates a corrected output 
of the circuit yo [ n ] . Although not shown , the circuit can 
optionally remove a DC offset ( if such an offset is present ) , 
prior to further post - distortion of the output signal . Subtract 
ing the DC offset of residue can remove backend ( i . e . , the 
stage ( s ) digitizing the residue ) offset errors . The circuit seen 
in FIG . 8 includes a closed interval sorting block 802 for 
determining in which one of closed intervals a sample of the 
output signal , e . g . , ( uncorrected ) output signal y [ n ] , or 
residue signal ) falls , and outputting a selection signal ( “ SEL 
[ n ] ” ) to select one or more correction terms for linearizing 
the circuit . The closed interval sorting block 802 segments 
the output signal y [ n ] ( or the signal of interest ) into closed 
intervals . 
[ 0091 ] The selection signal SEL [ n ] selects the correction 
terms which includes a gain coefficient pwl _ gain [ ] and an 
offset pwl _ offset [ ] for each open interval . Offsets can be 
included to avoid discontinuities when gain correction 
changes between intervals : 

pwl _ offset [ { = pwl _ offset [ 2 – 1 ] + ( « [ – 1 ] – [ ? ] ) * int ( 1 ) ; 
pwl _ offset [ 1 ] = 0 ( 13 ) 

[ 0092 ] With equation ( 13 ) for computing offsets , any jump 
between intervals are avoided . Post - distortion thus includes 
multiplying the output signal to be corrected , y [ n ] with a 
selected multiplier pwl _ gain [ ] to correct for the gain ( arriv 
ing at y [ n ] * pwl _ gain [ sel [ n ] ] ) , and adds a selected offset 
pwl _ offset [ ] after the multiplication ( arriving at yo [ n ] = y [ n ] 
* pwl _ gain SEL [ n ] ] + pwl _ offset [ SEL [ n ] ] ) . The correction 
piece would only require one multiplier and one adder , 
which makes for a simple digital correction scheme . 
[ 0093 ] The corrected output of the circuit yo [ n ] is pro 
vided to circuitry for detecting errors using open intervals . 
Preferably , the previously injected 1 - bit PN / RCAL signal is 
not subtracted until after the correction ( or post - distortion is 
performed ) and prior to correlations being performed for 
detecting errors , since 1 - bit PN / RCAL signal is part of the 
signal that was amplified . 
[ 0094 ] FIG . 9 is a flow diagram illustrating a method for 
piecewise linear correction of static non - linearities , accord 
ing to some embodiments of the disclosure . In task 902 , a 
closed interval sorting block can determine in which one of 
the closed intervals a sample of the output signal yn falls 
( e . g . , determine in which closed interval the residue falls ) . In 
task 904 , the closed interval sorting block outputs a selection 
signal . In task 906 , the selection signal can select from one 
or more look up tables ( or some suitable storage ) , one or 
more correction terms . The correction terms can include a 
multiplicative correction term and an additive correction 
term . In task 908 , the one or more correction terms are used 
to correct the output signal y [ n ] to reduce the error of the 
system . The corrected output signal is yo [ n ] . 
[ 0095 ] PWL - FIR Filter Correction : Frequency / Memory 
Dependent Errors 
[ 0096 ] The previous examples are described in relation to 
static non - linearity , where the non - linearities are assumed to 
be dependent on the current sample of the signal of interest . 
In some cases , ( linear and non - linear ) errors can depend on 
leading or lagging samples . The previous examples can be 
extended to correct for such frequency / memory - dependent 
errors and Hammerstein - style terms , e . g . , x [ n – 1 ] , x° [ n – 1 ] , 
x ? [ n + 1 ] , etc . FIGS . 10A - D illustrate extending the open 
interval method being extended to estimate and correct for 

linear / non - linear frequency / memory - dependent errors . Per 
forming correlations comprises correlating the error signal 
with a lagging or leading sample of the pseudo - random 
signal for at least one of the open intervals of the error 
signal . One example update equation for the update loops for 
L different open intervals ( without model fitting ) can be as 
follows : 

| x [ k ; 1 : L ; 1 + 1 ] = x [ k ; 1 : L ; ] + 4 * 2 [ / vc [ x ] - PN [ 2 ] ) * PN [ n 
( 14 ) 

The correlations differ from the static non - linear gain cali 
bration because the error signal ( err [ n ] = ye [ n ] - PN [ n ] ) is 
being correlated with a leading or lagging sample of the 1 - bit 
PN / RCAL signal , PN [ n - k ] . The open intervals would be 
applied to a leading or lagging sample of the error signal , 
err [ n - k ] of the same lag k . In other words , the different open 
intervals can include one or more open intervals defined 
based on an amplitude of a leading or lagging sample of the 
error signal . A leading or lagging sample of 1 - bit PN / RCAL 
signal PN [ n - k ] is correlated with the error signal ( obtaining 
PN [ n - k ] * err [ n ] ) . The error signal having a lag of k ( err [ n 
k ] ) is used for sorting correlation results into different open 
intervals , and one or more update loops can be run based on 
the sorted correlation results . The one or more update loops 
can be used to update correction terms , and the correction 
terms can be applied to closed intervals of the output signal 
having a lag of k , y [ n - K ) . FIGS . 10A - B shows examples for 
dealing with error terms of lag k = 1 . 
[ 0097 ] As seen in FIGS . 10A - B , the schemes shown in 
FIGS . 6B and 7B are extended to include delay block 1060 
to delay the 1 - bit PN / RCAL signal to obtain PN [ n - 1 ] , for an 
example where lag k = 1 . The error signal , err [ n ] is correlated 
with the delayed 1 - bit PN / RCAL signal , i . e . , PN [ n - 1 ] * err 
[ n ] . The delayed error signal , err [ n - 1 ] , is provided as input 
to the threshold logic ( open - intervals block 1064 ) to gener 
ate a selection signal for sorting the correlation results . The 
examples illustrated by FIGS . 10A - B , can be extended to 
account for a lag of k . 
0098 ] Referring to FIG . 10A , the gain estimate based on 

unfiltered set of correlations PN [ n - 1 ] * err [ n ] can estimate 
the gain error associated with x [ n - 1 ] . The gain estimate 
based on correlations PN [ n - 1 ] * err [ n ] from the high - low end 
interval ( combined high end interval and low end interval ) 
can be driven to match the gain estimate based on correla 
tions from unfiltered interval to correct the gain error 
associated odd - order distortions associated with x [ n - 1 ] , 
e . g . , x° [ n - 1 ] . The gain estimate based on correlations PN [ n 
1 ] * err [ n ] from the high end interval can be driven to match 
the gain estimate based on correlations PN [ n - 1 ] * err [ n ] from 
the high end interval to correct the gain error associated 
even - order distortions associated with x [ n - 1 ] , e . g . , x - [ n - 1 ] . 
The open intervals are based on the error signal having the 
same lag , in this case , err [ n - 1 ] , which is generated by delay 
block 1062 
10099 ] Referring to FIG . 10B , the gain estimate based on 
each set of correlations PN [ n - 1 ] * err [ n ] accumulated for the 
L intervals can estimate the gain errors associated with 
xn - 1 ) . The open intervals are based on the error signal 
having the same lag , in this case , err [ n - 1 ] , which is gener 
ated by delay block 1062 . 
[ 0100 ] FIGS . 10C - D illustrates an exemplary scheme for 
piecewise linear correction of frequency / memory dependent 
errors , according to some embodiments of the disclosure . 
Generally speaking , a circuit can include a number of taps 
corresponding to different time instants ( various values of 
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differently depending whether the model requires leading 
and / or lagging samples , and the numbers of taps desired . 
[ 0104 ] Dealing with Cross - Terms 
[ 0105 ] Extracting the error information associated with 
cross terms is not trivial . Examples of Wiener - type cross 
terms are as follows : 

C * x ? [ n ] * x [ n - 1 ] 
C * x ? [ n – 1 ] * x [ n ] 

C * x ? [ n ] * x [ n - 2 ] 

C * x ? [ n - 2 ] * x [ n ] 
C * x ? [ n – 1 ] * x [ n - 2 ] 

C * x ? [ n - 2 ] * x [ n - 1 ] 
( 15 ) 

lag k , where k can be positive or negative ) . For simplicity , 
this correction circuit includes three taps ( similar to taps of 
a finite impulse response filter , but different since the logic 
is more complex than a finite impulse response filter ) . One 
tap is of zero lag k = 0 , another tap is of lag k = 1 , and yet 
another tap is of lag k = 2 . The same structure can be provided 
for other numbers of taps or taps associated with a different 
value for k . 
[ 0101 ] The circuit includes a closed interval sorting block 
1002 for determining in which one of closed intervals a 
sample of the output signal y [ n ] ( e . g . , the residue , for a 
residue producing circuit , or an uncorrected output of a 
circuit to be corrected ) falls , outputting a selection signal 
( e . g . , " SEL [ n ] ” ) . The selection signal selects one or more 
correction terms based on the closed interval . “ D ” represents 
delay blocks for delaying an input signal such as y [ n ] and 
generating a time - delayed output signal such as y [ n - 1 ] . The 
closed interval selection is piped along with the residue data 
to select a unique interval at each delay tap t of T total taps 
( T = 3 in the example shown ) . The interval selection for each 
tap ( i . e . , SEL [ n - k ] ) is used for selecting correction term ( s ) 
to be applied to the corresponding output sample going into 
the tap , i . e . , y [ n - k ] , ( the interval selection and the output 
sample are time - aligned ) . At each tap , a unique piecewise 
linear function is applied to correct the signal . For simplicity , 
only a multiplicative correction term is shown in FIG . 10C , 
but other look up tables ( or data structures ) can be included 
for selecting the additive correction term to correct the offset 
as well ( as illustrated by FIG . 10D ) . As illustrated by the 
example in FIG . 10A , the selection signal ( e . g . , " SEL [ n ] ) " ) 
and one or more delayed versions of the selection signal 
( “ SEL [ n - 1 ] , SEL [ n - 1 ] ” ) each selects one or more correc 
tion terms for producing an intermediate value , e . g . , yc1 [ n ] , 
yc2 [ n ] , and yc3 [ n ] , based on a time - aligned output sample , 
e . g . , y [ n ] , y [ n - 1 ] , y [ n - 3 ] respectively . The circuit further 
includes a combination block 1004 for combining the inter 
mediate values for linearizing the circuit ( i . e . , results from 
the correction performed by the different taps can be 
summed ) to generate the final corrected output signal yc [ n ] . 
The result is a calibration scheme which can account for 
frequency / memory dependent errors and Hammerstein - style 
terms ( no cross terms ) . The number of taps can be chosen 
depending on the degree of frequency / memory effects . 
[ 0102 ] FIG . 11 is a flow diagram illustrating a method for 
piecewise linear correction of frequency / memory dependent 
errors , according to some embodiments of the disclosure . In 
task 1102 , a closed interval sorting block 1002 determines in 
which one of the closed intervals a sample of the output 
signal ( e . g . , y [ n ] , the residue or some signal of interest ) falls , 
and the closed interval sorting block 1104 outputs a selection 
signal , and delay blocks delay the selection signal . In task 
1104 , delay blocks delay the sample of the output signal and 
the selection signal . In task 1106 , the selection signal and 
delayed versions of the selection signal each selects one or 
more correction terms ( each tap having respective unique 
correction term ( s ) ) . In task 1108 , intermediate values are 
produced , by applying the selected correction terms for 
different taps ( from task 1106 ) to the sample of the output 
signal and delayed versions of the output signal respectively . 
In task 1109 , the intermediate values are combined to 
generate the final corrected output signal . 
[ 0103 ] One skilled in the art would appreciate that the 
structure of the taps and delays would be implemented 

C * x [ n ] * x [ n - 1 ] * x [ n - 2 ] 
[ 0106 ] To extract Wiener - type cross terms ( seen in expres 
sions set ( 15 ) ) , performing correlations can include corre 
lating the error signal with a product of samples of the 
pseudo - random signal at different time instants . Correlating 
with a product of samples of the pseudo - random signal 
allows for gain deviations to be detected for cross terms . For 
instance , information associated with cross terms having 
x [ n ] and x [ n - 1 ] , e . g . , xº [ n ] x " [ n - 1 ] , can be extracted by 
correlating with PN [ n ] * PN [ n - 1 ) . Furthermore , depending 
on the cross term of interest , the different open intervals of 
the error signal can include an open interval based on the 
error signal , a leading or lagging sample of the error signal , 
or a product of samples of the error signal at different time 
instants . For instance , the open interval for sorting correla 
tions of PN [ n ] * PN [ n - 1 ] * err?n ] can be defined based on 
err [ n ] * err [ n - 1 ] . Depending on the higher order term or cross 
term of interest , the correction may be applied to different 
closed intervals of a sample of the output signal , a leading 
or lagging sample of the output signal , or a product of 
samples of the output signal at different time instants . For 
instance , the closed interval can be defined based on yn 
* y [ n - 1 ] . 
[ 0107 ] Broadly speaking , to extract error for cross terms , 
the error signal err [ n ] can be correlated with a product of two 
or more samples of the 1 - bit PN / RCAL signal at different 
time instants ( e . g . , to estimate second or higher order terms ) . 
To better understand the error detection and calibration 
schemes mentioned above , FIGS . 12 - 17 illustrate various 
schemes extending the open interval method to estimate and 
correct for cross terms . 
[ 0108 ] Note that the examples dealing with cross terms 
can be used with model fitting or without model fitting . The 
example shown in FIG . 12A - B and 13 has model fitting 
( uses unfiltered , low end interval , and high end interval ) , 
whereas the example shown in FIG . 14A - C and 15 does not 
require model fitting ( e . g . , uses a number of intervals ) . The 
correlations can be binned based on the error signal ( as in 
FIG . 12A ) , or a product of samples of the error signal at 
different time instants ( as in FIG . 14A ) , depending on the 
implementation . The correction terms can be applied to an 
output sample , or a product of the output samples at different 
time instants . An exemplary update equation ( 16 ) for the 
update loops corresponding to the different open intervals 
can be as follows : 

x [ k ; l : L ; 1 + 1 ] = a [ k ; l : L ; " ] + u2 [ / vc [ - ] - PN [ - ] ) * ( PN [ - ] 
* PN [ n - k ] ) ] ( 16 ) 

[ 0109 ] FIGS . 12A - B and 13 illustrate an exemplary 
scheme for detecting errors using open intervals and per 
forming piecewise linear correction , according to some 
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embodiments of the disclosure . Specifically , this example 
applied the model fitting scheme for detecting errors , where 
the open intervals include an unfiltered interval , a low end 
interval , and a high end interval ( extending the examples 
seen in FIGS . 6B and 10A ) . The errors which can be 
detected from the exemplary scheme in FIG . 12A are 
associated with cross terms having different lags , such as o 
and 1 , x [ n ] * x [ n - 1 ] , x° [ n ] * x [ n - 1 ] , x [ n ] * x° [ n - 1 ] . 
[ 0110 ] Referring specifically to FIG . 12A , the error signal 
err [ n ] = yc [ n ] - PN [ n ] is correlated with PN [ n ] * PN [ n - 1 ] . By 
correlating the error signal err [ n ] with PN [ n ] * PN [ n - 1 ] for 
the unfiltered interval , a second order “ base ” error term for 
x [ n ] x [ n - 1 ] can be estimated . Other higher order terms 
involving both x [ n ] and x [ n - 1 ] , e . g . , Xº [ n ] x [ n - 1 ] , x [ n ] x - [ n 
1 ] , can be derived using the end intervals and this second 
order “ base ” term . 
[ 0111 ] For x [ n ] * x [ n - 1 ] cross term ( second - order ) , 

samples of the error signal err [ n ] = ye [ n ] - PN [ n ] can be 
correlated with PN [ n ] * PN [ n - 1 ] . Correlation results are 
collected for all samples of err [ n ] ( i . e . , unfiltered interval ) . 

[ 0112 ] For x [ n ] * x ? [ n - 1 ] cross term ( third - order ) , the error 
signal err [ n ] = yc [ n ] - PN [ n ] is correlated with PN [ n ] * PN 
[ n - 1 ] , and the correlation results can be filtered ( i . e . , 
sorted into open intervals ) based on the error signal 
err [ n - 1 ] . 

[ 0113 ] For x ? [ n ] * x [ n - 1 ] cross term ( third - order ) , the error 
signal err [ n ] = ye [ n ] - PN [ n ] is correlated with PN [ n ] * PN 
( n - 1 ) , and the error signal or the correlation results can be 
filtered ( i . e . , sorted into open intervals ) based on the 
amplitude of the error signal err [ n ] . 

[ 0114 ] FIG . 12B illustrate a scheme for correcting the 
output signal based on the model fitting calibration scheme , 
according to some embodiments of the disclosure . The 
scheme illustrated can correct for a variety of terms , includ 
ing both non - cross terms ( determined using the scheme 
illustrated by FIGS . 6B and 10A ) and cross - terms ( deter 
mined using the scheme illustrated by FIG . 12A ) . To per 
form a correction , a sample of the uncorrected output signal 
y [ n ] can be delayed as needed to get y [ n - 1 ] , yn - 2 ) , etc . 
Using multipliers , the higher order terms , e . g . , second - and 
third - order products of the output signal and any delayed 
samples , can be generated . “ Like ” terms such as y ? [ n ] and 
y [ n - 1 ] are “ non - cross term ” , i . e . , Hammerstein style terms . 
“ Cross terms ” such as y [ n ] * y [ n - 1 ] or y ’ [ n – 1 ] * y [ n - 2 ] are 
Wiener style cross terms . Each term is processed by a 
correction filter weight “ h ” ( which could also include 
weights for linear terms which are not shown ) . The correc 
tion filter weight “ h ” can be computed by the model fitting 
detection scheme illustrated by FIGS . 6B , 10A , and 12A . 
Sum all of these results would yield the corrected signal 
yc [ n ] correcting uncorrected signal y [ n ] . An exemplary 
equation for such correction scheme , with two taps , is , 
yo [ n ] = y [ n ] + a0 * y ? [ n ] + al * y ? [ n - 1 ] + 60 * yº [ n ] + b1 * y > [ n - 1 ] + 
c0 * y [ n ] * y [ n - 1 ] + d0 * y + [ n ] * y [ n - 1 ] + d1 * y [ n ] * y + [ n - 1 ] , 
where a0 , b0 , b1 , co , d0 , dl are the correction filter weights 
of filter “ h ” . 
[ 0115 ] FIG . 13 is a flow diagram illustrating a method for 
piecewise linear correction of non - idealities , according to 
some embodiments of the disclosure . The method corre 
sponds to the scheme illustrated in FIG . 12A - B . In task 
1302 , using delay blocks and multipliers , non - cross terms 
( e . g . , y? [ n ] and y ' [ n - 1 ] ) and cross terms ( e . g . , y [ n ] * y [ n - 1 ] 
or y? [ n - 1 ] * y [ n - 2 ] ) are generated . In task 1304 , a filter , e . g . , 
“ h ” , computed using the model fitting detection scheme by 

FIGS . 6B , 10A , and 12A is applied to various terms to 
produce intermediate values . In task 1306 , the intermediate 
terms are combined , e . g . , summed , to generate the final 
corrected output yc [ n ] . 
[ 0116 ] FIGS . 14A - C and 15 illustrate another exemplary 
scheme for detecting errors using open intervals and per 
forming piecewise linear correction , according to some 
embodiments of the disclosure . Specifically , FIGS . 14A - C 
and 15 illustrate detecting errors based on open intervals , 
where the errors are associated with cross terms having 
different lags , such as 0 and 1 , x [ n ] * x [ n - 1 ] , x° [ n ] * x [ n - 1 ] , 
x [ n ] * x - [ n - 1 ) . This scheme utilizes a number ( L ) of open 
intervals , and does not have to assume a particular model 
( extending the example seen in FIG . 7B and 10B ) . 
[ 0117 ] Referring specifically to FIG . 14A , the error signal 
err [ n ] = ye [ n ] - PN [ n ] is correlated with PN [ n ] * PN [ n - 1 ) , and 
the correlation results can be filtered ( i . e . , sorted into open 
intervals ) based on the product of the error signal at two 
different time instants err [ n ] * err [ n - 1 ] . Correction can be 
applied to samples of the output signal at different time 
instants . In this example , the correction would be applied to 
y [ n ] * yn - 1 ] directly , based on closed intervals defined for 
y [ n ] * y [ n - 1 ] , as seen in FIG . 14B - C . 
[ 0118 ] FIGS . 14B - C illustrate exemplary schemes for 
piecewise linear correction of cross terms , according to 
some embodiments of the disclosure . Specifically , FIG . 
14A - B shows an example of applying correction to y [ n ] * y 
[ n - 1 ] , using a three - tap approach , where the closed intervals 
are based on y [ n ] * y [ n - 1 ] ( and delayed versions thereof ) . 
The amplitude of a product of the output signal at different 
time instants , e . g . , y [ n ] * y [ n - 1 ] ( and delayed versions 
thereof ) as seen in this example , would be used to select a 
closed interval for each tap ( e . g . , by means of SEL [ n ] , 
SEL [ n - 1 ] , and SEL [ n - 2 ] , etc . ) . The closed interval selected 
for each tap determines the corresponding correction term ( s ) 
to be applied for the tap . For each tap , correction term ( s ) 
would be applied to y [ n ] * y [ n - 1 ] ( and delayed versions 
thereof ) . To avoid discontinuities as the correction terms 
changes across closed intervals of y [ n ] * y?n - 1 ] , a multipli 
cative gain term and an additive offset term can be applied 
to y [ n ] * y [ n - 1 ] to provide a continuous function for a 
particular tap , as illustrated by FIG . 14C . Intermediate 
values are produced for each tap , yc _ xterm1 [ n ] , yc _ xterm2 
[ n ] , yc _ xterm3 [ n ] , etc . The intermediate values are summed 
to generate the final corrected output yc _ xterm [ n ] . 
[ 0119 ] FIG . 15 is a flow diagram illustrating a method for 
piecewise linear correction of cross - terms , according to 
some embodiments of the disclosure . The method corre 
sponds to the scheme illustrated in FIG . 14B - C . In task 
1502 , a closed interval sorting block can determine in which 
one of the closed intervals a product of the output signal at 
different time instants falls , and output a selection signal , 
i . e . , based on the amplitude or magnitude of the product . In 
task 1504 , delay blocks can be used to delay the selection 
signal and the product to obtain delayed versions of said 
signal such as SEL [ n - 2 ) , SEL [ n - 1 ] , SEL [ n + 1 ] , SEL [ n + 2 ) , 
etc . , and y [ n - 1 ] * y [ n - 2 ] , y [ n – 2 ] * y [ n - 3 ) , etc . In task 1506 , 
the selection signal and delayed versions of the selection 
signal each selects a multiplicative correction term and an 
offset correction term ( corresponding to each " tap ” seen in 
FIG . 14B ) . In task 1508 , the product , or delayed versions of 
the product is multiplied by the multiplicative correction 
term ( selected for that tap ) , and the offset correction term 
( selected for that tap ) is added to the result of the multipli 
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cation . Intermediate values ( e . g . , yc _ xtermi [ n ] , ycxterm2 
[ n ] , yc _ xterm3 [ n ] seen in FIG . 14B ) are produced by the 
taps . In task 1510 , the intermediate values are combined to 
obtain the final corrected output signal ( e . g . , yc _ xterm [ n ] 
seen in FIG . 14B ) . 
[ 0120 ] Alternative Approach to Dealing with Cross Terms 
[ 0121 ] In some embodiments , an approach different from 
the one illustrated in FIG . 14A can be used to deal with cross 
terms . Consider the following static non - linearity , the trans 
fer function can be described as : 

v [ ] = x [ n ] * ( a + bx [ ] ) . 
[ 0122 ] In equation ( 17 ) , the gain y [ n ] / x [ n ] is thus some 
constant a plus some dependency on the magnitude of the 
sample ßx ? [ n ] . The gain of the system varies with the current 
magnitude of the input to the system . For a cross - term 
( ignoring other terms ) , the transfer function can be described 
as : 

y [ n ] = x [ n ] * ( Q + yx + [ n – 1 ] ) ( 18 ) 
[ 0123 ] In equation ( 18 ) , it can be seen that the gain of the 
sample at time n depends on some constant a plus some 
dependency on the magnitude of the sample at time n - 1 , i . e . , 
yx - [ n - 1 ] . The gain of the system at time n varies with the 
magnitude of the input to the system at other times , e . g . , n - 1 , 
n - 2 , etc . The gain errors would come from lagging or 
leading samples . 
[ 0124 ] For detection of the x [ n ] * Bx ? [ n ] term , it is possible 
to correlate to PN [ n ] while binning according to err [ n ] with 
open - intervals . The x [ n ] * yx - [ n - 1 ] can be handled similarly , 
with the difference that the intervals are applied according to 
the amplitude or magnitude of the lagging sample err [ n - 1 ] . 
More broadly , depending on the cross - term , the open inter 
vals can be applied to the amplitude or magnitude of a 
leading sample or a lagging sample , e . g . , err [ n - k ] , lerr [ n 
k ] ] , k can be positive or negative . 
[ 0125 ] In one example , for C * x ? [ n ] * x [ n – 1 ] , the intervals 
for detection can be applied to err [ n ] . In another example 
C * x ? [ n - 1 ] * x [ n ] , the intervals for detection would be applied 
to err [ n - 1 ] . The different open intervals of the signal can 
include an open interval based on an amplitude of a leading 
or lagging sample of the error signal . The open intervals 
would be applied to a leading or lagging sample of the error 
signal , which is believed to be the data sample modulating 
the gain , or affecting the gain . In some embodiments , the 
correlation of the error signal for dealing with cross terms 
can be correlated with PN [ n ] or PN [ n - 1 ] ( or some other 
leading / lagging sample of the 1 - bit PN / RCAL signal ) . 
[ 0126 ] This approach greatly simplifies the scheme deal 
ing with cross terms , since the intervals are not defined 
based on a product of samples ( which has a larger range ) , but 
just a leading or lagging sample of the error signal ( which 
has a smaller range ) . However , this simplified scheme works 
best when neighboring samples , e . g . , x [ n ] and x [ n - 1 ] , are 
uncorrelated with each other otherwise , non - cross terms 
and cross - terms of the same order would compete with each 
other ) . This requirement can be a strong restriction on the 
calibration scheme , but this assumption can be made if the 
circuit has a large dither injected to it to randomize x [ n ] or 
y [ n ] , thereby making samples of x [ n ] or y [ n ] at different 
time instants uncorrelated with each other . 
( 0127 ] Correcting for non - linearities in a piecewise fash 
ion based on this alternative scheme may need to avoid 
discontinuities between intervals using a different approach , 
as illustrated by FIG . 16 . For correction of the cross terms , 

e . g . , x [ n ] * x [ n – 1 ] term , offsets may be computed to avoid 
jump discontinuities in the transfer function . For the cross 
term x [ n ] * x ? [ n - 1 ] , the correlation results can be filtered 
( i . e . , sorted into open intervals ) based on the amplitude of 
the error signal err [ n - 1 ] . First approach might be to scale 
y [ n ] by some multiplicative correction term that is selected 
by the output signal y [ n - 1 ) , similar to what is performed in 
the example illustrated by FIG . 8 , where the multiplicative 
correction term is selected by selected by amplitude of y [ n ] . 
However due to the unique nature of cross - terms ( described 
earlier ) , this approach will introduce jump discontinuities as 
y [ n - 1 ] is swept across different intervals . Consider y [ n ] 
resting at some DC level . Initially y [ n - 1 ] is at 0 and y [ n ] is 
scaled by C1 ( e . g . , C1 = 1 ) . Now y [ n – 1 ] increases past 
interval 1 trip point , causing y [ n ] to be scaled by C2 ( e . g . , 
C2 = 1 . 2 ) . An offset correction term may be needed to avoid 
this discontinuity . Offset of ( C1 - C2 ) * y [ n ] would not work 
because C2 * y [ n ] + ( C1 - C2 ) * y [ n ] = C1 * y [ n ] , hence such off 
set would have no effect . Solution is to scale y [ n ] by 
C1 * y [ n – 1 ] instead of C1 directly . The resulting correction 
equation to correct for the y [ n ] * y ?n - 1 ] would be y [ n ] * 
( C1 * y [ n - 1 ] + OS1 ) , where C1 is a multiplicative ( gain ) cor 
rection term and OS1 is an offset correction term selected 
when y?n - 1 ] is in interval 1 of L . When y?n - 1 ] is in a 
different interval , a different multiplicative ( gain ) correction 
term and a different offset correction term would be selected . 
Phrased differently , correction terms would be selected 
based on y [ n – 1 ] for x [ n ] * x - [ n - 1 ] , or more generally , based 
on the signal which is modulating the gain for the particular 
cross term . Jump discontinuities are eliminated since ( C1 * y 
[ n - 1 ] + OS1 ) is now a continuous piecewise linear function 
that is multiplying the continuous y [ n ] . 
[ 0128 ] FIG . 16 illustrates an exemplary scheme for piece 
wise linear correction of cross - term non - linearities , accord 
ing to some embodiments of the disclosure . For the exem 
plary cross - term x [ n ] * x ? [ n - 1 ) , the value of y [ n - 1 ] is 
multiplied by a multiplicative / gain correction term selected 
by a delayed selection signal SEL [ n - 1 ] . SEL [ n ] is generated 
from y [ n ] ; SEL [ n – 1 ] would correspond to a selection signal 
generated based on the value of yn - 1 ) . The corresponding 
multiplicative / gain correction term is selected from the 
values in xt _ pwl [ ] . The result of the multiplication , shown as 
“ y [ n - 1 ] * xt _ pwl _ gain [ 1 ] ” gets an additive offset correction 
term , shown as “ xt _ pwl _ offset [ 1 ] ” . The corresponding addi 
tive offset correction term is selected also by the delayed 
selection signal SEL [ n - 1 ) . The result from the addition is 
therefore " y [ n - 1 ] * xt _ pwl _ gain [ 1 ] + xt _ pwl _ offset [ 1 ] ” . This 
result is multiplied by y [ n ] , to complete the correction . The 
logic shown thus implements the correction equation to 
correct for the x [ n ] * x - [ n - 1 ] cross term , i . e . , y [ n ] * ( C * y [ n 
1 ] + OS ) , where C is a multiplicative ( gain ) correction term 
and OS is an offset correction term selected based on the 
interval in which y [ n - 1 ] falls . 
[ 0129 ] FIG . 17 is a flow diagram illustrating a method for 
piecewise linear correction of cross - term non - linearities , 
according to some embodiments of the disclosure . The 
method corresponds to the scheme illustrated in FIG . 16 . In 
task 1702 , a closed interval sorting block can determine in 
which one of the closed intervals a lagging or leading sample 
of the output signal falls . In task 1704 , the closed interval 
sorting block can generate a selection signal , i . e . , based on 
the amplitude or magnitude of the lagging or leading sample 
of the output signal . In some embodiments , tasks 1702 and 
1704 can be implemented by applying a closed interval 
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sorting block on the output signal , e . g . , y [ n ] , to generate a 
selection signal SEL [ n ] . Delay blocks can be used to delay 
the selection signal to obtain values such as SEL [ n - 2 ] , 
SEL [ n - 1 ] , SEL [ n + 1 ] , SEL [ n + 2 ) , etc . In task 1706 , the 
selection signal selects a multiplicative correction term and 
an offset correction term . In task 1708 , the lagging or leading 
sample of the output signal is multiplied by the multiplica 
tive correction term . In task 1710 , the offset correction term 
is added to the result of the multiplication . In task 1712 , the 
result from task 1710 is multiplied by the current sample of 
the output signal to complete the correction of the output 
signal . While this example describes applying a correction to 
the output signal y [ n ] of lag = 0 by starting with y [ n - 1 ] , this 
scheme can also be applied to correcting the output signal 
having a different lag k , where SEL [ n - 1 - k ] would be used 
to select the correction terms , and the correction terms 
would be first applied to y [ n - 1 - k ] . Finally the result would 
be multiplied with y [ n - k ] . 
[ 0130 ] Variations and Implementations 
[ 0131 ] Many examples described herein mentions sorting 
correlation results into different open intervals ( e . g . , FIG . 5 ) 
based on the amplitude / magnitude of the error signal that 
was used to generate the correlation results , and using the 
correlation results for one or more update loops . Since the 
open intervals overlap each other , this means that the sample 
only needs to be correlated ( by digital hardware circuitry ) 
with the pseudo - random signal once ( i . e . , requiring only one 
correlator ) , rather than multiple times . One skilled in the art 
would appreciate that it is possible to sort the error signal 
based on its amplitude , and perform separate correlations of 
the error signals with the 1 - bit PN / RCAL signal , and then 
accumulate correlation results . In this implementation , a 
correlator is needed for each open interval . 
[ 0132 ] Update loops or correction loops described herein 
can run in parallel . 
[ 0133 ] Referring back to the example illustrated in FIG . 2 , 
methods , systems , circuitry described herein can be used to 
estimate and calibrate various gain errors of the amplifier in 
a residue producing stage within a pipeline ADC . The 
calibration scheme , applying a piecewise detection scheme , 
can sort correlation results of an error signal of the analog 
to - digital converter ( e . g . , the signal where the 1 - bit 
PN / RCAL signal is removed from the residue ) with a 
pseudo - random signal into overlapping open intervals based 
on amplitude of the error signal ( task 1802 of FIG . 18 ) and 
estimates correction terms corresponding to the overlapping 
open intervals based on correlations results in each overlap - 
ping open interval , e . g . , accumulated separately for each 
overlapping open intervals ( task 1804 of FIG . 18 ) . One or 
more update loops can run based on the separately accumu - 
lated correlations , binned based on the open intervals . 
[ 0134 ] Although many examples describes a piecewise 
linear correction scheme being applied to the different open 
intervals , it is understood by one skilled in the art that other 
methods can be used for correcting the system . For instance , 
piecewise - splines can be used , or some other model can be 
applied to correct the signal based on the different informa 
tion inferred separately from data collected in the open 
intervals . 
[ 0135 ] It is understood by one skilled in the art that the 
schemes described herein estimates errors of the model , and 
based on the estimated errors , correction can be made using 
correction terms to compensate for non - linearities or other 
non - ideal characteristics of the circuit . Correction terms are 

used broadly herein to encompass errors , i . e . , various terms 
of the model as well as the actual correction terms ( e . g . , gain 
correction multiplier , offset , value in a look up table ) used 
for distorting the signal to compensate for the non - linearities 
or other non - ideal characteristics . 
10136 ] . The schemes described herein are generally stable . 
In some cases , a large - dither ( e . g . , a multibit random signal ) 
may be injected into the system to ensure that a full - scale 
signal is present and that the samples of the output would be 
roughly uncorrelated in time . The large - dither can improve 
the convergence speed of the schemes . 
[ 0137 ] In some implementations , a known signal is used in 
place of the pseudo - random signal ( i . e . , in place of the 1 - bit 
PN / RCAL signal ) . The known signal may be a special signal 
that can exercise the circuit or system to allow for errors or 
non - idealities to be measured . 
10138 ] While many of the examples describe how to 
calibrate a stage in a pipeline ADC , it is envisioned by the 
disclosure that the teachings can also be applied to line 
calibrate other non - ideal systems . For instance , the teachings 
can be used for calibrating an input buffer to a circuit , such 
as an ADC . A random signal ( e . g . , an 1 - bit pseudo - random 
ized sequence ) that is uncorrelated with an input signal can 
be injected into the buffer , and subsequently used for per 
forming correlations with another signal of the circuit ( e . g . , 
an output signal or other suitable signal of the input buffer 
and / or the analog - to - digital converter ) where the random 
signal is removed to determine non - idealities of the input 
buffer . The injected random signal can toggle on a same 
clock as the ADC so the two signals are synchronized to 
facilitate correlations and detection . 
[ 0139 ] The examples described herein are merely illustra 
tive examples of linearization and calibration in general . It 
is envisioned by the disclosure that the features described 
herein can also be applied to equalization in general for 
achieving a desired response . Specifically , correlations 
being performed in a piecewise fashion for different open 
intervals can be used for update equations that drive cor 
rection terms to achieve the desired response . 
[ 0140 ] The present disclosure encompasses apparatuses 
which can perform the various methods described herein , 
including methods illustrated by FIGS . 4 , 9 , 11 , 13 , 14 , 15 , 
17 and 18 . Such apparatuses can include parts shown in 
FIGS . 2 , 5 , 6B , 7B , 8 , 10A - D , 12A - B , 14A - C , and 16 . Parts 
of various apparatuses for calibration can include electronic 
circuitry to perform the functions described herein . In some 
cases , one or more parts of the apparatus can be provided by 
a processor specially configured for carrying out the func 
tions described herein . For instance , the processor may 
include one or more application specific components , or 
may include programmable logic gates which are configured 
to carry out the functions describe herein . The circuitry can 
operate in analog domain , digital domain , or in a mixed 
signal domain . In some instances , the processor may be 
configured to carrying out the functions described herein by 
executing one or more instructions stored on a non - transi 
tory computer medium . 
[ 0141 ] Note that the activities discussed above with ref 
erence to the FIGURES are applicable to any integrated 
circuits that involve a residue producing stage or circuit , or 
more generally , to circuits which may have linear errors , 
memory / frequency dependent errors , static nonlinearity 
errors , Hammerstein - style non - linearity errors , and Wiener 
style non - linearity errors ( cross - terms ) . In certain contexts , 
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the features discussed herein related to calibration can be 
applicable to applications where performance of the circuit 
is important . Examples of applications include medical 
systems , scientific instrumentation , wireless and wired com 
munications systems , radar , industrial process control , audio 
and video equipment , instrumentation , and other systems 
which uses ADCs . The level of performance enabled by 
calibration schemes disclosed herein can be particularly 
beneficial to products and systems in demanding markets 
such as high speed communications , medical imaging , syn 
thetic aperture radar , digital beam - forming communication 
systems , broadband communication systems , high perfor 
mance imaging , and advanced test / measurement systems 
( oscilloscopes ) . 

[ 0142 ] In the discussions of the embodiments above , the 
parts and components can readily be replaced , substituted , or 
otherwise modified in order to accommodate particular 
circuitry needs . Moreover , it should be noted that the use of 
complementary electronic devices , hardware , software , etc . 
offer an equally viable option for implementing the teach 
ings of the present disclosure . 
[ 0143 ] In one example embodiment , any number of com 
ponents of the FIGURES may be implemented on a board of 
an associated electronic device . The board can be a general 
circuit board that can hold various components of the 
internal electronic system of the electronic device and , 
further , provide connectors for other peripherals . More spe 
cifically , the board can provide the electrical connections by 
which the other components of the system can communicate 
electrically . Any suitable processors ( inclusive of digital 
signal processors , microprocessors , supporting chipsets , 
etc . ) , computer - readable non - transitory memory elements , 
etc . can be suitably coupled to the board based on particular 
configuration needs , processing demands , computer designs , 
etc . Other components such as external storage , additional 
sensors , controllers for audio / video display , and peripheral 
devices may be attached to the board as plug - in cards , via 
cables , or integrated into the board itself . In various embodi 
ments , the functionalities described herein may be imple 
mented in emulation form as software or firmware running 
within one or more configurable ( e . g . , programmable ) ele 
ments arranged in a structure that supports these functions . 
The software or firmware providing the emulation may be 
provided on non - transitory computer - readable storage 
medium comprising instructions to allow a processor to 
carry out those functionalities . 
10144 ] In another example embodiment , the components 
of the FIGURES may be implemented as stand - alone mod 
ules ( e . g . , a device with associated components and circuitry 
configured to perform a specific application or function ) or 
implemented as plug - in modules into application specific 
hardware of electronic devices . Note that particular embodi 
ments of the present disclosure may be readily included in 
a system on chip ( SOC ) package , either in part , or in whole . 
An SOC represents an IC that integrates components of a 
computer or other electronic system into a single chip . It 
may contain digital , analog , mixed - signal , and often radio 
frequency functions : all of which may be provided on a 
single chip substrate . Other embodiments may include a 
multi - chip - module ( MCM ) , with a plurality of separate ICs 
located within a single electronic package and configured to 
interact closely with each other through the electronic pack 
age . In various other embodiments , the error calibration 
functionalities may be implemented in one or more silicon 
cores in Application Specific Integrated Circuits ( ASICs ) , 
Field Programmable Gate Arrays ( FPGAs ) , and other semi 
conductor chips . 

[ 0145 ] It is also imperative to note that all of the specifi 
cations , dimensions , and relationships outlined herein ( e . g . , 
the number of processors , logic operations , etc . ) have only 
been offered for purposes of example and teaching only . 
Such information may be varied considerably without 
departing from the spirit of the present disclosure , or the 
scope of the appended claims . The specifications apply only 
to one non - limiting example and , accordingly , they should 
be construed as such . In the foregoing description , example 
embodiments have been described with reference to particu 
lar processor and / or component arrangements . Various 
modifications and changes may be made to such embodi 
ments without departing from the scope of the appended 
claims . The description and drawings are , accordingly , to be 
regarded in an illustrative rather than in a restrictive sense . 
[ 0146 ] Note that with the numerous examples provided 
herein , interaction may be described in terms of two , three , 
four , or more electrical components or parts . However , this 
has been done for purposes of clarity and example only . It 
should be appreciated that the system can be consolidated in 
any suitable manner . Along similar design alternatives , any 
of the illustrated components , modules , blocks , and ele 
ments of the FIGURES may be combined in various pos 
sible configurations , all of which are clearly within the broad 
scope of this Specification . In certain cases , it may be easier 
to describe one or more of the functionalities of a given set 
of flows by only referencing a limited number of electrical 
elements . It should be appreciated that the electrical circuits 
of the FIGURES and its teachings are readily scalable and 
can accommodate a large number of components , as well as 
more complicated / sophisticated arrangements and configu 
rations . Accordingly , the examples provided should not limit 
the scope or inhibit the broad teachings of the electrical 
circuits as potentially applied to a myriad of other architec 
tures . 
[ 0147 ] Note that in this Specification , references to vari 
ous features ( e . g . , elements , structures , modules , compo 
nents , steps , operations , characteristics , etc . ) included in 
" one embodiment ” , “ example embodiment ” , “ an embodi 
ment ” , “ another embodiment ” , “ some embodiments ” , “ vari 
ous embodiments ” , “ other embodiments ” , “ alternative 
embodiment ” , and the like are intended to mean that any 
such features are included in one or more embodiments of 
the present disclosure , but may or may not necessarily be 
combined in the same embodiments . It is also important to 
note that the functions configuring a time - interleaved ADC , 
illustrate only some of the possible functions that may be 
executed by , or within , systems illustrated in the FIGURES . 
Some of these operations may be deleted or removed where 
appropriate , or these operations may be modified or changed 
considerably without departing from the scope of the present 
disclosure . In addition , the timing of these operations may 
be altered considerably . The preceding operational flows 
have been offered for purposes of example and discussion . 
Substantial flexibility is provided by embodiments described 
herein in that any suitable arrangements , chronologies , con 
figurations , and timing mechanisms may be provided with 
out departing from the teachings of the present disclosure . 
Numerous other changes , substitutions , variations , altera 
tions , and modifications may be ascertained to one skilled in 
the art and it is intended that the present disclosure encom 
pass all such changes , substitutions , variations , alterations , 
and modifications as falling within the scope of the 
appended claims . Note that all optional features of the 
apparatus described above may also be implemented with 
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respect to the method or process described herein and 
specifics in the examples may be used anywhere in one or 
more embodiments . 
What is claimed is : 
1 . A method for determining correction terms of a system , 

the method comprising : 
removing a pseudo - random signal injected in the system 

to obtain an error signal ; 
performing correlations of the error signal with the 
pseudo - random signal ; and 

updating correction terms based on the correlations accu 
mulated based on different open intervals of the error 
signal . 

2 . The method of claim 1 , wherein the pseudo - random 
signal is a 1 - bit pseudo - random signal . 

3 . The method of claim 1 , wherein the different overlap 
ping intervals comprises : 

an interval including all samples , and an interval includ 
ing samples whose absolute value is above a first 
predetermined threshold value . 

4 . The method of claim 1 , wherein updating the correction 
terms based on the correlations comprises : 

updating the correction terms based on ( 1 ) correlations 
associated with an interval including all samples , and 
( 2 ) correlations associated with an interval including 
samples whose absolute value is above a first prede 
termined threshold value . 

5 . The method of claim 1 , wherein the different overlap 
ping intervals comprise : an interval including all samples , an 
interval including samples whose values are above a first 
predetermined threshold value , and an interval including 
samples whose values are below a second predetermined 
threshold value . 

6 . The method of claim 1 , wherein updating the correction 
terms based on the correlations comprises : 

updating the correction terms based on ( 1 ) correlations 
associated with an interval including samples whose 
values are above a first predetermined threshold value , 
and ( 2 ) correlations associated with an interval includ 
ing samples whose values are below a second prede 
termined threshold value . 

7 . The method of claim 1 , wherein the different open 
intervals comprises : an interval including all samples , and a 
plurality of intervals associated with different predetermined 
threshold values , each including samples whose absolute 
values are above a predetermined threshold value corre 
sponding to a particular one of the intervals . 

8 . The method of claim 1 , wherein the two or more ones 
of different open intervals overlap each other . 

9 . The method of claim 1 , wherein updating the correction 
terms based on the correlations comprises : 

estimating piecewise linear correction terms based on the 
different open intervals . 

10 . The method of claim 1 , wherein the correction terms 
comprises a gain coefficient and an offset for each open 
interval . 

11 . The method of claim 1 , wherein performing correla 
tions comprises : 

correlating the error signal with a lagging or leading 
sample of the pseudo - random signal . 

12 . The method of claim 1 , wherein performing correla 
tions comprises : 

correlating the error signal with a product of samples of 
the pseudo - random signal at a different time instants . 

13 . The method of claim 1 , wherein the different open 
intervals of the error signal comprises an open interval based 
on an amplitude of a leading or lagging sample of the error 
signal . 

14 . The method of claim 1 , wherein the different open 
intervals of the error signal comprises an open interval based 
on a product of samples of the error signal at different time 
instants . 

15 . A system for correcting a circuit generating an output 
signal , the system comprising : 

a circuit part to remove an injected signal , wherein the 
injected signal is uncorrelated with a signal being 
processed by the circuit to generate an error signal ; 

threshold logic to determine whether the error signal falls 
with one or more open intervals ; 

a correlation block to correlate the error signal with the 
injected signal ; and 

one or more update loops for processing correlation 
results within one or more open intervals to generate 
correction terms for correcting the circuit . 

16 . The system of claim 14 , wherein : 
the circuit is a residue producing circuit in an analog - to 

digital converter ; 
the injected signal is injected at an input of an amplifier 

of the residue producing circuit ; and 
the correction terms are associated with gain errors of the 

amplifier . 
17 . The system of claim 14 , further comprising : 
a digital - to - analog converter for generating the injected 

signal based on a one - bit pseudo random number 
sequence . 

18 . The system of claim 14 , further comprising : 
a closed interval sorting block for determining in which 

one of closed intervals a sample of the output signal 
falls and outputting a selection signal to select one or 
more correction terms for linearizing the circuit . 

19 . The system of claim 14 , further comprising : 
a closed interval sorting block for determining in which 
one of closed intervals a sample of the output signal 
falls , outputting a selection signal , wherein the selec 
tion signal and one or more delayed versions of the 
selection signal each selects one or more correction 
terms for producing an intermediate value ; and 

a combination block for combining the intermediate val 
ues for linearizing the circuit . 

20 . An apparatus for determining correction terms of an 
analog - to - digital converter , the apparatus comprising 
means for sorting correlation results of an error signal of 

the analog - to - digital converter with a pseudo - random 
signal into overlapping open intervals based on ampli 
tude of the error signal ; and 

means for estimating correction terms corresponding to 
the overlapping open intervals based on correlations 
results in each overlapping open interval . 

* * * 


