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(57) ABSTRACT 
A processor of an aspect includes a plurality of packed data 
registers, and a decode unit to decode a no-locality hint 
vector memory access instruction. The no-locality hint vec 
tor memory access instruction to indicate a packed data 
register of the plurality of packed data registers that is to 
have a source packed memory indices. The source packed 
memory indices to have a plurality of memory indices. The 
no-locality hint vector memory access instruction is to 
provide a no-locality hint to the processor for data elements 
that are to be accessed with the memory indices. The 
processor also includes an execution unit coupled with the 
decode unit and the plurality of packed data registers. The 
execution unit, in response to the no-locality hint vector 
memory access instruction, is to access the data elements at 
memory locations that are based on the memory indices. 
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NO-LOCALITY HINT VECTOR MEMORY 
ACCESS PROCESSORS, METHODS, 
SYSTEMS, AND INSTRUCTIONS 

BACKGROUND 

Technical Field 
Embodiments relate to processors. In particular, embodi 

ments relate to processors to perform vector memory access 
instructions such as gather and/or scatter instructions. 

Background Information 
Processors are commonly operable to perform instruc 

tions to access memory. For example, processors may 
execute load instructions to load or read data from memory 
and/or store instructions to store or write data to memory. 

Certain processors are operable to execute vector gather 
instructions. These vector gather instructions are also 
referred to simply as gather instructions. Intel(R) Advanced 
Vector Extensions Programming Reference, document ref 
erence number 3 19433-011, published June 2011, describes 
several gather instructions. Examples include VGATH 
ERDPD, VGATHERQPD, VGATHERDPS, VGATHER 
QPS, VPGATHERDD, VPGATHERQD, VPGATHERDQ, 
and VPGATHERQQ. These gather instructions may cause 
the processor to gather, read, or load multiple potentially 
non-contiguous data elements from locations in memory 
indicated by multiple corresponding memory indices. The 
gathered data elements may be stored in a destination vector 
register of the processor. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The invention may best be understood by referring to the 
following description and accompanying drawings that are 
used to illustrate embodiments. In the drawings: 

FIG. 1 is a block diagram of an embodiment of a system 
Suitable for implementing embodiments that includes a 
processor having a cache hierarchy and a memory. 

FIG. 2 is a block flow diagram of an embodiment of a 
method of processing an embodiment of a no-locality hint 
vector memory access instruction. 

FIG. 3 is a block diagram of an embodiment of a 
processor that is operable to perform an embodiment of a 
no-locality hint gather instruction. 

FIG. 4 is a block diagram of an embodiment of a gather 
operation that may be performed in response to an embodi 
ment of a no-locality hint gather instruction. 

FIG. 5 is a block diagram of an embodiment of a masked 
gather operation that may be performed in response to an 
embodiment of a no-locality hint masked gather instruction. 

FIG. 6 is a block diagram of an embodiment of a 
processor that is operable to perform an embodiment of a 
no-locality hint scatter instruction. 

FIG. 7 is a block diagram of an embodiment of a scatter 
operation that may be performed in response to an embodi 
ment of a no-locality hint scatter instruction. 

FIG. 8 is a block diagram of an embodiment of a masked 
scatter operation that may be performed in response to an 
embodiment of a masked no-locality hint scatter instruction. 

FIGS. 9A-9C are block diagrams illustrating a generic 
vector friendly instruction format and instruction templates 
thereof, according to embodiments of the invention. 

FIG. 10A-B is a block diagram illustrating an exemplary 
specific vector friendly instruction format and an opcode 
field, according to embodiments of the invention. 
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2 
FIG. 11A-D is a block diagram illustrating an exemplary 

specific vector friendly instruction format and fields thereof, 
according to embodiments of the invention. 

FIG. 12 is a block diagram of an embodiment of a register 
architecture. 

FIG. 13A is a block diagram illustrating an embodiment 
of an in-order pipeline and an embodiment of a register 
renaming out-of-order issue/execution pipeline. 

FIG. 13B is a block diagram of an embodiment of 
processor core including a front end unit coupled to an 
execution engine unit and both coupled to a memory unit. 

FIG. 14A is a block diagram of an embodiment of a single 
processor core, along with its connection to the on-die 
interconnect network, and with its local subset of the Level 
2 (L2) cache. 

FIG. 14B is a block diagram of an embodiment of an 
expanded view of part of the processor core of FIG. 14A. 

FIG. 15 is a block diagram of an embodiment of a 
processor that may have more than one core, may have an 
integrated memory controller, and may have integrated 
graphics. 

FIG. 16 is a block diagram of a first embodiment of a 
computer architecture. 

FIG. 17 is a block diagram of a second embodiment of a 
computer architecture. 

FIG. 18 is a block diagram of a third embodiment of a 
computer architecture. 

FIG. 19 is a block diagram of a fourth embodiment of a 
computer architecture. 

FIG. 20 is a block diagram of use of a software instruction 
converter to convert binary instructions in a source instruc 
tion set to binary instructions in a target instruction set, 
according to embodiments of the invention. 

DETAILED DESCRIPTION OF EMBODIMENTS 

Disclosed herein are no-locality hint vector memory 
access instructions (e.g., no-locality hint gather instructions, 
no-locality hint Scatter instructions), processors to perform 
the instructions, methods performed by the processors when 
performing the instructions, and systems incorporating one 
or more processors to perform the instructions. In the 
following description, numerous specific details are set forth 
(e.g., specific instruction operations, data formats, processor 
configurations, microarchitectural details, sequences of 
operations, etc.). However, embodiments may be practiced 
without these specific details. In other instances, well-known 
circuits, structures and techniques have not been shown in 
detail to avoid obscuring the understanding of the descrip 
tion. 

FIG. 1 is a block diagram of an embodiment of a system 
100 that includes a processor 102 having a cache hierarchy 
103 and a memory 118. The processor and the memory are 
coupled together by a coupling mechanism 116. Such as, for 
example, one or more interconnects, a chipset, or the like. 
The processor includes one or more cores 104. In the 
illustrated example, the processor includes a first core (core 
1) 104-1 optionally up to an Nth core (core N) 104-N. The 
processor may include any desired number of cores (e.g., 
often ranging from one to on the order of hundreds). Core 1 
includes one or more execution units 106-1 and core N 
includes one or more execution units 106-N. 

Typically the processor may also have one or more caches 
108, 110. The caches may represent relatively smaller and 
faster types of storage than the memory 118. The caches may 
also be closer to the cores and/or execution units than the 
memory. The caches may be used to cache or store data 
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brought into the processor from the memory (e.g., by the 
gather instruction 112) to provide faster Subsequent accesses 
to the data. When the processor wants to read data from the 
memory, or write data to the memory, it may first check to 
see if a copy of the data is stored in the caches. If the data 
is found in a cache, the processor may access the data from 
the cache more quickly than if the data were accessed from 
the memory. As a result, including the caches may help to 
reduce the average amount of time needed to access data to 
be processed by the processor. This in turn may help to 
improve the performance and/or throughput of the proces 
SO. 

Referring again to FIG. 1, the illustrated processor has a 
cache hierarchy 103 including multiple levels of cache. The 
cache levels differ in their relative closeness to the cores 
and/or to the execution units of the processor. Core 1 has a 
first level cache or level 1 (L1) cache 108-1. Similarly, core 
N has an L1 cache 108-N. Each of the L1 caches may be 
dedicated to the corresponding core in which it is included. 
The L1 caches represent the cache level closest to the cores. 
The processor also has a second level cache or level 2 (L.2) 
cache 110. The L2 cache represents the next closest cache 
level to the cores. In some implementations, the L2 cache 
may be shared by the cores. Although not shown, there may 
optionally be one or more additional cache levels still farther 
from the cores (e.g., a level 3 (L3) cache). Caches closer to 
the cores (e.g., the L1 caches) generally tend to be smaller 
than caches farther from the cores (e.g., the L2 cache). 
Commonly, one or more cache levels relatively closer to the 
cores are monolithically integrated on-die with the cores, 
whereas one or more cache levels farther from the cores may 
either be monolithically integrated on-die with the cores, or 
may be off-die (e.g., in a separate chip mounted on the 
motherboard). Accesses from the cores to the L1 caches tend 
to be faster than accesses to the L2 cache, accesses from the 
cores to the L2 cache tends to be faster than accesses to the 
L3 cache, and accesses from the cores to the L3 cache tends 
to be faster than accesses from the cores to the external 
memory. 
One reason for including caches in processors is that 

memory references often have a “locality’ attribute. For 
example, references to data in memory often have temporal 
and/or spatial locality. Temporal locality implies that, when 
data is accessed from an address in memory, the same data 
is likely to be accessed again within a short period of time. 
By way of example, this may be the case when a same value 
needs to be reused in a loop, is used repetitively in a set of 
calculations, or for various other reasons. In Such cases, it 
may be beneficial, after accessing the data from the memory, 
to store the data in a cache so that Subsequent accesses to the 
data may be performed more quickly from the cache instead 
of slowly from the memory. 

Spatial locality implies that, when a given data is accessed 
from an address in memory, nearby data at nearby addresses 
is also likely to be accessed within a short period of time. By 
way of example, both sets of data may be part of the same 
content (e.g., an image, a table, a datastructure, a video, 
etc.), and may be processed around the same time. Spatial 
locality may also occur for various other reasons. Caches 
take advantage of spatial locality by storing not only the data 
initially needed, but also nearby data from nearby addresses. 
Typically, the minimum amount of data accessed from the 
memory and stored in the cache is a whole cache line 
amount of data even when only a much smaller amount of 
data may initially be needed. For example, typically an 
entire 512-bit cache line may be accessed from memory and 
stored in the cache even if only a single 8-bit, 16-bit, 32-bit, 
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4 
64-bit, or 128-bit data element is initially needed. If spatial 
locality exists this will be beneficial since it is likely that the 
additional data brought into the cache will also be needed in 
the near future. 

In order for caches to be effective, it is important to keep 
them filled with relevant data that is likely to be needed in 
the near future. During operation, data in the caches will be 
continually changed by evicting data that is not likely to be 
needed in the near future to make room for data that is likely 
to be needed in the near future. Various replacement algo 
rithms and policies are known in the arts for this purpose. 
Such replacement algorithms and policies are often heavily 
based on the age of the data (e.g., a least recently used 
indication) due to temporal locality. 
The gather instruction 112 takes advantage of temporal 

and/or spatial locality by storing data elements that have 
been gathered from the memory 118 in the cache hierarchy 
103. Many applications and types of data show significant 
spatial and/or temporal locality in their access stream and 
thereby benefit from accessing and storing a whole cache 
line amount of data in the cache for each data element 
gathered. However, not all applications and/or types of data 
have Sufficient temporal and/or spatial locality to justify 
accessing and storing whole cache lines in the caches for 
gather and/or scatter instructions. Some applications and/or 
types of data exhibit little spatial and/or temporal locality for 
the data elements to be gathered and/or scattered. Certain 
data elements may be needed once, but may be unlikely to 
be needed again in the near future. For example, this may be 
the case in certain streaming data applications, high perfor 
mance computing applications, applications having a stream 
of very sparse memory accesses, and in various other 
applications. Moreover, in many cases a programmer and/or 
the Software (e.g., an operating system) may be able to know 
this. One possible approach is to allow such data to be stored 
in the cache just like other data brought into the processor 
from memory. However, a drawback with this approach is 
that storing Such data in the caches may evict frequently 
used data that is likely to be reused by the processor. Also, 
this data may stay in the caches for a period of time until 
eventually becoming evicted from the caches, often without 
ever having been reused. Such data effectively pollutes the 
caches and takes up valuable storage space that could 
instead have been used to store frequently used data in order 
to increase performance. 

In addition, the gather instruction 112 is a packed or 
vector-type instruction that gathers a vector's worth of data 
elements. Each gathered data element may potentially bring 
in a whole cache line's worth of data to be stored in the 
cache which may compound the amount of cache pollution 
if Sufficient spatial and/or temporal locality is not present. 
This can become especially significant for certain gather 
instructions that gather four, eight, sixteen, or thirty-two data 
elements, for example. In addition, accessing whole cache 
line amounts of data for each gathered data element may 
waste valuable bus or interconnect bandwidth (e.g., on the 
interconnects to the caches and/or on the interconnect to the 
memory) when there is insufficient spatial locality. For 
example, 512-bits may be retrieved from memory when only 
a single 8-bit, 16-bit, 32-bit, or 64-bit data element is needed 
and there is low spatial locality. Accessing only the needed 
data element, or at least less than a whole cache line amount 
of data, may better utilize the interconnect bandwidth. 

Referring again to FIG. 1, the processor and/or one or 
more of the cores may receive and perform a no-locality hint 
memory access instruction 114 (e.g., a no-locality hint 
vector load or gather instruction and/or a no-locality hint 
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vector store or scatter instruction). The hint may indicate 
that the data to be accessed (e.g., gathered or scattered) has 
insufficient spatial and/or temporal locality. In some 
embodiments, the no-locality hint may be a no-temporal 
locality hint. In other embodiments, the no-locality hint may 
be a no-spatial locality hint. In still other embodiments, the 
no-locality hint may be a no-temporal and no-spatial locality 
hint. In the case of a no-temporal locality hint, in some 
embodiments, gathered data elements may bypass the cache 
hierarchy 103 and/or not be stored in the cache hierarchy 
103, which may help to reduce cache pollution. In the case 
of a no-spatial locality hint, in some embodiments, accesses 
to data elements may be performed with only sub-cache line 
amounts of data (e.g., half or quarter cache line amounts of 
data), or in some cases single data element amounts of data, 
which may help to reduce waste of interconnect bandwidth 
and/or reduce power consumption. Advantageously, the no 
locality hint memory access instruction 114 may help to 
improve performance and/or reduce power consumption at 
times when there is insufficient spatial and/or temporal 
locality. 

FIG. 2 is a block flow diagram of an embodiment of a 
method 220 of processing an embodiment of a no-locality 
hint vector memory access instruction. In various embodi 
ments, the method may be performed by a processor, 
instruction processing apparatus, or other digital logic 
device. 
The method includes receiving the no-locality hint vector 

memory access instruction, at block 221. In various aspects, 
the instruction may be received at a processor, or a portion 
thereof (e.g., an instruction fetch unit, a decode unit, etc.). In 
various aspects, the instruction may be received from an 
off-die Source (e.g., from memory, interconnect, etc.), or 
from an on-die source (e.g., from an instruction cache, 
instruction queue, etc.). The no-locality hint vector memory 
access instruction may specify or otherwise indicate a source 
packed memory indices having a plurality of memory indi 
ces. In some embodiments, the no-locality hint vector 
memory access instruction may provide a no-locality hint to 
the processor for data elements that are to be accessed with 
the memory indices. 

The data elements may be accessed at memory locations 
that are based on the memory indices in response to the 
no-locality hint vector memory access instruction, at block 
222. In some embodiments, the method may include any of 
the operations shown or described below for any of FIGS. 
3-8. 

FIG. 3 is a block diagram of an embodiment of a 
processor 302 that is operable to perform an embodiment of 
a no-locality hint gather instruction 314. The no-locality hint 
gather instruction may also be referred to herein as a 
no-locality hint vector load instruction. In some embodi 
ments, the processor may be a general-purpose processor 
(e.g., a general-purpose microprocessor or central process 
ing unit (CPU) of the type used in desktop, laptop, or other 
computers). Alternatively, the processor may be a special 
purpose processor. Examples of Suitable special-purpose 
processors include, but are not limited to, graphics proces 
sors, network processors, communications processors, cryp 
tographic processors, co-processors, embedded processors, 
digital signal processors (DSPs), and controllers (e.g., 
microcontrollers). The processor may be any of various 
complex instruction set computing (CISC) processors, 
reduced instruction set computing (RISC) processors, very 
long instruction word (VLIW) processors, hybrids thereof, 
other types of processors, or may have a combination of 
different processors (e.g., in different cores). 
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6 
During operation, the processor 302 may receive the 

embodiment of the no-locality hint gather instruction 314. 
For example, the no-locality hint gather instruction may be 
received from an instruction fetch unit, an instruction queue, 
or the like. The no-locality hint gather instruction may 
represent a macroinstruction, assembly language instruction, 
machine code instruction, or other instruction or control 
signal of an instruction set of the processor. 

In some embodiments, the no-locality hint gather instruc 
tion may explicitly specify (e.g., through one or more fields 
or a set of bits), or otherwise indicate (e.g., implicitly 
indicate), a source packed memory indices 334. The instruc 
tion may also specify or otherwise indicate a destination 
operand or destination storage location (e.g., a destination 
packed data register) where a packed data result 336 is to be 
stored. 

In some embodiments, if the no-locality hint gather 
instruction is optionally a masked or predicated instruction, 
then it may specify or otherwise indicate a source packed 
data operation mask 338, although this is not required. As 
shown, in some embodiments, the source packed data opera 
tion mask may be stored in a set of packed data operation 
mask registers 340, although this is not required. In other 
embodiments, the Source packed data operation mask may 
be stored in another storage location or specified by the 
instruction (e.g., a field or immediate). As will be discussed 
further below, the source packed data operation mask may 
be used to mask, predicate, or conditionally control the 
gather operation. 

Referring again to FIG. 3, the processor includes a decode 
unit or decoder 330. The decode unit may receive and 
decode the no-locality hint gather instruction 314. The 
decode unit may output one or more microinstructions, 
micro-operations, micro-code entry points, decoded instruc 
tions or control signals, or other relatively lower-level 
instructions or control signals that reflect, represent, and/or 
are derived from the no-locality hint gather instruction. The 
one or more lower-level instructions or control signals may 
implement the higher-level no-locality hint gather instruc 
tion through one or more lower-level (e.g., circuit-level or 
hardware-level) operations. The decode unit may be imple 
mented using various different mechanisms including, but 
not limited to, microcode read only memories (ROMs), 
look-up tables, hardware implementations, programmable 
logic arrays (PLAS), and other mechanisms used to imple 
ment decode units known in the art. 

In some embodiments, instead of the no-locality hint 
gather instruction being provided directly to the decode unit 
330, an instruction emulator, translator, morpher, interpreter, 
or other instruction conversion module may optionally be 
used. Various types of instruction conversion modules are 
known in the arts and may be implemented in Software, 
hardware, firmware, or a combination thereof. In some 
embodiments, the instruction conversion module may be 
located outside the processor, such as, for example, on a 
separate die and/or in a memory (e.g., as a static, dynamic, 
or runtime emulation module). By way of example, the 
instruction conversion module may receive the no-locality 
hint gather instruction, which may be of a first instruction 
set, and may emulate, translate, morph, interpret, or other 
wise convert the no-locality hint gather instruction into one 
or more corresponding or derived intermediate instructions 
or control signals, which may be of a second different 
instruction set. The one or more intermediate instructions or 
control signals of the second instruction set may be provided 
to a decode unit, which may decode them into one or more 
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lower-level instructions or control signals executable by 
native hardware of the processor (e.g., one or more execu 
tion units). 

Referring again to FIG. 3, the processor also includes a set 
of packed data registers 332. Each of the packed data 5 
registers may represent an on-die storage location that is 
operable to store packed data, vector data, or SIMD data. 
The packed data registers may represent architecturally 
visible registers (e.g., an architectural register file) that are 
visible to Software and/or a programmer and/or are the 10 
registers indicated by instructions of an instruction set to 
identify operands. These architectural registers are con 
trasted to other non-architectural or non-architecturally vis 
ible registers in a given microarchitecture (e.g., temporary 
registers, reorder buffers, retirement registers, etc.). The 15 
packed data registers may be implemented in different ways 
in different microarchitectures using well-known techniques 
and are not limited to any particular type of circuit. 
Examples of Suitable types of registers include, but are not 
limited to, dedicated physical registers, dynamically allo- 20 
cated physical registers using register renaming, and com 
binations thereof. 

In some embodiments, the source packed memory indices 
334 may optionally be stored in a first packed data register, 
and the packed data result 336 may optionally be stored in 25 
a second packed data register. Alternatively, other storage 
locations, may be used for one or more of these operands. 
Moreover, in Some embodiments, a packed data register 
used for a source operand may optionally be reused as a 
destination operand (e.g., the packed data result 336 may 30 
optionally be written or stored over the source packed 
memory indices 334). 

Referring again to FIG. 3, the execution unit 306 is 
coupled with the decode unit 330, the packed data registers 
332, and optionally the packed data operation mask 338. The 35 
execution unit may receive the one or more decoded or 
otherwise converted instructions or control signals that 
represent and/or are derived from the no-locality hint gather 
instruction. The execution unit may also receive the Source 
packed memory indices 334 which are indicated by the 40 
no-locality hint gather instruction. In some cases, the execu 
tion unit may also optionally be coupled with a set of 
general-purpose registers 342, for example, if the general 
purpose registers are to provide information to be used to 
convert the memory indices to memory addresses (e.g., a 45 
base, Scale, displacement, etc.). 

The execution unit is operable in response to and/or as a 
result of the no-locality hint gather instruction (e.g., in 
response to one or more instructions or control signals 
decoded directly or indirectly (e.g., through emulation) from 50 
the instruction) to access locations in the memory indicated 
by the source packed memory indices 334. For example, 
Such access may include gathering or otherwise loading data 
elements from locations in the memory indicated by the 
corresponding packed memory indices and storing them in 55 
a packed data result 336. In some embodiments, a masked 
gather operation may optionally be performed. In some 
embodiments, the execution unit may perform any of the 
operations shown and described for any of FIGS. 4-5, 
although the scope of the invention is not so limited. 60 

In some embodiments, the gather operation may be imple 
mented with a no-locality hint. In some embodiments, the 
gather operation may be implemented with a no-temporal 
locality hint. In other embodiments, the gather operation 
may be implemented with a no-spatial locality hint. In still 65 
other embodiments, the gather operation may be imple 
mented with a no-temporal locality and no-spatial locality 

8 
hint. The execution unit may provide no-locality hint load 
operations 348 to one or more cache controllers 344. In 
Some embodiments, there may be a single cache level and 
single cache controller (e.g., an L1 cache controller). In 
other embodiments, there may be two or more cache con 
trollers (e.g., an L1 cache controller, an L2 cache controller, 
and optionally an L3 cache controller). 

In some embodiments, if a no-locality hint load operation 
348 request for data has a no-spatial locality hint, and if the 
request hits in a cache 308, then the associated cache 
controller 344 may return a sub-cache line amount of data 
352 from the cache 308. In various embodiments, the 
sub-cache line amount of data 352 may be only half a cache 
line (e.g., only 256-bits of a 512-bit cache line), only one 
quarter a cache line (e.g., only 128-bits), only one eighth a 
cache line (e.g., only 64-bits), or only a single data element 
(e.g., 1 128-bit, 64-bit, 32-bit, 16-bit, or 8-bit data element). 

Conversely, if a no-locality hint load operation 348 
request for data has a no-spatial locality hint, and if the 
request misses in all cachecs) 308, then a no-locality hint 
load operation 348 request for data may be sent to a memory 
controller 346. In some embodiments, the memory control 
ler may perform a sub-cache line data access and return 350 
from memory (e.g., external memory). As before, in various 
embodiments, the sub-cache line data access and return 350 
may be only half a cache line (e.g., only 256-bits), only one 
quarter a cache line (e.g., only 128-bits), only one eighth a 
cache line (e.g., only 64-bits), or only a single data element 
(e.g., a 64-bit, 32-bit, 16-bit, or 8-bit data element). That is, 
the memory controller may load data from memory with a 
Smaller sized access and data return than would ordinarily be 
used for a load operation without a no-locality hint (e.g., a 
load operation for a conventional gather instruction). As one 
specific example, only one of a pair of 256-bit bus signals 
usually used to access an entire 512-bit cache line amount of 
data may be sent from the memory controller to a dynamic 
random access memory (DRAM) with the one sent being the 
one that includes the desired data element. In some embodi 
ments, the minimum sized access and data return that is 
Sufficient to contain the desired data element may optionally 
be used. The memory controller may provide a sub-cache 
line data return 351 to the cache controller(s) 344. The cache 
controllers may provide a corresponding Sub-cache line 
amount of data 352 to the execution unit. In other embodi 
ments, sub-cache line amounts of data may be transmitted on 
Some but not all of these interconnects. 

Conventionally, if a whole cache line is being accessed, 
the lowest order bits of the address (e.g., the lowest order 
6-bits of the address) may all be zeroes. In contrast, if only 
a portion of a cache line is being accessed, some or all of 
these lowest order bits may not all be zeroes but rather may 
be needed to specify the location of the desired data within 
the cache line (e.g., in one embodiment a location of a single 
64-bit, 32-bit, 16-bit, or 8-bit data element within a 512-bit 
cache line). In some embodiments, a size of the data element 
may also need to be indicated in the memory access. 

Advantageously, any one or more of the Sub-cache line 
data access and return 350 and/or the sub-cache line data 
return 351 and/or the sub-cache line amount of data 352 may 
help to reduce wasted bandwidth on the associated inter 
connects. This in turn may help to improve processor speed 
and/or performance, especially in applications that (at least 
at times) tend to be memory access bandwidth bound. In 
Such situations, the processor may be able to process data 
faster than the data can be obtained from memory. If the 
needed data could be obtained from the memory faster, then 
overall processor speed and/or performance could be 
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improved. Using the available memory access bandwidth to 
access a greater proportion of data that is actually of interest, 
and a lesser proportion of “tag along spatial locality 
assumption data, may offer an advantage when there is low 
actual spatial locality. Such smaller accesses may be appro 
priate when the data access has sufficiently low spatial 
locality. In addition, these Smaller accesses may also help to 
reduce power consumption to return the desired data ele 
ment. 

In some embodiments, if a no-locality hint load operation 
348 request for data has a no-temporal locality (e.g., non 
temporal) hint, and if the request misses in a cache 308, then 
the associated cache controller 344 may not allocate storage 
space in the cache for the requested data as it normally 
would for a regular gather instruction (i.e., without a no 
locality hint). If there are multiple cache levels, cache 
controllers for higher level caches (e.g., closer to the cores) 
may provide the request to cache controllers for lower level 
caches (e.g., farther from the cores). Upon cache misses, in 
Some embodiments, each cache controller may similarly not 
allocate storage space in their associated caches for the 
requested data when it is returned from memory. In some 
embodiments, if the data is present in a lower level cache it 
may be returned to the execution unit 306 without being 
stored in any of the higher level cache?s). If the data is not 
present in any cache?s) 308, then the request for the data may 
be provided to the memory controller 346. The memory 
controller may retrieve the desired data from memory, 
optionally retrieving a sub-cache line amount of data 350 if 
the hint is also a no-spatial locality hint, or else retrieving an 
entire cache line amount of data if the hint is just a 
no-temporal locality hint. The memory controller may pro 
vide the retrieved data to the cache controller(s). In some 
embodiments, the cache controller(s) may provide the data 
to the execution unit 306 without storing the retrieved data 
in the cache?s). Advantageously, omitting storing the data in 
the cache?(s) this may help to reduce cache pollution and/or 
may help to increase processor performance, and may be 
appropriate when the data access has sufficiently low tem 
poral locality. Once the execution unit has received all the 
requested data elements, and placed them into the packed 
data result 336 (e.g., in a packed data register), it may signal 
completion of the instruction. 
The execution unit and/or the processor may include 

specific or particular logic (e.g., transistors, integrated cir 
cuitry, or other hardware potentially combined with firm 
ware (e.g., instructions stored in non-volatile memory) and/ 
or software) that is operable to perform the no-locality hint 
gather operation in response to and/or as a result of the 
no-locality hint gather instruction. By way of example, the 
execution unit may include a gather execution unit, a gather 
and/or scatter execution unit, a memory execution unit, a 
memory access unit, a load unit, load and/or store unit, or the 
like. 

FIG. 4 is a block diagram illustrating an embodiment of 
a gather operation 420 that may be performed in response to 
an embodiment of a no-locality hint gather instruction. The 
gather instruction may specify or otherwise indicate a source 
packed memory indices 434 having a plurality of packed 
memory indices. There are eight memory indices in the 
illustrated embodiment, although the scope of the invention 
is not so limited. In the illustrated example, the values of the 
memory indices are, from the least significant position (on 
the left) to the most significant position (on the right) right, 
134, 231, 20, 135, 5, 21, 30... 186. These values are only 
an example. Other embodiments may include either fewer or 
more memory indices. Commonly, the number of memory 
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10 
indices in the Source packed memory indices may be equal 
to the size in bits of the Source packed memory indices 
operand divided by the size in bits of each of the memory 
indices. In various embodiments, the width of the source 
packed memory indices operand may be 64-bits, 128-bits, 
256-bits, 512-bits, or 1024-bits, although the scope of the 
invention is not so limited. In various embodiments, the size 
of each memory index may be 16-bits, 32-bits, or 64-bits, 
although the scope of the invention is not so limited. Other 
Source packed memory indices widths and memory index 
sizes are also suitable. 
The gather operation 420 may be performed, and a packed 

data result 436 may be stored in a destination storage 
location, in response to and/or as a result of the gather 
instruction. In one aspect, the gather instruction may specify 
or otherwise indicate the destination storage location. In 
Some embodiments, the packed data result may include data 
elements that have been loaded or gathered from potentially 
non-contiguous memory locations in memory 418, which 
are indicated by the corresponding memory indices of the 
Source packed memory indices 434. By way of example, a 
memory index may be converted into a memory address 
using a common scale and a common base (e.g., as memory 
address-memory index scale--base). For example, in the 
illustrated embodiment, the memory index 134 may indicate 
the memory location storing data element B1, the memory 
index 231 may indicate the memory location storing data 
element B2, and so on. 

In some embodiments, the gather operation may include 
a sub-cache line data access 450 to the memory 418. In some 
embodiments, the gather operation may include a Sub-cache 
line data return 452 from the memory that bypasses the 
caches of the processor. Rather than accessing a full cache 
line (e.g., a 512-bit cache line), in various embodiments, the 
Sub-cache line data access and return may access and return 
only one half a cache line (e.g., 256-bits), one quarter a 
cache line (e.g., 128-bits), one eighth a cache line (e.g., 
64-bits), or a single data element (e.g., a 64-bit, 32-bit, 
16-bit, or 8-bit data element). In some embodiments, the 
data returned may not be stored in any caches of the 
processor. 

In the illustrated embodiment the packed data result 
includes eight data elements, although the scope of the 
invention is not so limited. Other embodiments may include 
either fewer or more result data elements. Commonly, the 
number of result data elements may be equal to the width in 
bits of the packed data result divided by the size in bits of 
each result data element and/or equal to the number of 
memory indices in the source packed memory indices. In 
various embodiments, the width of the packed data result 
may be 64-bits, 128-bits, 256-bits, 512-bits, or 1024-bits, 
although the Scope of the invention is not so limited. In 
various embodiments, the size of each result data element 
may be 16-bits, 32-bits, or 64-bits, although the scope of the 
invention is not so limited. In the illustrated example, the 
packed data result stores, from the least significant position 
(on the left) to the most significant position (on the right) 
right, the data elements B1 through B8. 

FIG. 5 is a block diagram illustrating an embodiment of 
a masked gather operation 520 that may be performed in 
response to an embodiment of a masked no-locality hint 
gather instruction. The masked operation of FIG. 5 has 
similarities to the unmasked operation of FIG. 4. To avoid 
obscuring the description, the different and/or additional 
characteristics for the masked operation of FIG. 5 will 
primarily be described without repeating all the similar or 
common characteristics relative to the unmasked operation 
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of FIG. 4. However, the previously described characteristics 
of the unmasked operation of FIG. 4 also optionally apply to 
the masked operation of FIG. 5, unless stated or otherwise 
clearly apparent. 
The masked gather instruction may specify or otherwise 

indicate a source packed memory indices 534 having a 
plurality of packed memory indices. The Source packed 
memory indices, as well as the memory indices, may be 
similar to, or the same as, those described for FIGS. 3-4, and 
may have the same variations and alternatives. 
The masked gather instruction may additionally specify 

(e.g., explicitly specify) or otherwise indicate (e.g., implic 
itly indicate) a source packed data operation mask 538. The 
packed data operation mask may also be referred to herein 
simply as an operation mask, predicate mask, or mask. The 
mask may represent a predicate operand or conditional 
control operand that may be used to predicate, conditionally 
control, or mask whether or not corresponding operations 
are to be performed and/or corresponding results are to be 
stored. In some embodiments, the masking or predication 
may be at per-data element granularity Such that operations 
on different pairs of corresponding data elements may be 
predicated or conditionally controlled separately and/or 
independently of others. The mask may include multiple 
mask elements, predicate elements, or conditional control 
elements. In one aspect, the mask elements may be included 
in a one-to-one correspondence with corresponding memory 
indices of source packed memory indices and/or correspond 
ing result data elements of result packed data. For example, 
the corresponding mask elements, memory indices, and 
result data elements may occupy same relative positions 
within the operands. 
As shown, in Some embodiments, each mask element may 

be a single mask bit. In such cases, the mask may have a bit 
for each memory index and/or each result data element. In 
the example of the Source packed memory indices having 
eight memory indices, and in the case of each mask element 
being a single bit, the packed data operation mask may be 
8-bits wide with each bit representing a predicate or mask bit 
that corresponds to a memory index in a same relative 
operand position. For example, in the illustration the corre 
sponding positions are in vertically alignment above one 
another. A value of each mask bit may control whether or not 
a corresponding gather or load operation is to be performed 
and/or a corresponding result data element is to be stored. 
Each mask bit may have a first value to allow the gather or 
load operation to be performed using the corresponding 
memory index and allow the corresponding result data 
element to be stored in the result packed data, or may have 
a second different value to not allow the gather or load 
operation to be performed using the corresponding memory 
index and/or not allow the corresponding result data element 
to be stored in the result packed data. According to one 
possible convention, as shown in the illustration, a mask bit 
cleared to binary Zero (i.e., 0) may represent a masked out 
operation for which a result data element is not to be stored, 
whereas a mask bit set to binary one (i.e., 1) may represent 
an unmasked operation for which a gathered result data 
element is to be stored. In the illustrated example, the 
mask bits, from least significant bit position (on the left) to 
most significant bit position (on the right), are 1, 1, 0, 1, 1. 
1, 0 . . . 1. This is just one illustrative example. In other 
embodiments, two or more bits may optionally be used for 
each mask element (e.g., each mask element may have a 
same number of bits as each corresponding Source data 
element and either all bits or as few as a single bit may be 
used to determine the masking). 
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The masked gather operation 520 may be performed, and 

a packed data result 536 may be stored, in response to and/or 
as a result of the masked gather instruction. The packed data 
result may be similar to, or the same as, that described for 
FIG. 4, and may have the same variations and alternatives. 
In one aspect, the packed data result may be stored in a 
destination storage location indicated by the masked gather 
instruction. The masked gather operation may load or gather 
data elements from potentially non-contiguous locations in 
a memory 518 indicated by the corresponding memory 
indices Subject to the masking, predication, or conditional 
control of the source packed data operation mask 538. In 
Some embodiments, data may only be gathered and stored 
into the corresponding result data element if the correspond 
ing mask bit in the packed data operation mask is unmasked 
(e.g., in the illustration set to binary 1). In contrast, the result 
data elements corresponding to masked-out mask elements 
may have predetermined values not based on the gather 
operation. For example, either the corresponding gather 
operation need not be performed, or if the corresponding 
gather operation is performed then the corresponding gath 
ered data element need not be stored in the corresponding 
result data element. Rather, a fixed or predetermined value 
may be stored in the corresponding result data element. In 
the illustrated example, the result data elements correspond 
ing to masked-out mask elements (having a value of Zero in 
the illustrated example) have an asterisk (*) to represent 
such fixed or predetermined values. The particular fixed or 
predetermined values may depend on the type of masking 
used for the particular implementation. In some embodi 
ments, Zeroing masking may be used. In Zeroing masking, 
the masked-out result data elements may be zeroed-out (e.g., 
be forced to have a value of Zero). Alternatively, other 
predetermined values may optionally be stored in these 
masked-out result data elements. In the illustrated example, 
the packed data result in the destination stores, from the least 
significant position (on the left) to the most significant 
position (on the right) right, the data elements B1, B2, *, B4, 
B5, B6, *, B8. 

In some embodiments, the masked gather operation may 
include a sub-cache line data access 550 to the memory 518. 
In some embodiments, the gather operation may include a 
sub-cache line data return 552 from the memory that 
bypasses the caches of the processor. Rather than accessing 
a full cache line (e.g., a 512-bit cache line), in various 
embodiments, the Sub-cache line data access and return may 
access and return only one half a cache line (e.g., 256-bits), 
one quarter a cache line (e.g., 128-bits), one eighth a cache 
line (e.g., 64-bits), or a single data element (e.g., a 64-bit, 
32-bit, 16-bit, or 8-bit data element). In some embodiments, 
the data returned may not be stored in any caches of the 
processor. 

FIG. 6 is a block diagram of an embodiment of a 
processor 602 that is operable to perform an embodiment of 
a no-locality hint scatter instruction 614. The no-locality hint 
scatter instruction may also be referred to herein as a 
no-locality hint vector store or write instruction. The pro 
cessor 602 includes a decode unit 630, an execution unit 
606, packed data registers 632, a source packed memory 
indices 634, packed data operation mask registers 640, a 
Source packed data operation mask 638, general-purpose 
registers 642, one or more cache controllers 644, one or 
more caches 608, and a memory controller 646. Unless 
otherwise specified, except for performing a scatter instruc 
tion instead of a gather instruction, the processor 602 and the 
aforementioned components may optionally have some or 
all of the characteristics, variations, and alternatives of the 



US 9,600,442 B2 
13 

processor 302 and correspondingly named components of 
FIG. 3. To avoid obscuring the description, the different 
and/or additional characteristics will primarily be described 
without repeating all of the common characteristics and 
possible variations. 

During operation, the processor 602 may receive the 
embodiment of the no-locality hint scatter instruction 614. 
The no-locality hint scatter instruction may represent a 
macroinstruction, assembly language instruction, machine 
code instruction, or other instruction or control signal of an 
instruction set of the processor. In some embodiments, the 
no-locality hint scatter instruction may explicitly specify or 
otherwise indicate both the source packed memory indices 
634 and the source packed data 660. In some embodiments, 
the source packed memory indices may optionally be stored 
in a first packed data register, and the source packed data 
may optionally be stored in a second packed data register. In 
Some embodiments, if the no-locality hint Scatter instruction 
is optionally a masked or predicated instruction, it may also 
specify or otherwise indicate a source packed data operation 
mask 638, although this is not required. 
The decode unit 630 may decode the no-locality hint 

scatter instruction 614. The execution unit 606 is coupled 
with the decode unit 630, the packed data registers 632, and 
optionally the source packed data operation mask 638 (e.g., 
the mask registers 640). The execution unit may receive the 
Source packed memory indices 634 and the source packed 
data 660. The execution unit is operable in response to 
and/or as a result of the no-locality hint Scatter instruction 
(e.g., in response to one or more instructions or control 
signals decoded from the instruction) scatter, store, or write 
data elements from the source packed data 660 to locations 
in memory indicated by the corresponding packed memory 
indices of the source packed memory indices 634. In some 
embodiments, a masked scatter operation may optionally be 
performed. In some embodiments, the execution unit may 
perform any of the operations shown and described for any 
of FIGS. 7-8, although the scope of the invention is not so 
limited. The execution unit and/or the processor may include 
specific or particular logic (e.g., transistors, integrated cir 
cuitry, or other hardware potentially combined with firm 
ware (e.g., instructions stored in non-volatile memory) and/ 
or software) that is operable to perform the no-locality hint 
scatter operation in response to and/or as a result of the 
no-locality hint scatter instruction. By way of example, the 
execution unit may include a scatter execution unit, a gather 
and/or scatter execution unit, a memory execution unit, a 
memory access unit, a store unit, a load and store unit, or the 
like. 

In some embodiments, the scatter operation may be 
implemented with a no-locality hint. In some embodiments, 
the scatter operation may be implemented with a no-tem 
poral locality hint. In other embodiments, the scatter opera 
tion may be implemented with a no-spatial locality hint. In 
still other embodiments, the scatter operation may be imple 
mented with a no-temporal locality and no-spatial locality 
hint. The execution unit may provide no-locality hint store 
or write operations 662 to one or more cache controllers 644. 
In some embodiments, there may be a single cache level and 
single cache controller (e.g., an L1 cache controller). In 
other embodiments, there may be two or more cache con 
trollers (e.g., an L1 cache controller, an L2 cache controller, 
and optionally an L3 cache controller). 

There are various ways in which a no-temporal locality 
hint may be applied for a scatter instruction. Consider first 
a scenario where a scatter operation hits in a lower-level 
cache (e.g., an L2 or L3 cache). One possible way to 
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implement a conventional scatter instruction without a no 
temporal locality hint would be to read the cache line having 
the hitting data element from the lower-level cache into a 
higher-level cache (e.g., an L1 cache). Then a write may be 
performed to replace the data element in the higher-level 
cache (e.g., the L1 cache). However, one possible drawback 
to this approach is that it may cause non-temporal data to be 
brought higher up in the cache hierarchy and/or closer to the 
processor. In some embodiments, an alternate approach may 
be performed in response to the embodiment of no-temporal 
locality hint scatter instruction. For example, in some 
embodiments, upon the scatter operation hitting on the 
lower-level cache (e.g., the L2 or L3 cache), instead of 
transferring the cache line having the hitting data element to 
the higher-level cache (e.g., the L1 cache), the data element 
may be kept in the lower-level cache (e.g., the L2 or L3 
cache) and the write may be performed to replace the data 
element in the lower-level cache. This approach may avoid 
bringing the non-temporal data element higher up in the 
cache hierarchy and/or closer to the cores. In some embodi 
ments, upon the scatter operation hitting in a cache (e.g., an 
L1 cache, an L2 cache, or an L3 cache), the corresponding 
cache line having the data element may be evicted from the 
cache to a lower-level cache or evicted from all of the caches 
to memory. Then the write may be performed to memory to 
replace the data element. In another embodiment, this may 
be just one more piece of information in a cache line eviction 
algorithm or replacement policy. 

If a no-locality hint scatter or store operation 662 has a 
no-Spatial locality hint, and if the request misses in the 
cache?s) 608, then the associated operation may be provided 
to the memory controller 646. In some embodiments, the 
memory controller may perform a sub-cache line sized 
scatter, write, or store operation 664 to memory. In various 
embodiments, the Sub-cache line sized scatter, write, or store 
operation 664 may be only half a cache line (e.g., only 
256-bits), only one quarter a cache line (e.g., only 128-bits), 
only one eighth a cache line (e.g., only 64-bits), or only a 
single data element (e.g., a 64-bit, 32-bit, 16-bit, or 8-bit data 
element). That is, the memory controller may write data to 
the memory with a smaller sized write than would ordinarily 
be used for a write operation without a no-locality hint (e.g., 
a write operation for a conventional scatter instruction). As 
one specific example, only one of a pair of 256-bit bus write 
signals usually used to write an entire 512-bit cache line 
amount of data may be transmitted from the memory con 
troller to a DRAM with the one transmitted being the one 
that includes the desired data element. In some embodi 
ments, the minimum sized write that is sufficient to replace 
the desired data element may optionally be used. Advanta 
geously, such smaller writes may help to reduce wasted 
bandwidth on the associated interconnects. In addition, these 
Smaller writes may also help to reduce power consumption. 

FIG. 7 is a block diagram illustrating an embodiment of 
a scatter operation 720 that may be performed in response to 
an embodiment of a no-locality hint scatter instruction. The 
scatter instruction may specify or otherwise indicate a 
Source packed memory indices 734 having a plurality of 
packed memory indices. The source packed memory indi 
ces, as well as the memory indices, may be similar to, or the 
same as, those described for FIG. 4, and may have the same 
variations and alternatives. 
The scatter instruction may also specify or otherwise 

indicate a source packed data 660 having a plurality of 
packed data elements that are to be scattered or written to 
memory. There are eight packed data elements, labeled B1 
through B8, in the source packed data in the illustrated 
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embodiment, although the Scope of the invention is not so 
limited. Other embodiments may include either fewer or 
more data elements to be scattered. Commonly, the number 
of data elements to be scattered may be equal to the number 
of memory indices in the source packed memory indices. 
Each data element to be scattered may correspond to a 
different one of the memory indices (e.g., in a same relative 
position within the operands). In various embodiments, the 
width of the source packed data may be 64-bits, 128-bits, 
256-bits, 512-bits, or 1024-bits, although the scope of the 
invention is not so limited. In various embodiments, the size 
of each data element in the source packed data 760 may be 
16-bits, 32-bits, or 64-bits, although the scope of the inven 
tion is not so limited. Other source packed data widths and 
data element sizes are also Suitable. 
The scatter operation 720 may be performed in response 

to and/or as a result of the scatter instruction. The scatter 
operation may store, write, or scatter data elements from the 
source packed data 760 to locations in a memory 718 that are 
indicated by the corresponding memory indices in Source 
packed memory indices 734. The data elements may be 
scattered or written to locations in the memory indicated by 
and/or derived from the memory indices. In some embodi 
ments, the data elements may be scattered to optionally/ 
potentially non-contiguous memory locations. For example, 
in the illustrated embodiment, the memory index 134 points 
to the memory location where the data element B1 is to be 
written, and so on. In some embodiments, the scattering may 
be ordered across the Source packed data, Such as, for 
example, from a lowest order bit position (on the left as 
viewed) to a highest order bit position (on the right as 
viewed). In some embodiments, the no-locality hint scatter 
operation may include a sub-cache line data write 764 to the 
memory 718. 

FIG. 8 is a block diagram illustrating an embodiment of 
a masked scatter operation 820 that may be performed in 
response to an embodiment of a masked no-locality hint 
scatter instruction. The masked operation of FIG. 8 has 
similarities to the unmasked operation of FIG. 7. To avoid 
obscuring the description, the different and/or additional 
characteristics for the masked operation of FIG. 8 will 
primarily be described without repeating all the similar or 
common characteristics relative to the unmasked operation 
of FIG. 7. However, the previously described characteristics 
of the unmasked operation of FIG. 7 also optionally apply to 
the masked operation of FIG. 8, unless stated or otherwise 
clearly apparent. 
The masked scatter instruction may specify or otherwise 

indicate a source packed memory indices 834 having a 
plurality of packed memory indices. The Source packed 
memory indices, as well as the memory indices, may be 
similar to, or the same as, those described for FIGS. 3-4 
and/or 7, and may have the same variations and alternatives. 
The masked scatter instruction may also specify or oth 

erwise indicate a source packed data 860 having a plurality 
of packed data elements. The Source packed data, as well as 
the data elements therein, may be similar to, or the same as, 
those described for FIG. 6-7, and may have the same 
variations and alternatives. 
The masked scatter instruction may additionally specify 

(e.g., explicitly specify) or otherwise indicate (e.g., implic 
itly indicate) a source packed data operation mask 838 
having a plurality of mask bits or other mask elements. The 
Source packed data operation mask, as well as the mask bits 
or mask elements therein, except that they may be used to 
mask scatter operations instead of gather operations, may be 
similar to, or the same as, those described for FIG. 5, and 
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may have the same variations and alternatives. The mask 
elements may be included in a one-to-one correspondence 
with corresponding memory indices of Source packed 
memory indices and/or corresponding data elements of 
Source packed data (e.g., may occupy same relative posi 
tions within the operands). A value of each mask bit or mask 
element may control whether or not a corresponding scatter 
or write operation is to be performed for a corresponding 
data element of the Source packed data. Each mask bit may 
have a first value to allow the scatter operation to be 
performed using the corresponding memory index and 
Source data element, or may have a second different value to 
not allow the scatter operation to be performed using the 
corresponding memory index and Source data element. 
The masked scatter operation 820 may be performed in 

response to and/or as a result of the masked scatter instruc 
tion subject to the predication or conditional control of the 
source packed data operation mask 838. The scatter opera 
tion may store, write, or scatter data elements from the 
source packed data 860 to potentially/optionally non-con 
tiguous locations in a memory 818 indicated by and/or 
derived from the corresponding memory indices Subject to 
the masking, predication, or conditional control of the 
source packed data operation mask 838. In some embodi 
ments, data may only be scattered or stored to the memory 
location if the corresponding mask bit in the packed data 
operation mask is unmasked (e.g., in the illustration set to 
binary 1). In contrast, memory locations corresponding to 
masked-out mask elements may have preexisting values not 
changed by the scatter operation (e.g., the same value as in 
the memory location before execution of the masked scatter 
instruction). In the illustrated example, the memory loca 
tions corresponding to masked-out mask elements (having 
values of Zero in the illustrated example) have an asterisk (*) 
to represent such preexisting values. In some embodiments, 
the no-locality hint Scatter operation may include a Sub 
cache line data write 864 to the memory 818. 

In some embodiments, an instruction format may include 
an operation code or opcode. The opcode may represent a 
plurality of bits or one or more fields that are operable to 
identify the instruction and/or the operation to be performed 
(e.g., a sort index operation). Depending upon the particular 
instruction, the instruction format may also include one or 
more source and/or destination specifiers. By way of 
example, each of these specifiers may include bits or one or 
more fields to specify an address of a register, memory 
location, or other storage location, as described elsewhere 
herein. Alternatively, instead of Such an explicit specifier, 
one or more sources and/or destinations may optionally be 
implicit to the instruction instead of being explicitly speci 
fied. In addition, a source may be implicitly reused as a 
destination in some cases (e.g., for a gather instruction of 
Some embodiments). In addition, the instruction format may 
optionally add additional fields, may overlap certain fields, 
etc. Fields need not include contiguous sequences of bits but 
rather may be composed of non-contiguous or separated 
bits. 

In some embodiments, a no-locality hint vector memory 
access instruction may optionally have a different opcode 
than a vector memory access instruction without the no 
locality hint. For example, a no-locality hint gather instruc 
tion may have a different opcode than a gather instruction 
without the no-locality hint. In some embodiments, different 
opcodes may optionally be provided for no-spatial locality 
hint and no-temporal locality hint vector memory access 
instructions. For example, a no-spatial locality hint gather 
instruction, a no-temporal locality hint gather instruction, a 



US 9,600,442 B2 
17 

no-spatial locality hint Scatter instruction, and a no-temporal 
locality hint scatter instruction may all have different 
opcodes. In other embodiments, a no-locality hint vector 
memory access instruction may share an opcode with a 
vector memory access instruction without a no-locality hint. 
For example, a no-locality hint gather instruction may share 
an opcode with a gather instruction without a no-locality 
hint, and these instructions may include one or more bits to 
indicate whether or not the instruction is to be decoded to 
have a no-locality hint. As another example, a no-locality 
hint scatter instruction may share an opcode with a scatter 
instruction without a no-locality hint, and these instructions 
may include one or more bits to indicate whether or not the 
instruction is to be decoded to have a no-locality hint. In 
Some embodiments, a single bit may have a first value (e.g., 
1) to indicate a no-locality hint or a second value (e.g., 0) to 
indicate lack of a no-locality hint. In other embodiments, 
two bits may have different values to indicate whether or not 
there is a no-locality hint and what type the no-locality hint 
is. For example, these two bits may have a first value (e.g., 
00) to indicate that there is not a no-locality hint, a second 
value (e.g., 01) to indicate that there is a no-spatial locality 
hint, a third value (e.g., 10) to indicate that there is a 
no-temporal locality hint, and a fourth value (e.g., 11) to 
indicate that there is a no-spatial and no-temporal locality 
hint. In some embodiments, a no-locality hint vector 
memory access instruction (e.g., a no-locality hint gather or 
scatter instruction) may have a weaker memory ordering 
model than a counterpart vector memory access instruction 
in the same instruction set that lacks the no-locality hint 
(e.g., conventional a gather or scatter instruction without the 
no-locality hint). 
An instruction set includes one or more instruction for 

mats. A given instruction format defines various fields 
(number of bits, location of bits) to specify, among other 
things, the operation to be performed (opcode) and the 
operand(s) on which that operation is to be performed. Some 
instruction formats are further broken down though the 
definition of instruction templates (or subformats). For 
example, the instruction templates of a given instruction 
format may be defined to have different subsets of the 
instruction formats fields (the included fields are typically 
in the same order, but at least some have different bit 
positions because there are less fields included) and/or 
defined to have a given field interpreted differently. Thus, 
each instruction of an ISA is expressed using a given 
instruction format (and, if defined, in a given one of the 
instruction templates of that instruction format) and includes 
fields for specifying the operation and the operands. For 
example, an exemplary ADD instruction has a specific 
opcode and an instruction format that includes an opcode 
field to specify that opcode and operand fields to select 
operands (source1/destination and Source2); and an occur 
rence of this ADD instruction in an instruction stream will 
have specific contents in the operand fields that select 
specific operands. A set of SIMD extensions referred to the 
Advanced Vector Extensions (AVX) (AVX1 and AVX2) and 
using the Vector Extensions (VEX) coding scheme, has 
been, has been released and/or published (e.g., see Intel(R) 64 
and IA-32 Architectures Software Developers Manual, 
October 2011; and see Intel R Advanced Vector Extensions 
Programming Reference, June 2011). 

Exemplary Instruction Formats 
Embodiments of the instruction(s) described herein may 

be embodied in different formats. Additionally, exemplary 
systems, architectures, and pipelines are detailed below. 
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Embodiments of the instruction(s) may be executed on such 
systems, architectures, and pipelines, but are not limited to 
those detailed. 
VEX Instruction Format 
VEX encoding allows instructions to have more than two 

operands, and allows SIMD vector registers to be longer 
than 128 bits. The use of a VEX prefix provides for 
three-operand (or more) syntax. For example, previous 
two-operand instructions performed operations such as 
A=A+B, which overwrites a source operand. The use of a 
VEX prefix enables operands to perform nondestructive 
operations such as A=B+C. 

FIG. 9A illustrates an exemplary AVX instruction format 
including a VEX prefix 902, real opcode field 930, ModR/M 
byte 940, SIB byte 950, displacement field 962, and IMM8 
972. FIG.9B illustrates which fields from FIG.9A make up 
a full opcode field 974 and a base operation field 942. FIG. 
9C illustrates which fields from FIG. 9A make up a register 
index field 944. 
VEX Prefix (Bytes 0-2) 902 is encoded in a three-byte 

form. The first byte is the Format Field 940 (VEX Byte 0, 
bits 7:0), which contains an explicit C4 byte value (the 
unique value used for distinguishing the C4 instruction 
format). The second-third bytes (VEX Bytes 1-2) include a 
number of bit fields providing specific capability. Specifi 
cally, REX field 905 (VEX Byte 1, bits (7-5) consists of a 
VEX.R bit field (VEX Byte 1, bit 7-R), VEX.X bit field 
(VEX byte 1, bit 6-X), and VEX.B bit field (VEX byte 1, 
bit 5-B). Other fields of the instructions encode the lower 
three bits of the register indexes as is known in the art (rrr, 
XXX, and bbb), so that Rrrr, XXXX, and Bbbb may beformed 
by adding VEX.R, VEX.X, and VEX.B. Opcode map field 
915 (VEX byte 1, bits 4:0-mm mmm) includes content to 
encode an implied leading opcode byte. W Field 964 (VEX 
byte 2, bit 7-W) is represented by the notation VEX.W. 
and provides different functions depending on the instruc 
tion. The role of VEX.Vvvv 920 (VEX Byte 2, bits 6:3- 
VVVV) may include the following: 1) VEX. VVVV encodes the 
first source register operand, specified in inverted (1S 
complement) form and is valid for instructions with 2 or 
more source operands; 2) VEX.VVVV encodes the destination 
register operand, specified in is complement form for certain 
vector shifts; or 3) VEX.VVVV does not encode any operand, 
the field is reserved and should contain 1111b. If VEX.L. 968 
Size field (VEX byte 2, bit 2-L)=0, it indicates 128 bit 
vector; if VEX.L=1, it indicates 256 bit vector. Prefix 
encoding field 925 (VEX byte 2, bits 1:0-pp) provides 
additional bits for the base operation field. 

Real Opcode Field 930 (Byte 3) is also known as the 
opcode byte. Part of the opcode is specified in this field. 
MOD R/M Field 940 (Byte 4) includes MOD field 942 

(bits 7-6), Reg field 944 (bits 5-3), and R/M field 946 
(bits 2-0). The role of Reg field 944 may include the 
following: encoding either the destination register operand 
or a source register operand (the rrr of Rrrr), or be treated as 
an opcode extension and not used to encode any instruction 
operand. The role of R/M field 94.6 may include the follow 
ing: encoding the instruction operand that references a 
memory address, or encoding either the destination register 
operand or a source register operand. 

Scale, Index, Base (SIB). The content of Scale field 950 
(Byte 5) includes SS952 (bits 7-6), which is used for 
memory address generation. The contents of SIB.XXX 954 
(bits 5-3) and SIB.bbb 956 (bits 2-0) have been previ 
ously referred to with regard to the register indexes XXXX 
and Bbbb. 
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The Displacement Field 962 and the immediate field 
(IMM8) 972 contain address data. 

Generic Vector Friendly Instruction Format 
A vector friendly instruction format is an instruction 

format that is Suited for vector instructions (e.g., there are 5 
certain fields specific to vector operations). While embodi 
ments are described in which both vector and scalar opera 
tions are Supported through the vector friendly instruction 
format, alternative embodiments use only vector operations 
the vector friendly instruction format. 10 

FIGS. 10A-10B are block diagrams illustrating a generic 
vector friendly instruction format and instruction templates 
thereof according to embodiments of the invention. FIG. 
10A is a block diagram illustrating a generic vector friendly 
instruction format and class A instruction templates thereof 15 
according to embodiments of the invention; while FIG. 10B 
is a block diagram illustrating the generic vector friendly 
instruction format and class B instruction templates thereof 
according to embodiments of the invention. Specifically, a 
generic vector friendly instruction format 1000 for which are 20 
defined class A and class B instruction templates, both of 
which include no memory access 1005 instruction templates 
and memory access 1020 instruction templates. The term 
generic in the context of the vector friendly instruction 
format refers to the instruction format not being tied to any 25 
specific instruction set. 

While embodiments of the invention will be described in 
which the vector friendly instruction format supports the 
following: a 64 byte vector operand length (or size) with 32 
bit (4 byte) or 64bit (8 byte) data element widths (or sizes) 30 
(and thus, a 64 byte vector consists of either 16 doubleword 
size elements or alternatively, 8 quadword-size elements); a 
64 byte vector operand length (or size) with 16 bit (2 byte) 
or 8 bit (1 byte) data element widths (or sizes): a 32 byte 
vector operand length (or size) with 32 bit (4 byte), 64bit (8 35 
byte), 16 bit (2 byte), or 8 bit (1 byte) data element widths 
(or sizes); and a 16 byte vector operand length (or size) with 
32 bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1 
byte) data element widths (or sizes); alternative embodi 
ments may support more, less and/or different vector oper- 40 
and sizes (e.g., 256 byte vector operands) with more, less, or 
different data element widths (e.g., 128 bit (16 byte) data 
element widths). 
The class A instruction templates in FIG. 10A include: 1) 

within the no memory access 1005 instruction templates 45 
there is shown a no memory access, full round control type 
operation 1010 instruction template and a no memory 
access, data transform type operation 1015 instruction tem 
plate; and 2) within the memory access 1020 instruction 
templates there is shown a memory access, temporal 1025 50 
instruction template and a memory access, non-temporal 
1030 instruction template. The class B instruction templates 
in FIG. 10B include: 1) within the no memory access 1005 
instruction templates there is shown a no memory access, 
write mask control, partial round control type operation 55 
1012 instruction template and a no memory access, write 
mask control, Vsize type operation 1017 instruction tem 
plate; and 2) within the memory access 1020 instruction 
templates there is shown a memory access, write mask 
control 1027 instruction template. 60 
The generic vector friendly instruction format 1000 

includes the following fields listed below in the order 
illustrated in FIGS. 10A-10B. 

Format field 1040 a specific value (an instruction format 
identifier value) in this field uniquely identifies the vector 65 
friendly instruction format, and thus occurrences of instruc 
tions in the vector friendly instruction format in instruction 

20 
streams. As such, this field is optional in the sense that it is 
not needed for an instruction set that has only the generic 
vector friendly instruction format. 

Base operation field 1042 its content distinguishes dif 
ferent base operations. 

Register index field 1044 its content, directly or through 
address generation, specifies the locations of the source and 
destination operands, be they in registers or in memory. 
These include a sufficient number of bits to select N registers 
from a PxQ (e.g. 32x512, 16x128, 32x1024, 64x1024) 
register file. While in one embodiment N may be up to three 
Sources and one destination register, alternative embodi 
ments may support more or less sources and destination 
registers (e.g., may support up to two sources where one of 
these sources also acts as the destination, may support up to 
three sources where one of these sources also acts as the 
destination, may support up to two sources and one desti 
nation). 

Modifier field 1046 its content distinguishes occur 
rences of instructions in the generic vector instruction for 
mat that specify memory access from those that do not; that 
is, between no memory access 1005 instruction templates 
and memory access 1020 instruction templates. Memory 
access operations read and/or write to the memory hierarchy 
(in some cases specifying the Source and/or destination 
addresses using values in registers), while non-memory 
access operations do not (e.g., the source and destinations 
are registers). While in one embodiment this field also 
selects between three different ways to perform memory 
address calculations, alternative embodiments may support 
more, less, or different ways to perform memory address 
calculations. 

Augmentation operation field 1050 its content distin 
guishes which one of a variety of different operations to be 
performed in addition to the base operation. This field is 
context specific. In one embodiment of the invention, this 
field is divided into a class field 1068, an alpha field 1052, 
and a beta field 1054. The augmentation operation field 1050 
allows common groups of operations to be performed in a 
single instruction rather than 2, 3, or 4 instructions. 

Scale field 1060 its content allows for the scaling of the 
index field's content for memory address generation (e.g., 
for address generation that uses 2**index+base). 

Displacement Field 1062A its content is used as part of 
memory address generation (e.g., for address generation that 
uses 2**index+base+displacement). 

Displacement Factor Field 1062B (note that the juxtapo 
sition of displacement field 1062A directly over displace 
ment factor field 1062B indicates one or the other is used)— 
its content is used as part of address generation; it specifies 
a displacement factor that is to be scaled by the size of a 
memory access (N) where N is the number of bytes in the 
memory access (e.g., for address generation that uses 
2**index+base+scaled displacement). Redundant low 
order bits are ignored and hence, the displacement factor 
field's content is multiplied by the memory operands total 
size (N) in order to generate the final displacement to be 
used in calculating an effective address. The value of N is 
determined by the processor hardware at runtime based on 
the full opcode field 1074 (described later herein) and the 
data manipulation field 1054C. The displacement field 
1062A and the displacement factor field 1062B are optional 
in the sense that they are not used for the no memory access 
1005 instruction templates and/or different embodiments 
may implement only one or none of the two. 

Data element width field 1064 its content distinguishes 
which one of a number of data element widths is to be used 
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(in some embodiments for all instructions; in other embodi 
ments for only some of the instructions). This field is 
optional in the sense that it is not needed if only one data 
element width is supported and/or data element widths are 
Supported using some aspect of the opcodes. 

Write mask field 1070 its content controls, on a per data 
element position basis, whether that data element position in 
the destination vector operand reflects the result of the base 
operation and augmentation operation. Class A instruction 
templates Support merging-writemasking, while class B 
instruction templates Support both merging- and Zeroing 
writemasking. When merging, vector masks allow any set of 
elements in the destination to be protected from updates 
during the execution of any operation (specified by the base 
operation and the augmentation operation); in other one 
embodiment, preserving the old value of each element of the 
destination where the corresponding mask bit has a 0. In 
contrast, when Zeroing vector masks allow any set of ele 
ments in the destination to be Zeroed during the execution of 
any operation (specified by the base operation and the 
augmentation operation); in one embodiment, an element of 
the destination is set to 0 when the corresponding mask bit 
has a 0 value. A subset of this functionality is the ability to 
control the vector length of the operation being performed 
(that is, the span of elements being modified, from the first 
to the last one); however, it is not necessary that the elements 
that are modified be consecutive. Thus, the write mask field 
1070 allows for partial vector operations, including loads, 
stores, arithmetic, logical, etc. While embodiments of the 
invention are described in which the write mask field's 1070 
content selects one of a number of write mask registers that 
contains the write mask to be used (and thus the write mask 
field's 1070 content indirectly identifies that masking to be 
performed), alternative embodiments instead or additional 
allow the mask write field's 1070 content to directly specify 
the masking to be performed. 

Immediate field 1072 its content allows for the specifi 
cation of an immediate. This field is optional in the sense 
that is it not present in an implementation of the generic 
vector friendly format that does not support immediate and 
it is not present in instructions that do not use an immediate. 

Class field 1068 its content distinguishes between dif 
ferent classes of instructions. With reference to FIGS. 10A 
B, the contents of this field select between class A and class 
B instructions. In FIGS. 10A-B, rounded corner squares are 
used to indicate a specific value is present in a field (e.g., 
class A 1068A and class B 1068B for the class field 1068 
respectively in FIGS. 10A-B). 

Instruction Templates of Class A 
In the case of the non-memory access 1005 instruction 

templates of class A, the alpha field 1052 is interpreted as an 
RS field 1052A, whose content distinguishes which one of 
the different augmentation operation types are to be per 
formed (e.g., round 1052A.1 and data transform 1052A.2 
are respectively specified for the no memory access, round 
type operation 1010 and the no memory access, data trans 
form type operation 1015 instruction templates), while the 
beta field 1054 distinguishes which of the operations of the 
specified type is to be performed. In the no memory access 
1005 instruction templates, the scale field 1060, the dis 
placement field 1062A, and the displacement scale filed 
1062B are not present. 
No-Memory Access Instruction Templates—Full Round 

Control Type Operation 
In the no memory access full round control type operation 

1010 instruction template, the beta field 1054 is interpreted 
as a round control field 1054A, whose content(s) provide 
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static rounding. While in the described embodiments of the 
invention the round control field 1054A includes a suppress 
all floating point exceptions (SAE) field 1056 and a round 
operation control field 1058, alternative embodiments may 
Support may encode both these concepts into the same field 
or only have one or the other of these concepts/fields (e.g., 
may have only the round operation control field 1058). 
SAE field 1056 its content distinguishes whether or not 

to disable the exception event reporting; when the SAE 
field's 1056 content indicates suppression is enabled, a 
given instruction does not report any kind of floating-point 
exception flag and does not raise any floating point excep 
tion handler. 
Round operation control field 1058 its content distin 

guishes which one of a group of rounding operations to 
perform (e.g., Round-up, Round-down, Round-towards-Zero 
and Round-to-nearest). Thus, the round operation control 
field 1058 allows for the changing of the rounding mode on 
a per instruction basis. In one embodiment of the invention 
where a processor includes a control register for specifying 
rounding modes, the round operation control field's 1050 
content overrides that register value. 
No Memory Access Instruction Templates—Data Trans 

form Type Operation 
In the no memory access data transform type operation 

1015 instruction template, the beta field 1054 is interpreted 
as a data transform field 1054B, whose content distinguishes 
which one of a number of data transforms is to be performed 
(e.g., no data transform, Swizzle, broadcast). 

In the case of a memory access 1020 instruction template 
of class A, the alpha field 1052 is interpreted as an eviction 
hint field 1052B, whose content distinguishes which one of 
the eviction hints is to be used (in FIG. 10A, temporal 
1052B.1 and non-temporal 1052B.2 are respectively speci 
fied for the memory access, temporal 1025 instruction 
template and the memory access, non-temporal 1030 
instruction template), while the beta field 1054 is interpreted 
as a data manipulation field 1054C, whose content distin 
guishes which one of a number of data manipulation opera 
tions (also known as primitives) is to be performed (e.g., no 
manipulation; broadcast; up conversion of a source; and 
down conversion of a destination). The memory access 1020 
instruction templates include the scale field 1060, and 
optionally the displacement field 1062A or the displacement 
Scale field 1062B. 

Vector memory instructions perform vector loads from 
and vector stores to memory, with conversion Support. As 
with regular vector instructions, vector memory instructions 
transfer data from/to memory in a data element-wise fash 
ion, with the elements that are actually transferred is dictated 
by the contents of the vector mask that is selected as the 
write mask. 
Memory Access Instruction Templates—Temporal 
Temporal data is data likely to be reused soon enough to 

benefit from caching. This is, however, a hint, and different 
processors may implement it in different ways, including 
ignoring the hint entirely. 
Memory Access Instruction Templates Non-Temporal 
Non-temporal data is data unlikely to be reused soon 

enough to benefit from caching in the 1st-level cache and 
should be given priority for eviction. This is, however, a 
hint, and different processors may implement it in different 
ways, including ignoring the hint entirely. 

Instruction Templates of Class B 
In the case of the instruction templates of class B, the 

alpha field 1052 is interpreted as a write mask control (Z) 
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field 1052C, whose content distinguishes whether the write 
masking controlled by the write mask field 1070 should be 
a merging or a Zeroing. 

In the case of the non-memory access 1005 instruction 
templates of class B, part of the beta field 1054 is interpreted 
as an RL field 1057A, whose content distinguishes which 
one of the different augmentation operation types are to be 
performed (e.g., round 1057A.1 and vector length (VSIZE) 
1057A.2 are respectively specified for the no memory 
access, write mask control, partial round control type opera 
tion 1012 instruction template and the no memory access, 
write mask control, VSIZE type operation 1017 instruction 
template), while the rest of the beta field 1054 distinguishes 
which of the operations of the specified type is to be 
performed. In the no memory access 1005 instruction tem 
plates, the scale field 1060, the displacement field 1062A, 
and the displacement scale filed 1062B are not present. 

In the no memory access, write mask control, partial 
round control type operation 1010 instruction template, the 
rest of the beta field 1054 is interpreted as a round operation 
field 1059A and exception event reporting is disabled (a 
given instruction does not report any kind of floating-point 
exception flag and does not raise any floating point excep 
tion handler). 

Round operation control field 1059A just as round 
operation control field 1058, its content distinguishes which 
one of a group of rounding operations to perform (e.g., 
Round-up, Round-down, Round-towards-Zero and Round 
to-nearest). Thus, the round operation control field 1059A 
allows for the changing of the rounding mode on a per 
instruction basis. In one embodiment of the invention where 
a processor includes a control register for specifying round 
ing modes, the round operation control fields 1050 content 
overrides that register value. 

In the no memory access, write mask control, VSIZE type 
operation 1017 instruction template, the rest of the beta field 
1054 is interpreted as a vector length field 1059B, whose 
content distinguishes which one of a number of data vector 
lengths is to be performed on (e.g., 128, 256, or 512 byte). 

In the case of a memory access 1020 instruction template 
of class B, part of the beta field 1054 is interpreted as a 
broadcast field 1057B, whose content distinguishes whether 
or not the broadcast type data manipulation operation is to 
be performed, while the rest of the beta field 1054 is 
interpreted the vector length field 1059B. The memory 
access 1020 instruction templates include the scale field 
1060, and optionally the displacement field 1062A or the 
displacement scale field 1062B. 

With regard to the generic vector friendly instruction 
format 1000, a full opcode field 1074 is shown including the 
format field 1040, the base operation field 1042, and the data 
element width field 1064. While one embodiment is shown 
where the full opcode field 1074 includes all of these fields, 
the full opcode field 1074 includes less than all of these 
fields in embodiments that do not support all of them. The 
full opcode field 1074 provides the operation code (opcode). 
The augmentation operation field 1050, the data element 

width field 1064, and the write mask field 1070 allow these 
features to be specified on a per instruction basis in the 
generic vector friendly instruction format. 
The combination of write mask field and data element 

width field create typed instructions in that they allow the 
mask to be applied based on different data element widths. 
The various instruction templates found within class A 

and class B are beneficial in different situations. In some 
embodiments of the invention, different processors or dif 
ferent cores within a processor may support only class A, 
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only class B, or both classes. For instance, a high perfor 
mance general purpose out-of-order core intended for gen 
eral-purpose computing may support only class B, a core 
intended primarily for graphics and/or scientific (through 
put) computing may support only class A, and a core 
intended for both may support both (of course, a core that 
has some mix of templates and instructions from both 
classes but not all templates and instructions from both 
classes is within the purview of the invention). Also, a single 
processor may include multiple cores, all of which Support 
the same class or in which different cores support different 
class. For instance, in a processor with separate graphics and 
general purpose cores, one of the graphics cores intended 
primarily for graphics and/or scientific computing may 
Support only class A, while one or more of the general 
purpose cores may be high performance general purpose 
cores with out of order execution and register renaming 
intended for general-purpose computing that Support only 
class B. Another processor that does not have a separate 
graphics core, may include one more general purpose in 
order or out-of-order cores that support both class A and 
class B. Of course, features from one class may also be 
implement in the other class in different embodiments of the 
invention. Programs written in a high level language would 
be put (e.g., just in time compiled or statically compiled) 
into an variety of different executable forms, including: 1) a 
form having only instructions of the class(es) Supported by 
the target processor for execution; or 2) a form having 
alternative routines written using different combinations of 
the instructions of all classes and having control flow code 
that selects the routines to execute based on the instructions 
supported by the processor which is currently executing the 
code. 

Exemplary Specific Vector Friendly Instruction Format 
FIG. 11 is a block diagram illustrating an exemplary 

specific vector friendly instruction format according to 
embodiments of the invention. FIG. 11 shows a specific 
vector friendly instruction format 1100 that is specific in the 
sense that it specifies the location, size, interpretation, and 
order of the fields, as well as values for some of those fields. 
The specific vector friendly instruction format 1100 may be 
used to extend the x86 instruction set, and thus some of the 
fields are similar or the same as those used in the existing 
x86 instruction set and extension thereof (e.g., AVX). This 
format remains consistent with the prefix encoding field, real 
opcode byte field, MOD R/M field, SIB field, displacement 
field, and immediate fields of the existing x86 instruction set 
with extensions. The fields from FIG. 10 into which the 
fields from FIG. 11 map are illustrated. 

It should be understood that, although embodiments of the 
invention are described with reference to the specific vector 
friendly instruction format 1100 in the context of the generic 
vector friendly instruction format 1000 for illustrative pur 
poses, the invention is not limited to the specific vector 
friendly instruction format 1100 except where claimed. For 
example, the generic vector friendly instruction format 1000 
contemplates a variety of possible sizes for the various 
fields, while the specific vector friendly instruction format 
1100 is shown as having fields of specific sizes. By way of 
specific example, while the data element width field 1064 is 
illustrated as a one bit field in the specific vector friendly 
instruction format 1100, the invention is not so limited (that 
is, the generic vector friendly instruction format 1000 con 
templates other sizes of the data element width field 1064). 
The generic vector friendly instruction format 1000 

includes the following fields listed below in the order 
illustrated in FIG. 11A. 
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EVEX Prefix (Bytes 0-3) 1102 is encoded in a four-byte 
form. 

Format Field 1040 (EVEX Byte 0, bits 7:0) the first 
byte (EVEX Byte 0) is the format field 1040 and it contains 
OX62 (the unique value used for distinguishing the vector 
friendly instruction format in one embodiment of the inven 
tion). 

The second-fourth bytes (EVEX Bytes 1-3) include a 
number of bit fields providing specific capability. 
REX field 1105 (EVEX Byte 1, bits 7-5)—consists of a 

EVEX.R bit field (EVEX Byte 1, bit 7-R), EVEX.X bit 
field (EVEX byte 1, bit 6-X), and 1057BEX byte 1, 
bits-B). The EVEX.R, EVEX.X, and EVEX.B bit fields 
provide the same functionality as the corresponding VEX bit 
fields, and are encoded using 1s complement form, i.e. 
ZMMO is encoded as 1111B, ZMM15 is encoded as 0000B. 
Other fields of the instructions encode the lower three bits of 
the register indexes as is known in the art (rrr, XXX, and bbb), 
so that Rrrr, XXXX, and Bbbb may be formed by adding 
EVEX.R, EVEX.X, and EVEX.B. 
REX' field 1010 this is the first part of the REX' field 

1010 and is the EVEX.R' bit field (EVEX Byte 1, bit 41-R) 
that is used to encode either the upper 16 or lower 16 of the 
extended 32 register set. In one embodiment of the inven 
tion, this bit, along with others as indicated below, is stored 
in bit inverted format to distinguish (in the well-known x86 
32-bit mode) from the BOUND instruction, whose real 
opcode byte is 62, but does not accept in the MOD R/M field 
(described below) the value of 11 in the MOD field; alter 
native embodiments of the invention do not store this and the 
other indicated bits below in the inverted format. A value of 
1 is used to encode the lower 16 registers. In other words, 
R"Rrrr is formed by combining EVEX.R, EVEX.R, and the 
other RRR from other fields. 
Opcode map field 1115 (EVEX byte 1, bits 3:0- 

mm mm)—its content encodes an implied leading opcode 
byte (OF, OF 38, or OF 3). 

Data element width field 1064 (EVEX byte 2, bit 7 
W) is represented by the notation EVEX.W. EVEX.W is 
used to define the granularity (size) of the datatype (either 
32-bit data elements or 64-bit data elements). 
EVEX. Vvvv. 1120 (EVEX Byte 2, bits 6:3-vvvv) the 

role of EVEX.Vvvv may include the following: 1) EVEX.v- 
VVV encodes the first Source register operand, specified in 
inverted (1s complement) form and is valid for instructions 
with 2 or more source operands; 2) EVEX.VVVV encodes the 
destination register operand, specified in 1s complement 
form for certain vector shifts; or 3) EVEX. VVVV does not 
encode any operand, the field is reserved and should contain 
1111b. Thus, EVEX.Vvvv field 1120 encodes the 4 low-order 
bits of the first source register specifier stored in inverted (1s 
complement) form. Depending on the instruction, an extra 
different EVEX bit field is used to extend the specifier size 
to 32 registers. 
EVEX.U 1068 Class field (EVEX byte 2, bit 2-U) If 

EVEX.U=0, it indicates class A or EVEX.U0; if 
EVEX.U=1, it indicates class B or EVEX.U1. 

Prefix encoding field 1125 (EVEXbyte 2, bits 1:0-pp)— 
provides additional bits for the base operation field. In 
addition to providing Support for the legacy SSE instructions 
in the EVEX prefix format, this also has the benefit of 
compacting the SIMD prefix (rather than requiring a byte to 
express the SIMD prefix, the EVEX prefix requires only 2 
bits). In one embodiment, to Support legacy SSE instructions 
that use a SIMD prefix (66H, F2H, F3H) in both the legacy 
format and in the EVEX prefix format, these legacy SIMD 
prefixes are encoded into the SIMD prefix encoding field; 
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and at runtime are expanded into the legacy SIMD prefix 
prior to being provided to the decoder's PLA (so the PLA 
can execute both the legacy and EVEX format of these 
legacy instructions without modification). Although newer 
instructions could use the EVEX prefix encoding fields 
content directly as an opcode extension, certain embodi 
ments expand in a similar fashion for consistency but allow 
for different meanings to be specified by these legacy SIMD 
prefixes. An alternative embodiment may redesign the PLA 
to support the 2 bit SIMD prefix encodings, and thus not 
require the expansion. 

Alpha field 1052 (EVEX byte 3, bit 7-EH; also known 
as EVEX.EH, EVEX.rs, EVEX.RL, EVEX.write mask con 
trol, and EVEX.N; also illustrated with C)—as previously 
described, this field is context specific. 

Beta field 1054 (EVEXbyte 3, bits 6:4-SSS, also known 
as EVEX.so, EVEX.ro, EVEX.rr1, EVEX.LL0, EVEX 
.LLB; also illustrated with Bf3B)—as previously described, 
this field is context specific. 
REX' field 1010 this is the remainder of the REX' field 

and is the EVEX.V' bit field (EVEX Byte 3, bit 3-V) that 
may be used to encode either the upper 16 or lower 16 of the 
extended 32 register set. This bit is stored in bit inverted 
format. A value of 1 is used to encode the lower 16 registers. 
In other words, VVVVV is formed by combining EVEX.V', 
EVEXVVVV. 

Write mask field 1070 (EVEX byte 3, bits 2:0-kkk) its 
content specifies the index of a register in the write mask 
registers as previously described. In one embodiment of the 
invention, the specific value EVEX kkk=000 has a special 
behavior implying no write mask is used for the particular 
instruction (this may be implemented in a variety of ways 
including the use of a write mask hardwired to all ones or 
hardware that bypasses the masking hardware). 

Real Opcode Field 1130 (Byte 4) is also known as the 
opcode byte. Part of the opcode is specified in this field. 
MOD R/M Field 1140 (Byte 5) includes MOD field 1142, 

Reg field 1144, and R/M field 1146. As previously described, 
the MOD field's 1142 content distinguishes between 
memory access and non-memory access operations. The role 
of Reg field 1144 can be summarized to two situations: 
encoding either the destination register operand or a source 
register operand, or be treated as an opcode extension and 
not used to encode any instruction operand. The role of R/M 
field 1146 may include the following: encoding the instruc 
tion operand that references a memory address, or encoding 
either the destination register operand or a source register 
operand. 

Scale, Index, Base (SIB) Byte (Byte 6) As previously 
described, the scale field's 1050 content is used for memory 
address generation. SIB.XXX 1154 and SIB.bbb 1156 the 
contents of these fields have been previously referred to with 
regard to the register indexes XXXX and Bbbb. 

Displacement field 1062A (Bytes 7-10) when MOD 
field 1142 contains 10, bytes 7-10 are the displacement field 
1062A, and it works the same as the legacy 32-bit displace 
ment (disp32) and works at byte granularity. 

Displacement factor field 1062B (Byte 7) when MOD 
field 1142 contains 01, byte 7 is the displacement factor field 
1062B. The location of this field is that same as that of the 
legacy x86 instruction set 8-bit displacement (disp8), which 
works at byte granularity. Since disp8 is sign extended, it can 
only address between -128 and 127 bytes offsets; in terms 
of 64 byte cache lines, disp8 uses 8 bits that can be set to 
only four really useful values -128, -64, 0, and 64; since a 
greater range is often needed, disp32 is used; however, 
disp32 requires 4 bytes. In contrast to disp8 and disp32, the 
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displacement factor field 1062B is a reinterpretation of 
disp8; when using displacement factor field 1062B, the 
actual displacement is determined by the content of the 
displacement factor field multiplied by the size of the 
memory operand access (N). This type of displacement is 
referred to as disp8*N. This reduces the average instruction 
length (a single byte of used for the displacement but with 
a much greater range). Such compressed displacement is 
based on the assumption that the effective displacement is 
multiple of the granularity of the memory access, and hence, 
the redundant low-order bits of the address offset do not 
need to be encoded. In other words, the displacement factor 
field 1062B substitutes the legacy x86 instruction set 8-bit 
displacement. Thus, the displacement factor field 1062B is 
encoded the same way as an x86 instruction set 8-bit 
displacement (so no changes in the ModRM/SIB encoding 
rules) with the only exception that disp8 is overloaded to 
disp8*N. In other words, there are no changes in the 
encoding rules or encoding lengths but only in the interpre 
tation of the displacement value by hardware (which needs 
to scale the displacement by the size of the memory operand 
to obtain a byte-wise address offset). 

Immediate field 1072 operates as previously described. 
Full Opcode Field 
FIG. 11B is a block diagram illustrating the fields of the 

specific vector friendly instruction format 1100 that make up 
the full opcode field 1074 according to one embodiment of 
the invention. Specifically, the full opcode field 1074 
includes the format field 1040, the base operation field 1042, 
and the data element width (W) field 1064. The base 
operation field 1042 includes the prefix encoding field 1125, 
the opcode map field 1115, and the real opcode field 1130. 

Register Index Field 
FIG. 11C is a block diagram illustrating the fields of the 

specific vector friendly instruction format 1100 that make up 
the register index field 1044 according to one embodiment 
of the invention. Specifically, the register index field 1044 
includes the REX field 1105, the REX' field 1110, the 
MODR/M.reg field 1144, the MODR/Mr/m field 1146, the 
VVVV field 1120, XXX field 1154, and the bbb field 1156. 

Augmentation Operation Field 
FIG. 11D is a block diagram illustrating the fields of the 

specific vector friendly instruction format 1100 that make up 
the augmentation operation field 1050 according to one 
embodiment of the invention. When the class (U) field 1068 
contains 0, it signifies EVEX.U0 (class A 1068A); when it 
contains 1, it signifies EVEX.U1 (class B 1068B). When 
U=0 and the MOD field 1142 contains 11 (signifying a no 
memory access operation), the alpha field 1052 (EVEXbyte 
3, bit 7-EH) is interpreted as thers field 1052A. When the 
rs field 1052A contains a 1 (round 1052A1), the beta field 
1054 (EVEX byte 3, bits 6:4-SSS) is interpreted as the 
round control field 1054A. The round control field 1054A 
includes a one bit SAE field 1056 and a two bit round 
operation field 1058. When the rs field 1052A contains a 0 
(data transform 1052A.2), the beta field 1054 (EVEXbyte 3, 
bits 6:4-SSS) is interpreted as a three bit data transform 
field 1054B. When U=0 and the MOD field 1142 contains 
00, 01, or 10 (signifying a memory access operation), the 
alpha field 1052 (EVEX byte 3, bit 7-EH) is interpreted as 
the eviction hint (EH) field 1052B and the beta field 1054 
(EVEX byte 3, bits 6:4-SSS) is interpreted as a three bit 
data manipulation field 1054C. 
When U=1, the alpha field 1052 (EVEX byte 3, bit 

7-EH) is interpreted as the write mask control (Z) field 
1052C. When U=1 and the MOD field 1142 contains 11 
(signifying a no memory access operation), part of the beta 
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field 1054 (EVEXbyte 3, bit 4-S) is interpreted as the RL 
field 1057A: when it contains a 1 (round 1057A.1) the rest 
of the beta field 1054 (EVEX byte 3, bit 6-5-S) is 
interpreted as the round operation field 1059A, while when 
the RL field 1057A contains a 0 (VSIZE 1057.A2) the rest 
of the beta field 1054 (EVEX byte 3, bit 6-5-S) is 
interpreted as the vector length field 1059B (EVEX byte 3, 
bit 6-5-L). When U=1 and the MOD field 1142 contains 
00, 01, or 10 (signifying a memory access operation), the 
beta field 1054 (EVEX byte 3, bits 6:4-SSS) is interpreted 
as the vector length field 1059B (EVEX byte 3, bit 6-5- 
Lo) and the broadcast field 1057B (EVEX byte 3, bit 
4-B). 
Exemplary Register Architecture 
FIG. 12 is a block diagram of a register architecture 1200 

according to one embodiment of the invention. In the 
embodiment illustrated, there are 32 vector registers 1210 
that are 512 bits wide; these registers are referenced as 
Zmm0 through Zmm31. The lower order 256 bits of the 
lower 16 Zimm registers are overlaid on registers ymm0-16. 
The lower order 128 bits of the lower 16 Zmm registers (the 
lower order 128 bits of the ymm registers) are overlaid on 
registers xmm0-15. The specific vector friendly instruction 
format 1100 operates on these overlaid register file as 
illustrated in the below tables. 

Adjustable Vector 
Length Class Operations Registers 

Instruction Templates A (FIG. 1010, 1015, Zmm registers (the vector 
that do not include the 10A: 1025, 1030 length is 64 byte) 
vector length field U = 0) 
1059B B (FIG. 1012 Zimm registers (the vector 

1OB: length is 64 byte) 
U = 1) 

Instruction templates B (FIG. 1017, 1027 Zimm, ymm, or xmm 
that do include the 1OB: registers (the vector 
vector length field U = 1) length is 64 byte, 32 
1059B byte, or 16 byte) depend 

ing on the vector length 
field 1059B 

In other words, the vector length field 1059B selects 
between a maximum length and one or more other shorter 
lengths, where each Such shorter length is half the length of 
the preceding length; and instructions templates without the 
vector length field 1059B operate on the maximum vector 
length. Further, in one embodiment, the class B instruction 
templates of the specific vector friendly instruction format 
1100 operate on packed or scalar single/double-precision 
floating point data and packed or scalar integer data. Scalar 
operations are operations performed on the lowest order data 
element position in an Zmm/ymm/xmm register, the higher 
order data element positions are either left the same as they 
were prior to the instruction or Zeroed depending on the 
embodiment. 

Write mask registers 1215 in the embodiment illus 
trated, there are 8 write mask registers (k0 through k7), each 
64 bits in size. In an alternate embodiment, the write mask 
registers 1215 are 16 bits in size. As previously described, in 
one embodiment of the invention, the vector mask register 
k0 cannot be used as a write mask; when the encoding that 
would normally indicate k0 is used for a write mask, it 
selects a hardwired write mask of 0xFFFF, effectively dis 
abling write masking for that instruction. 

General-purpose registers 1225 in the embodiment 
illustrated, there are sixteen 64-bit general-purpose registers 
that are used along with the existing x86 addressing modes 
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to address memory operands. These registers are referenced 
by the names RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP 
and R8 through R15. 

Scalar floating point stack register file (x87 stack) 1245, 
on which is aliased the MMX packed integer flat register file 
1250 in the embodiment illustrated, the x87 stack is an 
eight-element stack used to perform Scalar floating-point 
operations on 32/64/80-bit floating point data using the x87 
instruction set extension; while the MMX registers are used 
to perform operations on 64-bit packed integer data, as well 
as to hold operands for Some operations performed between 
the MMX and XMM registers. 

Alternative embodiments of the invention may use wider 
or narrower registers. Additionally, alternative embodiments 
of the invention may use more, less, or different register files 
and registers. 

Exemplary Core Architectures, Processors, and Computer 
Architectures 

Processor cores may be implemented in different ways, 
for different purposes, and in different processors. For 
instance, implementations of Such cores may include: 1) a 
general purpose in-order core intended for general-purpose 
computing; 2) a high performance general purpose out-of 
order core intended for general-purpose computing; 3) a 
special purpose core intended primarily for graphics and/or 
Scientific (throughput) computing. Implementations of dif 
ferent processors may include: 1) a CPU including one or 
more general purpose in-order cores intended for general 
purpose computing and/or one or more general purpose 
out-of-order cores intended for general-purpose computing: 
and 2) a coprocessor including one or more special purpose 
cores intended primarily for graphics and/or scientific 
(throughput). Such different processors lead to different 
computer system architectures, which may include: 1) the 
coprocessor on a separate chip from the CPU; 2) the 
coprocessor on a separate die in the same package as a CPU: 
3) the coprocessor on the same die as a CPU (in which case, 
Such a coprocessor is sometimes referred to as special 
purpose logic, such as integrated graphics and/or scientific 
(throughput) logic, or as special purpose cores); and 4) a 
system on a chip that may include on the same die the 
described CPU (sometimes referred to as the application 
core(s) or application processor(s)), the above described 
coprocessor, and additional functionality. Exemplary core 
architectures are described next, followed by descriptions of 
exemplary processors and computer architectures. 

Exemplary Core Architectures 
In-Order and Out-of-Order Core Block Diagram 
FIG. 13A is a block diagram illustrating both an exem 

plary in-order pipeline and an exemplary register renaming, 
out-of-order issue/execution pipeline according to embodi 
ments of the invention. FIG. 13B is a block diagram illus 
trating both an exemplary embodiment of an in-order archi 
tecture core and an exemplary register renaming, out-of 
order issue? execution architecture core to be included in a 
processor according to embodiments of the invention. The 
solid lined boxes in FIGS. 13A-B illustrate the in-order 
pipeline and in-order core, while the optional addition of the 
dashed lined boxes illustrates the register renaming, out-of 
order issue/execution pipeline and core. Given that the 
in-order aspect is a Subset of the out-of-order aspect, the 
out-of-order aspect will be described. 

In FIG. 13A, a processor pipeline 1300 includes a fetch 
stage 1302, a length decode stage 1304, a decode stage 1306, 
an allocation stage 1308, a renaming stage 1310, a sched 
uling (also known as a dispatch or issue) stage 1312, a 
register read/memory read stage 1314, an execute stage 
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1316, a write back/memory write stage 1318, an exception 
handling stage 1322, and a commit stage 1324. 

FIG. 13B shows processor core 1390 including a front end 
unit 1330 coupled to an execution engine unit 1350, and 
both are coupled to a memory unit 1370. The core 1390 may 
be a reduced instruction set computing (RISC) core, a 
complex instruction set computing (CISC) core, a very long 
instruction word (VLIW) core, or a hybrid or alternative 
core type. As yet another option, the core 1390 may be a 
special-purpose core, such as, for example, a network or 
communication core, compression engine, coprocessor core, 
general purpose computing graphics processing unit 
(GPGPU) core, graphics core, or the like. 
The front end unit 1330 includes a branch prediction unit 

1332 coupled to an instruction cache unit 1334, which is 
coupled to an instruction translation lookaside buffer (TLB) 
1336, which is coupled to an instruction fetch unit 1338, 
which is coupled to a decode unit 1340. The decode unit 
1340 (or decoder) may decode instructions, and generate as 
an output one or more micro-operations, micro-code entry 
points, microinstructions, other instructions, or other control 
signals, which are decoded from, or which otherwise reflect, 
or are derived from, the original instructions. The decode 
unit 1340 may be implemented using various different 
mechanisms. Examples of Suitable mechanisms include, but 
are not limited to, look-up tables, hardware implementa 
tions, programmable logic arrays (PLAs), microcode read 
only memories (ROMs), etc. In one embodiment, the core 
1390 includes a microcode ROM or other medium that 
stores microcode for certain macroinstructions (e.g., in 
decode unit 1340 or otherwise within the front end unit 
1330). The decode unit 1340 is coupled to a rename? 
allocator unit 1352 in the execution engine unit 1350. 
The execution engine unit 1350 includes the rename/ 

allocator unit 1352 coupled to a retirement unit 1354 and a 
set of one or more scheduler unit(s) 1356. The scheduler 
unit(s) 1356 represents any number of different schedulers, 
including reservations stations, central instruction window, 
etc. The scheduler unit(s) 1356 is coupled to the physical 
register file(s) unit(s) 1358. Each of the physical register 
file(s) units 1358 represents one or more physical register 
files, different ones of which store one or more different data 
types, such as scalar integer, Scalar floating point, packed 
integer, packed floating point, vector integer, Vector floating 
point, status (e.g., an instruction pointer that is the address 
of the next instruction to be executed), etc. In one embodi 
ment, the physical register file(s) unit 1358 comprises a 
vector registers unit, a write mask registers unit, and a scalar 
registers unit. These register units may provide architectural 
vector registers, vector mask registers, and general purpose 
registers. The physical register file(s) unit(s) 1358 is over 
lapped by the retirement unit 1354 to illustrate various ways 
in which register renaming and out-of-order execution may 
be implemented (e.g., using a reorder buffer(s) and a retire 
ment register file(s); using a future file(s), a history buffer(s), 
and a retirement register file(s); using a register maps and a 
pool of registers; etc.). The retirement unit 1354 and the 
physical register file(s) unit(s) 1358 are coupled to the 
execution cluster(s) 1360. The execution cluster(s) 1360 
includes a set of one or more execution units 1362 and a set 
of one or more memory access units 1364. The execution 
units 1362 may perform various operations (e.g., shifts, 
addition, Subtraction, multiplication) and on various types of 
data (e.g., Scalar floating point, packed integer, packed 
floating point, vector integer, vector floating point). While 
Some embodiments may include a number of execution units 
dedicated to specific functions or sets of functions, other 
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embodiments may include only one execution unit or mul 
tiple execution units that all perform all functions. The 
scheduler unit(s) 1356, physical register file(s) unit(s) 1358, 
and execution cluster(s) 1360 are shown as being possibly 
plural because certain embodiments create separate pipe 
lines for certain types of data/operations (e.g., a scalar 
integer pipeline, a Scalar floating point/packed integer/ 
packed floating point/vector integer/vector floating point 
pipeline, and/or a memory access pipeline that each have 
their own Scheduler unit, physical register file(s) unit, and/or 
execution cluster—and in the case of a separate memory 
access pipeline, certain embodiments are implemented in 
which only the execution cluster of this pipeline has the 
memory access unit(s) 1364). It should also be understood 
that where separate pipelines are used, one or more of these 
pipelines may be out-of-order issue/execution and the rest 
in-order. 
The set of memory access units 1364 is coupled to the 

memory unit 1370, which includes a data TLB unit 1372 
coupled to a data cache unit 1374 coupled to a level 2 (L.2) 
cache unit 1376. In one exemplary embodiment, the memory 
access units 1364 may include a load unit, a store address 
unit, and a store data unit, each of which is coupled to the 
data TLB unit 1372 in the memory unit 1370. The instruc 
tion cache unit 1334 is further coupled to a level 2 (L.2) 
cache unit 1376 in the memory unit 1370. The L2 cache unit 
1376 is coupled to one or more other levels of cache and 
eventually to a main memory. 
By way of example, the exemplary register renaming, 

out-of-order issue/execution core architecture may imple 
ment the pipeline 1300 as follows: 1) the instruction fetch 
1338 performs the fetch and length decoding stages 1302 
and 1304; 2) the decode unit 1340 performs the decode stage 
1306; 3) the rename/allocator unit 1352 performs the allo 
cation stage 1308 and renaming stage 1310; 4) the scheduler 
unit(s) 1356 performs the schedule stage 1312; 5) the 
physical register file(s) unit(s) 1358 and the memory unit 
1370 perform the register read/memory read stage 1314; the 
execution cluster 1360 perform the execute stage 1316; 6) 
the memory unit 1370 and the physical register file(s) unit(s) 
1358 perform the write back/memory write stage 1318; 7) 
various units may be involved in the exception handling 
stage 1322; and 8) the retirement unit 1354 and the physical 
register file(s) unit(s) 1358 perform the commit stage 1324. 
The core 1390 may support one or more instructions sets 

(e.g., the x86 instruction set (with some extensions that have 
been added with newer versions); the MIPS instruction set 
of MIPS Technologies of Sunnyvale, Calif.; the ARM 
instruction set (with optional additional extensions such as 
NEON) of ARM Holdings of Sunnyvale, Calif.), including 
the instruction(s) described herein. In one embodiment, the 
core 1390 includes logic to support a packed data instruction 
set extension (e.g., AVX1, AVX2), thereby allowing the 
operations used by many multimedia applications to be 
performed using packed data. 

It should be understood that the core may support multi 
threading (executing two or more parallel sets of operations 
or threads), and may do so in a variety of ways including 
time sliced multithreading, simultaneous multithreading 
(where a single physical core provides a logical core for each 
of the threads that physical core is simultaneously multi 
threading), or a combination thereof (e.g., time sliced fetch 
ing and decoding and simultaneous multithreading thereaf 
ter such as in the Intel(R) Hyperthreading technology). 

While register renaming is described in the context of 
out-of-order execution, it should be understood that register 
renaming may be used in an in-order architecture. While the 
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illustrated embodiment of the processor also includes sepa 
rate instruction and data cache units 1334/1374 and a shared 
L2 cache unit 1376, alternative embodiments may have a 
single internal cache for both instructions and data, such as, 
for example, a Level 1 (L1) internal cache, or multiple levels 
of internal cache. In some embodiments, the system may 
include a combination of an internal cache and an external 
cache that is external to the core and/or the processor. 
Alternatively, all of the cache may be external to the core 
and/or the processor. 

Specific Exemplary In-Order Core Architecture 
FIGS. 14A-B illustrate a block diagram of a more specific 

exemplary in-order core architecture, which core would be 
one of several logic blocks (including other cores of the 
same type and/or different types) in a chip. The logic blocks 
communicate through a high-bandwidth interconnect net 
work (e.g., a ring network) with Some fixed function logic, 
memory I/O interfaces, and other necessary I/O logic, 
depending on the application. 

FIG. 14A is a block diagram of a single processor core, 
along with its connection to the on-die interconnect network 
1402 and with its local subset of the Level 2 (L2) cache 
1404, according to embodiments of the invention. In one 
embodiment, an instruction decoder 1400 supports the x86 
instruction set with a packed data instruction set extension. 
An L1 cache 1406 allows low-latency accesses to cache 
memory into the scalar and vector units. While in one 
embodiment (to simplify the design), a scalar unit 1408 and 
a vector unit 1410 use separate register sets (respectively, 
Scalar registers 1412 and vector registers 1414) and data 
transferred between them is written to memory and then read 
back in from a level 1 (L1) cache 1406, alternative embodi 
ments of the invention may use a different approach (e.g., 
use a single register set or include a communication path that 
allow data to be transferred between the two register files 
without being written and read back). 
The local subset of the L2 cache 1404 is part of a global 

L2 cache that is divided into separate local Subsets, one per 
processor core. Each processor core has a direct access path 
to its own local subset of the L2 cache 1404. Data read by 
a processor core is stored in its L2 cache Subset 1404 and can 
be accessed quickly, in parallel with other processor cores 
accessing their own local L2 cache Subsets. Data written by 
a processor core is stored in its own L2 cache subset 1404 
and is flushed from other subsets, if necessary. The ring 
network ensures coherency for shared data. The ring net 
work is bi-directional to allow agents such as processor 
cores, L2 caches and other logic blocks to communicate with 
each other within the chip. Each ring data-path is 1012-bits 
wide per direction. 

FIG. 14B is an expanded view of part of the processor 
core in FIG. 14A according to embodiments of the inven 
tion. FIG. 14B includes an L1 data cache 1406A part of the 
L1 cache 1404, as well as more detail regarding the vector 
unit 1410 and the vector registers 1414. Specifically, the 
vector unit 1410 is a 16-wide vector processing unit (VPU) 
(see the 16-wide ALU 1428), which executes one or more of 
integer, single-precision float, and double-precision float 
instructions. The VPU supports Swizzling the register inputs 
with Swizzle unit 1420, numeric conversion with numeric 
convert units 1422A-B, and replication with replication unit 
1424 on the memory input. Write mask registers 1426 allow 
predicating resulting vector writes. 

Processor with Integrated Memory Controller and Graph 
1CS 

FIG. 15 is a block diagram of a processor 1500 that may 
have more than one core, may have an integrated memory 
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controller, and may have integrated graphics according to 
embodiments of the invention. The solid lined boxes in FIG. 
15 illustrate a processor 1500 with a single core 1502A, a 
system agent 1510, a set of one or more bus controller units 
1516, while the optional addition of the dashed lined boxes 5 
illustrates an alternative processor 1500 with multiple cores 
1502A-N, a set of one or more integrated memory controller 
unit(s) 1514 in the system agent unit 1510, and special 
purpose logic 1508. 

Thus, different implementations of the processor 1500 10 
may include: 1) a CPU with the special purpose logic 1508 
being integrated graphics and/or scientific (throughput) 
logic (which may include one or more cores), and the cores 
1502A-N being one or more general purpose cores (e.g., 
general purpose in-order cores, general purpose out-of-order 15 
cores, a combination of the two); 2) a coprocessor with the 
cores 1502A-N being a large number of special purpose 
cores intended primarily for graphics and/or scientific 
(throughput); and 3) a coprocessor with the cores 1502A-N 
being a large number of general purpose in-order cores. 20 
Thus, the processor 1500 may be a general-purpose proces 
Sor, coprocessor or special-purpose processor, Such as, for 
example, a network or communication processor, compres 
sion engine, graphics processor, GPGPU (general purpose 
graphics processing unit), a high-throughput many inte- 25 
grated core (MIC) coprocessor (including 30 or more cores), 
embedded processor, or the like. The processor may be 
implemented on one or more chips. The processor 1500 may 
be a part of and/or may be implemented on one or more 
Substrates using any of a number of process technologies, 30 
such as, for example, BiCMOS, CMOS, or NMOS. 
The memory hierarchy includes one or more levels of 

cache within the cores, a set or one or more shared cache 
units 1506, and external memory (not shown) coupled to the 
set of integrated memory controller units 1514. The set of 
shared cache units 1506 may include one or more mid-level 
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or 
other levels of cache, a last level cache (LLC), and/or 
combinations thereof. While in one embodiment a ring 
based interconnect unit 1512 interconnects the integrated 
graphics logic 1508, the set of shared cache units 1506, and 
the system agent unit 1510/integrated memory controller 
unit(s) 1514, alternative embodiments may use any number 
of well-known techniques for interconnecting Such units. In 
one embodiment, coherency is maintained between one or 
more cache units 1506 and cores 1502-A-N. 

In some embodiments, one or more of the cores 1502A-N 
are capable of multi-threading. The system agent 1510 
includes those components coordinating and operating cores 
1502A-N. The system agent unit 1510 may include for 
example a power control unit (PCU) and a display unit. The 
PCU may be or include logic and components needed for 
regulating the power state of the cores 1502A-N and the 
integrated graphics logic 1508. The display unit is for 
driving one or more externally connected displayS. 
The cores 1502A-N may be homogenous or heteroge 

neous in terms of architecture instruction set; that is, two or 
more of the cores 1502A-N may be capable of execution the 
same instruction set, while others may be capable of execut 
ing only a subset of that instruction set or a different 60 
instruction set. 

Exemplary Computer Architectures 
FIGS. 16-19 are block diagrams of exemplary computer 

architectures. Other system designs and configurations 
known in the arts for laptops, desktops, handheld PCs, 65 
personal digital assistants, engineering workstations, Serv 
ers, network devices, network hubs, switches, embedded 
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processors, digital signal processors (DSPs), graphics 
devices, video game devices, set-top boxes, micro control 
lers, cell phones, portable media players, hand held devices, 
and various other electronic devices, are also suitable. In 
general, a huge variety of systems or electronic devices 
capable of incorporating a processor and/or other execution 
logic as disclosed herein are generally suitable. 

Referring now to FIG. 16, shown is a block diagram of a 
system 1600 in accordance with one embodiment of the 
present invention. The system 1600 may include one or 
more processors 1610, 1615, which are coupled to a con 
troller hub 1620. In one embodiment the controller hub 1620 
includes a graphics memory controller hub (GMCH) 1690 
and an Input/Output Hub (IOH) 1650 (which may be on 
separate chips); the GMCH 1690 includes memory and 
graphics controllers to which are coupled memory 1640 and 
a coprocessor 1645; the IOH 1650 is couples input/output 
(I/O) devices 1660 to the GMCH 1690. Alternatively, one or 
both of the memory and graphics controllers are integrated 
within the processor (as described herein), the memory 1640 
and the coprocessor 1645 are coupled directly to the pro 
cessor 1610, and the controller hub 1620 in a single chip 
with the IOH 1650. 
The optional nature of additional processors 1615 is 

denoted in FIG. 16 with broken lines. Each processor 1610, 
1615 may include one or more of the processing cores 
described herein and may be some version of the processor 
1SOO. 
The memory 1640 may be, for example, dynamic random 

access memory (DRAM), phase change memory (PCM), or 
a combination of the two. For at least one embodiment, the 
controller hub 1620 communicates with the processor(s) 
1610, 1615 via a multi-drop bus, such as a frontside bus 
(FSB), point-to-point interface such as QuickPath Intercon 
nect (QPI), or similar connection 1695. 

In one embodiment, the coprocessor 1645 is a special 
purpose processor, such as, for example, a high-throughput 
MIC processor, a network or communication processor, 
compression engine, graphics processor, GPGPU, embed 
ded processor, or the like. In one embodiment, controller hub 
1620 may include an integrated graphics accelerator. 

There can be a variety of differences between the physical 
resources 1610, 1615 in terms of a spectrum of metrics of 
merit including architectural, microarchitectural, thermal, 
power consumption characteristics, and the like. 

In one embodiment, the processor 1610 executes instruc 
tions that control data processing operations of a general 
type. Embedded within the instructions may be coprocessor 
instructions. The processor 1610 recognizes these coproces 
sor instructions as being of a type that should be executed by 
the attached coprocessor 1645. Accordingly, the processor 
1610 issues these coprocessor instructions (or control 
signals representing coprocessor instructions) on a copro 
cessor bus or other interconnect, to coprocessor 1645. 
Coprocessor(s) 1645 accept and execute the received copro 
cessor instructions. 

Referring now to FIG. 17, shown is a block diagram of a 
first more specific exemplary system 1700 in accordance 
with an embodiment of the present invention. As shown in 
FIG. 17, multiprocessor system 1700 is a point-to-point 
interconnect system, and includes a first processor 1770 and 
a second processor 1780 coupled via a point-to-point inter 
connect 1750. Each of processors 1770 and 1780 may be 
some version of the processor 1500. In one embodiment of 
the invention, processors 1770 and 1780 are respectively 
processors 1610 and 1615, while coprocessor 1738 is copro 
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cessor 1645. In another embodiment, processors 1770 and 
1780 are respectively processor 1610 coprocessor 1645. 

Processors 1770 and 1780 are shown including integrated 
memory controller (IMC) units 1772 and 1782, respectively. 
Processor 1770 also includes as part of its bus controller 
units point-to-point (P-P) interfaces 1776 and 1778; simi 
larly, second processor 1780 includes P-P interfaces 1786 
and 1788. Processors 1770, 1780 may exchange information 
via a point-to-point (P-P) interface 1750 using P-P interface 
circuits 1778, 1788. As shown in FIG. 17, IMCs 1772 and 
1782 couple the processors to respective memories, namely 
a memory 1732 and a memory 1734, which may be portions 
of main memory locally attached to the respective proces 
SOS. 

Processors 1770, 1780 may each exchange information 
with a chipset 1790 via individual P-P interfaces 1752, 1754 
using point to point interface circuits 1776, 1794, 1786, 
1798. Chipset 1790 may optionally exchange information 
with the coprocessor 1738 via a high-performance interface 
1739. In one embodiment, the coprocessor 1738 is a special 
purpose processor. Such as, for example, a high-throughput 
MIC processor, a network or communication processor, 
compression engine, graphics processor, GPGPU, embed 
ded processor, or the like. 
A shared cache (not shown) may be included in either 

processor or outside of both processors, yet connected with 
the processors via P-P interconnect, such that either or both 
processors local cache information may be stored in the 
shared cache if a processor is placed into a low power mode. 

Chipset 1790 may be coupled to a first bus 1716 via an 
interface 1796. In one embodiment, first bus 1716 may be a 
Peripheral Component Interconnect (PCI) bus, or a bus such 
as a PCI Express bus or another third generation I/O 
interconnect bus, although the scope of the present invention 
is not so limited. 
As shown in FIG. 17, various I/O devices 1714 may be 

coupled to first bus 1716, along with a bus bridge 1718 
which couples first bus 1716 to a second bus 1720. In one 
embodiment, one or more additional processor(s) 1715, such 
as coprocessors, high-throughput MIC processors, GPG 
PUs, accelerators (such as, e.g., graphics accelerators or 
digital signal processing (DSP) units), field programmable 
gate arrays, or any other processor, are coupled to first bus 
1716. In one embodiment, second bus 1720 may be a low 
pin count (LPC) bus. Various devices may be coupled to a 
second bus 1720 including, for example, a keyboard and/or 
mouse 1722, communication devices 1727 and a storage 
unit 1728 such as a disk drive or other mass storage device 
which may include instructions/code and data 1730, in one 
embodiment. Further, an audio I/O 1724 may be coupled to 
the second bus 1720. Note that other architectures are 
possible. For example, instead of the point-to-point archi 
tecture of FIG. 17, a system may implement a multi-drop bus 
or other such architecture. 

Referring now to FIG. 18, shown is a block diagram of a 
second more specific exemplary system 1800 in accordance 
with an embodiment of the present invention. Like elements 
in FIGS. 17 and 18 bear like reference numerals, and certain 
aspects of FIG. 17 have been omitted from FIG. 18 in order 
to avoid obscuring other aspects of FIG. 18. 

FIG. 18 illustrates that the processors 1770, 1780 may 
include integrated memory and I/O control logic (“CL”) 
1772 and 1782, respectively. Thus, the CL 1772, 1782 
include integrated memory controller units and include I/O 
control logic. FIG. 18 illustrates that not only are the 
memories 1732, 1734 coupled to the CL 1772, 1782, but also 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

36 
that I/O devices 1814 are also coupled to the control logic 
1772, 1782. Legacy I/O devices 1815 are coupled to the 
chipset 1790. 

Referring now to FIG. 19, shown is a block diagram of a 
SoC 1900 in accordance with an embodiment of the present 
invention. Similar elements in FIG. 15 bear like reference 
numerals. Also, dashed lined boxes are optional features on 
more advanced SoCs. In FIG. 19, an interconnect unit(s) 
1902 is coupled to: an application processor 1910 which 
includes a set of one or more cores 202A-N and shared cache 
unit(s) 1506; a system agent unit 1510; a bus controller 
unit(s) 1516; an integrated memory controller unit(s) 1514; 
a set or one or more coprocessors 1920 which may include 
integrated graphics logic, an image processor, an audio 
processor, and a video processor; an static random access 
memory (SRAM) unit 1930; a direct memory access 
(DMA) unit 1932; and a display unit 1940 for coupling to 
one or more external displays. In one embodiment, the 
coprocessor(s) 1920 include a special-purpose processor, 
Such as, for example, a network or communication proces 
sor, compression engine, GPGPU, a high-throughput MIC 
processor, embedded processor, or the like. 

Embodiments of the mechanisms disclosed herein may be 
implemented in hardware, software, firmware, or a combi 
nation of such implementation approaches. Embodiments of 
the invention may be implemented as computer programs or 
program code executing on programmable systems compris 
ing at least one processor, a storage system (including 
Volatile and non-volatile memory and/or storage elements), 
at least one input device, and at least one output device. 

Program code, such as code 1730 illustrated in FIG. 17. 
may be applied to input instructions to perform the functions 
described herein and generate output information. The out 
put information may be applied to one or more output 
devices, in known fashion. For purposes of this application, 
a processing system includes any system that has a proces 
Sor, such as, for example; a digital signal processor (DSP), 
a microcontroller, an application specific integrated circuit 
(ASIC), or a microprocessor. 
The program code may be implemented in a high level 

procedural or object oriented programming language to 
communicate with a processing system. The program code 
may also be implemented in assembly or machine language, 
if desired. In fact, the mechanisms described herein are not 
limited in scope to any particular programming language. In 
any case, the language may be a compiled or interpreted 
language. 
One or more aspects of at least one embodiment may be 

implemented by representative instructions stored on a 
machine-readable medium which represents various logic 
within the processor, which when read by a machine causes 
the machine to fabricate logic to perform the techniques 
described herein. Such representations, known as “IP cores' 
may be stored on a tangible, machine readable medium and 
Supplied to various customers or manufacturing facilities to 
load into the fabrication machines that actually make the 
logic or processor. 

Such machine-readable storage media may include, with 
out limitation, non-transitory, tangible arrangements of 
articles manufactured or formed by a machine or device, 
including storage media such as hard disks, any other type 
of disk including floppy disks, optical disks, compact disk 
read-only memories (CD-ROMs), compact disk rewritable's 
(CD-RWs), and magneto-optical disks, semiconductor 
devices such as read-only memories (ROMs), random 
access memories (RAMs) such as dynamic random access 
memories (DRAMs), static random access memories 
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(SRAMs), erasable programmable read-only memories 
(EPROMs), flash memories, electrically erasable program 
mable read-only memories (EEPROMs), phase change 
memory (PCM), magnetic or optical cards, or any other type 
of media Suitable for storing electronic instructions. 

Accordingly, embodiments of the invention also include 
non-transitory, tangible machine-readable media containing 
instructions or containing design data, such as Hardware 
Description Language (HDL), which defines structures, cir 
cuits, apparatuses, processors and/or system features 
described herein. Such embodiments may also be referred to 
as program products. 

Emulation (Including Binary Translation, Code Morph 
ing, Etc.) 

In some cases, an instruction converter may be used to 
convert an instruction from a source instruction set to a 
target instruction set. For example, the instruction converter 
may translate (e.g., using static binary translation, dynamic 
binary translation including dynamic compilation), morph, 
emulate, or otherwise convert an instruction to one or more 
other instructions to be processed by the core. The instruc 
tion converter may be implemented in Software, hardware, 
firmware, or a combination thereof. The instruction con 
verter may be on processor, off processor, or part on and part 
off processor. 

FIG. 20 is a block diagram contrasting the use of a 
Software instruction converter to convert binary instructions 
in a source instruction set to binary instructions in a target 
instruction set according to embodiments of the invention. 
In the illustrated embodiment, the instruction converter is a 
software instruction converter, although alternatively the 
instruction converter may be implemented in software, firm 
ware, hardware, or various combinations thereof. FIG. 20 
shows a program in a high level language 2002 may be 
compiled using an x86 compiler 2004 to generate x86 binary 
code 2006 that may be natively executed by a processor with 
at least one x86 instruction set core 2016. The processor with 
at least one x86 instruction set core 2016 represents any 
processor that can perform Substantially the same functions 
as an Intel processor with at least one x86 instruction set 
core by compatibly executing or otherwise processing (1) a 
substantial portion of the instruction set of the Intel x86 
instruction set core or (2) object code versions of applica 
tions or other software targeted to run on an Intel processor 
with at least one x86 instruction set core, in order to achieve 
Substantially the same result as an Intel processor with at 
least one x86 instruction set core. The x86 compiler 2004 
represents a compiler that is operable to generate x86 binary 
code 2006 (e.g., object code) that can, with or without 
additional linkage processing, be executed on the processor 
with at least one x86 instruction set core 2016. Similarly, 
FIG. 20 shows the program in the high level language 2002 
may be compiled using an alternative instruction set com 
piler 2008 to generate alternative instruction set binary code 
2010 that may be natively executed by a processor without 
at least one x86 instruction set core 2014 (e.g., a processor 
with cores that execute the MIPS instruction set of MIPS 
Technologies of Sunnyvale, Calif. and/or that execute the 
ARM instruction set of ARM Holdings of Sunnyvale, 
Calif.). The instruction converter 2012 is used to convert the 
x86 binary code 2006 into code that may be natively 
executed by the processor without an x86 instruction set 
core 2014. This converted code is not likely to be the same 
as the alternative instruction set binary code 2010 because 
an instruction converter capable of this is difficult to make: 
however, the converted code will accomplish the general 
operation and be made up of instructions from the alterna 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

38 
tive instruction set. Thus, the instruction converter 2012 
represents software, firmware, hardware, or a combination 
thereof that, through emulation, simulation or any other 
process, allows a processor or other electronic device that 
does not have an x86 instruction set processor or core to 
execute the x86 binary code 2006. 

Components, features, and details described for any of 
FIGS. 3-8 may also optionally be used in FIG. 2. Compo 
nents, features, and details described for any of FIGS. 4-5 
may also optionally be used in FIG. 3. Components, fea 
tures, and details described for any of FIGS. 7-8 may also 
optionally be used in FIG. 6. Moreover, components, fea 
tures, and details described for the apparatus described 
herein may also optionally be used in and/or apply to the 
methods described herein, which in embodiments may be 
performed by and/or with Such apparatus. Any of the pro 
cessors described herein may be included in any of the 
computer systems or other systems disclosed herein. In 
Some embodiments, the instructions may have any of the 
instruction formats disclosed herein, although this is not 
required. 

In the description and claims, the terms “coupled' and/or 
“connected,” along with their derivatives, may have be used. 
These terms are not intended as synonyms for each other. 
Rather, in embodiments, “connected may be used to indi 
cate that two or more elements are in direct physical and/or 
electrical contact with each other. “Coupled may mean that 
two or more elements are in direct physical and/or electrical 
contact with each other. However, “coupled may also mean 
that two or more elements are not in direct contact with each 
other, but yet still co-operate or interact with each other. For 
example, an execution unit may be coupled with a register 
and/or a decode unit through one or more intervening 
components. In the figures arrows are used to show connec 
tions and couplings. 
The term “and/or may have been used. As used herein, 

the term “and/or” means one or the other or both (e.g., A 
and/or B means A or B or both A and B). 

In the description above, specific details have been set 
forth in order to provide a thorough understanding of the 
embodiments. However, other embodiments may be prac 
ticed without some of these specific details. The scope of the 
invention is not to be determined by the specific examples 
provided above, but only by the claims below. In other 
instances, well-known circuits, structures, devices, and 
operations have been shown in block diagram form and/or 
without detail in order to avoid obscuring the understanding 
of the description. Where considered appropriate, reference 
numerals, or terminal portions of reference numerals, have 
been repeated among the figures to indicate corresponding 
or analogous elements, which may optionally have similar 
or the same characteristics, unless specified or otherwise 
clearly apparent. 

Certain operations may be performed by hardware com 
ponents, or may be embodied in machine-executable or 
circuit-executable instructions, that may be used to cause 
and/or result in a machine, circuit, or hardware component 
(e.g., a processor, potion of a processor, circuit, etc.) pro 
grammed with the instructions performing the operations. 
The operations may also optionally be performed by a 
combination of hardware and Software. A processor, 
machine, circuit, or hardware may include specific or par 
ticular circuitry or other logic (e.g., hardware potentially 
combined with firmware and/or software) is operable to 
execute and/or process the instruction and store a result in 
response to the instruction. 
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Some embodiments include an article of manufacture 
(e.g., a computer program product) that includes a machine 
readable medium. The medium may include a mechanism 
that provides, for example stores, information in a form that 
is readable by the machine. The machine-readable medium 
may provide, or have stored thereon, an instruction or 
sequence of instructions, that if and/or when executed by a 
machine are operable to cause the machine to perform 
and/or result in the machine performing one or operations, 
methods, or techniques disclosed herein. The machine 
readable medium may store or otherwise provide one or 
more of the embodiments of the instructions disclosed 
herein. 

In Some embodiments, the machine-readable medium 
may include a tangible and/or non-transitory machine-read 
able storage medium. For example, the tangible and/or 
non-transitory machine-readable storage medium may 
include a floppy diskette, an optical storage medium, an 
optical disk, an optical data storage device, a CD-ROM, a 
magnetic disk, a magneto-optical disk, a read only memory 
(ROM), a programmable ROM (PROM), an erasable-and 
programmable ROM (EPROM), an electrically-erasable 
and-programmable ROM (EEPROM), a random access 
memory (RAM), a static-RAM (SRAM), a dynamic-RAM 
(DRAM), a Flash memory, a phase-change memory, a 
phase-change data storage material, a non-volatile memory, 
a non-volatile data storage device, a non-transitory memory, 
a non-transitory data storage device, or the like. 

Examples of suitable machines include, but are not lim 
ited to, a general-purpose processor, a special-purpose pro 
cessor, an instruction processing apparatus, a digital logic 
circuit, an integrated circuit, or the like. Still other examples 
of Suitable machines include a computing device or other 
electronic device that includes a processor, instruction pro 
cessing apparatus, digital logic circuit, or integrated circuit. 
Examples of such computing devices and electronic devices 
include, but are not limited to, desktop computers, laptop 
computers, notebook computers, tablet computers, net 
books, Smartphones, cellular phones, servers, network 
devices (e.g., routers), Mobile Internet devices (MIDs), 
media players, Smart televisions, nettops, set-top boxes, and 
Video game controllers. 

Reference throughout this specification to “one embodi 
ment,” “an embodiment,” “one or more embodiments.” 
“some embodiments.” for example, indicates that a particu 
lar feature may be included in the practice of the invention 
but is not necessarily required to be. Similarly, in the 
description various features are sometimes grouped together 
in a single embodiment, Figure, or description thereof for 
the purpose of streamlining the disclosure and aiding in the 
understanding of various inventive aspects. This method of 
disclosure, however, is not to be interpreted as reflecting an 
intention that the invention requires more features than are 
expressly recited in each claim. Rather, as the following 
claims reflect, inventive aspects lie in less than all features 
of a single disclosed embodiment. Thus, the claims follow 
ing the Detailed Description are hereby expressly incorpo 
rated into this Detailed Description, with each claim stand 
ing on its own as a separate embodiment of the invention. 

Example Embodiments 

The following examples pertain to further embodiments. 
Specifics in the examples may be used anywhere in one or 
more embodiments. 

Example 1 is a processor or other apparatus that includes 
a plurality of packed data registers, and a decode unit to 
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decode a no-locality hint vector memory access instruction. 
The no-locality hint vector memory access instruction to 
indicate a packed data register of the plurality of packed data 
registers that is to have a source packed memory indices. 
The Source packed memory indices to have a plurality of 
memory indices. The no-locality hint vector memory access 
instruction is to provide a no-locality hint to the processor 
for data elements that are to be accessed with the memory 
indices. The processor also includes an execution unit 
coupled with the decode unit and the plurality of packed data 
registers. The execution unit, in response to the no-locality 
hint vector memory access instruction, is to access the data 
elements at memory locations that are based on the memory 
indices. 

Example 2 includes the processor of Example 1, further 
including a cache hierarchy, and in which the no-locality 
hint vector memory access instruction includes a no-locality 
hint vector load instruction. The execution unit, in response 
to the no-locality hint vector load instruction, is to load the 
data elements from the memory locations. The cache hier 
archy, in response to the no-locality hint vector load instruc 
tion, is optionally not to cache the data elements loaded from 
the memory locations. 

Example 3 includes the processor of any of Examples 1-2, 
further including a cache hierarchy, and in which the no 
locality hint vector memory access instruction includes a 
no-locality hint vector load instruction. The execution unit, 
in response to the no-locality hint vector load instruction, is 
to load the data elements from the memory locations. The 
cache hierarchy, in response to the no-locality hint vector 
load instruction, upon a cache miss for a data element, is 
optionally not to allocate space in the cache hierarchy for the 
data element that is to be loaded from memory. 

Example 4 includes the processor of any of Examples 1-3, 
further including a cache hierarchy, and in which the no 
locality hint vector memory access instruction includes a 
no-locality hint vector load instruction. The execution unit, 
in response to the no-locality hint vector load instruction, is 
to load the data elements from the memory locations. The 
cache hierarchy, in response to the no-locality hint vector 
load instruction, upon a cache hit for a data element, is 
optionally to output no more than half a cache line from the 
cache hierarchy. 

Example 5 includes the processor of Example 4, in which 
the cache hierarchy, in response to the no-locality hint vector 
load instruction, upon the cache hit for the data element, is 
optionally to output no more than a single data element from 
the cache hierarchy. 

Example 6 includes the processor of any of Examples 1-4, 
further including a memory controller, and in which the 
no-locality hint vector memory access instruction includes a 
no-locality hint vector load instruction. The memory con 
troller, in response to the no-locality hint vector load instruc 
tion, is optionally to load no more than half a cache line 
amount of data for each of the data elements loaded from 
memory. 

Example 7 includes the processor of Example 6, in which 
the memory controller, in response to the no-locality hint 
vector load instruction, is optionally to load no more than 
128-bits for each of the data elements loaded from memory. 
Example 8 includes the processor of any of Examples 1-7, 

in which the no-locality hint vector memory access instruc 
tion includes a no-locality hint gather instruction. The no 
locality hint gather instruction is to indicate a destination 
packed data register of the plurality of packed data registers. 
The execution unit, in response to the no-locality hint gather 
instruction is to store a packed data result in the destination 
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packed data register. The packed data result is to include the 
data elements gathered from the memory locations. 

Example 9 includes the processor of Example 1, further 
including a memory controller, and in which the no-locality 
hint vector memory access instruction includes a no-locality 
hint vector write instruction. The execution unit, in response 
to the no-locality hint vector write instruction, is to write 
data elements of a source packed data indicated by the 
instruction over the data elements at the memory locations. 
The memory controller, in response to the no-locality hint 
vector write instruction, is optionally to write no more than 
half a cache line amount of data for each of the data elements 
of the Source packed data that is written to memory. 

Example 10 includes the processor of any of Examples 1 
and 9, further including a cache hierarchy, and in which the 
no-locality hint vector memory access instruction includes a 
no-locality hint vector write instruction. The execution unit, 
in response to the no-locality hint vector write instruction, is 
to write data elements of a source packed data indicated by 
the instruction over the data elements at the memory loca 
tions. The cache hierarchy, in response to the no-locality hint 
vector write instruction, upon a cache hit for a data element 
in a lower level cache, is optionally not to bring a cache line 
associated with the cache hit into a higher level cache. 

Example 11 includes the processor of any of Examples 1, 
9, and 10, in which the no-locality hint vector memory 
access instruction includes a no-locality hint Scatter instruc 
tion, and in which the no-locality hint Scatter instruction is 
to indicate a second packed data register of the plurality of 
packed data registers that is to have a source packed data that 
is to include a plurality of data elements. The execution unit, 
in response to the no-locality hint scatter instruction, is 
optionally to write the data elements of the source packed 
data over the data elements at the memory locations. 

Example 12 includes the processor of any of Examples 
1-11, in which the decode unit is to decode the no-locality 
hint vector memory access instruction that is optionally to 
have at least one bit that is to have a first value to indicate 
the no-locality hint and is to have a second value to indicate 
lack of the no-locality hint. 

Example 13 includes the processor of any of Examples 
1-11, in which the decode unit is to decode the no-locality 
hint vector memory access instruction that is optionally to 
have a plurality of bits that are to have a first value to 
indicate that the no-locality hint is a no-temporal locality 
hint, a second value to indicate that the no-locality hint is a 
no-spatial locality hint, and a third value to indicate that the 
no-locality hint is a no-temporal and no-spatial locality hint. 

Example 14 includes the processor of any of Examples 
1-13, in which the decode unit is to decode the no-locality 
hint vector memory access instruction that is optionally to 
indicate a source packed data operation mask. 

Example 15 includes a method in a processor including 
receiving a no-locality hint vector memory access instruc 
tion. The no-locality hint vector memory access instruction 
indicating a source packed memory indices having a plu 
rality of memory indices. The no-locality hint vector 
memory access instruction provides a no-locality hint to the 
processor for data elements that are to be accessed with the 
memory indices. The method also includes accessing the 
data elements at memory locations that are based on the 
memory indices in response to the no-locality hint vector 
memory access instruction. 

Example 16 includes the method of Example 15, in which 
receiving the no-locality hint vector memory access instruc 
tion includes receiving a no-locality hint vector load instruc 
tion, and the accessing includes loading the data elements 
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from the memory locations. The method further includes 
optionally omitting caching data elements that are loaded 
from memory in a cache hierarchy. 

Example 17 includes the method of any of Examples 
15-16, in which receiving the no-locality hint vector 
memory access instruction includes receiving a no-locality 
hint vector load instruction, and in which accessing includes 
loading the data elements from the memory locations. The 
method further includes, upon a cache hit for a data element 
in a cache hierarchy, optionally outputting no more than half 
a cache line from the cache hierarchy. 

Example 18 includes the method of any of Examples 
15-17, in which receiving the no-locality hint vector 
memory access instruction includes receiving a no-locality 
hint vector load instruction. The accessing includes loading 
the data elements from the memory locations including 
optionally loading no more than half a cache line amount of 
data for each data element loaded from memory. 

Example 19 includes the method of Example 15, in which 
receiving the no-locality hint vector memory access instruc 
tion includes receiving a no-locality hint vector write 
instruction. The accessing includes writing data elements of 
a source packed data indicated by the instruction over data 
elements at the memory locations including optionally writ 
ing no more than half a cache line amount of data for each 
data element that is written to memory. 

Example 20 includes the method of any of Examples 15 
and 19, in which receiving the no-locality hint vector 
memory access instruction includes receiving a no-locality 
hint vector write instruction. The accessing includes writing 
data elements of a source packed data indicated by the 
instruction over data elements at the memory locations. The 
method further includes, upon a cache hit for a data element 
in a lower level cache, optionally not bringing a cache line 
associated with the cache hit into a higher level cache. 

Example 21 includes a system to process instructions 
including an interconnect, and a processor coupled with the 
interconnect. The processor is to receive a no-locality hint 
vector memory access instruction. The no-locality hint vec 
tor memory access instruction is to indicate a source packed 
memory indices. The Source packed memory indices is to 
have a plurality of memory indices. The no-locality hint 
vector memory access instruction is to provide a no-locality 
hint to the processor for data elements that are to be accessed 
with the memory indices. The processor, in response to the 
no-locality hint vector memory access instruction, is to 
access the data elements at memory locations that are based 
on the memory indices. The system also includes a dynamic 
random access memory (DRAM) coupled with the intercon 
nect. 

Example 22 includes the system of Example 21, in which 
the no-locality hint vector memory access instruction 
includes a no-locality hint gather instruction. The processor, 
in response to the no-locality hint gather instruction, is 
optionally not to cache data elements loaded from memory 
in response to the no-locality hint gather instruction in a 
cache hierarchy. 

Example 23 includes an article of manufacture including 
a non-transitory machine-readable storage medium. The 
non-transitory machine-readable storage medium stores a 
no-locality hint vector load instruction. The no-locality hint 
vector load instruction is to indicate a packed data register 
that is to have a source packed memory indices that is to 
have a plurality of memory indices. The instruction is also 
to indicate a destination packed data register. The no-locality 
hint vector memory access instruction is to provide a no 
locality hint. The no-locality hint vector load instruction, if 
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executed by a machine, is to cause the machine to perform 
operations including storing a packed data result in the 
destination packed data register. The packed data result to 
include data elements gathered from memory locations that 
are based on the memory indices. The operations also 
include omitting caching data elements that have been 
loaded from memory in a cache hierarchy. 

Example 24 includes the article of manufacture of 
Example 23, in which the instruction is optionally to cause 
the machine to load less than a half cache line amount of data 
for each data element loaded from memory. 

Example 25 includes a processor or other apparatus that 
is operative to perform the method of any one of Examples 
15-20. 
Example 26 includes a processor or other apparatus that 

includes means for performing the method of any one of 
Examples 15-20. 

Example 27 includes a processor that includes any com 
bination of modules, units, logic, circuitry, and means to 
perform the method of any one of Examples 15-20. 

Example 28 includes an article of manufacture that 
includes an optionally non-transitory machine-readable 
medium that optionally stores or otherwise provides an 
instruction that if and/or when executed by a processor, 
computer system, or other machine is operative to cause the 
machine to perform the method of any one of Examples 
15-20. 
Example 29 includes a computer system or other elec 

tronic device including an interconnect, the processor of any 
one of Examples 1-14 coupled with the interconnect, and at 
least one component coupled with the interconnect that is 
selected from a dynamic random access memory (DRAM), 
a network interface, a graphics chip, a wireless communi 
cations chip, a Global System for Mobile Communications 
(GSM) antenna, a phase change memory, and a video 
CaCa. 

Example 30 includes a processor or other apparatus 
substantially as described herein. 

Example 31 includes a processor or other apparatus that 
is operative to perform any method Substantially as 
described herein. 

Example 32 includes a processor or other apparatus 
including means for performing any method substantially as 
described herein. 

Example 33 includes a processor or other apparatus that 
is operative to perform any no-locality hint vector memory 
access instruction Substantially as described herein. 

Example 34 includes a processor or other apparatus 
including means for performing any no-locality hint vector 
memory access instruction Substantially as described herein. 
What is claimed is: 
1. A processor comprising: 
a plurality of packed data registers; 
a cache hierarchy; 
a decode unit to decode a no-locality hint vector memory 

access instruction, the no-locality hint vector memory 
access instruction to indicate a packed data register of 
the plurality of packed data registers that is to have a 
Source packed memory indices, the source packed 
memory indices to have a plurality of memory indices, 
wherein the no-locality hint vector memory access 
instruction is to provide a no-locality hint to the pro 
cessor for data elements that are to be accessed with the 
memory indices; and 

an execution unit coupled with the decode unit and the 
plurality of packed data registers, the execution unit, in 
response to the no-locality hint vector memory access 
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instruction, to access the data elements at memory 
locations that are based on the memory indices, 
wherein the no-locality hint vector memory access 
instruction comprises a no-locality hint vector load 
instruction, wherein the execution unit, in response to 
the no-locality hint vector load instruction, is to load 
the data elements from the memory locations, and 
wherein the cache hierarchy, in response to the no 
locality hint vector load instruction, upon a cache hit 
for a data element, is to output no more than half a 
cache line from the cache hierarchy. 

2. The processor of claim 1, wherein the cache hierarchy, 
in response to the no-locality hint vector load instruction, is 
not to cache data elements loaded from the memory loca 
tions which do not hit in the cache hierarchy. 

3. The processor of claim 1, wherein the cache hierarchy, 
in response to the no-locality hint vector load instruction, 
upon a cache miss for a data element, is not to allocate space 
in the cache hierarchy for the data element that is to be 
loaded from memory. 

4. The processor of claim 1, wherein the cache hierarchy, 
in response to the no-locality hint vector load instruction, 
upon the cache hit for the data element, is to output no more 
than a single data element from the cache hierarchy. 

5. The processor of claim 1, wherein the no-locality hint 
vector memory access instruction comprises a no-locality 
hint gather instruction, wherein the no-locality hint gather 
instruction is to indicate a destination packed data register of 
the plurality of packed data registers, wherein the execution 
unit, in response to the no-locality hint gather instruction, is 
to store a packed data result in the destination packed data 
register, and wherein the packed data result is to include the 
data elements gathered from the memory locations. 

6. The processor of claim 1, wherein the decode unit is to 
decode the no-locality hint vector memory access instruction 
that is to have at least one bit that is to have a first value to 
indicate the no-locality hint, and is to have a second value 
to indicate lack of the no-locality hint. 

7. The processor of claim 1, wherein the decode unit is to 
decode the no-locality hint vector memory access instruction 
that is to have a plurality of bits that are to have a first value 
to indicate that the no-locality hint is a no-temporal locality 
hint, a second value to indicate that the no-locality hint is a 
no-Spatial locality hint, and a third value to indicate that the 
no-locality hint is a no-temporal and no-spatial locality hint. 

8. The processor of claim 1, wherein the decode unit is to 
decode the no-locality hint vector memory access instruction 
that is to indicate a source packed data operation mask. 

9. A processor comprising: 
a plurality of packed data registers; 
a decode unit to decode a no-locality hint vector memory 

access instruction, the no-locality hint vector memory 
access instruction to indicate a packed data register of 
the plurality of packed data registers that is to have a 
Source packed memory indices, the Source packed 
memory indices to have a plurality of memory indices, 
wherein the no-locality hint vector memory access 
instruction is to provide a no-locality hint to the pro 
cessor for data elements that are to be accessed with the 
memory indices; 

an execution unit coupled with the decode unit and the 
plurality of packed data registers, the execution unit, in 
response to the no-locality hint vector memory access 
instruction, to access the data elements at memory 
locations that are based on the memory indices; and 

a memory controller, wherein the no-locality hint vector 
memory access instruction comprises a no-locality hint 
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Vector load instruction, and wherein the memory con 
troller, in response to the no-locality hint vector load 
instruction, is to load no more than half a cache line 
amount of data, for each of the data elements loaded 
from memory. 

10. The processor of claim 9, wherein the memory con 
troller, in response to the no-locality hint vector load instruc 
tion, is to load no more than 128-bits for each of the data 
elements loaded from memory. 

11. A processor comprising: 
a plurality of packed data registers; 
a decode unit to decode a no-locality hint vector memory 

access instruction, the no-locality hint vector memory 
access instruction to indicate a packed data register of 
the plurality of packed data registers that is to have a 
Source packed memory indices, the source packed 
memory indices to have a plurality of memory indices, 
wherein the no-locality hint vector memory access 
instruction is to provide a no-locality hint to the pro 
cessor for data elements that are to be accessed with the 
memory indices; 

an execution unit coupled with the decode unit and the 
plurality of packed data registers, the execution unit, in 
response to the no-locality hint vector memory access 
instruction, to access the data elements at memory 
locations that are based on the memory indices; and 

a memory controller, wherein the no-locality hint vector 
memory access instruction comprises a no-locality hint 
vector write instruction, wherein the execution unit, in 
response to the no-locality hint vector write instruction, 
is to write data elements of a source packed data 
indicated by the instruction over the data elements at 
the memory locations, and wherein the memory con 
troller, in response to the no-locality hint vector write 
instruction, is to write no more than half a cache line 
amount of data, for each of the data elements of the 
Source packed data that is written to memory. 

12. A method in a processor comprising: 
receiving a no-locality hint vector memory access instruc 

tion, the no-locality hint vector memory access instruc 
tion indicating a source packed memory indices having 
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a plurality of memory indices, wherein the no-locality 
hint vector memory access instruction provides a no 
locality hint to the processor for data elements that are 
to be accessed with the memory indices, wherein 
receiving the no-locality hint vector memory access 
instruction comprises receiving a no-locality hint vec 
tor load instruction; and 

accessing the data elements at memory locations that are 
based on the memory indices in response to the no 
locality hint vector memory access instruction, wherein 
accessing comprises loading the data elements from the 
memory locations, including loading no more than half 
a cache line amount of data, for each data element 
loaded from memory. 

13. The method of claim 12, further comprising omitting 
caching data elements that are loaded from memory in a 
cache hierarchy. 

14. The method of claim 12, further comprising, upon a 
cache hit for a data element in a cache hierarchy, outputting 
no more than half a cache line from the cache hierarchy. 

15. An article of manufacture comprising a non-transitory 
machine-readable storage medium, the non-transitory 
machine-readable storage medium storing a no-locality hint 
vector load instruction, 

the no-locality hint vector load instruction to indicate a 
packed data register that is to have a source packed 
memory indices that is to have a plurality of memory 
indices and a destination packed data register, wherein 
the no-locality hint vector memory access instruction is 
to provide a no-locality hint, and the no-locality hint 
Vector load instruction, if executed by a machine, is to 
cause the machine to perform operations comprising: 

load less than a half cache line amount of data, for each 
data element loaded from memory; 

store a packed data result in the destination packed data 
register, the packed data result to include data elements 
gathered from memory locations that are based on the 
memory indices; and 

omit caching data elements that have been loaded from 
memory in a cache hierarchy. 


