
(12) United States Patent
Hughes

USOO9600442B2

US 9,600.442 B2
Mar. 21, 2017

(10) Patent No.:
(45) Date of Patent:

(54) NO-LOCALITY HINT VECTOR MEMORY
ACCESS PROCESSORS, METHODS,
SYSTEMS, AND INSTRUCTIONS

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventor: Christopher J Hughes, Santa Clara,
CA (US)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 110 days.

(21) Appl. No.: 14/335,006

(22) Filed: Jul. 18, 2014

(65) Prior Publication Data

US 2016/OO1918.4 A1 Jan. 21, 2016

(51) Int. Cl.
G06F 9/30 (2006.01)
G06F 5/80 (2006.01)
G06F 2/08 (2016.01)

(52) U.S. Cl.
CPC G06F 15/8069 (2013.01); G06F 9/30

(2013.01); G06F 9/30036 (2013.01); G06F
12/08 II (2013.01); G06F 2212/283 (2013.01)

(58) Field of Classification Search
CPC G06F 12/0811; G06F 15/8069; G06F

2212/283; G06F 8/433; G06F 9/30036;
GO6F 9/3OO47

See application file for complete search history.

PROCESSOR

(56) References Cited

U.S. PATENT DOCUMENTS

5,708,849 A 1/1998 Coke et al.
5,966,528 A 10, 1999 Wilkinson et al.
7.627,735 B2 12/2009 Espasa et al.
7,647,557 B2 1/2010 Janus

(Continued)

FOREIGN PATENT DOCUMENTS

TW 2012 18771 A 5, 2012

OTHER PUBLICATIONS

“Intel 64 and IA-32 Architectures Software Developer's Manual.”
Feb. 2014, pp. 1-2; vol. 1: 5-23, 11-12, 11-25, 12-12-12-14; vol. 2A:
3-547-3-559; vol. 3A: 11-17 (22 pages total) Combined vols. 1, 2A,
2B, 2C, 3A, 3B and 3C.

(Continued)
Primary Examiner — Zhuo Li
(74) Attorney, Agent, or Firm — Vecchia Patent Agent,
LLC

(57) ABSTRACT
A processor of an aspect includes a plurality of packed data
registers, and a decode unit to decode a no-locality hint
vector memory access instruction. The no-locality hint vec
tor memory access instruction to indicate a packed data
register of the plurality of packed data registers that is to
have a source packed memory indices. The source packed
memory indices to have a plurality of memory indices. The
no-locality hint vector memory access instruction is to
provide a no-locality hint to the processor for data elements
that are to be accessed with the memory indices. The
processor also includes an execution unit coupled with the
decode unit and the plurality of packed data registers. The
execution unit, in response to the no-locality hint vector
memory access instruction, is to access the data elements at
memory locations that are based on the memory indices.

15 Claims, 22 Drawing Sheets

PACKATARGISRS
332

SOURCE ACKE
MMORY NDCES

ka w aw w awr 334

302 - - - - - - - - - -
GENERAL-purpose

, REGISTERS
342

NO-C-CAY
HN GAER
NSRCON

314

ty Ecole XCON
N NT

330 36

AcKEAA
RESU

NO-LOCATYNT
A CERAICN 348

CACHE

3.

surg; LNE
AA352

CONTROLLERs) CASFS
344

MERCRY
CONROLER

SOURCEPACKEAA
OPERATION MASK338

PACKED DATA OPERATION
MASK REGISTERS 34 :

ACCESSAN RETURN
FRONAMORY 350

--

US 9,600.442 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

8,074,026 B2 12/2011 Kim et al.
8.447,962 B2 5/2013 Hughes et al.
8,478,941 B2 7/2013 Hughes et al.
8,578,097 B2 11/2013 Kim et al.
8,667,221 B2 3/2014 Kim et al.
8,688,957 B2 4/2014 Smelyanskiy et al.
8,799,577 B2 8/2014 Hughes et al.
8,892,848 B2 11/2014 Sprangle et al.

2011 O153983 A1 6/2011 Hughes et al.
2013/0159679 A1* 6/2013 McCormick, Jr. ... G06F 9/30043

T12/220
2013/031830.6 A1* 11/2013 Gonion GO6F9,30047

711 137
2014/00 19712 A1 1/2014 Ould-Ahmed

Vall.............. ... GO6F 9,30036
T12/4

2014/0095779 A1* 4/2014 Forsyth G06F 12fOO
T11 105

2014/0281425 A1 9, 2014 Valentine G06F 9,3004
71.2/225

OTHER PUBLICATIONS

“Intel Advanced Vector Extensions Programming Reference,” Jun.
2011, pp. 1-3; 5-258-5-280, A-17-A-18 (28 pages total).
Office Action and Search Report received for Taiwanese Patent
Application No. 1041 18928, mailed on Apr. 25, 2016, 7 pages of
Taiwanese Office Action including 4 pages of English Translation.

* cited by examiner

U.S. Patent Mar. 21, 2017 Sheet 1 of 22 US 9,600.442 B2

100

PROCESSOR 102

CORE N104-1 CORE N104-N

GATHER
NSTRUCTION

112 EXECUTION UNITS EXECUTION UNITS
106-1 1 O6-N

NO-LOCALITY
HNT VECTOR

MEMORY ACCESS
INSTRUCTION

114 1 CACHE L1 CACHE
108-1 108-N

L2 CACHE
110

MEMORY
118

FIG. 1

U.S. Patent Mar. 21, 2017 Sheet 2 of 22 US 9,600.442 B2

220

RECEIVENO-LOCALITY HINT VECTOR
MEMORY ACCESS INSTRUCTION INDICATING
SOURCE PACKED MEMORY INDICES HAVING
MEMORY INDICES, WHERE NO-LOCALITY HINT
VECTOR MEMORYACCESS INSTRUCTION

PROVIDES NO-LOCALITY HINT TO PROCESSOR
FOR DATA ELEMENTS TO BEACCESSED WITH

MEMORY INDICES

221

ACCESS DATA ELEMENTS AT MEMORY
LOCATIONS BASED ON MEMORY INDICES IN 222
RESPONSE TO NO-LOCALITY HINT VECTOR

MEMORY ACCESS INSTRUCTION

FIG. 2

US 9,600.442 B2

(S) METTONLNOO E HOVO

J?? (S)EHOVO

U.S. Patent

U.S. Patent Mar. 21, 2017 Sheet 4 of 22 US 9,600.442 B2

FIG. 4

GATHER
OPERATION

420 N
SOURCEPACKED

MEMORY
NDCES
434

450
J- SUB-CACHE LINE DATA

ACCESS TO MEMORY MEMORY
418

134 135

452
SUB-CACHE LINE DATA
RETURN FROMMEMORY
THATBYPASSES CACHE(S)

N-436
PACKED DATA

RESULT

U.S. Patent Mar. 21, 2017 Sheet S of 22 US 9,600.442 B2

FIG. 5
MASKED
GATHER

Option SOURCE PACKED
\ MEMORY

INDICES
534

O 1 2
-

| 1 | 1 | 0 | 1 || 1 || 1 || 0 | 1 in 538
| | SOURCE

- PACKED DATA
550 OPERATION MASK
SUB-CACHE LINE DATA (OPTIONAL)
ACCESS TO MEMORY

MEMORY
518

134 135 --

552
SUB-CACHE LINE DATA
RETURN FROMMEMORY
THATBYPASSES CACHE(S)

B B2 k B4 B5 k B8 536
PACKED DATA

RESULT

U.S. Patent Mar. 21, 2017 Sheet 7 of 22 US 9,600.442 B2

FIG. 7
SCATTER
OPERATION

720- SOURCE
PACKED
MEMORY
INDICES

SOURCE
PACKED
DATA

a b. e. e. e. e. e. e. “
764
SUB-CACHE LINE
WRITE

134 135

U.S. Patent Mar. 21, 2017 Sheet 8 of 22 US 9,600.442 B2

FIG. 8
MASKED
SCATTER
OPERATION

820 SOURCE
\ PACKED

MEMORY
INDICES
834

is a as a ste
SOURCE
PACKED
DATA
860

O 1 2
-

| 1 | 1 || 0 | 1 || 1 | 1 || 0 | 1 -838
| | SOURCE

- PACKED DATA
864 OPERATION MASK
SUB-CACHE LINE (OPTIONAL)
WRITE

MEMORY

134 135 --

US 9,600.442 B2 Sheet 11 of 22 Mar. 21, 2017 U.S. Patent

||||| EZISA “O'W'N “OOW WEW ON * * * * * * * & * * * * * * * * * * * * * * * *900|

|×OWN "OOV VEWON?,

US 9,600.442 B2 Sheet 12 of 22 Mar. 21, 2017 U.S. Patent

ALL'INIZIALIAJN][NINININGE ?

-->LS,
T?ETÍ

U.S. Patent Mar. 21, 2017 Sheet 13 of 22 US 9,600.442 B2

ALPHAFIELD
CLASSIELD 1052 BETA FELD 1054

AUGMENTATION OPERATION FIELD 1050 NURBBB
MOD FIELD 1142 RS

FIELD 1052A a BBB 1. st
ROUND 1052A.1 FIELD 1052A

SAE Gate r DATA
1056

ROUND OPERATION FIELD 1058 TRANSFORM DATA TRANSFORM
ROUND CONTROL FIELD 1054A FIELD 1054B

EVICTION
HINT FIELD

1052B 1150 162B
DATA MANIPULATION FIELD 1054C

WRITE
MASK

CNEL 1057A2
1052C OPERATION VECTOR LENGTH FIELD

FIELD 1059A

MOD FELD 1142 EFEOto

VECTOR LENGT YES5 GTH BROADCAST FIELD 1057B

FIG. 11D

US 9,600.442 B2 Sheet 15 of 22 Mar. 21, 2017 U.S. Patent

– – + – – – – – – – – – –

099|| (S) HELSnTO NOLLnOEXE

(S) LINN SSE OO\f
398|| (S) IIND SETIH HELSIÐEH TVOISAHd

×

069|| ERHOO

US 9,600.442 B2 Sheet 17 of 22 Mar. 21, 2017 U.S. Patent

}}ETTO?HINOO)IIND
8

(S) IIND EHOVO

009|| HOSSE OO}}d

U.S. Patent Mar. 21, 2017 Sheet 18 of 22 US 9,600.442 B2

MEMORY
1640

CO-PROCESSOR
1645

FIG. 16

US 9,600.442 B2 Sheet 20 of 22 Mar. 21, 2017 U.S. Patent

>|OSSE OORHd>'OSSE OORHd SHOIABOOI I

US 9,600,442 B2
1.

NO-LOCALITY HINT VECTOR MEMORY
ACCESS PROCESSORS, METHODS,
SYSTEMS, AND INSTRUCTIONS

BACKGROUND

Technical Field
Embodiments relate to processors. In particular, embodi

ments relate to processors to perform vector memory access
instructions such as gather and/or scatter instructions.

Background Information
Processors are commonly operable to perform instruc

tions to access memory. For example, processors may
execute load instructions to load or read data from memory
and/or store instructions to store or write data to memory.

Certain processors are operable to execute vector gather
instructions. These vector gather instructions are also
referred to simply as gather instructions. Intel(R) Advanced
Vector Extensions Programming Reference, document ref
erence number 3 19433-011, published June 2011, describes
several gather instructions. Examples include VGATH
ERDPD, VGATHERQPD, VGATHERDPS, VGATHER
QPS, VPGATHERDD, VPGATHERQD, VPGATHERDQ,
and VPGATHERQQ. These gather instructions may cause
the processor to gather, read, or load multiple potentially
non-contiguous data elements from locations in memory
indicated by multiple corresponding memory indices. The
gathered data elements may be stored in a destination vector
register of the processor.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by referring to the
following description and accompanying drawings that are
used to illustrate embodiments. In the drawings:

FIG. 1 is a block diagram of an embodiment of a system
Suitable for implementing embodiments that includes a
processor having a cache hierarchy and a memory.

FIG. 2 is a block flow diagram of an embodiment of a
method of processing an embodiment of a no-locality hint
vector memory access instruction.

FIG. 3 is a block diagram of an embodiment of a
processor that is operable to perform an embodiment of a
no-locality hint gather instruction.

FIG. 4 is a block diagram of an embodiment of a gather
operation that may be performed in response to an embodi
ment of a no-locality hint gather instruction.

FIG. 5 is a block diagram of an embodiment of a masked
gather operation that may be performed in response to an
embodiment of a no-locality hint masked gather instruction.

FIG. 6 is a block diagram of an embodiment of a
processor that is operable to perform an embodiment of a
no-locality hint scatter instruction.

FIG. 7 is a block diagram of an embodiment of a scatter
operation that may be performed in response to an embodi
ment of a no-locality hint scatter instruction.

FIG. 8 is a block diagram of an embodiment of a masked
scatter operation that may be performed in response to an
embodiment of a masked no-locality hint scatter instruction.

FIGS. 9A-9C are block diagrams illustrating a generic
vector friendly instruction format and instruction templates
thereof, according to embodiments of the invention.

FIG. 10A-B is a block diagram illustrating an exemplary
specific vector friendly instruction format and an opcode
field, according to embodiments of the invention.

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 11A-D is a block diagram illustrating an exemplary

specific vector friendly instruction format and fields thereof,
according to embodiments of the invention.

FIG. 12 is a block diagram of an embodiment of a register
architecture.

FIG. 13A is a block diagram illustrating an embodiment
of an in-order pipeline and an embodiment of a register
renaming out-of-order issue/execution pipeline.

FIG. 13B is a block diagram of an embodiment of
processor core including a front end unit coupled to an
execution engine unit and both coupled to a memory unit.

FIG. 14A is a block diagram of an embodiment of a single
processor core, along with its connection to the on-die
interconnect network, and with its local subset of the Level
2 (L2) cache.

FIG. 14B is a block diagram of an embodiment of an
expanded view of part of the processor core of FIG. 14A.

FIG. 15 is a block diagram of an embodiment of a
processor that may have more than one core, may have an
integrated memory controller, and may have integrated
graphics.

FIG. 16 is a block diagram of a first embodiment of a
computer architecture.

FIG. 17 is a block diagram of a second embodiment of a
computer architecture.

FIG. 18 is a block diagram of a third embodiment of a
computer architecture.

FIG. 19 is a block diagram of a fourth embodiment of a
computer architecture.

FIG. 20 is a block diagram of use of a software instruction
converter to convert binary instructions in a source instruc
tion set to binary instructions in a target instruction set,
according to embodiments of the invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Disclosed herein are no-locality hint vector memory
access instructions (e.g., no-locality hint gather instructions,
no-locality hint Scatter instructions), processors to perform
the instructions, methods performed by the processors when
performing the instructions, and systems incorporating one
or more processors to perform the instructions. In the
following description, numerous specific details are set forth
(e.g., specific instruction operations, data formats, processor
configurations, microarchitectural details, sequences of
operations, etc.). However, embodiments may be practiced
without these specific details. In other instances, well-known
circuits, structures and techniques have not been shown in
detail to avoid obscuring the understanding of the descrip
tion.

FIG. 1 is a block diagram of an embodiment of a system
100 that includes a processor 102 having a cache hierarchy
103 and a memory 118. The processor and the memory are
coupled together by a coupling mechanism 116. Such as, for
example, one or more interconnects, a chipset, or the like.
The processor includes one or more cores 104. In the
illustrated example, the processor includes a first core (core
1) 104-1 optionally up to an Nth core (core N) 104-N. The
processor may include any desired number of cores (e.g.,
often ranging from one to on the order of hundreds). Core 1
includes one or more execution units 106-1 and core N
includes one or more execution units 106-N.

Typically the processor may also have one or more caches
108, 110. The caches may represent relatively smaller and
faster types of storage than the memory 118. The caches may
also be closer to the cores and/or execution units than the
memory. The caches may be used to cache or store data

US 9,600,442 B2
3

brought into the processor from the memory (e.g., by the
gather instruction 112) to provide faster Subsequent accesses
to the data. When the processor wants to read data from the
memory, or write data to the memory, it may first check to
see if a copy of the data is stored in the caches. If the data
is found in a cache, the processor may access the data from
the cache more quickly than if the data were accessed from
the memory. As a result, including the caches may help to
reduce the average amount of time needed to access data to
be processed by the processor. This in turn may help to
improve the performance and/or throughput of the proces
SO.

Referring again to FIG. 1, the illustrated processor has a
cache hierarchy 103 including multiple levels of cache. The
cache levels differ in their relative closeness to the cores
and/or to the execution units of the processor. Core 1 has a
first level cache or level 1 (L1) cache 108-1. Similarly, core
N has an L1 cache 108-N. Each of the L1 caches may be
dedicated to the corresponding core in which it is included.
The L1 caches represent the cache level closest to the cores.
The processor also has a second level cache or level 2 (L.2)
cache 110. The L2 cache represents the next closest cache
level to the cores. In some implementations, the L2 cache
may be shared by the cores. Although not shown, there may
optionally be one or more additional cache levels still farther
from the cores (e.g., a level 3 (L3) cache). Caches closer to
the cores (e.g., the L1 caches) generally tend to be smaller
than caches farther from the cores (e.g., the L2 cache).
Commonly, one or more cache levels relatively closer to the
cores are monolithically integrated on-die with the cores,
whereas one or more cache levels farther from the cores may
either be monolithically integrated on-die with the cores, or
may be off-die (e.g., in a separate chip mounted on the
motherboard). Accesses from the cores to the L1 caches tend
to be faster than accesses to the L2 cache, accesses from the
cores to the L2 cache tends to be faster than accesses to the
L3 cache, and accesses from the cores to the L3 cache tends
to be faster than accesses from the cores to the external
memory.
One reason for including caches in processors is that

memory references often have a “locality’ attribute. For
example, references to data in memory often have temporal
and/or spatial locality. Temporal locality implies that, when
data is accessed from an address in memory, the same data
is likely to be accessed again within a short period of time.
By way of example, this may be the case when a same value
needs to be reused in a loop, is used repetitively in a set of
calculations, or for various other reasons. In Such cases, it
may be beneficial, after accessing the data from the memory,
to store the data in a cache so that Subsequent accesses to the
data may be performed more quickly from the cache instead
of slowly from the memory.

Spatial locality implies that, when a given data is accessed
from an address in memory, nearby data at nearby addresses
is also likely to be accessed within a short period of time. By
way of example, both sets of data may be part of the same
content (e.g., an image, a table, a datastructure, a video,
etc.), and may be processed around the same time. Spatial
locality may also occur for various other reasons. Caches
take advantage of spatial locality by storing not only the data
initially needed, but also nearby data from nearby addresses.
Typically, the minimum amount of data accessed from the
memory and stored in the cache is a whole cache line
amount of data even when only a much smaller amount of
data may initially be needed. For example, typically an
entire 512-bit cache line may be accessed from memory and
stored in the cache even if only a single 8-bit, 16-bit, 32-bit,

10

15

25

30

35

40

45

50

55

60

65

4
64-bit, or 128-bit data element is initially needed. If spatial
locality exists this will be beneficial since it is likely that the
additional data brought into the cache will also be needed in
the near future.

In order for caches to be effective, it is important to keep
them filled with relevant data that is likely to be needed in
the near future. During operation, data in the caches will be
continually changed by evicting data that is not likely to be
needed in the near future to make room for data that is likely
to be needed in the near future. Various replacement algo
rithms and policies are known in the arts for this purpose.
Such replacement algorithms and policies are often heavily
based on the age of the data (e.g., a least recently used
indication) due to temporal locality.
The gather instruction 112 takes advantage of temporal

and/or spatial locality by storing data elements that have
been gathered from the memory 118 in the cache hierarchy
103. Many applications and types of data show significant
spatial and/or temporal locality in their access stream and
thereby benefit from accessing and storing a whole cache
line amount of data in the cache for each data element
gathered. However, not all applications and/or types of data
have Sufficient temporal and/or spatial locality to justify
accessing and storing whole cache lines in the caches for
gather and/or scatter instructions. Some applications and/or
types of data exhibit little spatial and/or temporal locality for
the data elements to be gathered and/or scattered. Certain
data elements may be needed once, but may be unlikely to
be needed again in the near future. For example, this may be
the case in certain streaming data applications, high perfor
mance computing applications, applications having a stream
of very sparse memory accesses, and in various other
applications. Moreover, in many cases a programmer and/or
the Software (e.g., an operating system) may be able to know
this. One possible approach is to allow such data to be stored
in the cache just like other data brought into the processor
from memory. However, a drawback with this approach is
that storing Such data in the caches may evict frequently
used data that is likely to be reused by the processor. Also,
this data may stay in the caches for a period of time until
eventually becoming evicted from the caches, often without
ever having been reused. Such data effectively pollutes the
caches and takes up valuable storage space that could
instead have been used to store frequently used data in order
to increase performance.

In addition, the gather instruction 112 is a packed or
vector-type instruction that gathers a vector's worth of data
elements. Each gathered data element may potentially bring
in a whole cache line's worth of data to be stored in the
cache which may compound the amount of cache pollution
if Sufficient spatial and/or temporal locality is not present.
This can become especially significant for certain gather
instructions that gather four, eight, sixteen, or thirty-two data
elements, for example. In addition, accessing whole cache
line amounts of data for each gathered data element may
waste valuable bus or interconnect bandwidth (e.g., on the
interconnects to the caches and/or on the interconnect to the
memory) when there is insufficient spatial locality. For
example, 512-bits may be retrieved from memory when only
a single 8-bit, 16-bit, 32-bit, or 64-bit data element is needed
and there is low spatial locality. Accessing only the needed
data element, or at least less than a whole cache line amount
of data, may better utilize the interconnect bandwidth.

Referring again to FIG. 1, the processor and/or one or
more of the cores may receive and perform a no-locality hint
memory access instruction 114 (e.g., a no-locality hint
vector load or gather instruction and/or a no-locality hint

US 9,600,442 B2
5

vector store or scatter instruction). The hint may indicate
that the data to be accessed (e.g., gathered or scattered) has
insufficient spatial and/or temporal locality. In some
embodiments, the no-locality hint may be a no-temporal
locality hint. In other embodiments, the no-locality hint may
be a no-spatial locality hint. In still other embodiments, the
no-locality hint may be a no-temporal and no-spatial locality
hint. In the case of a no-temporal locality hint, in some
embodiments, gathered data elements may bypass the cache
hierarchy 103 and/or not be stored in the cache hierarchy
103, which may help to reduce cache pollution. In the case
of a no-spatial locality hint, in some embodiments, accesses
to data elements may be performed with only sub-cache line
amounts of data (e.g., half or quarter cache line amounts of
data), or in some cases single data element amounts of data,
which may help to reduce waste of interconnect bandwidth
and/or reduce power consumption. Advantageously, the no
locality hint memory access instruction 114 may help to
improve performance and/or reduce power consumption at
times when there is insufficient spatial and/or temporal
locality.

FIG. 2 is a block flow diagram of an embodiment of a
method 220 of processing an embodiment of a no-locality
hint vector memory access instruction. In various embodi
ments, the method may be performed by a processor,
instruction processing apparatus, or other digital logic
device.
The method includes receiving the no-locality hint vector

memory access instruction, at block 221. In various aspects,
the instruction may be received at a processor, or a portion
thereof (e.g., an instruction fetch unit, a decode unit, etc.). In
various aspects, the instruction may be received from an
off-die Source (e.g., from memory, interconnect, etc.), or
from an on-die source (e.g., from an instruction cache,
instruction queue, etc.). The no-locality hint vector memory
access instruction may specify or otherwise indicate a source
packed memory indices having a plurality of memory indi
ces. In some embodiments, the no-locality hint vector
memory access instruction may provide a no-locality hint to
the processor for data elements that are to be accessed with
the memory indices.

The data elements may be accessed at memory locations
that are based on the memory indices in response to the
no-locality hint vector memory access instruction, at block
222. In some embodiments, the method may include any of
the operations shown or described below for any of FIGS.
3-8.

FIG. 3 is a block diagram of an embodiment of a
processor 302 that is operable to perform an embodiment of
a no-locality hint gather instruction 314. The no-locality hint
gather instruction may also be referred to herein as a
no-locality hint vector load instruction. In some embodi
ments, the processor may be a general-purpose processor
(e.g., a general-purpose microprocessor or central process
ing unit (CPU) of the type used in desktop, laptop, or other
computers). Alternatively, the processor may be a special
purpose processor. Examples of Suitable special-purpose
processors include, but are not limited to, graphics proces
sors, network processors, communications processors, cryp
tographic processors, co-processors, embedded processors,
digital signal processors (DSPs), and controllers (e.g.,
microcontrollers). The processor may be any of various
complex instruction set computing (CISC) processors,
reduced instruction set computing (RISC) processors, very
long instruction word (VLIW) processors, hybrids thereof,
other types of processors, or may have a combination of
different processors (e.g., in different cores).

10

15

25

30

35

40

45

50

55

60

65

6
During operation, the processor 302 may receive the

embodiment of the no-locality hint gather instruction 314.
For example, the no-locality hint gather instruction may be
received from an instruction fetch unit, an instruction queue,
or the like. The no-locality hint gather instruction may
represent a macroinstruction, assembly language instruction,
machine code instruction, or other instruction or control
signal of an instruction set of the processor.

In some embodiments, the no-locality hint gather instruc
tion may explicitly specify (e.g., through one or more fields
or a set of bits), or otherwise indicate (e.g., implicitly
indicate), a source packed memory indices 334. The instruc
tion may also specify or otherwise indicate a destination
operand or destination storage location (e.g., a destination
packed data register) where a packed data result 336 is to be
stored.

In some embodiments, if the no-locality hint gather
instruction is optionally a masked or predicated instruction,
then it may specify or otherwise indicate a source packed
data operation mask 338, although this is not required. As
shown, in some embodiments, the source packed data opera
tion mask may be stored in a set of packed data operation
mask registers 340, although this is not required. In other
embodiments, the Source packed data operation mask may
be stored in another storage location or specified by the
instruction (e.g., a field or immediate). As will be discussed
further below, the source packed data operation mask may
be used to mask, predicate, or conditionally control the
gather operation.

Referring again to FIG. 3, the processor includes a decode
unit or decoder 330. The decode unit may receive and
decode the no-locality hint gather instruction 314. The
decode unit may output one or more microinstructions,
micro-operations, micro-code entry points, decoded instruc
tions or control signals, or other relatively lower-level
instructions or control signals that reflect, represent, and/or
are derived from the no-locality hint gather instruction. The
one or more lower-level instructions or control signals may
implement the higher-level no-locality hint gather instruc
tion through one or more lower-level (e.g., circuit-level or
hardware-level) operations. The decode unit may be imple
mented using various different mechanisms including, but
not limited to, microcode read only memories (ROMs),
look-up tables, hardware implementations, programmable
logic arrays (PLAS), and other mechanisms used to imple
ment decode units known in the art.

In some embodiments, instead of the no-locality hint
gather instruction being provided directly to the decode unit
330, an instruction emulator, translator, morpher, interpreter,
or other instruction conversion module may optionally be
used. Various types of instruction conversion modules are
known in the arts and may be implemented in Software,
hardware, firmware, or a combination thereof. In some
embodiments, the instruction conversion module may be
located outside the processor, such as, for example, on a
separate die and/or in a memory (e.g., as a static, dynamic,
or runtime emulation module). By way of example, the
instruction conversion module may receive the no-locality
hint gather instruction, which may be of a first instruction
set, and may emulate, translate, morph, interpret, or other
wise convert the no-locality hint gather instruction into one
or more corresponding or derived intermediate instructions
or control signals, which may be of a second different
instruction set. The one or more intermediate instructions or
control signals of the second instruction set may be provided
to a decode unit, which may decode them into one or more

US 9,600,442 B2
7

lower-level instructions or control signals executable by
native hardware of the processor (e.g., one or more execu
tion units).

Referring again to FIG. 3, the processor also includes a set
of packed data registers 332. Each of the packed data 5
registers may represent an on-die storage location that is
operable to store packed data, vector data, or SIMD data.
The packed data registers may represent architecturally
visible registers (e.g., an architectural register file) that are
visible to Software and/or a programmer and/or are the 10
registers indicated by instructions of an instruction set to
identify operands. These architectural registers are con
trasted to other non-architectural or non-architecturally vis
ible registers in a given microarchitecture (e.g., temporary
registers, reorder buffers, retirement registers, etc.). The 15
packed data registers may be implemented in different ways
in different microarchitectures using well-known techniques
and are not limited to any particular type of circuit.
Examples of Suitable types of registers include, but are not
limited to, dedicated physical registers, dynamically allo- 20
cated physical registers using register renaming, and com
binations thereof.

In some embodiments, the source packed memory indices
334 may optionally be stored in a first packed data register,
and the packed data result 336 may optionally be stored in 25
a second packed data register. Alternatively, other storage
locations, may be used for one or more of these operands.
Moreover, in Some embodiments, a packed data register
used for a source operand may optionally be reused as a
destination operand (e.g., the packed data result 336 may 30
optionally be written or stored over the source packed
memory indices 334).

Referring again to FIG. 3, the execution unit 306 is
coupled with the decode unit 330, the packed data registers
332, and optionally the packed data operation mask 338. The 35
execution unit may receive the one or more decoded or
otherwise converted instructions or control signals that
represent and/or are derived from the no-locality hint gather
instruction. The execution unit may also receive the Source
packed memory indices 334 which are indicated by the 40
no-locality hint gather instruction. In some cases, the execu
tion unit may also optionally be coupled with a set of
general-purpose registers 342, for example, if the general
purpose registers are to provide information to be used to
convert the memory indices to memory addresses (e.g., a 45
base, Scale, displacement, etc.).

The execution unit is operable in response to and/or as a
result of the no-locality hint gather instruction (e.g., in
response to one or more instructions or control signals
decoded directly or indirectly (e.g., through emulation) from 50
the instruction) to access locations in the memory indicated
by the source packed memory indices 334. For example,
Such access may include gathering or otherwise loading data
elements from locations in the memory indicated by the
corresponding packed memory indices and storing them in 55
a packed data result 336. In some embodiments, a masked
gather operation may optionally be performed. In some
embodiments, the execution unit may perform any of the
operations shown and described for any of FIGS. 4-5,
although the scope of the invention is not so limited. 60

In some embodiments, the gather operation may be imple
mented with a no-locality hint. In some embodiments, the
gather operation may be implemented with a no-temporal
locality hint. In other embodiments, the gather operation
may be implemented with a no-spatial locality hint. In still 65
other embodiments, the gather operation may be imple
mented with a no-temporal locality and no-spatial locality

8
hint. The execution unit may provide no-locality hint load
operations 348 to one or more cache controllers 344. In
Some embodiments, there may be a single cache level and
single cache controller (e.g., an L1 cache controller). In
other embodiments, there may be two or more cache con
trollers (e.g., an L1 cache controller, an L2 cache controller,
and optionally an L3 cache controller).

In some embodiments, if a no-locality hint load operation
348 request for data has a no-spatial locality hint, and if the
request hits in a cache 308, then the associated cache
controller 344 may return a sub-cache line amount of data
352 from the cache 308. In various embodiments, the
sub-cache line amount of data 352 may be only half a cache
line (e.g., only 256-bits of a 512-bit cache line), only one
quarter a cache line (e.g., only 128-bits), only one eighth a
cache line (e.g., only 64-bits), or only a single data element
(e.g., 1 128-bit, 64-bit, 32-bit, 16-bit, or 8-bit data element).

Conversely, if a no-locality hint load operation 348
request for data has a no-spatial locality hint, and if the
request misses in all cachecs) 308, then a no-locality hint
load operation 348 request for data may be sent to a memory
controller 346. In some embodiments, the memory control
ler may perform a sub-cache line data access and return 350
from memory (e.g., external memory). As before, in various
embodiments, the sub-cache line data access and return 350
may be only half a cache line (e.g., only 256-bits), only one
quarter a cache line (e.g., only 128-bits), only one eighth a
cache line (e.g., only 64-bits), or only a single data element
(e.g., a 64-bit, 32-bit, 16-bit, or 8-bit data element). That is,
the memory controller may load data from memory with a
Smaller sized access and data return than would ordinarily be
used for a load operation without a no-locality hint (e.g., a
load operation for a conventional gather instruction). As one
specific example, only one of a pair of 256-bit bus signals
usually used to access an entire 512-bit cache line amount of
data may be sent from the memory controller to a dynamic
random access memory (DRAM) with the one sent being the
one that includes the desired data element. In some embodi
ments, the minimum sized access and data return that is
Sufficient to contain the desired data element may optionally
be used. The memory controller may provide a sub-cache
line data return 351 to the cache controller(s) 344. The cache
controllers may provide a corresponding Sub-cache line
amount of data 352 to the execution unit. In other embodi
ments, sub-cache line amounts of data may be transmitted on
Some but not all of these interconnects.

Conventionally, if a whole cache line is being accessed,
the lowest order bits of the address (e.g., the lowest order
6-bits of the address) may all be zeroes. In contrast, if only
a portion of a cache line is being accessed, some or all of
these lowest order bits may not all be zeroes but rather may
be needed to specify the location of the desired data within
the cache line (e.g., in one embodiment a location of a single
64-bit, 32-bit, 16-bit, or 8-bit data element within a 512-bit
cache line). In some embodiments, a size of the data element
may also need to be indicated in the memory access.

Advantageously, any one or more of the Sub-cache line
data access and return 350 and/or the sub-cache line data
return 351 and/or the sub-cache line amount of data 352 may
help to reduce wasted bandwidth on the associated inter
connects. This in turn may help to improve processor speed
and/or performance, especially in applications that (at least
at times) tend to be memory access bandwidth bound. In
Such situations, the processor may be able to process data
faster than the data can be obtained from memory. If the
needed data could be obtained from the memory faster, then
overall processor speed and/or performance could be

US 9,600,442 B2
9

improved. Using the available memory access bandwidth to
access a greater proportion of data that is actually of interest,
and a lesser proportion of “tag along spatial locality
assumption data, may offer an advantage when there is low
actual spatial locality. Such smaller accesses may be appro
priate when the data access has sufficiently low spatial
locality. In addition, these Smaller accesses may also help to
reduce power consumption to return the desired data ele
ment.

In some embodiments, if a no-locality hint load operation
348 request for data has a no-temporal locality (e.g., non
temporal) hint, and if the request misses in a cache 308, then
the associated cache controller 344 may not allocate storage
space in the cache for the requested data as it normally
would for a regular gather instruction (i.e., without a no
locality hint). If there are multiple cache levels, cache
controllers for higher level caches (e.g., closer to the cores)
may provide the request to cache controllers for lower level
caches (e.g., farther from the cores). Upon cache misses, in
Some embodiments, each cache controller may similarly not
allocate storage space in their associated caches for the
requested data when it is returned from memory. In some
embodiments, if the data is present in a lower level cache it
may be returned to the execution unit 306 without being
stored in any of the higher level cache?s). If the data is not
present in any cache?s) 308, then the request for the data may
be provided to the memory controller 346. The memory
controller may retrieve the desired data from memory,
optionally retrieving a sub-cache line amount of data 350 if
the hint is also a no-spatial locality hint, or else retrieving an
entire cache line amount of data if the hint is just a
no-temporal locality hint. The memory controller may pro
vide the retrieved data to the cache controller(s). In some
embodiments, the cache controller(s) may provide the data
to the execution unit 306 without storing the retrieved data
in the cache?s). Advantageously, omitting storing the data in
the cache?(s) this may help to reduce cache pollution and/or
may help to increase processor performance, and may be
appropriate when the data access has sufficiently low tem
poral locality. Once the execution unit has received all the
requested data elements, and placed them into the packed
data result 336 (e.g., in a packed data register), it may signal
completion of the instruction.
The execution unit and/or the processor may include

specific or particular logic (e.g., transistors, integrated cir
cuitry, or other hardware potentially combined with firm
ware (e.g., instructions stored in non-volatile memory) and/
or software) that is operable to perform the no-locality hint
gather operation in response to and/or as a result of the
no-locality hint gather instruction. By way of example, the
execution unit may include a gather execution unit, a gather
and/or scatter execution unit, a memory execution unit, a
memory access unit, a load unit, load and/or store unit, or the
like.

FIG. 4 is a block diagram illustrating an embodiment of
a gather operation 420 that may be performed in response to
an embodiment of a no-locality hint gather instruction. The
gather instruction may specify or otherwise indicate a source
packed memory indices 434 having a plurality of packed
memory indices. There are eight memory indices in the
illustrated embodiment, although the scope of the invention
is not so limited. In the illustrated example, the values of the
memory indices are, from the least significant position (on
the left) to the most significant position (on the right) right,
134, 231, 20, 135, 5, 21, 30... 186. These values are only
an example. Other embodiments may include either fewer or
more memory indices. Commonly, the number of memory

10

15

25

30

35

40

45

50

55

60

65

10
indices in the Source packed memory indices may be equal
to the size in bits of the Source packed memory indices
operand divided by the size in bits of each of the memory
indices. In various embodiments, the width of the source
packed memory indices operand may be 64-bits, 128-bits,
256-bits, 512-bits, or 1024-bits, although the scope of the
invention is not so limited. In various embodiments, the size
of each memory index may be 16-bits, 32-bits, or 64-bits,
although the scope of the invention is not so limited. Other
Source packed memory indices widths and memory index
sizes are also suitable.
The gather operation 420 may be performed, and a packed

data result 436 may be stored in a destination storage
location, in response to and/or as a result of the gather
instruction. In one aspect, the gather instruction may specify
or otherwise indicate the destination storage location. In
Some embodiments, the packed data result may include data
elements that have been loaded or gathered from potentially
non-contiguous memory locations in memory 418, which
are indicated by the corresponding memory indices of the
Source packed memory indices 434. By way of example, a
memory index may be converted into a memory address
using a common scale and a common base (e.g., as memory
address-memory index scale--base). For example, in the
illustrated embodiment, the memory index 134 may indicate
the memory location storing data element B1, the memory
index 231 may indicate the memory location storing data
element B2, and so on.

In some embodiments, the gather operation may include
a sub-cache line data access 450 to the memory 418. In some
embodiments, the gather operation may include a Sub-cache
line data return 452 from the memory that bypasses the
caches of the processor. Rather than accessing a full cache
line (e.g., a 512-bit cache line), in various embodiments, the
Sub-cache line data access and return may access and return
only one half a cache line (e.g., 256-bits), one quarter a
cache line (e.g., 128-bits), one eighth a cache line (e.g.,
64-bits), or a single data element (e.g., a 64-bit, 32-bit,
16-bit, or 8-bit data element). In some embodiments, the
data returned may not be stored in any caches of the
processor.

In the illustrated embodiment the packed data result
includes eight data elements, although the scope of the
invention is not so limited. Other embodiments may include
either fewer or more result data elements. Commonly, the
number of result data elements may be equal to the width in
bits of the packed data result divided by the size in bits of
each result data element and/or equal to the number of
memory indices in the source packed memory indices. In
various embodiments, the width of the packed data result
may be 64-bits, 128-bits, 256-bits, 512-bits, or 1024-bits,
although the Scope of the invention is not so limited. In
various embodiments, the size of each result data element
may be 16-bits, 32-bits, or 64-bits, although the scope of the
invention is not so limited. In the illustrated example, the
packed data result stores, from the least significant position
(on the left) to the most significant position (on the right)
right, the data elements B1 through B8.

FIG. 5 is a block diagram illustrating an embodiment of
a masked gather operation 520 that may be performed in
response to an embodiment of a masked no-locality hint
gather instruction. The masked operation of FIG. 5 has
similarities to the unmasked operation of FIG. 4. To avoid
obscuring the description, the different and/or additional
characteristics for the masked operation of FIG. 5 will
primarily be described without repeating all the similar or
common characteristics relative to the unmasked operation

US 9,600,442 B2
11

of FIG. 4. However, the previously described characteristics
of the unmasked operation of FIG. 4 also optionally apply to
the masked operation of FIG. 5, unless stated or otherwise
clearly apparent.
The masked gather instruction may specify or otherwise

indicate a source packed memory indices 534 having a
plurality of packed memory indices. The Source packed
memory indices, as well as the memory indices, may be
similar to, or the same as, those described for FIGS. 3-4, and
may have the same variations and alternatives.
The masked gather instruction may additionally specify

(e.g., explicitly specify) or otherwise indicate (e.g., implic
itly indicate) a source packed data operation mask 538. The
packed data operation mask may also be referred to herein
simply as an operation mask, predicate mask, or mask. The
mask may represent a predicate operand or conditional
control operand that may be used to predicate, conditionally
control, or mask whether or not corresponding operations
are to be performed and/or corresponding results are to be
stored. In some embodiments, the masking or predication
may be at per-data element granularity Such that operations
on different pairs of corresponding data elements may be
predicated or conditionally controlled separately and/or
independently of others. The mask may include multiple
mask elements, predicate elements, or conditional control
elements. In one aspect, the mask elements may be included
in a one-to-one correspondence with corresponding memory
indices of source packed memory indices and/or correspond
ing result data elements of result packed data. For example,
the corresponding mask elements, memory indices, and
result data elements may occupy same relative positions
within the operands.
As shown, in Some embodiments, each mask element may

be a single mask bit. In such cases, the mask may have a bit
for each memory index and/or each result data element. In
the example of the Source packed memory indices having
eight memory indices, and in the case of each mask element
being a single bit, the packed data operation mask may be
8-bits wide with each bit representing a predicate or mask bit
that corresponds to a memory index in a same relative
operand position. For example, in the illustration the corre
sponding positions are in vertically alignment above one
another. A value of each mask bit may control whether or not
a corresponding gather or load operation is to be performed
and/or a corresponding result data element is to be stored.
Each mask bit may have a first value to allow the gather or
load operation to be performed using the corresponding
memory index and allow the corresponding result data
element to be stored in the result packed data, or may have
a second different value to not allow the gather or load
operation to be performed using the corresponding memory
index and/or not allow the corresponding result data element
to be stored in the result packed data. According to one
possible convention, as shown in the illustration, a mask bit
cleared to binary Zero (i.e., 0) may represent a masked out
operation for which a result data element is not to be stored,
whereas a mask bit set to binary one (i.e., 1) may represent
an unmasked operation for which a gathered result data
element is to be stored. In the illustrated example, the
mask bits, from least significant bit position (on the left) to
most significant bit position (on the right), are 1, 1, 0, 1, 1.
1, 0 . . . 1. This is just one illustrative example. In other
embodiments, two or more bits may optionally be used for
each mask element (e.g., each mask element may have a
same number of bits as each corresponding Source data
element and either all bits or as few as a single bit may be
used to determine the masking).

10

15

25

30

35

40

45

50

55

60

65

12
The masked gather operation 520 may be performed, and

a packed data result 536 may be stored, in response to and/or
as a result of the masked gather instruction. The packed data
result may be similar to, or the same as, that described for
FIG. 4, and may have the same variations and alternatives.
In one aspect, the packed data result may be stored in a
destination storage location indicated by the masked gather
instruction. The masked gather operation may load or gather
data elements from potentially non-contiguous locations in
a memory 518 indicated by the corresponding memory
indices Subject to the masking, predication, or conditional
control of the source packed data operation mask 538. In
Some embodiments, data may only be gathered and stored
into the corresponding result data element if the correspond
ing mask bit in the packed data operation mask is unmasked
(e.g., in the illustration set to binary 1). In contrast, the result
data elements corresponding to masked-out mask elements
may have predetermined values not based on the gather
operation. For example, either the corresponding gather
operation need not be performed, or if the corresponding
gather operation is performed then the corresponding gath
ered data element need not be stored in the corresponding
result data element. Rather, a fixed or predetermined value
may be stored in the corresponding result data element. In
the illustrated example, the result data elements correspond
ing to masked-out mask elements (having a value of Zero in
the illustrated example) have an asterisk (*) to represent
such fixed or predetermined values. The particular fixed or
predetermined values may depend on the type of masking
used for the particular implementation. In some embodi
ments, Zeroing masking may be used. In Zeroing masking,
the masked-out result data elements may be zeroed-out (e.g.,
be forced to have a value of Zero). Alternatively, other
predetermined values may optionally be stored in these
masked-out result data elements. In the illustrated example,
the packed data result in the destination stores, from the least
significant position (on the left) to the most significant
position (on the right) right, the data elements B1, B2, *, B4,
B5, B6, *, B8.

In some embodiments, the masked gather operation may
include a sub-cache line data access 550 to the memory 518.
In some embodiments, the gather operation may include a
sub-cache line data return 552 from the memory that
bypasses the caches of the processor. Rather than accessing
a full cache line (e.g., a 512-bit cache line), in various
embodiments, the Sub-cache line data access and return may
access and return only one half a cache line (e.g., 256-bits),
one quarter a cache line (e.g., 128-bits), one eighth a cache
line (e.g., 64-bits), or a single data element (e.g., a 64-bit,
32-bit, 16-bit, or 8-bit data element). In some embodiments,
the data returned may not be stored in any caches of the
processor.

FIG. 6 is a block diagram of an embodiment of a
processor 602 that is operable to perform an embodiment of
a no-locality hint scatter instruction 614. The no-locality hint
scatter instruction may also be referred to herein as a
no-locality hint vector store or write instruction. The pro
cessor 602 includes a decode unit 630, an execution unit
606, packed data registers 632, a source packed memory
indices 634, packed data operation mask registers 640, a
Source packed data operation mask 638, general-purpose
registers 642, one or more cache controllers 644, one or
more caches 608, and a memory controller 646. Unless
otherwise specified, except for performing a scatter instruc
tion instead of a gather instruction, the processor 602 and the
aforementioned components may optionally have some or
all of the characteristics, variations, and alternatives of the

US 9,600,442 B2
13

processor 302 and correspondingly named components of
FIG. 3. To avoid obscuring the description, the different
and/or additional characteristics will primarily be described
without repeating all of the common characteristics and
possible variations.

During operation, the processor 602 may receive the
embodiment of the no-locality hint scatter instruction 614.
The no-locality hint scatter instruction may represent a
macroinstruction, assembly language instruction, machine
code instruction, or other instruction or control signal of an
instruction set of the processor. In some embodiments, the
no-locality hint scatter instruction may explicitly specify or
otherwise indicate both the source packed memory indices
634 and the source packed data 660. In some embodiments,
the source packed memory indices may optionally be stored
in a first packed data register, and the source packed data
may optionally be stored in a second packed data register. In
Some embodiments, if the no-locality hint Scatter instruction
is optionally a masked or predicated instruction, it may also
specify or otherwise indicate a source packed data operation
mask 638, although this is not required.
The decode unit 630 may decode the no-locality hint

scatter instruction 614. The execution unit 606 is coupled
with the decode unit 630, the packed data registers 632, and
optionally the source packed data operation mask 638 (e.g.,
the mask registers 640). The execution unit may receive the
Source packed memory indices 634 and the source packed
data 660. The execution unit is operable in response to
and/or as a result of the no-locality hint Scatter instruction
(e.g., in response to one or more instructions or control
signals decoded from the instruction) scatter, store, or write
data elements from the source packed data 660 to locations
in memory indicated by the corresponding packed memory
indices of the source packed memory indices 634. In some
embodiments, a masked scatter operation may optionally be
performed. In some embodiments, the execution unit may
perform any of the operations shown and described for any
of FIGS. 7-8, although the scope of the invention is not so
limited. The execution unit and/or the processor may include
specific or particular logic (e.g., transistors, integrated cir
cuitry, or other hardware potentially combined with firm
ware (e.g., instructions stored in non-volatile memory) and/
or software) that is operable to perform the no-locality hint
scatter operation in response to and/or as a result of the
no-locality hint scatter instruction. By way of example, the
execution unit may include a scatter execution unit, a gather
and/or scatter execution unit, a memory execution unit, a
memory access unit, a store unit, a load and store unit, or the
like.

In some embodiments, the scatter operation may be
implemented with a no-locality hint. In some embodiments,
the scatter operation may be implemented with a no-tem
poral locality hint. In other embodiments, the scatter opera
tion may be implemented with a no-spatial locality hint. In
still other embodiments, the scatter operation may be imple
mented with a no-temporal locality and no-spatial locality
hint. The execution unit may provide no-locality hint store
or write operations 662 to one or more cache controllers 644.
In some embodiments, there may be a single cache level and
single cache controller (e.g., an L1 cache controller). In
other embodiments, there may be two or more cache con
trollers (e.g., an L1 cache controller, an L2 cache controller,
and optionally an L3 cache controller).

There are various ways in which a no-temporal locality
hint may be applied for a scatter instruction. Consider first
a scenario where a scatter operation hits in a lower-level
cache (e.g., an L2 or L3 cache). One possible way to

10

15

25

30

35

40

45

50

55

60

65

14
implement a conventional scatter instruction without a no
temporal locality hint would be to read the cache line having
the hitting data element from the lower-level cache into a
higher-level cache (e.g., an L1 cache). Then a write may be
performed to replace the data element in the higher-level
cache (e.g., the L1 cache). However, one possible drawback
to this approach is that it may cause non-temporal data to be
brought higher up in the cache hierarchy and/or closer to the
processor. In some embodiments, an alternate approach may
be performed in response to the embodiment of no-temporal
locality hint scatter instruction. For example, in some
embodiments, upon the scatter operation hitting on the
lower-level cache (e.g., the L2 or L3 cache), instead of
transferring the cache line having the hitting data element to
the higher-level cache (e.g., the L1 cache), the data element
may be kept in the lower-level cache (e.g., the L2 or L3
cache) and the write may be performed to replace the data
element in the lower-level cache. This approach may avoid
bringing the non-temporal data element higher up in the
cache hierarchy and/or closer to the cores. In some embodi
ments, upon the scatter operation hitting in a cache (e.g., an
L1 cache, an L2 cache, or an L3 cache), the corresponding
cache line having the data element may be evicted from the
cache to a lower-level cache or evicted from all of the caches
to memory. Then the write may be performed to memory to
replace the data element. In another embodiment, this may
be just one more piece of information in a cache line eviction
algorithm or replacement policy.

If a no-locality hint scatter or store operation 662 has a
no-Spatial locality hint, and if the request misses in the
cache?s) 608, then the associated operation may be provided
to the memory controller 646. In some embodiments, the
memory controller may perform a sub-cache line sized
scatter, write, or store operation 664 to memory. In various
embodiments, the Sub-cache line sized scatter, write, or store
operation 664 may be only half a cache line (e.g., only
256-bits), only one quarter a cache line (e.g., only 128-bits),
only one eighth a cache line (e.g., only 64-bits), or only a
single data element (e.g., a 64-bit, 32-bit, 16-bit, or 8-bit data
element). That is, the memory controller may write data to
the memory with a smaller sized write than would ordinarily
be used for a write operation without a no-locality hint (e.g.,
a write operation for a conventional scatter instruction). As
one specific example, only one of a pair of 256-bit bus write
signals usually used to write an entire 512-bit cache line
amount of data may be transmitted from the memory con
troller to a DRAM with the one transmitted being the one
that includes the desired data element. In some embodi
ments, the minimum sized write that is sufficient to replace
the desired data element may optionally be used. Advanta
geously, such smaller writes may help to reduce wasted
bandwidth on the associated interconnects. In addition, these
Smaller writes may also help to reduce power consumption.

FIG. 7 is a block diagram illustrating an embodiment of
a scatter operation 720 that may be performed in response to
an embodiment of a no-locality hint scatter instruction. The
scatter instruction may specify or otherwise indicate a
Source packed memory indices 734 having a plurality of
packed memory indices. The source packed memory indi
ces, as well as the memory indices, may be similar to, or the
same as, those described for FIG. 4, and may have the same
variations and alternatives.
The scatter instruction may also specify or otherwise

indicate a source packed data 660 having a plurality of
packed data elements that are to be scattered or written to
memory. There are eight packed data elements, labeled B1
through B8, in the source packed data in the illustrated

US 9,600,442 B2
15

embodiment, although the Scope of the invention is not so
limited. Other embodiments may include either fewer or
more data elements to be scattered. Commonly, the number
of data elements to be scattered may be equal to the number
of memory indices in the source packed memory indices.
Each data element to be scattered may correspond to a
different one of the memory indices (e.g., in a same relative
position within the operands). In various embodiments, the
width of the source packed data may be 64-bits, 128-bits,
256-bits, 512-bits, or 1024-bits, although the scope of the
invention is not so limited. In various embodiments, the size
of each data element in the source packed data 760 may be
16-bits, 32-bits, or 64-bits, although the scope of the inven
tion is not so limited. Other source packed data widths and
data element sizes are also Suitable.
The scatter operation 720 may be performed in response

to and/or as a result of the scatter instruction. The scatter
operation may store, write, or scatter data elements from the
source packed data 760 to locations in a memory 718 that are
indicated by the corresponding memory indices in Source
packed memory indices 734. The data elements may be
scattered or written to locations in the memory indicated by
and/or derived from the memory indices. In some embodi
ments, the data elements may be scattered to optionally/
potentially non-contiguous memory locations. For example,
in the illustrated embodiment, the memory index 134 points
to the memory location where the data element B1 is to be
written, and so on. In some embodiments, the scattering may
be ordered across the Source packed data, Such as, for
example, from a lowest order bit position (on the left as
viewed) to a highest order bit position (on the right as
viewed). In some embodiments, the no-locality hint scatter
operation may include a sub-cache line data write 764 to the
memory 718.

FIG. 8 is a block diagram illustrating an embodiment of
a masked scatter operation 820 that may be performed in
response to an embodiment of a masked no-locality hint
scatter instruction. The masked operation of FIG. 8 has
similarities to the unmasked operation of FIG. 7. To avoid
obscuring the description, the different and/or additional
characteristics for the masked operation of FIG. 8 will
primarily be described without repeating all the similar or
common characteristics relative to the unmasked operation
of FIG. 7. However, the previously described characteristics
of the unmasked operation of FIG. 7 also optionally apply to
the masked operation of FIG. 8, unless stated or otherwise
clearly apparent.
The masked scatter instruction may specify or otherwise

indicate a source packed memory indices 834 having a
plurality of packed memory indices. The Source packed
memory indices, as well as the memory indices, may be
similar to, or the same as, those described for FIGS. 3-4
and/or 7, and may have the same variations and alternatives.
The masked scatter instruction may also specify or oth

erwise indicate a source packed data 860 having a plurality
of packed data elements. The Source packed data, as well as
the data elements therein, may be similar to, or the same as,
those described for FIG. 6-7, and may have the same
variations and alternatives.
The masked scatter instruction may additionally specify

(e.g., explicitly specify) or otherwise indicate (e.g., implic
itly indicate) a source packed data operation mask 838
having a plurality of mask bits or other mask elements. The
Source packed data operation mask, as well as the mask bits
or mask elements therein, except that they may be used to
mask scatter operations instead of gather operations, may be
similar to, or the same as, those described for FIG. 5, and

10

15

25

30

35

40

45

50

55

60

65

16
may have the same variations and alternatives. The mask
elements may be included in a one-to-one correspondence
with corresponding memory indices of Source packed
memory indices and/or corresponding data elements of
Source packed data (e.g., may occupy same relative posi
tions within the operands). A value of each mask bit or mask
element may control whether or not a corresponding scatter
or write operation is to be performed for a corresponding
data element of the Source packed data. Each mask bit may
have a first value to allow the scatter operation to be
performed using the corresponding memory index and
Source data element, or may have a second different value to
not allow the scatter operation to be performed using the
corresponding memory index and Source data element.
The masked scatter operation 820 may be performed in

response to and/or as a result of the masked scatter instruc
tion subject to the predication or conditional control of the
source packed data operation mask 838. The scatter opera
tion may store, write, or scatter data elements from the
source packed data 860 to potentially/optionally non-con
tiguous locations in a memory 818 indicated by and/or
derived from the corresponding memory indices Subject to
the masking, predication, or conditional control of the
source packed data operation mask 838. In some embodi
ments, data may only be scattered or stored to the memory
location if the corresponding mask bit in the packed data
operation mask is unmasked (e.g., in the illustration set to
binary 1). In contrast, memory locations corresponding to
masked-out mask elements may have preexisting values not
changed by the scatter operation (e.g., the same value as in
the memory location before execution of the masked scatter
instruction). In the illustrated example, the memory loca
tions corresponding to masked-out mask elements (having
values of Zero in the illustrated example) have an asterisk (*)
to represent such preexisting values. In some embodiments,
the no-locality hint Scatter operation may include a Sub
cache line data write 864 to the memory 818.

In some embodiments, an instruction format may include
an operation code or opcode. The opcode may represent a
plurality of bits or one or more fields that are operable to
identify the instruction and/or the operation to be performed
(e.g., a sort index operation). Depending upon the particular
instruction, the instruction format may also include one or
more source and/or destination specifiers. By way of
example, each of these specifiers may include bits or one or
more fields to specify an address of a register, memory
location, or other storage location, as described elsewhere
herein. Alternatively, instead of Such an explicit specifier,
one or more sources and/or destinations may optionally be
implicit to the instruction instead of being explicitly speci
fied. In addition, a source may be implicitly reused as a
destination in some cases (e.g., for a gather instruction of
Some embodiments). In addition, the instruction format may
optionally add additional fields, may overlap certain fields,
etc. Fields need not include contiguous sequences of bits but
rather may be composed of non-contiguous or separated
bits.

In some embodiments, a no-locality hint vector memory
access instruction may optionally have a different opcode
than a vector memory access instruction without the no
locality hint. For example, a no-locality hint gather instruc
tion may have a different opcode than a gather instruction
without the no-locality hint. In some embodiments, different
opcodes may optionally be provided for no-spatial locality
hint and no-temporal locality hint vector memory access
instructions. For example, a no-spatial locality hint gather
instruction, a no-temporal locality hint gather instruction, a

US 9,600,442 B2
17

no-spatial locality hint Scatter instruction, and a no-temporal
locality hint scatter instruction may all have different
opcodes. In other embodiments, a no-locality hint vector
memory access instruction may share an opcode with a
vector memory access instruction without a no-locality hint.
For example, a no-locality hint gather instruction may share
an opcode with a gather instruction without a no-locality
hint, and these instructions may include one or more bits to
indicate whether or not the instruction is to be decoded to
have a no-locality hint. As another example, a no-locality
hint scatter instruction may share an opcode with a scatter
instruction without a no-locality hint, and these instructions
may include one or more bits to indicate whether or not the
instruction is to be decoded to have a no-locality hint. In
Some embodiments, a single bit may have a first value (e.g.,
1) to indicate a no-locality hint or a second value (e.g., 0) to
indicate lack of a no-locality hint. In other embodiments,
two bits may have different values to indicate whether or not
there is a no-locality hint and what type the no-locality hint
is. For example, these two bits may have a first value (e.g.,
00) to indicate that there is not a no-locality hint, a second
value (e.g., 01) to indicate that there is a no-spatial locality
hint, a third value (e.g., 10) to indicate that there is a
no-temporal locality hint, and a fourth value (e.g., 11) to
indicate that there is a no-spatial and no-temporal locality
hint. In some embodiments, a no-locality hint vector
memory access instruction (e.g., a no-locality hint gather or
scatter instruction) may have a weaker memory ordering
model than a counterpart vector memory access instruction
in the same instruction set that lacks the no-locality hint
(e.g., conventional a gather or scatter instruction without the
no-locality hint).
An instruction set includes one or more instruction for

mats. A given instruction format defines various fields
(number of bits, location of bits) to specify, among other
things, the operation to be performed (opcode) and the
operand(s) on which that operation is to be performed. Some
instruction formats are further broken down though the
definition of instruction templates (or subformats). For
example, the instruction templates of a given instruction
format may be defined to have different subsets of the
instruction formats fields (the included fields are typically
in the same order, but at least some have different bit
positions because there are less fields included) and/or
defined to have a given field interpreted differently. Thus,
each instruction of an ISA is expressed using a given
instruction format (and, if defined, in a given one of the
instruction templates of that instruction format) and includes
fields for specifying the operation and the operands. For
example, an exemplary ADD instruction has a specific
opcode and an instruction format that includes an opcode
field to specify that opcode and operand fields to select
operands (source1/destination and Source2); and an occur
rence of this ADD instruction in an instruction stream will
have specific contents in the operand fields that select
specific operands. A set of SIMD extensions referred to the
Advanced Vector Extensions (AVX) (AVX1 and AVX2) and
using the Vector Extensions (VEX) coding scheme, has
been, has been released and/or published (e.g., see Intel(R) 64
and IA-32 Architectures Software Developers Manual,
October 2011; and see Intel R Advanced Vector Extensions
Programming Reference, June 2011).

Exemplary Instruction Formats
Embodiments of the instruction(s) described herein may

be embodied in different formats. Additionally, exemplary
systems, architectures, and pipelines are detailed below.

10

15

25

30

35

40

45

50

55

60

65

18
Embodiments of the instruction(s) may be executed on such
systems, architectures, and pipelines, but are not limited to
those detailed.
VEX Instruction Format
VEX encoding allows instructions to have more than two

operands, and allows SIMD vector registers to be longer
than 128 bits. The use of a VEX prefix provides for
three-operand (or more) syntax. For example, previous
two-operand instructions performed operations such as
A=A+B, which overwrites a source operand. The use of a
VEX prefix enables operands to perform nondestructive
operations such as A=B+C.

FIG. 9A illustrates an exemplary AVX instruction format
including a VEX prefix 902, real opcode field 930, ModR/M
byte 940, SIB byte 950, displacement field 962, and IMM8
972. FIG.9B illustrates which fields from FIG.9A make up
a full opcode field 974 and a base operation field 942. FIG.
9C illustrates which fields from FIG. 9A make up a register
index field 944.
VEX Prefix (Bytes 0-2) 902 is encoded in a three-byte

form. The first byte is the Format Field 940 (VEX Byte 0,
bits 7:0), which contains an explicit C4 byte value (the
unique value used for distinguishing the C4 instruction
format). The second-third bytes (VEX Bytes 1-2) include a
number of bit fields providing specific capability. Specifi
cally, REX field 905 (VEX Byte 1, bits (7-5) consists of a
VEX.R bit field (VEX Byte 1, bit 7-R), VEX.X bit field
(VEX byte 1, bit 6-X), and VEX.B bit field (VEX byte 1,
bit 5-B). Other fields of the instructions encode the lower
three bits of the register indexes as is known in the art (rrr,
XXX, and bbb), so that Rrrr, XXXX, and Bbbb may beformed
by adding VEX.R, VEX.X, and VEX.B. Opcode map field
915 (VEX byte 1, bits 4:0-mm mmm) includes content to
encode an implied leading opcode byte. W Field 964 (VEX
byte 2, bit 7-W) is represented by the notation VEX.W.
and provides different functions depending on the instruc
tion. The role of VEX.Vvvv 920 (VEX Byte 2, bits 6:3-
VVVV) may include the following: 1) VEX. VVVV encodes the
first source register operand, specified in inverted (1S
complement) form and is valid for instructions with 2 or
more source operands; 2) VEX.VVVV encodes the destination
register operand, specified in is complement form for certain
vector shifts; or 3) VEX.VVVV does not encode any operand,
the field is reserved and should contain 1111b. If VEX.L. 968
Size field (VEX byte 2, bit 2-L)=0, it indicates 128 bit
vector; if VEX.L=1, it indicates 256 bit vector. Prefix
encoding field 925 (VEX byte 2, bits 1:0-pp) provides
additional bits for the base operation field.

Real Opcode Field 930 (Byte 3) is also known as the
opcode byte. Part of the opcode is specified in this field.
MOD R/M Field 940 (Byte 4) includes MOD field 942

(bits 7-6), Reg field 944 (bits 5-3), and R/M field 946
(bits 2-0). The role of Reg field 944 may include the
following: encoding either the destination register operand
or a source register operand (the rrr of Rrrr), or be treated as
an opcode extension and not used to encode any instruction
operand. The role of R/M field 94.6 may include the follow
ing: encoding the instruction operand that references a
memory address, or encoding either the destination register
operand or a source register operand.

Scale, Index, Base (SIB). The content of Scale field 950
(Byte 5) includes SS952 (bits 7-6), which is used for
memory address generation. The contents of SIB.XXX 954
(bits 5-3) and SIB.bbb 956 (bits 2-0) have been previ
ously referred to with regard to the register indexes XXXX
and Bbbb.

US 9,600,442 B2
19

The Displacement Field 962 and the immediate field
(IMM8) 972 contain address data.

Generic Vector Friendly Instruction Format
A vector friendly instruction format is an instruction

format that is Suited for vector instructions (e.g., there are 5
certain fields specific to vector operations). While embodi
ments are described in which both vector and scalar opera
tions are Supported through the vector friendly instruction
format, alternative embodiments use only vector operations
the vector friendly instruction format. 10

FIGS. 10A-10B are block diagrams illustrating a generic
vector friendly instruction format and instruction templates
thereof according to embodiments of the invention. FIG.
10A is a block diagram illustrating a generic vector friendly
instruction format and class A instruction templates thereof 15
according to embodiments of the invention; while FIG. 10B
is a block diagram illustrating the generic vector friendly
instruction format and class B instruction templates thereof
according to embodiments of the invention. Specifically, a
generic vector friendly instruction format 1000 for which are 20
defined class A and class B instruction templates, both of
which include no memory access 1005 instruction templates
and memory access 1020 instruction templates. The term
generic in the context of the vector friendly instruction
format refers to the instruction format not being tied to any 25
specific instruction set.

While embodiments of the invention will be described in
which the vector friendly instruction format supports the
following: a 64 byte vector operand length (or size) with 32
bit (4 byte) or 64bit (8 byte) data element widths (or sizes) 30
(and thus, a 64 byte vector consists of either 16 doubleword
size elements or alternatively, 8 quadword-size elements); a
64 byte vector operand length (or size) with 16 bit (2 byte)
or 8 bit (1 byte) data element widths (or sizes): a 32 byte
vector operand length (or size) with 32 bit (4 byte), 64bit (8 35
byte), 16 bit (2 byte), or 8 bit (1 byte) data element widths
(or sizes); and a 16 byte vector operand length (or size) with
32 bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1
byte) data element widths (or sizes); alternative embodi
ments may support more, less and/or different vector oper- 40
and sizes (e.g., 256 byte vector operands) with more, less, or
different data element widths (e.g., 128 bit (16 byte) data
element widths).
The class A instruction templates in FIG. 10A include: 1)

within the no memory access 1005 instruction templates 45
there is shown a no memory access, full round control type
operation 1010 instruction template and a no memory
access, data transform type operation 1015 instruction tem
plate; and 2) within the memory access 1020 instruction
templates there is shown a memory access, temporal 1025 50
instruction template and a memory access, non-temporal
1030 instruction template. The class B instruction templates
in FIG. 10B include: 1) within the no memory access 1005
instruction templates there is shown a no memory access,
write mask control, partial round control type operation 55
1012 instruction template and a no memory access, write
mask control, Vsize type operation 1017 instruction tem
plate; and 2) within the memory access 1020 instruction
templates there is shown a memory access, write mask
control 1027 instruction template. 60
The generic vector friendly instruction format 1000

includes the following fields listed below in the order
illustrated in FIGS. 10A-10B.

Format field 1040 a specific value (an instruction format
identifier value) in this field uniquely identifies the vector 65
friendly instruction format, and thus occurrences of instruc
tions in the vector friendly instruction format in instruction

20
streams. As such, this field is optional in the sense that it is
not needed for an instruction set that has only the generic
vector friendly instruction format.

Base operation field 1042 its content distinguishes dif
ferent base operations.

Register index field 1044 its content, directly or through
address generation, specifies the locations of the source and
destination operands, be they in registers or in memory.
These include a sufficient number of bits to select N registers
from a PxQ (e.g. 32x512, 16x128, 32x1024, 64x1024)
register file. While in one embodiment N may be up to three
Sources and one destination register, alternative embodi
ments may support more or less sources and destination
registers (e.g., may support up to two sources where one of
these sources also acts as the destination, may support up to
three sources where one of these sources also acts as the
destination, may support up to two sources and one desti
nation).

Modifier field 1046 its content distinguishes occur
rences of instructions in the generic vector instruction for
mat that specify memory access from those that do not; that
is, between no memory access 1005 instruction templates
and memory access 1020 instruction templates. Memory
access operations read and/or write to the memory hierarchy
(in some cases specifying the Source and/or destination
addresses using values in registers), while non-memory
access operations do not (e.g., the source and destinations
are registers). While in one embodiment this field also
selects between three different ways to perform memory
address calculations, alternative embodiments may support
more, less, or different ways to perform memory address
calculations.

Augmentation operation field 1050 its content distin
guishes which one of a variety of different operations to be
performed in addition to the base operation. This field is
context specific. In one embodiment of the invention, this
field is divided into a class field 1068, an alpha field 1052,
and a beta field 1054. The augmentation operation field 1050
allows common groups of operations to be performed in a
single instruction rather than 2, 3, or 4 instructions.

Scale field 1060 its content allows for the scaling of the
index field's content for memory address generation (e.g.,
for address generation that uses 2**index+base).

Displacement Field 1062A its content is used as part of
memory address generation (e.g., for address generation that
uses 2**index+base+displacement).

Displacement Factor Field 1062B (note that the juxtapo
sition of displacement field 1062A directly over displace
ment factor field 1062B indicates one or the other is used)—
its content is used as part of address generation; it specifies
a displacement factor that is to be scaled by the size of a
memory access (N) where N is the number of bytes in the
memory access (e.g., for address generation that uses
2**index+base+scaled displacement). Redundant low
order bits are ignored and hence, the displacement factor
field's content is multiplied by the memory operands total
size (N) in order to generate the final displacement to be
used in calculating an effective address. The value of N is
determined by the processor hardware at runtime based on
the full opcode field 1074 (described later herein) and the
data manipulation field 1054C. The displacement field
1062A and the displacement factor field 1062B are optional
in the sense that they are not used for the no memory access
1005 instruction templates and/or different embodiments
may implement only one or none of the two.

Data element width field 1064 its content distinguishes
which one of a number of data element widths is to be used

US 9,600,442 B2
21

(in some embodiments for all instructions; in other embodi
ments for only some of the instructions). This field is
optional in the sense that it is not needed if only one data
element width is supported and/or data element widths are
Supported using some aspect of the opcodes.

Write mask field 1070 its content controls, on a per data
element position basis, whether that data element position in
the destination vector operand reflects the result of the base
operation and augmentation operation. Class A instruction
templates Support merging-writemasking, while class B
instruction templates Support both merging- and Zeroing
writemasking. When merging, vector masks allow any set of
elements in the destination to be protected from updates
during the execution of any operation (specified by the base
operation and the augmentation operation); in other one
embodiment, preserving the old value of each element of the
destination where the corresponding mask bit has a 0. In
contrast, when Zeroing vector masks allow any set of ele
ments in the destination to be Zeroed during the execution of
any operation (specified by the base operation and the
augmentation operation); in one embodiment, an element of
the destination is set to 0 when the corresponding mask bit
has a 0 value. A subset of this functionality is the ability to
control the vector length of the operation being performed
(that is, the span of elements being modified, from the first
to the last one); however, it is not necessary that the elements
that are modified be consecutive. Thus, the write mask field
1070 allows for partial vector operations, including loads,
stores, arithmetic, logical, etc. While embodiments of the
invention are described in which the write mask field's 1070
content selects one of a number of write mask registers that
contains the write mask to be used (and thus the write mask
field's 1070 content indirectly identifies that masking to be
performed), alternative embodiments instead or additional
allow the mask write field's 1070 content to directly specify
the masking to be performed.

Immediate field 1072 its content allows for the specifi
cation of an immediate. This field is optional in the sense
that is it not present in an implementation of the generic
vector friendly format that does not support immediate and
it is not present in instructions that do not use an immediate.

Class field 1068 its content distinguishes between dif
ferent classes of instructions. With reference to FIGS. 10A
B, the contents of this field select between class A and class
B instructions. In FIGS. 10A-B, rounded corner squares are
used to indicate a specific value is present in a field (e.g.,
class A 1068A and class B 1068B for the class field 1068
respectively in FIGS. 10A-B).

Instruction Templates of Class A
In the case of the non-memory access 1005 instruction

templates of class A, the alpha field 1052 is interpreted as an
RS field 1052A, whose content distinguishes which one of
the different augmentation operation types are to be per
formed (e.g., round 1052A.1 and data transform 1052A.2
are respectively specified for the no memory access, round
type operation 1010 and the no memory access, data trans
form type operation 1015 instruction templates), while the
beta field 1054 distinguishes which of the operations of the
specified type is to be performed. In the no memory access
1005 instruction templates, the scale field 1060, the dis
placement field 1062A, and the displacement scale filed
1062B are not present.
No-Memory Access Instruction Templates—Full Round

Control Type Operation
In the no memory access full round control type operation

1010 instruction template, the beta field 1054 is interpreted
as a round control field 1054A, whose content(s) provide

10

15

25

30

35

40

45

50

55

60

65

22
static rounding. While in the described embodiments of the
invention the round control field 1054A includes a suppress
all floating point exceptions (SAE) field 1056 and a round
operation control field 1058, alternative embodiments may
Support may encode both these concepts into the same field
or only have one or the other of these concepts/fields (e.g.,
may have only the round operation control field 1058).
SAE field 1056 its content distinguishes whether or not

to disable the exception event reporting; when the SAE
field's 1056 content indicates suppression is enabled, a
given instruction does not report any kind of floating-point
exception flag and does not raise any floating point excep
tion handler.
Round operation control field 1058 its content distin

guishes which one of a group of rounding operations to
perform (e.g., Round-up, Round-down, Round-towards-Zero
and Round-to-nearest). Thus, the round operation control
field 1058 allows for the changing of the rounding mode on
a per instruction basis. In one embodiment of the invention
where a processor includes a control register for specifying
rounding modes, the round operation control field's 1050
content overrides that register value.
No Memory Access Instruction Templates—Data Trans

form Type Operation
In the no memory access data transform type operation

1015 instruction template, the beta field 1054 is interpreted
as a data transform field 1054B, whose content distinguishes
which one of a number of data transforms is to be performed
(e.g., no data transform, Swizzle, broadcast).

In the case of a memory access 1020 instruction template
of class A, the alpha field 1052 is interpreted as an eviction
hint field 1052B, whose content distinguishes which one of
the eviction hints is to be used (in FIG. 10A, temporal
1052B.1 and non-temporal 1052B.2 are respectively speci
fied for the memory access, temporal 1025 instruction
template and the memory access, non-temporal 1030
instruction template), while the beta field 1054 is interpreted
as a data manipulation field 1054C, whose content distin
guishes which one of a number of data manipulation opera
tions (also known as primitives) is to be performed (e.g., no
manipulation; broadcast; up conversion of a source; and
down conversion of a destination). The memory access 1020
instruction templates include the scale field 1060, and
optionally the displacement field 1062A or the displacement
Scale field 1062B.

Vector memory instructions perform vector loads from
and vector stores to memory, with conversion Support. As
with regular vector instructions, vector memory instructions
transfer data from/to memory in a data element-wise fash
ion, with the elements that are actually transferred is dictated
by the contents of the vector mask that is selected as the
write mask.
Memory Access Instruction Templates—Temporal
Temporal data is data likely to be reused soon enough to

benefit from caching. This is, however, a hint, and different
processors may implement it in different ways, including
ignoring the hint entirely.
Memory Access Instruction Templates Non-Temporal
Non-temporal data is data unlikely to be reused soon

enough to benefit from caching in the 1st-level cache and
should be given priority for eviction. This is, however, a
hint, and different processors may implement it in different
ways, including ignoring the hint entirely.

Instruction Templates of Class B
In the case of the instruction templates of class B, the

alpha field 1052 is interpreted as a write mask control (Z)

US 9,600,442 B2
23

field 1052C, whose content distinguishes whether the write
masking controlled by the write mask field 1070 should be
a merging or a Zeroing.

In the case of the non-memory access 1005 instruction
templates of class B, part of the beta field 1054 is interpreted
as an RL field 1057A, whose content distinguishes which
one of the different augmentation operation types are to be
performed (e.g., round 1057A.1 and vector length (VSIZE)
1057A.2 are respectively specified for the no memory
access, write mask control, partial round control type opera
tion 1012 instruction template and the no memory access,
write mask control, VSIZE type operation 1017 instruction
template), while the rest of the beta field 1054 distinguishes
which of the operations of the specified type is to be
performed. In the no memory access 1005 instruction tem
plates, the scale field 1060, the displacement field 1062A,
and the displacement scale filed 1062B are not present.

In the no memory access, write mask control, partial
round control type operation 1010 instruction template, the
rest of the beta field 1054 is interpreted as a round operation
field 1059A and exception event reporting is disabled (a
given instruction does not report any kind of floating-point
exception flag and does not raise any floating point excep
tion handler).

Round operation control field 1059A just as round
operation control field 1058, its content distinguishes which
one of a group of rounding operations to perform (e.g.,
Round-up, Round-down, Round-towards-Zero and Round
to-nearest). Thus, the round operation control field 1059A
allows for the changing of the rounding mode on a per
instruction basis. In one embodiment of the invention where
a processor includes a control register for specifying round
ing modes, the round operation control fields 1050 content
overrides that register value.

In the no memory access, write mask control, VSIZE type
operation 1017 instruction template, the rest of the beta field
1054 is interpreted as a vector length field 1059B, whose
content distinguishes which one of a number of data vector
lengths is to be performed on (e.g., 128, 256, or 512 byte).

In the case of a memory access 1020 instruction template
of class B, part of the beta field 1054 is interpreted as a
broadcast field 1057B, whose content distinguishes whether
or not the broadcast type data manipulation operation is to
be performed, while the rest of the beta field 1054 is
interpreted the vector length field 1059B. The memory
access 1020 instruction templates include the scale field
1060, and optionally the displacement field 1062A or the
displacement scale field 1062B.

With regard to the generic vector friendly instruction
format 1000, a full opcode field 1074 is shown including the
format field 1040, the base operation field 1042, and the data
element width field 1064. While one embodiment is shown
where the full opcode field 1074 includes all of these fields,
the full opcode field 1074 includes less than all of these
fields in embodiments that do not support all of them. The
full opcode field 1074 provides the operation code (opcode).
The augmentation operation field 1050, the data element

width field 1064, and the write mask field 1070 allow these
features to be specified on a per instruction basis in the
generic vector friendly instruction format.
The combination of write mask field and data element

width field create typed instructions in that they allow the
mask to be applied based on different data element widths.
The various instruction templates found within class A

and class B are beneficial in different situations. In some
embodiments of the invention, different processors or dif
ferent cores within a processor may support only class A,

10

15

25

30

35

40

45

50

55

60

65

24
only class B, or both classes. For instance, a high perfor
mance general purpose out-of-order core intended for gen
eral-purpose computing may support only class B, a core
intended primarily for graphics and/or scientific (through
put) computing may support only class A, and a core
intended for both may support both (of course, a core that
has some mix of templates and instructions from both
classes but not all templates and instructions from both
classes is within the purview of the invention). Also, a single
processor may include multiple cores, all of which Support
the same class or in which different cores support different
class. For instance, in a processor with separate graphics and
general purpose cores, one of the graphics cores intended
primarily for graphics and/or scientific computing may
Support only class A, while one or more of the general
purpose cores may be high performance general purpose
cores with out of order execution and register renaming
intended for general-purpose computing that Support only
class B. Another processor that does not have a separate
graphics core, may include one more general purpose in
order or out-of-order cores that support both class A and
class B. Of course, features from one class may also be
implement in the other class in different embodiments of the
invention. Programs written in a high level language would
be put (e.g., just in time compiled or statically compiled)
into an variety of different executable forms, including: 1) a
form having only instructions of the class(es) Supported by
the target processor for execution; or 2) a form having
alternative routines written using different combinations of
the instructions of all classes and having control flow code
that selects the routines to execute based on the instructions
supported by the processor which is currently executing the
code.

Exemplary Specific Vector Friendly Instruction Format
FIG. 11 is a block diagram illustrating an exemplary

specific vector friendly instruction format according to
embodiments of the invention. FIG. 11 shows a specific
vector friendly instruction format 1100 that is specific in the
sense that it specifies the location, size, interpretation, and
order of the fields, as well as values for some of those fields.
The specific vector friendly instruction format 1100 may be
used to extend the x86 instruction set, and thus some of the
fields are similar or the same as those used in the existing
x86 instruction set and extension thereof (e.g., AVX). This
format remains consistent with the prefix encoding field, real
opcode byte field, MOD R/M field, SIB field, displacement
field, and immediate fields of the existing x86 instruction set
with extensions. The fields from FIG. 10 into which the
fields from FIG. 11 map are illustrated.

It should be understood that, although embodiments of the
invention are described with reference to the specific vector
friendly instruction format 1100 in the context of the generic
vector friendly instruction format 1000 for illustrative pur
poses, the invention is not limited to the specific vector
friendly instruction format 1100 except where claimed. For
example, the generic vector friendly instruction format 1000
contemplates a variety of possible sizes for the various
fields, while the specific vector friendly instruction format
1100 is shown as having fields of specific sizes. By way of
specific example, while the data element width field 1064 is
illustrated as a one bit field in the specific vector friendly
instruction format 1100, the invention is not so limited (that
is, the generic vector friendly instruction format 1000 con
templates other sizes of the data element width field 1064).
The generic vector friendly instruction format 1000

includes the following fields listed below in the order
illustrated in FIG. 11A.

US 9,600,442 B2
25

EVEX Prefix (Bytes 0-3) 1102 is encoded in a four-byte
form.

Format Field 1040 (EVEX Byte 0, bits 7:0) the first
byte (EVEX Byte 0) is the format field 1040 and it contains
OX62 (the unique value used for distinguishing the vector
friendly instruction format in one embodiment of the inven
tion).

The second-fourth bytes (EVEX Bytes 1-3) include a
number of bit fields providing specific capability.
REX field 1105 (EVEX Byte 1, bits 7-5)—consists of a

EVEX.R bit field (EVEX Byte 1, bit 7-R), EVEX.X bit
field (EVEX byte 1, bit 6-X), and 1057BEX byte 1,
bits-B). The EVEX.R, EVEX.X, and EVEX.B bit fields
provide the same functionality as the corresponding VEX bit
fields, and are encoded using 1s complement form, i.e.
ZMMO is encoded as 1111B, ZMM15 is encoded as 0000B.
Other fields of the instructions encode the lower three bits of
the register indexes as is known in the art (rrr, XXX, and bbb),
so that Rrrr, XXXX, and Bbbb may be formed by adding
EVEX.R, EVEX.X, and EVEX.B.
REX' field 1010 this is the first part of the REX' field

1010 and is the EVEX.R' bit field (EVEX Byte 1, bit 41-R)
that is used to encode either the upper 16 or lower 16 of the
extended 32 register set. In one embodiment of the inven
tion, this bit, along with others as indicated below, is stored
in bit inverted format to distinguish (in the well-known x86
32-bit mode) from the BOUND instruction, whose real
opcode byte is 62, but does not accept in the MOD R/M field
(described below) the value of 11 in the MOD field; alter
native embodiments of the invention do not store this and the
other indicated bits below in the inverted format. A value of
1 is used to encode the lower 16 registers. In other words,
R"Rrrr is formed by combining EVEX.R, EVEX.R, and the
other RRR from other fields.
Opcode map field 1115 (EVEX byte 1, bits 3:0-

mm mm)—its content encodes an implied leading opcode
byte (OF, OF 38, or OF 3).

Data element width field 1064 (EVEX byte 2, bit 7
W) is represented by the notation EVEX.W. EVEX.W is
used to define the granularity (size) of the datatype (either
32-bit data elements or 64-bit data elements).
EVEX. Vvvv. 1120 (EVEX Byte 2, bits 6:3-vvvv) the

role of EVEX.Vvvv may include the following: 1) EVEX.v-
VVV encodes the first Source register operand, specified in
inverted (1s complement) form and is valid for instructions
with 2 or more source operands; 2) EVEX.VVVV encodes the
destination register operand, specified in 1s complement
form for certain vector shifts; or 3) EVEX. VVVV does not
encode any operand, the field is reserved and should contain
1111b. Thus, EVEX.Vvvv field 1120 encodes the 4 low-order
bits of the first source register specifier stored in inverted (1s
complement) form. Depending on the instruction, an extra
different EVEX bit field is used to extend the specifier size
to 32 registers.
EVEX.U 1068 Class field (EVEX byte 2, bit 2-U) If

EVEX.U=0, it indicates class A or EVEX.U0; if
EVEX.U=1, it indicates class B or EVEX.U1.

Prefix encoding field 1125 (EVEXbyte 2, bits 1:0-pp)—
provides additional bits for the base operation field. In
addition to providing Support for the legacy SSE instructions
in the EVEX prefix format, this also has the benefit of
compacting the SIMD prefix (rather than requiring a byte to
express the SIMD prefix, the EVEX prefix requires only 2
bits). In one embodiment, to Support legacy SSE instructions
that use a SIMD prefix (66H, F2H, F3H) in both the legacy
format and in the EVEX prefix format, these legacy SIMD
prefixes are encoded into the SIMD prefix encoding field;

5

10

15

25

30

35

40

45

50

55

60

65

26
and at runtime are expanded into the legacy SIMD prefix
prior to being provided to the decoder's PLA (so the PLA
can execute both the legacy and EVEX format of these
legacy instructions without modification). Although newer
instructions could use the EVEX prefix encoding fields
content directly as an opcode extension, certain embodi
ments expand in a similar fashion for consistency but allow
for different meanings to be specified by these legacy SIMD
prefixes. An alternative embodiment may redesign the PLA
to support the 2 bit SIMD prefix encodings, and thus not
require the expansion.

Alpha field 1052 (EVEX byte 3, bit 7-EH; also known
as EVEX.EH, EVEX.rs, EVEX.RL, EVEX.write mask con
trol, and EVEX.N; also illustrated with C)—as previously
described, this field is context specific.

Beta field 1054 (EVEXbyte 3, bits 6:4-SSS, also known
as EVEX.so, EVEX.ro, EVEX.rr1, EVEX.LL0, EVEX
.LLB; also illustrated with Bf3B)—as previously described,
this field is context specific.
REX' field 1010 this is the remainder of the REX' field

and is the EVEX.V' bit field (EVEX Byte 3, bit 3-V) that
may be used to encode either the upper 16 or lower 16 of the
extended 32 register set. This bit is stored in bit inverted
format. A value of 1 is used to encode the lower 16 registers.
In other words, VVVVV is formed by combining EVEX.V',
EVEXVVVV.

Write mask field 1070 (EVEX byte 3, bits 2:0-kkk) its
content specifies the index of a register in the write mask
registers as previously described. In one embodiment of the
invention, the specific value EVEX kkk=000 has a special
behavior implying no write mask is used for the particular
instruction (this may be implemented in a variety of ways
including the use of a write mask hardwired to all ones or
hardware that bypasses the masking hardware).

Real Opcode Field 1130 (Byte 4) is also known as the
opcode byte. Part of the opcode is specified in this field.
MOD R/M Field 1140 (Byte 5) includes MOD field 1142,

Reg field 1144, and R/M field 1146. As previously described,
the MOD field's 1142 content distinguishes between
memory access and non-memory access operations. The role
of Reg field 1144 can be summarized to two situations:
encoding either the destination register operand or a source
register operand, or be treated as an opcode extension and
not used to encode any instruction operand. The role of R/M
field 1146 may include the following: encoding the instruc
tion operand that references a memory address, or encoding
either the destination register operand or a source register
operand.

Scale, Index, Base (SIB) Byte (Byte 6) As previously
described, the scale field's 1050 content is used for memory
address generation. SIB.XXX 1154 and SIB.bbb 1156 the
contents of these fields have been previously referred to with
regard to the register indexes XXXX and Bbbb.

Displacement field 1062A (Bytes 7-10) when MOD
field 1142 contains 10, bytes 7-10 are the displacement field
1062A, and it works the same as the legacy 32-bit displace
ment (disp32) and works at byte granularity.

Displacement factor field 1062B (Byte 7) when MOD
field 1142 contains 01, byte 7 is the displacement factor field
1062B. The location of this field is that same as that of the
legacy x86 instruction set 8-bit displacement (disp8), which
works at byte granularity. Since disp8 is sign extended, it can
only address between -128 and 127 bytes offsets; in terms
of 64 byte cache lines, disp8 uses 8 bits that can be set to
only four really useful values -128, -64, 0, and 64; since a
greater range is often needed, disp32 is used; however,
disp32 requires 4 bytes. In contrast to disp8 and disp32, the

US 9,600,442 B2
27

displacement factor field 1062B is a reinterpretation of
disp8; when using displacement factor field 1062B, the
actual displacement is determined by the content of the
displacement factor field multiplied by the size of the
memory operand access (N). This type of displacement is
referred to as disp8*N. This reduces the average instruction
length (a single byte of used for the displacement but with
a much greater range). Such compressed displacement is
based on the assumption that the effective displacement is
multiple of the granularity of the memory access, and hence,
the redundant low-order bits of the address offset do not
need to be encoded. In other words, the displacement factor
field 1062B substitutes the legacy x86 instruction set 8-bit
displacement. Thus, the displacement factor field 1062B is
encoded the same way as an x86 instruction set 8-bit
displacement (so no changes in the ModRM/SIB encoding
rules) with the only exception that disp8 is overloaded to
disp8*N. In other words, there are no changes in the
encoding rules or encoding lengths but only in the interpre
tation of the displacement value by hardware (which needs
to scale the displacement by the size of the memory operand
to obtain a byte-wise address offset).

Immediate field 1072 operates as previously described.
Full Opcode Field
FIG. 11B is a block diagram illustrating the fields of the

specific vector friendly instruction format 1100 that make up
the full opcode field 1074 according to one embodiment of
the invention. Specifically, the full opcode field 1074
includes the format field 1040, the base operation field 1042,
and the data element width (W) field 1064. The base
operation field 1042 includes the prefix encoding field 1125,
the opcode map field 1115, and the real opcode field 1130.

Register Index Field
FIG. 11C is a block diagram illustrating the fields of the

specific vector friendly instruction format 1100 that make up
the register index field 1044 according to one embodiment
of the invention. Specifically, the register index field 1044
includes the REX field 1105, the REX' field 1110, the
MODR/M.reg field 1144, the MODR/Mr/m field 1146, the
VVVV field 1120, XXX field 1154, and the bbb field 1156.

Augmentation Operation Field
FIG. 11D is a block diagram illustrating the fields of the

specific vector friendly instruction format 1100 that make up
the augmentation operation field 1050 according to one
embodiment of the invention. When the class (U) field 1068
contains 0, it signifies EVEX.U0 (class A 1068A); when it
contains 1, it signifies EVEX.U1 (class B 1068B). When
U=0 and the MOD field 1142 contains 11 (signifying a no
memory access operation), the alpha field 1052 (EVEXbyte
3, bit 7-EH) is interpreted as thers field 1052A. When the
rs field 1052A contains a 1 (round 1052A1), the beta field
1054 (EVEX byte 3, bits 6:4-SSS) is interpreted as the
round control field 1054A. The round control field 1054A
includes a one bit SAE field 1056 and a two bit round
operation field 1058. When the rs field 1052A contains a 0
(data transform 1052A.2), the beta field 1054 (EVEXbyte 3,
bits 6:4-SSS) is interpreted as a three bit data transform
field 1054B. When U=0 and the MOD field 1142 contains
00, 01, or 10 (signifying a memory access operation), the
alpha field 1052 (EVEX byte 3, bit 7-EH) is interpreted as
the eviction hint (EH) field 1052B and the beta field 1054
(EVEX byte 3, bits 6:4-SSS) is interpreted as a three bit
data manipulation field 1054C.
When U=1, the alpha field 1052 (EVEX byte 3, bit

7-EH) is interpreted as the write mask control (Z) field
1052C. When U=1 and the MOD field 1142 contains 11
(signifying a no memory access operation), part of the beta

5

10

15

25

30

35

40

45

50

55

60

65

28
field 1054 (EVEXbyte 3, bit 4-S) is interpreted as the RL
field 1057A: when it contains a 1 (round 1057A.1) the rest
of the beta field 1054 (EVEX byte 3, bit 6-5-S) is
interpreted as the round operation field 1059A, while when
the RL field 1057A contains a 0 (VSIZE 1057.A2) the rest
of the beta field 1054 (EVEX byte 3, bit 6-5-S) is
interpreted as the vector length field 1059B (EVEX byte 3,
bit 6-5-L). When U=1 and the MOD field 1142 contains
00, 01, or 10 (signifying a memory access operation), the
beta field 1054 (EVEX byte 3, bits 6:4-SSS) is interpreted
as the vector length field 1059B (EVEX byte 3, bit 6-5-
Lo) and the broadcast field 1057B (EVEX byte 3, bit
4-B).
Exemplary Register Architecture
FIG. 12 is a block diagram of a register architecture 1200

according to one embodiment of the invention. In the
embodiment illustrated, there are 32 vector registers 1210
that are 512 bits wide; these registers are referenced as
Zmm0 through Zmm31. The lower order 256 bits of the
lower 16 Zimm registers are overlaid on registers ymm0-16.
The lower order 128 bits of the lower 16 Zmm registers (the
lower order 128 bits of the ymm registers) are overlaid on
registers xmm0-15. The specific vector friendly instruction
format 1100 operates on these overlaid register file as
illustrated in the below tables.

Adjustable Vector
Length Class Operations Registers

Instruction Templates A (FIG. 1010, 1015, Zmm registers (the vector
that do not include the 10A: 1025, 1030 length is 64 byte)
vector length field U = 0)
1059B B (FIG. 1012 Zimm registers (the vector

1OB: length is 64 byte)
U = 1)

Instruction templates B (FIG. 1017, 1027 Zimm, ymm, or xmm
that do include the 1OB: registers (the vector
vector length field U = 1) length is 64 byte, 32
1059B byte, or 16 byte) depend

ing on the vector length
field 1059B

In other words, the vector length field 1059B selects
between a maximum length and one or more other shorter
lengths, where each Such shorter length is half the length of
the preceding length; and instructions templates without the
vector length field 1059B operate on the maximum vector
length. Further, in one embodiment, the class B instruction
templates of the specific vector friendly instruction format
1100 operate on packed or scalar single/double-precision
floating point data and packed or scalar integer data. Scalar
operations are operations performed on the lowest order data
element position in an Zmm/ymm/xmm register, the higher
order data element positions are either left the same as they
were prior to the instruction or Zeroed depending on the
embodiment.

Write mask registers 1215 in the embodiment illus
trated, there are 8 write mask registers (k0 through k7), each
64 bits in size. In an alternate embodiment, the write mask
registers 1215 are 16 bits in size. As previously described, in
one embodiment of the invention, the vector mask register
k0 cannot be used as a write mask; when the encoding that
would normally indicate k0 is used for a write mask, it
selects a hardwired write mask of 0xFFFF, effectively dis
abling write masking for that instruction.

General-purpose registers 1225 in the embodiment
illustrated, there are sixteen 64-bit general-purpose registers
that are used along with the existing x86 addressing modes

US 9,600,442 B2
29

to address memory operands. These registers are referenced
by the names RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP
and R8 through R15.

Scalar floating point stack register file (x87 stack) 1245,
on which is aliased the MMX packed integer flat register file
1250 in the embodiment illustrated, the x87 stack is an
eight-element stack used to perform Scalar floating-point
operations on 32/64/80-bit floating point data using the x87
instruction set extension; while the MMX registers are used
to perform operations on 64-bit packed integer data, as well
as to hold operands for Some operations performed between
the MMX and XMM registers.

Alternative embodiments of the invention may use wider
or narrower registers. Additionally, alternative embodiments
of the invention may use more, less, or different register files
and registers.

Exemplary Core Architectures, Processors, and Computer
Architectures

Processor cores may be implemented in different ways,
for different purposes, and in different processors. For
instance, implementations of Such cores may include: 1) a
general purpose in-order core intended for general-purpose
computing; 2) a high performance general purpose out-of
order core intended for general-purpose computing; 3) a
special purpose core intended primarily for graphics and/or
Scientific (throughput) computing. Implementations of dif
ferent processors may include: 1) a CPU including one or
more general purpose in-order cores intended for general
purpose computing and/or one or more general purpose
out-of-order cores intended for general-purpose computing:
and 2) a coprocessor including one or more special purpose
cores intended primarily for graphics and/or scientific
(throughput). Such different processors lead to different
computer system architectures, which may include: 1) the
coprocessor on a separate chip from the CPU; 2) the
coprocessor on a separate die in the same package as a CPU:
3) the coprocessor on the same die as a CPU (in which case,
Such a coprocessor is sometimes referred to as special
purpose logic, such as integrated graphics and/or scientific
(throughput) logic, or as special purpose cores); and 4) a
system on a chip that may include on the same die the
described CPU (sometimes referred to as the application
core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.

Exemplary Core Architectures
In-Order and Out-of-Order Core Block Diagram
FIG. 13A is a block diagram illustrating both an exem

plary in-order pipeline and an exemplary register renaming,
out-of-order issue/execution pipeline according to embodi
ments of the invention. FIG. 13B is a block diagram illus
trating both an exemplary embodiment of an in-order archi
tecture core and an exemplary register renaming, out-of
order issue? execution architecture core to be included in a
processor according to embodiments of the invention. The
solid lined boxes in FIGS. 13A-B illustrate the in-order
pipeline and in-order core, while the optional addition of the
dashed lined boxes illustrates the register renaming, out-of
order issue/execution pipeline and core. Given that the
in-order aspect is a Subset of the out-of-order aspect, the
out-of-order aspect will be described.

In FIG. 13A, a processor pipeline 1300 includes a fetch
stage 1302, a length decode stage 1304, a decode stage 1306,
an allocation stage 1308, a renaming stage 1310, a sched
uling (also known as a dispatch or issue) stage 1312, a
register read/memory read stage 1314, an execute stage

10

15

25

30

35

40

45

50

55

60

65

30
1316, a write back/memory write stage 1318, an exception
handling stage 1322, and a commit stage 1324.

FIG. 13B shows processor core 1390 including a front end
unit 1330 coupled to an execution engine unit 1350, and
both are coupled to a memory unit 1370. The core 1390 may
be a reduced instruction set computing (RISC) core, a
complex instruction set computing (CISC) core, a very long
instruction word (VLIW) core, or a hybrid or alternative
core type. As yet another option, the core 1390 may be a
special-purpose core, such as, for example, a network or
communication core, compression engine, coprocessor core,
general purpose computing graphics processing unit
(GPGPU) core, graphics core, or the like.
The front end unit 1330 includes a branch prediction unit

1332 coupled to an instruction cache unit 1334, which is
coupled to an instruction translation lookaside buffer (TLB)
1336, which is coupled to an instruction fetch unit 1338,
which is coupled to a decode unit 1340. The decode unit
1340 (or decoder) may decode instructions, and generate as
an output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect,
or are derived from, the original instructions. The decode
unit 1340 may be implemented using various different
mechanisms. Examples of Suitable mechanisms include, but
are not limited to, look-up tables, hardware implementa
tions, programmable logic arrays (PLAs), microcode read
only memories (ROMs), etc. In one embodiment, the core
1390 includes a microcode ROM or other medium that
stores microcode for certain macroinstructions (e.g., in
decode unit 1340 or otherwise within the front end unit
1330). The decode unit 1340 is coupled to a rename?
allocator unit 1352 in the execution engine unit 1350.
The execution engine unit 1350 includes the rename/

allocator unit 1352 coupled to a retirement unit 1354 and a
set of one or more scheduler unit(s) 1356. The scheduler
unit(s) 1356 represents any number of different schedulers,
including reservations stations, central instruction window,
etc. The scheduler unit(s) 1356 is coupled to the physical
register file(s) unit(s) 1358. Each of the physical register
file(s) units 1358 represents one or more physical register
files, different ones of which store one or more different data
types, such as scalar integer, Scalar floating point, packed
integer, packed floating point, vector integer, Vector floating
point, status (e.g., an instruction pointer that is the address
of the next instruction to be executed), etc. In one embodi
ment, the physical register file(s) unit 1358 comprises a
vector registers unit, a write mask registers unit, and a scalar
registers unit. These register units may provide architectural
vector registers, vector mask registers, and general purpose
registers. The physical register file(s) unit(s) 1358 is over
lapped by the retirement unit 1354 to illustrate various ways
in which register renaming and out-of-order execution may
be implemented (e.g., using a reorder buffer(s) and a retire
ment register file(s); using a future file(s), a history buffer(s),
and a retirement register file(s); using a register maps and a
pool of registers; etc.). The retirement unit 1354 and the
physical register file(s) unit(s) 1358 are coupled to the
execution cluster(s) 1360. The execution cluster(s) 1360
includes a set of one or more execution units 1362 and a set
of one or more memory access units 1364. The execution
units 1362 may perform various operations (e.g., shifts,
addition, Subtraction, multiplication) and on various types of
data (e.g., Scalar floating point, packed integer, packed
floating point, vector integer, vector floating point). While
Some embodiments may include a number of execution units
dedicated to specific functions or sets of functions, other

US 9,600,442 B2
31

embodiments may include only one execution unit or mul
tiple execution units that all perform all functions. The
scheduler unit(s) 1356, physical register file(s) unit(s) 1358,
and execution cluster(s) 1360 are shown as being possibly
plural because certain embodiments create separate pipe
lines for certain types of data/operations (e.g., a scalar
integer pipeline, a Scalar floating point/packed integer/
packed floating point/vector integer/vector floating point
pipeline, and/or a memory access pipeline that each have
their own Scheduler unit, physical register file(s) unit, and/or
execution cluster—and in the case of a separate memory
access pipeline, certain embodiments are implemented in
which only the execution cluster of this pipeline has the
memory access unit(s) 1364). It should also be understood
that where separate pipelines are used, one or more of these
pipelines may be out-of-order issue/execution and the rest
in-order.
The set of memory access units 1364 is coupled to the

memory unit 1370, which includes a data TLB unit 1372
coupled to a data cache unit 1374 coupled to a level 2 (L.2)
cache unit 1376. In one exemplary embodiment, the memory
access units 1364 may include a load unit, a store address
unit, and a store data unit, each of which is coupled to the
data TLB unit 1372 in the memory unit 1370. The instruc
tion cache unit 1334 is further coupled to a level 2 (L.2)
cache unit 1376 in the memory unit 1370. The L2 cache unit
1376 is coupled to one or more other levels of cache and
eventually to a main memory.
By way of example, the exemplary register renaming,

out-of-order issue/execution core architecture may imple
ment the pipeline 1300 as follows: 1) the instruction fetch
1338 performs the fetch and length decoding stages 1302
and 1304; 2) the decode unit 1340 performs the decode stage
1306; 3) the rename/allocator unit 1352 performs the allo
cation stage 1308 and renaming stage 1310; 4) the scheduler
unit(s) 1356 performs the schedule stage 1312; 5) the
physical register file(s) unit(s) 1358 and the memory unit
1370 perform the register read/memory read stage 1314; the
execution cluster 1360 perform the execute stage 1316; 6)
the memory unit 1370 and the physical register file(s) unit(s)
1358 perform the write back/memory write stage 1318; 7)
various units may be involved in the exception handling
stage 1322; and 8) the retirement unit 1354 and the physical
register file(s) unit(s) 1358 perform the commit stage 1324.
The core 1390 may support one or more instructions sets

(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set
of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.), including
the instruction(s) described herein. In one embodiment, the
core 1390 includes logic to support a packed data instruction
set extension (e.g., AVX1, AVX2), thereby allowing the
operations used by many multimedia applications to be
performed using packed data.

It should be understood that the core may support multi
threading (executing two or more parallel sets of operations
or threads), and may do so in a variety of ways including
time sliced multithreading, simultaneous multithreading
(where a single physical core provides a logical core for each
of the threads that physical core is simultaneously multi
threading), or a combination thereof (e.g., time sliced fetch
ing and decoding and simultaneous multithreading thereaf
ter such as in the Intel(R) Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the

5

10

15

25

30

35

40

45

50

55

60

65

32
illustrated embodiment of the processor also includes sepa
rate instruction and data cache units 1334/1374 and a shared
L2 cache unit 1376, alternative embodiments may have a
single internal cache for both instructions and data, such as,
for example, a Level 1 (L1) internal cache, or multiple levels
of internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor.
Alternatively, all of the cache may be external to the core
and/or the processor.

Specific Exemplary In-Order Core Architecture
FIGS. 14A-B illustrate a block diagram of a more specific

exemplary in-order core architecture, which core would be
one of several logic blocks (including other cores of the
same type and/or different types) in a chip. The logic blocks
communicate through a high-bandwidth interconnect net
work (e.g., a ring network) with Some fixed function logic,
memory I/O interfaces, and other necessary I/O logic,
depending on the application.

FIG. 14A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
1402 and with its local subset of the Level 2 (L2) cache
1404, according to embodiments of the invention. In one
embodiment, an instruction decoder 1400 supports the x86
instruction set with a packed data instruction set extension.
An L1 cache 1406 allows low-latency accesses to cache
memory into the scalar and vector units. While in one
embodiment (to simplify the design), a scalar unit 1408 and
a vector unit 1410 use separate register sets (respectively,
Scalar registers 1412 and vector registers 1414) and data
transferred between them is written to memory and then read
back in from a level 1 (L1) cache 1406, alternative embodi
ments of the invention may use a different approach (e.g.,
use a single register set or include a communication path that
allow data to be transferred between the two register files
without being written and read back).
The local subset of the L2 cache 1404 is part of a global

L2 cache that is divided into separate local Subsets, one per
processor core. Each processor core has a direct access path
to its own local subset of the L2 cache 1404. Data read by
a processor core is stored in its L2 cache Subset 1404 and can
be accessed quickly, in parallel with other processor cores
accessing their own local L2 cache Subsets. Data written by
a processor core is stored in its own L2 cache subset 1404
and is flushed from other subsets, if necessary. The ring
network ensures coherency for shared data. The ring net
work is bi-directional to allow agents such as processor
cores, L2 caches and other logic blocks to communicate with
each other within the chip. Each ring data-path is 1012-bits
wide per direction.

FIG. 14B is an expanded view of part of the processor
core in FIG. 14A according to embodiments of the inven
tion. FIG. 14B includes an L1 data cache 1406A part of the
L1 cache 1404, as well as more detail regarding the vector
unit 1410 and the vector registers 1414. Specifically, the
vector unit 1410 is a 16-wide vector processing unit (VPU)
(see the 16-wide ALU 1428), which executes one or more of
integer, single-precision float, and double-precision float
instructions. The VPU supports Swizzling the register inputs
with Swizzle unit 1420, numeric conversion with numeric
convert units 1422A-B, and replication with replication unit
1424 on the memory input. Write mask registers 1426 allow
predicating resulting vector writes.

Processor with Integrated Memory Controller and Graph
1CS

FIG. 15 is a block diagram of a processor 1500 that may
have more than one core, may have an integrated memory

US 9,600,442 B2
33

controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in FIG.
15 illustrate a processor 1500 with a single core 1502A, a
system agent 1510, a set of one or more bus controller units
1516, while the optional addition of the dashed lined boxes 5
illustrates an alternative processor 1500 with multiple cores
1502A-N, a set of one or more integrated memory controller
unit(s) 1514 in the system agent unit 1510, and special
purpose logic 1508.

Thus, different implementations of the processor 1500 10
may include: 1) a CPU with the special purpose logic 1508
being integrated graphics and/or scientific (throughput)
logic (which may include one or more cores), and the cores
1502A-N being one or more general purpose cores (e.g.,
general purpose in-order cores, general purpose out-of-order 15
cores, a combination of the two); 2) a coprocessor with the
cores 1502A-N being a large number of special purpose
cores intended primarily for graphics and/or scientific
(throughput); and 3) a coprocessor with the cores 1502A-N
being a large number of general purpose in-order cores. 20
Thus, the processor 1500 may be a general-purpose proces
Sor, coprocessor or special-purpose processor, Such as, for
example, a network or communication processor, compres
sion engine, graphics processor, GPGPU (general purpose
graphics processing unit), a high-throughput many inte- 25
grated core (MIC) coprocessor (including 30 or more cores),
embedded processor, or the like. The processor may be
implemented on one or more chips. The processor 1500 may
be a part of and/or may be implemented on one or more
Substrates using any of a number of process technologies, 30
such as, for example, BiCMOS, CMOS, or NMOS.
The memory hierarchy includes one or more levels of

cache within the cores, a set or one or more shared cache
units 1506, and external memory (not shown) coupled to the
set of integrated memory controller units 1514. The set of
shared cache units 1506 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof. While in one embodiment a ring
based interconnect unit 1512 interconnects the integrated
graphics logic 1508, the set of shared cache units 1506, and
the system agent unit 1510/integrated memory controller
unit(s) 1514, alternative embodiments may use any number
of well-known techniques for interconnecting Such units. In
one embodiment, coherency is maintained between one or
more cache units 1506 and cores 1502-A-N.

In some embodiments, one or more of the cores 1502A-N
are capable of multi-threading. The system agent 1510
includes those components coordinating and operating cores
1502A-N. The system agent unit 1510 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 1502A-N and the
integrated graphics logic 1508. The display unit is for
driving one or more externally connected displayS.
The cores 1502A-N may be homogenous or heteroge

neous in terms of architecture instruction set; that is, two or
more of the cores 1502A-N may be capable of execution the
same instruction set, while others may be capable of execut
ing only a subset of that instruction set or a different 60
instruction set.

Exemplary Computer Architectures
FIGS. 16-19 are block diagrams of exemplary computer

architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs, 65
personal digital assistants, engineering workstations, Serv
ers, network devices, network hubs, switches, embedded

35

40

45

50

55

34
processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control
lers, cell phones, portable media players, hand held devices,
and various other electronic devices, are also suitable. In
general, a huge variety of systems or electronic devices
capable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.

Referring now to FIG. 16, shown is a block diagram of a
system 1600 in accordance with one embodiment of the
present invention. The system 1600 may include one or
more processors 1610, 1615, which are coupled to a con
troller hub 1620. In one embodiment the controller hub 1620
includes a graphics memory controller hub (GMCH) 1690
and an Input/Output Hub (IOH) 1650 (which may be on
separate chips); the GMCH 1690 includes memory and
graphics controllers to which are coupled memory 1640 and
a coprocessor 1645; the IOH 1650 is couples input/output
(I/O) devices 1660 to the GMCH 1690. Alternatively, one or
both of the memory and graphics controllers are integrated
within the processor (as described herein), the memory 1640
and the coprocessor 1645 are coupled directly to the pro
cessor 1610, and the controller hub 1620 in a single chip
with the IOH 1650.
The optional nature of additional processors 1615 is

denoted in FIG. 16 with broken lines. Each processor 1610,
1615 may include one or more of the processing cores
described herein and may be some version of the processor
1SOO.
The memory 1640 may be, for example, dynamic random

access memory (DRAM), phase change memory (PCM), or
a combination of the two. For at least one embodiment, the
controller hub 1620 communicates with the processor(s)
1610, 1615 via a multi-drop bus, such as a frontside bus
(FSB), point-to-point interface such as QuickPath Intercon
nect (QPI), or similar connection 1695.

In one embodiment, the coprocessor 1645 is a special
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor,
compression engine, graphics processor, GPGPU, embed
ded processor, or the like. In one embodiment, controller hub
1620 may include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 1610, 1615 in terms of a spectrum of metrics of
merit including architectural, microarchitectural, thermal,
power consumption characteristics, and the like.

In one embodiment, the processor 1610 executes instruc
tions that control data processing operations of a general
type. Embedded within the instructions may be coprocessor
instructions. The processor 1610 recognizes these coproces
sor instructions as being of a type that should be executed by
the attached coprocessor 1645. Accordingly, the processor
1610 issues these coprocessor instructions (or control
signals representing coprocessor instructions) on a copro
cessor bus or other interconnect, to coprocessor 1645.
Coprocessor(s) 1645 accept and execute the received copro
cessor instructions.

Referring now to FIG. 17, shown is a block diagram of a
first more specific exemplary system 1700 in accordance
with an embodiment of the present invention. As shown in
FIG. 17, multiprocessor system 1700 is a point-to-point
interconnect system, and includes a first processor 1770 and
a second processor 1780 coupled via a point-to-point inter
connect 1750. Each of processors 1770 and 1780 may be
some version of the processor 1500. In one embodiment of
the invention, processors 1770 and 1780 are respectively
processors 1610 and 1615, while coprocessor 1738 is copro

US 9,600,442 B2
35

cessor 1645. In another embodiment, processors 1770 and
1780 are respectively processor 1610 coprocessor 1645.

Processors 1770 and 1780 are shown including integrated
memory controller (IMC) units 1772 and 1782, respectively.
Processor 1770 also includes as part of its bus controller
units point-to-point (P-P) interfaces 1776 and 1778; simi
larly, second processor 1780 includes P-P interfaces 1786
and 1788. Processors 1770, 1780 may exchange information
via a point-to-point (P-P) interface 1750 using P-P interface
circuits 1778, 1788. As shown in FIG. 17, IMCs 1772 and
1782 couple the processors to respective memories, namely
a memory 1732 and a memory 1734, which may be portions
of main memory locally attached to the respective proces
SOS.

Processors 1770, 1780 may each exchange information
with a chipset 1790 via individual P-P interfaces 1752, 1754
using point to point interface circuits 1776, 1794, 1786,
1798. Chipset 1790 may optionally exchange information
with the coprocessor 1738 via a high-performance interface
1739. In one embodiment, the coprocessor 1738 is a special
purpose processor. Such as, for example, a high-throughput
MIC processor, a network or communication processor,
compression engine, graphics processor, GPGPU, embed
ded processor, or the like.
A shared cache (not shown) may be included in either

processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 1790 may be coupled to a first bus 1716 via an
interface 1796. In one embodiment, first bus 1716 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation I/O
interconnect bus, although the scope of the present invention
is not so limited.
As shown in FIG. 17, various I/O devices 1714 may be

coupled to first bus 1716, along with a bus bridge 1718
which couples first bus 1716 to a second bus 1720. In one
embodiment, one or more additional processor(s) 1715, such
as coprocessors, high-throughput MIC processors, GPG
PUs, accelerators (such as, e.g., graphics accelerators or
digital signal processing (DSP) units), field programmable
gate arrays, or any other processor, are coupled to first bus
1716. In one embodiment, second bus 1720 may be a low
pin count (LPC) bus. Various devices may be coupled to a
second bus 1720 including, for example, a keyboard and/or
mouse 1722, communication devices 1727 and a storage
unit 1728 such as a disk drive or other mass storage device
which may include instructions/code and data 1730, in one
embodiment. Further, an audio I/O 1724 may be coupled to
the second bus 1720. Note that other architectures are
possible. For example, instead of the point-to-point archi
tecture of FIG. 17, a system may implement a multi-drop bus
or other such architecture.

Referring now to FIG. 18, shown is a block diagram of a
second more specific exemplary system 1800 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 17 and 18 bear like reference numerals, and certain
aspects of FIG. 17 have been omitted from FIG. 18 in order
to avoid obscuring other aspects of FIG. 18.

FIG. 18 illustrates that the processors 1770, 1780 may
include integrated memory and I/O control logic (“CL”)
1772 and 1782, respectively. Thus, the CL 1772, 1782
include integrated memory controller units and include I/O
control logic. FIG. 18 illustrates that not only are the
memories 1732, 1734 coupled to the CL 1772, 1782, but also

5

10

15

25

30

35

40

45

50

55

60

65

36
that I/O devices 1814 are also coupled to the control logic
1772, 1782. Legacy I/O devices 1815 are coupled to the
chipset 1790.

Referring now to FIG. 19, shown is a block diagram of a
SoC 1900 in accordance with an embodiment of the present
invention. Similar elements in FIG. 15 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. In FIG. 19, an interconnect unit(s)
1902 is coupled to: an application processor 1910 which
includes a set of one or more cores 202A-N and shared cache
unit(s) 1506; a system agent unit 1510; a bus controller
unit(s) 1516; an integrated memory controller unit(s) 1514;
a set or one or more coprocessors 1920 which may include
integrated graphics logic, an image processor, an audio
processor, and a video processor; an static random access
memory (SRAM) unit 1930; a direct memory access
(DMA) unit 1932; and a display unit 1940 for coupling to
one or more external displays. In one embodiment, the
coprocessor(s) 1920 include a special-purpose processor,
Such as, for example, a network or communication proces
sor, compression engine, GPGPU, a high-throughput MIC
processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combi
nation of such implementation approaches. Embodiments of
the invention may be implemented as computer programs or
program code executing on programmable systems compris
ing at least one processor, a storage system (including
Volatile and non-volatile memory and/or storage elements),
at least one input device, and at least one output device.

Program code, such as code 1730 illustrated in FIG. 17.
may be applied to input instructions to perform the functions
described herein and generate output information. The out
put information may be applied to one or more output
devices, in known fashion. For purposes of this application,
a processing system includes any system that has a proces
Sor, such as, for example; a digital signal processor (DSP),
a microcontroller, an application specific integrated circuit
(ASIC), or a microprocessor.
The program code may be implemented in a high level

procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.
One or more aspects of at least one embodiment may be

implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores'
may be stored on a tangible, machine readable medium and
Supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

Such machine-readable storage media may include, with
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type
of disk including floppy disks, optical disks, compact disk
read-only memories (CD-ROMs), compact disk rewritable's
(CD-RWs), and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access
memories (DRAMs), static random access memories

US 9,600,442 B2
37

(SRAMs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program
mable read-only memories (EEPROMs), phase change
memory (PCM), magnetic or optical cards, or any other type
of media Suitable for storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

Emulation (Including Binary Translation, Code Morph
ing, Etc.)

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a
target instruction set. For example, the instruction converter
may translate (e.g., using static binary translation, dynamic
binary translation including dynamic compilation), morph,
emulate, or otherwise convert an instruction to one or more
other instructions to be processed by the core. The instruc
tion converter may be implemented in Software, hardware,
firmware, or a combination thereof. The instruction con
verter may be on processor, off processor, or part on and part
off processor.

FIG. 20 is a block diagram contrasting the use of a
Software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.
In the illustrated embodiment, the instruction converter is a
software instruction converter, although alternatively the
instruction converter may be implemented in software, firm
ware, hardware, or various combinations thereof. FIG. 20
shows a program in a high level language 2002 may be
compiled using an x86 compiler 2004 to generate x86 binary
code 2006 that may be natively executed by a processor with
at least one x86 instruction set core 2016. The processor with
at least one x86 instruction set core 2016 represents any
processor that can perform Substantially the same functions
as an Intel processor with at least one x86 instruction set
core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applica
tions or other software targeted to run on an Intel processor
with at least one x86 instruction set core, in order to achieve
Substantially the same result as an Intel processor with at
least one x86 instruction set core. The x86 compiler 2004
represents a compiler that is operable to generate x86 binary
code 2006 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 2016. Similarly,
FIG. 20 shows the program in the high level language 2002
may be compiled using an alternative instruction set com
piler 2008 to generate alternative instruction set binary code
2010 that may be natively executed by a processor without
at least one x86 instruction set core 2014 (e.g., a processor
with cores that execute the MIPS instruction set of MIPS
Technologies of Sunnyvale, Calif. and/or that execute the
ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 2012 is used to convert the
x86 binary code 2006 into code that may be natively
executed by the processor without an x86 instruction set
core 2014. This converted code is not likely to be the same
as the alternative instruction set binary code 2010 because
an instruction converter capable of this is difficult to make:
however, the converted code will accomplish the general
operation and be made up of instructions from the alterna

10

15

25

30

35

40

45

50

55

60

65

38
tive instruction set. Thus, the instruction converter 2012
represents software, firmware, hardware, or a combination
thereof that, through emulation, simulation or any other
process, allows a processor or other electronic device that
does not have an x86 instruction set processor or core to
execute the x86 binary code 2006.

Components, features, and details described for any of
FIGS. 3-8 may also optionally be used in FIG. 2. Compo
nents, features, and details described for any of FIGS. 4-5
may also optionally be used in FIG. 3. Components, fea
tures, and details described for any of FIGS. 7-8 may also
optionally be used in FIG. 6. Moreover, components, fea
tures, and details described for the apparatus described
herein may also optionally be used in and/or apply to the
methods described herein, which in embodiments may be
performed by and/or with Such apparatus. Any of the pro
cessors described herein may be included in any of the
computer systems or other systems disclosed herein. In
Some embodiments, the instructions may have any of the
instruction formats disclosed herein, although this is not
required.

In the description and claims, the terms “coupled' and/or
“connected,” along with their derivatives, may have be used.
These terms are not intended as synonyms for each other.
Rather, in embodiments, “connected may be used to indi
cate that two or more elements are in direct physical and/or
electrical contact with each other. “Coupled may mean that
two or more elements are in direct physical and/or electrical
contact with each other. However, “coupled may also mean
that two or more elements are not in direct contact with each
other, but yet still co-operate or interact with each other. For
example, an execution unit may be coupled with a register
and/or a decode unit through one or more intervening
components. In the figures arrows are used to show connec
tions and couplings.
The term “and/or may have been used. As used herein,

the term “and/or” means one or the other or both (e.g., A
and/or B means A or B or both A and B).

In the description above, specific details have been set
forth in order to provide a thorough understanding of the
embodiments. However, other embodiments may be prac
ticed without some of these specific details. The scope of the
invention is not to be determined by the specific examples
provided above, but only by the claims below. In other
instances, well-known circuits, structures, devices, and
operations have been shown in block diagram form and/or
without detail in order to avoid obscuring the understanding
of the description. Where considered appropriate, reference
numerals, or terminal portions of reference numerals, have
been repeated among the figures to indicate corresponding
or analogous elements, which may optionally have similar
or the same characteristics, unless specified or otherwise
clearly apparent.

Certain operations may be performed by hardware com
ponents, or may be embodied in machine-executable or
circuit-executable instructions, that may be used to cause
and/or result in a machine, circuit, or hardware component
(e.g., a processor, potion of a processor, circuit, etc.) pro
grammed with the instructions performing the operations.
The operations may also optionally be performed by a
combination of hardware and Software. A processor,
machine, circuit, or hardware may include specific or par
ticular circuitry or other logic (e.g., hardware potentially
combined with firmware and/or software) is operable to
execute and/or process the instruction and store a result in
response to the instruction.

US 9,600,442 B2
39

Some embodiments include an article of manufacture
(e.g., a computer program product) that includes a machine
readable medium. The medium may include a mechanism
that provides, for example stores, information in a form that
is readable by the machine. The machine-readable medium
may provide, or have stored thereon, an instruction or
sequence of instructions, that if and/or when executed by a
machine are operable to cause the machine to perform
and/or result in the machine performing one or operations,
methods, or techniques disclosed herein. The machine
readable medium may store or otherwise provide one or
more of the embodiments of the instructions disclosed
herein.

In Some embodiments, the machine-readable medium
may include a tangible and/or non-transitory machine-read
able storage medium. For example, the tangible and/or
non-transitory machine-readable storage medium may
include a floppy diskette, an optical storage medium, an
optical disk, an optical data storage device, a CD-ROM, a
magnetic disk, a magneto-optical disk, a read only memory
(ROM), a programmable ROM (PROM), an erasable-and
programmable ROM (EPROM), an electrically-erasable
and-programmable ROM (EEPROM), a random access
memory (RAM), a static-RAM (SRAM), a dynamic-RAM
(DRAM), a Flash memory, a phase-change memory, a
phase-change data storage material, a non-volatile memory,
a non-volatile data storage device, a non-transitory memory,
a non-transitory data storage device, or the like.

Examples of suitable machines include, but are not lim
ited to, a general-purpose processor, a special-purpose pro
cessor, an instruction processing apparatus, a digital logic
circuit, an integrated circuit, or the like. Still other examples
of Suitable machines include a computing device or other
electronic device that includes a processor, instruction pro
cessing apparatus, digital logic circuit, or integrated circuit.
Examples of such computing devices and electronic devices
include, but are not limited to, desktop computers, laptop
computers, notebook computers, tablet computers, net
books, Smartphones, cellular phones, servers, network
devices (e.g., routers), Mobile Internet devices (MIDs),
media players, Smart televisions, nettops, set-top boxes, and
Video game controllers.

Reference throughout this specification to “one embodi
ment,” “an embodiment,” “one or more embodiments.”
“some embodiments.” for example, indicates that a particu
lar feature may be included in the practice of the invention
but is not necessarily required to be. Similarly, in the
description various features are sometimes grouped together
in a single embodiment, Figure, or description thereof for
the purpose of streamlining the disclosure and aiding in the
understanding of various inventive aspects. This method of
disclosure, however, is not to be interpreted as reflecting an
intention that the invention requires more features than are
expressly recited in each claim. Rather, as the following
claims reflect, inventive aspects lie in less than all features
of a single disclosed embodiment. Thus, the claims follow
ing the Detailed Description are hereby expressly incorpo
rated into this Detailed Description, with each claim stand
ing on its own as a separate embodiment of the invention.

Example Embodiments

The following examples pertain to further embodiments.
Specifics in the examples may be used anywhere in one or
more embodiments.

Example 1 is a processor or other apparatus that includes
a plurality of packed data registers, and a decode unit to

10

15

25

30

35

40

45

50

55

60

65

40
decode a no-locality hint vector memory access instruction.
The no-locality hint vector memory access instruction to
indicate a packed data register of the plurality of packed data
registers that is to have a source packed memory indices.
The Source packed memory indices to have a plurality of
memory indices. The no-locality hint vector memory access
instruction is to provide a no-locality hint to the processor
for data elements that are to be accessed with the memory
indices. The processor also includes an execution unit
coupled with the decode unit and the plurality of packed data
registers. The execution unit, in response to the no-locality
hint vector memory access instruction, is to access the data
elements at memory locations that are based on the memory
indices.

Example 2 includes the processor of Example 1, further
including a cache hierarchy, and in which the no-locality
hint vector memory access instruction includes a no-locality
hint vector load instruction. The execution unit, in response
to the no-locality hint vector load instruction, is to load the
data elements from the memory locations. The cache hier
archy, in response to the no-locality hint vector load instruc
tion, is optionally not to cache the data elements loaded from
the memory locations.

Example 3 includes the processor of any of Examples 1-2,
further including a cache hierarchy, and in which the no
locality hint vector memory access instruction includes a
no-locality hint vector load instruction. The execution unit,
in response to the no-locality hint vector load instruction, is
to load the data elements from the memory locations. The
cache hierarchy, in response to the no-locality hint vector
load instruction, upon a cache miss for a data element, is
optionally not to allocate space in the cache hierarchy for the
data element that is to be loaded from memory.

Example 4 includes the processor of any of Examples 1-3,
further including a cache hierarchy, and in which the no
locality hint vector memory access instruction includes a
no-locality hint vector load instruction. The execution unit,
in response to the no-locality hint vector load instruction, is
to load the data elements from the memory locations. The
cache hierarchy, in response to the no-locality hint vector
load instruction, upon a cache hit for a data element, is
optionally to output no more than half a cache line from the
cache hierarchy.

Example 5 includes the processor of Example 4, in which
the cache hierarchy, in response to the no-locality hint vector
load instruction, upon the cache hit for the data element, is
optionally to output no more than a single data element from
the cache hierarchy.

Example 6 includes the processor of any of Examples 1-4,
further including a memory controller, and in which the
no-locality hint vector memory access instruction includes a
no-locality hint vector load instruction. The memory con
troller, in response to the no-locality hint vector load instruc
tion, is optionally to load no more than half a cache line
amount of data for each of the data elements loaded from
memory.

Example 7 includes the processor of Example 6, in which
the memory controller, in response to the no-locality hint
vector load instruction, is optionally to load no more than
128-bits for each of the data elements loaded from memory.
Example 8 includes the processor of any of Examples 1-7,

in which the no-locality hint vector memory access instruc
tion includes a no-locality hint gather instruction. The no
locality hint gather instruction is to indicate a destination
packed data register of the plurality of packed data registers.
The execution unit, in response to the no-locality hint gather
instruction is to store a packed data result in the destination

US 9,600,442 B2
41

packed data register. The packed data result is to include the
data elements gathered from the memory locations.

Example 9 includes the processor of Example 1, further
including a memory controller, and in which the no-locality
hint vector memory access instruction includes a no-locality
hint vector write instruction. The execution unit, in response
to the no-locality hint vector write instruction, is to write
data elements of a source packed data indicated by the
instruction over the data elements at the memory locations.
The memory controller, in response to the no-locality hint
vector write instruction, is optionally to write no more than
half a cache line amount of data for each of the data elements
of the Source packed data that is written to memory.

Example 10 includes the processor of any of Examples 1
and 9, further including a cache hierarchy, and in which the
no-locality hint vector memory access instruction includes a
no-locality hint vector write instruction. The execution unit,
in response to the no-locality hint vector write instruction, is
to write data elements of a source packed data indicated by
the instruction over the data elements at the memory loca
tions. The cache hierarchy, in response to the no-locality hint
vector write instruction, upon a cache hit for a data element
in a lower level cache, is optionally not to bring a cache line
associated with the cache hit into a higher level cache.

Example 11 includes the processor of any of Examples 1,
9, and 10, in which the no-locality hint vector memory
access instruction includes a no-locality hint Scatter instruc
tion, and in which the no-locality hint Scatter instruction is
to indicate a second packed data register of the plurality of
packed data registers that is to have a source packed data that
is to include a plurality of data elements. The execution unit,
in response to the no-locality hint scatter instruction, is
optionally to write the data elements of the source packed
data over the data elements at the memory locations.

Example 12 includes the processor of any of Examples
1-11, in which the decode unit is to decode the no-locality
hint vector memory access instruction that is optionally to
have at least one bit that is to have a first value to indicate
the no-locality hint and is to have a second value to indicate
lack of the no-locality hint.

Example 13 includes the processor of any of Examples
1-11, in which the decode unit is to decode the no-locality
hint vector memory access instruction that is optionally to
have a plurality of bits that are to have a first value to
indicate that the no-locality hint is a no-temporal locality
hint, a second value to indicate that the no-locality hint is a
no-spatial locality hint, and a third value to indicate that the
no-locality hint is a no-temporal and no-spatial locality hint.

Example 14 includes the processor of any of Examples
1-13, in which the decode unit is to decode the no-locality
hint vector memory access instruction that is optionally to
indicate a source packed data operation mask.

Example 15 includes a method in a processor including
receiving a no-locality hint vector memory access instruc
tion. The no-locality hint vector memory access instruction
indicating a source packed memory indices having a plu
rality of memory indices. The no-locality hint vector
memory access instruction provides a no-locality hint to the
processor for data elements that are to be accessed with the
memory indices. The method also includes accessing the
data elements at memory locations that are based on the
memory indices in response to the no-locality hint vector
memory access instruction.

Example 16 includes the method of Example 15, in which
receiving the no-locality hint vector memory access instruc
tion includes receiving a no-locality hint vector load instruc
tion, and the accessing includes loading the data elements

10

15

25

30

35

40

45

50

55

60

65

42
from the memory locations. The method further includes
optionally omitting caching data elements that are loaded
from memory in a cache hierarchy.

Example 17 includes the method of any of Examples
15-16, in which receiving the no-locality hint vector
memory access instruction includes receiving a no-locality
hint vector load instruction, and in which accessing includes
loading the data elements from the memory locations. The
method further includes, upon a cache hit for a data element
in a cache hierarchy, optionally outputting no more than half
a cache line from the cache hierarchy.

Example 18 includes the method of any of Examples
15-17, in which receiving the no-locality hint vector
memory access instruction includes receiving a no-locality
hint vector load instruction. The accessing includes loading
the data elements from the memory locations including
optionally loading no more than half a cache line amount of
data for each data element loaded from memory.

Example 19 includes the method of Example 15, in which
receiving the no-locality hint vector memory access instruc
tion includes receiving a no-locality hint vector write
instruction. The accessing includes writing data elements of
a source packed data indicated by the instruction over data
elements at the memory locations including optionally writ
ing no more than half a cache line amount of data for each
data element that is written to memory.

Example 20 includes the method of any of Examples 15
and 19, in which receiving the no-locality hint vector
memory access instruction includes receiving a no-locality
hint vector write instruction. The accessing includes writing
data elements of a source packed data indicated by the
instruction over data elements at the memory locations. The
method further includes, upon a cache hit for a data element
in a lower level cache, optionally not bringing a cache line
associated with the cache hit into a higher level cache.

Example 21 includes a system to process instructions
including an interconnect, and a processor coupled with the
interconnect. The processor is to receive a no-locality hint
vector memory access instruction. The no-locality hint vec
tor memory access instruction is to indicate a source packed
memory indices. The Source packed memory indices is to
have a plurality of memory indices. The no-locality hint
vector memory access instruction is to provide a no-locality
hint to the processor for data elements that are to be accessed
with the memory indices. The processor, in response to the
no-locality hint vector memory access instruction, is to
access the data elements at memory locations that are based
on the memory indices. The system also includes a dynamic
random access memory (DRAM) coupled with the intercon
nect.

Example 22 includes the system of Example 21, in which
the no-locality hint vector memory access instruction
includes a no-locality hint gather instruction. The processor,
in response to the no-locality hint gather instruction, is
optionally not to cache data elements loaded from memory
in response to the no-locality hint gather instruction in a
cache hierarchy.

Example 23 includes an article of manufacture including
a non-transitory machine-readable storage medium. The
non-transitory machine-readable storage medium stores a
no-locality hint vector load instruction. The no-locality hint
vector load instruction is to indicate a packed data register
that is to have a source packed memory indices that is to
have a plurality of memory indices. The instruction is also
to indicate a destination packed data register. The no-locality
hint vector memory access instruction is to provide a no
locality hint. The no-locality hint vector load instruction, if

US 9,600,442 B2
43

executed by a machine, is to cause the machine to perform
operations including storing a packed data result in the
destination packed data register. The packed data result to
include data elements gathered from memory locations that
are based on the memory indices. The operations also
include omitting caching data elements that have been
loaded from memory in a cache hierarchy.

Example 24 includes the article of manufacture of
Example 23, in which the instruction is optionally to cause
the machine to load less than a half cache line amount of data
for each data element loaded from memory.

Example 25 includes a processor or other apparatus that
is operative to perform the method of any one of Examples
15-20.
Example 26 includes a processor or other apparatus that

includes means for performing the method of any one of
Examples 15-20.

Example 27 includes a processor that includes any com
bination of modules, units, logic, circuitry, and means to
perform the method of any one of Examples 15-20.

Example 28 includes an article of manufacture that
includes an optionally non-transitory machine-readable
medium that optionally stores or otherwise provides an
instruction that if and/or when executed by a processor,
computer system, or other machine is operative to cause the
machine to perform the method of any one of Examples
15-20.
Example 29 includes a computer system or other elec

tronic device including an interconnect, the processor of any
one of Examples 1-14 coupled with the interconnect, and at
least one component coupled with the interconnect that is
selected from a dynamic random access memory (DRAM),
a network interface, a graphics chip, a wireless communi
cations chip, a Global System for Mobile Communications
(GSM) antenna, a phase change memory, and a video
CaCa.

Example 30 includes a processor or other apparatus
substantially as described herein.

Example 31 includes a processor or other apparatus that
is operative to perform any method Substantially as
described herein.

Example 32 includes a processor or other apparatus
including means for performing any method substantially as
described herein.

Example 33 includes a processor or other apparatus that
is operative to perform any no-locality hint vector memory
access instruction Substantially as described herein.

Example 34 includes a processor or other apparatus
including means for performing any no-locality hint vector
memory access instruction Substantially as described herein.
What is claimed is:
1. A processor comprising:
a plurality of packed data registers;
a cache hierarchy;
a decode unit to decode a no-locality hint vector memory

access instruction, the no-locality hint vector memory
access instruction to indicate a packed data register of
the plurality of packed data registers that is to have a
Source packed memory indices, the source packed
memory indices to have a plurality of memory indices,
wherein the no-locality hint vector memory access
instruction is to provide a no-locality hint to the pro
cessor for data elements that are to be accessed with the
memory indices; and

an execution unit coupled with the decode unit and the
plurality of packed data registers, the execution unit, in
response to the no-locality hint vector memory access

10

15

25

30

35

40

45

50

55

60

65

44
instruction, to access the data elements at memory
locations that are based on the memory indices,
wherein the no-locality hint vector memory access
instruction comprises a no-locality hint vector load
instruction, wherein the execution unit, in response to
the no-locality hint vector load instruction, is to load
the data elements from the memory locations, and
wherein the cache hierarchy, in response to the no
locality hint vector load instruction, upon a cache hit
for a data element, is to output no more than half a
cache line from the cache hierarchy.

2. The processor of claim 1, wherein the cache hierarchy,
in response to the no-locality hint vector load instruction, is
not to cache data elements loaded from the memory loca
tions which do not hit in the cache hierarchy.

3. The processor of claim 1, wherein the cache hierarchy,
in response to the no-locality hint vector load instruction,
upon a cache miss for a data element, is not to allocate space
in the cache hierarchy for the data element that is to be
loaded from memory.

4. The processor of claim 1, wherein the cache hierarchy,
in response to the no-locality hint vector load instruction,
upon the cache hit for the data element, is to output no more
than a single data element from the cache hierarchy.

5. The processor of claim 1, wherein the no-locality hint
vector memory access instruction comprises a no-locality
hint gather instruction, wherein the no-locality hint gather
instruction is to indicate a destination packed data register of
the plurality of packed data registers, wherein the execution
unit, in response to the no-locality hint gather instruction, is
to store a packed data result in the destination packed data
register, and wherein the packed data result is to include the
data elements gathered from the memory locations.

6. The processor of claim 1, wherein the decode unit is to
decode the no-locality hint vector memory access instruction
that is to have at least one bit that is to have a first value to
indicate the no-locality hint, and is to have a second value
to indicate lack of the no-locality hint.

7. The processor of claim 1, wherein the decode unit is to
decode the no-locality hint vector memory access instruction
that is to have a plurality of bits that are to have a first value
to indicate that the no-locality hint is a no-temporal locality
hint, a second value to indicate that the no-locality hint is a
no-Spatial locality hint, and a third value to indicate that the
no-locality hint is a no-temporal and no-spatial locality hint.

8. The processor of claim 1, wherein the decode unit is to
decode the no-locality hint vector memory access instruction
that is to indicate a source packed data operation mask.

9. A processor comprising:
a plurality of packed data registers;
a decode unit to decode a no-locality hint vector memory

access instruction, the no-locality hint vector memory
access instruction to indicate a packed data register of
the plurality of packed data registers that is to have a
Source packed memory indices, the Source packed
memory indices to have a plurality of memory indices,
wherein the no-locality hint vector memory access
instruction is to provide a no-locality hint to the pro
cessor for data elements that are to be accessed with the
memory indices;

an execution unit coupled with the decode unit and the
plurality of packed data registers, the execution unit, in
response to the no-locality hint vector memory access
instruction, to access the data elements at memory
locations that are based on the memory indices; and

a memory controller, wherein the no-locality hint vector
memory access instruction comprises a no-locality hint

US 9,600,442 B2
45

Vector load instruction, and wherein the memory con
troller, in response to the no-locality hint vector load
instruction, is to load no more than half a cache line
amount of data, for each of the data elements loaded
from memory.

10. The processor of claim 9, wherein the memory con
troller, in response to the no-locality hint vector load instruc
tion, is to load no more than 128-bits for each of the data
elements loaded from memory.

11. A processor comprising:
a plurality of packed data registers;
a decode unit to decode a no-locality hint vector memory

access instruction, the no-locality hint vector memory
access instruction to indicate a packed data register of
the plurality of packed data registers that is to have a
Source packed memory indices, the source packed
memory indices to have a plurality of memory indices,
wherein the no-locality hint vector memory access
instruction is to provide a no-locality hint to the pro
cessor for data elements that are to be accessed with the
memory indices;

an execution unit coupled with the decode unit and the
plurality of packed data registers, the execution unit, in
response to the no-locality hint vector memory access
instruction, to access the data elements at memory
locations that are based on the memory indices; and

a memory controller, wherein the no-locality hint vector
memory access instruction comprises a no-locality hint
vector write instruction, wherein the execution unit, in
response to the no-locality hint vector write instruction,
is to write data elements of a source packed data
indicated by the instruction over the data elements at
the memory locations, and wherein the memory con
troller, in response to the no-locality hint vector write
instruction, is to write no more than half a cache line
amount of data, for each of the data elements of the
Source packed data that is written to memory.

12. A method in a processor comprising:
receiving a no-locality hint vector memory access instruc

tion, the no-locality hint vector memory access instruc
tion indicating a source packed memory indices having

5

10

15

25

30

35

40

46
a plurality of memory indices, wherein the no-locality
hint vector memory access instruction provides a no
locality hint to the processor for data elements that are
to be accessed with the memory indices, wherein
receiving the no-locality hint vector memory access
instruction comprises receiving a no-locality hint vec
tor load instruction; and

accessing the data elements at memory locations that are
based on the memory indices in response to the no
locality hint vector memory access instruction, wherein
accessing comprises loading the data elements from the
memory locations, including loading no more than half
a cache line amount of data, for each data element
loaded from memory.

13. The method of claim 12, further comprising omitting
caching data elements that are loaded from memory in a
cache hierarchy.

14. The method of claim 12, further comprising, upon a
cache hit for a data element in a cache hierarchy, outputting
no more than half a cache line from the cache hierarchy.

15. An article of manufacture comprising a non-transitory
machine-readable storage medium, the non-transitory
machine-readable storage medium storing a no-locality hint
vector load instruction,

the no-locality hint vector load instruction to indicate a
packed data register that is to have a source packed
memory indices that is to have a plurality of memory
indices and a destination packed data register, wherein
the no-locality hint vector memory access instruction is
to provide a no-locality hint, and the no-locality hint
Vector load instruction, if executed by a machine, is to
cause the machine to perform operations comprising:

load less than a half cache line amount of data, for each
data element loaded from memory;

store a packed data result in the destination packed data
register, the packed data result to include data elements
gathered from memory locations that are based on the
memory indices; and

omit caching data elements that have been loaded from
memory in a cache hierarchy.

