Office de la Proprieté Canadian CA 2382718 C 2007/02/13

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 382 71 8
Un organisme An agency of 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(22) Date de depot/Filing Date: 2002/04/19 (51) CLInt./Int.Cl. GO6F 12/02(2006.01)
(41) Mise a la disp. pub./Open to Public Insp.: 2003/10/19 (72) Inventeurs/Inventors:
1 . VALENTIN, GARY, CA;
(45) Date de délivrance/lssue Date: 200/7/02/13 BIRD. PAUL M. CA.
HURAS, MATTHEW A., CA;
XUE, XUN, CA
(73) Proprietaire/Owner:
IBM CANADA LIMITED-IBM CANADA LIMITEE, CA
(74) Agent: WANG, PETER
(54) Titre : SERVICES D'OPTIMISATION ET D'EQUILIBRAGE DE MEMOIRE
(54) Title: MEMORY BALANCING AND OPTIMIZATION SERVICES
DATABASE MANAGER 108 200) N -
SORT 204 LOAD 206 BUFFERPOOL 208
— — '] — — CONFIG. 238 ‘
Sort Heap 2042 ||| Load Heap 206a BP Heap J 208a |_BP Hf_apZQQ,_[i_Q_ | |
| Callback210 ||l Callback 212 | Callback214 || Callback 216
210A l 2100,y l 210y 214A 21,
APl 218
MBOS 219] |
SORT HEAP LOAD HEAP BUFFER HEAP 1 BUFFER HEAP 2 |
| Descriptors Descriptors Descriptors Descriptors]
220 224 228 232 OPTIMIZER
| STATISTICS STATISTICS STATISTICS STATISTICS | 236 |
122
__1 OPERATING DATA‘_"L l
SYSTEM }
106
- - MEMORY 104
(57) Abréegée/Abstract:

Memory balancing and optimization services (MBOS) control a size of a plurality of memory heaps, and a memory optimizer for
allocating and de-allocating memory for a plurality of respective memory consumers. The MBOS may be Iinstantiated within an

app
Alte

app

ication program such as a database management system providing services to memory consumers within the application.
natively, the MBOS may be instantiated within an operating system for providing services to memory consumers that are
ications such as database management systems, e-commerce engines, operating systems, customer relationship

man

agement (CRM), enterprise resource planning (ERP), or supply chain management (SCM). Alternatively, an MBOS s

Instantiated within the operating system to provide services to applications and an MBOS Is instantiated within each application to
provide services to memory consumers within the application.

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

,
L
X
e
Senchee f
L S S \
ity K
X : - h.l‘s_‘.}:{\: .&. - A L~

A7 /7]
o~

OPIC - CIPO 191

10

15

CA 02382718 2002-04-19

MEMORY BALANCING AND OPTIMIZATION SERVICES

ABSTRACT

Memory balancing and optimization services (MBOS) control a size of a plurality of memory
heaps, and a memory optimizer for allocating and de-allocating memory for a plurality ot
respective memory consumers. The MBOS may be instantiated within an application program
such as a database management system providing services to memory consumers within the
application. Alternatively, the MBOS may be instantiated within an operating system for
providing services to memory consumers that are applications such as database management
systems, e-commerce engines, operating systems, customer relationship management (CRM),
enterprise resource planning (ERP), or supply chain management (SCM). Alternatively,an MBOS
15 instantiated within the operating system to provide services to applications and an MBOS 1s

instantiated within each application to provide services to memory consumers within the

application.

CA9-2001-0097

v oy Aty A VIR, il R D, o M D SRS PRIV sttt A DO R . B L T R ey - T PR W N L T B A T LT R EEET L S I T T < o T T ¥ S A PP T cosampdogs Sogms ,pEmS s ges s s mImms Emge samm s - . .

" Voo Aland 3amery

10

15

20

25

" Al Pt b G BT 1S T OAGE AIPEYO) vty L S T A e PP e me e . e = . N et et RS A lppph Vet P S ters

CA 02382718 2002-04-19

MEMORY BALANCING AND OPTIMIZATION SERVICES

CROSS-REFERENCE TO RELATED APPLICATIONS

This 1s the first application filed for the present invention.

TECHNICAL FIELD
The present invention relates to improved memory management in a computing environment and,

in particular, to inter-application and intra-application services for memory usage balancing and

optimization.

BACKGROUND OF THE INVENTION

In a computer system, large applications use memory in many different ways. They include sorting,
caching prior work, scratch pad computations, concurrency control information, data caching, etc.
Any of these requirements for memory may exceed a computer system’s available memory capacity.
Furthermore, memory usage is not static or generally optimized. Requirements and priorities among
applications that consume memory change over time. One component of an application may benetit
more from available memory than another component. Similarly, cne application may hoard

memory or benefit more from available memory than another.

In some systems, memory usage may be controlled, to an extent, directly by a user, as, for example,
taught in United States Patent No. 5,809,554 to Benayon et al. The user may configure memory
consumption patterns used by an application while it executes. In some systems, memory usage may
also be controlled indirectly by the user. In addition, workload on the application and user

configurations may alter or control the memory consumption of various application components.

Several 1ssues remain inadequately addressed or unaddressed by prior art memory management
systems, however. For example, an application may be able to benefit from using more memory 1f
the memory were made available to the application. The application may also be required to scale

back memory usage when memory 1s constrained on the system.

CA9-2001-0097 1

10

15

20

25

CA 02382718 2002-04-19

In some cases, emergency shared memory is required by one or more components of an application

in order to complete a task. This indicates a requirement for memory overtlow (temporary over

configuration) compensation.

The requirements set out above must be solved in unison, since they are highly interdependent.

There therefore remains a need for memory balancing and optimization services that can pass
memory from one memory consumer to another, and permit dynamic reconfiguration of memory

allocations to improve memory usage.

SUMMARY OF THE INVENTION

It is therefore an object of the invention to provide a method and system for memory balancing and
optimization services that balance memory use among memory consumers, and permit dynamic

reconfiguration of memory allocations.

The invention therefore provides a system for balancing and optimizing memory allocation 1n a
computer system that supports a plurality of memory consumers. The system includes a centralized
control function, referred to as a Memory Balancing and Optimization System (MBOS). The MBOS
is adapted to serve memory reconfiguration requests received from any one of: selected ones of the
memory consumers, a memory optimizer, and a system administrator. Callback functions are
associated with memory used by at least the selected ones of the memory consumers. The callback

functions are adapted to increase or reduce memory usage by an associated memory consumer under

control of the MBOS.

The invention also provides a method of balancing and optimizing memory allocation in a computer
system having an operating system, system memory and a plurality of memory consumers that
compete for use of the system memory. The method comprises a first computer-implemented step
of issuing a request from a memory consumer when a block of system memory is required. The

request is sent to an application programming interface (API) of a memory balancing and

CA9-2001-0097 2

e ttees gt 0 et DT VS bt Lo O ORS00 2 v e L And Y Ayl ¢ AR I sl Ay g el by e A A st T e T

10

15

20

25

CA 02382718 2002-04-19

optimization services (MBOS) application instantiated on the computer system. A request s issued
by the MBOS to the operating system to get the block of memory. If the request 1s unsuccesstul, a
request is issued from the MBOS to a callback function associated with a memory heap used by the
memory consumer to get the block of memory. If that is unsuccessful, a request 1s issued from the
MBOS to respective callback functions of other memory consumers in a predefined set, to determine

whether a memory block can be obtained from another member of the set.

The invention also provides method comprising a first computer-implemented step of receiving, at
a an application programming interface (API) of a memory balancing and optimization services
(MBOS) application instantiated on the computer system, instructions to reconfigure memory usage
by one of the memory consumers. On receiving the instructions, the MBOS obtains a memory
grow heap latch associated with a memory heap used by the memory consumer. The MBOS then
determines whether the memory usage is being reduced or increased, and instructs the callback

function associated with the memory heap to release or add memory to the memory heap 1n

accordance with the reconfiguration instructions.

The invention further provides a memory balancing and optimization services (MBOS) system for
a computer system having a system memory, an operating system that executes within the system
memory and a plurality of memory consumers that compete for use of the system memory. The

system comprises a callback function associated with a memory heap used by at least selected ones
of the memory consumers and the MBOS that includes an application program interface (API) for
accepting memory usage information and memory allocation request messages from the memory
consumers, the MBOS being adapted to send memory configuration messages to the respective

callback functions to control a size of the respective memory heaps.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features and advantages of the present invention will become apparent from the following
detailed description, taken in combination with the appended drawings, in which:

FIG. 1 is a block diagram of a computer system, network and client;

CA9-2001-0097 3

Lt w1 1 TEN A S Tl v N Jes T AT st b e A bl

10

15

20

25

CA 02382718 2002-04-19

FIG. 2 is a block diagram of an embodiment of the invention;
FIG. 3 is a block diagram of another embodiment of the invention;
FIG. 4 is a block diagram of another embodiment of the invention;
FIG. § is a block diagram of another embodiment of the invention;
FIG. 6 is a flowchart of a method of the invention;

FIG. 7 is a flowchart of a method of the invention; and

FIG. 8 1s a flowchart of a method of the invention.

It will be noted that throughout the appended drawings, like features are identified by like reference

numerals.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention provides a system for balancing and optimizing memory allocation in a computer
system that supports a plurality of memory consumers. The system includes a centralized control
function, referred to as a Memory Balancing and Optimization System (MBOS). The MBOS is
adapted to serve memory reconfiguration requests received from any one of: selected ones of the
memory consumers, a memory optimizer, and a system administrator. A callback function is are
associated with a memory heap used by each of the selected ones of the memory consumers. The
callback function is adapted to increase or reduce memory in the memory heap associated with the

memory consumer, under control of the MBOS.

F1G. 1 1s a block diagram 100 of a prior art computer system 102 connected to a network 118. A
plurality of client computers 120 (only one of which is shown) are connected via links 130 to the
network 118 in a manner well known in the art. The computer system 102 has a memory 104 such
as semiconductor random access memory (RAM), flash memory, or the like. An operating system
(OS) 106 such as AIX, Linux, OS X, Windows 2000, Windows XP or the like resides in the
memory 104. A plurality of applications (only one shown) such as a database manager 108,
web-server application server, e-commerce engine, customer relationship management (CRM),

enterprise resource planning (ERP), or supply chain management (SCM) software are

(CA9-2001-0097 1

10

15

20

25

CA 02382718 2002-04-19

communicatively coupled by an interface 124 to the operating system 106. The database
manager 108 stores and retrieves data 110 stored in the memory 104 using an interface 126 and
communicates with the OS 106 via the interface 124 to access data 114 stored on a non-volatile
medium such as a hard disk 115. The OS 106 retrieves the data 114 via a bus 122 in a manner well
known 1n the art. The computer system 102 1s connected to a network 118 by a link 128, also in a

manner well known 1n the art.

FIG. 2 1s a schematic diagram of the memory 104 shown 1n FIG. 1 configured in accordance with
one implementation of the memory management services in accordance with the invention. As is
well known in the art, the database manager application 108 includes a plurality of application
components 204, 206, 208. Certain of the application components are dynamic memory
consumers 202. Only three of the dynamic memory consumers 202 are shown for the sake of
1llustration. Those three memory consumers 202 are sort 204, load 206, and buffer-pool 208. The
respective components maintain one or more memory heaps, respectively the sort heap 204A, the
load heap 206A, and the first and second buffer-pool heaps 208A, 208B. As i1s well known in the
art, a memory heap is an area of memory reserved for data that 1s retrieved, stored or created at run
time. In accordance with the invention, each of the memory consumers 202 is further provided with
a callback function 210-216 that is used by a memory balance and optimization service (MBOS) 219

to dynamically control a size of the respective memory heaps, as will be described below 1n detail.

For the purposes of schematic illustration, MBOS 219 is shown as a discrete component of the
memory balancing and optimization services architecture in accordance with the invention. It
should be understood, however, that the MBOS 219 includes an application programming interface
(API) 218 and the callback functions 210-216 associated with the respective application
components 204-208. The MBOS 219 may be implemented, for example, with six principal

components:
- The API 218, which 1s a set of functions that can be called by any memory
consumer 202 to request a change to memory distribution. The API 218 can be

called, for example, by any application component’s overtflow mechanism, or on

CA9-2001-0097 S

10

15

20

25

CA 02382718 2002-04-19

behalf of a user-directed reconfiguration effected by changing configuration
parameters 238. The API 218 can also be called by a memory use optimization
engine that computes a new memory use configuration for memory 104.

The component callback functions 210-216, which are a set of functions that are
implemented on a one-per-application component 204-208, or amemory consumer,
basis. The component callback functions support dynamic memory consumption
and are structured to inspect memory use by the memory consumer 202 in order to
release unused memory on request from the MBOS 219. The component callback
functions can also be used by MBOS 219 to increase memory available for use by
the memory consumer 202 in instances where the memory consumer 202 requires
or is allocated additional memory.

Central callback functions, which are a part of the MBOS 219 logic, are called
when the system memory is constrained or released. These functions change rules
for memory allocation patterns to reduce memory use requirements when system
memory is constrained. These functions are also called when memory becomes
available.

Memory usage tracking and optional memory statistics, which are functions in the
MBOS 219 logic that track memory usage and, optionally, analyze memory use to
provide a statistical analysis of memory usage behavior.

An optional memory optimizer, which is an engine that observes memory usage and
solves the classical knapsack problem, well known in the art, to determine an
improved (or near-optimal) usage configuration for memory 104.

A passive memory redistributor, which is logic written to release memory from a
list of memory consumers to make new memory available as required. The passive
memory redistribution logic is preferably instantiated to ensure that all applications

and/or application components are ensured a fair share of memory 104.

[n a context of an application, memory consumers can generally be categorized into one of the

following three types:

CA9-2001-0097 6

MRV EIT L T AT A S ROAIRAY M 1 sl s et T oA ALY N AR,

10

15

20

25

CA 02382718 2002-04-19

- Pools, which are logical memory allocations of fixed size that never grow or shrink
but can be allocated or freed dynamically;

- Heaps, which are logical memory allocations that can be resized explicitly by the
user (directly and indirectly); by an optimization algorithm; or may change in size
as a results of variations in the workload, such as a spike in new connections or new
tasks requested;

- Volatile heaps, which are logical memory allocations that have no fixed size and

grow each time memory 1s requested.

With respect to implementations of the invention, all enabled applications and/or application

components are allocated memory heaps to enable dynamic memory balancing and optimization.

In the implementation shown in FIG. 2, each enabled application (only one, database manager 108,
15 shown) includes a plurality of memory consumers 202 that are application components. As
explained above, the respective memory consumers 202 optionally provide -callback
functions 210-216. The MBOS 219 communicates with respective callback functions 210-216 to
dynamically balance and optimize memory usage. The communications are accomplished using
memory usage information or request messages 210A, 212A, 214A and 216A sent by the
respective memory consumers 202 to the MBOS 219 via the API 218. The MBOS 219 1n turn
communicates with the callback functions 210, 212, 214 and 216 using callback instruction and
request messages 2108, 212B, 214B and 216B to dynamically control memory usage by the
respective memory consumers 202. Each time a message 210A-216A 1s received from a memory
consumer 202, a corresponding one of a heap descriptor file (sort heap descriptors 220, load heap
descriptors 224, buffer-pool heap 1 descriptors 228 and buffer-pool heap 2 descriptors 232) are

updated to permit MBOS 219 to track memory usage by the respective memory consumers 202.
In the implementation shown 1n FIG. 2, the MBOS 219 is instantiated within the application,

database manager 108. As will be explained below with reference to FIGs. 3-5, several other

exemplary implementations are likewise possible. As will also be explained with reference to

CA9-2001-0097 7

Tt i et A PR\ M ey

10

15

20

25

CA 023827718 2006-09-14

FIGs. 6-8, memory management algorithms in the MBOS function to balance and optimize memory

consumption by memory consumers enabled in accordance with the invention.

FIG. 3 shows another implementation the MBOS in accordance with the invention. In this
embodiment, an MBOS 316 with an API 314 is instantiated in an operating system 106 of the
computer system 102 (FIG. 1). A plurality of memory consumers 302 include respective
applications, only two of which are shown, i.e. database manager 108 and webserver 304, which are
enabled with respective callback functions 106B and 304B. The applications maintain classic
memory use structures, such as static heaps 106A and 304A. MBOS 316 maintains heap
descriptors 320, 324 for the respective applications 106, 304. The applications 106, 304 send
memory management information and request messages 310A, 312A tothe API314and MBOS 316
returns memory management instructions 310B, 312B to the respective callback functions 106B,
304B. This implementation of the invention functions in accordance with the same principles as
described above with reference to FIG. 2. The MBOS 316 has less flexibility ot control, because it
only has awareness of the global memory usage by the respective memory consumers 302, and has
no knowledge of memory usage by their respective application components. Memory balancing and
optimization is achieved using function calls sent by MBOS 316 to the respective callback functions,
as will be explained below in more detail. For example, although the classical implementation of
static heaps permits less fine-tuned control of memory usage, MBOS 316 can redistribute memory
to the respective applications as required by receiving information from callback functions 106B,

304B respecting static heap releases and requests for memory block allocations to permit new static

heap instantiations.

Users can also exercise control over memory usage using configuration parameters 330 which are
communicated via the API 314 to MBOS 316 using configuration change messages 332. User
configuration changes are implemented by MBOS 316 using algorithms that will be explained below
with reference to FIGs. 6-8.

FIG. 4 shows yet another implementation of the memory balancing and optimization services in

CA9-2001-0097 3

10

15

20

25

CA 02382718 2002-04-19

accordance with the invention. This implementation provides the most powerful and flexible
implementation, because it permits competition between memory consumers across a single, level
plane enabled by an MBOS 316 instantiated within the operating system 106. In this
implementation, the application components of each enabled application (only one, database
manager 108, is shown) are enabled with callback functions 210, 212, 214 and 216, respectively.
The respective application components (sort 204, load 206 and buffer-pool 208) are memory
consumers 202, as explained above with reference to FIG. 2. The MBOS 316 in this
implementation maintains a heap descriptor file for each of the respective application components.
In this example, the descriptor files (only four of which are illustrated for convenience) include
sort heap descriptors 420, load heap descriptors 424, buffer-pool heap 1 descriptors 428 and buffer-
pool heap 2 descriptors 432. Optionally, the MBOS 316 is also enabled with algorithms for
computing statistical analyses of memory usage by the respective memory consumers 202. The
results of the statistical analysis are stored in respective statistics files 422, 426, 430 and 434. The
MBOS 316 may likewise include an optimizer function 328 which, as described above, examines
the respective heap descriptor files and/or statistics files and executes algorithms to solve, for

example, the classical knapsack problem to optimize memory usage. Each memory consumer sends

Information and request messages 410A-416A through API 314 to MBOS 316. MBOS 316 sends
control messages 410B-416B through API 314 to callback functions 210-216, as explained above.

FIG. § illustrates yet another implementation of the memory balancing and optimization services
in accordance with the invention. In this implementation, each enabled application is configured
as described above with reterence to FIG. 2, with an instantiation of MBOS 219 with API 218. The
components and functionality of the application-embedded memory balancing and optimization
services are the same as described above with reference to FIG. 2. In addition, the database
manager application 108 1s provided with an application-embedded callback function 504 adapted
to receive messages 5S02B trom an MBOS 316 instantiated in the operating system 106 of the
computer system 102. The database manager application 108 1s also adapted to report memory
usage using information and request messages 5S02A sent via API 314 to the MBOS 316. The
MBOS 316 maintains a database manager heap descriptors file 320, which provides the MBOS 316

CA9-2001-0097 9

10

15

20

25

CA 023827718 2006-09-14

with a global view of memory usage by the database manager application 108. The MBOS 316 also
optionally maintains statistics 322 derived from statistical analyses of memory usage by the database

manager application 108.

The implementation of the memory balancing and optimization services shown in FIG. 5 permits
dual level control of memory usage. The instantiation of MBOS 219 1n the database manager 108
optimizes memory usage among the memory consumers 202, while the instantiation of MBOS 316
enables optimization from a global perspective of memory usage among various applications

executing on the computer system 102.

The principal algorithms required to implement the memory balancing and optimization services in

accordance with the invention will now be explained with reference to FIGs. 6-8.

FIG. 6 is a flow chart illustrating actions of the MBOS 219,314,316 when arequest is received from
a memory consumer 202, 302 for an additional block of memory. Execution ot the algorithm
commences at 602 when the memory allocation request is received. 'The MBOS attempts to get a
block of memory for the requesting heap (step 604) by issuing a request to the operating system 106
for a free block of memory using known methods that are instantiated in different ways in different
operating systems, but are known in the art. If the attempt is determined to be successtul (step 606)
the algorithm routes (606A) to the exit 626. Otherwise, MBOS obtains a grow_heap latch by setting
a corresponding parameter in the memory consumer’s heap descriptor file (step 608). The grow_heap
latch prevents a subsequent request for modifying memory allocations to the same memory heap until
the instant request has been processed and the latch is released. After the grow_heap latch 1s
obtained, MBOS attempts once again to get the requested block of memory using the
mechanisms described above. The second attempt is made on the assumption that, for example,
memory may have been released by another memory user in the interim since the first attempt to get
the memory block in step 604. In step 612, it is determined whether the second attempt to

obtain a block of memory was successful. Ifit was successtul, the program branches

(612A) to step 625 where the grow_heap latch is released and the algorithm exits at 626. If

CA9-2001-0097 10

10

15

20

25

CA 023827718 2006-09-14

unsuccesstul, the algorithm proceeds at 612B to step 614 where the MBOS issues a message to the
callback function of the heap, requesting that the callback function examine memory uses to ensure
that there are no unused memory blocks in the memory already allocated to the application. As is well

known in the art, some memory consumers will request memory even though unused memory, or stale

memory, is available to the memory consumer.

Consequently, the call to the callback function performed in step 614 requests that the callback
function examine memory usage to determine whether a block of free memory is actually available
(step 616). If the callback 1s successtul (616A), the algorithm branches to step 610 and tries to get
the block of memory with the latch held, and exits through 625 and 626 as explained above. If
unsuccessful (616B), the MBOS attempts to increase a size of the heap dynamically within a set of
which the memory consumer 1s a member (step 618). The set 1s a predefined collection of memory
consumers. The definition of the set 1s a matter of application architecture, and is chosen by the
designers of the application. The MBOS obtains knowledge of the set to which the memory
consumer belongs by examining corresponding heap descriptors. The algorithm for increasing the

size of the heap dynamically within the set will be explained below with reference to FIG. 7.

If it is determined in step 620 that the operation of increasing memory from within the set is
successful, the algorithm branches (620A) to steps 610, 612, 625 and exits through 626. If it is not
successful, the MBOS attempts to find memory for the set (step 622). Finding memory for the set
1s performed in one of a number of ways known by those skilled in the art, depending on the operating
system 106 with which the MBOS 1s implemented. Memory for the set is allocated from system
memory resources using memory allocation algorithms known in the art. If the attempt to obtain
memory for the set 1s determined to be successtul (step 623), the algorithm branches back to
steps 610, 612, 625 and exits at 626. If it is not successful, the MBOS returns a MEMORY NOT

AVAILABLE message (step 624) to the callback function, and the application or application
component responds to the message in accordance with internal procedures implemented when
memory is constrained. The algorithm then proceeds to step 625 where the grow_heap latch is

released, and exits at 626.

CA9-2001-0097 11

10

15

20

25

CA 02382718 2002-04-19

FIG. 7 is a flow chart schematically illustrating an algorithm for obtaining memory within the set
of memory consumers referred to above with reference to step 618. When MBOS attempts to
dynamically increase the size of a heap from within a set, it calls a function that commences (702)
by examining an internal parameter that indicates the last heap in the set that was called for the
memory balancing function. A request is then formulated and sent (step 706) to the callback
function of the next heap in the set to request that the callback function examine memory usage
to determine whether memory can be released from the heap. After aresponse is received from the
callback function, it is determined in step 708 whether enough memory has been released to meet
the outstanding requirement. If so (708A), the algorithm exits successfully (710). If not (708B),
it is determined whether all of the callback functions for the respective heaps have been visited
once (step 712). If not (712B), the algorithm branches back to step 704 and the process
recommences with the next heap in the set. When all heaps have been visited once (712A), the
algorithm exits successfully (714), regardless of whether enough memory has been released to

meet the requirement.

FIG. 8 is a flow chart that illustrates the actions of MBOS 219, 314 and 316 when a user or an
optimization algorithm such as optimizer 236, 328 determines that one or more memory usage
allocations should be changed. When MBOS receives a memory usage allocation change request
(802), MBOS responds by obtaining the grow_heap latch to ensure that no other process is
modifying the size of the affected heap (step 804). In step 806, it is determined whether the
memory allocation is being reduced or increased. If the memory allocation 1s being reduced
(806A), the MBOS dispatches a message (step 808) to the callback of the respective memory
consumer to notify the memory consumer of the new memory constraints. MBOS then waits for
a response to determine whether the memory consumer is able to reduce its memory consumption
(step 810). Ifnot (810A), the MBOS releases the grow heap latch (step 822) and exits successfully
(step 824). After exit, a message (not shown) is returned to the requestor using known mechanisms
to indicate that the memory re-allocation cannot be effected. If, however, the memory consumer
indicates in step 810 that it has reduced its memory consumption, MBOS proceeds (810B) to

release the memory resources back to the set and/or the operating system (step 814).

CA9-2001-0097 12

10

15

CA 02382718 2002-04-19

f in step 806 1t 1s determined that memory allocation is being increased, MBOS proceeds (806B)
to step 816 where 1t attempts to obtain new memory resources from the set or the operating system.
It 1s determined in step 818 whether the required memory is available. If not (818A), the grow
heap latch is released in step 822 and the algorithm exits successfully in step 824. If the memory
15 available (818B), MBOS formulates and sends a message (step 820) to the callback function to
notify the memory consumer that new memory is available. The memory consumer then performs
the necessary reconfiguration of memory resources using methods known in the art. Thereafter,

MBOS releases the grow heap latch (step 822) and exits successfully (step 824).

The invention therefore provides a memory balancing and optimization system that can be
implemented in a variety of ways to improve memory balance and ensure optimal memory usage.
The implementations of the system described above provide only tour examples of potential
implementation configurations. As will be appreciated by persons skilled in the art, other

variations of the implementations are possible and contemplated within the scope of the invention.

The scope of the invention is therefore intended to be limited solely by the scope of the appended

claims.

CA9-2001-0097 13

10

15

20

235

30

CA 023827718 2006-09-14

The embodiments of the invention in which an exclusive property or privilege 1s claimed are

defined as follows:

A system for balancing and optimizing memory allocation in a computer system that

supports a plurality of memory consumers, comprising:

a centralized control function within an application and adapted to serve memory
reconfiguration requests from any one of: selected ones ot the memory consumers,
a memory optimizer, and a system administrator, wherein the centralized control
function manages a plurality of coexisting memory heaps in use by the memory

consumers in the form of application components of the application; and

callback functions associated with each of the selected ones of the memory consumers,
the callback functions being adapted to increase or reduce memory usage by one ot

the selected ones of the memory consumers under control of the centralized control

function.

A computer system having a system memory, an operating system that executes within

the system memory and a plurality of memory consumers that compete for use ot the

system memory, comprising:

a callback function associated with respective coexisting memory heaps used by at

least selected ones of the memory consumers; and

a memory balancing and optimization service (MBOS) within an application that
includes an application program interface (API) for accepting memory usage
information and memory allocation request messages, the MBOS being adapted
to send memory configuration messages to the respective callback functions to
control a size of the respective coexisting memory heaps in use by the selected

ones of the memory consumers in the form of application components ot the

application.

The computer system as claimed in claim 2 wherein the MBOS 1s adapted to receive

the memory allocation request messages from the selected ones of the memory

CA9-2001-0097 15

10

15

20

25

CA 023827718 2006-09-14

consumers, which send a memory allocation request message each time an associated

memory heap used by the memory consumer requires re-sizing.

The computer system as claimed 1n claim 2 wherein the MBOS i1s adapted to receive
the memory allocation request messages from a system administrator, who sends a
memory allocation request message to the MBOS 1n order to change a size of memory

consumed by one or more of the selected ones of the memory consumers.

The computer system as claimed in claim 2 further comprising a memory optimizer
adapted to determine a new memory configuration for memory used by the selected
ones of the memory consumers, and further adapted to send the memory allocation
request messages to the MBOS to request that the MBOS resize selected ones of the

memory heaps to conform to the new memory configuration.

The computer system as claimed in claim 2 further comprising memory heap
descriptors maintained by the MBOS for each of the memory heaps, the memory heap

descriptors storing information about the associated memory heap.

The computer system as claimed in claim 3 further comprising memory heap
statistics maintained by the MBOS for each of the memory heaps, the memory heap

statistics storing statistical analysis information about the associated memory heap.

The computer system as claimed in claim 2 wherein the MBOS is instantiated in an
application that executes in the system memory, and the memory consumers are

components of the application.

The computer system as claimed in claim 2 wherein the MBOS is instantiated in the
operating system, and the memory consumers are applications that execute in the

system memory.

CA9-2001-0097 16

10

15

20

23

10.

11.

12.

CA 023827718 2006-09-14

The computer system as claimed in claim 2 wherein a first MBOS 1s instantiated in at
least one application that executes in the system memory, and the memory consumers
are components of the application; and a second MBOS is also instantiated in the
operating system, and the memory consumers relative to the second MBOS is the at

least one application that executes in the system memory.

A method of balancing and optimizing memory allocation 1n a computer system
having an operating system, system memory and a plurality of memory consumers that

compete for use of the system memory, comprising computer-implemented steps of:

receiving a request from a memory consumer when a block of system memory 1s
required, the request being received at an application programming intertace
(API) of a memory balancing and optimization service (MBOS) within an
application, wherein the MBOS manages a plurality of coexisting memory heaps
in use by the memory consumer in the form of application components of the

application;

issuing a request from the MBOS to the operating system to get the block of memory,

and if the request is unsuccessful:

issuing a request from the MBOS to a callback function associated with a
memory heap in the plurality of coexisting memory heaps used by the

memory consumer to get the block of memory; and

if unsuccessful, issuing a request from the MBOS to respective callback
functions of other memory consumers in a predefined set of memory
consumers sharing a same memory space, to determine whether a memory

block can be obtained from another member of the set.

A method as claimed in claim 11 wherein, if the step of obtaining memory tfrom

another member of the set is unsuccessful, the method further comprises a step of

CA9-2001-0097 17

10

15

20

25

13.

14.

15.

CA 023827718 2006-09-14

issuing a request from the MBOS to obtain memory for the set from unallocated

system memory.

A method as claimed in claim 11 wherein the step of determining whether a memory

block can be obtained from another member of the predefined set comprises steps of:
determining a last memory heap in the set to which a request for memory was sent;
issuing the request to a callback function of a next memory heap in the set; and

continuing to issue the requests to successive ones of the callback functions of memory
heaps in the set until the block of memory has been found, or a request has been

sent to the callback function of every memory heap in the set.

A method as claimed in claim 11 wherein the method further comprises steps of:

collecting memory usage information related to the selected ones of the memory

consumers;

analyzing the memory usage information to determine an improved memory usage

configuration; and

instructing the respective callback functions to adjust memory usage in compliance

with the improved memory usage contiguration.

A computer-readable medium storing program instructions tor:

receiving a request from a memory consumer when a block of system memory 1s
required, the request being received at an application programming interface
(API) of a memory balancing and optimization service (MBOS) within an
application, wherein the MBOS manages a plurality of coexisting memory heaps

in use by the memory consumer in the form of application components of the

application;

issuing a request from the MBOS to the operating system to get the block of memory,

and if the request is unsuccessful:

CA9-2001-0097 18

10

15

20

25

16.

17.

18.

CA 023827718 2006-09-14

issuing a request from the MBOS to a callback function associated with a memory
heap in the plurality of coexisting memory heaps used by the memory consumer

to get the block of memory; and

if unsuccessful, issuing a request from the MBOS to respective callback functions of
other memory consumers in a predefined set of memory consumers sharing a
same memory space, to determine whether a memory block can be obtained from

another member of the set.

A computer-readable medium as claimed in claim 15 wherein the instructions for
determining whether a memory block can be obtained from another member of the

predefined set further comprises program instructions for:
determining a last memory heap in the set to which a request for memory was sent;
issuing the request to a callback function of a next memory heap in the set; and

continuing to issue the requests to successive ones of the callback functions of memory
heaps in the set until the block of memory has been found, or a request has been

sent to the callback function of every memory heap in the set.

A computer-readable medium as claimed in claim 15 further including program

instructions for:

collecting memory usage information related to the selected ones of the memory

consumers:

analyzing the memory usage information to determine an improved memory usage

configuration; and

instructing the respective callback functions to adjust memory usage in compliance

with the improved memory usage configuration.

A method of balancing and optimizing memory allocation in a computer system
having an operating system, system memory and a plurality of memory consumers that

compete for use of the system memory, comprising computer-implemented steps of:

CA9-2001-0097 19

10

15

CA 023827718 2006-09-14

receiving at an application programming interface (API) of a memory balancing and
optimization service (MBOS) within an application instructions to reconfigure
memory usage by one of the memory consumers, wherein the MBOS manages a
plurality of coexisting memory heaps in use by the memory consumer in the form

of an application component of the application;

obtaining a memory grow_heap latch associated with a memory heap used by the

memory consumer;
determining whether the memory usage is being reduced or increased; and

instructing a callback function associated with the memory heap to release or add

memory to the memory heap in accordance with the reconfiguration instructions.

19. A method as claimed in claim 18 wherein the step of receiving comprises a step of

receiving the instructions from a user reconfiguration event.

20. A method as claimed in claim 18 wherein the step of receiving comprises a step of

receiving the instructions from a memory usage optimization algorithm.

CA9-2001-0097 20

CA 02382718 2002-04-19

HY J0ld | Ol

J3OVNYIN ISVEVLY(J GLi
— ¢el
Vel k
NILSAS ONILYH3dO | E
AHOW3N CL
_ N—— 4 4
201 W3LSAS H31NANOD
8¢l
IN3ITO _
= 8l1 00}

0¢)

U AVRARARA L 8 W e,

. VIR VR S 0L SRy = = -

Sl e W

CA 023827718 2006-09-14

70l AHOW3AN
901
WH1SAS
TTTVIVa ONILVH3dO
9Cl 4
9¢¢ SOILSILVIS SOILSILVLS SOILSILVLS SOILSILVLS
43ZINILJO 454 8¢¢ 744 0ce

s10)duosaQ $10)dLI9sSa(] $40)d110sa($J0)duasa(]
¢ dV3H ¥344N4 | dV3H d344N8 dvV3H dVO dV3H 140S

61¢ SOaN

I 872 1dV

d91¢ - vale Ayl - viylz YCle -
912 %oeqe)d y1¢ xoeqie) ¢1¢ oeqied

sz ooy | | | J80¢C8eHdE || EBOC | GBeH o 307 deaH peo

80¢ 100d4344n8 90¢ av01

veke q01¢ - VOlLC

01¢ Yoeq|ed
B0C desH UoS

¥0C LH0S

¢0¢ 801 ¥IOVNVIN 3SYEVLY(

CA 023827718 2006-09-14

#01 AHOW3IN
8¢¢ SOILSILVIS SOILSILVLS
d3ZINILdO $7¢ siojduosa(07¢ sloiduose(
dVdH SM dVdH WEd |
91¢ SOaN
B PIE IV T
A% 301
. NILSAS
0€E OI4ANOD ONILYNILO

e
Y

g0t #0edjjed

T

p0€ (s)desH onejs

POt 44AH3S 9IM

011 YLvQ

9¢i

d901 %9eqj[eD

V90[(s)desH onejs

801 ¥3OVNVI 3Svav.iva

q0L€ - V0L
A

¢Cl

CA 02382718 2002-04-19

0L AHOW3W

8¢t
d3ZINILdO

L]

vy
SOLLSILVLS

AN 4
$J0)duosa(]

¢ dV3H ¥344N4

¥ Ol

0cy
SIILSILVLS

A
$10}duosa(]

 dVJH 4344N4

_ 011 viva _

¢l

AR
0€€ "OI4ANOD
a9lv

9ch
SIOUSILVLS

LAY
$J0}dLosaQ]

dV3H AvOT

ey
SOILSILVLS

0y
$10)duosaQ

dV3H LH0S

901 W3LSAS
ONILVH3dO

4

—W V9l
u

AN

_ ¢elh

<N:qmo_‘v - VOiLv

- j]

012 Yoeqjes

V#0Z desaH uog

801 44OVNVIN 3Svav1iva _

. | S— DAL SASPPAL Aty FrAH - ey ryre] P

N—

o e b R S e

I SN TR U 4. RS TR SRS w6 G WA o s b -0 S 1 B = i =

CA 02382718 2002-04-19

V0T AHOW3N
0€€ "O1INOD - 228 SOILSILVLS
| O vAve gor e | w0 | 9T€ Soan omnm_ﬁma&mso _
W3LSAS
ONILYH3dO _ PITIdY mms
4205
703 j yoeqjeo _
%4 _ 0¢e 9z¢ % *
SOILSILYLS SOILSILYLS SOILSILVIS SOILSILYLS
¥3ZINILJO VA4 8¢ 744 0
sJoyduosaQ eoacomoo $10)duosa(] sJ0)duosag
||| BFZsoan ZdV3H Y344NEG | | | dVIH ¥344N dv3H V0T dvIH180S | ||| |
| | ¢ dViH. | avar |
—— — o _
vyig d¢ke Vel qoiz V0lZ

01¢ Yoeqjed

91¢ Yoeq|ed vIZ Yoeqen ZIZ Yoeqed
_ 480¢ ¢ desH dg _ A V80¢Z | desH 49 _ V90¢ desH peo V¥0¢Z desH uos

80¢ 100d4y344ng 90 avO1 ¥0C LYOS
~— — _

202 80T ¥IOVNVW 3SVav1va

BB anam e

0€Z '9O14NOD

P ey ot £

L] TR Tt o A L O S SRR s b s v I T TSI

B A MR Ve gt oy m e e, s s

Gl 0 T ¢ 1A AN 40 VTR T A i et TR AP I O s i et d &by mfmcd iy st e e o e e e

CA 023827718 2006-09-14

6/8
602

604 Try to get a block for a given heap.

606 @ 606A

NO

608 Obtain a grow_heap latch.

610 Try to get the block, this time with the latch
held.
61 @ 612A

6128 NO

yes 014 Call the callback for this heap.

616A 616 @

6168 NO

018 Try to increase the size of the heap YES
dynamically inside the set. YES
620A 620
YES @

620B

622 Find memory for the set.

623
YES @

NO

624 Return memory not available

625 Release the grow_heap latch.

626
FIG.6

NO

712B

CA 023827718 2006-09-14

/8

702

704

Recall last heap in this set

which was called.

706 Ask the next heap in this

set for more memory by
calling its callback.

708
memory been

released?

708B 710
NO

Have all
heaps been visited
once?

712

712A

YES

a4 EXIT
UNSUCCESSFULLY

Has enough ~\708A

YES

EXIT
SUCCESSFULLY

CA 023827718 2006-09-14

8/8
B2

804 Obtain the grow_heap latch to ensure
no one else is modifying the size of
this heap.
806
i ina?
Reducing Reducing or growing® Growi
800A 8068
808 816
Invoke the cr;llback to notify the Obtain new memory fesources
Consumer o1 he NeW memory from the set or operating system.
constraints.
818A
810A
810 s the consumer 818
able to reduce its memory ls memory available?
consumption?
8108 818B
YES 820 YES
814

Release memory resources back Invoke the heap callback to notify

the consumer that new memory is
available.

to the set and/or operating
system.

822 Release the grow_heap latch

824 EXIT
SUCCESSFULLY

FIG. 8

— - Y — ——r

|
|

DATABASE MANAGER 108 202

l SORT 204 l "LOAD 206

)
Sort Heap 204a Load Heap 206a
Callback 210 Callback 212

210A . 210, l 2196 214A

APl 218

BUFFERPOOL 208

BP Heap 1 208a
Callback 214

BP Heap 2 208b
Callback 216

—214b .

216A

CONFIG. 238

MBOS 219
SORT HEAP

LOAD HEAP

| Descriptors Descriptors
220 224

STATISTICS

BUFFER HEAP 1
Descriptors

228
STATISTICS

l STATISTICS
124 —f\t

OPERATING
SYSTEM

106

BUFFER HEAP 2
Descriptors
232 OPTIMIZER
STATISTICS | 236
126 7/1

l

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - abstract drawing

