(12)

UK Patent Application .. GB 2394 330 .. A

(43) Date of A Publication 21.04.2004

(21) Application No: 0318281.3
(22) Date of Filing: 05.08.2003
(30) Priority Data:

(31) 91120693 (32) 11.09.2002 (33) TW
(71) Applicant(s):

(72)

(74)

Sunplus Technology Co Limited
{Incorporated in Taiwan)

19 Innovation Road 1,

Science-Based Industrial Park, Hsin-Chu,
Taiwan

Inventor(s):
Bor-Sung Liang

Agent and/or Address for Service:

Barker Brettell

138 Hagley Road, Edgbaston,
BIRMINGHAM, B16 9PW, United Kingdom

(51)

(52)

(56)

(58)

INT CL’:
GO6F 13/28 12/08

UK CL (Edition W):
G4A AMC

Documents Cited:
US 6185637 B1 US 5721874 A
Field of Search:

UK CL (Edition W) G4A

INT CL7 GO6F

Other: Online: WPI, EPODOC, PAJ, INSPEC

(54)

(57)

Abstract Title: A method and an architecture for programming and controlling access of data and instructions

There are provided a plurality of data transfer levels, in
which a current data transfer level is used for accessing
data and instructions from an external memory (34). Each
data transfer level corresponds to a length of a continuous
data transfer via an interface between the memory and a
high-speed access device 32. The current data transfer
level is dynamically adjusted by a burst mode controller
based on data format accessed by a processor kernel (31)
or a result of instruction decoding performed by the
processor kernel. The processor may access the
data/instructions via high-speed memory (cache) 321.

a2 N
CACHE MODULE PREFETCH
: ODULE MEMORY DEVIC)
AY Y
321 4 ;
322 bata| 20,34
51| PROCESSOR INSTRUCTION| BURST MODE
KERNEL CONTROLLER
§
33
FIG. 3

vV 0EEP6E C 99

Printed on Recycled Paper

1|7

11~LCACHE MODULE

—=—— MEMORY DEVICE~-13

|

14~ PROCESSOR KERNEL

11~L CACHE MODULE

MEMORY DEVICE

FIG. 1
PRIOR ART
PREFETCH
4) MODULE ‘)
16) 15
12

14~+PROCESSOR KERNEL

FIG. 2

PRIOR ART

)
13

2[7

10
2___9
— e]
|| CACHE MODULE {—ea—{ FPREFETCH 1]
| , MoDULE [T EMORY DEVICE
—— . —————— —\)—__A_J S
321 322 0 bam| 20,34
!
ajl] PROCESSOR INSTRUCTION| BURST MODE
KERNEL CONTROLLER
5
33

FIG. 3

217

lllllllll

91 = Y1Bue
¥ = [9A07]

8 = 1buany
€ = |8AaT]

¥ = yibue
T =[9A07

T = yiBuen
} =|oAe]

t = yibueq
0 = [9A0

320§D

4/7

@Z%ZBMCZ§Z§ | | | | | |
OP code Command Level Reference Value
FIG. 5
| l I |

| | |
OP code Level Operand(s)
FIG. 6
I I]
OP code Operand(s)

(if LOAD in Level0, OP code=LD0
if LOAD in Levell, OP code=LD1
1f LOAD in Level2, OP code=LD2
1f LOAD in Level3, OP code=LD3
(if LOAD in Level4, OP code=LD4

FIG. 7

s/

8 DId

g8
5
JATIONIND |
400N 1S¥ng NOILONALSNI
A
o VAV oz
S § o
TOVIOLS | ol | TTNAON
TVNIAIXE A0 1 HOL3ddd

TANYIY
J0SSIO0¥d

&7

6 L4

€e
§
JUTIOUINOD |
JAON ISand NOILLONYISNI
oe | VIVq 02 «
Y I A 1
JOVIOLS |-l XIONAN 4IMdON | __ |
TYNYALYA _ HOLIAHdd

TVNYIN
JOSSA04d

7/7

01 914

304144
Snd

!

JITIONINOD | e
4JON IS¥Nd |NOILOMYISNI

ATIONINOD
VNd VLV
' ! |
1g [EOIAEQ 0O/1 MIORIR 1 yossaooud

10

15

20

2394330

METHOD AND ARCHITECTURE CAPABLE OF
PROGRAMMING AND CONTROLLING ACCESS OF DATA AND
INSTRUCTIONS
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to data and instruction access in a
computer system and, more particularly, to a method and an architecture
capable of programming and controlling access of data and instructions.
2. Description of Related Art

The processing speed of CPU of a modern computer has increased
significantly. Furthermore, such trend of increase is still continuing. It is
known that a corresponding increase in accessing memory is required for
increasing the total data and/or instruction access efficiency of the computer.
In other words, a relatively slow memory is a bottleneck of the efficiency
increase of the computer. For solving this problem, a cache memory is thus
developed, in which a memory access unit is defined to have a constant
length composed of a predetermined number of instructions or data, and
such unit is called a cache line. The length of the unit is critical. For
example, in a memory having a burst transfer capability, multiple data
accesses can be performed by only giving one address and associated
setting, so that a data string having the assigned burst length is continuously
transferred. As a result, an initial delay prior to data transfer is decreased. In
such memory, the length of the cache line is related to the burst length.

With reference to FIG. 1, it presents schematically a conventional

1

10

15

20

processor architecture having the above cache capability. As shown, in case
that a cache line having the required data or instructions is in the cache
module 11a, the processor kernel 14 can fetch required data or instructions
from a cache module 11 directly with no or very low time delay. However, if
the required data or instructions are not in the cache module 11, a cache
miss is encountered. At this moment, the processor kernel 14 has to
command the cache module 11 to read the required data or instructions from
a memory device 13. Such an operation is called cache refill. Thus, a
significant system delay (called cache miss penalty) is occurred since all
cache lines have to be stored in the cache module 11.

The cache miss penalty often occurs continuously when the processor
kernel 14 accesses a certain section of program codes or data section at the
first time. This can adversely affect the performance of the computer system.
For solving this problem, a prefetching is proposed. As shown in FIG. 2, a
prefetch module 12 is provided between the cache module 11 and the
memory device 13. The prefetch module 12 acts to predict possible sections
of program codes or data sections to be used next by the processor kernel 14
and read the same into the prefetch module 12. Once the processor kernel
14 finds that it is unable to get required data or instructions from the cache
module 11 (i.e., a cache miss occurred), the prefetch module 12 is checked
to search the data or instructions. If the required data or instructions are
already in the prefetch module 12, a successful access is then realized, and
the required cache lines are stored in the cache module 11 by reading the

same from the prefetch module 12. As a result, the cache miss penalty is

2

10

15

20

greatly reduced. However, a prefetch miss still may occur if the required
data or instructions are not in the prefetch module 12. It is still required to
get the required cache lines from the external memory device 13. Thus, a
significant system delay (called prefetch miss penalty) is occurred.

Conventionally, the architecture of the prefetch module 12 is
configured to be the same as the cache module, and thus the cache line is
employed as the data length of the prefetch module 12. In other words, the
length of a burst transfer in a dynamic random access memory (DRAM) is
taken as a data transfer unit. However, the interface either between the
prefetch module 12 and the cache module 11 or between the pre-fetch
module 11 and the processor kernel 14 is not a DRAM interface. Hence, it is
not necessary to take the cache line as a data transfer unit. Practically, data
transfer rate may be significantly lowered if the cache line is used as the
data transfer unit.

Specifically, three interfaces are provided in the processor structure
with cache module 11 and prefetch module 12. The first interface 15 is an
external interface between the prefetch module 12 and the external memory
device 13. The second interface 16 is provided between the prefetch module
12 and the cache module 11. The third interface 17 is provided between the
cache module 11 and the processor kernel 14 for transferring
data/instruction from the cache module 11 to the processor kemel 14.
Conventionally, data transfer unit taken in each of the first and the second
interfaces 15 and 16 is the same as the data length of the cache line. As for

data access via the third interface 17, if it is related to data access of either

3

10

15

20

first or second interface, the data access can be performed only after the
cache line has been accessed. However, the data length of the cache line is
not an optimum data transfer unit between the prefetch module 12 and any
one of the memory device 13, the cache module 11, and the processor
kernel 14. This is because a length of the cache line is related to structure of
the cache module 11. Theoretically, the length of the cache line is fixed
during the working cycles of the processor kernel 14. However, the
processor kernel 14 is dynamic in accessing data/instruction when being
executed. Hence, an optimum performance of the processor kernel 14 is not
obtained if the cache line having the fixed length is taken as the data transfer
unit. As a result, resources are wasted.

For example, several problems have been found when a cache line
having a fixed length is taken as a data transfer unit as follows:

(1) In the process of data transfer via the interface, it can be known that
a long data string is about to be accessed and data length thereof is longer
than a data length of the current cache line. However, the data length of the
cache line is fixed, resulting in an inhibition of longer burst length setting,
an inhibition of reduction of times of initial delay, and time consuming.

(2) In the process of data transfer via the interface, it can be known that
a short data string is about to be accessed and data length thereof is shorter
than the data length of the current cache line. However, as stated above, the
data length of the cache line is fixed. As a result, it is still required to access
data by taking the length of the cache line as an access unit and thus

unnecessary data is accessed, resulting in a waste of limited resources.

4

10

15

20

SUMMARY OF THE INVENTION

The object of the present invention is to provide a method and an
architecture capable of programming and controlling access of data and
instructions, so as to control a continuous data transfer mode based on
instruction or data format, thereby effecting an optimum performance of
data transfer and greatly reducing a possibility of transferring unnecessary
data.

In one aspect of the present invention, there is provided an architecture
capable of programming and controlling access of data and instructions, in
which a plurality of data transfer levels are preset and a current data transfer
level is used for accessing data and instructions. The architecture comprises:
a first module capable of effecting a burst transfer for continuously
outputting a data string having a fixed burst length for access; a second
module for storing data and instructions, wherein each data transfer level
corresponds to a length of a continuous data transfer via an interface
between the first and the second modules; and a burst mode controller
programmed by data format accessed by the first module or a result of
instruction decoding performed by the first module, so as to adjust the
current data transfer level.

In another aspect of the present invention, there is provided an
architecture capable of programming and controlling access of data and
instructions, in which a plurality of data transfer levels are preset and a
current data transfer level is used for accessing data and instructions. The

architecture comprises: a first module capable of effecting a burst transfer

5

10

15

20

for continuously outputting a data string having a fixed burst length for
access; a second module controlled by the first module for accessing data
and instructions; a third module controlled by the first module for accessing
data and instructions, wherein each data transfer level corresponds to a
length of a continuous data transfer via an interface between the second and
the third modules; and a burst mode controller programmed by data format
accessed by the first module or a result of instruction decoding performed
by the first module, so as to adjust the current data transfer level.

In still another aspect of the present invention, there is provided a
method capable of programming and controlling access of data and
instructions for transferring data and instructions between a first module
and a second module. The method comprises the steps of: (A) defining a
plurality of data transfer levels for allowing the first module to access data
and instructions from the second module by a current data transfer level;
and (B) adjustin.g the current data transfer level based on data format
accessed by the first module or a result of instruction decoding performed
by the first module.

In a further aspect of the present invention, there is provided a method
capable of programming and controlling access of data and instructions for
allowing a first module to control transfer of data and instructions between
a second module and a third module. The method comprises the steps of: (A)
defining a plurality of data transfer levels for transferring data and
instructions between the second and the third modules by a current data

transfer level; and (B) adjusting the current data transfer level based on data

6

10

15

20

format accessed by the first module or a result of instruction decoding
performed by the first module.

Other objects, advantages, and novel features of the invention will
become more apparent from the detailed description when taken in
conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 presents schematically a conventional processor architecture
having the cache capability;

FIG 2 presents schematically another conventional processor
architecture having the cache capability;

FIG. 3 presents schematically a first preferred embodiment of the
architecture capable of programming and controlling access of data and
instructions according to the invention;

FIG. 4 is a timing diagram of data access using various data transfer
levels according to the invention;

FIGS. 5, 6, and 7 are schematic diagrams of first, second, and third
instruction formats implemented in burst mode controller according to the
invention respectively;

FIG. 8 presents schematically a second preferred embodiment of the
architecture capable of programming and controlling access of data and
instructions according to the invention;

FIG. 9 presents schematically a third preferred embodiment of the
architecture capable of programming and controlling access of data and

instructions according to the invention; and

7

10

15

20

FIG. 10 presents schematically a fourth preferred embodiment of the
architecture capable of programming and controlling access of data and
instructions according to the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

With reference to FIG. 3, there is shown an architecture capable of
programming and controlling access of data and instructions in accordance
with the present invention, which includes a burst mode controller 33
disposed between a first module 10 and a second module 20 in a computer
system for controlling data transfer therebetween. The first module 10 can
be implemented as a processor, a digital signal processor (DSP), a direct
memory access (DMA) master, a bus master, a specific operation module,
or an audio-video (AV) processing module. The second module 20 can be
implemented as a memory, a DMA slave, a bus slave, a HD/CD/DVD
device, or a network device. In this embodiment, the first module 10 is a
processor architecture and comprises a processor kernel 31 and a
high-speed access device 32. The second module 20 is an external memory
device 34, such as DRAM. The high-speed access device 32 acts to store a
portion of data and instructions sent from the memory device 34. The stored
portion of data and instructions in the high-speed access device 32 is
available for the processor kernel 31 to access at a high speed. The
high-speed access device 32 can be implemented as a cache module or a
temporary memory. In this embodiment, the high-speed access device 32 is
comprised of a cache module 321 and a prefetch module 322. The processor

kernel 31 has the capability of burst transfer for continuously outputting a

8

10

15

20

data string having a fixed burst length for access.

The burst mode controller 33 acts to control a continuous data transfer
mode based on either data format or a result of instruction decoding
performed by the processor kernel 31. As such, it is possible of dynamically
adjusting a data transfer mode via an interface between the prefetch module
322 and the memory device 34, and adjusting data amount accessed via an
interface between the prefetch module 322 and the cache module 321 in
running the computer system. As a result, a high efficient data/instruction
access is obtained. Further, a plurality of data transfer levels are provided.
Each data transfer level corresponds to the length of a continuous data
transfer via the interface either between the prefetch module 322 and the
memory device 34 or between the prefetch module 322 and the cache
module 321. For example, data transfer levels 0 to N correspond to 2° to 2N
length units of the continuous data transfer respectively.

For ease of explanation, there are five data transfer modes, i.e.,0,1,2,3
and 4, performed on the interface of the memory device 34, each
representing a length of 1, 2, 4, 8 and 16 of continuous data transfer. A
higher level represents a data transfer mode having a larger number of
continuous data units being transferred. With reference to FIG. 4, there are
illustrated five levels in the continuous data transfer modes. As shown, a
data transfer mode having a larger number of continuous data units (or
instructions) being transferred has fewer number of initial delays ("Inits")
during the same number of clocks; i.e., more data/instructions are

transferred per predetermined number of clocks therein. However, if only a

9

10

15

20

small amount of data is required, remaining portion of the transferred data
units/instructions other than the required small portion thereof is redundant
(i-e., unnecessary). In view of this, preferably, higher levels are adapted to
perform operations on longer data strings of the same characteristics, such
as digital signal processing (DSP), data searching, data relocation, and
image processing, while lower levels are adapted to access random data or
program codes having a large number of jump commands.

With reference to FIG. 3 again, the burst mode controller 33 is
programmed based on information contained in data/instruction for
switching the data transfer level. For example, in a case that the burst mode
controller 33 is programmed based on information embedded in an
instruction, such information is given by setting a specific instruction,
embedded in the instruction field, or implied in certain operation codes (OP
codes). When the processor kernel 31 decodes the instruction to obtain the
information, it is able to notify the burst mode controller 33 of
programming a data transfer mode. For example, the data transfer mode is
either fixed at a certain level or adapted to increase or decrease a level.

There are three approaches employed for programming the burst mode
controller 33 based on information embedded in the instruction as follows:

(1) One or more types of instruction of the processor kernel 31 is
particularly assigned for sending information to the burst mode controller
33. As shown in FIG 5, BMC is a mnemonic of OP code of such an
instruction. When the processor kernel decodes an instruction and finds that

the OP code is BMC, it indicates that this instruction is a transfer mode

10

10

15

20

control instruction. As shown, there are three fields in the instruction,
namely, a "Command" field for storing a command code of the burst mode
controller 33, a "Level" field for storing numeral of a specific level, and a
"Reference Value" field for storing numeral associated with the command
code. For example, Level=3, Command=auto_level return, and Reference
Value=16 means that the burst mode controller 33 is programmed to switch
the data transfer level to 3 and return to the original level after a data
transfer of 16 burst length units.

(2) A field is particularly assigned in each instruction of the processor
kernel 31 to store a control indication of the burst mode controller 33. As
illustrated in FIG. 6, numeral of a specific level is stored in a level field for
indicating an appropriate level of the burst mode controller 33.

(3) In defining the OP codes of the processor kernel, the OP codes
related to access instructions are embedded with control instructions of the
burst mode controller 33. As illustrated in FIG. 7, an instruction LOAD has
five types of OP code, i.e., LDO to LD4 in which different OP codes indicate
different data transfer levels.

In order to program the burst mode controller 33 based on information
embedded in data, a detection is made on information contained in the
accessed data. The obtained information is in turn sent to the burst mode
controller 33 for programming a data transfer mode. For example, the data
transfer mode is either fixed at a certain level or adapted to increase or
decrease a level.

There are two approaches employed for programming the burst mode

11

10

15

20

controller 33 based on information embedded in data as follows:

(1) Address determination: A number of address segments are
predefined. Also, a data transfer level is assigned to each address segment.
The burst mode controller 33 determines to enter which level based on the
address segment of data to be accessed. For example, a program needs to
process a longer string of image data addressed at 0x4000-0x4FFF. Further,
a storage space is required to store scattered dynamic data strings each
consisting of four bytes addressed at 0x0200-0x02FF. At this time, in the
burst mode controller 33, a region addressed at 0x4400-0x4FFF is assigned
to Level=4 and a region addressed at 0x0200-0x02FF is assigned to
Level=2, respectively. When there is a need to access image data for
processing, the burst mode controller 33 will detect the region assigned to
Level=4. As a result, the data transfer level is increased automatically for
increasing data transfer efficiency. When there is a need to access scattered
data strings for processing, the burst mode controller 33 will detect the
region assigned to Level=2. As a result, the data transfer level is decreased
to such a level automatically for avoiding an access of unnecessary data.

(2) Data determination: A level is automatically switched thereto when
data is found to comply with a specific value or condition. For example, a
longer data string is about to be processed, and the data string has an ending
of OxFFFF. First, the burst mode controller 33 is programmed to switch to a
higher level from a lower one prior to processing the longer data string.
Next, the data transfer level returns to the original lower level when data has

been detected to be at OXFFFF. When processing a longer data string in

12

10

15

20

which values of respective bytes in the longer data string have been
processed with respect to an even parity in a parity check, an error is
occurred when one of the detected bytes is not an even parity. As such, a
processing of the longer data string has to be halted in order to enter into an
error processing program. Hence, the burst mode controller 33 is
programmed to switch to a higher level and an even parity is set as a check
rule prior to processing the longer data string. Next, the data transfer level is
decreased automatically for halting a process of the longer data string when
one of the detected bytes does not comply with the even parity. Eventually,
a lower level is performed in the error processing program.

Moreover, a combination of the above two determinations can be made
if the above two kinds of data are mixed and checking rule is set. In a case
that a longer data string is processed in which the data address is at 0x4000
to 0x4FFF and an even parity check is required, the burst mode controller
33 can be programmed to switch to a lower level when data is addressed
beyond the range (i.e., from 0x4000 to 0x4FF F) or the even parity is found
to be erroneous.

In addition, a threshold may be employed in conjunction with any of
the determinations for avoiding an unnecessary level switching. That is, a
level switching is actually performed when the number of determinations
that are made to switch the level is larger than the threshold.

The above preferred embodiment utilizes the first module (e.g.,
processor) 10 to program the burst mode controller 33 in order to control a

data transfer between the first module 10 and the second module (e.g.,

13

10

15

20

memory device) 20. In the practical application, it is possible of utilizing
the first module 10 to program the burst mode controller 33 to control a data
transfer between any two modules in a computer system. With reference to
FIG. 8, there is shown a second preferred embodiment of the invention in
which the first module 10 is utilized to program the burst mode controller
33 to control a data transfer between the second and the third modules 20
and 30. The second module 20 is a memory device. The third module 30 is
an external storage device or input/output (I/O) device. With reference to
FIG. 9, there is shown a third preferred embodiment of the invention in
which the first module 10 is utilized to program the burst mode controller
33 in order to control a data transfer between the first and the second
modules 10 and 20 and between the second and the third modules 20 and 30.
Control and data transfer of the burst mode controller 33 in either the
second or the third embodiment is the same as that of the first embodiment.
Thus, a detailed description thereof is omitted herein for the sake of brevity.

Any of the above embodiments is described with respect to a
programming of the burst mode controller 33 for controlling a data transfer
between any two modules. It is appreciated that the burst mode controller
33 can be employed to control a data transfer via a bus. As shown in FIG, 10,
a bus 61 is coupled to a plurality of modules such as a processor, a burst
mode controller, an I/O device, a DMA controller, and a bus bridge. Similar
to the above embodiments, the burst mode controller is programmed to
control a data transfer between any two modules via the bus 61.

In brief, the invention controls a continuous data transfer mode based

14

on data/instruction formats. Also, the invention can dynamically adjust the
data transfer mode in running the computer system. As a result, an optimum
performance of data transfer is obtained. Furthermore, a possibility of
transferring unnecessary data is greatly reduced.

Although the present invention has been explained in relation to its
preferred embodiment, it is to be understood that many other possible
modifications and variations can be made without departing from the spirit

and scope of the invention as hereinafter claimed.

15

10

15

20

25

30

16
CLAIMS

1. An architecture capable of programming and controlling access of
data and instructions, in which a plurality of data transfer levels are
preset and a current data transfer level is used for accessing data and
instructions, comprising:

a first module capable of effecting a burst transfer for continuously
outputting a data string having a fixed burst length for access;

a second module for storing data and instructions, wherein each
data transfer level corresponds to a length of a continuous data transfer
via an interface between the first and second modules; and

a burst mode controller programmed by data format accessed by
the first module or a result of instruction decoding preformed by the first

module, so as to adjust the current data transfer level.

2. The architecture as claimed in claim 1, wherein the second module
is a memory device and the first module comprises:

a processor kernel capable of effecting a burst transfer for
continuously sending or receiving a data string having a fixed burst length
for access; and

a high-speed access device for storing a portion of data and
instructions sent from the second module, which is available for the
processor kernel to access at a high speed, wherein each data transfer
level corresponds to a length of a continuous data transfer via an interface

between the second module and the high-speed access device.

3. The architecture as claimed in claim 2, wherein the burst mode
controller is programmed by at least one instruction in the instruction set

of the processor kernel.

10

15

20

25

30

17

4. The architecture as claimed in claim 3, wherein the instruction has
a command field for storing a command code of the burst mode
controller, a level field for storing a numeral of the level, and a reference

value field for storing a numeral associated with the command code.

3. The architecture as claimed in claim 2, wherein the burst mode
controller is programmed by a control indication stored in one field of the

instruction of the processor kernel.

6. The architecture as claimed in claim 5, wherein a numeral of the
level is stored in a level field of the instruction for indicating the current

data transfer level of the burst mode controller.

7. The architecture as claimed in claim 2, wherein the burst mode
controller is programmed by control indication embedded in an instruction

of the processor kernel.

8. The architecture as claimed in claim 2, wherein the burst mode
controller is determined to enter the current data transfer level based on

an address region of data to be accessed by the processor kernel.

9. The architecture as claimed in claim 2, wherein the bust mode
controller is automatically switched to a specific data transfer level when
data to be accessed by the processor kernel is found to comply with a

predetermined value or condition.

10. The architecture as claimed in claim 2, wherein the high-speed
access device comprises a cache module and a prefetch module, and each
data transfer level corresponds to a length of a continuous data transfer

via an interface between the external memory device and the prefetch

10

15

20

25

30

18
modules, and a length of a continuous data transfer via an interface

between the cache and the prefetch modules.

11. The architecture as claimed in any preceding claim, further
comprising a bus for transferring data between the first and second

modules.

12. An architecture capable of programming and controlling access of
data and instructions, in which a plurality of data transfer levels are
preset and a current data transfer level is used for accessing data and
instructions, comprising:

a first module capable of effecting a burst transfer for
continuously outputting a data string having a fixed burst length for
access;

a second module controlled by the first module for accessing
data and instructions;

a third module controlled by the first module for accessing
data and instructions, wherein each data transfer level corresponds to a
length of a continuous data transfer via an interface between the second
and the third modules; and

a burst mode controller programmed by data format accessed
by the first module or a result of instruction decoding performed by the

first module, so as to adjust the current data transfer.

13. The architecture as claimed in claim 12, wherein the first module
is a DMA controller for controlling a data transfer between the second

and the third modules.

14. A method capable of programming and controlling access of data
and instructions for transferring data and instructions between a first

module and a second module, comprising the steps of:

10

15

20

25

30

19
(A) defining a plurality of data transfer levels for allowing the first
module to access data and instructions from the second module by a
current data transfer level; and
(B) adjusting the current data transfer level based on data format
accessed by the first module or a result of instruction decoding performed

by the first module.

15. A method capable of programming and controlling access of data
and instructions for allowing a first module to control transfer of data and
instructions between a second module and a third module, comprising the
steps of:

(A) defining a plurality of data transfer levels for transferring data
and instructions between the second and the third modules by a current
data transfer level; and

(B) adjusting the current data transfer level based on data format
accessed by the first module or a result of instruction decoding preformed

by the first module.

16. An architecture capable of programming and controlling access of
data and instructions substantially as described herein with reference to

Figures 3 to 10 of the accompanying drawings.

17. A method capable of programming and controlling access of data
and instructions substantially as described herein with reference to

Figures 3 to 10 of the accompanying drawings.

35 ¢ Dgp
a St

&
¥ vy The %
* l)atent . < ‘\%
[})
3 Office £ {)
A — T “‘}’\4
% < 20 ~ ;
.,IT . T\l& INVESTOR IN PEOPLE
Application No: GB 0318281.3 Examiner: Adam Tucker
Claims searched: 1-15 Date of search: 12 February 2004
Patents Act 1977 : Search Report under Section 17
Documents considered to be relevant:
Category | Relevant | Identity of document and passage or figure of particular relevance
to claims
X l&l4at | US 6185637 Bl (Strongin et al.) See in particular col 1 line 51-
least col 2 line 245 and col 3 lines 6-15
A - US 5721874 (Carnevale et al.) See in particular col 1 line
31-col 2 line 6 and the claims
Categories
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art
Y Document indicating lack of inventive step 1f combined P Document published on or after the declared pnionty date but betore the
with one or more other documents of same category filing date of this invention
& Member of the same patent family E Patent document published on or after, but with pnonty date earher
than, the filing date of this apphication
Field of Search:
Search of GB, EP, WO & US patent documents classified in the following arcas of the UKC¥
G4A

Worldwide search of patent documents classified in the following arcas of the IPC”:
GO6F

The following online and other databases have been used in the preparation of this scarch report

WPI, EPODOC, PAJ, INSPEC

An Executive Agency of the Departiment of Trade and Industry

