
(19) United States
US 2010O262773A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0262773 A1
BOrchers et al. (43) Pub. Date: Oct. 14, 2010

(54) DATASTRIPING INA FLASH MEMORY
DATA STORAGE DEVICE

(75) Inventors: Albert T. Borchers, Santa Cruz,
CA (US); Andrew T. Swing, Los
Gatos, CA (US); Robert S.
Sprinkle, Mountain View, CA (US)

Correspondence Address:
BRAKE HUGHES BELLERMANN LLP
c/o CPA Global
PO Box S2OSO
Minneapolis, MN 55402 (US)

(73) Assignee: Google Inc., Mountain View, CA
(US)

(21) Appl. No.: 12/537,738

(22) Filed: Aug. 7, 2009
Related U.S. Application Data

(60) Provisional application No. 61/187,835, filed on Jun.
17, 2009, provisional application No. 61/167,709,
filed on Apr. 8, 2009.

108 Interface

11 O Controller

Publication Classification

(51) Int. Cl.
G06F 12/00 (2006.01)
G06F 2/02 (2006.01)

(52) U.S. Cl. 711/114; 711/103: 711/E12.001;
711 FE12.008

(57) ABSTRACT

A method is disclosed for striping data from a host to a data
storage device that includes a plurality of memory chips and
a plurality of physical channels for communication of data
between the host and the plurality of memory chips, where
each channel is operably connected to a different plurality of
the memory chips. The method includes determining a num
ber of physical channels in the plurality of channels, deter
mining a first channel chunk size with which to write data to
memory chips connected to separate channels, segmenting,
via the host, logically sequential data into first channel chunk
size segments, and striping data to different channels of the
data storage device in first channel chunk size units.

104a 1040

118a 118b.

Patent Application Publication Oct. 14, 2010 Sheet 1 of 7 US 2010/0262773 A1

O
OO
v

CS
OO
v
re

V
S

CD
9
w

C CD
8
O
v
v

CD
Cd

A
CD
-

OO
O
v

US 2010/0262773 A1 Oct. 14, 2010 Sheet 3 of 7 Patent Application Publication

Patent Application Publication Oct. 14, 2010 Sheet 4 of 7 US 2010/0262773 A1

CD
C

L
CD
H
C

OO
O
r

Patent Application Publication Oct. 14, 2010 Sheet 5 of 7 US 2010/0262773 A1

400 402

Determine a number flash memory chips in the data storage device

transmitting information from the data storage 1N 410
device to the host indicating the number of flash

memory chips in the data storage device

Define a first partition of the data storage device, via a host coupled to the data
storage device, where the first partition includes a first subset of the plurality of

flash memory chips 404

Define a second partition of the data storage device, via the host, where the
second partition includes a second subset of the plurality of flash memory chips 406

Define, in the host, an determining the number of physical channels ^414
address location in the
data storage device to an up a am - - mur

which to write data from - - - - - - - - - - - - - - -
the host, where the determining a first Subset of the channcls,

address location specifies where channcls of the first Subset of channels 1\
that the data be written to are operably connected only to memory chips 416

a specific one of the of the first subset of memory chips
plurality of memory chips

H H. a- - - as - - - - - - - - - - - - - - - - -

412 7 408 determining a second SubSct of the channels,
- - - - -4---- wherein channels of the second Subset of the
writing data tO the first channels are operably connected only to -\ 418

partition while reading data memory chips of the second subset of memory
from the Second partition chips

. - - - - - - - -
1 w re-defining, via the host coupled to defining, in the host, an address location in the

thc data storage device, the first ... data storage device to which to write data from partition of the data storage device to i?iac
include a third Subset of the pluralit the host, wherein the address location specifies

k p that the data be written to a specific one of the 1N 420
L- of flash memory chips plurality of memory chips through a specific
V 422 FIG. 4 ------- T-------

Patent Application Publication Oct. 14, 2010 Sheet 6 of 7 US 2010/0262773 A1

O ld N. ld in ld In ld in
N w w cN CN cro cy r is
O O lo

S

Patent Application Publication

600

Oct. 14, 2010 Sheet 7 of 7 US 2010/0262773 A1

602

determining a number of physical channels in the plurality of channels

determining a first channel chunk size with which to write data to flash memory chips
connccted to separate channels

604

Segmenting, via the host, logically Sequential data into first channel chunk size segments
606

Segmenting, via the host, logically Sequential data into first channel chunk size segments

608

- - - - - - - - - - - determining a sccond channel
chunk size with which to write
data to flash memory chips N

connected to separate channels; 618

segmenting, via the host, logically
sequential data into second
channel chunk size segments

620

striping data to different channels
of the data storage device in

second channel chunk size units
- - - - - - - - - - - - 622

determining a chip chunk size with
which to write data to different flash | \
memory chips 610

Ifor each of the determined physical
lchannels, determining a number of flash
memory chips operably connected to \ 12
the channel

Segmenting, via the host, the channel
chunk size segments \

L- 14

striping data in a channel chuck to
different flash memory chips connected N
to a channel in chip chunk size units 616

US 2010/0262773 A1

DATASTRIPNG INA FLASH MEMORY
DATA STORAGE DEVICE

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application claims the benefit of U.S. Provi
sional Application No. 61/167,709, filed Apr. 8, 2009, and
titled “Data Storage Device' and U.S. Provisional Applica
tion No. 61/187,835, filed Jun. 17, 2009, and titled “Partition
ing and Striping in a Flash Memory Data Storage Device.”
both of which are hereby incorporated by reference in
entirety.

TECHNICAL FIELD

0002 This description relates to a data storage device.

BACKGROUND

0003 Data storage devices may be used to store data. A
data storage device may be used with a computing device to
provide for the data storage needs of the computing device. In
certain instances, it may be desirable to store large amounts of
data on a data storage device. Also, it may be desirable to
execute commands quickly to read data from and to write data
to the data storage device.

SUMMARY

0004. In a general aspect, a method is disclosed for strip
ing data from a host to a data storage device that includes a
plurality of memory chips and a plurality of physical channels
for communication of data between the host and the plurality
of memory chips, where each channel is operably connected
to a different plurality of the memory chips. The method
includes determining a number of physical channels in the
plurality of channels, determining a first channel chunk size
with which to write data to memory chips connected to sepa
rate channels, segmenting, via the host, logically sequential
data into first channel chunk size segments, and striping data
to different channels of the data storage device in first channel
chunk size units.
0005 According to one general aspect, another method is
disclosed for Striping data from a host to a data storage device
that includes a plurality of memory chips and a plurality of
physical channels for communication of data between the
host and the plurality of memory chips, where each channel is
operably connected to a different plurality of the memory
chips. The method includes determining a number of physical
channels in the plurality of channels, and for each of the
determined physical channels, determining a number of
memory chips operably connected to the channel. A first
channel chunk size with which to write data to memory chips
connected to separate channels is determined, and a chip
chunk size with which to write data to different memory chips
is determined. Logically sequential data is segmented, via the
host, into first channel chunk size segments, and the first
channel chunk size segments are segmented, via the host, into
chip chunk size segments. Data is striped to different channels
of the data storage device in first channel chunk size units, and
data in a first channel chuck sized segment is striped to dif
ferent memory chips connected to a channel in chip chunk
size units.
0006 Implementations can include one or more of the
following features. For example, the logically sequential data
can consist of a data file. Data can be written to a first channel

Oct. 14, 2010

while reading data from a second channel. Determining the
number of physical channels in the plurality of channels can
include transmitting information from the data storage device
to the host indicating the number of channels in the data
storage device or can include reading data stored on the host
indicating the number of channels in the data storage device.
In addition, a second channel chunk size with which to write
data to memory chips connected to separate channels can be
determined and logically sequential data can be segmented,
via the host, into second channel chunk size segments. Data
can be striped to different channels of the data storage device
in second channel chunk size units, can data in a second
channel chuck sized segment can be striped to different
memory chips connected to a channel in chip chunk size
units. The first channel chunk sized can be determined based
on input from a user entered via the host.
0007. In another general aspect, an apparatus can include
a host and a data storage device that includes a plurality of
memory chips and a plurality of physical channels for com
munication of data between the host and the plurality of
memory chips, where each channel is operably connected to
a different plurality of the memory chips. The host can be
coupled to the data storage device via an interface and can
include an initialization engine configured to determine a first
channel chunk size with which to write data to memory chips
connected to separate channels, a segmentation engine con
figured to segment logically sequential data into first channel
chunk size segments, and a striping engine configured to
stripe data to different channels of the data storage device in
first channel chunk size units.
0008 Implementations can include one or more of the
following features. For example, the data storage device can
include a storage medium configured to store the number of
channels, where the data storage device is configured to trans
mit, upon receiving a command from the host, information
from the data storage device to the host indicating the number
of channels in the data storage device. The host can further
include an address assignment engine configured to assign a
memory address to data to be written to the data storage
device, where the assigned memory address specifies that the
data be written to a specific one of the channels. The striping
engine can be configured to write data to a first channel while
reading data from a second channel. The initialization engine
can be further configured to determine a second channel
chunk size, different from the first channel chunk size, with
which to write data to memory chips connected to separate
channels, where the segmentation engine is further config
ured to segment logically sequential data into second channel
chunk size segments, and where the Striping engine is further
configured to stripe data to different channels of the data
storage device in second channel chunk size units. The ini
tialization engine can be further configured to determine a
chip chunk size with which to write data to different memory
chips, where the segmentation engine is further configured to
segment the first channel chunk size segments into chip chunk
size segments, and where the striping engine is further con
figured to stripe data to different chips connected to a channel
in first channel chunk size units.
0009. The details of one or more implementations are set
forth in the accompanying drawings and the description
below. Other features will be apparent from the description
and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0010 FIG. 1 is an exemplary block diagram of a data
storage device.

US 2010/0262773 A1

0011 FIG. 2 is an exemplary block diagram of a FPGA
controller that can be used in the data storage device of FIG.
1.
0012 FIG. 3A is an exemplary block diagram of exem
plary computing devices for use with the data storage device
of FIG. 1.
0013 FIG. 3B is an exemplary block diagram of exem
plary computing devices for use with the data storage device
of FIG. 1.
0014 FIG. 4 is an exemplary flowchart illustrating an
example process of partitioning the data storage device of
FIG 1.
0015 FIG.5 is an exemplary block diagram of an example
implementation of the data storage device of FIG. 1.
0016 FIG. 6 is an exemplary flowchart illustrating
example operations of the data storage device of FIG. 1.

DETAILED DESCRIPTION

0017. This document describes an apparatus, system(s)
and techniques for data storage. Sucha data storage apparatus
may include a controllerboard having a controller that may be
used with one or more different memory boards, with each of
the memory boards having multiple flash memory chips. The
data storage apparatus may communicate with a host using an
interface on the controller board. In this manner, the control
ler on the controller board may be configured to receive
commands from the host using the interface and to execute
those commands using the flash memory chips on the
memory boards.
0018 FIG. 1 is a block diagram of a data storage device
100. The data storage device 100 may include a controller
board 102 and one or more memory boards 104a and 104b.
The data storage device 100 may communicate with a host
106 over an interface 108. The interface 108 may be between
the host 106 and the controller board 102. The controller
board 102 may include a controller 110, a DRAM 111, mul
tiple channels 112, a power module 114, and a memory mod
ule 116. The memory boards 104a and 104b may include
multiple flash memory chips 118a and 118b on each of the
memory boards. The memory boards 104a and 104b also may
include a memory device 120a and 120b.
0019. In general, the data storage device 100 may be con
figured to store data on the flash memory chips 118a and
118b. The host 106 may write data to and read data from the
flash memory chips 118a and 118b, as well as cause other
operations to be performed with respect to the flash memory
chips 118a and 118b. The reading and writing of data between
the host 106 and the flash memory chips 118a and 118b, as
well as the other operations, may be processed through and
controlled by the controller 110 on the controller board 102.
The controller 110 may receive commands from the host 106
and cause those commands to be executed using the flash
memory chips 118a and 118b on the memory boards 104a
and 104b. The communication between the host 106 and the
controller 110 may be through the interface 108. The control
ler 110 may communicate with the flash memory chips 118a
and 118b using the channels 112.
0020. The controller board 102 may include DRAM 111.
The DRAM 111 may be operably coupled to the controller
110 and may be used to store information. For example, the
DRAM 111 may be used to store logical address to physical
address maps and bad block information. The DRAM 111
also may be configured to function as a buffer between the
host 106 and the flash memory chips 118a and 118b.

Oct. 14, 2010

0021. In one exemplary implementation, the controller
board 102 and each of the memory boards 104a and 104b are
physically separate printed circuit boards (PCBs). The
memory board 104a may be on one PCB that is operably
connected to the controller board 102 PCB. For example, the
memory board 104a may be physically and/or electrically
connected to the controller board 102. Similarly, the memory
board 104b may be a separate PCB from the memory board
104a and may be operably connected to the controller board
102 PCB. For example, the memory board 104b may be
physically and/or electrically connected to the controller
board 102.
0022. The memory boards 104a and 104b each may be
separately disconnected and removable from the controller
board 102. For example, the memory board 104a may be
disconnected from the controller board 102 and replaced with
another memory board (not shown), where the other memory
board is operably connected to controller board 102. In this
example, either or both of the memory boards 104a and 104b
may be swapped out with other memory boards such that the
other memory boards may operate with the same controller
board 102 and controller 110.
0023. In one exemplary implementation, the controller
board 102 and each of the memory boards 104a and 104b may
be physically connected in a disk drive form factor. The disk
drive form factor may include different sizes such as, for
example, a 3.5" disk drive form factor and a 2.5" disk drive
form factor.
0024. In one exemplary implementation, the controller
board 102 and each of the memory boards 104a and 104b may
be electrically connected using a high density ball grid array
(BGA) connector. Other variants of BGA connectors may be
used including, for example, a fine ball grid array (FBGA)
connector, an ultra fine ball grid array (UBGA) connector and
a micro ball grid array (MBGA) connector. Other types of
electrical connection means also may be used.
0025. The interface 108 may include a high speed inter
face between the controller 110 and the host 106. The high
speed interface may enable fast transfers of data between the
host 106 and the flash memory chips 118a and 118b. In one
exemplary implementation, the high speed interface may
include a Peripheral Component Interconnect Express
(“PCIe) interface. For instance, the PCIe interface may be a
PCIe X4 interface or a PCIe X8 interface. The PCIe interface
108 may include a PCIe connector cable assembly to the host
106. In this example, the 110 may include an interface con
troller configured to interface between the host 106 and the
interface 108. The interface controller may include a PCIe
endpoint controller. Other high speed interfaces, connectors,
and connector assemblies also may be used.
0026. In one exemplary implementation, the communica
tion between the controller board 102 and the flash memory
chips 118a and 118b on the memory boards 104a and 104b
may be arranged and configured into multiple channels 112.
Each of the channels 112 may communicate with one or more
flash memory chips 118a and 118b. The controller 110 may
be configured such that commands received from the host 106
may be executed by the controller 110 using each of the
channels 112 simultaneously or at least Substantially simul
taneously. In this manner, multiple commands may be
executed simultaneously on different channels 112, which
may improve throughput of the data storage device 100.
(0027. In the example of FIG. 1, twenty (20) channels 112
are illustrated. The completely solid lines illustrate the ten

US 2010/0262773 A1

(10) channels between the controller 110 and the flash
memory chips 118a on the memory board 104a. The mixed
solid and dashed lines illustrate the ten (10) channels between
the controller 110 and the flash memory chips 118b on the
memory board 104b. As illustrated in FIG. 1, each of the
channels 112 may support multiple flash memory chips. For
instance, each of the channels 112 may support up to 32 flash
memory chips. In one exemplary implementation, each of the
20 channels may be configured to support and communicate
with 6 flash memory chips. In this example, each of the
memory boards 104a and 104b would include 60 flash
memory chips each. Depending on the type and the number of
the flash memory chips 118a and 118b, the data storage 100
device may be configured to store up to and including mul
tiple terabytes of data.
0028. The controller 110 may include a microcontroller, a
FPGA controller, other types of controllers, or combinations
of these controllers. In one exemplary implementation, the
controller 110 is a microcontroller. The microcontroller may
be implemented in hardware, software, or a combination of
hardware and software. For example, the microcontroller
may be loaded with a computer program product from
memory (e.g., memory module 116) including instructions
that, when executed, may cause the microcontroller to per
form in a certain manner. The microcontroller may be con
figured to receive commands from the host 106 using the
interface 108 and to execute the commands. For instance, the
commands may include commands to read, write, copy and
erase blocks of data using the flash memory chips 118a and
118b, as well as other commands.
0029. In another exemplary implementation, the control
ler 110 is a FPGA controller. The FPGA controller may be
implemented in hardware, Software, or a combination of
hardware and software. For example, the FPGA controller
may be loaded with firmware from memory (e.g., memory
module 116) including instructions that, when executed, may
cause the FPGA controller to perform in a certain manner.
The FPGA controller may be configured to receive com
mands from the host 106 using the interface 108 and to
execute the commands. For instance, the commands may
include commands to read, write, copy and erase blocks of
data using the flash memory chips 118a and 118b, as well as
other commands.
0030 The memory module 116 may be configured to store
data, which may be loaded to the controller 110. For instance,
the memory module 116 may be configured to store one or
more images for the FPGA controller, where the images
include firmware for use by the FPGA controller. The
memory module 116 may interface with the host 106 to
communicate with the host 106. The memory module 116
may interface directly with the host 106 and/or may interface
indirectly with the host 106 through the controller 110. For
example, the host 106 may communicate one or more images
of firmware to the memory module 116 for storage. In one
exemplary implementation, the memory module 116
includes an electrically erasable programmable read-only
memory (EEPROM). The memory module 116 also may
include other types of memory modules.
0031. The memory boards 104a and 104b may be config
ured to operate with different types of flash memory chips
118a and 118b. In one exemplary implementation, the flash
memory chips 118a and the flash memory chips 118b may be
the same type of flash memory chips including requiring the
same voltage from the power module 114 and being from the

Oct. 14, 2010

same flash memory chip vendor. The terms vendorand manu
facturer are used interchangeably throughout this document.
0032. In another exemplary implementation, the flash
memory chips 118a on the memory board 104a may be a
different type of flash memory chip from the flash memory
chips 118b on the memory board 104b. For example, the
memory board 104a may include SLC NAND flash memory
chips and the memory board 104b may include MLC NAND
flash memory chips. In another example, the memory board
104a may include flash memory chips from one flash memory
chip manufacturer and the memory board 104b may include
flash memory chips from a different flash memory chip manu
facturer. The flexibility to have all the same type of flash
memory chips or to have different types of flash memory
chips enables the data storage device 100 to be tailored to
different applications being used by the host 106.
0033. In another exemplary implementation, the memory
boards 104a and 104b may include different types of flash
memory chips on the same memory board. For example, the
memory board 104a may include both SLCNAND chips and
MLC NAND chips on the same PCB. Similarly, the memory
board 104b may include both SLC NAND chips and MLC
NAND chips. In this manner, the data storage device 100 may
be advantageously tailored to meet the specifications of the
host 106.
0034. In another exemplary implementation, the memory
board 104a and 104b may include other types of memory
devices, including non-flash memory chips. For instance, the
memory boards 104a and 104b may include random access
memory (RAM) such as, for instance, dynamic RAM
(DRAM) and static RAM (SRAM) as well as other types of
RAM and other types of memory devices. In one exemplary
implementation, the both of the memory boards 104a and 104
may include RAM. In another exemplary implementation,
one of the memory boards may include RAM and the other
memory board may include flash memory chips. Also, one of
the memory boards may include both RAM and flash memory
chips.
0035. The memory modules 120a and 120b on the
memory boards 104a and 104b may be used to store infor
mation related to the flash memory chips 118a and 118b,
respectively. In one exemplary implementation, the memory
modules 120a and 120b may store device characteristics of
the flash memory chips. The device characteristics may
include whether the chips are SLC chips or MLC chips,
whether the chips are NAND or NOR chips, a number of chip
selects, a number of blocks, a number of pages per block, a
number of bytes per page and a speed of the chips.
0036. In one exemplary implementation, the memory
modules 120a and 120b may include serial EEPROMs. The
EEPROMs may store the device characteristics. The device
characteristics may be compiled once for any given type of
flash memory chip and the appropriate EEPROM image may
be generated with the device characteristics. When the
memory boards 104a and 104b are operably connected to the
controller board 102, then the device characteristics may be
read from the EEPROMs such that the controller 110 may
automatically recognize the types of flash memory chips
118a and 118b that the controller 110 is controlling. Addi
tionally, the device characteristics may be used to configure
the controller 110 to the appropriate parameters for the spe
cific type or types of flash memory chips 118a and 118b.
0037. As discussed above, the controller 110 may include
a FPGA controller. Referring to FIG. 2, an exemplary block

US 2010/0262773 A1

diagram of a FPGA controller 210 is illustrated. The FPGA
controller may be configured to operate in the manner
described above with respect to controller 110 of FIG.1. The
FPGA controller 210 may include multiple channel control
lers 250 to connect the multiple channels 112 to the flash
memory chips 218. The flash memory chips 218 are illus
trated as multiple flash memory chips that connect to each of
the channel controllers 250. The flash memory chips 218 are
representative of the flash memory chips 118a and 118b of
FIG. 1, which are on the separate memory boards 104a and
104b of FIG.1. The separate memory boards are not shown in
the example of FIG. 2. The FPGA controller 210 may include
a PCIe interface module 208, a bi-directional direct memory
access (DMA) controller 252, a dynamic random access
memory (DRAM) controller 254, a command processor/
queue 256 and an information and configuration interface
module 258.

0038 Information may be communicated with a host (e.g.,
host 106 of FIG. 1) using an interface. In this example, FIG.
2, the FPGA controller 210 includes a PCIe interface to
communicate with the host and a PCIe interface module 208.
The PCIe interface module 208 may be arranged and config
ured to receive commands from the host and to send com
mands to the host. The PCIe interface module 208 may pro
vide data flow control between the host and the data storage
device. The PCIe interface module 208 may enable high
speed transfers of data between the hostand the controller 210
and ultimately the flash memory chips 218. In one exemplary
implementation, the PCIe interface and the PCIe interface
module 208 may include a 64-bit bus. The bi-directional
direct memory access (DMA) controller 252 may be arranged
and configured to control the operation of the bus between the
PCIe interface module 208 and the command processor/
queue 256.
0039. The bi-directional DMA controller 252 may be con
figured to interface with the PCIe interface 208, and each of
the channel controllers 250. The bi-directional DMA control
ler 252 enables bi-directional direct memory access between
the host 106 and the flash memory chips 218.
0040. The DRAM controller 254 may be arranged and
configured to control the translation of logical to physical
addresses. For example, in an implementation in which the
host addresses the memory space using logical addresses, the
DRAM controller 254 may assist the command processor/
queue 256 with the translation of the logical addresses used
by the host to the actual physical addresses in the flash
memory chips 218 related to data being written to or read
from the flash memory chips 218. A logical address received
from the host may be translated to a physical address for a
location in one of the flash memory chips 218. Similarly, a
physical address for a location in one of the flash memory
chips 218 may be translated to a logical address and commu
nicated to the host.
0041. The command processor/queue 256 may be
arranged and configured to receive the commands from the
host through the PCIe interface module 208 and to control the
execution of the commands through the channel controllers
250. The command processor/queue 256 may maintain a
queue for a number of commands to be executed and order the
commands using an ordered list to ensure that the oldest
commands may be processed first. The command processor
100 may maintain the order of the commands designated for
the same flash memory chip and may reorder the commands
designated for different flash memory chips. In this manner,

Oct. 14, 2010

multiple commands may be executed simultaneously and
each of the channels 112 may be used simultaneously or at
least Substantially simultaneously.
0042. The command processor/queue 256 may be config
ured to process commands for different channels 112 out of
order and preserve per-channel command ordering. For
instance, commands that are received from the host and that
are designated for different channels may be processed out of
order by the command processor/queue 256. In this manner,
the channels may be kept busy. Commands that are received
from the host for processing on the same channel may be
processed in the order that the commands were received from
the host by the command processor/queue 256. In one exem
plary implementation, the command processor/queue 256
may be configured to maintain a list of commands received
from the host in an oldest-first sorted list to ensure timely
execution of the commands.
0043. The channel controllers 250 may be arranged and
configured to process commands from the command proces
sor/queue 256. Each of the channel controllers 250 may be
configured to process commands for multiple flash memory
chips 218. In one exemplary implementation, each of the
channel controllers 250 may be configured to process com
mands for up to and including 32 flash memory chips 218.
0044) The channel controllers 250 may be configured to
process the commands from the command processor/queue
256 in order as designated by the command processor/queue
256. Examples of the commands that may be processed
include, but are not limited to, reading a flash page, program
ming a flash page, copying a flash page, erasing a flash block,
reading a flash block's metadata, mapping a flash memory
chip's bad blocks, and resetting a flash memory chip.
0045. The information and configuration interface module
258 may be arranged and configured to interface with a
memory module (e.g., memory module 116 of FIG. 1) to
receive configuration information for the FPGA controller
210. For example, the information and configuration interface
module 258 may receive one or more images from the
memory module to provide firmware to the FPGA controller
210. Modifications to the images and to the firmware may be
provided by the host to the controller 210 through the infor
mation and configuration interface module 258. Modifica
tions received through the information and configuration
interface module 258 may be applied to any of the compo
nents of the controller 210 including, for example, the PCIe
interface module 208, the bi-directional direct memory
access (DMA) controller 252, the DRAM controller 254, the
command processor/queue 256 and the channel controllers
250. The information and configuration interface module 258
may include one or more registers, which may be modified as
necessary by instructions from the host.
0046. The FPGA controller 210 may be arranged and con
figured to cooperate and process commands in conjunction
with the host. The FPGA controller 210 may perform or at
least assistin performing error correction, badblock manage
ment, logical to physical mapping, garbage collection, wear
levelling, partitioning and low level formatting related to the
flash memory chips 218.
0047 FIG. 3A is a schematic block diagram of an appa
ratus 300 including a data storage device 302 having a plu
rality of flash memory chips 3.18a, 318b, 318d, 318d, 318e.
318/.318g. 318h, 318i, 318i, 318k, 318il that are organized
into a first partition 321 and a second partition 322. The first
and second partition 321 and 322 define different physical

US 2010/0262773 A1

areas of storage space in the data storage device 302. Such that
directories and files of different categories can be stored in the
different partitions, or so that one partition can be used for
different purposes than the other partition. The first partition
can include a first subset of the flash memory chips 318.af.
while the second partition can include a second subset of the
flash memory chips 318g-l, where there are not any flash
memory chips that are part of both partitions. That is, the
boundary between the partitions 321 and 322 is drawn
between individual flash memory chips to ensure that an
individual flash memory chip does not belong to more than
one partition.
0048. Organizing the data storage device into two or more
partitions can serve a number of purposes. For example, oper
ating system file stored on one partition can be kept separate
from user files stored on another partition. Cache and log files
that can change size dynamically and rapidly, potentially
making a file system full, can be stored on one partition and
kept separate from other files stored on a different partition.
Partitions can be used for multi-booting setups, which allow
users to have more than one operating system on a single
computer. For example, a user could install Linux, Mac OS X,
and Microsoft Windows or operating systems on different
partitions of the same data storage device and have a choice of
booting into any operating system (Supported by the hard
ware) at power-up. Partitions can be used to protect or isolate
files to make it easier to recover a corrupted file system or
operating system installation. For example if one partition is
corrupted but none of the other file systems are affected, the
data on the storage device may still be salvageable. Using a
separate partition for read-only data also reduces the chances
of the file system on that partition becoming corrupted. Par
titions also can raise overall computer performance on sys
tems where smaller file systems are more efficient. For
example, large hard drives with only one NTFS file system
typically have a very large sequentially-accessed Master File
Table (MFT), and it generally takes more time to read this
MFT than the smaller MFTs of smaller partitions.
0049. In another example embodiment, the data storage
device 302 may be used to store large amounts of data (e.g.,
many Gigabytes or Terabytes of data) that must be read
quickly from the data storage device and Supplied to the host.
For example, the data storage device can be used to cache
large Volumes of publicly accessible information (e.g., a large
corpus of web pages from the WorldWideWeb, a large library
of electronic versions of books, or digital information repre
senting a large Volume of telecommunications, etc.) that can
be fetched by the host in response to a query. Thus, it can be
important that the relevant data be accessed and returned very
quickly in response to a read command issued by the host.
However, the information stored in the data storage device
also may need to be constantly updated to keep the informa
tion up to date as the relevant information changes. For
example, if the information on the storage device relates to a
corpus of web pages, the information stored on the storage
device may need to be updated as the web pages change and
as new web pages are created.
0050. In such a system, a partitioned flash memory data
storage device 302 can offer exceptional performance. In a
flash memory storage device, write operations to a flash
memory chip take much longer (e.g., 10-100 times longer)
than read operations from a flash memory chip.
0051. Therefore, organizing the chips 318a-l of the data
storage device into two or more partitions, where the parti

Oct. 14, 2010

tions are defined at boundaries between different chips, offers
a way to ensure fast read operations while also allowing the
information stored on the data storage device to be updated in
real time. For example, both partitions 321 and 322 can be
used to store a corpus of data (e.g., a corpus of web pages) to
be served in response to queries and the individual partitions
can alternate between serving the requests and being updated
with new information. For instance, in a first time period the
first partition 321 can be used to provide the information to
the host (e.g., information that may be requested in response
to a user query), while the data on the second partition 322 is
updated (e.g., in response to changes or additions to the web
pages of the corpus). Then, in a second time period, the
recently updated second partition 322 can be used to provide
the information to the host, while the data on the first partition
321 is updated. This process can be repeated so that data is
always served from a partition that acts as a read-only device,
and therefore provides very fast responses to read commands
from the host without being slowed down by write com
mands, while the other partition is being updated with new
information. Defining the partitions such that an individual
flash memory chip is included in only one partition ensures
that no flash chip will have data written to it and read from it
at Substantially the same time, which would cause a delay is
responding to a read request from the host 350.
0052. As discussed above, the memory chips 318a-1 can
be connected to a controller that may include a FPGA con
troller 310. The FPGA controller may be configured to oper
ate in the manner described above with respect to controller
110 of FIG. 1 or of FPGA210 of FIG. 2. The FPGA controller
310 may include multiple channel controllers 312a, 312b,
312c, 312d, 312e, 312f to connect the multiple channels 112
to the flash memory chips 318a-1. Of course, as described
above, the storage device can include more than 12 flash
memory chips, more than six channel controllers, and many
more than two flash memory chips may be operably con
nected to a channel controller across a physical channel.
Thus, the implementation shown in FIGS. 3A and 3B is
merely schematic for clarity of illustration.
0053. In one implementation, channel controllers 312a,
312b, 312c, 312d, 312e, 312f can control channels that are
operably connected to flash memory chips that are part of
each partition 321 and 322. For example, channel controller
3.12a can be operably connected to memory chip 3.18a, which
is part of the first partition 321, and also to memory chip 318g.
which is part of the second partition 322. In Such a configu
ration, at least one memory chip in the first partition 321 is
connected to each communication channel between the data
storage device 302 and the host, and at least one memory chip
in the second partition 322 is connected to each communica
tion channel between the data storage device 302 and the host
350. Such a configuration results in maximum parallelism of
communication between a partition 321 or 322 and the host,
which can result in fast read access and fast write times from
and to the data storage device 302.
0054. In another implementation, approximately half the
channel controllers can be operably connected to flash
memory chips in a first partition and approximately half the
channel controllers can be operably connected to flash
memory chips in the second partition.
0055. In another implementation, shown in FIG.3B, flash
memory chips 3.18a, 318b, 318c, 318d, 318e, 318/.318g.
318h, 318i, 318i, 318k, 318i can be organized into a first
partition 331, a second partition 322, a third partition333, and

US 2010/0262773 A1

a fourth partition 334, where the different partitions define
different physical areas of storage space in the data storage
device 302, such that directories and files of different catego
ries can be stored in the different partitions, or so that one
partition can be used for different purposes than the other
partition. The first partition 331 can include a first subset of
the flash memory chips 318a-c. The second partition 332 can
include a second subset of the flash memory chips 318d-f. The
third partition 333 can include a third subset of the flash
memory chips 318g-i. The fourth partition 334 can include a
fourth subset of the flash memory chips 318i-l. Among the
different partitions 331, 332, 333, and 334 there are not any
individual flash memory chips whose physical memory
address space is part of two or more partitions. That is, the
boundaries between the partitions 331,332,333, and 334 are
drawn between individual flash memory chips to ensure that
an individual flash memory chip does not belong to more than
one partition.
0056. In the system of FIG.3B, apartitioned flash memory
data storage device 302 can offer exceptional performance,
e.g., when used to store a corpus of data (e.g., a corpus of web
pages) to be served in response to queries, and the individual
partitions can alternate between serving the requests and
being updated with new information. For instance, in a first
time period the first, second, and third partitions 331,332, and
333 can be used to provide the information to the host (e.g.,
information that may be requested in response to a user
query), while the data on the fourth partition 334 is updated
(e.g., in response to changes or additions to the Web pages of
the corpus). Then, in a second time period, the recently
updated fourth partition 334, along with the second and third
partitions 332 and 332 can be used to provide the information
to the host, while the data on the first partition 331 is updated.
Thus, data on each partition can be updated in round robin
fashion, while query requests are served by the other parti
tions. This process can be repeated so that data is always
served from partitions that act as read-only devices, and there
fore provides very fast responses to read commands from the
host without being slowed down by write commands, while
the other partition is being updated with new information.
Defining four partitions results in redundancy of information
stored on the data storage device, so that if a partition, chan
nel, or individual memory chip fails, such that one partition is
no longer usable, the remaining three partitions can continue
to be used to provide a data storage device in which each of
the remaining partitions takes turns being updated while the
other remaining partitions serve data requests.
0057. As described above, the data storage device 302 can
be connected to a host 350 though an interface 308, which can
be a high speed interface, such as, for example a PCIe inter
face. The host can include, for example, a processor 352, a
first memory 354, a second memory 356, and a partition
engine 360. The first memory 354 can include, for example, a
non-volatile memory device (e.g., a hard disk) adapted for
storing machine-readable, executable code instructions that
can be executed by the processor 352. The code instructions
stored on the first memory 354 can be loaded into the second
memory (e.g., a Volatile memory, such as, a random access
memory) 356 where they can be executed by the processor
352 to create the memory device detection engine 358 and the
partition engine 360. The second memory can include logical
blocks of “user space' devoted to user mode applications and
logical blocks of "kernel space 364 devoted to running the
lower-level resources that user-level applications must con

Oct. 14, 2010

trol to perform their functions. The memory device detection
engine 358 and the partition engine 360 can reside in the
kernel space 364 of the second memory 356.
0058. The configuration detection engine 358 can be con
figured to detect the number of flash memory chips 318 on the
data storage device 302, and the partition engine 360 can be
configured to define the first partition 321 and the second
partition 322 of the data storage device. Thus, the configura
tion detection engine 358 and the partition engine 360, which
run on the host 350, can be used by the host to discover
hardware device properties of the data storage device 302 and
then to define, via the host, the partitions 321 and 322. In one
implementation, the configuration detection engine 358 can
issue a query command to the data storage device, and in
response to the query command the data storage device can
return information to the host about, for example, the number
of flash memory chips 318, the size (e.g., as measured in
bytes) of each chip, the number of channels in the data storage
device, the flash memory chips to which each the channel
controller 312a-e is operably connected. Such information
can be stored on the EEPROM 116 on the FPGA 310 and/or
on the EEPROM120a of the flashboard of the data storage
device 302. The configuration detection engine can poll the
EEPROM 116 or the EEPROM 120a (e.g., during a boot-up
operation of the host 350) to cause the data storage device to
return such information to the host 350. In another implemen
tation, the host may poll the flash memory chips 318 to
provide the information about, for example, the number of
flash memory chips 318, the size (e.g., as measured in bytes)
of each chip, the number of channels in the data storage
device, the flash memory chips to which each the channel
controller 312a-e is operably connected.
0059. The partition engine 360 can receive the information
from the memory device detection engine 358 about the num
ber of flash chips 318, the size of each flash chip, the number
of channels and the memory chips to which each channels is
operably connected, and, based on this information, the par
tition engine can define a first partition 321 and second par
tition 322 in the data storage device 302 The partition engine
running on the host 350 can define the first partition to include
memory blocks drawn from a first subset of the memory chips
318 and the second partition memory blocks drawn from a
second subset of the memory chips 318, where the first subset
does not include any individual flash chips of the second
Subset and the second Subset does not include any individual
flash chips of the first subset. The partition engine 360 then
can map the physical memory block addresses (which may
include, for example, a unique channel number, a unique flash
memory chip number, and a block address within the flash
memory chip) to logical addresses that can be used by appli
cation programs running the in the user space. Such that the
user space applications running on the host 350 can read data
from the data storage device 302 and write data to the data
storage device 302 with reference to the logical space
addresses.

0060. After a partition scheme of multiple partitions has
been defined and data has been stored on the flash memory
chips of the data storage device 100, the device can store
information about the partitioning scheme, e.g., on the
memory 116, so that the when the device is booted at a later
time, it can communicate the partitioning scheme to the host
106 for the host to use. For example, the device may maintain
information about the physical configuration of the data Stor
age device, including a number of flash memory chips in the

US 2010/0262773 A1

device and about the partitioning scheme, including which
flash memory storage chips and channels are associated with
which partitions on the memory 116. Then, when the system
including the host 106 and the data storage device 100 is
booted, the storage device 100 can communicate this infor
mation to the host 106, e.g., in response to a read operation
performed by the configuration detection engine 358 of the
host 106. The partitioning engine 360 of the host 106 then can
define the partitions for the operating system and applications
running on the host. For example, the partitioning engine 360
can define a first and second partition based on the informa
tion read from the storage device 100, where the first and
second partitions do not include any of the same memory
chips. The partitioning engine 360 also can allocate a logical
to physical memory map for the first and second partitions, so
that they user-level application programs can use logical
addresses that then are mapped to physical memory addresses
of the flash memory chips of the storage device 100.
0061 The partition engine 360 also can be used to re
define the first partition of the data storage device to include
a third subset of the plurality of flash memory chips, where
the third subset is different from the first subset, and where the
third subset does not include any flash memory chips of the
second Subset and wherein the second Subset does not include
any flash memory chips of the third subset. For example, with
reference to FIG. 3A and FIG. 3B, a user may decide that the
original partition scheme shown in FIG. 3A does not suit his
or her needs, and therefore may use the host to redefine the
partitions 321 and 322 (e.g., to include more or fewer flash
memory chips in the particular partitions) or to add additional
partitions to the scheme. In one implementation, the first
partition 321 can be redefined as partitions 331 and 333.
Allowing the user to define the partitions through the host
rather that forcing the user to accept a partition scheme that is
pre-defined by, or pre-loaded in, the controller 310 gives the
user flexibility to define partitions as he or she desires and to
change the partition scheme when the need arises. In another
implementation, the imminent failure of one of the flash
memory chips, e.g., 318a, may be detected by the host, and in
response to this information, the partition engine may re
define the first partition 321 to exclude the flash memory chip
3.18a from the partition, i.e., as the originally defined first
partition but for the memory chip 318a. Thus, any number of
partitions can be defined (up to the number of flash memory
chips 118a and 118b in the storage device 100), and different
partitions within a partition scheme can include different
numbers of flash memory chips and can include different
amounts of memory space.
0062. The host also may include an address assignment
engine 366 that can exist in the kernel 364 and that can assign
physical memory addresses to data to be written to the data
storage device 302. For example, an application running in
user space 362 may call for data to be written from the host
350 to the data storage device 302, and the user space appli
cation may specify that the data be written to a particular
logical memory address. The address assignment engine 366
may translate logical addresses into physical addresses that
can include, for example, a particular channel that the data
should be written to, a particular flash memory chip operably
connected to the specified channel to which the data should be
written, and a particular physical block address of the speci
fied memory chip to which the data should be written. In such
an implementation, the translation of logical addresses to
physical memory space addresses can be performed by the

Oct. 14, 2010

address assignment engine 366, Such that the role of the
DRAM controller 254 of the FPGA 210 is reduced or irrel
eVant.

0063 FIG. 4 is an exemplary flowchart illustrating an
example process 400 of partitioning the data storage device of
FIG. 1, where the device includes a plurality of flash memory
chips. The process 400 can include determining a number of
flash memory chips in the data storage device (402). For
example, the configuration detection engine can query the
data storage device to gather information about the number of
flash memory chips in the data storage device. A first partition
of the data storage device can be defined, via a host coupled to
the data storage device, where the first partition includes a
first subset of the plurality of flash memory chips (404). A
second partition of the data storage device can be defined, via
the host, where the second partition includes a second Subset
of the plurality of flash memory chips (406). As a result of this
process it is ensured that the first Subset does not include any
flash memory chips of the second Subset and that the second
subset does not include any flash memory chips of the first
subset.
0064 Optionally, the process 400 can include writing data
to the first partition while reading data from the second par
tition (408). Determining the number flash memory chips in
the data storage device can include transmitting information
from the data storage device to the host indicating the number
of flash memory chips in the data storage device (410). An
address location in the data storage device to which to write
data from the host can be defined in the host, where the
address location specifies that the databe written to a specific
one of the plurality of memory chips (412).
0065. When the data storage device includes a plurality of
physical channels for communication of data between the
host and the plurality of flash memory chips, with each chan
nel being operably connected to a different plurality of the
memory chips, the process 400 can further include determin
ing the number of physical channels (414), determining a first
subset of the channels, where channels of the first subset of
the channels are operably connected only to memory chips of
the first Subset of memory chips (416), determining a second
subset of the channels, where channels of the second subset of
the channels are operably connected only to memory chips of
the second Subset of memory chips (418), and defining, in the
host, an address location in the data storage device to which to
write data from the host, wherein the address location speci
fies that the databe written to a specific one of the plurality of
memory chips through a specific channel (420). In addition,
the process 400 can include re-defining, via the host coupled
to the data storage device, the first partition of the data storage
device to include a third subset of the plurality of flash
memory chips (422).
0.066 FIG. 5 is an exemplary block diagram of an example
implementation of an apparatus 500 in which a host 551 can
control the striping of data across different channels 513,523,
533,543 to flash memory chips 514,515,516,517,524,525,
526,527, 534,535,536,537, 544,545,546, and 547 of a data
storage device 501 and/or across the different flash memory
chips. For example, logically sequential data (e.g., data of a
file) can be broken up into segments and the segments can be
assigned to different channels 513,523,533,543 or to differ
ent flash memory chips 514,515, 516, 517,524,525,526,
527,534,535,536,537,544,545,546, and 547. By segment
ing the data and striping it across different channels and/or
flash memory chips, e.g., in a round-robin fashion, different

US 2010/0262773 A1

segments of the logically sequential data can be written to
different physical devices (e.g., channels or flash memory
chips) concurrently. Because the time required to write data to
a flash memory chip is non-trivial compared to the time for a
processor 552 of the host 551 to process data packets destined
for the storage device 501, striping the data across different
channels 513, 523, 533, 543 or to different flash memory
chips 514,515,516,517,524,525,526,527, 534,535,536,
537, 544, 545, 546, and 547 can speed the writing of the
logically sequential data from the host 551 to the storage
device 501. Similarly, reading striped logically sequential
data back from the storage device 501, where the data has
been striped across different channels or chips, can be faster
that reading the data across a single channel or from a single
chip. Thus, when reading back striped data, a first segment of
logically sequential data can be readback to the host 551 (e.g.,
from a chip 514) across a first channel 513, while the next
segment of the logically sequential data is being fetched from
another chip (e.g., chip 524) for transmission across a second
channel 514.
0067. When striping logically sequential data to particular
flash memory chips 514,515, 516, 517,524,525,526, 527,
534, 535, 536, 537, 544, 545, 546, and 547 using “chip
striping the host can specify the destination memory address
for a particular segment, where the specified address can
include a particular flash memory chip to which the segment
is to be written. Thus, the striping of data to particular chips
can be placed under the control of the host 551. This can
provide a great degree of parallelism when writing data to and
reading data from the storage device 501. For example, an in
implementation of the storage device that includes 12 chan
nels and 20 flash memory chips per channel, a file can be
striped across all 240 flash memory chips, which means that
240 write or read operations can be performed when access
ing the chips in a round-robin fashion before a chip needs to
be accessed a second time. This high degree of parallelism
results can result in a high data throughput rate between the
host 551 and the storage device 501, such that data can be read
from and written to the storage device very quickly.
0068. When striping logically sequential data across par

ticular channels 513,523, 533,543 using “channel striping
the host can specify the destination memory address for a
particular segment, where the specified address can include a
particular channel to which the segment is to be written. Then,
at the time the segment is written to the specified channel the
particular flash memory chip operably connected to the speci
fied channel to which the segment is written can be chosen
dynamically by the host 551 based on the current run-time
state of the chips, e.g., base on chip space availability of the
different chips. Channel Striping can be more impervious to
chip failures than chip striping, because if single chip can fails
when using channel Striping, the storage device can continue
to operate. In addition, channel striping offers advantages
over chip striping in terms of write performance, as opposed
to read performance, because the optimum chip of all chips
operably connected to a specified channel is selected dynami
cally for writing date. Because of the write performance
advantages of channel Striping, garbage collection, which
involves several write operations, can be performed effi
ciently when using channel striping.
0069. Thus, the striping of data to particular chips can be
placed under the control of the host 551. This can provide a
great degree of parallelism when writing data to and reading
data from the storage device 501. For example, an in imple

Oct. 14, 2010

mentation of the storage device that includes 12 channels and
20 flash memory chips perchannel, a file can be striped across
all 240 flash memory chips, which means that 240 write or
read operations can be performed when accessing the chips in
a round-robin fashion before a chip needs to be accessed a
second time. This high degree of parallelism results can result
in a high data throughput rate between the host 551 and the
storage device 501, such that data can be read from and
written to the storage device very quickly.
0070. Similar to the embodiment discussed above in con
nection with FIG. 3, the flash memory chips 514,515, 516,
517,524,525,526, 527, 534, 535,536,537, 544, 545,546,
and 547 can be connected to a controller that may include a
FPGA controller 510. The FPGA controller 510 may be con
figured to operate in the manner described above with respect
to controller 110 of FIG. 1, the FPGA 210 of FIG. 2, or the
FPGA 310 of FIG.3. The FPGA controller 510 may include
multiple channel controllers 512,522,532,542 that are oper
ably connected via respective physical channels 513, 523,
533, 543 to respective groups of flash memory chips: 514,
515,516, and 517:524,525,526, and 527:534,535,536, and
537; and 544, 545, 546, and 547. Of course, as described
above, the storage device can include many more than 16
flash memory chips, many more than four channel control
lers, and many more than four flash memory chips may be
operably connected to a channel controller across a physical
channel. Thus, the implementation shown in FIG. 5 is merely
schematic for clarity of illustration.
(0071. As described above, the data storage device 501 can
be connected to a host 551 though an interface 508, which can
be a high speed interface, such as, for example a PCIe inter
face. The host can include, for example, a processor 552, a
first memory 554, a second memory 560. The second memory
560 can include, for example, Volatile memory (e.g., random
access memory) into which executable instructions are
loaded for fast execution by the processor 552. The first
memory 454 can include, for example, a non-volatile memory
device (e.g., a hard disk) adapted for storing machine-read
able, executable code instructions that can be executed by the
processor 552. The code instructions stored on the first
memory 554 can loaded into the second memory (e.g., a
Volatile memory, Such as, a random access memory) 560
where they can be executed by the processor 552 to stripe data
using “chip striping.” “channel Striping or a combination of
both. The second memory can include logical blocks of “user
space' 562 devoted to user mode applications and logical
blocks of "kernel space' 564 devoted to running the lower
level the resources that user-level applications must control to
perform their functions. Within the kernel space 564 of the
second memory 560 can reside an initialization engine 566
for setting up a striping scheme, a segmentation engine 568
for segmenting logically sequential data into segments, a
striping engine 570 for striping the data across distinct physi
cal elements (e.g., channels or chips) of the storage device
501, and an address assignment engine 572 for assigning
addresses to the data segments.
0072 An initialization engine 566 can be configured to
determine a first channel chunk size with which to write data
to flash memory chips connected to separate channels. In one
implementation, the initialization engine can receive deter
mine the first channel chunk size based on information about
the page size of data that is written to the flash memory chips
in the storage device 501 and based on information about the
number of flash memory chips that are connected to channels

US 2010/0262773 A1

in the storage device 501. For example, if the storage device
includes 12 channels and 20 flash memory chips are con
nected to each channel, and the page size is 4K, then the
initialization engine may determine an appropriate channel
chunk size to be some multiple of 4K (e.g., 8K, 32K, 40K, or
80K). The initialization engine 566 can receive this informa
tion about the physical configuration of the storage device
501 from a storage medium (e.g., an EEPROM) 520 that
stores information about, for example, the number of physical
channels 513,523,533,543 in the device 501, the number of
flash memory chips 514,515, 516, 517,524,525,526, 527,
534, 535,536,537, 544, 545, 546, and 547 in the device, the
type of flash memory chips (e.g., single-level cell (“SLC)
flash or multilevel cell (“MLC) flash) in the storage device,
and the page size of data written to the chips. The host 550 can
transmit a command to the storage device 501 to request the
transfer of such information about the physical parameters of
the storage device (e.g., the number of channels, number of
chips, type of chips, and page size), and in response to the
command the storage device 501 can transmit the information
back to the host 550.

0073. When logically sequential data is written to the stor
age device 501 using a channel Striping technique, the logi
cally sequential data can be segmented in channel chunk size
units. For example, a segmentation engine 568 can divide
logically sequential data (e.g., a data file) into multiple seg
ments whose can be, for example, equal to the channel chunk
size determined by the initialization engine 566. In one imple
mentation, the segmentation engine 568 can receive logically
sequential data and can output segments that are sized accord
ing to the specified channel chunk sizes. A striping engine 570
then can control the striping of the logically sequential data to
different channels of the data storage device 501 in first chan
nel chunk size units. For example, an address assignment
engine 572 canassign a memory address to the data segments,
where the assigned memory address specifies that the seg
ment be written to a specific one of the physical channels of
the storage device 501.
0074 The striping engine 570 can tag each segment with
an address (which may be assigned by the address assignment
engine 572) that will cause the particular segment to be writ
ten to a particular channel 513,523,533,543 that is indicted
by the address. For example, a first channel chunk of data can
be written to channel 513, a second channel chunk of data can
be written to channel 523, a third channel chunk of data can be
written to channel 533, and a fourth channel chunk of data can
be written to channel 543. When a channel chunk size unit of
data addressed to a particular channel (e.g., channel 513)
arrives at a channel controller (e.g., channel controller 512)
associated with the particular channel, then, if channel Strip
ing is used and the channel chunk size unit of data is not
addressed to a particular flash memory chip connected to the
channel, the channel controller can write portions of the chan
nel chunk size unit to different flash memory chips. The
individual flash memory chip selected for each portion can be
determined dynamically (e.g., by the host 550 or by the con
troller) based on the current run time state of each chip con
nected to the channel, e.g., based on the chip space availabil
ity of the chips connected to the channel. For example, if a
write operation to flash memory chip 514 is still being per
formed when a channel chunk size unit of data arrives at
controller 512, then the portions of the channel chunk size
unit of data may be written to flash memory chips 515, 516,
and 517 until the write operation to chip 514 is completed.

Oct. 14, 2010

0075 Thus, by using channel striping when writing logi
cally sequential data from the host to the storage device, data
can be written to one channel while data is also being read
from another channel. In addition, by using channel striping
and dynamically determining the individual flash memory
chips to which to write segments of logically sequential data
within a particular channel, write performance of the system
500 can be enhanced, because data will be written preferen
tially to chips that are most ready to accept the data, so the
time the host is kept waiting for anchip to be accessible is kept
to a minimum. Furthermore, because garbage collection in
flash memory is a write-intensive process, channel striping
can improve performance of garbage collection.
0076 An advantage of the host 550 controlling the initial
ization and execution of the data striping is that the host can
control and change the parameters that are used to perform
data striping, so that the host can setup and control the inter
action with the storage device 501. For example, a user of the
host 550 may initially configure the host to use a first channel
chunk size for striping data across different channels of the
data storage device 501, but as the user's desires change, the
apparatus 500 is used for a different application, different
flash memory chips are used in the storage device, etc., a need
may arise for using a different channel chunk size for striping
data across the channels. In this case, the initialization engine
may be further configured by the user to determine a second
channel chunk size, different from the first channel chunk
size, with which to write data to flash memory chips con
nected to separate channels. The segmentation engine can be
further configured to segment logically sequential data into
second channel chunk size segments, and the striping engine
can be further configured to stripe data to different channels
of the data storage device in second channel chunk size units.
0077. In addition to determining a channel chunk size with
which to stripe logically sequential data across different chan
nels in segments, the initialization engine also can determine
a chip chunk size with which to Stripe logically sequential
data across different chips, where the chip chunk size deter
mines the amount of data to be written to a particular chip
before beginning to write data to a different chip. Then, when
striping logically sequential data across particular chips (e.g.,
chips 514,515,516, and 517that are connected to a particular
channel 513) using “chip striping the host can specify the
destination memory address for a particular segment, where
the specified address can include a particular chip to which
the segment is to be written. With chip striping, logically
sequential data can be striped across different chips of the
storage device 501 in chip chunk size unit. That is, after a chip
chunk size data segment has been written to one flash memory
chip the next chip chunk size unit can be written to a different
chip. Thus, chip striping provides maximum parallelism in
read and write operations from and to the storage device 501.
For example, in a storage device 501 having 12 channels and
20 chips per channel, segments of a data file can be written to
240 different chips before a chip is revisited. Therefore, chip
striping offers advantages over channel striping in terms of
read performance, because the high degree of parallelism that
can be achieved with chip striping.
0078 Thus, with chip striping the initialization engine 566
can be configured to determine a first chip chunk size with
which to write data to flash memory chips of the storage
device 501. For example, based on information received from
the storage device 501 about the number of flash memory
chips in the storage device 501 and the page size used to write

US 2010/0262773 A1

data to the flash memory chips, the initialization engine 566
may determine an appropriate channel chunk size to be some
multiple of the page size (e.g., 8K, 32K, 40K, 80K, 160K,
320K, etc.).
007.9 Then, when logically sequential data is written to
the storage device 501 using a chip striping technique, the
logically sequential data can be segmented in chip chunk size
units for writing to the chips. For example, the segmentation
engine 568 can divide logically sequential data (e.g., a data
file) into multiple segments whose size can be, for example,
equal to the chip chunk size determined by the initialization
engine 566. In one implementation, the segmentation engine
568 can receive logically sequential data and can output seg
ments that are sized according to the specified chip chunk
sizes. A striping engine 570 then can control the striping of
the logically sequential data to different chips of the data
storage device 501 in chip chunk size units. For example, an
address assignment engine 572 can assign a memory address
to the data segments, where the assigned memory address
specifies that the segment be written to a specific one of the
chips of the storage device 501.
0080. In another implementation, the segmentation engine
568 can receive logically sequential data and can output seg
ments that are sized according to a specified channel chunk
size and which are further subdivided into chip chunk size
units. The striping engine 570 then can control the striping of
the logically sequential data to different channels of the data
storage device 501 in channel chunk size units and can control
the striping of data to chips connected to the channel in chip
chunk size units. For example, the address assignment engine
572 can assign a memory address to the data segments, where
the assigned memory address specifies that the segment be
written to a specific one of the channels and a specific one of
the chips of the storage device 501.
0081. The striping engine 570 can tag each segment with
an address (which may be assigned by the address assignment
engine 572) that will cause the particular segment to be writ
ten to a particular channel 513,523, 533,543 and to a par
ticular flash memory chip 514,515, 516,517,524,525,526,
527, 534, 535, 536, 537, 544, 545, 546, and 547 that is
indicted by the address. For example, a first channel chunk of
data can be written to channel 513, a second channel chunk of
data can be written to channel 523, a third channel chunk of
data can be written to channel 533, and a fourth channel chunk
of data can be written to channel 543, whereas a first chip
chunk of data of the first channel chunk can be written to chip
514, a second chip chunk of data of the first channel chunk can
be written to chip 515, a third chip chunk of data of the first
channel chunk can be written to chip 516, and a fourth chip
chunk of data of the first channel chunk can be written to chip
517, and a first chip chunk of data of the second channel
chunk can be written to chip 524, a second chip chunk of data
of the second channel chunk can be written to chip 525, a third
chip chunk of data of the second channel chunk can be written
to chip 526, and a fourth chip chunk of data of the second
channel chunk can be written to chip 527, etc.
0082. Thus, by using chip striping when writing logically
sequential data from the host to the storage device, data can be
written to one chip while data is also being read from another
chip. Then, when the logically sequential is read back from
the multiple chips of the storage device 501, read operations
can be performed in parallel from the different flash memory
chips.

Oct. 14, 2010

I0083 Partitioning and striping can be used in combina
tion. For example, a first partition 104a of the flash memory
chips in the storage device can be defined to use channel
striping and a second partition 104b of the device can be
defined to use chip striping. Thus, the first partition 104a may
provide relatively better write performance, redundancy, and
fault tolerance due to the use of channel striping techniques to
write and read data between the host and the first partition,
while the second partition may provide relatively better read
performance due to the use of chip striping techniques to
write and read data between the host and the second partition.
I0084 FIG. 6 is an exemplary flowchart illustrating
example operations of the data storage device of FIG. 5. A
process 600 of striping data from a host to a data storage
device is shown. The device includes a plurality of flash
memory chips, and the data storage device includes a plural
ity of physical channels for communication of data between
the host and the plurality offlash memory chips. Each channel
is operably connected to a different plurality of the memory
chips. A number of physical channels in the plurality of
channels can be determined (602), for example, by the ini
tialization engine 566. A first channel chunk size with which
to write data to flash memory chips connected to separate
channels can be determined (604), for example, by the ini
tialization engine 566. Logically sequential data can be seg
mented into first channel chunk size segments by the host
(606), for example, by the segmentation engine 568 running
on the host 550. Data can be striped to different channels of
the data storage device in first channel chunk size units (608),
for example, by the striping engine 570 in co-operation with
the address assignment engine 570.
I0085. In one implementation, the process 600 may further
include determining a chip chunk size with which to write
data to different flash memory chips (610), and, for each of
the determined physical channels, determining a number of
flash memory chips operably connected to the channel (612).
Channel chunk size segments can be segmented into chip
chunk size segments by the host (614), and data in a channel
chuck sized unit can be striped to different flash memory
chips connected to a channel in chip chunk size units (616).
I0086. In another implementation, a second channel chunk
size with which to write data to flash memory chips connected
to separate channels can be determined (618) Logically
sequential data can be segmented into second channel chunk
size segments (620), and data can be striped to different
channels of the data storage device in second channel chunk
size units (622).
I0087 Implementations of the various techniques
described herein may be implemented in digital electronic
circuitry, or in computer hardware, firmware, Software, or in
combinations of them. Implementations may be implemented
as a computer program product, i.e., a computer program
tangibly embodied in an information carrier, e.g., in a
machine-readable storage device, for execution by, or to con
trol the operation of data processing apparatus, e.g., a pro
grammable processor, a computer, or multiple computers. A
computer program, such as the computer program(s)
described above, can be written in any form of programming
language, including compiled or interpreted languages, and
can be deployed in any form, including as a stand-alone
program or as a module, component, Subroutine, or other unit
Suitable for use in a computing environment. A computer
program can be deployed to be executed on one computer or

US 2010/0262773 A1

on multiple computers at one site or distributed across mul
tiple sites and interconnected by a communication network.
0088 Method steps may be performed by one or more
programmable processors executing a computer program to
perform functions by operating on input data and generating
output. Method steps also may be performed by, and an appa
ratus may be implemented as, special purpose logic circuitry,
e.g., a FPGA or an ASIC (application-specific integrated cir
cuit).
0089 Processors suitable for the execution of a computer
program include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read-only memory or a
random access memory or both. Elements of a computer may
include at least one processor for executing instructions and
one or more memory devices for storing instructions and data.
Generally, a computer also may include, or be operatively
coupled to receive data from or transfer data to, or both, one
or more mass storage devices for storing data, e.g., magnetic,
magneto-optical disks, or optical disks. Information carriers
Suitable for embodying computer program instructions and
data include all forms of non-volatile memory, including by
way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD-ROM and DVD-ROM disks. The pro
cessor and the memory may be Supplemented by, or incorpo
rated in special purpose logic circuitry.
0090. To provide for interaction with a user, implementa
tions may be implemented on a computer having a display
device, e.g., a cathode ray tube (CRT) or liquid crystal display
(LCD) monitor, for displaying information to the user and a
keyboard and a pointing device, e.g., a mouse or a trackball,
by which the user can provide input to the computer. Other
kinds of devices can be used to provide for interaction with a
user as well; for example, feedback provided to the user can
be any form of sensory feedback, e.g., visual feedback, audi
tory feedback, or tactile feedback; and input from the user can
be received in any form, including acoustic, speech, or tactile
input.
0091 Implementations may be implemented in a comput
ing system that includes a back-end component, e.g., as a data
server, or that includes a middleware component, e.g., an
application server, or that includes a front-end component,
e.g., a client computer having a graphical user interface or a
Web browser through which a user can interact with an imple
mentation, or any combination of Such back-end, middle
ware, or front-end components. Components may be inter
connected by any form or medium of digital data
communication, e.g., a communication network. Examples
of communication networks include a local area network
(LAN) and a wide area network (WAN), e.g., the Internet.
0092. While certain features of the described implemen
tations have been illustrated as described herein, many modi
fications, Substitutions, changes and equivalents will now
occur to those skilled in the art. It is, therefore, to be under
stood that the appended claims are intended to cover all Such
modifications and changes as fall within the scope of the
embodiments.

What is claimed is:
1. A method of striping data from a host to a data storage

device that includes a plurality of memory chips and a plu
rality of physical channels for communication of data

Oct. 14, 2010

between the host and the plurality of memory chips, each
channel being operably connected to a different plurality of
the memory chips, the method comprising:

determining a number of physical channels in the plurality
of channels;

for each of the determined physical channels, determining
a number of memory chips operably connected to the
channel;

determining a first channel chunk size with which to write
data to memory chips connected to separate channels;

determining a chip chunk size with which to write data to
different memory chips;

segmenting, via the host, logically sequential data into first
channel chunk size segments;

segmenting, via the host, the first channel chunk size seg
ments into chip chunk size segments;

striping data to different channels of the data storage device
in first channel chunk size units; and

striping data in a first channel chuck sized segment to
different memory chips connected to a channel in chip
chunk size units.

2. The method of claim 1, wherein the logically sequential
data consists of a data file.

3. The method of claim 1, further comprising:
writing data to a first channel while reading data from a

second channel.
4. The method of claim 1, wherein determining the number

of physical channels in the plurality of channels includes
transmitting information from the data storage device to the
host indicating the number of channels in the data storage
device.

5. The method of claim 1, wherein determining the number
of physical channels in the plurality of channels includes
reading data stored on the host indicating the number of
channels in the data storage device.

6. The method of claim 1, further comprising:
determining a second channel chunk size with which to

write data to memory chips connected to separate chan
nels;

segmenting, via the host, logically sequential data into
second channel chunk size segments;

striping data to different channels of the data storage device
in second channel chunk size units; and

striping data in a second channel chuck sized segment to
different memory chips connected to a channel in chip
chunk size units.

7. The method of claim 1, wherein the determining of the
first channel chunk sized is based on input from a user entered
via the host.

8. A method of Striping data from a host to a data storage
device that includes a plurality of memory chips and a plu
rality of physical channels for communication of data
between the host and the plurality of memory chips, each
channel being operably connected to a different plurality of
the memory chips, the method comprising:

determining a number of physical channels in the plurality
of channels;

determining a first channel chunk size with which to write
data to memory chips connected to separate channels;

segmenting, via the host, logically sequential data into first
channel chunk size segments; and

striping data to different channels of the data storage device
in first channel chunk size units.

US 2010/0262773 A1

9. The method of claim 8, wherein the logically sequential
data consists of a data file.

10. The method of claim 8, further comprising:
writing data to a first channel while reading data from a

second channel.
11. The method of claim 8, wherein determining the num

ber of physical channels in the plurality of channels includes
transmitting information from the data storage device to the
host indicating the number of channels in the data storage
device.

12. The method of claim 8, wherein determining the num
ber of physical channels in the plurality of channels includes
reading data stored on the host indicating the number of
channels in the data storage device.

13. The method of claim 8, further comprising:
determining a second channel chunk size with which to

write data to memory chips connected to separate chan
nels;

segmenting, via the host, logically sequential data into
second channel chunk size segments; and

striping data to different channels of the data storage device
in second channel chunk size units.

14. The method of claim 8, wherein the determining of the
first channel chunk sized is based on input from a user entered
via the host.

15. An apparatus comprising:
a data storage device including a plurality of memory chips

and a plurality of physical channels for communication
of data between a host and the plurality of memory
chips, each channel being operably connected to a dif
ferent plurality of the memory chips:

a host operably coupled to the data storage device via an
interface, the host comprising:
an initialization engine configured to determine a first

channel chunk size with which to write data to
memory chips connected to separate channels;

a segmentation engine configured to segment logically
sequential data into first channel chunk size segments;
and

Oct. 14, 2010

a striping engine configured to stripe data to different
channels of the data storage device in first channel
chunk size units.

16. The apparatus of claim 15, wherein the data storage
device comprises a storage medium configured to store the
number of channels and wherein the data storage device is
configured to transmit, upon receiving a command from the
host, information from the data storage device to the host
indicating the number of channels in the data storage device.

17. The apparatus of claim 15, wherein the host further
comprises an address assignment engine configured to assign
a memory address to data to be written to the data storage
device, wherein the assigned memory address specifies that
the data be written to a specific one of the channels.

18. The apparatus of claim 15, wherein the logically
sequential data consists of a data file.

19. The apparatus of claim 15, wherein the striping engine
is configured to write data to a first channel while reading data
from a second channel.

20. The apparatus of claim 15,
wherein the initialization engine is further configured to

determine a second channel chunk size, different from
the first channel chunk size, with which to write data to
memory chips connected to separate channels;

wherein the segmentation engine is further configured to
segment logically sequential data into second channel
chunk size segments; and

wherein the striping engine is further configured to stripe
data to different channels of the data storage device in
second channel chunk size units.

21. The apparatus of claim 15, further comprising:
wherein the initialization engine is further configured to

determine a chip chunk size with which to write data to
different memory chips;

wherein the segmentation engine is further configured to
segment the first channel chunk size segments into chip
chunk size segments; and

wherein the striping engine is further configured to stripe
data to different chips connected to a channel in first
channel chunk size units.

c c c c c

