wo 2016/097803 A 1[I I PF V00 00O O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

23 June 2016 (23.06.2016)

WIPOIPCT

(10) International Publication Number

WO 2016/097803 A1l

(51

eay)

(22)

(25)
(26)
1

(72

74

31

International Patent Classification:
GO6F 9/30 (2006.01) GO6F 9/38 (2006.01)

International Application Number:
PCT/IB2014/003217

International Filing Date:
14 December 2014 (14.12.2014)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
Publication Language: English (84) Designated States (uniess otherwise indicated, for every
Applicant: VIA ALLIANCE SEMICONDUCTOR CO., kind of regional protection available): ARIPO (BW, GH,
LTD. [CN/CN]; Room 301, No. 2537, Jinke Road, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
Zhangjiang Hi-tech Park, Shanghai, 201203 (CN). TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
Inventors: COL, Gerard, M.; 11008 Conchos Tr, Austin, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
TX 78726 (US). EDDY, Colin; 360 Nueces St., Unit 4107, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
Austin, TX 78701 (US). HENRY, G., Glenn; 411 Lake SM, TR), OAPI (BF, BI, CF, CG, CIL, CM, GA, GN, GQ,
Cliff Trail, Austin, TX 78746 (US). GW, KM, ML, MR, NE, SN, TD, TG).
Agents: HUFFMAN, Richard, K. et al.; Huffman Patent Published:

Group, LLC, 7702 Barnes Road, Suite 140-46, Colorado
Springs, CO 80922 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

with international search report (Art. 21(3))

(54) Title MECHANISM TO PRECLUDE UNCACHEABLE-DEPENDENT LOAD REPLAYS IN OUT-OF-ORDER PRO-
CESSOR

FIG. 3
POWER SAVING MECHANISM FOR LOADS FROM NON-CORE RESOURCES

i
DEVICE DIE
310
31 313
UNCORE
CORET 302 CORE1
301 301
B1 L2 CACHE B3
REPLAY S 303 [— REPLAY
REDUCER = REDUCER
20 20
I N,
RAM MEM
4 |
I
BUS UNIT o>
205 I
"o >
/0 UNIT
308
312 314
APIC
CORE1 307 CORE1
301 301
B2 B4
REPLAY —— Vi/ REPLAY
REDUCER FUSE ARRAY REDUCER
320 308)

(57) Abstract: An apparatus includes first and second reservation stations.
The first reservation station (421.L) dispatches a load micro instruction,
and indicates on a hold bus (444) it the load micro instruction is a specified
load micro instruction directed to retrieve an operand from a prescribed re-
source other than on-core cache memory. The second reservation station
(421.1-421.N) is coupled to the hold bus (444), and dispatches one or more
younger micro instructions therein that depend on the load micro instruc-
tion for execution after a number of clock cycles following dispatch of the
first load micro instruction, and if it is indicated on the hold bus (444) that
the load micro instruction is the specified load micro instruction, the
second reservation station (421.1-421.N) is contigured to stall dispatch of
the one or more younger micro instructions until the load micro instruction
has retrieved the operand. The resources include system memory, coupled
an out-of-order processor (300) via a memory bus (MEM).

WO 2016/097803 PCT/IB2014/003217

TITLE

MECHANISM TO PRECLUDE UNCACHEABLE-DEPENDENT
EOAD REPLAYS IN OQUT-OF-ORDER PROCESSOR

by
Gerard M. Col
Colin Eddy

G. Glenn Henry

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is related to the following co-pending Patent Applications,

each of which has a common assignee and common inventors.

SERIAL FILING
NUMBER DATE HILE

MECHANISM TO PRECLUDE LOAD REPLAYS
DEPENDENT ON FUSE ARRAY ACCESS IN AN OUT-

(VAS.2727-PCT) OF-ORDER PROCESSOR

MECHANISM TO PRECLUDE I/O-DEPENDENT LOAD
(VAS.2728-PCT) REPLAYS IN AN OUT-OF-ORDER PROCESSOR

(VAS.2789-PCT) LOAD REPLAY PRECLUDING MECHANISM

MECHANISM TO PRECLUDE LOAD REPLAYS
DEPENDENT ON PAGE WALKS IN AN OUT-OF-

(VAS.3000-PCT) ORDER PROCESSOR

MECHANISM TO PRECLUDE LOAD REPLAYS
DEPENDENT ON LONG LOAD CYCLES IN AN OUT-

(VAS.3001-PCT) OF-ORDER PROCESSOR

PROGRAMMABLE LOAD REPLAY PRECLUDING
(VAS.3002-PCT) MECHANISM

WO 2016/097803 PCT/IB2014/003217

POWER SAVING MECHANISM TO REDUCE
(VAS.3005-PCT) LOAD REPLAYS IN OUT-OF-ORDER PROCESSOR

MECHANISM TO PRECLUDE SHARED RAM-
DEPENDENT LOAD REPLAYS IN AN OUT-OF-ORDER

(VAS.3007-PCT) PROCESSOR

APPARATUS AND METHOD TO PRECLUDE NON-
CORE CACHE-DEPENDENT LOAD REPLAYS IN AN

(VAS.3008-PCT) OUT-OF-ORDER PROCESSOR

MECHANISM TO PRECLUDE LOAD REPLAYS
DEPENDENT ON OFF-DIE CONTROL ELEMENT

(VAS.3009-PCT) ACCESS IN AN OUT-OF-ORDER PROCESSOR

APPARATUS AND METHOD TO PRECLUDE X86
SPECIAL BUS CYCLE LOAD REPLAYS IN AN OUT-OF-

(VAS.3010-PCT) ORDER PROCESSOR

APPARATUS AND METHOD TO PRECLUDE LOAD
REPLAYS DEPENDENT ON WRITE COMBINING

(VAS.3011-PCT) MEMORY SPACE ACCESS IN AN OUT-OF-ORDER
PROCESSOR
APPARATUS AND METHOD FOR PROGRAMMABLE
(VAS.3012-PCT) LOAD REPLAY PRECLUSION

BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION

[0002] This invention relates in general to the field of microelectronics, and more
particularly to a power saving mechanism to reduce load replays in an out-of-order

processor.

DESCRIPTION OF THE RELATED ART

[0003] Integrated device technologies have exponentially advanced over the past 40
years. More specifically directed to the microprocessor fields, starting with 4-bit, single
instruction, 10-micrometer devices, the advances in semiconductor fabrication
technologies have enabled designers to provide increasingly more complex devices in

terms of architecture and density. In the 80's and 90's so-called pipeline

WO 2016/097803 PCT/IB2014/003217

microprocessors and superscalar microprocessors were developed comprising
millions of transistors on a single die. And now 20 years later, 64-bit, 32-nanometer
devices are being produced that have billions of transistors on a single die and which

comprise multiple microprocessor cores for the processing of data.

[0004] In addition to the employment of instruction parallelism in present day multi-
core processors, out-of-order execution mechanisms are also prevalent. According to
out-of-order execution principles, instructions are queued in reservation stations for
execution by execution units, and only those instructions that are waiting on an
operand as a result of the execution of older instructions are held up in the reservation
stations; instructions that are not waiting on operands are dispatched for execution.
Following execution, results are queued and put back into registers in proper order,
typically in a processor stage called a retire state. Hence, the instructions are executed

out of the original program order.

[0005] Out-of-order execution provides for significant throughput improvement
since execution units, which would otherwise be sitting idle, are employed to execute
younger instructions while older instructions await their operands. Though, as one
skilled in the art will appreciate, instructions don’t always execute successfully and, as
a result, when a given instruction does not execute successfully, that instruction and
all instructions that are younger than that instruction must be executed again. This
concept is known as “replay,” because mechanisms in present day processors
essentially stop current execution, back up the machine state to the point just prior to
when the instruction executed unsuccessfully, and replay the unsuccessfully executed
instruction along with all younger instructions, which may or may not have been

dispatched prior to dispatch of the unsuccessfully executed instruction.

[0006] Replay, however, is an exceptional case, and the performance impacts of
replays is very often negligible. Yet, the performance impact of holding instructions in

reservation stations until their operands are available is significant, and

WO 2016/097803 PCT/IB2014/003217

microprocessor designers have developed acceleration techniques that allow certain
instructions to be dispatched when there is a high probability that their operands will
become available just prior to execution. Not only are these certain instructions
dispatched, but mechanisms are put in place to provide their required operands just in

time.

[0007] This application addresses one such acceleration technique where younger
instructions that require an operand that is assumed with a high probability to be
resident in an on-core cache memory are dispatched following a specified number of
clock cycles after dispatch of a load instruction whose execution leads to retrieval of
the operand from the cache. Accordingly, when the load instruction is dispatched, the
younger instructions that are waiting on its operand are stalled in their respective
reservation stations until the specified number of clock cycles have transpired, and
then the younger instructions are dispatched for execution with high certainty that

their required operand will become available.

[0008] The performance improvement resulting from utilization of the above noted
acceleration technique is so substantial that microprocessor architects typically apply
the techniques across the board to all load instructions (e.g. loads from 1/O,
uncacheable loads, loads from interrupt registers, special loads, etc.), even though it is
certain that there are a number of load instructions that will take longer than the
specified number of cycles to obtain their operand, thus requiring a replay of all
younger instructions that were dispatched in anticipation that the operand would be
available. The performance improvements resulting from this load acceleration

technique more than offset the performance penalties incurred by infrequent replays.

[0009] But as multi-core processor technologies continue to advance, designers are
now finding that certain processor resources, such as level 2 (L2) caches, interrupt
controllers, fuse arrays, etc., which are infrequently accessed, are better suited for

placement in a common area of a multi-core processor die rather than being

WO 2016/097803 PCT/IB2014/003217

replicated within each of the cores. Hence, resources such as those noted above, are
shared by the processor cores. As one skilled in the art will appreciate, to load an
operand from an off-core resource (say, a fuse array) takes substantially longer than is
required to load from an on-core resource (say, an L1 cache). And even though the
performance penalty that is incurred as a consequence of having to perform replays of
younger instructions that were dispatched under the above acceleration technique is
not substantial, it has been observed by the present inventors that the power
utilization impact is notable, for a remarkable number of instructions are being
executed under conditions where it virtually certain that they will be replayed. And
the initial execution of these instructions essentially wastes power, thus being

disadvantageous from the standpoints of battery life, thermal profile, and reliability.

[0010] Therefore, what is needed is an apparatus and method that enables power to

be saved in a processor by reducing the number of replays that are required.

[0011] Inaddition, what is needed is a load replay reduction mechanism in an out-of-

order processor that results in power savings for the processor.

SUMMARY OF THE INVENTION

[0012] The present invention, among other applications, is directed to solving the
above-noted problems and addresses other problems, disadvantages, and limitations

of the prior art.

[0013] One aspect of the present invention contemplates an apparatus for reducing
replays in an out-of-order processor. The apparatus includes a first reservation station
and a second reservation station. The first reservation station is configured to dispatch
a first load micro instruction, and is configured to detect and indicate on a hold bus if
the first load micro instruction is a specified load micro instruction directed to retrieve
an operand from a prescribed resource other than on-core cache memory. The

second reservation station is coupled to the hold bus, and is configured to dispatch

WO 2016/097803 PCT/IB2014/003217

one or more younger micro instructions therein that depend on the first load micro
instruction for execution after a first number of clock cycles following dispatch of the
first load micro instruction, and if it is indicated on the hold bus that the first load
micro instruction is the specified load micro instruction, the second reservation station
is configured to stall dispatch of the one or more younger micro instructions until the
first load micro instruction has retrieved the operand. The plurality of non-core
resources includes system memory, coupled to the out-of-order processor via a

memory bus.

[0014] Another aspect of the present invention comprehends an apparatus for
reducing replays. The apparatus includes a multi-core processor, that has a plurality of
cores. Each of the plurality of cores includes a first reservation station and a second
reservation station. The first reservation station is configured to dispatch a first load
micro instruction, and is configured to detect and indicate on a hold bus if the first
load micro instruction is a specified load micro instruction directed to retrieve an
operand from a prescribed resource other than on-core cache memory. The second
reservation station is coupled to the hold bus, and is configured to dispatch one or
more younger micro instructions therein that depend on the first load micro
instruction for execution after a first number of clock cycles following dispatch of the
first load micro instruction, and if it is indicated on the hold bus that the first load
micro instruction is the specified load micro instruction, the second reservation station
is configured to stall dispatch of the one or more younger micro instructions until the
first load micro instruction has retrieved the operand. The plurality of non-core
resources includes system memory, coupled to the multi-core processor via a memory

bus.

[0015] A further aspect of the present invention considers a method for reducing
replays in an out-of-order processor. The method includes: coupling the out-of-order
processor to a plurality of prescribed resources, the plurality of prescribed resources

comprising a system memory that is accessed via a system memory bus; via a first

WO 2016/097803 PCT/IB2014/003217

reservation station, dispatching a first load micro instruction, and detecting and
indicating on a hold bus if the first load micro instruction is a specified load micro
instruction directed to retrieve an operand from a prescribed resource other than on-
core cache memory; and via a second reservation station that is coupled to the hold
bus, dispatching one or more younger micro instructions therein that depend on the
first load micro instruction for execution after a first number of clock cycles following
dispatch of the first load micro instruction, and if it is indicated on the hold bus that
the first load micro instruction is the specified load micro instruction, stalling dispatch
of the one or more younger micro instructions until the first load micro instruction has

retrieved the operand.

[0016] Regarding industrial applicability, the present invention is implemented
within a MICROPROCESSOR which may be used in a general purpose or special

purpose computing device.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] These and other objects, features, and advantages of the present invention
will become better understood with regard to the following description, and

accompanying drawings where:

[0018] FIGURE 1 is a block diagram illustrating a present day multi-core processor

that utilizes common resources disposed external to each of the cores;

[0019] FIGURE 2 is a block diagram depicting exemplary core stages in each of the
present day cores of FIGURE 1;

[0020] FIGURE 3 is a block diagram featuring a multi-core processor according to the
present invention that has a power saving mechanism for loads from non-core

resources;

[0021] FIGURE 4 is a block diagram showing exemplary cores stages in each of the
cores of FIGURE 3;

WO 2016/097803 PCT/IB2014/003217

[0022] FIGURE 5 is a block diagram illustrating details of the uncore stall element of
FIGURE 4;

[0023] FIGURE 6 is a block diagram detailing details of each of the reservation
stations of FIGURE 4; and

[0024] FIGURE 7 is a block diagram showing details of the uncore miss element of
FIGURE 4.

DETAILED DESCRIPTION

[0025] Exemplary and illustrative embodiments of the invention are described
below. In the interest of clarity, not all features of an actual implementation are
described in this specification, for those skilled in the art will appreciate that in the
development of any such actual embodiment, numerous implementation specific
decisions are made to achieve specific goals, such as compliance with system related
and business related constraints, which vary from one implementation to another.
Furthermore, it will be appreciated that such a development effort might be complex
and time-consuming, but would nevertheless be a routine undertaking for those of
ordinary skill in the art having the benefit of this disclosure. Various modifications to
the preferred embodiment will be apparent to those skilled in the art, and the general
principles defined herein may be applied to other embodiments. Therefore, the
present invention is not intended to be limited to the particular embodiments shown
and described herein, but is to be accorded the widest scope consistent with the

principles and novel features herein disclosed.

[0026] The present invention will now be described with reference to the attached
figures. Various structures, systems, and devices are schematically depicted in the
drawings for purposes of explanation only and so as to not obscure the present
invention with details that are well known to those skilled in the art. Nevertheless, the

attached drawings are included to describe and explain illustrative examples of the

WO 2016/097803 PCT/IB2014/003217

present invention. The words and phrases used herein should be understood and
interpreted to have a meaning consistent with the understanding of those words and
phrases by those skilled in the relevant art. No special definition of a term or phrase
(i.e, a definition that is different from the ordinary and customary meaning as
understood by those skilled in the art) is intended to be implied by consistent usage of
the term or phrase herein. To the extent that a term or phrase is intended to have a
special meaning (i.e., a meaning other than that understood by skilled artisans) such a
special definition will be expressly set forth in the specification in a definitional
manner that directly and unequivocally provides the special definition for the term or

phrase.

DEFINITIONS

[0027] Integrated Circuit (IC): A set of electronic circuits fabricated on a small piece

of semiconductor material, typically silicon. An IC is also referred to as a chip, a

microchip, or a die.

[0028] Central Processing Unit (CPU): The electronic circuits (i.e., “hardware”) that

execute the instructions of a computer program (also known as a “computer
application” or “application”) by performing operations on data that include

arithmetic operations, logical operations, and input/output operations.

[0029] Microprocessor: An electronic device that functions as a CPU on a single

integrated circuit. A microprocessor receives digital data as input, processes the data
according to instructions fetched from a memory (either on-die or off-die), and
generates results of operations prescribed by the instructions as output. A general
purpose microprocessor may be employed in a desktop, mobile, or tablet computer,
and is employed for uses such as computation, text editing, multimedia display, and
Internet browsing. A microprocessor may also be disposed in an embedded system to
control a wide variety of devices including appliances, mobile telephones, smart

phones, and industrial control devices.

WO 2016/097803 PCT/IB2014/003217
10

[0030] Multi-Core Processor: Also known as a multi-core microprocessor, a multi-

core processor is a microprocessor having multiple CPUs (“cores”) fabricated on a

single integrated circuit.

[0031] Instruction Set Architecture (ISA) or Instruction Set: A part of a computer

architecture related to programming that includes data types, instructions, registers,
addressing modes, memory architecture, interrupt and exception handling, and
input/output. An ISA includes a specification of the set of opcodes (i.e.,, machine

language instructions), and the native commands implemented by a particular CPU.

[0032] x86-Compatible Microprocessor: A microprocessor capable of executing

computer applications that are programmed according to the x86 ISA.

[0033] Microcode: A term employed to refer to a plurality of micro instructions. A
micro instruction (also referred to as a “native instruction”) is an instruction at the level
that a microprocessor sub-unit executes. Exemplary sub-units include integer units,
floating point units, multimedia (MMX) units, and load/store units. For example, micro
instructions are directly executed by a reduced instruction set computer (RISC)
microprocessor. For a complex instruction set computer (CISC) microprocessor such
as an x86-compatible microprocessor, x86 instructions are translated into associated
micro instructions, and the associated micro instructions are directly executed by a

sub-unit or sub-units within the CISC microprocessor.

[0034] Fuse: A conductive structure typically arranged as a filament which can be
broken at select locations by applying a voltage across the filament and/or current
through the filament. Fuses may be deposited at specified areas across a die
topography using well known fabrication techniques to produce filaments at all
potential programmable areas. A fuse structure is blown (or unblown) subsequent to
fabrication to provide for desired programmability of a corresponding device disposed

on the die.

WO 2016/097803 PCT/IB2014/003217
11

[0035] In view of the above background discussion on load mechanisms in multi-
core processors and associated techniques employed within present day multi-core
processors to perform load operations from non-core resources, a discussion of the
limitations and disadvantages of those present day techniques will be presented with
reference to FIGURES 1-2. Following this, a discussion of the present invention will be

presented with reference to FIGURES 3-7.

[0036] Turning to FIGURE 1, a block diagram 100 is presented illustrating a present
day multi-core processor that utilizes common resources disposed external to each of
the cores 101. The diagram 100 depicts a device die 110, upon which is disposed four
processor cores 101. The present inventors note that for purposes of clarity, a quad-
core (i.e., four cores 101) multi-core microprocessor will be described herein, however,
the principles and features of the present invention may be applied to multi-core

microprocessors having different numbers of cores 101.

[0037] As one skilled in the art will appreciate, for design and/or business related
reasons, architects may choose to share certain processor resources among the cores
101. For performance motives, these shared resources are typically disposed on the
same die 110 as the cores 101, and they are accessed by each of the cores 101 via high
speed busses 111-114. Accordingly, the diagram 100 shows exemplary shared
resources such as an L2 cache 103, random access memory (RAM) 104, a bus unit 105,
an input/output unit 106, an advanced programmable interrupt controller (APIC) 107,
and a fuse array 108. In aggregation, these shared resources 103-108 that are
disposed on the same die 110 as the cores 101, yet which are external to the cores 101,
will be henceforth referred to as uncore resources 102. Thus, bus B1 111 enables
CORE1 101 access to the uncore 102. Bus B2 112 enables CORE2 101 access to the
uncore 102. Bus B3 113 enables CORE3 101 access to the uncore 102. And bus B4 114
enables CORE4 101 access to the uncore 102. In a typical configuration, the multi-core

processor is coupled to other elements external to the device die 110 such as system

WO 2016/097803 PCT/IB2014/003217
12

memory (accessed via a memory bus MEM), input/output elements (accessed via bus

I/0), and system control elements (accessed via bus CTRL).

[0038] In operation, each of the cores 101, under operating system control, may
execute associated instructions that are fetched from system memory, and will
perform operations on operands that correspond to intended application. One or
more of the cores 101 may require access to one or more of the uncore resources 102
and will access the one or more of the uncore resources 102 in a controlled manner via
a corresponding bus B1-B4. For example, during power initialization, one or more of
the cores 101 may perform a load operation from the fuse array 108 to retrieve
configuration parameters, or may perform a load from the RAM 104 to retrieve patch
information. During normal operation, the cores 101 may access the L2 cache 103 to
read/write memory operands that are not present in on-core caches (e.g., L1 caches).
The cores 101 may access the bus unit 105 to read/write from/to system memory, or
may utilize the I/O unit 106 to perform I/O operations via the I/O bus. The cores 101

may furthermore access the APIC 107 to perform interrupt operations.

[0039] Now referring to FIGURE 2, a block diagram is presented depicting exemplary
core stages in each of the present day cores 101 of FIGURE 1. The diagram shows a
processor core 201 that is disposed on the die 110. The core 201 includes a fetch stage
211 that is coupled to a translator stage 212 via bus 241. The translator stage 212 is
coupled to a rename stage 213 via bus 242. The rename stage 213 is coupled to a
replay mux stage 214 via bus 243. The replay mux 214 is coupled to a plurality of
reservation stations RS1-RSN 221.1-221.N and a load reservation station RSL 221.L via
reservation bus 244. Each of the reservation stations RS1-RSN, RSL is coupled to a
corresponding execution unit EUT-EUN 222.1-222.N, EUL 222.L via a corresponding
dispatch bus 252.1-251.N, 251.L. The reservation stations RS1-RSN, RSL are coupled to

a register file 226 via register bus 245.

WO 2016/097803 PCT/IB2014/003217
13

[0040] The present inventors note that, outside of execution unit EUL, the remaining
execution units EUT-EUN may comprise units typical to present day superscalar
processors such as integer units, floating point units, multimedia units, and store units.
Of particular interest to the present application is execution unit EUL, which is
depicted as a load unit 222.L whose primary function is to load operands from a
variety of resources such as system memory, system I/O, and uncore resources 230, as

are described above with reference to FIGURE 1.

[0041] Accordingly, the load unit EUL is coupled to an L1 cache 223 via bus 254 and
to the uncore 230 via bus 256. For most memory operands, the load unit 222.L first
accesses an L1 cache 223. If the load misses in the L1 cache 223, then the load unit
222.L must access the L2 cache in the uncore 230. The execution units EUT-EUN, EUL
are also coupled to a reorder buffer 224 via bus 252. Additionally, the load unit EUL is
coupled to the reorder buffer 224 via bus MISS 253. The reorder buffer 224 is coupled
to the replay mux 214 via bus REPLAY 258 and to a retire unit 225 via bus 257. The

retire unit 225 is coupled to the register file 226 via a writeback WB bus 255.

[0042] It is noted that the core stages shown in FIGURE 2 are merely exemplary of a
present day superscalar, or “out-of-order” processor core 201, and are presented for
purposes of clearly teaching the present invention. As one skilled in the art will
appreciate, processor core stages may vary according to architecture and intended

application.

[0043] In operation, program instructions (not shown) are fetched from memory by
the fetch unit 211. In an x86-compatible processor core 201, these program
instructions comport with the x86 ISA. The program instructions are provided, in
order, to the translator 212 on bus 241. The translator 212 translates the program
instructions into one or more micro instructions that direct sub-operations in
corresponding execution units EUT-EUN, EUL in order to perform the operations

specified by the program instructions. The micro instructions are then provided to the

WO 2016/097803 PCT/IB2014/003217
14

rename unit 213 on bus 242, where architectural registers (i.e., operand register
locations) specified in some of the micro instructions are remapped to hardware
registers (not shown) in the processor core 201 in order to increase execution
parallelism for independent micro instruction streams. The rename unit 213 also tags
each of the micro instructions according to serial program order, and source and
destination operand fields in the micro instructions are also tagged with the tags of
the younger micro instructions upon which one or more of their operands depend.

The renamed micro instructions are then provided to the replay mux 214 on bus 243.

[0044] The replay mux 214 performs several functions in an out-of-order processor
core 201. Primarily, the mux 214 reads the opcodes in each of the renamed micro
instructions to determine an appropriate execution unit EU1-EUN, EUL for execution.
For example, renamed integer micro instructions may be executed by, say, EU1.
Floating point micro instructions may be executed by EU2. And etc. And of particular
interest to the present application, renamed load micro instructions may be executed
by the load execution unit EUL. Thus, the replay mux 214 provides one or more
renamed micro instructions to one or more of the reservation stations RS1-RSN1, RSL

to await dispatch to a corresponding execution unit EUT-EUN, EUL.

[0045] Each of the reservation stations RS1-RSN, RSL accesses the register file 226 to
read operands required by their renamed micro instructions queued for operation
therein. Renamed micro instructions that are not tagged with the tags of older
renamed micro instructions (i.e., the renamed micro instructions are not dependent on
the older renamed micro instructions) are immediately dispatched to corresponding
execution units EU1-EUN, EUL for execution. Dependent renamed micro instructions
(i.e.,, renamed micro instructions that include tags of older renamed micro instructions
which have not yet completed execution) are generally held up by the reservation
stations RS1-RSN, RSL until such time as their tagged dependent operands are
available. When the tagged dependent operands are available, they are provided to

the dependent renamed micro instructions, and the micro instructions are dispatched

WO 2016/097803 PCT/IB2014/003217
15

to corresponding execution units EUT-EUN, EUL for execution. The execution units
EU1-EUN, EUL may also perform a power saving function when they are not executing
micro instructions. Generally, clocks internal to the execution units EU1-EUN, EUL are
shut down when they are not executing micro instructions, which saves substantial

power.

[0046] Renamed micro instructions and their results are provided to the reorder
buffer 224 via bus 252. The reorder buffer places all results from out-of-order
execution of the renamed micro instructions back into program order. That is, results
from renamed programed registers are remapped back to their corresponding
architectural registers and the results are queued for entry in the architectural registers
according to the specified program order of execution. Micro instructions that have
successfully completed execution with proper results are provided to the retire unit
225 on bus 257. The results of these retired micro instructions are written back to the

register file 226 on the WB bus 255.

[0047] As one skilled in the art will appreciate, there are a number of conditions that
may cause a renamed micro instruction to execute unsuccessfully such as, but not
limited to, program exceptions, general interrupts, I/O interrupts, branch exceptions,
and the like. When the reorder buffer determines that a renamed micro instruction
has not executed successfully, then it must be re-executed (“replayed”) along with all
younger renamed micro instructions that have been dispatched for execution.
Accordingly, the reorder buffer 224 initiates a replay event by providing the tag of the

unsuccessfully executed renamed micro instruction on the replay bus 258.

[0048] When an unsuccessfully executed renamed micro instruction tag is provided
to the replay mux 214, the replay mux 214 in response backs up machine state to
comport with execution of renamed micro instructions beginning at the renamed

micro instruction whose tag was provided on REPLAY 258.

WO 2016/097803 PCT/IB2014/003217
16

[0049] One skilled in the art will also appreciate that in order to improve
performance, microprocessor designers often make assumptions regarding how
instructions will execute. For example, it is well known in the art that a significant
percentage of branches will not be taken. Thus, the fetch unit 211 may be configured
to queue up instructions for execution according to that assumption. If a branch is not
taken, then overall execution speed is improved. If the branch is taken, then all
instructions older than the branch must be replaced with instructions from the taken

program path.

[0050] Another assumption that microprocessor designers make is that a load micro
instruction will hit in the L1 cache 223 in a specified number of clock cycles, and this
assumption is based upon L1 cache hit statistics, say 90 percent hit rate, along with the
number of clock cycles required according to design to access the L1 cache 223. For
purposes of the present application, consider that it will take four clock cycles to
access the L1 cache 223, however, such a number is chosen for instructional purposes.

Other numbers of clock cycles are contemplated.

[0051] Accordingly, a reservation station RS1-RSN may comprise logic that stalls
renamed micro instructions whose tags correspond with an older load micro
instruction until four clock cycles after dispatch of the older load instruction, and then
dispatches the renamed micro instructions to their corresponding execution units
EU1-EUN under the assumption that the older load micro instruction will hit in the L1
cache 223 within the four clock cycles and the tagged operand will be ready. Though
not shown in FIGURE 2, it is noted that the execution units EUT-EUN, EUL may also
access operands made available from load operations and provide these operands to
micro instructions currently under execution. For loads that hit in the L1 cache 223,
the operands are provided to the dispatched dependent younger micro instructions,
which execute through completion much faster than would otherwise be provided
for. But for loads that miss in the L1 cache (approximately 10 percent of the time

according to a 90 percent hit rate assumption), after successful completion of the

WO 2016/097803 PCT/IB2014/003217
17

loads, all dependent younger micro instructions that were dispatched under the
assumption of a hit must be replayed. Thus, upon a miss in the L1 cache 232, the load
execution unit EUL will inform the reorder buffer 224 of such by indicating the tag of
the missed load instruction on bus MISS 253 to initiate the replay of the younger

dependent instructions.

[0052] Such a scheme is incredibly effective from a performance standpoint, for most
present day caches 223 are very efficient, and thus it is a common practice to stall all
micro instructions that depend from a load micro instruction for a number of clock
cycles after dispatch of the load instruction based on a presumed cache access
number of clock cycles (e.g., four clock cycles). The dependent micro instructions are
stalled in their respective reservation station RS1-RSN, and then dispatched when it is
assumed that the operands specified in the load micro instruction are available from
the L1 cache 223. Typically, this acceleration scheme is utilized for all load instructions,
including load instructions that access resources other than the L1 cache 223. Because
these types of load instructions are relatively infrequent compared to memory load
instructions, the performance impact associated with replay of load instructions that
access resources other than memory is generally tolerated. As such, when a load
micro instruction takes longer than a specified number of clock cycles (four clock
cycles in this example) to successfully execute (i.e., to “resolve”), then the load
execution unit EUL will declare a miss on bus MISS, thus causing dependent younger

micro instructions to be replayed after completion of the load.

[0053] The above technique has served well to improve the performance of
superscalar processors 201 over the past several years, but the present inventors have
observed that additional challenges are presented when this scheme is adapted to a
multi-core processor configuration, such as is shown in FIGURE 1. More specifically,
such as scheme, while extremely effective in configurations dominated by access to an
L1 cache 223, is not very power efficient when applied to a multi-core processor

configuration that increasingly utilizes accesses to uncore resources 230, for access

WO 2016/097803 PCT/IB2014/003217
18

times to uncore resources 230 are very slow when compared to those of a present day

L1 cache 223.

[0054] What this means is that any load micro instruction that is specifically directed
to an uncore resource 230 such as the fuse array 108, the bus unit 105 (for
uncacheable loads), the APIC 107, the I/O unit 106, and perhaps the L2 cache 103 and
RAM 104, will result in replays of dependent younger micro instructions having the
tags of those loads from the uncore resources 230. And the present inventors have
observed that, while not much of a performance hit, the wasted initial executions of
these dependent younger micro instructions result in power expenditures that are
significant, because load micro instructions—which are guaranteed to be replayed—
are being dispatched to execution units EU1-EUN, thus utilizing power that would

otherwise be saved by power management mechanisms therein.

[0055] The present invention overcomes the above noted limitations of present day
load mechanisms, and others, by providing an apparatus and method for saving
power in an out-of-order multi-core processor by reducing the number of load replays
according 10 8 novel scheme, which will now be discussed with reference 1o
FHGUREDS 3-7.

[0056] Referring now to FIGURE 3, a block diagram 300 is presented featuring a
multi-core processor according to the present invention that has a power saving
mechanism for loads from non-core resources. The diagram 300 depicts a device die
310, upon which is disposed four processor cores 301. It is noted that four cores 301
are shown only for purposes of clearly teaching the present invention, and the
principles and details discussed below can be applied to processors having any
number of cores 301 where access times for certain load operations from non-core

resources are longer than those for on-core cache access.

[0057] Like the multi-core processor of FIGURE 1, the multi-core processor according

to the present invention may uncore resources 302 that are typically disposed on the

WO 2016/097803 PCT/IB2014/003217
19

same die 310 as the cores 301, and they are accessed by each of the cores 301 via high
speed busses 311-314. Accordingly, the diagram 300 shows exemplary shared
resources such as, but not limited to, an L2 cache 303, random access memory (RAM)
304, a bus unit 305, an input/output unit 306, an APIC 307, and a fuse array 308. Thus,
bus B1 311 enables CORE1 301 access to the uncore 302. Bus B2 312 enables CORE2
301 access to the uncore 302. Bus B3 313 enables CORE3 301 access to the uncore
302. And bus B4 314 enables CORE4 301 access to the uncore 302. In a typical
configuration, the multi-core processor is coupled to other elements (not shown)
external to the device die 310 such as, but not limited to, system memory (accessed
via a memory bus MEM), input/output elements (accessed via bus I/0), and system
control elements (accessed via bus CTRL). The control elements may include, but are
not limited to, a Peripheral Component Interconnect Express (PCl-e) element, a
Peripheral Component Interconnect (PCl) element, a Universal Serial Bus (USB)
element, a graphics adaptor, a co-processor, and an inter-processor communications

element.

[0058] In contrast to the multi-core processor of FIGURE 1, the multi-core processor
according to the present invention includes a replay reducer element 320 within each
of the cores 301. In one embodiment, the replay reducer 320 is configured to detect
loads that are directed to resources other than on-core cache memory (not shown), to
stall all younger dependent micro instructions from being dispatched until the loads
resolve, and to preclude assertion of any indications that would otherwise resultin a
replay event. Thus, one or more execution units (not shown) within the cores 301 may
enter into a power management mode as a result of stalling dispatch of the younger
dependent micro instructions, thus saving power on the die 310 which would

otherwise be wasted.

[0059] In operation, each of the cores 301, under operating system control, may
execute associated instructions that are fetched from system memory, and will

perform operations on operands that correspond to intended application. One or

WO 2016/097803 PCT/IB2014/003217
20

more of the cores 301 may require access to one or more of the uncore resources 302
and will access the one or more of the uncore resources 302 in a controlled manner via
a corresponding bus B1-B4. For example, during power initialization, one or more of
the cores 301 may perform a load operation from the fuse array 308 to retrieve
configuration parameters, or may perform a load from the RAM 304 to retrieve
microcode patches and/or other configuration information. During normal operation,
the cores 301 may access the L2 cache 303 to read/write memory operands which may
have been cached from the system memory that are not present in on-core caches
(e.g. L1 caches). The cores 301 may access the bus unit 305 to read/write from/to
system memory, or may utilize the 1/O unit 306 to perform I/O operations via the /O
bus. The cores 302 may access the bus unit 305 to read/write control data from/to the
control elements. The cores 301 may furthermore access the APIC 307 to perform

interrupt operations.

[0060] Rather than automatically declaring a miss as a result of these loads from
uncore 302, resulting in replay of dependent younger micro instruction streams, the
replay reducer 320 will stall execution of the dependent younger micro instruction
streams until the loads resolve, thus enabling execution unit power management
functions to be utilized. In one embodiment, the replay reducer 320 may also detect
other types of loads that are not specifically directed to uncore resources 302, but
which are guaranteed to otherwise cause a miss indication. These other types of loads
may include, but are not limited to, I/O loads, loads requiring a specified number of
cycles, loads that are known to require a page table walk such as those associated with
second level address translation (i.e., nested paging, x86 extended page table loads),
loads resulting from execution of x86 special bus cycles (e.g., shutdown, halt, flush,
etc.), and loads that are known to resolve to uncacheable memory space or write
combining space. Other embodiments contemplate detection of any type of load
operation where there is a significant probability that it will take more than the

specified number of clock cycles to complete.

WO 2016/097803 PCT/IB2014/003217
21

[0061] Turning to FIGURE 4, a block diagram 400 is presented depicting exemplary
core stages in each of the cores 301 of FIGURE 3. The diagram shows a processor core
401 that is disposed on the die 310. The core 401 includes a fetch stage 411 that is
coupled to a translator stage 412 via bus 441. The translator stage 412 is coupled to a
rename stage 413 via bus 442. The rename stage 413 is coupled to a replay mux stage
414 via bus 443. The replay mux 414 is coupled to a plurality of reservation stations
RS1-RSN 421.1-421.N and an enhanced load reservation station ERSL 421.L via
reservation and hold bus HOLDY 444. Reservation station ERSL includes an uncore
stall element 461. Each of the reservation stations RS1-RSN, ERSL is coupled to a
corresponding execution unit EUT-EUN 422.1-422.N, EUL 422.L via a corresponding
dispatch bus 451.1-451.N, 451.L. The reservation stations RS1-RSN, ERSL are coupled

to a register file 426 via register bus 445.

[0062] Except for execution unit EUL, the remaining execution units EUT-EUN may
comprise units typical to present day superscalar processors such as integer units,
floating point units, multimedia units, and store units. Execution unit EUL is a load
unit 422.L whose primary function is to load operands from a variety of resources
including, but not limited to, system memory, system I/O, and uncore resources 430,
as are described above with reference to FIGURE 3. Execution unit EUL additionally

comprises an unmiss element UMISS 462.

[0063] Accordingly, the load unit EUL is coupled to an L1 cache 423 via bus 454 and
to the uncore 430 via bus 456. For memory operands, the load unit 422.L first accesses
an L1 cache 423. If the load misses in the L1 cache 423, then the load unit 422.L must
access the L2 cache (hot shown) in the uncore 430. The execution units EUT-EUN, EUL
are also coupled to a reorder buffer 424 via bus 452. Additionally, the load unit EUL is
coupled to the reorder buffer 424 via bus MISS 453. The reorder buffer 424 is coupled
to the replay mux 414 via bus REPLAY 458, to a retire unit 425 via bus 457, and to the
reservation stations RS1-RSN, ERSL via the HOLDY bus 444. The retire unit 425 is
coupled to the register file 426 via a writeback WB bus 455.

WO 2016/097803 PCT/IB2014/003217
22

[0064] It is noted that the core stages shown in FIGURE 4 are presented as examples
in order to clearly teach aspects of the present invention, because they are exemplary
of those within present day out-of-order processor cores, yet is it noted that one
skilled in the art will be able to adapt aspects and features of the present invention
described herein to other processor core stage configurations which may be required

according to architecture and intended application.

[0065] In operation, program instructions (not shown) are fetched from memory (not
shown) by the fetch unit 411. In an x86-compatible processor core 401, these program
instructions comport with the x86 ISA. The program instructions are provided, in
order, to the translator 412 on bus 441. The translator 412 translates the program
instructions into one or more micro instructions that direct sub-operations in
corresponding execution units EUT-EUN, EUL in order to perform the operations
specified by the program instructions. The micro instructions are then provided to the
rename unit 413 on bus 442, where architectural registers (i.e., operand register
locations) specified in some of the micro instructions are remapped to hardware
registers (not shown) in the processor core 401 in order to increase execution
parallelism for independent micro instruction streams. The rename unit 413 also tags
each of the micro instructions according to serial program order, and source and
destination operand fields in the micro instructions are also tagged with the tags of
the younger micro instructions upon which one or more of their operands depend.

The renamed micro instructions are then provided to the replay mux 414 on bus 443.

[0066] The replay mux 414 reads the opcodes in each of the renamed micro
instructions to determine an appropriate execution unit EUT-EUN, EUL for execution
and, in particular, renamed load micro instructions are executed by the load execution
unit EUL. Thus, the replay mux 414 thus provides one or more renamed micro
instructions to one or more of the reservation stations RS1-RSN1, ERSL to await

dispatch to a corresponding execution unit EUT-EUN, EUL.

WO 2016/097803 PCT/IB2014/003217
23

[0067] Each of the reservation stations RS1-RSN, ERSL accesses the register file 426 to
read operands required by their renamed micro instructions queued for operation
therein. Renamed micro instructions that are not tagged with the tags of older
renamed micro instructions (i.e., the renamed micro instructions are not dependent on
the older renamed micro instructions) are immediately dispatched to corresponding
execution units EUT-EUN, EUL for execution. Except as will be described below,
dependent younger renamed micro instructions (i.e., renamed micro instructions that
include tags of older renamed micro instructions which have not yet completed
execution) are generally held up by the reservation stations RS1-RSN, ERSL until such
time as their tagged dependent operands are available. When the tagged dependent
operands are available, they are provided to the dependent younger renamed micro
instructions, and the younger micro instructions are dispatched to corresponding
execution units EU1-EUN, EUL for execution. The execution units EUT-EUN, EUL may
also perform a power saving function when they are not executing micro instructions.
Clocks internal to the execution units EUT-EUN, EUL are shut down when they are not

executing micro instructions, which saves substantial power.

[0068] Renamed micro instructions and their results are provided to the reorder
buffer 424 via bus 452. The reorder buffer 424 places all results from out-of-order
execution of the renamed micro instructions back into program order. That is, results
from renamed programed registers are remapped back to their corresponding
architectural registers and the results are queued for entry in the architectural registers
according to the specified program order of execution. Micro instructions that have
successfully completed execution with proper results are provided to the retire unit
425 on bus 457. The results of these retired micro instructions are written back to the

register file 426 on the WB bus 455.

[0069] When the reorder buffer 424 determines that a renamed micro instruction has
not executed successfully, then it must be replayed along with all younger dependent

renamed micro instructions that have been dispatched for execution. Accordingly, the

WO 2016/097803 PCT/IB2014/003217
24

reorder buffer 424 initiates a replay event by providing the tag of the unsuccessfully

executed renamed micro instruction on the replay bus 458.

[0070] When an unsuccessfully executed renamed micro instruction tag is provided
to the replay mux 414, the replay mux 414 in response backs up machine state to
comport with execution of renamed micro instructions beginning at the renamed

micro instruction whose tag was provided on REPLAY 458.

[0071] Except as will be described below, the present invention comprises
reservation stations RS1-RSN that are configured to stall micro instructions that
depend on a younger load micro instruction therein for a specified number of clock
cycles after the load micro instruction is dispatched, presuming the load micro
instruction will hit in the L1 cache 423 in the specified number of clock cycles. In one
embodiment, the specified number of clock cycles is four clock cycles. Other numbers

of clock cycles are contemplated.

[0072] Accordingly, except as is described below, the reservation stations RS1-RSN
comprise logic that stalls renamed micro instructions whose tags correspond with an
older load micro instruction until four clock cycles after dispatch of the older load
instruction, and then dispatches the renamed younger micro instructions to their
corresponding execution units EUT-EUN under the assumption that the load micro
instruction will hit in the L1 cache 423 within the four clock cycles and the tagged
operand will be ready. Though not shown in FIGURE 4, it is noted that the execution
units EUT-EUN, EUL may also access operands made available from load operations
and provide those operands to micro instructions executing therein. For loads that
complete in less than the specified number of cycles, such as loads that hit in the L1
cache 423, the operands are provided to the dispatched dependent younger micro
instructions, which execute through completion much faster than would otherwise be
provided for. And for loads take more than the specified number of clock cycles, such

as those that miss in the L1 cache, after successful completion of the loads, all

WO 2016/097803 PCT/IB2014/003217
25

dependent younger micro instructions that were dispatched under the assumption of
a hit must be replayed. Thus, upon a miss in the L1 cache 423, the load execution unit
EUL will inform the reorder buffer 424 of such by indicating the tag of the missed load

instruction on bus MISS 453 to initiate the replay of the younger instructions.

[0073] The present invention, however, also provides for exceptions to the above
acceleration scheme by including uncore stall logic 461 in the enhanced load
reservation station ERSL 421.L which detects one or more load micro instruction types
in order to implement power savings in one or more of the execution units EU1-EUN
by stalling younger micro instructions that are dependent on micro instructions of the
one or more load micro instruction types until their operands are available. The
unmiss logic 462 also detects the one or more load micro instruction types in order to
preclude assertion of a miss on bus MISS 453 when the micro instructions of the one or
more load micro instruction types take more than the specified number of clock cycles
to obtain their operands. By doing so, the micro instructions of the one or more load
micro instruction types are allowed to complete execution, and replays of those
younger micro instructions that are dependent on the micro instructions of the one or
more micro instruction types are not required because those younger dependent
micro instructions have been stalled in the reservation stations RS1-RSN. In one
embodiment, the reservation stations RS1-RSN, ERSL communicate information (e.g.,
tags) associated with detected micro instructions of the one or more micro instruction
types to each other and to the reorder buffer 424 via bus HOLDY 444 in order to
initiate stalls of the younger dependent micro instructions. When the micro
instructions of the one or more load micro instruction types complete execution, the
reorder buffer 424 directs the reservation stations RS1-RSN to release their stalled
younger dependent micro instructions for dispatch by providing tags of the micro
instructions of the one or more load micro instruction types that have completed on

HOLDY 444.

WO 2016/097803 PCT/IB2014/003217
26

[0074] Advantageously, the present invention provides for effective performance
related to load micro instructions corresponding to operands cached from system
memory, and substantially reduces the number of replays associated with load micro
instructions of the one or more micro instruction types, thus enabling the execution
units EUT-EUN to enter into power savings modes as they become empty due the

implemented dependency stalls.

[0075] Thus, for instance, a load micro instruction that is specifically directed to an
uncore resource 430 such as the fuse array 308, the bus unit 305, the APIC 307, the I/0O
unit 306, the L2 cache 303 and the RAM 304, will not result in replays of younger
dependent micro instructions having the tags of those loads from the uncore

resources 430.

[0076] In one embodiment, the one or more load micro instruction types may
include loads from specified uncore resources 430, along with other types of loads
including, but not limited to, I/O loads, loads requiring a specified number of cycles,
loads from system memory that are known to require a page table walk, loads
resulting from execution of x86 special bus cycles (e.g., shutdown, halt, flush, etc.),
loads that are known to resolve to uncacheable memory space, and loads that are
known to resolve to write combining memory space. Other embodiments
contemplate detection of any type of load operation where there is a significant
probability that it will take more than the specified number of clock cycles to

complete.

[0077] In one embodiment, the uncore stall element 461 and the unmiss element
462 may be configured upon initialization (e.g., power up or reset) of the processor
core 401 according to the present invention for detection of prescribed load micro
instruction types. The prescribed load micro instruction types may be read upon
initialization from specified locations in the fuse array 308. In another embodiment,

each of the cores 401 may be configured to detect different types of prescribed load

WO 2016/097803 PCT/IB2014/003217
27

micro instructions via programming in the fuse array 308, where types associated with
each of the cores 401 may be programmed into corresponding locations in the fuse
array 308. In a further embodiment, the prescribed load micro instruction types may
be programmed into the RAM 304 upon power up or reset via a Joint Test Action
Group (JTAG) interface (not shown) to the multi-core device 310, where the prescribed
load micro instruction types are read upon subsequent initialization from specified

locations in the RAM 304.

[0078] Now referring to FIGURE 5, a block diagram 500 is presented illustrating
details of the uncore stall element 461 of FIGURE 4. The stall element 461 comprises a
micro instruction register 510 that is coupled to uncore load opcodes detect logic 501.
The micro instruction register 510 comprises an micro instruction tag field OP TAG
511, an opcodes field MICRO OP 512, a source A field SRC A 513, a tag A field TAG A
514, a source B field SRC B 515, a tag B field TAG B 516, a source C field SRCC 517, and
a tag C field TAG C 518. The detect logic 501 generates a hold signal HOLDY that is
coupled to bus 444.

[0079] As one skilled in the art will appreciate, present day ISAs, such as the x86 ISA,
provide for a number of different operand addressing modes including, but not
limited to, direct, indirect, immediate, and relative. Consequently, one or more of the
source fields SRC A-C may contain operands, one or more may specify locations of
operands (including destination of result). Consequently, operation of the stall
element 461 will be described in a generic sense as regards the contents of the source
fields SRC A-C to allow for a broader application of the present invention to a wide

number of ISAs.

[0080] Operationally, as micro instructions are provided by the replay mux 414, load
micro instructions are entered into the micro instruction register 510. OP TAG has the
tag of the current micro instruction in the register 510, MICRO OP has its opcodes.

Contents of TAG A may contain the tag of an older micro instruction upon which

WO 2016/097803 PCT/IB2014/003217
28

contents of SRC A depend. Contents of TAG B may contain the tag of an older micro
instruction upon which contents of SRC B depend. Contents of TAG C may contain the
tag of an older micro instruction upon which contents of SRC C depend. The detect
logic 501 is configured to read contents of MICRO OP. If MICRO OP does not contain
one of the prescribed load opcodes that are described above which will cause younger
micro instructions in other reservation stations RS1-RSN that depend upon the current
micro instruction in the register 510 to be stalled, then the detect logic 501 deasserts
HOLD Y, thus indicating to RS1-RSN that those younger micro instructions therein may
be dispatched in due course. If, however, MICRO OP does contain one of the
prescribed load opcodes that are described above which will cause younger micro
instructions in other reservation stations RS1-RSN that depend upon the current micro
instruction in the register 510 to be stalled, then the detect logic 501 asserts HOLD Y
and places contents of OP TAG on bus 444, thus indicating to RS1-RSN that those
younger dependent micro instructions therein must be stalled until the load
prescribed by the currently micro instruction in register 510 is completed and a result
of the load is provided to the younger dependent micro instructions. When the load is

completed, the reorder buffer 424 will deassert HOLD Y, thus releasing the stall.

[0081] Turning to FIGURE 6, a block diagram is presented showing details of each of
the reservation stations RS1-RSN of FIGURE 4. The reservation station comprises a
micro instruction register 610 that is coupled to dependency check logic 601. The
micro instruction register 510 comprises an micro instruction tag field OP TAG 611, an
opcodes field MICRO OP 612, a source A field SRC A 613, a tag A field TAG A 614, a
source B field SRCB 615, a tag B field TAG B 616, a source C field SRCC 617, and atag C
field TAG C 618. The dependency check logic 601 generates a ready signal READY and
monitors hold signal HOLDY that is coupled to bus 444.

[0082] Contents of the fields 611-618 in register 610 are the same as is described
above with reference to FIGURE 5 for like-named fields. The check logic 601 is

additionally configured to read contents of the source tag fields TAG A-C. If contents

WO 2016/097803 PCT/IB2014/003217
29

of any of the tag fields TAG A-C match a tag that is on HOLDY when asserted, then the
micro instruction within the register 610 is stalled until such time as the load micro
instruction upon which the micro instruction within the register 610 depends
completes, its operand obtained via the load is provided to a corresponding source
field SRC A-C, and the reorder buffer 424 deasserts HOLDY. When HOLD Y is
deasserted, the check logic 601 asserts READY, indicating that the micro instruction in

register 610 is ready to be dispatched to its corresponding execution unit EUT-EUN.

[0083] If contents of the tag fields TAG A-C do not match a tag that is on HOLDY
when asserted, then the check logic 601 asserts READY, indicating that the micro

instruction in register 610 is ready to be dispatched to its corresponding execution

unit EUT-EUN.

[0084] Referring now to FIGURE 7, a block diagram 700 is presented showing details
of the uncore miss element 462 of FIGURE 4. The uncore miss element 462 comprises
a micro instruction register 710 that is coupled to load miss preclusion logic 701. The
micro instruction register 710 comprises an micro instruction tag field OP TAG 711, an
opcode field MICRO OP 712, a source A field SRC A 713, a tag A field TAG A 714, a
source B field SRCB 715, a tag B field TAG B 716, a source C field SRCC 717,and atag C
field TAG C 718. The miss preclusion logic 501 generates a no miss signal NOMISS.

[0085] Contents of the fields 711-718 in register 710 are the same as is described
above with reference to FIGURES 5-6 for like-named fields. The preclusion logic 701 is
configured to read contents of MICRO OP. If MICRO OP does not contain one of the
prescribed load opcodes that are described above which will cause younger
dependent micro instruction to be stalled, then the load miss preclusion logic 701
deasserts signal NOMISS, which informs corresponding load execution unit EUL 422.L
to manage the state of signal MISS in according to normal load instruction execution
protocols. If MICRO OP contains one of the prescribed opcodes, then the preclusion

logic 701 asserts NOMISS, which informs the corresponding load execution unit EUL

WO 2016/097803 PCT/IB2014/003217
30

422.L to preclude assertion of MISS during execution of the micro instruction in

register 710.

[0086] The elements described above according to the present invention are
configured to perform the functions and operations as discussed herein. The present
invention elements comprises logic, circuits, devices, or microcode (i.e., micro
instructions or native instructions), or a combination of logic, circuits, devices, or
microcode, or equivalent elements that are employed to execute the functions and
operations according to the present invention as noted. The elements employed to
accomplish these operations and functions may be shared with other circuits,
microcode, etc., that are employed to perform other functions and/or operations

within the multi-core microprocessor.

[0087] Portions of the present invention and corresponding detailed description are
presented in terms of software, or algorithms and symbolic representations of
operations on data bits within a computer memory. These descriptions and
representations are the ones by which those of ordinary skill in the art effectively
convey the substance of their work to others of ordinary skill in the art. An algorithm,
as the term is used here, and as it is used generally, is conceived to be a self-consistent
sequence of steps leading to a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not necessarily, these quantities
take the form of optical, electrical, or magnetic signals capable of being stored,
transferred, combined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common usage, to refer to these signals

as bits, values, elements, symbols, characters, terms, numbers, or the like.

[0088] It should be borne in mind, however, that all of these and similar terms are to
be associated with the appropriate physical quantities and are merely convenient
labels applied to these quantities. Unless specifically stated otherwise, or as is

apparent from the discussion, terms such as “processing” or “computing” or

WO 2016/097803 PCT/IB2014/003217
31

“calculating” or “determining” or “displaying” or the like, refer to the action and
processes of a computer system, a microprocessor, a central processing unit, or similar
electronic computing device, that manipulates and transforms data represented as
physical, electronic quantities within the computer system's registers and memories
into other data similarly represented as physical quantities within the computer
system memories or registers or other such information storage, transmission or

display devices.

[0089] Note also that the software implemented aspects of the invention are
typically encoded on some form of program storage medium or implemented over
some type of transmission medium. The program storage medium may be electronic
(e.g., read only memory, flash read only memory, electrically programmable read only
memory), random access memory magnetic (e.g., a floppy disk or a hard drive) or
optical (e.g., a compact disk read only memory, or "CD ROM"), and may be read only or
random access. Similarly, the transmission medium may be metal traces, twisted wire
pairs, coaxial cable, optical fiber, or some other suitable transmission medium known

to the art. The invention is not limited by these aspects of any given implementation.

[0090] The particular embodiments disclosed above are illustrative only, and those
skilled in the art will appreciate that they can readily use the disclosed conception and
specific embodiments as a basis for designing or modifying other structures for
carrying out the same purposes of the present invention, and that various changes,
substitutions and alterations can be made herein without departing from the scope of

the invention as set forth by the appended claims.

[0091] What is claimed is:

WO 2016/097803 PCT/IB2014/003217
32

CLAIMS

An apparatus for reducing replays in an out-of-order processor, the apparatus

comprising:

afirst reservation station, configured to dispatch a first load micro instruction,
and configured to detect and indicate on a hold bus if said first load
micro instruction is a specified load micro instruction directed to
retrieve an operand from one of a plurality of prescribed resources

other than on-core cache memory;

a second reservation station, coupled to said hold bus, configured to dispatch
one or more younger micro instructions therein that depend on said
first load micro instruction for execution after a first number of clock
cycles following dispatch of said first load micro instruction, and if it is
indicated on said hold bus that said first load micro instruction is said
specified load micro instruction, said second reservation station is
configured to stall dispatch of said one or more younger micro
instructions until said first load micro instruction has retrieved said

operand; and
said plurality of prescribed resources, comprising:

system memory, coupled to the out-of-order processor via a memory

bus.

The apparatus as recited in claim 1, wherein the out-of-order processor
comprises a multi-core processor, and wherein each core within said multi-core

processor comprises said first and second reservation stations.

WO 2016/097803 PCT/IB2014/003217
33

3. The apparatus as recited in claim 2, wherein said one of said plurality of
prescribed resources is disposed on the same die as said each core, yet is

disposed external to said each core.

4. The apparatus as recited in claim 2, wherein said system memory is not
disposed on the same die as said multi-core processor, and wherein said
specified load micro instruction is known to resolve to uncacheable memory

space in said system memory.
The apparatus as recited in claim 1, further comprising:

load execution logic, coupled to said first reservation station, configured to
receive and execute said first load micro instruction, and configured to
enter a power savings state if no micro instructions are received for

execution.

6. The apparatus as recited in claim 5, wherein, if said first load micro instruction is
not said specified load micro instruction, said load execution logic indicates on
a miss bus that said first load micro instruction fails to successfully execute
when more than said first number of clock cycles are required to retrieve said
operand, thus initiating a replay of said one or more younger micro

instructions.

The apparatus as recited in claim 6, wherein, if said first load micro instruction is
said specified load micro instruction, said load execution logic does not
indicate that said first load micro instruction fails to successfully execute when
more than said first number of clock cycles are required to retrieve said
operand, thus precluding a replay of said one or more younger micro

instructions.

WO 2016/097803 PCT/IB2014/003217

8.

10.

34

An apparatus for reducing replays, the apparatus comprising:

a multi-core processor, comprising a plurality of cores, wherein each of said

plurality of cores comprises:

afirst reservation station, configured to dispatch a first load micro
instruction, and configured to detect and indicate on a hold bus
if said first load micro instruction is a specified load micro
instruction directed to retrieve an operand from one of a
plurality of prescribed resources other than on-core cache

memory;

a second reservation station, coupled to said hold bus, configured to
dispatch one or more younger micro instructions therein that
depend on said first load micro instruction for execution after a
first number of clock cycles following dispatch of said first load
micro instruction, and if it is indicated on said hold bus that said
first load micro instruction is said specified load micro
instruction, said second reservation station is configured to stall
dispatch of said one or more younger micro instructions until

said first load micro instruction has retrieved said operand; and
said plurality of prescribed resources, comprising:

system memory, coupled to said multi-core processor via a

memory bus.

The apparatus as recited in claim 8, wherein said multi-core processor

comprises an x86-compatible multi-core processor.

The apparatus as recited in claim 8, wherein said one of said plurality of
prescribed resources is disposed on the same die as said multi-core processor,

yet is disposed external to said each of said plurality of cores.

WO 2016/097803 PCT/IB2014/003217

11.

12.

13.

14.

35

The apparatus as recited in claim 8, wherein said system memory is not
disposed on the same die as said multi-core processor, and wherein said
specified load micro instruction is known to resolve to uncacheable memory

space in said system memory.

The apparatus as recited in claim 8, wherein said each of said plurality of cores

further comprises:

load execution logic, coupled to said first reservation station, configured to
receive and execute said first load micro instruction, and configured to
enter a power savings state if no micro instructions are received for

execution.

The apparatus as recited in claim 12, wherein, if said first load micro instruction
is not said specified load micro instruction, said load execution logic indicates
on a miss bus that said first load micro instruction fails to successfully execute
when more than said first number of clock cycles are required to retrieve said
operand, thus initiating a replay of said one or more younger micro

instructions.

The apparatus as recited in claim 13, wherein, if said first load micro instruction
is said specified load micro instruction, said load execution logic does not
indicate that said first load micro instruction fails to successfully execute when
more than said first number of clock cycles are required to retrieve said
operand, thus precluding a replay of said one or more younger micro

instructions.

WO 2016/097803 PCT/IB2014/003217

15.

16.

17.

36

A method for reducing replays in an out-of-order processor, the method

comprising:

coupling the out-of-order processor to a plurality of prescribed resources, the
plurality of prescribed resources comprising a system memory that is

accessed via a system memory bus;

via a first reservation station, dispatching a first load micro instruction, and
detecting and indicating on a hold bus if the first load micro instruction
is a specified load micro instruction directed to retrieve an operand
from one of the plurality of prescribed resources other than on-core

cache memory; and

via a second reservation station that is coupled to the hold bus, dispatching
one or more younger micro instructions therein that depend on the first
load micro instruction for execution after a first number of clock cycles
following dispatch of the first load micro instruction, and if it is
indicated on the hold bus that the first load micro instruction is the
specified load micro instruction, stalling dispatch of the one or more
younger micro instructions until the first load micro instruction has

retrieved the operand.

The method as recited in claim 15, wherein the out-of-order processor
comprises a multi-core processor, and wherein each core within the multi-core

processor comprises the first and second reservation stations.

The method as recited in claim 16, wherein the one of the plurality of
prescribed resources is disposed on the same die as the each core, yet is

disposed external to the each core.

WO 2016/097803 PCT/IB2014/003217

18.

19.

20.

21.

37

The method as recited in claim 16, wherein the system memory is not disposed
on the same die as the multi-core processor, and wherein the specified load
micro instruction is known to resolve to uncacheable memory space in the

system memory.
The method as recited in claim 15, further comprising:

via load execution logic that is coupled to the first reservation station, receiving
and executing the first load micro instruction, and entering a power

savings state if no micro instructions are received for execution.

The method as recited in claim 19, wherein, if the first load micro instruction is
not the specified load micro instruction, indicating on a miss bus that the first
load micro instruction fails to successfully execute when more than the first
number of clock cycles are required to retrieve the operand, thus initiating a

replay of the one or more younger micro instructions.

The method as recited in claim 20, wherein, if the first load micro instruction is
the specified load micro instruction, not indicating that the first load micro
instruction fails to successfully execute when more than the first number of
clock cycles are required to retrieve the operand, thus precluding a replay of

the one or more younger micro instructions.

WO 2016/097803 PCT/IB2014/003217

1/5

FIG. 1 (Prior Art)
MULTI-CORE PROCESSOR WITH NON-CORE COMMON RESOURCES

100
’(,__

DEVICE DIE
110
111 113

RAM MEM
4

BUS UNIT io
105

CTRL

N @)
c
> (=
=

112 114

EUSE ARRAY
108

WO 2016/097803 PCT/IB2014/003217

2/5
FIG. 2 (Prior Art)
EXEMPLARY CORE STAGES
200
PROCESSOR CORE 4
201
FETCH
211
T ~——241
TRANSLATOR
212
T ~——242
A 4
RENAME
213
T ~——243
| REPLAY MUX
g 214 245
/ REG
244 X X) M EILE e
'YX M 226
R8T | . ee| BSN RSL
221.1 221.N 221.L
| —251.1 | —251N | —251L 254
EU1 EUN EUL / L
£l R L r 223
221 | **° 222N 2221 — UNCORE
256
(XN) 253
; MISS "
252
A A 4
REPLAY ROB
gL =
258
| 255
RETIRE WB W

WO 2016/097803 PCT/IB2014/003217

3/5
FIG. 3
POWER SAVING MECHANISM FOR LOADS FROM NON-CORE RESOURCES
/—300
DEVICE DIE
310
311 313
UNCORE
CORE1 302 CORE1
301 301
B1 L2 CACHE B3
REPLAY T 203 REPLAY
REDUCER 290 REDUCER
320 320
RAM MEM
304
BUS UNIT /0
305
I/Q UNIT CTRL >
306
312 314
APIC
CORE1 307 CORE1
301 301
B2 B4
REPLAY REPLAY
REDUCER EUSE ARRAY REDUCER
320 308 320

WO 2016/097803

PCT/IB2014/003217

4/5
FIG. 4
EXEMPLARY CORE STAGES FOR LOAD REPLAY REDUCTION
400
PROCESSOR CORE /_
401
FETCH
411
L~ 441
TRANSLATOR
412
L~ 442
A 4
RENAME
413
L~ 443
REPLAY MUX
414 445
/ REG
444 0o M EILE |e
) cee HOLDY 426
RS1 RSN ERSL UNCORE STALL
4211 | **®| 421N 21.L 461
| —451.1 | —451N | —451.L 454
y y E_LVJL / T
EU1 EUN 422.L ¢ 19°
- eee| — 423
4221 422N umiss | [N | UNCORE
452 =) _/ | =
0 4
—L_o Y) INS _/—453 *
458 MISS
/EEPLAY —
ROB
> 424
[455
RETIRE WB W
425

WO 2016/097803 PCT/IB2014/003217

5/5
UNCORE STALL DETAILS
(—511 (—512 (—513 (—514 (—515 (—516 ./_517 (—518
OP TAG MICRO OP SRCA | TAGA | SRCB [TAGB | SRCC [TAGC
510
UNCORE LOAD
> OPCODE DETECT M»
501
RESERVATION STATION DETAILS
/—600
(—611 (—612 (—613 (—614 (—615 (—616 (—617 (—618
< OP TAG MICRO OP SRCA | TAGA | SRCB [TAGB | SRCC | TAGC
DEPENDENCY 610
CHECK READY
w >
HOLDY
UNCORE MISS DETAILS
/—700
—T11 112 T8 T TS 716 71T 718

OP TAG MICROOP | SRCA|TAGA | srcB | TAGB | SRcc | TAGC

710

LOAD
MISS PRECLUSION
01

NOMISS

Y
v

INTERNATIONAL SEARCH REPORT International applicaﬁon No.
PCT/1B2014/003217

A. CLASSIFICATION OF SUBJECT MATTER
GOG6F 9/48(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT ,CNTXT,EPODOC,WPIL CNKI,out-of-order,processor,multi-core,core,reservation station,RS,intruction,replay,operand,
hold bus,memory,RAM

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A GB 2510655 A (IMAGINATION TECHNOLOGIES LIMITED) 13 August 2014 (2014-08- 1-21
13)
description, page 4, line 25 to page 9, line 8 and figures 1-2

A CN 101477454 A (UNIV. ZHEJIANG) 08 July 2009 (2009-07-08) 1-21

the whole document

A CN 101710272 A (BEIJING LOONGSON TECHNOLOGY SERVICE CENTER CO., LTD.) 1-21
19 May 2010 (2010-05-19)

the whole document

A CN 103942033 A (IMAGINATION TECHNOLOGY LIMITED) 23 July 2014 (2014-07-23) 1-21

the whole document

A CN 101894009 A (VIA TECHNOLOGIES INC.) 24 November 2010 (2010-11-24) 1-21

the whole document

A CN 101681261 A (FUJIITSU LTD.) 24 March 2010 (2010-03-24) 1-21

the whole document

Further documents are listed in the continuation of Box C. See patent family annex.

Special categories of cited documents:

document defining the general state of the art which is not considered ~ «p» later document published after the international filing date or priority
to be of particular relevance date and not in conflict with the application but cited to understand the

earlier application or patent but published on or after the international principle or theory underlying the invention
filing date wx
“ document which may throw doubts on priority claim(s) or which is

cited to establish the publication date of another citation or other) , . .
special reason (as specified) wy» document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

, document referring to an oral disclosure, use, exhibition or other
means

«p»» document published prior to the international filing date but later than <. ¢ .
P’ the oriori : &
e priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
08 June 2015 26 June 2015
Name and mailing address of the ISA/CN Authorized officer
STATE INTELLECTUAL PROPERTY OFFICE OF THE
P.R.CHINA
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing FU,Yuan
100088, China
Facsimile No. (86-10)62019451 Telephone No. (86-10)62413648

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

PCT/1IB2014/003217

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A CN 101526895 A (HANGZHOU ZHONGTIAN MICRO SYSTEM CO., LTD.) 09 September 1-21
2009 (2009-09-09)

the whole document

A US 2014181476 A1 (SRINIVASAN, SRIKANTH T. ET AL.) 26 June 2014 (2014-06-26) 1-21
the whole document

A US 2014189328 A1 (WEINER, TOMER ET AL.) 03 July 2014 (2014-07-03) 1-21
the whole document

A US 7937563 B2 (ADVANCED MICRO DEVICES INC.) 03 May 2011 (2011-05-03) 1-21
the whole document

A US 2013205117 A1 (PALANCA, SALVADOR ET AL.) 08 August 2013 (2013-08-08) 1-21
the whole document

A US 2013339679 Al (INTEL CORPORATION) 19 December 2013 (2013-12-19) 1-21

the whole document

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/1B2014/003217
. Patf:nt document Publication date Patent family member(s) Publication date
cited in search report (day/month/year) (day/month/year)
GB 2510655 A 13 August 2014 CN 104346223 A 11 February 2015
DE 102014011332 Al 05 February 2015
usS 2015106595 Al 16 April 2015
GB 2510655 B 25 February 2015
CN 101477454 A 08 July 2009 None
CN 101710272 A 19 May 2010 CN 101710272 B 05 September 2012
CN 103942033 A 23 July 2014 [N 2014218224 Al 07 August 2014
GB 2514956 B 01 April 2015
GB 2514956 A 10 December 2014
GB 2509974 B 01 April 2015
GB 2509974 A 23 July 2014
DE 102014000384 Al 24 July 2014
CN 101894009 A 24 November 2010 CN 101894009 B 22 May 2013
™ 201106262 A 16 February 2011
us 8332618 B2 11 December 2012
us 2011035573 Al 10 February 2011
™ 1451333 B 01 September 2014
CN 101681261 A 24 March 2010 IP 5104863 B2 19 December 2012
KR 20100009593 A 27 January 2010
KR 101100145 B1 29 December 2011
us 2010095092 Al 15 April 2010
EP 2159689 A4 05 January 2011
WO 2008155800 A1l 24 December 2008
EP 2159689 Al 03 March 2010
CN 101681261 B 16 July 2014
[N 7958339 B2 07 June 2011
CN 101526895 A 09 September 2009 CN 101526895 B 05 January 2011
UsS 2014181476 Al 26 June 2014 None
uUsS 2014189328 Al 03 July 2014 None
UsS 7937563 B2 03 May 2011 [N 2009300329 Al 03 December 2009
Us 2013205117 Al 08 August 2013 UsS 2012191951 Al 26 July 2012
us 8959314 B2 17 February 2015
[N 6651151 B2 18 November 2003
us 2013067200 Al 14 March 2013
us 2004044883 Al 04 March 2004
us 2013305018 Al 14 November 2013
usS 2013073834 Al 21 March 2013
us 8171261 B2 01 May 2012
us 6678810 Bl 13 January 2004
[N 2003084259 Al 01 May 2003
™ 493123 B 01 July 2002
UsS 2013339679 Al 19 December 2013 None

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - wo-search-report
	Page 45 - wo-search-report
	Page 46 - wo-search-report

