(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number WO 2014/120167 A1 (43) International Publication Date 7 August 2014 (07.08.2014) (51) International Patent Classification: *E21B 17/02* (2006.01) *E21B 43/10* (2006.01) (21) International Application Number: PCT/US2013/023973 (22) International Filing Date: 31 January 2013 (31.01.2013) (25) Filing Language: English (26) Publication Language: English - (71) Applicant (for all designated States except US): HAL-LIBURTON ENERGY SYSTEMS, INC. [US/US]; 10200 Bellaire Blvd., Houston, Texas 77072 (US). - (72) Inventor; and - (71) Applicant (for US only): VEIT, Jan [CZ/US]; 3201 Dover Drive, Plano, Texas 75075 (US). - (74) Agents: GRISWOLD, Joshua A. et al.; Fish & Richardson P.C., P.O. Box 1022, Minneapolis, Minnesota 55440 (US). - (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, - AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. - (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). #### Published: with international search report (Art. 21(3)) #### (54) Title: SPRING CLIPS FOR TUBULAR CONNECTION FIG. 1 (57) Abstract: A jumper tube is connected to a shunt tube of a well screen assembly by positioning the jumper tube end to end, adjacent with the shunt tube. A spring clip is then flexed over a profile of a coupling and allowed to snap into gripping engagement of the coupling, thereby retaining the jumper tube relative to the first screen assembly. # SPRING CLIPS FOR TUBULAR CONNECTION ## **TECHNICAL FIELD** [0001] This disclosure relates to coupling jumper tubes of well screen assemblies. ## **BACKGROUND** [0002] Wells often use screen systems in their production string to filter solid particles (e.g., sand) greater than a permitted size. Some wells are gravel packed by placing gravel in the annulus around the well screen system. For example, in an open-hole completion, gravel is typically placed between the wall of the wellbore and the production string. Alternatively, in a cased-hole completion, gravel is placed between a perforated casing string and the production string. In both types of completions, formation fluids flow from the subterranean formation into the production string through the gravel pack and well screen system. [0003] The gravel is carried into the well with a carrier liquid in a slurry. Premature loss of the carrier liquid into the formation can result in an incomplete packing of the production interval and cause sand bridges to form in the annulus. Alternate flow paths through the well screen systems can be used to provide an alternate path around the sand bridges. For example, shunt tubes in the well screen assemblies and jumper tubes between the well screen assemblies can be used to bypass sand bridges. # **DESCRIPTION OF DRAWINGS** [0004] FIG. 1 is a schematic side view of a well system in accordance with the present disclosure; [0005] FIG. 2 is a perspective view of an example of a well screen system applicable to the well system of FIG. 1; [0006] FIG. 3 is a detail side view of an example of installation of jumper tubes between the well screen assemblies of FIG. 2; [0007] FIG. 4 is a detail side view of coupling sleeves being installed using spring clips in the well screen assemblies of FIG. 2; and [0008] FIGS. 5A and 5B are perspective views of example spring clips for connecting jumper tubes. [0009] Like reference symbols in the various drawings indicate like elements. ## **DETAILED DESCRIPTION** [0010] In some implementations, in completing an open hole section of a well, a production string having one or more well screen assemblies is run into the open hole section of the well bore. The screen assemblies are axially spaced along the length of the string. Each screen assembly has a filtration screen that encircles a base pipe. The base pipe has portion with one or more apertures that allow communication of fluids through the screen, and a portion not apertured (i.e., fluid impermeable) outside of the screen. An apertured shroud is positioned around the exterior of the filtration screen. Shunt tubes run axially through the screen assembly from one end to the other, and are radially between the apertured shroud and base pipe. The ends of the filtration screen are capped with annular end rings. The screen assemblies thread end to end, and jumper tubes connect between the end rings to connect the shunt tubes of one screen assembly to the next. Another shroud is positioned around the jumper tubes between the screen assemblies. With the production string in place, the annulus around the well screen assemblies is "gravel packed." In gravel packing, a particulate (e.g., gravel) laden slurry is pumped into the wellbore exterior the string. The particulate is deposited in the annulus around the screen assemblies, and the liquid in the slurry is pumped backed to the surface. [0011] The joints of well screen assembly are transported to the well site individually (i.e., not coupled together) and are made-up into the production string joint by joint as the string is run into the well. Thus, the jumper tubes are installed on the drilling rig floor after the screen assembly joints are threaded together. A spring clip can be provided to hold the jumper tube to the end ring to maintain connection of the jumper tube and shunt tube. In certain instances, engaging the spring clips to hold the jumper tube does not require tools (e.g., a screw driver, a wrench, and/or other hand tool) or may only require use of a hammer to secure the jumper tubes. Additionally, everything is attached to either the jumper tube or the well screen assembly, so there are no small parts to complicate the assembly or be dropped into the well. [0012] FIG. 1 is a schematic side view of a well system 100 in accordance with the present disclosure. The well system 100 is shown as being a horizontal well, having a wellbore 114 that extends substantially vertically from a wellhead 18 at the surface, then deviates to horizontal or substantially horizontal in the subterranean zone of interest 124. A casing 116 is cemented in the vertical portion of the wellbore and coupled to the wellhead 118 at the surface 120. The remainder of the wellbore 114 is completed open hole (i.e., without casing). A production string 122 extends from wellhead 118, through the wellbore 114 and into the subterranean zone of interest 124. [0013] A production packer 126 seals the annulus between the production string 122 and the casing 116. Additional packers 126 can be provided between the screen assemblies 112. The production string 122 operates in producing fluids (e.g., oil, gas, and/or other fluids) from the subterranean zone 124 to the surface 120. The production string 122 includes one or more well screen assemblies 112 (three shown). In some instances, the annulus between the production string 122 and the open hole portion of the wellbore 114 may be packed with gravel and/or sand. The well screen assemblies 112 and gravel/sand packing allow communication of fluids between the interior of the production string 122 and the subterranean zone 124. The gravel/sand packing provides a first stage of filtration against passage of particulate and larger fragments of the formation to the production string 122. The well screen assemblies 112 provide a second stage of filtration, and are configured to filter against passage of particulate of a specified size and larger into the production string 122. [0014] Although shown in the context of a horizontal well system 100, the concepts herein can be applied to other well configurations, including vertical well systems having a vertical or substantial vertical wellbore, multi-lateral well systems having multiple wellbores deviating from a common wellbore and/or other well systems. [0015] FIG. 2 illustrates an example manner of connecting two well screen assemblies of an example well screen system 200 that can be used in the well system of FIG. 1. For convenience of description, the well screen system 200 is illustrated with its inner components exposed (i.e., the outer shroud 201 is shown in partial break away). The well screen system 200 includes a first well screen assembly 202 and a second well screen assembly 203. The well screen assembly 202 includes a base pipe 205; and the well screen assembly 203 includes a base pipe 207. The base pipes 205, 207 are coupled end to end to each other (e.g., threadingly and/or otherwise). The well screen assembly 202 further includes a screen 210 around the base pipe 205. For example, the screen 210 can include one or more layers of sheet mesh or wire wrapped screen with a selected industry rating for filtering solid materials over a specified size. Similarly, the screen assembly 203 further includes a screen 212 similar to the screen 210. [0016] An elongate shunt tube 224 is arranged axially along the base pipe 205 and terminated at an end ring 232 of the base pipe 205. The shunt tube 224 extends to another end ring (not shown) at the opposite end of
the base pipe 205. The shunt tube 224 enables fluid to bypass during gravel packing operations. Similarly, the well screen assembly 203 includes an elongate shunt tube 226 that is arranged axially along the base pipe 207 and terminated at an end ring 234. The shunt tube 226 may be substantially similar to the shunt tube 224. [0017] As illustrated in FIG. 2, each well screen assembly 202 or 203 includes one or more shunt tubes (two shown). The shunt tubes can be radially positioned between the screen 210 and the outer shroud assembly 201. In some implementations, the shunt tube 224 may be geometrically constrained to fit between the screen and the shroud, such that the cross section of the shunt tube 224 is not circular. In certain instances, the cross-section resembles a flat rounded rectangle. The shunt tubes 224, 226 are fluidically connected by an elongate jumper tube 220. The jumper tube 220 can have a substantially similar cross section as the shunt tubes 224, 226 (e.g., shown resembling a flat rounded rectangle). The shunt tubes 224 or 226 and the jumper tube 220 can be connected using coupling sleeves 236, 246. The coupling sleeves 236, 246 are shown in FIG. 2 as carried on the jumper tubes 220. In other instances, the sleeves 236, 246 could be carried on the shunt tubes 224, 226. The jumper tubes 220 and the shut tubes 224, 226 can include an outer profile for carrying seals to form a liquid and/or gas tight seal with the coupling sleeves 236, 246. FIG. 3 illustrates an example of installation of the jumper tube 220 between well screen assemblies 202, 203. Each end of the jumper tube 220 may include a coupling sleeve 236 or 246. After the screen assemblies 202, 203 are coupled together, the jumper tube 220 can be installed by first sealingly coupling one end (e.g., the coupling sleeve 236) with an end portion of the shunt tube 226 first and then sealingly coupling the other end (e.g., the coupling sleeve 246) with an end portion of the shunt tube 224. The seal between the coupling sleeve 236 or 246 and the shunt tubes 224 or 226, as well as the jumper tube 220 may be created using metal to rubber, metal to metal, or other seals. [0019] In the example, one coupling sleeve 236 may be affixed to the jumper tube 220; while the other coupling sleeve 246 can move along the longitudinal axis of the jumper tube 220. Thus, the jumper tube 220 is placed with the coupling sleeve 236 ready to be coupled with the shunt tube 224. The jumper tube 220 is then moved towards the shut tube 226, and the coupling sleeve 236 is forced into position over an interface between the jumper tube 220 and the shunt tube 226. The spring clip 230 is affixed to the end ring 232 and protrudes axially toward the other well screen assembly 203. The coupling sleeve 236 and spring clip 230 are configured such that the coupling sleeve 236 forces the spring clip 230 to flex outward over a profile protruding from the side of the coupling sleeve 236 when the jumper tube 220 and coupling sleeve 236 are moved into position. With the jumper tube 220 and coupling sleeve 236 in final position, the spring clip 230 snaps into gripping engagement of the profile of the coupling sleeve 246 to secure one end of the jumper tube 220 to the shunt tube 226. The spring clip 230 may include a wedge-shaped leading end (i.e., on the end opposite the end ring). The wedge-shaped end can be a true triangle or have a curved or other similar shape that is configured to help force the spring clip 230 to flex outward over the profile when the coupling sleeve 236 or 246 is pushed in place. Detail of the wedge-shaped end and the gripping engagement are illustrated in FIG. 4, discussed below. If the coupling sleeve 236 is oriented downward (i.e., with the jumper tube 220 extending upward) the weight of the jumper tube 220 can be used to force the profile of the coupling sleeve 236 into the spring clip 230. There are no screws, bolts, nuts or any other small items that are needed to make up the connection; therefore no hand tools are needed. Additionally, everything is attached to either the jumper tube 220 or the well screen assembly, so there are no small parts to complicate the assembly or potentially be dropped into the well. [0021] After the coupling sleeve 236 is in place, the other end of the jumper tube (e.g., the coupling sleeve 246) is aligned with the shunt tube 226. The coupling sleeve 246 is then telescopically extended over the shunt tube 224 into a coupling position, with its profile flexing the spring clip 230 outward as it moves. The spring clip 230 is affixed to the end ring 234 and protrudes axially toward the other well screen assembly 202. The spring clip 230 snaps into gripping engagement of the profile on the coupling sleeve 246 as the coupling sleeve 246 is extended into final position to secure the jumper tube 220 to the shunt tube 224. The force for telescopically extending the coupling sleeve 246 can be applied by the operator manually grasping the sleeve 246 with his hands and pushing the sleeve 246 into place. If additional force is required, a hammer may be used. However, as above, there are no screws, bolts, nuts or any other small items that are needed to make up the connection; therefore no hand tools are needed. Additionally, everything is attached to either the jumper tube 220 or the well screen assembly, so there are no small parts to complicate the assembly or potentially be dropped into the well. [0022] Notably, although discussed as being different configurations of coupling sleeves 236, 246, in some implementations, the coupling sleeve 236 may be identical to the coupling sleeve 246. Also, the order of installation of the coupling sleeves 236, 246 described above may be altered based on the specific embodiment of the coupling sleeve. FIG. 4 shows coupling sleeves 236 at the installed position grippingly engaged by the spring clip 230. One of the coupling sleeves 236 is shown in half cross-section. As illustrated in the cross-sectioned coupling sleeve 236, a protrusion 410 and a groove 412 define a profile on the side of the coupling sleeve 236 that is gripped by the spring clip 230. The coupling sleeve 246 can have a similar profile. The groove 412 allows the spring clip 230 to apply locking force in the direction along the longitudinal axis of the jumper tube. For example, the spring clip 230 has a curved end that enters the groove 412 and rests on the sidewall of the groove 412. The curved end holds the coupling sleeve 236 towards the shunt tube 226. Resultantly, the spring clip 230 can perform substantially all retaining of the jumper tubes 220 during operation of the well screen system downhole. The end of the shunt tube 226 may include seal 428 that can seal with the coupling sleeve 426. Various embodiments of the spring clip 230 may be implemented. Two specific examples are further illustrated in FIGS. 5A and 5B. [0024] FIGS. 5A and 5B illustrate examples of spring clips 500 and 550 for connecting jumper tubes that can be used as spring clip 230. Each spring clip 500, 550 includes a mounting flange 505 that allows the spring clip 500, 550 to be affixed to the end ring or other structure of the well screen assembly. Each spring clip includes an engagement portion 520 that allows the spring clip 500, 550 to snap into and grippingly engage a profile of a coupling sleeve, providing locking forces along the longitudinal axis of a jumper tube. In FIG. 5B, the spring clip 550 has a substantially flat portion 560 between the flange 505 and engagement portion 520. In FIG. 5A, the spring clip 500 has an angled portion 510 between the flange 505 and the engagement portion 520. In certain instances, the spring clips 500, 550 are made from bent metal, e.g., spring steel or another metal. Although two specific examples of spring clips are illustrated in FIGS. 5A and 5B, other implementations self-locking/securing mechanism are possible. [0025] A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made. Accordingly, other embodiments are within the scope of the following claims. #### WHAT IS CLAIMED IS: 1. A well screen system, comprising: a first well screen assembly comprising a first base pipe, a first screen around the first base pipe and a first shunt tube arranged axially along the base pipe; a second well screen assembly comprising a second base pipe adapted to couple to the first base pipe, a second screen around the second base pipe and a second shunt tube arranged axially along the base pipe; a jumper tube adapted to couple the first and second shunt tubes; and a spring clip adapted to grippingly engage the jumper tube to the first well screen assembly. 2. The well screen system of claim 1, where the jumper tube comprises a coupling sleeve telescopically carried on an elongate tubing; and where the spring clip snaps into gripping engagement of the coupling sleeve when the coupling sleeve is telescopically extended into position over an interface between the elongate tubing of the jumper tube and the first shunt tube. - 3. The well screen system of claim 2, where the spring clip is affixed to the first well screen assembly. - 4. The well screen system of claim 2, where the spring clip grips a protrusion of the coupling sleeve. - 5. The well screen system of claim 4, where the spring clip comprises a wedge-shaped end opposite the first screen assembly, the wedge-shaped end is positioned to force the spring clip to flex radially over the protrusion when the coupling sleeve is telescopically extended into the spring clip. - 6. The well screen system of claim 2, where the spring clip snaps into gripping engagement of the coupling sleeve by forcing the coupling sleeve into the spring clip. 7. The well screen system of claim 2, where the jumper tube comprises a second coupling sleeve telescopically carried on the elongate tubing, the second coupling sleeve being axially shorter
than the first mentioned coupling sleeve; and comprising a second spring clip affixed relative to the second well screen assembly that snaps into gripping engagement of the second coupling sleeve when the second coupling sleeve is telescopically extended into position over an interface between the elongate tubing of the jumper tube and the second shunt tube. - 8. The well screen system of claim 1, where the first well screen assembly comprises an end ring and where the spring clip is affixed to the end ring and protrudes axially toward the second well screen assembly. - 9. The well screen system of claim 1, where the spring clip can be set into engaging the jumper tube to the first well screen assembly without using hand tools. - 10. The well screen system of claim 9, where the spring clip is flexed radially and then snaps into gripping engagement of the jumper tube as the jumper tube is positioned adjacent the first shunt tube. - 11. The well screen system of claim 1, where the spring clip performs substantially all retaining of the jumper tube to the first shunt tube during operation of the well screen system downhole. 12. A method of coupling a jumper tube to a shunt tube of a well screen assembly, comprising: positioning the jumper tube end to end, adjacent with the shunt tube; and flexing a spring clip over a profile of a coupling and allowing it to snap into gripping engagement of the coupling retaining the jumper tube relative to the screen assembly. - 13. The method of claim 12, where the jumper tube comprises the coupling and the method comprises telescopically extending the coupling of the jumper tube into position over an interface between the jumper tube and shunt tube, and grippingly engaging the coupling with the spring clip. - 14. The method of claim 13, comprising extending the coupling by hand. - 15. The method of claim 12, where flexing the spring clip and allowing it to snap into gripping engagement of the coupling is performed without hand tools. - 16. The method of claim 12, comprising retaining the jumper tube to the shunt tube substantially entirely with the spring clip during operation of the well screen assembly downhole. 17. A system for coupling a jumper tube to a shunt tube of a well screen assembly, the system comprising: a profile; and a spring clip grippingly engaging the profile to retain the jumper tube to the well screen assembly. - 18. The system of claim 17, comprising a telescoping coupling sleeve associated with the jumper tube and comprising the profile. - 19. The system of claim 17, where the spring clip is adapted to flex and snap into gripping engagement of the profile without using hand tools. - 20. The system of claim 17, where the spring clip retains the jumper tube in sealing engagement with the shunt tube when the spring clip is grippingly engaging the profile of the jumper tube. F. 6. FIG. 4 International application No. **PCT/US2013/023973** ## A. CLASSIFICATION OF SUBJECT MATTER E21B 17/02(2006.01)i, E21B 43/10(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC #### B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) E21B 17/02; E21B 23/14; E21B 43/12; E21B 43/04; E21B 43/00; E21B 33/122; E21B 43/16; E21B 43/08; E21B 43/10 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Korean utility models and applications for utility models Japanese utility models and applications for utility models Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) eKOMPASS(KIPO internal) & keywords: shunt tube, jumper tube, screen, filter, sand bridge, bypass, and spring clip ## C. DOCUMENTS CONSIDERED TO BE RELEVANT | Category* | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. | |-----------|--|-----------------------| | Y | US 2009-0294128 A1 (DALE et al.) 03 December 2009
See abstract, paragraph [0046], and figure 3B. | 1,9-12,15-17,19-20 | | A | see abstract, paragraph [0040], and figure ob. | 2-8,13-14,18 | | Υ | US 2012-0234532 A1 (KUO, NICHOLAS A.) 20 September 2012 See abstract, paragraphs [0019]-[0021], and figures 2-3. | 1,9-12,15-17,19-20 | | A | US 2006-0283604 A1 (SETTERBERG, JR. et al.) 21 December 2006 See abstract, paragraphs [0020]-[0021], and figure 2. | 1-20 | | A | US 2002-0157836 A1 (ROYER et al.) 31 October 2002
See abstract, paragraph [0023], and figure 2. | 1-20 | | A | US 2003-0075315 A1 (NGUYEN et al.) 24 April 2003
See abstract and claim 29. | 1-20 | | | | | | | | | | | | | | | | | | | Further documents are listed in the continuation of Box C. | | \boxtimes | See patent family annex. | |------|---|------|-------------|---| | * | Special categories of cited documents: | "T" | later d | ocument published after the international filing date or priority | | "A" | document defining the general state of the art which is not considered | | date a | nd not in conflict with the application but cited to understand | | | to be of particular relevance | | the pri | nciple or theory underlying the invention | | "E" | earlier application or patent but published on or after the international | "X" | docun | ent of particular relevance; the claimed invention cannot be | | | filing date | | consid | ered novel or cannot be considered to involve an inventive | | "L" | document which may throw doubts on priority claim(s) or which is | | step v | hen the document is taken alone | | | cited to establish the publication date of citation or other | "Y" | | ent of particular relevance; the claimed invention cannot be | | | special reason (as specified) | | | ered to involve an inventive step when the document is | | "O" | document referring to an oral disclosure, use, exhibition or other | | | ned with one or more other such documents, such combination | | | means | | being | obvious to a person skilled in the art | | "P" | document published prior to the international filing date but later | "&" | docun | nent member of the same patent family | | | than the priority date claimed | | | | | Date | e of the actual completion of the international search | Date | of ma | iling of the international search report | | | 07 October 2013 (07.10.2013) | | (| 08 October 2013 (08.10.2013) | Authorized officer CHOI Hyun Goo Telephone No. +82-42-481-8288 Facsimile No. +82-42-472-7140 Name and mailing address of the ISA/KR Korean Intellectual Property Office 302-701, Republic of Korea 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, ## INTERNATIONAL SEARCH REPORT Information on patent family members International application No. PCT/US2013/023973 | Patent document cited in search report | Publication date | Patent family member(s) | Publication date | |--|------------------|--|--| | US 2009-0294128 A1 | 03/12/2009 | AU 2006-337613 A1 AU 2006-337614 A1 AU 337613 B2 AU 337614 B2 BR P10621246 A2 BR P10621253 A2 CA 2637040 A1 CA 2637301 A1 CN 101365862 A CN 101375015 A CN 101375015 B EA 013376 B1 EA 013937 B1 EA 200870227 A1 EA 200870228 A1 EP 1987225 A2 EP 2016257 A2 MX 200809797 A NO 20083322 A NO 20083323 A US 2010-0032158 A1 US 8215406 B2 US 8403062 B2 US 8517098 R2 | 16/08/2007
16/08/2007
12/01/2012
19/07/2012
06/12/2011
06/12/2011
16/08/2007
16/08/2007
11/02/2009
05/06/2013
25/02/2009
05/06/2013
30/04/2010
27/02/2009
27/02/2009
27/02/2009
05/11/2008
21/01/2008
21/01/2008
29/10/2008
11/02/2010
20/09/2012
10/07/2012
26/03/2013 | | | | US 8403062 B2
US 8517098 B2
WO 2007-092082 A2
WO 2007-092082 A3
WO 2007-092083 A2
WO 2007-092083 A3 | 26/03/2013
27/08/2013
16/08/2007
03/01/2008
16/08/2007
21/12/2007 | | US 2012-0234532 A1 | 20/09/2012 | AU 2011-283030 A1
CA 2806184 A1
CN 103038437 A
EP 2598709 A2
SG 187240 A1
US 2012-0024545 A1
US 8302697 B2
US 8371372 B2
WO 2012-015641 A2
WO 2012-015641 A3 | 28/02/2013
02/02/2012
10/04/2013
05/06/2013
28/03/2013
02/02/2012
06/11/2012
12/02/2013
02/02/2012
12/04/2012 | | US 2006-0283604 A1 | 21/12/2006 | CA 2541416 A1 CA 2541416 C CA 2709859 A1 CA 2709859 C GB 0606006 D0 GB 2427213 A GB 2427213 B | 16/12/2006
19/10/2010
16/12/2006
06/08/2013
03/05/2006
20/12/2006
01/08/2007 | ## INTERNATIONAL SEARCH REPORT Information on patent family members International application No. PCT/US2013/023973 | US 2002-0157836 A1 31/10/2002 CA 2432892 A1 18/07/200 | Patent document cited in search report | Publication date | Patent family member(s) | Publication date |
--|--|------------------|-------------------------|------------------| | US 2009-0159270 A1 25/06/2000 US 7497267 B2 03/03/2000 US 7497267 B2 03/03/2000 US 7497267 B2 15/02/2010 US 2002-0157836 A1 31/10/2002 CA 2432892 C 18/12/2000 EP 1350009 A1 08/10/2000 GB 0320532 D0 01/10/2000 GB 2390108 A 31/12/2000 GB 2390108 B 13/04/2000 MN 020032691 D0 13/06/2000 US 6698518 B2 02/03/2000 WO 02-055842 A1 18/07/2000 US 6698518 B2 02/03/2000 WO 02-055842 A1 18/07/2000 MN 020032691 D0 13/06/2000 02003269 | | | NO 20062746 A | 19/19/2006 | | US 2002-0157836 A1 31/10/2002 CA 2432892 A1 18/07/200 CB 23002-0157836 A1 31/10/2002 CA 2432892 C 18/12/200 CB 2350009 A1 08/10/200 CB 2390108 A 31/12/200 CB 2390108 B 13/04/200 CB 2390108 B 13/04/200 CB 2390108 B 13/04/200 CB 2590108 C 13/08/200 25003-0075315 A1 24/04/2003 AU 1999-29598 A 06/05/199 AU 2000-18862 A1 11/02/200 AU 2000-18862 A1 11/09/200 AU 2001-18407 A1 13/09/200 AU 389294 B2 27/09/200 AU 389294 B2 13/09/200 AU 89295 B2 27/09/200 AU 89295 B2 27/09/200 CA 2339531 A1 07/09/200 CA 2339531 A1 10/09/200 CA 2350593 A1 16/04/199 CB 9009874 A3 27/10/199 CB 9009874 A3 27/10/199 CB 9009875 2001-0050169 A1 13/12/200 CB 2002-0070019 A1 13/06/200 CB 6481494 B1 19/11/200 CB 6481494 B1 19/11/200 CB 6481494 B1 19/11/200 CB 6571872 B2 00/08/200 CB 671872 B2 00/08/200 | | | | | | US 7886819 B2 15/02/201 US 2002-0157836 A1 31/10/2002 CA 2432892 A1 18/07/200 EP 1350009 A1 08/10/200 GB 0390532 D0 01/10/200 GB 2390108 A 31/12/200 GB 2390108 B 13/04/200 US 6698518 B2 02/03/200 WO 02-055842 A1 18/07/200 US 6698518 B2 02/03/200 WO 02-055842 A1 18/07/200 US 2003-0075315 A1 24/04/2003 AU 1998-89295 C 06/05/198 AU 2000-48862 A1 10/02/200 AU 2001-18407 A1 13/09/200 AU 2001-18407 A1 13/09/200 AU 38914 B2 27/09/200 AU 89294 B2 13/09/200 AU 89295 B2 27/09/200 2000-010650 A1 06/06/200 AU 80200-0106661 A1 14/11/200 AU 80200-0106650 A1 06/08/200 AU 80200-0106661 A1 14/11/200 AU 80200-0106650 A1 06/08/200 | | | | | | CA 2432892 C 18/12/200 EP 1350009 AT 08/10/200 GB 0320532 D0 01/10/200 GB 2390108 A 31/12/200 GB 2390108 B 13/04/200 MO 20032691 D0 13/06/200 US 6698518 B2 02/03/200 WO 02-055842 AT 18/07/200 US 6698518 B2 02/03/200 WO 02-055842 AT 18/07/200 US 6698518 B2 02/03/200 AU 1998-89295 C 06/05/199 AU 2000-48862 AT 01/02/200 AU 2001-18407 AT 13/09/200 AU 738914 B2 27/09/200 AU 738914 B2 13/09/200 AU 738914 B2 13/09/200 AU 89294 B2 13/09/200 AU 89295 B2 27/09/200 AU 89295 B2 27/09/200 CA 233953T AT 07/09/200 CA 233953T AT 07/09/200 CA 233953T AT 27/10/199 EP 0909874 A2 21/04/199 EP 0909875 A3 27/10/199 EP 0909875 A3 27/10/199 EP 0909875 A3 27/10/199 EP 0909875 A3 27/10/199 EP 090875 A3 27/10/199 EP 090876 A1 13/12/200 US 2002-0066560 AT 13/12/200 US 2002-0104650 AT 13/12/200 US 2002-0104650 AT 13/12/200 US 2002-0104650 AT 13/16/200 US 2002-0104650 AT 10/08/199 2003-20065560 AT 10/08/200 US 2003-20065560 | | | | 15/02/2011 | | EP 1350009 A1 | JS 2002-0157836 A1 | 31/10/2002 | CA 2432892 A1 | 18/07/2002 | | GB 0320532 D0 01/10/200 GB 2390108 A 31/12/200 GB 2390108 B 13/04/200 NO 20032691 D0 13/06/200 US 6698518 B2 02/03/200 US 6698518 B2 02/03/200 US 6698518 B2 02/03/200 US 6098518 B2 02/03/200 US 2003-0075315 A1 24/04/2003 AU 1998-89295 C 06/05/198 AU 1999-29598 A 06/05/198 AU 2000-48862 A1 01/02/200 AU 738914 B2 27/09/200 AU 738914 B2 13/09/200 AU 738914 C 11/04/200 AU 89294 B2 13/09/200 AU 89294 B2 13/09/200 CA 2250593 A1 16/04/198 CA 2314392 A1 27/01/200 CA 2339531 A1 07/09/200 CA 2339531 A1 07/09/200 CA 2339531 A1 07/09/200 CA 2339531 A1 07/09/200 CA 2339531 A1 10/04/198 EP 0909874 A2 21/04/198 EP 0909875 A2 21/04/198 EP 0909875 A2 21/04/198 EP 0909875 A3 27/10/198 EP 1132571 A1 12/09/200 NO 984802 A 19/04/198 NO 984802 B0 15/10/198 EP 1132571 A1 12/09/200 US 2002-0066560 A1 06/06/200 US 2002-01066661 A1 13/12/200 US 2002-01066661 A1 14/11/200 US 5934376 A 10/08/198 US 603600 A 21/12/198 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6571872 B2 03/06/200 | | | CA 2432892 C | 18/12/2007 | | GB 2390108 A 31/12/200 GB 2390108 B 13/04/200 NO 20032691 DO 13/06/200 US 6698518 B2 02/03/200 US 6698518 B2 02/03/200 US 0698518 B2 02/03/200 US 000-45842 A1 18/07/200 AU 1999-29598 A 06/05/198 AU 2000-48862 A1 01/02/200 AU 2001-18407 A1 13/09/200 AU 738914 B2 27/09/200 AU 738914 B2 13/09/200 AU 89294 B2 13/09/200 CA 2250593 A1 16/04/198 CA 2314392 A1 27/01/200 CA 239531 A1 07/09/200 239051 A1 10/09/200 CA 239531 A1 07/09/200 07/09/2 | | | EP 1350009 A1 | 08/10/2003 | | GB 2390108 B 13/04/200 NO 20032691 D0 13/06/200 US 6698518 B2 02/03/200 WO 02-055842 A1 18/07/200 US 6698518 B2 18/07/200 US 6698518 A2 18/07/200 US 6098515 A1 18/07/200 US 6098515 A1 18/07/200 AU 1998-89295 C 06/05/198 AU 2000-48862 A1 01/02/200 AU 2001-18407 A1 13/09/200 AU 738914 B2 27/09/200 AU 738914 C 11/04/200 AU 89294 B2 13/09/200 AU 89295 B2 27/09/200 AU 89295 B2 27/09/200 CA 2339531 A1 07/09/200 CA 2339531 A1 07/09/200 CA 2339531 A1 07/09/200 EP 0909874 A2 21/04/198 EP 0909875 A3 27/10/198 EP 0909875 A3 27/10/198 EP 1132571 A1 12/09/200 NO 984802 A0 19/04/198 EP 1132571 A1 12/09/200 NO 984802 A0 15/10/198 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-0106661 A1 14/11/200 US 5934376 A 10/08/198 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6540022 B2 01/04/200 US 6571872 B2 03/06/200 | | | | 01/10/2003 | | NO 20032691 D0 13/06/2000 US 6698518 B2 02/03/2000 WO 02-055842 A1 18/07/2000 US 6698518 B2 02/03/2000 WO 02-055842 A1 18/07/2000 US 2003-0075315 A1 24/04/2003 AU 1998-89295 C 06/05/198 AU 1999-29598 A 06/05/198 AU 2000-48862 A1 01/02/2000 AU 738914 B2 27/09/2000 AU 738914 B2 27/09/2000 AU 738914 B2 13/09/2000 AU 738914 B2 13/09/2000 AU 89295 B2 27/09/2000 A2 21/04/198 AU 89295 A2 21/04/198 AU 89295 A2 AU 89295 AU 89295 AU 89295 AU 89295 AU 89 | | | | 31/12/2003 | | US 6698518 B2 02/03/200 WO 02-055842 A1 18/07/200 US 2003-0075315 A1 24/04/2003 AU 1998-89295 C 06/05/198 AU 2000-48862 A1 01/02/200 AU 2001-18407 A1 13/09/200 AU 738914 B2 27/09/200 AU 738914 B2 27/09/200 AU 89295 B2 27/09/200 AU 89295 B2 27/09/200 CA 2250593 A1 16/04/198 CA 2314392 A1 27/01/200 CA 2339531 A1 07/09/200 CA 2339531 A1 07/09/200 CFP 0909874 A2 21/04/198 EP 0909875 A2 21/04/198 EP 0909875 A3 27/10/198 EP 0909875 A3 27/10/198 EP 0909875 A3 27/10/198 EP 0909875 A3 27/10/198 EP 0908875 A3 27/10/198 EP 0908875 A3 10/04/198 10/04/200 A2 10/04/200 EP 0908875 A3 10/04/200 EP 0908875 A3 10/04/200 EP 090875 A3 10/04/200 EP 0908875 A3 10/04/200 EP 0908875 A3 10/04/ | | | | 13/04/2005 | | WO 02-055842 A1 | | | | 13/06/2003 | | S 2003-0075315 A1 | | | | | | AU 1999-29598 A 06/05/198 AU 2000-48862 A1 01/02/200 AU 2001-18407 A1 13/09/200 AU 738914 B2 27/09/200 AU 738914 B2 27/09/200 AU 89294 B2 13/09/200 AU 89295 B2 27/09/200 CA 2250593 A1 16/04/198 CA 2314392 A1 27/01/200 CA 2339531 A1 07/09/200 EP 0909874 A2 21/04/198 EP 0909874 A2 21/04/198 EP 0909875 A2 21/04/198 EP 0909875 A2 21/04/198 EP 0909875 A3 27/10/198 EP 1132571 A1 12/09/200 NO 984802 A 19/04/198 NO 984802 D0 15/10/198 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-0104650 A1 08/08/200 US 2002-0104650 A1 08/08/200 US 2002-0104650 A1 14/11/200 US 2002-0166661 A1 14/11/200 US 5934376 A 10/08/198 US 603600 A 21/12/198 US 6446722 B2 10/09/200 US 6446722 B2 10/09/200 US 6446722 B2 10/09/200 US 648109 B1 19/11/200 US 6446722 B2 10/09/200 US 6446722 B2 10/09/200 US 648109 B1 19/11/200 US 6557635 B2 06/05/200 US 65571872 B2 03/06/200 | | | WO 02-055842 A1 | 18/07/2002 | | AU 2000-48862 A1 01/02/200 AU 2001-18407 A1 13/09/200 AU 738914 B2 27/09/200 AU 89294 B2 13/09/200 AU 89295 B2 27/09/200 CA 2250593 A1 16/04/200 CA 2314392 A1 27/01/200 CA 2339531 A1 07/09/200 CA 2339531 A1 07/09/200 CA 2399531 A1 27/01/200 CA 2399531 A1 27/01/200 CA 2399531 A1 27/01/200 CA 2399531 A1 27/01/200 CA 239551 A1 16/04/199 EP 0909874 A2 21/04/199 EP 0909875 A2 21/04/199 EP 0909875 A3 27/10/199 EP
1132571 A1 12/09/200 NO 984802 A 19/04/199 NO 984802 A 19/04/199 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-0106651 A1 14/11/200 US 2002-0166651 A1 14/11/200 US 5934376 A 10/08/199 US 603600 A 21/12/199 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6481494 B1 19/11/200 US 6557635 B2 06/05/200 US 6557635 B2 06/05/200 | JS 2003-0075315 A1 | 24/04/2003 | AU 1998-89295 C | 06/05/1999 | | AU 2001-18407 A1 13/09/200 AU 738914 B2 27/09/200 AU 738914 C 11/04/200 AU 89294 B2 13/09/200 AU 89295 B2 27/09/200 CA 2250593 A1 16/04/199 CA 2314392 A1 27/01/200 CA 2339531 A1 07/09/200 EP 0909874 A2 21/04/199 EP 0909875 A3 27/10/199 EP 0909875 A3 27/10/199 EP 1132571 A1 12/09/200 NO 984802 A 19/04/199 EP 1132571 A1 12/09/200 NO 984802 D0 15/10/199 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-0070019 A1 13/06/200 US 2002-0104650 A1 08/08/200 US 2002-0104650 A1 08/08/200 US 2002-0166661 A1 14/11/200 US 5934376 A 10/08/199 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 648102 B2 11/09/200 US 6557635 B2 06/05/200 US 6557635 B2 06/05/200 US 6557635 B2 06/05/200 | | | | 06/05/1999 | | AU 738914 B2 27/09/200 AU 738914 C 11/04/200 AU 89294 B2 13/09/200 AU 89295 B2 27/09/200 CA 2250593 A1 16/04/199 CA 2314392 A1 27/01/200 CA 2339531 A1 07/09/200 EP 0909874 A2 21/04/199 EP 0909875 A2 21/04/199 EP 0909875 A2 21/04/199 EP 132571 A1 12/09/200 NO 984802 A 19/04/199 NO 984802 D0 15/10/199 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-0070019 A1 13/06/200 US 2002-0166661 A1 14/11/200 US 5934376 A 10/08/199 US 6427775 B1 06/08/200 US 6427775 B1 06/08/200 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6481494 B1 19/11/200 US 6557635 B2 06/05/200 US 6557635 B2 06/05/200 US 6557635 B2 06/05/200 | | | | 01/02/2001 | | AU 738914 C 11/04/200 AU 89294 B2 13/09/200 AU 89295 B2 27/09/200 CA 2250593 A1 16/04/199 CA 2314392 A1 27/01/200 CA 2339531 A1 07/09/200 EP 0909874 A2 21/04/199 EP 0909874 A3 27/10/199 EP 0909875 A2 21/04/199 EP 0909875 A3 27/10/199 EP 1132571 A1 12/09/200 NO 984802 A 19/04/199 NO 984802 D0 15/10/199 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-0104650 A1 08/08/200 US 2002-0104650 A1 08/08/200 US 2002-0104650 A1 14/11/200 US 5934376 A 10/08/199 US 6427775 B1 06/08/200 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6557635 B2 06/05/200 US 6557635 B2 06/05/200 US 6557635 B2 06/05/200 | | | | 13/09/2001 | | AU 89294 B2 13/09/200 AU 89295 B2 27/09/200 CA 2250593 A1 16/04/199 CA 2314392 A1 27/01/200 CA 2339531 A1 07/09/200 EP 0909874 A2 21/04/199 EP 0909875 A2 21/04/199 EP 0909875 A3 27/10/199 EP 1132571 A1 12/09/200 NO 984802 A 19/04/199 NO 984802 D0 15/10/199 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-0104650 A1 08/08/200 US 2002-0104650 A1 08/08/200 US 2002-0166661 A1 14/11/200 US 2934376 A 10/08/199 US 603600 A 21/12/199 US 6446722 B2 10/09/200 US 6446722 B2 10/09/200 US 6446722 B2 01/04/200 US 6557635 B2 06/05/200 US 6557635 B2 06/05/200 | | | | 27/09/2001 | | AU 89295 B2 27/09/200 CA 2250593 A1 16/04/199 CA 2314392 A1 27/01/200 CA 2339531 A1 07/09/200 EP 0909874 A2 21/04/199 EP 0909875 A2 21/04/199 EP 0909875 A3 27/10/199 EP 0909875 A3 27/10/199 EP 1132571 A1 12/09/200 NO 984802 A 19/04/199 NO 984802 D0 15/10/199 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-070019 A1 13/06/200 US 2002-0104650 A1 08/08/200 US 2002-0104650 A1 08/08/200 US 2002-0166661 A1 14/11/200 US 5934376 A 10/08/199 US 603600 A 21/12/199 US 6446722 B2 10/09/200 US 6446722 B2 10/09/200 US 6446022 B2 01/04/200 US 6557635 B2 06/05/200 US 6571872 B2 03/06/200 | | | | 11/04/2002 | | CA 2250593 A1 16/04/198 CA 2314392 A1 27/01/200 CA 2339531 A1 07/09/200 EP 0909874 A2 21/04/198 EP 0909875 A2 21/04/198 EP 0909875 A2 21/04/198 EP 0909875 A3 27/10/198 EP 1132571 A1 12/09/200 NO 984802 A 19/04/198 NO 984802 D0 15/10/198 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-070019 A1 13/06/200 US 2002-0104650 A1 08/08/200 US 2002-0166661 A1 14/11/200 US 5934376 A 10/08/198 US 6033600 A 21/12/198 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 648022 B2 01/04/200 US 6557635 B2 06/05/200 US 6557635 B2 06/05/200 | | | | 13/09/2001 | | CA 2314392 A1 27/01/200 CA 2339531 A1 07/09/200 EP 0909874 A2 21/04/199 EP 0909874 A3 27/10/199 EP 0909875 A2 21/04/199 EP 0909875 A3 27/10/199 EP 1132571 A1 12/09/200 NO 984802 A 19/04/199 NO 984802 DO 15/10/199 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-0066560 A1 06/06/200 US 2002-0104650 A1 13/06/200 US 2002-0166661 A1 14/11/200 US 5934376 A 10/08/199 US 603600 A 21/12/199 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6540022 B2 01/04/200 US 6557635 B2 06/05/200 US 6557635 B2 06/05/200 | | | | | | CA 2339531 A1 07/09/200 EP 0909874 A2 21/04/199 EP 0909874 A3 27/10/199 EP 0909875 A2 21/04/199 EP 0909875 A3 27/10/199 EP 1132571 A1 12/09/200 NO 984802 A 19/04/199 NO 984802 D0 15/10/199 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-0070019 A1 13/06/200 US 2002-0104650 A1 08/08/200 US 2002-0166661 A1 14/11/200 US 5934376 A 10/08/199 US 603600 A 21/12/199 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6481494 B1 19/11/200 US 6540022 B2 01/04/200 US 6557635 B2 06/05/200 | | | | | | EP 0909874 A2 21/04/198 EP 0909875 A2 21/04/198 EP 0909875 A2 21/04/198 EP 0909875 A3 27/10/198 EP 1132571 A1 12/09/200 NO 984802 A 19/04/198 NO 984802 D0 15/10/198 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-0070019 A1 13/06/200 US 2002-0104650 A1 08/08/200 US 2002-0104650 A1 08/08/200 US 5934376 A 10/08/198 US 603600 A 21/12/198 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6540022 B2 01/04/200 US 6557635 B2 06/05/200 | | | | | | EP 0909874 A3 27/10/199 EP 0909875 A2 21/04/199 EP 0909875 A3 27/10/199 EP 1132571 A1 12/09/200 NO 984802 A 19/04/199 NO 984802 D0 15/10/199 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-0070019 A1 13/06/200 US 2002-0104650 A1 08/08/200 US 2002-0166661 A1 14/11/200 US 2002-0166661 A1 14/11/200 US 5934376 A 10/08/199 US 603600 A 21/12/199 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 657635 B2 06/05/200 US 6557635 B2 06/05/200 | | | | | | EP 0909875 A2 21/04/199 EP 0909875 A3 27/10/199 EP 1132571 A1 12/09/200 NO 984802 A 19/04/199 NO 984802 DO 15/10/199 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-0104650 A1 08/08/200 US 2002-0104650 A1 08/08/200 US 2002-0166661 A1 14/11/200 US 5934376 A 10/08/199 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6540022 B2 01/04/200 US 657635 B2 06/05/200 US 6571872 B2 03/06/200 | | | | | | EP 0909875 A3 27/10/199 EP 1132571 A1 12/09/200 NO 984802 A 19/04/199 NO 984802 D0 15/10/199 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-0070019 A1 13/06/200 US 2002-0104650 A1 08/08/200 US 2002-0166661 A1 14/11/200 US 5934376 A 10/08/199 US 603600 A 21/12/199 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6540022 B2 01/04/200 US 6557635 B2 06/05/200 US 6571872 B2 03/06/200 | | | | | | EP 1132571 A1 12/09/200 NO 984802 A 19/04/199 NO 984802 D0 15/10/199 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-0070019 A1 13/06/200 US 2002-0104650 A1 08/08/200 US 2002-0166661 A1 14/11/200 US 5934376 A 10/08/199 US 6003600 A 21/12/199 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6557635 B2 06/05/200 US 6571872 B2 03/06/200 | | | | | | NO 984802 A 19/04/199 NO 984802 DO 15/10/199 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-0070019 A1 13/06/200 US 2002-0104650 A1 08/08/200 US 2002-0166661 A1 14/11/200 US 5934376 A 10/08/199 US 6003600 A 21/12/199 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6540022 B2 01/04/200 US 6557635 B2 06/05/200 US 6571872 B2 03/06/200 | | | | | | NO 984802 DO 15/10/199 US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-0070019 A1 13/06/200 US 2002-0104650 A1 08/08/200 US 2002-0166661 A1 14/11/200 US 5934376 A 10/08/199 US 6003600 A 21/12/199 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6540022 B2 01/04/200 US 6557635 B2 06/05/200 US 6571872 B2 03/06/200 | | | | | | US 2001-0050169 A1 13/12/200 US 2002-0066560 A1 06/06/200 US 2002-0070019 A1 13/06/200 US 2002-0104650 A1 08/08/200 US 2002-0166661 A1 14/11/200 US 5934376 A 10/08/199 US 6003600 A 21/12/199 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6540022 B2 01/04/200 US 6557635 B2 06/05/200 US 6571872 B2 03/06/200 | | | | 15/10/1998 | | US 2002-0066560 A1 06/06/200 US 2002-0070019 A1 13/06/200 US 2002-0104650 A1 08/08/200 US 2002-0166661 A1 14/11/200 US 5934376 A 10/08/199 US 6003600 A 21/12/199 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6540022 B2 01/04/200 US 6557635 B2 06/05/200 US 6571872 B2 03/06/200 | | | | 13/12/2001 | | US 2002-0104650 A1 08/08/200 US 2002-0166661 A1 14/11/200 US 5934376 A 10/08/199 US 6003600 A 21/12/199 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6540022 B2 01/04/200 US 6557635 B2 06/05/200 US 6571872 B2 03/06/200 | | | US 2002-0066560 A1 | 06/06/2002 | | US 2002-0166661 A1 14/11/200 US 5934376 A 10/08/199 US 6003600 A 21/12/199 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6540022 B2 01/04/200 US 6557635 B2 06/05/200 US 6571872 B2 03/06/200 | | | US 2002-0070019 A1 | 13/06/2002 | | US 5934376 A 10/08/199 US 6003600 A 21/12/199 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6540022 B2 01/04/200 US 6557635 B2 06/05/200 US 6571872 B2 03/06/200 | | | US 2002-0104650 A1 | 08/08/2002 | | US 6003600 A 21/12/199 US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6540022 B2 01/04/200 US 6557635 B2 06/05/200 US
6571872 B2 03/06/200 | | | | 14/11/2002 | | US 6427775 B1 06/08/200 US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6540022 B2 01/04/200 US 6557635 B2 06/05/200 US 6571872 B2 03/06/200 | | | | 10/08/1999 | | US 6446722 B2 10/09/200 US 6481494 B1 19/11/200 US 6540022 B2 01/04/200 US 6557635 B2 06/05/200 US 6571872 B2 03/06/200 | | | | 21/12/1999 | | US 6481494 B1 19/11/200
US 6540022 B2 01/04/200
US 6557635 B2 06/05/200
US 6571872 B2 03/06/200 | | | | 06/08/2002 | | US 6540022 B2 01/04/200
US 6557635 B2 06/05/200
US 6571872 B2 03/06/200 | | | | 10/09/2002 | | US 6557635 B2 06/05/200
US 6571872 B2 03/06/200 | | | | | | US 6571872 B2 03/06/200 | | | | | | | | | | | | US 0733Z43 BZ | | | | | | | | | US 0799249 BZ | 29/00/2004 | | | | | | | | | | | | |