US 20110008318A1

# (19) United States (12) Patent Application Publication Aderem et al.

### (10) Pub. No.: US 2011/0008318 A1 (43) Pub. Date: Jan. 13, 2011

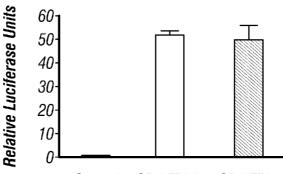
### (54) TOLL-LIKE RECEPTOR 5 LIGANDS AND METHODS OF USE

 Inventors: Alan Aderem, Seattle, WA (US);
 Fumitaka Hayashi, North Quincy, MA (US); Kelly D. Smith, Seattle, WA (US); David M. Underhill, Seattle, WA (US); Adrian Ozinsky, Seattle, WA (US)

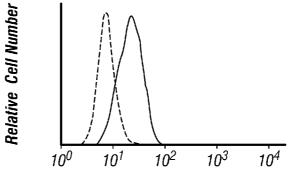
> Correspondence Address: MORRISON & FOERSTER LLP 12531 HIGH BLUFF DRIVE, SUITE 100 SAN DIEGO, CA 92130-2040 (US)

- (21) Appl. No.: 12/546,593
- (22) Filed: Aug. 24, 2009

#### **Related U.S. Application Data**


(63) Continuation of application No. 10/125,692, filed on Apr. 17, 2002. (60) Provisional application No. 60/285,477, filed on Apr. 20, 2001.

#### **Publication Classification**


| (51) | Int. Cl.    |                                |
|------|-------------|--------------------------------|
|      | A61K 39/395 | (2006.01)                      |
|      | A61K 39/00  | (2006.01)                      |
|      | C07K 14/195 | (2006.01)                      |
|      | C07K 14/52  | (2006.01)                      |
|      | C07K 14/00  | (2006.01)                      |
|      | C12N 1/20   | (2006.01)                      |
|      | A61P 37/04  | (2006.01)                      |
| (52) | U.S. Cl     | 424/130.1; 424/185.1; 530/350; |
| , ,  |             | 530/351; 530/395; 435/243      |

#### (57) **ABSTRACT**

The invention provides an immunomodulatory flagellin peptide having at least about 10 amino acids of substantially the amino acid sequence GAVQNRFNSAIT, or a modification thereof, and having toll-like receptor 5 (TLR5) binding. Methods of inducing an immune response are also provided.



Control CD4-TRL4 CD4-TRL5



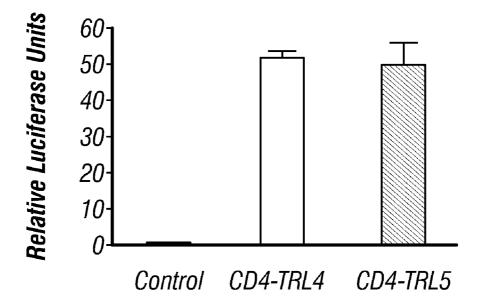



FIG. 1A

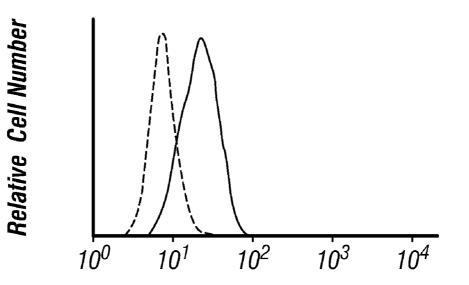
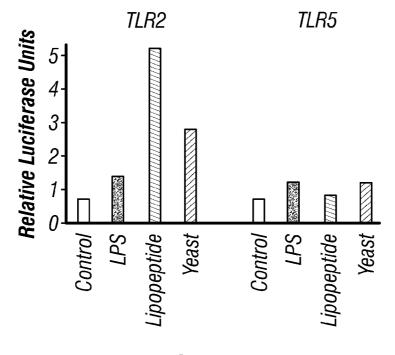




FIG. 1B





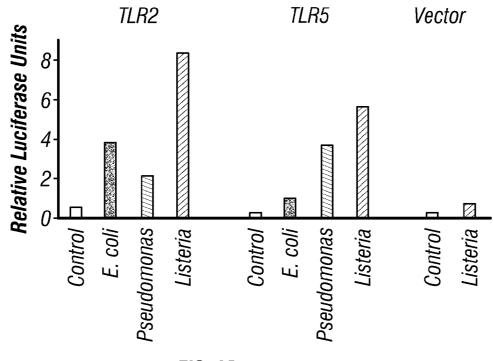
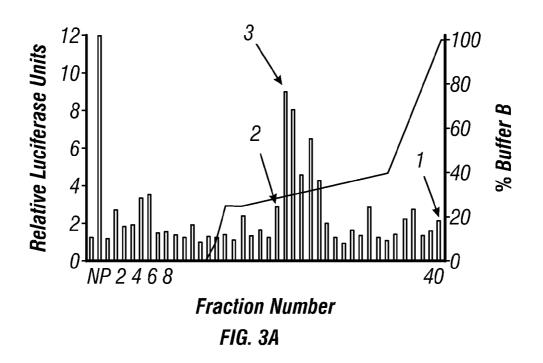
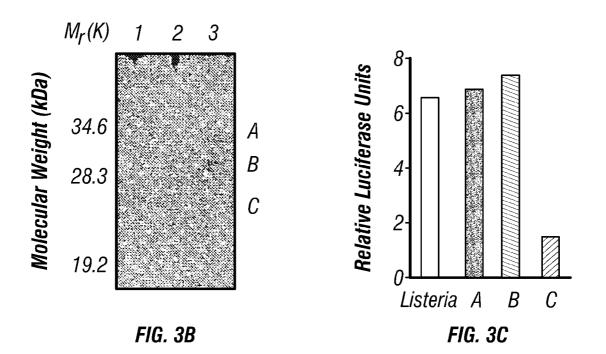
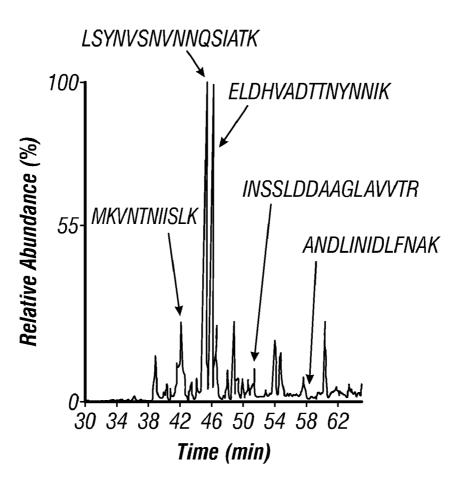






FIG. 2B









<u>MKVNTNIISLK</u>TQEYLRKNNEGMTQAQERLASGKR<u>INSSLDD</u> <u>AAGLAVVTR</u>MNVKSTGLDAASKNSSMGIDLLQTADSALSSMS SILQRMRQLABQSSNGSFSDEDRKQYTAEFGSLIK<u>ELDHVAD</u> <u>TTNYNNIK</u>LLDQTATGAATQVSIQASDK<u>ANDLINIDLFNAKG</u> LSAGTITLGSGSTVAGYSALSVADADSSQEATEAIDELINNI SNGRALLGAGMSR<u>LSYNVSNVNNQSIATKA</u>SASSIEDADMAA EMSEMTKYKILTQTSISMLSQANQTPQMLTQLINS

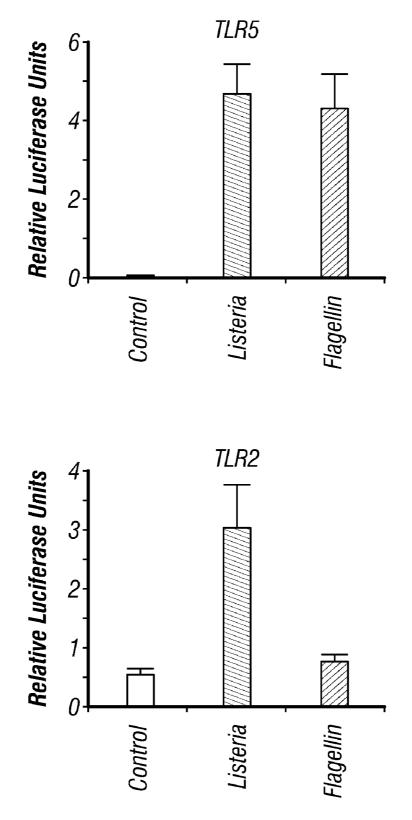
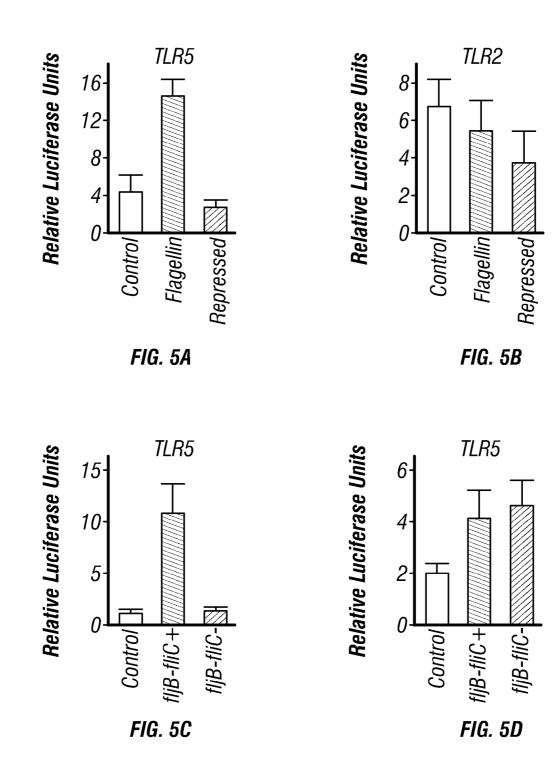




FIG. 4C



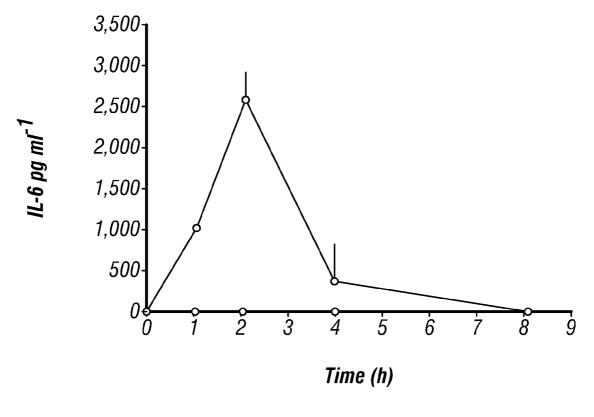



FIG. 6

| P.aeruginosa<br>R.sphaeroides | 1 MALT UNTN IASLNTQRNLNNSSASLNT SLQRLS IGSRINSAKDDAAGLQIANRLTSQUNG<br>1 -MTTINTN IGA IAAQANMTKUNDQENTAMTRLSIGLRINAAKDDAAGMAIGE <i>KM</i> TAQUMG |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| P.mirabilis1                  | 1 MAQVINTNYLSLVTQNNLNKSQGTLGSAJERLSSGLRINSAKDDAAGQAIANRFTSNVNG                                                                                  |
| P.mirabilis2                  | 1 MAQVINTNYLSLVTQNNLNRSQSALGNAJERLSSGMRINSAKDDAAGQAIANRFTSNING                                                                                  |
| S.typhimurium2                | 1 MAQVINTNSLSLLTQNNLNKSQSALGTAJERLSSGLRINSAKDDAAGQAIANRFTANIKG                                                                                  |
| S.typhimurium1                | 1 MAQVINTNSLSLLTQNNLNKSQSALGTAJERLSSGLRINSAKDDAAGQAIANRFTANJKG                                                                                  |
| S.marcesens                   | 1 MAQVINTNSLSIMAQNNLNKSQSSIGTAJERLSSGLRINSAKDDAAGQAISNRFTANIKG                                                                                  |
| E.coli                        | 1 MAQVINTNSLSLITQNNINKNQSALSSSIERLSSGLRINSAKDDAAGQAIANRFTSNIKG                                                                                  |
| S.flexneri                    | 1 MAQVINTNSLSLITQNNINKNQSALSSSIERLSSGLRINSAKDDAAGQAIANRFTSNIKG                                                                                  |
| T.pallidumA                   | 1 MIINHNMSAMFAQRTLGHTNVQVGKGJEKLSSGYRINRAGDDASGLAVSEKMRSQIRG                                                                                    |
| T.pallidumB                   | 1 MIINHNMSAMFAQRTLGNTNLSVQKNMEKLSSGLRINRAGDDASGLAVSEKMRSQIRG                                                                                    |
| L.pneumophila                 | 1 MIINHNLSAVNAHRSLKFNELAVDKTMKALSSGMRINSAADDASGLAVSEKLRTQVNG                                                                                    |
| B.burgdorferei                | 1MIINHNTSAINASRNNGINAANLSKTQEKLSSGYRINRASDDAAGMGVSGKINAQIRG                                                                                     |
| B.subtilus                    | 1 MRINHNIAALNTLNRLSSNNSASQKNMEKLSSGLRINRAGDDAAGLAISEKMRGQIRG                                                                                    |
| C.difficile                   | 1 MR UNTN VSALIANN QMGRNVSGQSK SMEKLSSGLRIKRAADDAAGLAISE KMRAQLKG                                                                               |
| R.meliloti                    | 1 -MTSILTNNSAMAALSTLRSISSSMEDTQSRISSGLRVGSASDNAAYWSIATTMRSDNQA                                                                                  |
| A.tumefaciens                 | 1 - MASILTNNNAMAALSTLRSIASDLST7QDRISSGLKVGSASDNAAYWSIATTMRSDNKA                                                                                 |
| R.lupini                      | 1 - MAS VLTN INAMSALQTLRS ISSNMED TQSR ISSGMR VGSASDNAAYW SIATTMRSDNAS                                                                          |
| L.monocytogenes               | 1 MK VNTN II SLKTQEYLRKNNEGMTQAQERLASGKRINSSLDDAAGLA WYTRMNVKSTG                                                                                |
| B.clarridgeiae                | 1 MGTSLLTNKSAMTALQTLRSIDANLDRSKDRVSTGLRISNASENTAYWSISSMMRHDSNT                                                                                  |
| consensus                     | 1 m intNv al aq nl k q l slerlssGlrinsa ddaagmaia rl sqvrg                                                                                      |

| C.jejuni        | 61 | LGQAISNGNDAIGILQTADKAMDEOLKILDTIKTKATQAAODGOSLKTRTMLQADINR       |
|-----------------|----|------------------------------------------------------------------|
| H.pylori        | 61 | LGQAIANTNDGMGIIQVADKAMDEQLKILDTVKVKATQAAQDGQTTESRKAIQSDIVR       |
| V.cholerae      | 61 | LDVAMRNANDGISIAQTAEGAMNESTSILQRMRDLALQSANGTWSASERQALNEESVA       |
| P.aeruginosa    | 61 | LNVATKNANDGISLAQTAEGALQQSTNILQRMRDLSLQSANGSNSDSERTALNGEAKQ       |
| R.sphaeroides   | 60 | LNQAIRNAQDGKNLVDTTEGAHVEVSSMLQRLRELAVQSSNDTNTAADRGSLAAEGKQ       |
| P.mirabilis1    | 61 | LTQASRNANDGISIAQTTEGALNEINNNLQRIRELTVQAKNGTNSNSDITSIQNEVKN       |
| P.mirabilis2    | 61 | LTQASRNANDGIS VSQTTEGALNEINNNLQRIRELTVQAKNGTWSNSDINSIQNEVNQ      |
| S.typhimurium2  | 61 | LTQASRNANDGISIAQTTEGALNEINNNLQRVRELAVQSANSTWSQSDLDSIQAEITQ       |
| S.typhimurium1  | 61 | LTQASRNANDGISIAQTTEGALNEINNNLQRVRELAVQSANSTWSQSDLDSIQAEITQ       |
| S.marcesens     | 61 | LTQASRNANDGISLAQTTEGALNEVNDNLQNIRRLTVQAQNGSNSTSDLKSIQDEITQ       |
| E.coli          | 61 | LTQAARNANDGISVAQTTEGALSEINNNLQRIRELTVQATTGTNSDSDLDSIQDEIKS       |
| S.flexneri      | 61 | LTQAARNANDGISVAQTTEGALSEINNNLQRIRELTVQASTGTNSDSDLDSIQDEIKS       |
| T.pallidumA     | 59 | LNQASTNASNG VNF IQVTEAYLQETTD INQRIRELA IQAANGIYSAEDRMQIQVEVSQ   |
| T.pallidumB     | 50 | LNQASTNAQNGISFIQVAESYLQETTDVIQRIRELSVQSANGIYSAEDRMYIQVEVSQ       |
| L.pneumophila   | 59 | LRQAERNTEDGMSFIQTAEGFLEQTSN11QRIRVLAIQTSNGIYSNEDRQLVQVEVSA       |
| B.burgdorferei  | 59 | LSQASRNTSKAINF /QTTEGNLNEVEK VLVRMKELAVQSGNG7YSDADRGSIQ1E/EQ     |
| B.subtilus      | 59 | LEMASKNSQDGISLIQTAEGALTETHAILQRVRELVVQAGNTGTQDKATDLQSIQDEISA     |
| C.difficile     | 59 | LDQAGRNV QDGIS VVQTAEGALEETGN ILTRMRTLAVQASNETNSKDERAKIAGEMEQ    |
| R.meliloti      | 60 | LSAVQDALGLGAAKVDTAYS <i>GN</i> ESAIEVVKEIKAKLVAATEDGVDKAKIQEEITQ |
| A.tumefaciens   | 60 | LGAV SDALGMGAAK VDTAS AGMDAAIK VVTDI KAKVVAAKEQGVDKTK VQEE VSQ   |
| R.lupini        | 60 | LSAVQDAIGLGAAK VDTASAGMDAVID VVKQIKNKLVTAQESSADKTKIQGEVKQ        |
| L.monocytogenes | 59 | LDAASKNSSMGIDLLQTADSALSSMSS ILQRMRQLAVQSSNGSFSDEDRKQYTAEFGS      |
| B.clarridgeiae  | 61 | MSAIVDAINLGKEQVGIADTA/GLTKEALDDIQKSMVSAREKGSDDIAKIQDS/IIG        |
| consensus       | 61 | l qatrnandgisilqtaegal e ilqrirdl vqa ng tqs dr iq ei q          |

| C.jejuni<br>H.pylori<br>V.cholerae<br>P.aeruginosa | 119<br>119<br>119<br>119 | LMEELDNI ANTTSFNGKQLLSGNFINQEFQIGASSN-QTVKATIGATQSSKIGLTRFETG<br>LIQGLDNI GNTTTYNGQALLSGQFTNKEFQVGAYSN-QSIKASIGSTTSDKIGQVRIATG<br>LQDELDRIAETTSFGGRKLLNGSFGEASFQIGSSSG-EAIIMGLTSVRADDFR<br>LQKELDRISNTTTFGGRKLLDGSFGVASFQVGSAAN-EIISVGIDEMSAESLNGTYFKAD |
|----------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R.sphaeroides<br>P.mirabilis1                      |                          | L IAEINR VAE STTFNGMKVLDG SFTGKQLQIGADSG-QTMAIN VD SAAATD IGA<br>VLDEINRISFOTOFNG VKVLSGFKSFMVTOVGTNDN-FTTKFN LDK VDNDTLGVASDK LF                                                                                                                       |
|                                                    |                          | RLDEINRVSEQTQFNGVKVLSGEKSKMTIQVGTNDN-EVIEFNLDKIDNDTLGVASDKLF                                                                                                                                                                                            |
| •                                                  | $\leftarrow$             | R LNEIDR VSGQTQFNG VKVLA-QDNTLTIQVGANDG-ET IDIDLKQINSQTLGLDSLNVQ                                                                                                                                                                                        |
| S.typhimurium1                                     |                          | RLNEIDRVNGQTQFSGVKVLA-QDNTLTIQVGANDG-ETIDIDLKQINSQTLGLDTLNVQ                                                                                                                                                                                            |
| 5.marcesens                                        |                          | KASELINKLSEQTUENGVAVES-SUUKLILQVGANUG-ETTULUENKIDAKUEMUTEUVT<br>Di perteringentigen indentristen indentristen indentristen indentristen indentristen indentristen indentristen i                                                                        |
| E.COLI                                             |                          | K <i>ideluk</i> vəqq <b>tvetina va</b> n v <b>i</b> s-tugsmal <b>y</b> vende-et <i>i</i> ttu <i>dana tustus</i> .<br>                                                                                                                                   |
| S.flexneri                                         | -                        | R <i>LD</i> EIDRVSGQTQFNGVNVLA-KDGSMKIQVGANDG-QTITIDLKKIDSDTLGLNGFNVN                                                                                                                                                                                   |
| T.pallidumA                                        | $\vdash$                 | L VAE VDRIAS SAQFNGMN LLTGRFSRTEGEN VI GGSMWFH                                                                                                                                                                                                          |
| T.pallidumB                                        | $\leftarrow$             | LVAEIDRIASHAQFNGMNMLTGRFARETGENTVTASMWFH                                                                                                                                                                                                                |
| L.pneumophila                                      | $\neg$                   | LVDEVDRIASQAEFNKFKLFEGQFARGSLRVASMWFH                                                                                                                                                                                                                   |
| B.burgdorferei                                     | $\leftarrow$             | LT DEI NRIADQAQ YNQMHMLSNKSASQNVRTAEELGMQPAKINTPASLSGSQASWTLRVH                                                                                                                                                                                         |
| B.subtilus                                         | $\neg$                   | LT DEIDGISNRTEFNGKKLLDGTYKVDTATPANQKNLVFQ                                                                                                                                                                                                               |
| C.difficile                                        | $\leftarrow$             | LRSE VDRIADSTKFNGENLLS-SDKKIALQVGAEAVSNNVIEVS                                                                                                                                                                                                           |
| R.meliloti                                         | $\neg$                   | LK DQLTS I AEAASFSGENWLQADLSGGPVTKSVVGGFVRDSSGAVS VKKVDYS LNTDT VL                                                                                                                                                                                      |
| A.tumefaciens                                      | $\leftarrow$             | LLDQLKSIGTSASFNGENWLVSSANATKTVVSGFVRDAGGTVSVKTTDYALDANSML                                                                                                                                                                                               |
| R.lupini                                           | $\leftarrow$             | LQEQLKGIVDSASFSGENWLKGDLS-TTTTKSVVGSFVRE-GGTVSVKTIDYALNASKVL                                                                                                                                                                                            |
| b                                                  | 117                      | LIKELDHVADTTNYNNIKLLDQTATGAATQVSLQASDKANDLINID                                                                                                                                                                                                          |
| B.clarridgeiae                                     |                          | NMKNI SNAVQSASFGGKNILSNGGQTVGMAAGYRREGTAVYVDMIDVGGSELNFGTIGSD                                                                                                                                                                                           |
| consensus                                          | 121                      | lmeeidria t fngmkll g qig v i v igl l                                                                                                                                                                                                                   |

| C.jejuni        | $\sim$ | GRISTSGEVQFTLKNYNGIDDFQFQKVVISTSVGTGLGALADEINKNADKTGVRAT     |
|-----------------|--------|--------------------------------------------------------------|
| H.pylori        | ſ~     | ALITASGDISLTFKQVDGVNDVTLESVKVSSSAGTGIGVLAEVINKNSNRTGVKAY     |
| V.cholerae      | 171    | MGGQSFIAEQPKTKEWGVP                                          |
| P.aeruginosa    | $\sim$ | GGGAVTAATASGTVDIAIGGGGAVTAATASGTVDIAIG                       |
| R.sphaeroides   |        |                                                              |
| P.mirabilis1    | $\sim$ | DTKTEKKGVTAAG                                                |
| P.mirabilis2    | $\sim$ | DAKTEKKGVTAAG                                                |
| S.typhimurium2  | $\sim$ | KAYDVKDTAVTTKAYANNGTTLDVSGLDDAAIKAATGGTNGTASVTGGAVKFD        |
| S.typhimurium1  | $\sim$ | QKYKVSDTAATVTGYADTTIALDNSTFKASATGLGGTDEKIDGDLKFD             |
| S.marcesens     | $\sim$ | TKSAKAGAEIATG                                                |
| E.coli          | $\sim$ | GEGETANTAATLKDMVGLKLDNTGVTTAGVNRYIADKAVASSTDILNAVAGVDGSKVSTE |
| S.flexneri      | $\sim$ | GGGAVANTAASKADLVAANATVVGNKYTVSAGYDAAKASDLLAGVSDGDTVQAT       |
| T.pallidumA     | വ      | I GANMDQRMRVYVY                                              |
| T.pallidumB     | വ      | I GANMDQRTRAYAYAY                                            |
| L.pneumophila   | വ      | MGPNQNQRERFYFY                                               |
| B.burgdorferei  | $\sim$ | VGANQDEAIAVNVNVNVN                                           |
| B.subtilus      | ഹ      | IGANATQQISVNVN                                               |
| C.difficile     | 9      | LINTKGVLTTRNRN                                               |
| R.meliloti      | $\sim$ | FDTTGNTGILDKVYN                                              |
| A.tumefaciens   | $\sim$ | YTEG                                                         |
| R.lupini        | 173    | VDTRATGTKTGILDTAYTG                                          |
| L.monocytogenes | Q      | LFNAKGLSAG                                                   |
| B.clarridgeiae  | $\sim$ | GTIDMSQGVLGGIFGTSKG                                          |
| consensus       | 181    |                                                              |

| .jejuni<br>.pylori<br>.cholerae<br>.aeruginosa | 234<br>234<br>190<br>197 | FTVETRGIAAVRAGATSDTFAINGVKIGKVDYKDGDANGALVAAINSVKDTTGVEASIDA<br>ASVITTSDVAVQSGSLSNLTLNGIHLGNIADIKKNDSDGRLVAAINAVTSETGVEAYTDQ<br>PTARDLKFEFTKK<br> |
|------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| K.sphaeroides<br>P.mirabilis1                  | 5                        | VTDAKKINA                                                                                                                                         |
| P.mirabilis2                                   | 191                      | IDANALGIS                                                                                                                                         |
| S.typhimurium2                                 | $\sim$                   | ADNNKYFVTIGGFTGADAAKNGDYEVNVATDGTVTLAAGATKTTMPAGATTKTEVQEL                                                                                        |
| S.typhimurium1                                 | $\sim$                   | DTTGKYYAKVTVTGGTGKDGYYEVSVDKTNGEVTLAAVTPATVTTATALSGKMYSA                                                                                          |
| S.marcesens                                    | $\circ$                  | KITVDSDA                                                                                                                                          |
| E.coli                                         | $\mathcal{C}$            | ADVGFGAAAPGTPVEYTYHKDTNTYTASASVDATQLAAFLNPEAGGTTAATVSIGNGTTA                                                                                      |
| S.flexneri                                     | $\mathbb{C}$             | INNGFGTAASATNYKYDSASKS-YSFDTTTASAADVQKYLTPGVGDTAKGTITIDGS                                                                                         |
| T.pallidumA                                    | 9                        | IGTMTAVA                                                                                                                                          |
| T.pallidumB                                    | 9                        | IGTMTAAA                                                                                                                                          |
| L.pneumophila                                  | 9                        | IGTMTSKA                                                                                                                                          |
| B.burgdorferei                                 | $\infty$                 | IYAANVAN                                                                                                                                          |
| B.subtilus                                     | $\sim$                   | IEDMGADA                                                                                                                                          |
| C.difficile                                    | $\sim$                   | VNSANIDA                                                                                                                                          |
| R.meliloti                                     | 0                        | VSQASVTLPVNV                                                                                                                                      |
| A.tumefaciens                                  | $\sim$                   |                                                                                                                                                   |
| R.lupini                                       | 0                        | LUANTVTVDINK                                                                                                                                      |
| L.monocytogenes                                | $\sim$                   |                                                                                                                                                   |
| B.clarridgeiae                                 | 196                      | DEGEDVVGKGIGA                                                                                                                                     |
| consensus                                      | 241                      |                                                                                                                                                   |

| C.jejuni        |     | NGQLLLTSREGRGIKIDGNIGGGAF | GQLLLTSREGRGIKIDGNIGGGAFINADMKENYGRLSLVKNDGKDILISGSNLSSAGFG |
|-----------------|-----|---------------------------|-------------------------------------------------------------|
| H.pylori        | 294 | KGRLNLRSIDGRGIEIK         | TDSVSNGPSALTMVNGGQDLTKGSTNYGRLSLT                           |
| V.cholerae      | 203 | DGEAVVLDIIAKDGD           | TYINGQTD                                                    |
| P.aeruginosa    | Ξ   | KGNETAEQAAAKIAAAVND       | ANVGIGAFSDGDTI                                              |
| R.sphaeroides   |     |                           |                                                             |
| S               | 0   | AATLDMMVSLVKEFNLDG        | FIVTDKFIVTKGGKD                                             |
| P.mirabilis2    | 0   | GSKKYVTGISVKEYKVDG        | KVSSDKVVLSDB                                                |
| S.typhimurium2  | 288 | KDTPAVVSADAKNALIAGGV      | -DATDANGAELVKMSYTDKNGKTIEGGYALKAGDK                         |
| S.typhimurium1  | 281 | NPDSDIAKAALTAAGVTG        | TASVVKMSYTDNNGKTIDGGLAVKVGDD                                |
| S.marcesens     | 199 | TKQADADVTGLAKG            | TDADGKSA                                                    |
| E.coli          | 297 | QEQKVIIAKDGSLTAADDG       | AALYLDDTGNLSKTN-AGTDTQAKLS                                  |
| S.flexneri      | 287 | -AQDVQISSDGKITASNG        | DKLYIDTTGRLTKNGSGASLTEASLS                                  |
| T.pallidumA     | 177 | rgr                       |                                                             |
| T.pallidumB     | 177 | rgrg                      |                                                             |
| L.pneumophila   | 173 | LK                        |                                                             |
| B.burgdorferei  | 197 | LFSGEGAQAAQTAPVQEGA       |                                                             |
| B.subtilus      | 179 | LGIKEADG                  |                                                             |
| C.difficile     | 180 | SM                        |                                                             |
| R.meliloti      | 202 | NGTTSEYTVGAYNVDDLID       | ASATFDGDYANVGAGALAGDYVKVQG                                  |
| A.tumefaciens   | 177 |                           |                                                             |
| R.lupini        | 204 | GGVITQASVRAYSTDEMLS       | LGAKVDGANSNVAVGGGSAFVKVDGS                                  |
| L.monocytogenes | 173 |                           |                                                             |
| B.clarridgeiae  | 209 | FSAAHATYKGLEDTLRN         | AEADLAKAIAKYGESPEDEPGKAI                                    |
| consensus       | 301 |                           |                                                             |

| C.jejuni        | 354      | ATQFISQASVSLRESKGQIDANIAD. | TQFISQASVSLRESKGQIDANIADAMGFGSANKGVVLGGYSSVSAYMSSAGSGFSSGSG |
|-----------------|----------|----------------------------|-------------------------------------------------------------|
| H.pylori        | 4        | RLDAKSINVVSASDS            | QQHLGFTAIGFGESQV                                            |
| V.cholerae      | 232      | LFKASVDQEGKLQ              | IEVAEPNIEGNEN                                               |
| P.aeruginosa    | $\Delta$ | SYVSKAGKDGSGA              | TISAVSGVVIADT                                               |
| R.sphaeroides   |          |                            |                                                             |
| P.mirabilis1    | 235      | YVATKSDFELDAT              | GTKLGLKASAT                                                 |
| P.mirabilis2    |          | YIVSKSDFTLKSG              | GEVEFTGSKT                                                  |
| S.typhimurium2  | 342      | YYAADYDEATGAI              | KAKTTSYTAADGT                                               |
| S.typhimurium1  |          | YYSATQDKDG-SI              | SIDTTKYTADNGT                                               |
| S.marcesens     | $\sim$   | YFIATKDDATGDV              | AYTKAKVADDGKV                                               |
| E.coli          | 4        | DLMANNANAKTVI              | DKGTFTANTT                                                  |
| S.flexneri      | $\sim$   | TLAANNTKATTID              | IGGTSISFIGNST                                               |
| T.pallidumA     | $\sim$   |                            | VRNGVDESIMSIE                                               |
| T.pallidumB     | 179      |                            | VRDVGDESILNID                                               |
| L.pneumophila   | $\sim$   |                            | LVKADGR-PIAIS                                               |
| B.burgdorferei  |          | QQEGAQQPAPVTA              | TUNUA SUGGGUNS PUNUT                                        |
| B.subtilus      | 187      | SIAALHSVNDSIAALHSVND-      | LDVTKFADNAADT                                               |
| C.difficile     | $\infty$ |                            | ISDVSGSI                                                    |
| R.meliloti      | 247      | SWVKAVDVAATGQEVVYDD        | GTTKWGVDTTVTGAPATNVA                                        |
| A.tumefaciens   | $\sim$   | PGTIDANS                   | GILNATGATTVG                                                |
| R.lupini        | 249      | WVKGSVDAAASITASTPVAGK      | FAAAYTAAEAGTAAAAGDA IIVDETNSGAGAV                           |
| L.monocytogenes | 173      |                            | TILGSGSTVAGYS                                               |
| B.clarridgeiae  | 250      | IEKAKQAVETAKTG             | LKDGQEAYNKAKG                                               |
| consensus       | 361      |                            | W                                                           |

| C.jejuni        | 414      | YSVGSGKNYSTGFANAIAISAASOLSTVYNVSAGSGFSSGSTLSOFATT            |
|-----------------|----------|--------------------------------------------------------------|
| H.pylori        |          | AETTVNLRDVTGNFNANVKSASGANYNAVIASGNQSLGSG                     |
| V.cholerae      | 258      | ISGGLATELGLN                                                 |
| P.aeruginosa    | 269      | GSTGVGTAAGVAPSA                                              |
| R.sphaeroides   |          |                                                              |
| P.mirabilis1    | ഹ        | TEFKVDAGKDVKTLN                                              |
| P.mirabilis2    | 9        | TKFTADAGKDVKVLN                                              |
| S.typhimurium2  | 368      | TKTAANQLGGVDGKTEVVTIDGKTYNAS                                 |
| S.typhimurium1  | ഹ        | SKTALNKLGGADGKTEVVTIDGKTYNAS                                 |
| S.marcesens     | വ        | TDSGTDAG                                                     |
| E.coli          | 366      | KFDGVDISVDASTFANAVKNETYTATVGVTLPATYTVNNGTAASAYLVDGKVSKTP     |
| •               | വ        | TPDTITYSVTGAKVDQAAFDKAVSTSGNNVDFTTAGYSVNGTTGAVTKGVDSVYVDNNEA |
| T.pallidumA     | $\circ$  | TADSAN                                                       |
| T.pallidumB     | $\circ$  | DFEKAN                                                       |
| •               | $\infty$ | SPGEAN                                                       |
| B.burgdorferei  | $\Delta$ | TTVDAN                                                       |
| B.subtilus      | $\neg$   | ADIGFD                                                       |
| C.difficile     | 187      | GTEAAS                                                       |
| R.meliloti      | $\infty$ | APASIATIDITIAAQ                                              |
| A.tumefaciens   | 198      | AKTYTQISVLDMNVG                                              |
| R.lupini        | 302      | NLTQSVLTMDVSSMS                                              |
| L.monocytogenes |          | ALSVADAD                                                     |
| B.clarridgeiae  | 277      | EFQTVLDGMTLADFTELKG                                          |
| consensus       | 421      |                                                              |

| C.jejuni        | 462      |                                                                                         |
|-----------------|----------|-----------------------------------------------------------------------------------------|
| H.pylori        | 414      | VTTLRGAMVVIDIAESAMK                                                                     |
| V.cholerae      | 270      | GGPGVKTTVQDIDITSVGGSQNAVGIIDAALK                                                        |
| P.aeruginosa    | 284      | TAFAKTNDTVAKIDISTAKALSRRAGDRTT <b>A</b> IK                                              |
| R.sphaeroides   |          |                                                                                         |
| P.mirabilis1    |          | VKDDALATL <b>D</b> K <b>A</b> IN                                                        |
| P.mirabilis2    | 276      | SI WUJ LUDU TAL MADDA TAL TAL MADDA TAL TAL AND A TAL TAL TAL TAL TAL TAL TAL TAL TAL T |
| S.typhimurium2  | 396      | KAAGHDFKAQPELAEAAKTTENPLQKIDAALA                                                        |
| •               | $\infty$ | KAAGHDFKAEPELAEQAAKTTENPLQK IDAALA                                                      |
| S.marcesens     |          | VKNPLATLDKALA                                                                           |
| E.coli          | $\sim$   | AEYFAQADGTITSGENAATSKAIYVSANGNLTTNTTSESEATTNPLAALDDAIA                                  |
| S.flexneri      |          | LTTSDTVDFYLQDDGSVTNGSGKAVYKDADGKLTTDAETKAATTADPLKALDEAIS                                |
| T.pallidumA     |          | KS IGT IDAALK                                                                           |
| T.pallidumB     | σ        | RA IGT LDEA IK                                                                          |
| L.pneumophila   | $\circ$  | DV IGLADAALT                                                                            |
| B.burgdorferei  |          | TS LAK I ENA IR                                                                         |
| B.subtilus      | -        | AQLKVV <b>D</b> E <b>A</b> IN                                                           |
| C.difficile     | $\circ$  | KWIVNLDSSLA                                                                             |
| R.meliloti      | $\circ$  | AGNLDAL IAGVDEALT                                                                       |
| A.tumefaciens   |          | TDDLDNALYSVET <b>A</b> LT                                                               |
| R.lupini        | $\vdash$ | STDVGSYLTGVEKALT                                                                        |
| L.monocytogenes |          | SSQEATEAIDELIN                                                                          |
| B.clarridgeiae  | 296      | LGELHSDIQRMIMTSVQNTVRDAVN                                                               |
| consensus       | 481      | m id am                                                                                 |

| G <b>A</b> F<br>G <b>A</b> E<br>R <b>A</b> I<br>G <i>S</i> K | GAKLGSLSARIDLQSGFADKLSDTIEKGVGRLVDF<br>GAELGSIKQRIDLQVDFASKLGDALAKGIGRLVD?<br>RALLGAGMSRLSYNVSNVNNQSIATKASASSIED?<br>GSKIGAAVNLVNIOLNFVKKLLDNVEVGIGALVD? | RIDL(<br>RIDL(<br>RISYI | O VI<br>O VI<br>O VI<br>O VI | JFADKLS<br>JFASKLC<br>S <b>NV</b> NQS<br>JF <b>V</b> KKLJ | SDT1E<br>SDALA<br>STATK<br>STATK<br>DNVE | KGV<br>KGI<br><b>A</b> SA | GRLV<br>GRLV<br>SS <b>I</b> E<br>GALV |   |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|-----------------------------------------------------------|------------------------------------------|---------------------------|---------------------------------------|---|
| га                                                           | ra lgavqnrvd ži nl                                                                                                                                       | rvd                     | , -⊢                         | nl                                                        | enl aa sri da                            | aa                        | sri                                   | ğ |
|                                                              |                                                                                                                                                          |                         |                              |                                                           |                                          |                           |                                       |   |

FIG. 7EB

| C.jejuni        | 495          | NLDQIRADIGSVQNQVTSTINNITVTQVNVKAAESQIRDVDFAAESANY SKANILAQSGS                    |
|-----------------|--------------|----------------------------------------------------------------------------------|
| H.pylori        | $\sim$       | MLDKVRSDLGSVQNQMI ST VNN ISITQVNVKAAE SQIRDVDFAEESANFNKNNILAQSGS                 |
| V.cholerae      | 302          | Y VDSQRADLGAKQNRLSHS ISNLSNIQENVEASKSRIKDTDFAKET TQLTKSQILQQAGT                  |
| P.aeruginosa    | $\leftarrow$ | QIDASVPTSVAVQNRFDNTINNLKNIGENVSAARGRIEDTDFAAETANLTKNQVLQQAGT                     |
| R.sphaeroides   |              |                                                                                  |
| P.mirabilis1    | $\infty$     | TIDESRSKLGAIQNRFESTINNLNNTVNNLSASRSRILDADYATEVSNMSRGQILQQAGT                     |
| P.mirabilis2    | 5            | K VDE SR SKLGA I QNRFQST INNLNNTVNNLSASR SRILDADYATE VSNMSKNQILQQAGT             |
| S.typhimurium2  | $\sim$       | Q VDALRSDLGA VQNRFNSA ITNLGNTVNNLSE AR SRIED SDYATE VSNMSRAQILQQAG T             |
| S.typhimurium1  |              | Q VDTLRSDLGA VQNRFNSA ITNLGNTVNNLS SAR SRIED SDYATE VSNMSRAQILQQAG T             |
| S.marcesens     | $\sim$       | Q VDGLRSSLGA VQNRFDSV INNLNSTVNNLSASQSRIQDADYATE VSNMSRANILQQAGT                 |
| E.coli          | $\sim$       | S IDKFRSSLGA IQNRLDSA VTNLNNTTTNLSE AQSRIQDADYATE VSNMSKAQI IQQAGN               |
| S.flexneri      | $\sim$       | S IDKFRSSLGA VQNRLDSA VTNLNNTTTNLSE AQSRIQDADYATE VSNMSKAQI IQQAGN               |
| T.pallidumA     | $^{\circ}$   | R INKQRADLGGY QNRMEYT WGLDIAAENLQAAE SRIRDAMI AKQMVEY TKNQVLTQSGT                |
| T.pallidumB     | 0            | K INKQRADLGAYQNRLEYT VI G UNVAAENLQAAE SRIRDVDMAKEMVDY TKNQILVQSGT               |
| L.pneumophila   | 0            | K IMKQRADMGAYYNRLEYTAKGLMGAYENMQASESRIRDADMAEEWSLTTKQILVQSGT                     |
| B.burgdorferei  | ഹ            | MISDQRANLGAFQNRLESIKDSTEYAIENLKASYAQIKDATMTDEWAATINSILTQSAM                      |
| B.subtilus      | $\sim$       | QVSSQRAKLGAVQNRLEHT INNLSASGENLTAAE SRIRDVDMAKEMSEFTKNNILSQASQ                   |
| C.difficile     | $^{\circ}$   | DINSARALLGAQQNRLESTQNNLNNTVENVTAAESRIRDTDVASEMVNLSKMNTLVQASQ                     |
| R.meliloti      | -            | DMTSAAASLGSISSRIDLQSDF VNKLSDSIDSGVGRLVDADMNEES TRLKALQTQQQLAI                   |
| A.tumefaciens   | $\sim$       | KMTSAGAKLGSLSARIDLQSGFADKLSDTIEKGVGRLVDADMNEESTKLKALQTQQQLAI                     |
| R.lupini        | $\sim$       | S LT SAGAELG S IK QR I DLQ VD FASKLG DALAK GI GR LV DADMNEE S TK LKAL QT QQQ LAI |
| L.monocytogenes | 0            | N ISNGRALLGAGMSRLSYN VSNVNNQSIATKASASSIEDADMAAEMSEMTKYKILTQTSI                   |
| B.clarridgeiae  | 321          | VTLTAG SK IGAAVNLVNIQLNFVKKLLDNVEVGIGALVDADMNAESAKLAALQVQQQLGI                   |
| consensus       |              | l ra lgavqnrvd i nl enl aa sri dad a evtnlsk qilqq gs                            |

|                 | 555 |                                                                                   |
|-----------------|-----|-----------------------------------------------------------------------------------|
| C.jejuni        |     | YAMAQANSVHQNVLRLLQ                                                                |
| H.pylori        | 493 | YA <i>MS<b>QAN</b>TVQ<b>Q</b>NI<b>L</b>R<b>LL</b>T</i>                            |
| V.cholerae      | 362 | S <i>I<b>laqa</b>k<b>q</b>l<b>p</b>nsa<i>i<b>sll</b>q</i></i>                     |
| P.aeruginosa    | 377 | AILAQANQLPQSVLSLLR                                                                |
| R.sphaeroides   |     |                                                                                   |
| P.mirabilis1    | 348 | SVLAQANQVPQTVLSLLR                                                                |
| P.mirabilis2    | 350 | AVLAQANQVPQTVLSLLR                                                                |
| S.typhimurium2  | 489 | SVLAQANQVPQNVLSLLR                                                                |
| S.typhimurium1  | 473 | SVLAQANQVPQNVLSLLR                                                                |
| S.marcesens     | 334 | SVLAQANQSTQNVLSLLR                                                                |
| E.coli          | 536 | SVLAKANQVPQQVLSLQQG-                                                              |
| S.flexneri      | 532 | SVLAKANQVPQQVLSLLQG-                                                              |
| T.pallidumA     | 269 | AMLAQANTSAQSILSILR                                                                |
| T.pallidumB     | 269 | AMLAQANQATQSVLSLLR                                                                |
| L.pneumophila   | 264 | A <i>M</i> <b>la</b> r <b>an</b> MK <b>p</b> <i>N</i> S <b>VL</b> K <b>ll</b> QHI |
| B.burgdorferei  | 319 | AMIAQANQVPQYVLSLLR                                                                |
| B.subtilus      | 287 | AMLAQANQQPQNVLQLLR                                                                |
| C.difficile     | 264 | SMLSQANQQPQGVLQLLG                                                                |
| R.meliloti      | 377 | QALSIANSDSQNVLSLFR                                                                |
| A.tumefaciens   | 289 | QALSIANSDSQNILSLFR                                                                |
| R.lupini        | 393 | QSLSIANSDSQNILSLFR                                                                |
| L.monocytogenes | 269 | SMLSQANQTPQMLTQLINS-                                                              |
| B.clarridgeiae  | 381 | QALSIANQGSQNILALFRN-                                                              |
| consensus       | 601 | ilagang pgnvlsllr                                                                 |
| 00110011040     | υυı | TTAJANA PANATAT                                                                   |

### FIG. 7F

[0001] This application is based on, and claims the benefit of, U.S. Provisional Application No. 60/285,477, filed Apr. 20, 2001, and which is incorporated herein by reference.
[0002] This invention was made with government support under grant numbers 5R37AI025032 and 5R01AI032972, awarded by the National Institutes of Health. The United States Government has certain rights in this invention.

#### BACKGROUND OF THE INVENTION

**[0003]** Cancer is the second leading cause of death in the United States, accounting for one in every four deaths. This year, it is expected that over 1500 Americans will die of cancer each day and that a million new cases of cancer will be diagnosed. The most common treatments for cancer are surgery, radiation and chemotherapy. According to the American Cancer Society, immunotherapy can be considered as the "fourth modality" in the treatment of cancer. Immunotherapy is treatment that stimulates one's own immune system to fight cancer.

**[0004]** Cancer is a group of diseases characterized by uncontrolled growth of abnormal cells of the body. All types of cancer involve the malfunction of genes that control cell growth and division. Some of these genes become incorrectly regulated, resulting in over- or under-production of a particular protein, while others become mutated, resulting in unusual or abnormal proteins that alter normal cellular functions. These abnormal proteins, referred to as "tumor cell antigens," should be recognized and destroyed by an individual's immune system as "foreign" antigens.

[0005] However, the immune system of a cancer patient may ignore these tumor antigens and be unresponsive to the growing tumor. Using immunotherapy approaches, such as cancer vaccines and immune system modulators, an individual's immune system can be induced to mount a potent immune response against tumor cell antigens, resulting in elimination of cancer cells. A cancer vaccine can contain a tumor cell antigen that stimulates the immune system to recognize and destroy cells which display that antigen. Treating an individual with such a cancer vaccine can result in a humoral response, which involves producing antibodies that recognize and target tumor cells for destruction and a cellular response, which involves producing cytotoxic T cells that recognize and destroy tumor cells directly, or both responses. It can be desirable to obtain both a humoral and cellular immunity response during immunotherapy because both arms of immune response have been positively correlated with beneficial clinical responses. To help stimulate either or both humoral and cellular immune responses, a cancer vaccine can be combined with an adjuvant, which is a substance that stimulates a general immune response.

**[0006]** The potency of cancer vaccines is greatly enhanced by the use of adjuvants. The selection of an adjuvant for use with a particular vaccine can have a beneficial effect on the clinical outcome of vaccination. Some vaccines are ineffective in the absence of an adjuvant. Effectiveness of a vaccine may be particularly troublesome when the vaccine is produced from self antigens such as those required for cancer vaccines or other non-infectious disease vaccines. In view of the beneficial effects of adjuvants in vaccine formulations, it is surprising that only one type of adjuvant, aluminum-salt based adjuvants, are currently in wide use in United Stateslicensed vaccines.

**[0007]** Thus, there exists a need for more and improved immunological adjuvants. The present invention satisfies this need and provides related advantages as well.

#### SUMMARY OF THE INVENTION

**[0008]** The invention provides an immunomodulatory flagellin peptide having at least about 10 amino acids of substantially the amino acid sequence GAVQNRFNSAIT, or a modification thereof, and having toll-like receptor 5 (TLR5) binding. Methods of inducing an immune response are also provided.

#### BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 shows NF- $\kappa$ B activation and TNF $\alpha$  production in cells expressing CD4-TLR4 or CD4-TLR5.

**[0010]** FIG. **2** shows selective induction of TLR5-stimulated activation of NF- $\kappa$ B by *P. aeruginosa* and *L. monocy*-*togenes* cultures compared to LPS and lipopeptide.

**[0011]** FIG. **3** shows the purification of a TRL5-stimulating activity from *L. monocytogenes* culture supernatant.

**[0012]** FIG. **4** shows the identification by mass spectrometry of flagellin as a TLR5-stimulating activity.

**[0013]** FIG. **5** shows that flagellin expression in bacteria reconstitutes TLR5-stimulating activity.

**[0014]** FIG. **6** shows systemic induction of IL-6 in wild type mice treated with purified flagellin.

**[0015]** FIG. 7 shows a comparison of flagellin amino acid sequences from 22 species of bacteria and a consensus sequence of amino acid residues conserved across species.

#### DETAILED DESCRIPTION OF THE INVENTION

**[0016]** The invention is directed to flagellin derived peptides that exhibit immunomodulatory activity and to methods of inducing an immune response through activation of tolllike receptor 5 (TLR5). The identification of active flagellin peptides and their corresponding receptor, TLR5, expands the available treatment methods for inducing an immune response. Moreover, the identification of active flagellin peptides and their cognate receptor allows the identification of immunomodulatory compounds.

[0017] In one embodiment, the invention is directed to immunomodulatory flagellin peptides that bind to TLR5 and induce a TLR5-mediated activity. The peptides can be used, for example, to effectively stimulate an immune response or ameliorate a pathological condition by administration of immunomodulatory flagellin peptides and combinations of such peptides with antigens and other immunomodulatory molecules. Full length flagellin polypeptides are also used in the methods of the invention to stimulate an immune response. An advantage of the immunomodulatory flagellin peptides of the invention is that they provide the specificity of flagellin together with the availability of rapid and efficient methods for recombinant and chemical synthesis of peptides. The immunomodulatory flagellin peptides of the invention can therefore be combined with numerous well known modes of administration for the treatment of a wide variety of pathological conditions.

**[0018]** In another embodiment, the invention provides a method of inducing an immune response in an individual by administering a vaccine containing an immunomodulatory

flagellin peptide of the invention and an antigen. An immunomodulatory flagellin peptide of the invention functions to stimulate an innate immune response. The innate immune response involves the production of immunomodulatory molecules that beneficially promote the adaptive immune response. The adaptive immune response includes both humoral and cell-mediated immune responses to antigen. Thus, a flagellin peptide functions to boost either or both humoral and cell-mediated immune response against the antigen. A boost in an immune response causes a general increase in immune system activity that can result in the destruction of foreign or pathologically aberrant cells that otherwise could have escaped the immune response.

**[0019]** As used herein, the term "flagellin" is intended to mean a flagellin polypeptide contained in a variety of Grampositive or Gram-negative bacterial species. The nucleotide and amino acid sequences of flagellin from 22 bacterial species are depicted in FIG. 7. The nucleotide sequences encoding the listed flagellin polypeptides are publicly available in the NCBI Genbank database. The flagellin sequences from these and other species are intended to be encompassed by the term flagellin as used herein. Therefore, the sequence differences between species is included within the meaning of the term.

[0020] As used herein, the term "peptide" is intended to mean two or more amino acids covalently bonded together. The term "flagellin peptide" is intended to mean a peptide or fragment encoded by a portion of the nucleotide sequence or having a portion of the amino acid sequence which exhibits substantially the same sequence identity to the flagellin sequences as described above and identified in FIG. 7 and binds to toll-like receptor 5 (TLR5). For example, a flagellin peptide amino acid sequence is about 65% or greater in sequence identity to a portion of the S. Typhimurium1 sequence, GAVQNRFNSAIT, identified as SEQ ID NO:2, encoded by the nucleic acid sequence identified as SEQ ID NO:1. Therefore, flagellin peptides having amino acid substitutions that do not substantially alter TLR5 binding are included within the definition of a flagellin peptide. For example, flagellin peptides which contain one or more alanine substitutions and have substantially the same TLR5 binding activity as the flagellin peptide identified as SEQ ID NO:2 are included within the definition of a flagellin peptide. Exemplary flagellin peptides containing alanine substitutions and having substantially the same TLR5 binding activity as the flagellin peptide identified as SEQ ID NO:2 include, for example, GAVANRFNSAIT (SEQ ID NO:3) and GAVONAFNSAIT (SEQ ID NO:4). Flagellin peptides consisting of greater than twelve amino acids and having TLR5 binding activity can similarly contain amino acid substitutions, so long as such substituted peptides retain substantially the same TLR5 binding activity. Examples of such flagellin peptides containing substitutions of various amino acid residues with alanine include ADTRDLGAVQNRFNSAIT (SEQ ID NO:37), VDARDLGAVQNRFNSAIT (SEQ ID NO:38) and VDTADLGAVQNRFNSAIT (SEQ ID NO:39). A flagellin peptide of the invention does not include a full length flagellin polypeptide. A flagellin peptide is intended to include molecules which contain, in whole or in part, nonamide linkages between amino acids, amino acid analogs and mimetics. Similarly, a flagellin peptide also includes cyclic peptides and other conformationally constrained structures. A flagellin peptide of the invention includes polypeptides having several hundred or more amino acid residues and can contain a heterologous amino acid sequence.

**[0021]** The term flagellin peptide specifically excludes fragments of flagellin described in Newton et al. *Science*, 244:70-72 (1989); Kuwajima, G., *J. Bacteriol.* 170:3305-3309 (1988); McSorley et al., *J. Immunol.* 164:986-993 (2000); and Samatey et al. *J. Struct. Biol.* 132:106-111 (2000).

[0022] As used herein, term "immunomodulatory flagellin peptide," is intended to mean a peptide or fragment having a portion of the amino acid sequence which exhibits substantially the same sequence identity to the flagellin sequences as described above and shown in FIG. 7 and binds to toll-like receptor 5 (TLR5). For example, an immunomodulatory flagellin peptide amino acid sequence is about 65% or greater in sequence identity to a portion of the S. Typhimurium1 sequence, GAVQNRFNSAIT, identified as SEQ ID NO:2, encoded by the nucleic acid sequence identified as SEQ ID NO:1. Therefore, immunomodulatory flagellin peptides having amino acid substitutions that do not substantially alter TLR5 binding are included within the definition of an immunomodulatory flagellin peptide. For example, immunomodulatory flagellin peptides which contain one or more alanine substitutions and have substantially the same TLR5 binding activity as the flagellin peptide identified as SEQ ID NO:2 are included within the definition of a flagellin peptide. Exemplary immunomodulatory flagellin peptides containing alanine substitutions and having substantially the same TLR5 binding activity as the flagellin peptide identified as SEQ ID NO:2 include, for example, GAVANRFNSAIT (SEQ ID NO:3) and GAVQNAFNSAIT (SEQ ID NO:4). Immunomodulatory flagellin peptides consisting of greater than twelve amino acids and having TLR5 binding activity can similarly contain amino acid substitutions, so long as such substituted peptides retain substantially the same TLR5 binding activity. Examples of such immunomodulatory flagellin peptides containing substitutions of various amino acid residues with alanine include ADTRDLGAVQNRFNSAIT (SEQ ID NO:37), VDARDLGAVQNRFNSAIT (SEQ ID NO:38) and VDTADLGAVQNRFNSAIT (SEQ ID NO:39). An immunomodulatory flagellin peptide of the invention does not include a full length flagellin polypeptide. An immunomodulatory flagellin peptide is intended to include molecules which contain, in whole or in part, non-amide linkages between amino acids, amino acid analogs and mimetics. Similarly, an immunomodulatory flagellin peptide also includes cyclic peptides and other conformationally constrained structures. An immunomodulatory flagellin peptide of the invention includes polypeptides having several hundred or more amino acid residues and can contain a heterologous amino acid sequence.

**[0023]** An immunomodulatory flagellin peptide, polypeptide or modification thereof, of the invention binds to toll-like receptor 5 (TLR5) and induces a TLR5-mediated response. It is understood that minor modifications can be made without destroying the TLR5 binding activity, TLR5-mediated response stimulating activity or immune response modulating activity of an flagellin peptide or polypeptide and that only a portion of the primary structure may be required in order to effect activity. Such modifications are included within the meaning of the terms flagellin polypeptide and flagellin peptide so long as TLR5 binding activity, TLR5 response stimulating or immune response stimulating activities are retained. Further, various molecules can be attached to flagellin polypeptides and peptides, including for example, other polypeptides, carbohydrates, nucleic acids or lipids. Such modifications are included within the definition of the term.

**[0024]** Minor modifications of flagellin polypeptide and peptides having at least about the same TLR5 binding activity, TLR5 response stimulating or immune response stimulating activity as the referenced polypeptide or peptide include, for example, conservative substitutions of naturally occurring amino acids and as well as structural alterations which incorporate non-naturally occurring amino acids, amino acid analogs and functional mimetics. For example, a Lysine (Lys) is considered to be a conservative substitution for the amino acid Arg. Similarly, a flagellin peptide containing mimetic structures having similar charge and spacial arrangements as reference amino acid residues would be considered a modification of the reference polypeptide or peptide so long as the peptide mimetic exhibits at least about the same activity as the reference peptide.

[0025] As used herein, the term "amino acid" is intended to mean both naturally occurring and non-naturally occurring amino acids as well as amino acid analogs and mimetics. Naturally occurring amino acids include the 20 (L)-amino acids utilized during protein biosynthesis as well as others such as 4-hydroxyproline, hydroxylysine, desmosine, isodesmosine, homocysteine, citrulline and ornithine, for example. Non-naturally occurring amino acids include, for example, (D)-amino acids, norleucine, norvaline, p-fluorophenylalanine, ethionine and the like. Amino acid analogs include modified forms of naturally and non-naturally occurring amino acids. Such modifications can include, for example, substitution or replacement of chemical groups and moieties on the amino acid or by derivitization of the amino acid. Amino acid mimetics include, for example, organic structures which exhibit functionally similar properties such as charge and charge spacing characteristic of the reference amino acid. For example, an organic structure which mimics Arginine (Arg or R) would have a positive charge moiety located in similar molecular space and having the same degree of mobility as the  $\epsilon$ -amino group of the side chain of the naturally occurring Arg amino acid. Mimetics also include constrained structures so as to maintain optimal spacing and charge interactions of the amino acid or of the amino acid functional groups. Those skilled in the art know or can determine what structures constitute functionally equivalent amino acid analogs and amino acid mimetics.

[0026] Specific examples of amino acid analogs and mimetics can be found described in, for example, Roberts and Vellaccio, The Peptides: Analysis, Synthesis, Biology, Eds. Gross and Meinhofer, Vol. 5, p. 341, Academic Press, Inc., New York, N.Y. (1983), the entire volume of which is incorporated herein by reference. Other examples include peralkylated amino acids, particularly permethylated amino acids. See, for example, Combinatorial Chemistry, Eds. Wilson and Czarnik, Ch. 11, p. 235, John Wiley & Sons Inc., New York, N.Y. (1997), the entire book of which is incorporated herein by reference. Yet other examples include amino acids whose amide portion (and, therefore, the amide backbone of the resulting peptide) has been replaced, for example, by a sugar ring, steroid, benzodiazepine or carbo cycle. See, for instance, Burger's Medicinal Chemistry and Drug Discovery, Ed. Manfred E. Wolff, Ch. 15, pp. 619-620, John Wiley & Sons Inc., New York, N.Y. (1995), the entire book of which is incorporated herein by reference. Methods for synthesizing peptides, polypeptides, peptidomimetics and proteins are well known in the art (see, for example, U.S. Pat. No. 5,420, 109; M. Bodanzsky, *Principles of Peptide Synthesis* (1st ed. & 2d rev. ed.), Springer-Verlag, New York, N.Y. (1984 & 1993), see Chapter 7; Stewart and Young, *Solid Phase Peptide Synthesis*, (2d ed.), Pierce Chemical Co., Rockford, Ill. (1984), each of which is incorporated herein by reference).

[0027] As used herein, the term "immune response" is intended to mean to a measurable or observable reaction to an antigen or immunomodulatory molecule mediated by one or more cells of the immune system. An immune response begins with an antigen or immunomodulatory molecule binding to an immune system cell and terminates with destruction of antigen and cells containing antigen or alteration in immune cell function. A reaction to an antigen or immunomodulatory molecule is mediated by many cell types, including a cell that initially binds to an antigen or immunomodulatory molecule and cells that participate in mediating an innate, humoral, cell-mediated immune response. An innate immune response involves binding of pathogen-associated molecular patterns (PAMPs) to cell surface receptors, such as toll-like receptors. Activation of toll-like receptors in response to PAMPs leads to the production of immunomodulatory molecules, such as cytokines and co-stimulatory molecules, that induce an immune response. A humoral response involves interaction of B cells with antigen and B cell differentiation into antibody-secreting cells. A cell-mediated response involves various subpopulations of T cells that recognize antigen presented on self-cells, including helper T cells that respond to antigen by producing cytokines and cytotoxic T cells that respond to antigen by developing into cytotoxic T lymphocytes, which mediate killing of altered self-cells. The term immune response includes measurable or observable reactions produced by any cell type that participates in the processes through which immune system cells are activated and antigen containing cells are destroyed. Such measurable reactions include, for example, production of immunomodulatory molecules, migration and proliferation.

[0028] An "immunomodulatory molecule" is a molecule that alters an immune response. An immunomodulatory molecule can be, for example, a compound, such as an organic chemical; a polypeptide, such as an antibody or cytokine; a nucleic acid, such as a DNA or RNA molecule; or any other type of molecule that alters an immune response. An immunomodulatory molecule can alter an immune response by directly or indirectly altering an activity of a cell that mediates an immune response. An immunomodulatory molecule can act directly on an immune system cell, for example, by binding to a cell surface receptor and stimulating or inhibiting proliferation, differentiation, or expression, secretion or receptor binding of immune system regulatory molecules such as co-stimulatory receptors and ligands, cytokines, and chemokines. Examples of naturally occurring molecules that act directly on immune system cells to alter an immune response include PAMPs, cytokines, chemokines and growth factors. Other examples of molecules that act directly on immune system cells to alter an immune response include molecules that alter receptor functions, such as antibodies to receptors, soluble cytokine receptors, receptor agonists and antagonists, molecules that alter the production of immunomodulatory molecules, such as inhibitors of converting enzymes and molecules involved in the intracellular transport and secretion of immunomodulatory molecules.

[0029] An immunomodulatory molecule can indirectly alter the activity of a particular immune system cell by altering the amount or activity of a molecule that regulates a cellular activity of the cell. For example, a cytokine, chemokine, or growth factor produced by an immune system cell, such as a macrophage, can stimulate or inhibit various cellular activities of B and T lymphocytes. Immune cell functions that can be stimulated or inhibited by an immunomodulatory molecule include, for example, immune cell activation, coactivation, proliferation, production of cytokines, cellular interactions and migration. An immunomodulatory molecule can therefore act on a variety of immune cell types and can alter a variety of cellular functions. An immunomodulatory flagellin peptide, polypeptide or modifications thereof used in the methods of the invention are examples of immunomodulatory molecules useful for inducing an immune response, for example, by binding to TLR5 and inducing a TLR5-mediated increase in macrophage production of  $TNF\alpha$ , IL-1 and IL-6. The flagellin polypeptides, peptides and modifications thereof, are also useful for indirectly inducing an immune response because immunomodulatory molecules produced by a TLR5-expressing cell in response to flagellin will alter the activities of immune system cells that respond to the particular immunomodulatory molecules produced.

**[0030]** An immunomodulatory molecule can mediate an immune response that is specific for a target antigen or non-specific. A specific immunomodulatory molecule alters an immune response to a particular target antigen. Examples of specific immunomodulatory molecules include monoclonal antibodies, including naked monoclonal antibodies, drug-, toxin- or radioactive compound-conjugated monoclonal antibodies, and ADCC targeting molecules. Such immunomodulatory molecules stimulate an immune response by binding to antigens and targeting cells for destruction. An immunomodulatory molecule can be used to suppress an immune response to a self-antigen.

[0031] Nonspecific immunomodulatory molecules stimulate or inhibit the immune system in a general manner through various mechanisms that can include, for example, stimulating or suppressing cellular activities of immune system cells. Nonspecific immunomodulatory molecules useful for stimulating an immune responses include, for example, agents that stimulate immune cell proliferation, immune cell activation and production of cytokines and co-stimulatory molecules. Well known immunomodulatory molecules that stimulate an immune response are, for example, interleukins, interferons, levamisole and keyhole limpet hemocyanin. Nonspecific immunomodulatory molecules useful for suppressing immune responses include, for example, agents that inhibit cytokines synthesis or processing, specific cytokine receptor blocking reagents such as soluble receptors and receptor antagonists, and cytokines that down-regulate or inhibit the production of other immunomodulatory molecules. Well known immunomodulatory molecules for suppressing an immune response include, for example, cyclosporin, rapamycin, tacrolimus, azathioprine, cyclophosphamide and methotrexate.

**[0032]** Immunomodulatory molecules can be contained in a mixture of molecules, including a natural or man-made composition of molecules. Exemplary natural compositions of immunomodulatory compounds include, for example, those contained in an organism such as Bacille CalmetteGuerin (BCM) or *Corynbacterium parvum*. Exemplary manmade compositions of immunomodulatory molecules include, for example, QS-21, DETOX and incomplete Freund's adjuvant.

[0033] As used herein, the term "adjuvant" when used in reference to a vaccine, is intended to mean a substance that acts generally to accelerate, prolong, or enhance the quality of specific immune responses to a vaccine antigen. An adjuvant can advantageously reduce the number of immunizations or the amount of antigen required for protective immunization. [0034] As used herein, the term "antigen-specific immune response" is intended to mean a reaction of one or more cells of the immune system to a particular antigen that is not substantially cross-reactive with other antigens.

**[0035]** As used herein, the term "antigen" is intended to mean a molecule which induces an immune response. An antigen can be a crude mixture of molecules, such as a cell, or one or more isolated molecules. Examples of crude antigens include attenuated organisms, inactivated organisms, viral particles and tumor cells. Examples of isolated antigens include a polypeptide, lipoprotein, glycoprotein, lipid, antiidiotype antibody, toxoid, polysaccharide, capsular polysaccharide and nucleic acid. Such isolated antigens can be naturally occurring, recombinantly produced, or synthesized. Exemplary naturally occurring antigens include purified microbial macromolecules. Exemplary recombinantly produced antigens include cloned microbial and tumor cell antigens. Exemplary synthesized antigens include synthetic peptides and nucleic acids.

**[0036]** As used herein, the term "vaccine" is intended to mean a compound or formulation which, when administered to an individual, stimulates an immune response against an antigen. A vaccine is useful for preventing or ameliorating a pathological condition that will respond favorably to immune response modulation. A vaccine can contain isolated or crude antigen, and can contain one or more antigens. A vaccine can contain one or more antigens.

[0037] As used herein, the term "immunogenic amount" is intended to mean an amount of an immunomodulatory flagellin polypeptide, peptide or modifications thereof, or combinations thereof with one or more molecules, such as an antigen or other immunomodulatory molecule, required to effect an immune response. The dosage of an immunomodulatory flagellin polypeptide, peptide, or modifications thereof, independently or in combination with one or more molecules, will depend, for example, on the pathological condition to be treated, the weight and condition of the individual and previous or concurrent therapies. The appropriate amount considered to be an immunogenic dose for a particular application of the method can be determined by those skilled in the art, using the guidance provided herein. For example, the amount can be extrapolated from in vitro or in vivo assays as described below. Those skilled in the art will understand that the condition of the patient needs to be monitored through the course of therapy and that the amount of the composition that is administered can be adjusted according to patient response to therapy.

**[0038]** The term "pathologically aberrant cell" is intended to mean a cell that is altered from a normal physiological or cellular state. Such alteration can be due to changes in physiology or phenotype associated with a disease or abnormal condition of a mammalian cell or tissue. Pathologically aberrant cells include cells lacking normal control of cellular functions, such as growth, differentiation, and apoptosis, resulting in altered gene and protein expression. Cells that lack normal growth control proliferate in the absence of appropriate growth signals, resulting in damage in structure or function of surrounding tissues. Cells that lack normal differentiation undergo inappropriate phenotypic or physiological changes that do not normally characterize the cell type, resulting in damage in structure and function or surrounding tissues. Cells that lack normal apoptosis fail to undergo, or inappropriately undergo the process of cell death, resulting in damage in structure or function of surrounding tissues. Altered protein expression is an example of a phenotype change that renders such cells distinguishable from normal. For example, increased or decreased expression of a polypeptide normally expressed on a cell, expression of a mutated polypeptide and expression of a polypeptide not normally expressed on a cell are phenotypic changes that can alter a cell from normal. Examples of pathologically aberrant cells include tumor cells and degenerating cells.

[0039] As used herein, the term "pathological condition" is intended to mean a disease, abnormal condition or injury of a mammalian cell or tissue. Such pathological conditions include, for example, hyperproliferative and unregulated neoplastic cell growth, degenerative conditions, inflammatory diseases, autoimmune diseases and infectious diseases. Pathological conditions characterized by excessive or unregulated cell growth include, for example, hyperplasia, cancer, autoimmune disease and infectious disease. Hyperplastic and cancer cells proliferate in an unregulated manner, causing destruction of tissues and organs. Specific examples of hyperplasias include benign prostatic hyperplasia and endometrial hyperplasia. Specific examples of cancer include prostate, breast, ovary, lung, uterus, brain and skin cancers. Abnormal cellular growth can also result from infectious diseases in which foreign organisms cause excessive growth. For example, human papilloma viruses can cause abnormal growth of skin cells. The growth of cells infected by a pathogen is abnormal due to the alteration of the normal condition of a cell resulting from the presence of a foreign organism. Specific examples of infectious diseases include DNA and RNA viral diseases, bacterial diseases, parasitic diseases. Similarly, the growth of cells mediating autoimmune and inflammatory diseases are aberrantly regulated which results in, for example, the continued proliferation and activation of immune mechanisms with the destruction of tissues and organs. Specific examples of autoimmune diseases include, for example, rheumatoid arthritis and systemic lupus erythmatosis. Specific examples of degenerative disease include osteoarthritis and Alzheimer's disease.

**[0040]** By specific mention of the above categories of pathological conditions, those skilled in the art will understand that such terms include all classes and types of these pathological conditions. For example, the term cancer is intended to include all known cancers, whether characterized as malignant, benign, soft tissue or solid tumor. Similarly, the terms infectious diseases, degenerative diseases, autoimmune diseases and inflammatory diseases are intended to include all classes and types of these pathological conditions. Those skilled in the art will know the various classes and types of proliferative, infectious, autoimmune and inflammatory diseases.

**[0041]** As used herein the term "toll-like receptor 5" or "TLR5" is intended to mean a toll-like receptor 5 of any species, such as the murine and human polypeptides containing the amino acid sequences set forth as SEQ ID NOS:6 and

8, respectively, encoded by the nucleic acid sequence identified as SEQ ID NOS:5 and 7, respectively. A TLR5 is activated upon binding to flagellin, an immunomodulatory flagellin peptide, or modifications thereof, and other TLR5 agonists. Upon activation, a TLR5 induces a cellular response by transducing an intracellular signal that is propagated through a series of signaling molecules from the cell surface to the nucleus. For example, the intracellular domain of TLR5 recruits an adaptor protein, MyD88, which recruits the serine kinase IRAK. IRAK forms a complex with TRAF6, which then interacts with various molecules that participate in transducing the TLR signal. These molecules and other TRL5 signal transduction pathway components stimulate the activity of transcription factors, such as fos, jun and NF-KB, and the corresponding induction of gene products of fos-, jun- and NF- $\kappa$ B-regulated genes, such as, for example, TNF $\alpha$ , IL-1 and IL-6. The activities of signaling molecules that mediate the TLR5 signal, as well as molecules produced as a result of TLR5 activation are TLR5 activities that can be observed or measured. Therefore, a TLR5 activity includes binding to a flagellin polypeptide, immunomodulatory flagellin peptide, or a modification thereof, recuitment of intracellular signaling molecules, as well as downstream events resulting from TLR5 activation, such as transcription factor activation and production of immunomodulatory molecules. A TLR5 cellular response mediates an innate immune system response in an animal because cytokines released by TLR5-expressing cells regulate other immune system cells to promote an immune response in an animal. Therefore, as used herein the term "TLR5-mediated response" is intended to mean the ability of a flagellin polypeptide, immunomodulatory peptide or modification thereof to induce a TLR5-mediated cellular response. Exemplary TLR5-mediated cellular responses include activation of transcription factors such as fos, jun and NF-KB, production of cytokines such as IL-1, IL-6 and TNF $\alpha$ , and the stimulation of an immune response in an animal.

[0042] A TLR5 also encompasses polypeptides containing minor modifications of a native TLR5, and fragments of a full-length native TLR5, so long as the modified polypeptide or fragment retains one or more biological activities of a native TLR5, such as the abilities to stimulate NF-KB activity, stimulate the production of cytokines such as  $TNF\alpha$ , IL-1, and IL-6 and stimulate an immune response in response to TLR5 binding to flagellin polypeptide, immunomodulatory peptide or modifications thereof. A modification of a TLR5 can include additions, deletions, or substitutions of amino acids, so long as a biological activity of a native TLR5 is retained. For example, a modification can serve to alter the stability or activity the polypeptide, or to facilitate its purification. Modifications of polypeptides as described above in reference to flagellin polypeptides and peptides are applicable to TLR5 polypeptides of the invention. A "fragment" of a TLR5 is intended to mean a portion of a TLR5 that retains at least about the same activity as a native TLR5.

**[0043]** As used herein, the term "TLR5 agonist" refers to a compound that selectively activates or increases normal signal transduction through TLR5. As used herein, the term "TLR5 antagonist" refers to a compound that selectively inhibits or decreases normal signal transduction through TLR5. A TLR5 agonist or antagonist can alter normal signal transduction through TLR5 indirectly, for example, by modifying or altering the native conformation of TLR5 agonist or

antagonist has an EC50 of less than about  $10^{-7}$  M, such as less than  $10^{-8}$  M and less than  $10^{-9}$  M, although a TRL5 agonist with a higher EC50 can be therapeutically useful. As used herein, the term "TLR5 ligand" refers to a compound that binds a TLR5 polypeptide with high affinity. A TLR5 ligand can further be an agonist or antagonist of TLR5, as described above, or can be a compound having little or no effect on TLR5 signaling.

**[0044]** As used herein, the term "detectably labeled" refers to derivitization with, or conjugation to, a moiety that is detectable by an analytical or qualitative method. A detectable moiety can be, for example, a radioisotope, such as <sup>14</sup>C, <sup>131</sup>I, <sup>32</sup>P or <sup>3</sup>H, fluorochrome, ferromagnetic substance, or luminescent substance.

[0045] As used herein the term "ADCC targeting molecule" is intended to mean an antigen binding protein containing a Fc receptor binding domain capable of inducing antibody-dependent cell cytotoxicity (ADCC). An ADCC targeting molecule can also contain other domains that augment induction of ADCC. The flagellin polypeptides and peptides, immunomodulatory peptides, and modifications described herein, can be domains of an ADCC targeting molecule that augment induction of ADCC. The ADCC targeting molecule can include multiple valencies for either or both the antigen binding domain or the Fc receptor binding domain. Additionally, an ADCC targeting molecule also can have multiple different antigen binding domains combined with a single or multiple copies of an Fc receptor binding domain or combined with different Fc receptor binding domains. The antigen binding domain or domains can be derived from essentially any molecule that has selective or specific binding activity to a target antigen so long as it can be fused or attached to one or more Fc receptor binding domains while still maintaining antigen binding activity. The Fc receptor binding domain can be derived from an antibody constant region of, for example, the IgG class, including subclasses IgG1, IgG3 and IgG4. Such Fc receptor binding domains can be used in their native form or the amino acid sequence can be modified so as to enhance or optimize the Fc receptor binding or ADCC activity. Moreover, the Fc receptor binding domains can be derived from constant regions which recognize either stimulatory or inhibitory Fc receptors. The Fc receptor binding domain is located within the hinge region of an antibody constant region where the cognate receptors bound by this domain include, for example, the Fc RI, Fc RIIA and Fc RIII. Therefore, ADCC targeting molecules include, for example, antibodies selective for a target antigen and functional variants thereof as well as fusion proteins and chemical conjugates containing both an antigen binding domain and a Fc receptor binding domain in functionally active forms. ADCC targeting molecules and the use of ADCC targeting molecules in the treatment of disease are described in detail in U.S. patent application Ser. No. 09/618,176, which is incorporated herein by reference.

[0046] The term "about" when used in reference to a particular activity or measurement is intended to refer to the referenced activity or measurement as being within a range values encompassing the referenced value and within accepted standards of a credible assay within the art, or within accepted statistical variance of a credible assay within the art. [0047] As used herein, the term "substantially" or "substantially the same" when used in reference to an amino acid sequence is intended to mean that the amino acid sequence shows a considerable degree, amount or extent of sequence identity when compared to the reference sequence. Such considerable degree, amount or extent of identity is further considered to be significant and meaningful and therefore exhibit characteristics which are definitively recognizable or known as being derived from or related to flagellin. For example, an amino acid sequence which is substantially the same amino acid sequence as an flagellin peptide, including fragments thereof, refers to a sequence which exhibits characteristics that are definitively known or recognizable as being sufficiently related to flagellin so as to fall within the classification of flagellin sequences as defined above. Minor modifications thereof are included so long as they are recognizable as an flagellin sequence as defined above.

**[0048]** As used herein, the term "individual" is intended to mean any animal in which an immune response can be induced by a flagellin polypeptide, peptide or modifications thereof including a human, non-human primate, cow, pig, chicken, rabbit, ferret, rat or mouse.

[0049] An immunomodulatory flagellin polypeptide, peptide or modifications thereof can be used to induce an immune response in an individual having a pathological condition, promoting the individual's own immune system to function more effectively and thereby ameliorate the pathological condition. An individual's immune system may not recognize cancer cells and other types of pathologically aberrant cells as foreign because the particular antigens are not different enough from those of normal cells to cause an immune reaction. In addition, the immune system may recognize cancer cells, but induce a response insufficient to destroy the cancer. By stimulating an innate immune response, immunomodulatory flagellin peptide, polypeptide or modification thereof, promote humoral and cell-mediated responses to antigens on foreign cells or pathologically aberrant cells, such as cancer cells. Administered independently or in combination with an antigen, such as a tumor antigen, a flagellin polypeptide, peptide or modification thereof, can be used to boost the immune system's recognition of cancer cells and other pathologically aberrant cells, and target such cells for destruction.

[0050] Flagellin is a pathogen-associated molecular pattern (PAMP) recognized by toll-like receptor 5 (TRL5). Toll-like receptor 5 is a member of a family of at least 10 receptors involved in mediated the innate immune response. Toll-like receptors recognize PAMPs that distinguish infectious agents from self and mediating the production of immunomodulatory molecules, such as cytokines, necessary for the development of effective adaptive immunity (Aderem, A. and Ulevitch, R. J. Nature 406:782-787 (2000) and Brightbill, H. D., Immunology 101: 1-10 (2000)). Members of the toll-like receptor family recognize a variety of antigen types and can discriminate between pathogens. For example, TLR2 recognizes various fungal, Gram-positive, and mycobacterial components, TLR4 recognizes the Gram-negative product lipopolysaccharide (LPS), and TLR9 recognizes nucleic acids such as CpG repeats in bacterial DNA. TLR5 has now been identified as a receptor for bacterial flagellin.

**[0051]** Flagellin induces an innate immune response by binding to and activating TLR5. Activation of TLR5 by binding to flagellin induces the production of immunomodulatory molecules, such as cytokines and co-stimulatory molecules, by a TLR5-expressing cell. For example, activation of TLR5 in macrophages results in the expression of the cytokines TNF $\alpha$ , IL-1 and IL-6. These cytokines directly and indirectly alter the activities of immune system cells that participate in both humoral (TH2) and cell-mediated (TH1) adaptive immune responses. In this manner, an immunomodulatory

flagellin peptide, polypeptide or modification thereof, acts as an adjuvant to stimulate a general immune response.

[0052] Altering the balance of TH1-versus TH2-associated cytokines can be used to favorably alter an immune response to treat certain diseases. For example, in the use of cancer vaccines, it can be favorable to induce both TH1 and TH2 responses (Herlyn and Birebent, Ann. Med., 31:66-78, (1999)). Different sets of cytokines orchestrate TH1 and TH2 immune responses. For example, TH1 immune responses are associated with the cytokines IL-2, IFN- $\gamma$ , and TNF $\alpha$  while TH2 immune responses are associated with the cytokines IL-4, IL-5, IL-6 and IL-10. TLR5 stimulates the production of cytokines associated with both TH1- and TH2-associated cytokines. For example, TNF $\alpha$  is associated with the stimulation of a TH1 type immune response (Ahlers, J D et al. J. Immunol, 158:3947-58 (1997)), and IL-6 is associated with the stimulation of a TH2 type response (Steidler, L. et al. Infect. Immun., 66:3183-9, (1998)). Therefore, an immunomodulatory flagellin peptide, polypeptide or modification thereof, can be used to advantageously elicit TH1 and TH2 type immune responses.

[0053] An immunomodulatory flagellin peptide, polypeptide or modification thereof can also be used to generally alter the particular cytokines involved in an immune response in an individual. Alterations from normal levels of cytokines are observed in many disease states. For this reason, it can be desirable to increase or decrease the amounts or activities of specific cytokines involved in particular pathological conditions. The cytokines produced in response to TLR5 activation can both stimulate and down-regulate the production of other cytokines. Therefore, an immunomodulatory flagellin peptide, polypeptide or modification thereof, or combination of a flagellin molecule with an immunomodulatory molecule or antigen can be used to alter levels of cytokines associated with a pathological condition. For example, an immunomodulatory flagellin peptide can increase TLR5-expressing macrophage production of TNFa, IL-1 and IL-6. TNFa and IL-1 generally function as pro-inflammatory cytokines. IL-6 generally functions as an anti-inflammatory cytokine and induces a variety of anti-inflammatory activities in immune system cells. For example, IL-6 stimulates the production of many anti-inflammatory anti-proteases. Those skilled in the art will be able to determine if a pathological condition in an individual could be ameliorated by inducing TLR5-stimulated cytokine production and will be able to determine appropriate combinations of flagellin and immunomodulatory molecules suitable for inducing a beneficial immune response.

**[0054]** The invention provides an immunomodulatory flagellin peptide comprising at least about 10 amino acids of substantially the amino acid sequence GAVQNRFNSAIT (SEQ ID NO:2), or a modification thereof, that binds to toll-like receptor 5 (TLR5).

[0055] The flagellin peptide identified by SEQ ID NO:2 is a peptide of *S. Typhimurium*1 flagellin which is encoded by the nucleic acid sequence identified by SEQ ID NO:1. A flagellin peptide of the invention also includes peptides from other bacterial species, such as *H. Pylori* (SEQ ID NO:12), *V. Cholera* (SEQ ID NO:13), *S. marcesens* (SEQ ID NO:20), *S. flexneri* (SEQ ID NO:22), *T. Pallidum* (SEQ ID NO:23) or SEQ ID NO:24), *L. pneumophila* (SEQ ID NO:25), *B burgdorferei* (SEQ ID NO:26), *C. difficile* (SEQ ID NO:28), *R. meliloti* (SEQ ID NO:29), *A. tumefaciens* (SEQ ID NO:30), *R. lupini* (SEQ ID NO:31), *B. clarridgeiae* (SEQ ID NO:33), *P. Mirabilis* (SEQ ID NO:16), *B. subtilus* (SEQ ID NO:27), *L.*  *monocytogenes* (SEQ ID NO:32), *P. aeruginosa* (SEQ ID NO:14) and *E. coli* (SEQ ID NO:21), which contain amino acid sequences having 21-71% identity over the 12 amino acid sequence of SEQ ID NO:2. A flagellin peptide of the invention also includes flagellin peptides from other bacterial species, including peptides contained within the flagellin amino acid sequences shown FIG. **7**. Thus, a flagellin peptide of the invention can have greater than about 65% identity, such as greater than about 75%, greater than about 85%, greater than about 95%, greater than about 98% identity with the peptide identified by SEQ ID NO:2.

**[0056]** A flagellin peptide of the invention is derived from a conserved region of a flagellin polypeptide. Conserved regions of flagellin are well known in the art and have been described, for example, in Mimori-Kiyosue, et al., *J. Mol. Viol.* 270:222-237, (1997). Whereas T cell receptors which mediate the adaptive immune response recognize random portions of antigen amino acid sequences, toll-like receptors recognize conserved portions of antigen amino acid sequences. Therefore, the flagellin peptides of the invention and immunomodulatory flagellin peptides used in the methods of the invention contain amino acid sequences derived from conserved regions of flagellin.

[0057] A flagellin peptide of the invention excludes a portion of flagellin described in Newton et al. (supra, 1989), which consists of an S. meunchen flagellin fragment containing a deletion of amino acids 207-223, portions of E. coli (strain K12) flagellin described in Kuwaijima et al. (supra, 1998), which consist of E. coli flagellin fragments containing deletions of amino acids 239-254, 259-278, 237-262, 194-379, 201-318, 218-326, 211-347, 210-299, 245-301, and 220-299, a portion of flagellin described in Samatey et al. (supra, 2000), which consists of an S. typhimurium flagellin fragment lacking 52 N-terminal amino acid residues and lacking 44 C-terminal amino acid residues, and portions of flagellin described in McSorley et al. (supra, 2000) which consist of S. typhimurium flagellin fragments having the following amino acid sequences: RSDLGAVQNRFNSAI (SEQ ID NO:40), DLGAVQNRFNSAITN (SEQ ID NO:41), GAVQNRFN-SAITNLG (SEQ ID NO:42) AND VQNRFNSAITNLGNT (SEQ ID NO:43).

[0058] An immunomodulatory flagellin peptide of the invention can contain a heterologous amino acid sequence that imparts structural or functional characteristics onto the flagellin peptide. For example, chimeric flagellin peptides or modifications can be used to impart a targeting function. Targeting of a flagellin peptide or modification to a particular site, such as a mucosal surface for example, confers additional therapeutic advantage of inducing an immune response at a site of pathological condition or a site favored for inducing an antigen-specific immune response, for example by a vaccine. Further, chimeric flagellin peptides can include a sequence that facilitates detection, purification or enhances immunomodulatory activity of the flagellin peptide. A flagellin peptide can be contained, for example, in an ADCC targeting molecule used to treat a pathological condition. A flagellin peptide can augment the effectiveness of an ADCC targeting molecule by, for example, stimulating an innate immune response through TLR5, such as the induction of cytokines such as TNF $\alpha$ , IL-1 and IL-6. Similarly, a flagellin peptide can contain amino acid sequences of a variety of antigen polypeptides, such as those described above in reference to antigens contained in vaccines used in the methods of the invention. A chimeric flagellin peptide containing amino

acid sequences of an antigen or containing an antigenic molecule such as a carbohydrate, nucleic acid, or lipid, can be used analogously to a vaccine, as described above, as well as in a vaccine formulation, to induce an immune response in an individual. As such, a chimeric flagellin peptide can be a vaccine that induces both innate and adaptive immune system responses.

[0059] An immunomodulatory flagellin peptide of the invention can be prepared by a variety of methods wellknown in the art, for example, by recombinant expression systems described below, and biochemical purification methods described below, as well as by synthetic methods well known in the art. Methods for recombinant expression and purification of polypeptides in various host organisms are described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (1992) and in Ansubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Baltimore, Md. (1998), both of which are incorporated herein by reference. Similarly, flagellin peptide modifications can be generated using recombinant mutagenesis, such as site directed mutagenesis and PCR mutagenesis, and expression of the flagellin peptide modification. Numerous methods of constructing, modifying, expressing and purifying peptides are known to those skilled in the art. A specific example of a method for purifying flagellin is described below in Example III. The choice of recombinant methods, expression and purification systems will be known by those skilled in the art and will depend on the user and the particular application for the immunomodulatory flagellin peptide or modification thereof.

[0060] A flagellin peptide of the invention induces an innate immune response in an individual by binding to an stimulating TLR5. Therefore, the invention provides methods for inducing an immune response in an individual having a pathological condition that can be ameliorated by immune system activity. The methods involve administering an immunomodulatory flagellin peptide or modification thereof to induce an immune response, administering a combination of an immunomodulatory flagellin peptide and an antigen to induce an antigen-specific immune response, and administering a combination of an immunomodulatory flagellin peptide and an immunomodulatory molecule to modulate an immune response. The selection of a particular method for inducing an immune response will depend on the particular pathological condition to be ameliorated or prevented in an individual. As described herein, the methods are applicable to a wide variety of pathological conditions. Those skilled in the art will be able to determine if an immune response can be beneficially modulated by administering an immunomodulatory flagellin peptide or combination thereof with an antigen or immunomodulatory molecule.

**[0061]** The invention provides method of inducing an antigen-specific immune response in an individual. The method involves administering to an individual an immunogenic amount of a vaccine, comprising an antigen and an immunomodulatory flagellin peptide having at least about 10 amino acids of substantially the amino acid sequence of SEQ ID NO:2, or a modification thereof.

**[0062]** As an adjuvant in a vaccine formulation, the immunomodulatory flagellin peptides of the invention can contribute to the effectiveness of the vaccine by, for example, enhancing the immunogenicity of weaker antigens such as highly purified or recombinant antigens, reducing the amount of antigen required for an immune response, reducing the frequency of immunization required to provide protective immunity, improve the efficacy of vaccines in individuals with reduced or weakened immune responses, such as newborns, the aged, and immunocompromised individuals, and enhance the immunity at a target tissue, such as mucosal immunity, or promote cell-mediated or humoral immunity by eliciting a particular cytokine profile. An immunomodulatory flagellin peptide, polypeptide or modification thereof induces an innate immune response through activation of TLR5. The innate immune response increases the immune response to an antigen by stimulating the adaptive immune response. Therefore, a combination of an immunomodulatory flagellin peptide, polypeptide or modification thereof with one or more antigens provides an effective vaccine for inducing an immune response in an individual.

[0063] The methods of the invention for inducing an antigen-specific immune response can be used to treat individuals having a variety of pathological conditions. For example, cancer vaccines have been used effectively for treating melanoma and breast cancers. Vaccines have been used for treatment of inflammatory diseases such as asthma (Scanga C. B and Le Gros, G., Drugs 59(6), 1217-1221 (2000)), infectious diseases of pathogenic bacteria such as H. pvlori, pathogenic viruses such as human papilloma virus and HIV (Sutton P. and Lee, A, Aliment Pharmacol. 14:1107-1118 (2000)), protozoa, autoimmune diseases such as diabetes (von Herrath and Whitton, Ann. Med. 32:285-292 (2000)) and degenerative diseases such as Alzheimer's disease (Youngkin, S. G., Nat. Med., 7(1):18-19 (2001)). Therefore, a vaccine used in the methods of the invention for inducing an antigen-specific immune response can be administered to an individual for treatment of a variety of pathological conditions, including proliferative disease, infectious disease, inflammatory disease and degenerative disease.

**[0064]** A variety of antigens can be used in combination with an immunomodulatory flagellin peptide of the invention for preparing a vaccine. Microorganisms such as viruses, bacteria and parasites contain substances that are not normally present in the body. These substances can be used as antigens to produce an immune response to destroy both the antigen and cells containing the antigen, such as a bacterial cell or cancer cell.

**[0065]** For example, isolated or crude antigens of microbial pathogens can be used in vaccines to treat infectious disease; isolated or crude tumor cell antigens can be used in vaccines to treat cancer; isolated or crude antigens known to be associated with a pathologically aberrant cell can be used to treat a variety of diseases in which it is beneficial to target particular cells for destruction.

**[0066]** A variety of substances can be used as antigens in a vaccine compound or formulation. For example, attenuated and inactivated viral and bacterial pathogens, purified macromolecules, polysaccharides, toxoids, recombinant antigens, organisms containing a foreign gene from a pathogen, synthetic peptides, polynucleic acids, antibodies and tumor cells can be used to prepare a vaccine useful for treating a pathological condition. Therefore, an immunomodulatory flagellin peptide of the invention can be combined with a wide variety of antigens to produce a vaccine useful for inducing an immune response in an individual. Those skilled in the art will be able to select an antigen appropriate for treating a particular pathological condition and will know how to determine whether a crude or isolated antigen is favored in a particular vaccine formulation.

[0067] An isolated antigen can be prepared using a variety of methods well known in the art. A gene encoding any immunogenic polypeptide can be isolated and cloned, for example, in bacterial, yeast, insect, reptile or mammalian cells using recombinant methods well known in the art and described, for example in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (1992) and in Ansubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Baltimore, Md. (1998). A number of genes encoding surface antigens from viral, bacterial and protozoan pathogens have been successfully cloned, expressed and used as antigens for vaccine development. For example, the major surface antigen of hepatitis B virus, HbsAg, the  $\beta$  subunit of choleratoxin, the enterotoxin of E. coli, the circumsporozoite protein of the malaria parasite, and a glycoprotein membrane antigen from Epstein-Barr virus, as well as tumor cell antigens, have been expressed in various well known vector/host systems, purified and used in vaccines. An immunomodulatory flagellin peptide, polypeptide or modification thereof induces an innate immune response through TLR5 that can beneficially enhance an immune response to a recombinant antigen.

**[0068]** A pathologically aberrant cell to be used in a vaccine can be obtained from any source such as one or more individuals having a pathological condition or ex vivo or in vitro cultured cells obtained from one or more such individuals, including a specific individual to be treated with the resulting vaccine.

[0069] Those skilled in the art will be able to determine if a vaccine compound or formulation induces an innate, humoral, cell-mediated, or any combination of these types of immune response, as methods for characterizing these immune responses are well known in the art. For example, the ability of a vaccine compound or formulation to induce an innate immune response through TLR5 can be determined using methods described herein as well as other methods. Such methods for detecting an innate immune response can be generally performed within hours of vaccine administration. The ability of a vaccine compound or formulation to induce a humoral response can be determined by measuring the titer of antigen-specific antibodies in an animal primed with the vaccine and boosted with the antigen, or determining the presence of antibodies cross-reactive with an antigen by ELISA, Western blotting or other well-known methods. Cellmediated immune responses can be determined, for example, by measuring cytotoxic T cell response to antigen using a variety of methods well known in the art. Methods of detecting humoral and cell-medicated immune responses can be generally performed days or weeks after vaccine administration

**[0070]** A combination of an antigen or immunomodulatory molecule and an immunomodulatory flagellin peptide, polypeptide or modification thereof, can be tested in a variety of preclinical toxicological and safety studies well known in the art. For example, such a combination can be evaluated in an animal model in which the antigen has been found to be immunogenic and that can be reproducibly immunized by the same route proposed for human clinical testing. A combination of an antigen or immunomodulatory molecule and an immunomodulatory flagellin peptide or modification thereof can be tested, for example, by an approach set forth by the Center for Biologics Evaluation and Research/Food and Drug

Administration and National Institute of Allergy and Infectious Diseases (Goldenthal, K L et al. *AID Res Hum Retroviruses*, 9:545-9 (1993)).

**[0071]** Those skilled in the art will know how to determine for a particular combination of antigen or immunomodulatory molecule and immunomodulatory flagellin polypeptide modification thereof, the appropriate antigen payload, route of immunization, volume of dose, purity of antigen, and vaccination regimen useful to treat a particular pathological condition in a particular animal species.

**[0072]** The invention provides a method of inducing a TLR5-mediated response. The method involves administering to a TLR5-containing cell an effective amount of an immunomodulatory flagellin peptide having at least about 10 amino acids of substantially the amino acid sequence of SEQ ID NO:2, or a modification thereof.

[0073] A TLR5-mediated response can be assessed in a cell or animal because TLR5 stimulates cellular activities that stimulate the immune response that occurs in an animal. For example, flagellin binding to TLR5 induces cellular events such as an increase in the amount or activity of cytokines, such as TNF $\alpha$ , IL-1 and IL-6. These cytokines in turn regulate the activities of immune system cells. Therefore a TLR5mediated response can be determined by examining an immune responses in an animal and by observing particular immune system cell activities. Determination of immune responses in an animal is discussed below. Determination of immune system cell activities can be performed, for example, by observing or measuring the amount of activity of immunomodulatory molecules produced by specific types of immune cells. Cytokine production by macrophages is an exemplary immune cell activity that can be conveniently measured using methods well known in the art and those described herein. A biological activity of a cytokine can also be assessed using methods well known in the art.  $TNF\alpha$ activities include, for example, inducing the production of IL-1 and IL-6, activation of neutrophils and endothelial cells in inflammation, inducing acute phase reactants in liver, inducing fever. IL-1 activities include, for example, activating of endothelial cells in inflammation and coagulation, inducing acute phage reactants in liver, inducing fever and stimulating T cell proliferation. IL-6 activities include, for example, stimulating proliferation of mature B cells and inducing their final maturation into antibody-producing plasma cells, inducing IL-2 receptor expression, inducing acute phase reactants in liver, and co-stimulation of thymocytes in vitro. A regulatory effect of IL-6 is inhibition of TNFα production, providing negative feedback for limiting the acute inflammatory response (Feghali, C. A. and Wright, T. M., Frontiers in Bioscience, 2, d12-26 (1997) provides a summary of cytokine activities).

**[0074]** The invention provides a method of inducing an immune response in an individual having a pathological condition. The method involves administering to said individual an immunogenic amount of an immunomodulatory flagellin peptide having at least about 10 amino acids of substantially the amino acid sequence of SEQ ID NO:2, or a modification thereof.

**[0075]** As described above, an immunomodulatory flagellin peptide can be used to beneficially boost a general immune response in an individual having a pathological condition by stimulating an innate immune response. An increased immune response can ameliorate a pathological condition as well as prevent a pathological condition in a healthy individual, or individual not having a pathological condition. Therefore, an immunomodulatory flagellin peptide can be administered prophylactically to an individual not having a pathological condition, if desired.

**[0076]** The invention provides another method of modulating an immune response in an individual having a pathological condition. The method involves administering to the individual a combination of an immunogenic amount of an immunomodulatory flagellin peptide having at least about 10 amino acids of substantially the amino acid sequence of SEQ ID NO:2, or a modification thereof, and another immunomodulatory molecule.

**[0077]** As described above, a combination of an immunomodulatory flagellin peptide with another immunomodulatory molecule can be used to advantageously induce or modulate an immune response. An immune response can be induced by combining an immunomodulatory flagellin peptide with another immunomodulatory molecule that induces an immune response in a general manner, such as an adjuvant, or can be combined with an immunomodulatory molecule that induces a particular alteration in an immune cell activity. Such immunomodulatory molecules are described herein.

[0078] Modulating an immune response is useful for promoting a more effective or more normal immune response in an individual having a pathological condition. As described above, alterations in normal cytokine levels are associated with various pathological conditions. An immunomodulatory flagellin peptide or combination with another immunomodulatory molecule can be used to modulate cytokine levels in an individual by inducing the production of immunomodulatory molecules, such as cytokines including TNF $\alpha$ , IL-1, and IL-6 through TLR5, and inducing the production of suppression of the same or different immunomodulatory molecules through the activity of the administered immunomodulatory molecule. Therefore, the immunomodulatory flagellin peptides of the invention can be combined with immunomodulatory molecules that alter an immune response by stimulating or inhibiting the cellular functions of immune system cells.

[0079] A variety of immunomodulatory molecules can be used in combination with an immunomodulatory flagellin peptide or modification thereof of the invention to alter an immune response in an individual. The type of alteration desired will determine the type of immunomodulatory molecule selected to be combined with an immunomodulatory flagellin peptide. For example, to promote an innate immune response, a immunomodulatory flagellin peptide can be combined with another immunomodulatory molecule that promotes an innate immune response, such as a PAMP or conserved region known or suspected of inducing an innate immune response. A variety of PAMPs are known to stimulate the activities of different members of the toll-like family of receptors. Such PAMPs can be combined to stimulate a particular combination of toll-like receptors that induce a beneficial cytokine profile. For example, PAMPs can be combined to stimulate a cytokine profile that induces a TH1 or TH2 immune response.

**[0080]** Other types of immunomodulatory molecules that promote humoral or cell-mediated immune responses can be combined with a flagellin molecule of the invention. For example, cytokines can be administered to alter the balance of TH1 and TH2 immune responses. Those skilled in the art will know how to determine the appropriate cytokines useful for obtaining a beneficial alteration in immune response for a particular pathological condition. [0081] Immunomodulatory molecules that target antigens and cells displaying antigens for destruction can be combined with a flagellin molecule of the invention. For example, the effectiveness of monoclonal antibodies and ADCC targeting molecules that recognize a particular antigen on an unwanted cell, such as a pathologically aberrant cell can be increased when administered with a flagellin molecule of the invention. Immunomodulatory molecules that stimulate or suppress cellular activities such as proliferation, migration, activation, interaction and differentiation can be combined with a flagellin molecule of the invention. For example, IL-2 can be used to stimulate proliferation of immune system cells, certain interferons can be used to interfere with the rapid growth of cancer cells or to interfere with angiogenesis, and ganulocytecolony stimulating factor can be used to increase production of certain types of immune system cells and blood cells. A variety of immunostimulating and immunossupressing molecules and modalities are well known in the art and can be used in combination with a flagellin polypeptide, peptide or modification thereof, of the invention. A flagellin molecule of the invention increases the beneficial effect of an immunomodulatory molecule by inducing TLR5-mediated production of immunomodulatory molecules that function in concert with a selected immunomodulatory molecule to produce a desired cytokine profile or cellular activity, or prime the adaptive immune response to respond to the selected immunomodulatory molecule.

**[0082]** The methods of the invention for using immunomodulatory flagellin peptides to induce an immune response are also applicable to a flagellin polypeptide, or a modification thereof. Accordingly, the invention provides a method of inducing an immune response in an individual, including a human, having a pathological condition. The method involves administering to the individual an immunogenic amount of an immunomodulatory flagellin polypeptide, or modification thereof, when the flagellin polypeptide induces an immune response.

**[0083]** An immunomodulatory flagellin peptide of the invention binds to TLR5 and stimulates a TLR5 activity. The ability of an immunomodulatory flagellin peptide or modification thereof to bind to TLR5 or stimulate a TLR5 activity can be determined using methods known in the art. Methods of determining specific binding interactions of flagellin peptides and modifications thereof with TLR5 can be determined using well known methods in the art such as methods of trapping ligand-receptor complexes using chemical cross-linking, and competitive inhibition of reagents specific for TLR5 such as specific flagellin peptides or modifications, antibodies or other TLR-5 specific reagents.

**[0084]** Methods of determining TLR5 functional activities in response to an immunomodulatory flagellin peptide or modification thereof include methods described herein, in Examples I through IV, as well as methods known in the art. A variety of methods well known in the art can be used for determining transcription factor activities. For example, fos, jun, and NF- $\kappa$ B activation in response to TLR5 binding to a flagellin molecule can be detected by electrophoretic mobility shift assays well known in the art that detect NF- $\kappa$ B binding to specific polynucleic acid sequences, and promoterreporter nucleic acid constructs such that, for example,  $\beta$ -lactamase, luciferase, green fluorescent protein or  $\beta$ -galactosidase will be expressed in response to contacting a TLR5 with a flagellin polypeptide, peptide or equivalent thereof. For example, a luciferase reporter plasmid in which luciferase protein expression is driven by one or more NF- $\kappa$ B binding sites can be transfected into a cell, as described in Examples I-IV. Activation of NF- $\kappa$ B results in activation of luciferase reporter expression, resulting in production of luciferase enzyme able to catalyze the generation of a molecule that can be detected by colorimetric, fluorescence, chemiluminescence or radiometric assay.

[0085] An amount or activity of a polypeptide, including a cytokine such as TNF $\alpha$ , IL-1 or IL-6, can be a read-out for activation of a TLR5 in response to binding an immunomodulatory flagellin peptide or modification thereof. A variety of methods well known in the art can be used to measure cytokine amounts, such as, for example, flow cytometry methods, immunoassays such as ELISA and RIA, and cytokine RNA protection assays. Commercially available cytokine assay kits, such as ELISA assay formats, can be conveniently used to determine the amount of a variety of cytokines in a sample. Those skilled in the art will determine the particular cytokines to be measured when assessing an immune response in a cell or animal. For example, to determine whether a particular response is characterized as a TH1 or TH2 immune response, those skilled in the art will be able to select appropriate cytokines within the TH1 and TH2 categories, which are well known in the art.

**[0086]** A sample used for determining a TLR5-mediated response or immune response can include, for example, a fluid or tissue obtained from an animal, a cell obtained from an animal fluid or tissue, cultured cells including in vitro and ex vivo cultured cells, and lysates or fractions thereof and cultured cells that express TLR5.

[0087] An immune response in an animal is determined by the collective responses of the cells of the immune system. An immune response can be detected by observing various indicators of immune response in an animal. Such indicators include, for example, visible signs of inflammation of tissues, such as swelling, production of antibodies, such as levels of IgA, IgG and IgM in blood and levels of IgA in saliva, alterations in immune cell numbers, such as increased or decreased proliferation of particular immune cells, and in immune cell activities, such as production of immunomodulatory molecules and second messenger molecules. For example, an immune response to a particular antigen can be observed in a animal using methods well known in the art such as delayed hypersensitivity skin tests. An immune response can be determined by the presence of antibodies cross reactive with an antigen, such as by ELISA and Western blotting, lymphocyte activation tests employing mitogen or antigen stimulation, mixed lymphocyte culture tests, assays for human T and B lymphocytes, flow cytometry and cell sorting to characterize populations of immune system cells obtained from an individual, soluble antigen uptake by macrophages, and tests of neutrophil functions (Stites et al. Basic and Clinical Immunology, 4th edition, Lange Medical Publications, Los Altos, Calif. (1982)). An immune response can also be assessed by examining amounts or activities of immune system mediators, such as cytokines and chemokines, in cells collected from fluids or tissues of animals. A variety of methods are well known in the art for qualitative and quantitative measurement of cytokine amount and bioassay of cytokine activity.

**[0088]** The methods of the invention for inducing an immune response can be used to treat any animal species having an immune response upon treatment with flagellin polypeptide, peptide, or modification thereof, and for which a

stimulation of an immune response is desired. Such animals include avian species such as chicken, and mammalian species such as rodent, canine, feline, bovine, porcine and human subjects. Methods for using adjuvants with vaccines and vaccinating animals are well known in the art and are routinely used in laboratory animals. Those skilled in the art will be able to determine if a particular animal species has a flagellin-stimulated TLR5-mediated innate immune response.

[0089] A vaccine to be used in the methods of the invention for inducing an immune response can be administered as a solution or suspension together with a pharmaceutically acceptable medium. Such a pharmaceutically acceptable medium can be, for example, water, phosphate buffered saline, normal saline or other physiologically buffered saline, or other solvent or vehicle such as glycol, glycerol, and oil such as olive oil or an injectable organic ester. A pharmaceutically acceptable medium can also contain liposomes or micelles, and can contain immunostimulating complexes prepared by mixing polypeptide or peptide antigens with detergent and a glycoside, such as Quil A. Further methods for preparing and administering an immunomodulatory flagellin polypeptide or peptide, or modification in a pharmaceutically acceptable medium are presented below, in reference to compounds that induce a TLR-mediated response.

[0090] The immunomodulatory flagellin polypeptides, peptides and modifications thereof used in the methods of the invention can be administered by a variety of routes to stimulate an immune response. For example, these immunomodulatory molecules can be delivered intranasally, subcutaneously, intradermally, intralymphatically, intramuscularly, intratumorally, orally, intravesically, intraperitoneally and intracerebrally. Oral administration is convenient and relatively safe. Oral vaccination protocols can be useful for inducing the state of immunological tolerance which normally occurs in response to most soluble antigens and the proteolytic degradation of antigen preparations in the digestive tract. Nasal delivery routes may be useful for inducing both mucosal and systemic immune responses. A variety of devices are under development for convenient and effective delivery of formulations to the nasal cavity and pulmonary tissues. Those skilled in the art will know how to select appropriate delivery routes for particular formulations of flagellin polypeptides, peptides and modifications thereof.

[0091] The invention provides a screening composition consisting of an immunomodulatory flagellin peptide comprising at least about 10 amino acids of substantially the amino acid sequence GAVQNRFNSAIT (SEQ ID NO:2), or a modification thereof, and having toll-like receptor 5 (TLR5) binding, and a TLR5. The composition is useful for identifying agonists, antagonists and ligands for TLR5. The characteristics of an immunomodulatory flagellin peptide comprising at least about 10 amino acids of substantially the amino acid sequence GAVQNRFNSAIT (SEQ ID NO:2), or a modification thereof, and having toll-like receptor 5 (TLR5) binding, and preparation of a flagellin peptide are described herein. Similarly, the characteristics of a TLR5 polypeptide and modifications thereof that have a TLR5 activity, and methods for preparing a TLR5 polypeptide to be used in the methods of the invention are described herein. Chimeric TLR5s, such as the CD4-TLR5 described herein in Example I, are included in the screening compositions of the invention. [0092] The screening composition of the invention includes, for example, cells, cell extracts and artificial signaling systems that contain a TLR5 polypeptide or modification

thereof. The cell compositions of the invention include any cell in which TLR5 can couple to a signal transduction pathway to produce a detectable signal in response to an agonist, such as flagellin or a flagellin peptide. Such cells include insect cells such as Drosophila cells, yeast cells such as S. cerevisiae, prokaryotic cells such as E. coli, amphibian cells such as Xenopus oocvtes, and vertebrate cells such as mammalian primary cells, such as macrophages. Primary cells such as macrophages and other lymphocytes can be conveniently isolated from blood using methods well known in the art. Cells obtained from transgenic animals, such as transgenic mice that have been engineered by known methods of express recombinant TLR5 or TLR5 signal transduction components are also included in the screening compositions of the invention. Cell lines prepared from any of theses cell types, such as S2, CHO, NIH-3T3, 293 and HeLa cells are also included in a screening composition of the invention.

**[0093]** The screening compositions of the invention can include crude or partially purified lysates or extracts of the cell compositions of the invention, and reconstituted signaling systems. Artificial signaling systems include, for example, natural or artificial lipid bilayers, such as a liposome or micelle, which promote an active conformation of a TLR5. The compositions can further contain cellular fractions or isolated components necessary for producing and detecting the desired predetermined signal.

**[0094]** The invention provides a method of screening for a TLR5 ligand, agonist or antagonist. The method involves, (a) contacting a TLR5 with a candidate compound in the presence of a flagellin polypeptide or immunomodulatory flagellin peptide under conditions wherein binding of the flagellin polypeptide or immunomodulatory flagellin peptide to the TLR5 produces a predetermined signal; (b) determining the production of the predetermined signal in the presence of the candidate compound; and (c) comparing the predetermined signal in the predetermined signal in the presence of the candidate compound, wherein a difference between the predetermined signals in the presence and absence of the candidate compound indicates that the compound is a TLR5 ligand, agonist or antagonist.

[0095] TLR5 can produce a variety of predetermined signals useful in the methods of the invention for identifying a TLR5 ligand, agonist or antagonist. TLR5 has an extracellular domain that participates in ligand recognition and intracellular domain that contain a conserved region called the Toll/IL-1R homology (TIR) domain that, upon activation, recruits an adaptor protein, MyD88. Through an amino terminal death domain, MyD88 recruits the serine kinase IRAK to propagate a pro-inflammatory signal through binding to TRAF6, which then binds to other molecules that participate in the TLR5 signaling cascade. Immunomodulatory flagellin peptides and modifications binding to TLR5 induces signal transduction events which result in, for example, stimulating NF-KB activity and inducing production of gene products of NF-kB-regulated genes, such as TNFa, IL-1 and IL-6, as well as stimulating AP-1 transcription factors fos and jun. Therefore, a predetermined signal can include a signal produced by an immunomodulatory flagellin polypeptide or peptide or modification binding to TLR5, a signal produced by a TLR5 intracellular signal transduction even, such as kinase or phosphatase activity or protein-protein interactions, by activation of fos, jun or NF- $\kappa$ B, and by an amount or activity of a fos-, jun- or NF- $\kappa$ B-regulated gene or gene product, such as TNF $\alpha$ , IL-1 and IL-6.

[0096] A variety of low- and high-throughput assays suitable for detecting selective binding interactions between a receptor and a ligand are known in the art. Both direct and competitive assays can be performed, including, for example, fluorescence correlation spectroscopy (FCS) and scintillation proximity assays (SAP) reviewed in Major, J. Receptor and Signal Transduction Res. 15:595-607 (1995); and in Sterrer et al., J. Receptor and Signal Transduction Res. 17:511-520 (1997)). Other assays for detecting binding interactions include, for example, ELISA assays, FACS analysis, and affinity separation methods. Such assays can involve labeling a TLR5 ligand, such as flagellin or a flagellin peptide, with a detectable moiety such as a radiolabel, fluorochrome, ferromagnetic substance, or luminescent substance. A detectably labeled flagellin polypeptide or peptide can be prepared using methods well known in the art. Receptor binding assays, including high-throughput automated binding assays, and methods of determining binding affinity from such assays, are well known in the art, and any suitable direct or competitive binding assay can be used. Exemplary high-throughput receptor binding assays are described, for example, in Mellentin-Micelotti et al., Anal. Biochem. 272:P182-190 (1999); Zuck et al., Proc. Natl. Acad. Sci. USA 96:11122-11127 (1999); and Zhang et al., Anal. Biochem. 268; 134-142 (1999).

**[0097]** A variety of methods well known in the art can be used to detect activation of transcription factors, such as NF- $\kappa$ B, in low- or high-throughput formats. The methods described herein and in the Examples can be adapted to formats suitable for candidate compound screening.

**[0098]** A variety of low- and high-throughput assays suitable for detecting amounts and activities of polypeptides such as cytokines are known in the art. Methods for detecting polypeptides, include, for example, flow cytometric measurements as described herein, immunodetection methods such as radioimmune assay (RIA), ELISA, immunoprecipitation and Western blotting. Assay of the activity of a cytokine include function bioassays and detection of amounts of polypeptides regulated by a particular cytokine. Those skilled in the art can determine an appropriate method for detecting an activity of a particular cytokine.

**[0099]** Suitable conditions under which TLR5 produces a predetermined signal in response to a flagellin polypeptide, peptide or modification can be determined by those skilled in the art, and will depend on the particular predetermined signal selected. Exemplary conditions for determining the production of a predetermined signal are provided herein in Examples I-IV. Any known or predicted TLR5-mediated cellular event, such as elicitation of second messengers, induction of gene expression or altered cellular proliferation, differentiation or viability can be a predetermined signal that is an indication of activation of signal transduction through TLR5.

**[0100]** Assays for detecting a predetermined signal produced by binding of flagellin or flagellin peptide to TLR5 can be performed, for example, with whole cells that express TLR5, membrane fractions, or artificial systems, as described herein, or with isolated TLR5 polypeptide, either in solution, in an artificial membrane, or bound to a solid support.

**[0101]** A method of identifying TLR5 agonists and antagonists can be performed either in the presence of a predeter-

mined concentration of a known TLR5 agonist, such as flagellin, flagellin peptide, or modifications thereof, or in the absence of agonist. The agonist can be added either prior to, simultaneously with, or after, addition of the test compound. When present, the agonist concentration is preferably within 10-fold of its EC50 under the assay conditions to allow the identification of a compound that competes with a known agonist for signaling through TLR5, or indirectly augments signaling through the receptor. Likewise, a compound that reduces binding between a known agonist and its receptor, or indirectly decreases signaling through the receptor, can also be identified.

**[0102]** The method of screening to identify a ligand, agonist or antagonist of TLR5 involve testing a candidate compound. A candidate compound can be any substance, molecule, compound, mixture of molecules or compounds, or any other composition. The candidate compounds can be small molecules or macromolecules, such as biological polymers, including proteins, polysaccharides and nucleic acids. Sources of candidate compounds which can be screened for a ligand, agonist or antagonist of TLR5 include, for example, libraries of small molecules, peptides and polypeptides.

**[0103]** Additionally, candidate compounds can be preselected based on a variety of criteria. For example, suitable candidate compounds can be selected as having known ligand, agonist or antagonist activity. Alternatively, candidate compounds can be selected randomly. Candidate compounds can be administered to the reaction system at a single concentration or, alternatively, at a range of concentrations to determine, for example, an EC50 or IC50 of a candidate compound.

**[0104]** The method of screening for TLR5 ligands, agonists or antagonists can involve groups or libraries of compounds. Methods for preparing large libraries of compounds, including simple or complex organic molecules, carbohydrates, peptides, peptidomimetics, polypeptides, nucleic acids, antibodies, and the like, are well known in the art. Libraries containing large numbers of natural and synthetic compounds can be obtained from commercial sources.

**[0105]** The number of different candidate compounds to examine using the methods of the invention will depend on the application of the method. It is generally understood that the larger the number of candidate compounds, the greater the likelihood of identifying a compound having the desired activity in a screening assay. Large numbers of compounds can be processed in a high-throughput automated format.

**[0106]** The TLR5 agonists, antagonists and ligands identified using the methods and compositions described herein, are potential therapeutic compounds that can be administered to an individual, such as a human or other mammal, in an effective amount to increase or decrease signaling through TLR5, for example, to alter an immune response or treat a TLR5-associated condition. Such compounds can be used analogously to immunomodulatory compounds useful for augmenting and altering an immune response, as described above. For example, a compound can be used to induce a general immune response and to induce a specific immune response in the presence of an antigen and to alter the level of a particular cytokine in an individual having a pathological condition.

**[0107]** The TLR5 agonists and antagonists, immunomodulatory flagellin peptides, polypeptides and modifications thereof, are useful for ameliorating, or reducing the severity of a pathological condition. Reduction in severity includes,

for example, an arrest or decrease in clinical symptoms, physiological indicators, biochemical markers or metabolic indicators of disease. Those skilled in the art will know, or will be able to determine the appropriate clinical symptoms, physiological indicators, biochemical markers or metabolic indicators to observe for a particular pathological condition. To prevent a disease means to preclude the occurrence of a disease or restoring a diseased individual to their state of health prior to disease.

**[0108]** In addition to applications described herein for agonists and antagonists, a TLR5 ligand can be used, for example, to specifically target a diagnostic moiety to cells and tissues that express TLR5, such as monocytes, immature dendritic cells, epithelial cells, and other cells involved in an immune response. Thus, a TLR5 ligand can be labeled with a detectable moiety, such as a radiolabel, fluorochrome, ferromagnetic substance, or luminescent substance, and used to detect normal or abnormal expression of TLR5 polypeptide in an isolated sample or in vivo diagnostic imaging procedures.

[0109] A heterologous amino acid sequence can be advantageously used to provide a tag for detection or purification or to impart an activity to a reference polypeptide or peptide, such as an enzyme activity, biological activity, an immunological activity or stability. An immunomodulatory flagellin peptide, polypeptide or modification thereof, or TLR5 polypeptide can contain a heterologous amino acid sequence, or amino acid sequence not present in the native amino acid sequence of a reference polypeptide or peptide and not represented by a modification of a reference polypeptide or peptide. A heterologous amino acid sequence can be of any size in relation to the reference amino acid sequence. A TLR5 polypeptide containing the heterologous sequence of CD4 is a specific example of such a modification and is described further in Example I. The described CD4-TLR5 chimera is identified by the amino acid sequence of SEQ ID NO:10, encoded by the nucleic acid sequence of SEQ ID NO:9. A chimeric TLR5 can be prepared using cloning methods well known in the art. For example, a chimeric polypeptide can be produced by amplifying by PCR a nucleotide sequence encoding a portion of a selected polypeptide using sequence specific primers. Primers useful for amplifying a TLR5 include, for example, huTLR5-A6: TTAAAGTGGTAC-CAGTTCTCCCTTTTCATTGT ATGCACT (SEQ ID NO:35) and huTLR5DNS: CGGGATCCCGTTAGGAG ATGGTTGCTACAGTTTGC (SEQ ID NO:36). A portion of a TLR5 nucleotide sequence, such as a sequence amplified using such primers can be fused to a nucleotide sequence encoding a heterologous amino acid sequence. A variety of methods for generating nucleic acid sequences encoding chimeric polypeptides are well known to those skilled in the art.

**[0110]** The polypeptides and peptides described herein, including immunomodulatory flagellin peptides, flagellin polypeptide, TLR5 polypeptides and fragments thereof can be prepared using a variety of protein expression systems well known in the art, including prokaryotic and eukaryotic expression systems. Prokaryotic expression systems are advantageous due to their ease in manipulation, low complexity growth media, low cost of growth media, rapid growth rates and relatively high yields. Well known prokaryotic expression systems based on bacteriophage T7 RNA polymerase, the trc promoter, the araB promoter and *bacillus* expression. Eukaryotic expression systems are advantageous because expressed polypeptides can contain eukaryotic post-

translational modifications such as O-linked glycosylation, phosphorylation and acetylation and can have improved protein folding. Well known eukaryotic expression systems include, for example, expression in yeast, such as *Pichia pastoris* and *Pichia methanolica*, expression in insect systems such as the *Drosophila* S2 system and baculovirus expression systems and expression in mammalian cells using adenoviral vectors and cytomegalovirus promoter-containing vectors.

[0111] An immunomodulatory flagellin peptide, polypeptide, TLR5 or fragments thereof can be purified using a variety of methods of protein purification well known in the art. Biochemical purification can include, for example, steps such as solubilization of the polypeptide or peptide-expressing cell, isolation of the desired subcellular fractions, chromatography, such as ion exchange, size, or affinity-based chromatographies, electrophoresis, and immunoaffinity procedures. Other well-known methods are described in Deutscher et al., Guide to Protein Purification: Methods in Enzymology Vol. 182, (Academic Press, (1990)). An exemplary method for purifying a flagellin peptide is provided in Example III. The methods and conditions for biochemical purification of a polypeptide of the invention can be chosen by those skilled in the art, and the purification monitored, for example, by staining SDS-PAGE gels containing protein samples, by immunodetection methods such as Western blotting and ELISA, and by functional assay of immunogenic activity of flagellin or a TLR5 activity of TLR5.

[0112] An immunomodulatory flagellin peptide, polypeptide, TLR5 or fragments thereof can be modified, for example, to increase polypeptide stability, alter an activity, facilitate detection or purification, or render the enzyme better suited for a particular application, such as by altering substrate specificity. Computer programs known in the art can be used to determine which amino acid residues of a immunomodulatory flagellin peptide, flagellin polypeptide or TLR5 can be modified as described above without abolishing a corresponding activity (see, for example, Eroshkin et al., Comput. Appl. Biosci. 9:491-497 (1993)). In addition, structural and sequence information can be used to determine the amino acid residues important for activity. For example, a comparisons of flagellin amino acid sequences, such as that shown in FIG. 7 can provide guidance in determining amino acid residues that can be altered without abolishing flagellin or flagellin peptide activity by indicating amino acid residues that are conserved across species. Conserved regions of flagellin are well known in the art and have been described, for example, in Mimori-Kiyosue, et al., J. Mol. Viol. 270:222-237, (1997). A crystal structure of flagellin can also provide guidance for making flagellin modifications (Samatey et al. Nature, 410:331-337 (2001)). Similarly, amino acid sequence comparisons between the disclosed murine TLR5, TLR5s of other species, and other toll-like receptor family members can provide guidance for determining amino acid residues important for activity.

**[0113]** An isolated TLR5 is a TLR5 removed from one or more components with which it is naturally associated. Therefore, an isolated TLR5 can be a cell lysate, cell fraction, such as a membrane fraction, or a purified. TLR5 polypeptide. An isolated TLR5 can include a liposome or other compound or matrix that stabilizes or promotes an active conformation of the receptor.

**[0114]** For treating or reducing the severity of a pathological condition a TLR5 agonist or antagonist, immunomodula-

tory flagellin peptide, polypeptide or modification thereof, including a vaccine, can be formulated and administered in a manner and in an amount appropriate for the condition to be treated; the weight, gender, age and health of the individual; the biochemical nature, bioactivity, bioavailability and side effects of the particular compound; and in a manner compatible with concurrent treatment regimens. An appropriate amount and formulation for a particular therapeutic application in humans can be extrapolated based on the activity of the compound in recognized animal models of the particular disorder.

**[0115]** Animal models of aberrantly proliferative diseases can be used to assess a formulation of compound, including a vaccine or adjuvant containing an immunomodulatory flagellin peptide, polypeptide or modification thereof, for an amount sufficient to induce an immune response or ameliorate disease symptoms. Animal models of such pathological conditions well known in the art which are reliable predictors of treatments in human individuals for include, for example, animal models for tumor growth and metastasis, infectious diseases and autoimmune disease.

**[0116]** There are numerous animal tumor models predictive of therapeutic treatment which are well known in the art. These models generally include the inoculation or implantation of a laboratory animal with heterologous tumor cells followed by simultaneous or subsequent administration of a therapeutic treatment. The efficacy of the treatment is determined by measuring the extent of tumor growth or metastasis. Measurement of clinical or physiological indicators can alternatively or additionally be assessed as an indicator of treatment efficacy. Exemplary animal tumor models can be found described in, for example, Brugge et al., *Origins of Human Cancer*, Cold Spring Harbor Laboratory Press, Plain View, N.Y., (1991).

**[0117]** Similarly, animal models predictive for infectious disease also follow a similar approach. Briefly, laboratory animals are inoculated with an infectious agent and the progression of the infection is monitored by, for example, clinical symptoms, growth culture of the agent from an infected tissue sample or biopsy in the presence or absence of the therapeutic treatment. The reduction in severity of the diagnostic indicator is indicative of the efficacy of the treatment. A variety of animal models for infectious diseases are well known to those skilled in the art.

[0118] One animal model predictive for autoimmune diseases is Experimental allergic encephalomyelitis (EAE), also called experimental autoimmune encephalomyelitis. Although originally characterized as a model for neurological autoimmune disease such as human multiple sclerosis, the use of this model to predict treatments of other autoimmune diseases has been widely accepted. EAE is induced in susceptible animals by active immunization with myelin basic protein (MPB) or by passive transfer of MBP-specific T helper lymphocytes. Progression of the disease is characterized by chronic relapsing paralysis and central nervous system demyelination, which can be monitored by observation or by immunological determinants such as delayed-type hypersensitivity (DTH; a measure of cell mediated immunity) response to the immunogen. Efficacy of a therapeutic treatment is compared to progression of the disease in the absence of treatment. A reduction in severity of EAE symptoms or immunological determinants in treated animals is indicative of the efficacy of the therapeutic treatment. For a review of autoimmune disease models see, for example, Urban et al., *Cell*, 54:577-592 (1988); Brostoff et al., *Immunol. Ser.* 59:203-218 (1993) and U.S. Pat. Nos. 5,614,192 and 5,612,035.

**[0119]** A growing number of human diseases have been classified as autoimmune and include, for example, rheumatoid arthritis, myasthenia gravis, multiple sclerosis, psoriasis, systemic lupus erythmatosis, autoimmune thyroiditis, Graves' disease, inflammatory bowel disease, autoimmune uveoretinitis, polymyositis and diabetes. Animal models for many of these have been developed and can be employed analogously as the EAE model described above predictive assessment of therapeutic treatments using the compounds, vaccines and adjuvants in the methods of the invention.

**[0120]** Other reliable and predictive animal models are well known in the art and similarly can be used to assess a compound formulation, including vaccine and adjuvant formulations containing an immunomodulatory flagellin peptide, polypeptide or modification thereof.

**[0121]** The total amount of a compound including an immunomodulatory flagellin peptide, polypeptide or modification thereof, that modulates a TLR5-mediated immune response can be administered as a single dose or by infusion over a relatively short period of time, or can be administered in multiple doses administered over a more prolonged period of time. Additionally, a compound can be administered in a slow-release matrix, which can be implanted for systemic delivery at or near the site of the target tissue.

**[0122]** A compound that modulates a TLR5-mediated immune response can be administered to an individual using a variety of methods known in the art including, for example, intravenously, intramuscularly, subcutaneously, intraorbitally, intracapsularly, intraperitoneally, intracisternally, intraarticularly, intracerebrally, orally, intravaginally, rectally, topically, intranasally, or transdermally.

[0123] A compound that modulates a TLR5-mediated immune response can be administered to a subject as a pharmaceutical composition comprising the compound and a pharmaceutically acceptable carrier. The choice of pharmaceutically acceptable carrier depends on the route of administration of the compound and on its particular physical and chemical characteristics. Pharmaceutically acceptable carriers are well known in the art and include sterile aqueous solvents such as physiologically buffered saline, and other solvents or vehicles such as glycols, glycerol, oils such as olive oil and injectable organic esters. A pharmaceutically acceptable carrier can further contain physiologically acceptable compounds that stabilize the compound, increase its solubility, or increase its absorption. Such physiologically acceptable compounds include carbohydrates such as glucose, sucrose or dextrans; antioxidants, such as ascorbic acid or glutathione; chelating agents; and low molecular weight proteins. As described above in reference to vaccines, such routes of administration are also applicable to administration of an immunomodulatory flagellin peptide, polypeptide or modification thereof.

**[0124]** In addition, a formulation of a compound that modulates a TLR5-mediated immune response can be incorporated into biodegradable polymers allowing for sustained release of the compound, the polymers being implanted in the vicinity of where drug delivery is desired, for example, at the site of a tumor or implanted so that the compound is released systemically over time. Osmotic minipumps also can be used to provide controlled delivery of specific concentrations of a compound through cannulae to the site of interest, such as

directly into a tumor growth or other site of a pathology involving a perturbation state. The biodegradable polymers and their use are described, for example, in detail in Brem et al., *J. Neurosurg.* 74:441-446 (1991). These methods, in addition to those described above in reference to vaccines, are applicable to administering an immunomodulatory flagellin peptide, polypeptide or modification thereof to induce an immune response.

[0125] The methods of treating a pathological condition additionally can be practiced in conjunction with other therapies. For example, for treating cancer, the methods of the invention can be practiced prior to, during, or subsequent to conventional cancer treatments such as surgery, chemotherapy, including administration of cytokines and growth factors, radiation or other methods known in the art. Similarly, for treating pathological conditions which include infectious disease, the methods of the invention can be practiced prior to, during, or subsequent to conventional treatments, such as antibiotic administration, against infectious agents or other methods known in the art. Treatment of pathological conditions of autoimmune disorders also can be accomplished by combining the methods of the invention for inducing an immune response with conventional treatments for the particular autoimmune diseases. Conventional treatments include, for example, chemotherapy, steroid therapy, insulin and other growth factor and cytokine therapy, passive immunity and inhibitors of T cell receptor binding. The methods of the invention can be administered in conjunction with these or other methods known in the art and at various times prior, during or subsequent to initiation of conventional treatments. For a description of treatments for pathological conditions characterized by aberrant cell growth see, for example, The Merck Manual, Sixteenth Ed, (Berkow, R., Editor) Rahway, N.J., 1992.

[0126] As described above, administration of a compound, immunomodulatory flagellin peptide, flagellin polypeptide or modification thereof can be, for example, simultaneous with or delivered in alternative administrations with the conventional therapy, including multiple administrations. Simultaneous administration can be, for example, together in the same formulation or in different formulations delivered at about the same time or immediately in sequence. Alternating administrations can be, for example, delivering an immunomodulatory flagellin peptide or polypeptide formulation and a conventional therapeutic treatment in temporally separate administrations. As described previously, the temporally separate administrations of a compound, immunomodulatory flagellin peptide, polypeptide or modification thereof, and conventional therapy can similarly use different modes of delivery and routes.

**[0127]** The invention provides a method of using a signal produced in response to flagellin binding to TLR5 to detect bacterial contamination in a sample. The method can be used to detect picogram amounts of flagellin in a sample.

**[0128]** Food-born diseases resulting from the presence of harmful bacteria account for 325,000 hospitalizations and 5,000 deaths each year in the United States (National Institutes of Health, Foodborne Diseases NIAID Fact Sheet). The U.S. Centers for Disease Control and Prevention (CDC) estimates that 1.4 million people in the United States are infected each year with *Salmonella*. Other bacterial pathogens that cause pathological conditions characterized by symptoms ranging from intestinal discomfort to severe dehydration, bloody diarrhea and even death, include enterohemorrhagic *E. coli*, such as strains designated O157:H7 and O26:H11, *Campylobacter* strains such as *C. jejuni*, and *Shigella* strains such as *S. flexneri*.

**[0129]** All of these bacterial strains are flagellated, and therefore express flagellin polypeptides. For example, the amino acid sequences of flagellins from *Salmonella*, *E. coli*,

Campylobacter, Shigella strains are shown in FIG. **7**. The methods of the invention for detecting flagellin polypeptides contained in samples suspected of bacterial contamination can be applied to quality assurance protocols for preparation of foods and numerous other applications.

**[0130]** The invention also provides a bioassay for detecting bacterial contamination in a sample. The method involves, (a) contacting the sample with a TLR5 under conditions wherein binding of a flagellin polypeptide or fragment thereof in the sample to the TLR5 produces a predetermined signal, (b) determining the production of the predetermined signal in the presence and absence of the sample, and (c) comparing the predetermined signal in the absence of the sample, wherein a difference between the predetermined signals in the presence and absence of the sample indicates that the sample contains flagellin.

**[0131]** The methods of the invention for detecting bacterial contamination are based on the finding disclosed herein that flagellin is a ligand for TLR5. Therefore, a flagellin molecule in a sample can bind to a TLR5 and elicit the production of a predetermined signal. A predetermined signal produced by TLR5 in a particular assay system is compared in the presence and absence of a sample known or suspected of containing a bacterial contaminant. A sample known to be free of flagellin can be used as a negative control, while a sample containing a known concentration of flagellin, flagella or bacteria having flagella can be used as a positive control.

**[0132]** A sample to be tested for the presence of flagellin can be any material that is suspected of being contaminated with a gram-positive or gram-negative flagellated bacterium. For example, the method for determining the presence of flagellin can be performed using a sample of a biological fluid, cell, tissue, organ or portion thereof, such as a sample of a tissue to be used for preparing a product, a product for human or animal consumption, such as a food or pharmaceutical preparation, and a product for external application or administration by any route to an animal.

**[0133]** A variety of predetermined signals produced by a TLR5, as discussed above and in the Examples herein, can be used to detect the binding and activation of a TLR5 by a flagellin molecule present in a sample. A variety of methods known in the art, including those described herein can be used to detect a predetermined signal produced by a TLR5.

**[0134]** It is understood that modifications which do not substantially affect the activity of the various embodiments of this invention are also included within the definition of the invention provided herein. Accordingly, the following examples are intended to illustrate but not limit the present invention.

#### Example I

## Constitutively Active TLR5 Activates NF- $\kappa B$ and TNF $\alpha$ Production

**[0135]** This example shows activation of NF- $\kappa$ B and TNF $\alpha$  production in CHO cells in response to constitutively active TLR5.

**[0136]** To determine if TLR5 activates NF- $\kappa$ B and TNF $\alpha$  production, the activity of a constitutively active form of TLR5 was examined in CHO cells. Constitutively active forms of TLR4 and TLR5 were generated by fusing the extracellular domain of CD4 to the transmembrane and TIR domain of TLR4 or TLR5 (Medzihitov, R. et al. *Nature* 388,

394-7 (1997); Ozinsky, A. et al., *Proc. Natl. Acad. Sci.* 97, 13766-13881 (2000)). CD4-TLR5 was constructed by fusing the murine CD4 extracellular domain (amino acids 1-391) to the putative transmembrane and cytoplasmic domains of human TLR5 (amino acids 639-859) and cloning into pEF6-TOPO (pEF6-mCD4-hTLR5). These chimeras, referred to as CD4-TLR4 and CD4-TLR5 were expressed in CHO cells.

[0137] For determining NF-KB activity in response to TLR5, CHO cells were transiently transfected with expression vectors for CD4-TLR4, CD4-TLR5, or empty expression vector (control) together with an NF-KB luciferase reporter. NF-KB-induced luciferase activity was measured. CHO cells (CHO-K1) were obtained from ATCC (no. CRL.-9618) and grown in Ham's F-12 medium supplemented with 10% FBS, L-glutamine, penicillin, and streptomycin. CHO cells were transfected by electroporation as described previously (Underhill, D. M. et al., Nature, 401, 811-5 (1999)), with 1  $\mu$ g of the indicated TLR expression vector, 1  $\mu$ g of ELAM-firefly luciferase, 0.1 µg of TK-renilla luciferase (Promega). Cells were plated on 96-well plates at 100,000 cells/well, and incubated overnight at 37° C., 5% CO2. Firefly and renilla luciferase activities were measured using the Dual Luciferase Assay System (Promega, Madison, Wis.). Luciferase activity is expressed as a ratio of NF-kB-dependent ELAM-firefly luciferase activity divided by control thymidine kinase-renilla luciferase activity (relative luciferase units).

[0138] For determining TNF $\alpha$  production in response to TLR5, RAW-TTIO Macrophage cells were transfected with a CD4-TLR5 expression vector, and the production of TNF $\alpha$ was measured by flow cytometry, as described previously (Ozinsky, A. et al. Proc. Natl. Acad. Sci. 97, 13766-13771 (2000)). Transfections were performed by electroporation using 10 µg of pEF6-mCD4-hTLR5, and 18 hours later the cells were incubated with 5 µg/ml of brefeldin A for 4 hours to accumulate intracellular pools of newly synthesized TNF $\alpha$ . Cells were fixed, permeabilized, stained for the expression of CD4 (anti-CD4-FITC, Pharmingen) and TNF $\alpha$ (anti-murine TNF $\alpha$ -PE, Pharmingen), and analyzed on a FACscan (Beckton-Dickenson). FACS data were analyzed with WinMDI (Joseph Trotter, Scripps Research Institute, La Jolla, Calif.). Cells were gated to exclude dead cells and for expression of CD4.

**[0139]** FIG. 1 shows that expression of CD4-TLR5 induced NF- $\kappa$ B activation-mediated luciferase production in CHO cells (FIG. 1*a*) and TNF $\alpha$  production in mouse macrophages (FIG. 1*b*). In FIG. 1*b*, the dotted line indicates TNF $\alpha$  produced in cells not expressing CD4-TLR5, and the solid line indicates TNF $\alpha$  produced in cells expressing CD4-TLR5.

**[0140]** Thus, homo-oligomerization of the TLR5 signaling domain induces a cellular signal characterized by the induction of NF- $\kappa$ B activity and production of TNF $\alpha$ .

#### Example II

#### Bacterial Culture Supernatants Contain TLR5-Stimulating Activity

**[0141]** This Example shows that bacterial culture supernatants contain TLR5-stimulating activity.

**[0142]** CHO cells expressing human TLR5 and luciferaselinked reporter were used to screen for PAMPs recognized by the receptor. PAMPS tested included LPS, lipopeptide, yeast, and extracts from *E. coli*, *Pseudomonas*, and *Listeria*. CHO cells were transiently transfected with TLR2, TLR5, or empty expression vectors together with a NF-κB luciferase reporter. The cells were treated with 100 ng/ml LPS, 100 ng/ml lipopeptide,  $10^7$  yeast particles/ml, or untreated (control), and luciferase activity was measured. The cells were treated with 67 µg/ml of supernatant from the indicated saturated bacterial cultures, or LB alone (control), and the luciferase activity was measured. Data are representative of 3 independent experiments.

**[0143]** Human TLR5 and TLR2 were generated by PCR from cDNA derived from human peripheral blood mononuclear cells and cloned into pEF6-TOPO (Invitrogen) (pEF6-hTLR5 and pEF6-hTLR2). Murine TLR5 was generated by PCR using cDNA derived from RAW-TTIO cells and cloned into pEF6 (pEF6-mTLR5).

**[0144]** For luciferase assays, CHO cells were transfected by electroporation as described above, with 1  $\mu$ g of the indicated TLR expression vector, 1  $\mu$ g of ELAM-firefly luciferase, 0.1  $\mu$ g of TK-renilla luciferase (Promega, Madison, Wis.). The medium was replaced with medium containing the stimuli at the indicated concentration/dilution. Bacterial lipopeptide and PAM<sub>3</sub>CSK<sub>4</sub>, were obtained from Roche, LPS (*Salmonella minnesota* R595) was from List, and yeast particles (zymosan) were from Molecular Probes (Eugene, Oreg.). Cells were stimulated for 5 hours at 37° C., and firefly and renilla luciferase activities were measured using the Dual Luciferase Assay System (Promega).

[0145] For preparation of bacterial supernatants, bacteria were grown either in Luria broth (LB) (Escherichia coli TOP 10 (Invitrogen), Salmonella minnesota (ATCC#49284), mutant Salmonella typhimurium (TH4778 fliB- fliC+), TH2795 (fliB- fliC-), (Dr. Kelly Hughes, University of Washington), or grown in trypticase soy broth (TSB) (Listeria monocytogenes (10403, gift of Dr. Daniel Portnoy, UCSF), Listeria innocua (ATCC#33090), Bacillus subtilis, and Pseudomonas aeruginosa (Susan R. Swanzy, University of Washington)). Bacteria were grown to saturation (about 16 hours, 37° C. with vigorous aeration). The bacterial culture supernatants were centrifuged for 30 minutes at 2000×g, filtered (0.2 µM), and stored at 4° C. prior to use. For flaA transfections, E. coli TOP10 containing pTrcHis2-flaA or pTrcHis2-flaArev were selected from bacterial plates and grown to  $OD_{600}$  of 0.6 in LB with 100 µg/ml ampicillin and 1% w/v glucose. The bacteria were centrifuged for 30 minutes at 2000×g, and split into two LB cultures, one containing 100 µg/ml ampicillin and 1% w/v glucose (to repress flaA) and the other containing 100 µg/ml ampicillin and 1 mM IPTG (to induce flaA). Samples were taken at 4 hours after induction, centrifuged 5 min at 10,000×g, and the supernatants stored at 4° C. before use.

**[0146]** TLR5 did not respond to any of the PAMPs known to stimulate TLR pathways, such as LPS, lipopeptide, yeast cell wall, or peptidoglycan, while CHO cells transfected with TLR2 were stimulated by lipopeptide, yeast cell wall, and peptidoglycan (FIG. 2a). However, TLR5-stimulating activity was detected in culture supernatants of a variety of Grampositive and Gram-negative bacteria (FIG. 2b). The TLR5-stimulating activity of Gram-positive bacteria was not enhanced by co-expression of CD14. Interestingly, the TOP10 strain of *E. coli* had very little TLR5 activity (FIG. 2b), and was used in subsequent reconstitution experiments (see below). Experiments using murine TLR5 yielded similar results.

**[0147]** Thus, the activity of TLR5 was stimulated by a component of bacterial culture supernatants, but not by PAMPs known to stimulate other toll like receptor family members.

#### Example III

#### Purification of TLR5-Stimulating Activity from *L. monocytogenes* Culture Supernatant

**[0148]** This Example shows the purification of TLR5simulating activity from *L. monocytogenes* culture supernatant.

**[0149]** The biological activity recognized by TLR5 was determined to be TCA precipitable, phenol soluble, and sensitive to proteinase K and trypsin digestion. To identify the bacterial components that stimulate TLR5, the supernatant from a saturated *L. monocytogenes* culture was concentrated, fractionated by reverse-phase chromatography, and each fraction was assessed for TLR5-stimulating activity in CHO cells (FIG. 3*a*).

**[0150]** For assessing the TLR-stimulating activity of FPLC fractions, CHO cells were transfected as described in Example I with the addition of 0.1  $\mu$ g of pNeo/Tak (Underhill et al., *Nature* 401, 811-5 (1999)), and stable populations of cells expressing the indicated TLR with the luciferase reporters were selected in 100  $\mu$ g/ml G418. These cells were plated on 96-well plates at 100,000 cells/well and incubated overnight.

**[0151]** For the purification of the TLR5-stimulating activity, saturated *L. monocytogenes* culture (200 ml of TSB) was centrifuged, and the supernatant was enriched for molecules larger than 30 kDa by ultrafiltration (Ultrafree-15 filter unit with Biomax-30 membrane, Millipore). The buffer was changed to 100 mM Tris pH 7.5, and the volume was adjusted to 5 ml. The sample was loaded onto a HR5/10 reverse-phase chromatography column (AP Biotech) and run at 0.3 ml/min. Reverse-phase chromatography was performed with the indicated elution profile using the following buffers: (A) initial buffer, 0.1% TFA in water, (B) final buffer, 0.1% TFA in acetonitrile. Fractions were collected at 3-minute intervals. FPLC fractions (50  $\mu$ l) were separated on a 10% SDS-PAGE gel.

[0152] As shown in FIG. 3a, CHO cells expressing an NFκB luciferase reporter and TLR5 were stimulated with reverse-phase FPLC fractions, and TLR5-mediated NF-KB luciferase activity was measured. The fraction numbers correspond to 3 minute fractions of reverse-phase FPLC eluted with a non-linear gradient of buffer B as shown. Fraction number "N" is control LB growth medium and "P" is the L. monocytogenes culture supernatant prior to chromatography. Fractions containing background activity (1), low activity (2) and high activity (3) as indicated in FIG. 3a were analyzed by SDS-PAGE and silver stain. Silver staining was performed according to established methods. Two bands with apparent molecular masses of 30-34 kDa were clearly enriched in the fraction containing the highest level of TLR5-stimulating activity (FIG. 3b, Lane 3). Proteins eluted from regions A, B, and C of the SDS-PAGE gel, as indicated in FIG. 3b were assayed for TLR5-mediated NF-kB activation in CHO cells. In FIG. 3c, "Listeria" indicates L. monocytogenes culture supernatant. One of these bands, (FIG. 3b, band A), was trypsin-treated, subject to microcapillary HPLC-tandem mass spectrometry, and identified by comparison of peptide tandem mass spectra to sequences in a non redundant protein database using the computer program, SEQUEST27 (FIG. 4*a*). TLR5-stimulating activity was not recovered from any other section of the gel.

**[0153]** Thus, a TLR5-stimulating activity was purified from culture supernatants from *L. monocytogenes*.

## Example IV

### Flagellin is a TLR5 Stimulus

**[0154]** This example shows that flagellin is a TLR5 stimulus purified from culture supernatants from *L. monocytogenes*.

**[0155]** As described above, a TLR5-stimulating activity was purified from *L. monocytogenes* culture supernatants using HPLC. The isolated polypeptide of band A in FIG. 3b was trypsinized and identified by microcapillary HPLC-tandem mass spectrometry. Peaks corresponding to *L. monocytogenes* flagellin peptides are indicated in FIG. 4a. Five sequences were identified (FIG. 4a) that correspond to flagellin, the product of the flaA gene of *L. monocytogenes* (Genbank Q02551). The location of these sequences within the protein is indicated in FIG. 4b. Band B of FIG. 3b also is flagellin, which migrates as a doublet of approximately 30 kDa on SDS-PAGE (FIG. 3b).

[0156] For analysis, bands A and B were excised from SDS-PAGE gels, dehydrated with acetonitrile, dried under reduced vacuum, and trypsin (12.5 ng/µL) was infused into the gel. The gel slice was allowed to incubate on ice for 45 min in the presence of trypsin and then excess trypsin removed and replaced with 50 mM ammonium bicarbonate and the gel slice incubated overnight at 37° C. Peptides were extracted by 3 washes with 5% acetic acid in 50% aqueous acetonitrile. The extractions were pooled and concentrated by vacuum centrifugation. The peptides were injected onto a C18 peptide trap cartridge (Michrom BioResources, Inc. Auburn, Calif.), desalted, and then injected onto a 75 µm (internal diameter)× 10 cm micro-capillary HPLC column (Magic C18; 5-µm packing; 100 A pore size; Michrom BioResources, Inc. Auburn, Calif.). The sample injection was made using a FAMAS autosampler (LCPackings, San Francisco, Calif.) coupled with an Agilent HP1100 Pump. Peptides were separated by a linear gradient of acetonitrile, and subjected to collision induced dissociation using an electrospray ionization-ion trap mass spectrometer (ESI-ITMS; ThermoQuest, San Jose, Calif.) in data-dependent mode with dynamic exclusion (Goodlett, et al. Anal. Chem. 72, 1112-1118 (2000)). Protein identification was accomplished by use of the SEQUEST computer program (Eng et al. J. Am. Soc. Mass. Spectrom. 5, 976-989 (1994)).

**[0157]** CHO cells expressing an NF- $\kappa$ B luciferase reporter and TLR5 or TLR2 were stimulated with 100 µl/ml *Listeria* supernatant or 33 µg/ml purified *Salmonella* flagellin. Flagellin was purified from *Salmonella typhimurium* (TH4778 fliB– fliC+) by the procedure of Ibrahim et al., *J. Clin. Microbiol.* 22, 1040-1044 (1985). As shown in FIG. **4***c*, flagellin stimulated TLR5-expressing CHO cells, but not TLR2-expressing CHO cells. The mean and standard deviation of quadruplicate samples are indicated. CHO cells were transfected as described in above Examples with the addition of 0.1 µg of pNeo/Tak, and stable populations of cells expressing the indicated TLR with the luciferase reporters were selected in 100 µg/ml G418. These cells were plated on 96-well plates at 100,000 cells/well, incubated overnight, and processed in luciferase assays as described above. **[0158]** The observation that flagellin is the TLR5 ligand also is supported by the finding that the flagellated bacteria, *L. monocytogenes* and *P. aeruginosa*, stimulate TLR5, while the TOP10 strain of *E. coli*, that has lost its flagella, does not (FIG. **2***b*).

Similarly, TLR5-stimulating activity was found in *B. subtilis*, *L. innocua*, *S. typhimurium* and *S. minnesota*, all flagellated bacteria, while non-flagellated bacteria such as *H. influenza*, did not activate TLR5.

**[0159]** Thus, the TLR5-stimulating activity purified from *L. monocytogenes* culture supernatants was identified as flagellin by tandem mass spectrometry.

### Example V

## Flagellin Expression in Bacteria Reconstitutes TLR5-Stimulating Activity

[0160] This Example shows that flagellin expression in bacteria reconstitutes TLR-stimulating activity, and deletion of flagellin genes abrogates. TLR5-stimulating activity. [0161] To confirm that flagellin is the sole TLR5 ligand in bacteria, E. coli (TOPIO) that secrete little TLR5 activity (FIG. 2b) were transformed with the cDNA of L. monocytogenes flagellin (flaA) under the control of an inducible promoter. TLR-expressing CHO cells were stimulated for 5 hours with E. coli culture supernatants (67  $\mu$ l/ml) in which expression of L. monocytogenes flagellin was induced or repressed. In the control sample, CHO cells were stimulated with supernatants from induced E. coli containing the L. monocytogenes flagellin gene cloned in the reverse orientation. Supernatants of E. coli that were induced to express L. monocytogenes flaA contained substantial TLR5-stimulating activity (FIG. 5a), whereas supernatants from E. coli in which expression was repressed, or from E. coli expressing flaA in the reverse orientation, contained little TLR5 activity in CHO cells expressing an NF-kB luciferase reporter and TLR5 (FIG. 5a) or TLR2 (FIG. 5b). CHO cells expressing an NF-κB luciferase reporter and TLR5 (c) or TLR2 (d) were stimulated for 5 hours with culture supernatants (100  $\mu$ l/ml) from S. typhimurium lacking one copy of flagellin (FliB- FliC+) or both copies of flagellin (FliB+ FliC+). Control is stimulation with LB medium. The mean and standard deviation of quadruplicate samples are indicated.

**[0162]** CHO cells were transfected with TLR2 and TLR5 expression plasmids as described above with the addition of 0.1  $\mu$ g of pNeo/Tak, and stable populations of cells expressing the indicated TLR with the luciferase reporters were selected in 100  $\mu$ g/ml G418. These cells were plated on 96-well plates at 100,000 cells/well, incubated overnight, and processed in luciferase assays as described above.

**[0163]** *L. monocytogenes* flagellin is not recognized by TLR2, since supernatants from *E. coli* expressing flaA did not show enhanced TLR2-dependent stimulation of CHO cells relative to supernatants from *E. coli* with repressed flaA expression (FIG. **5***b*). In addition to the experiments that demonstrate reconstitution of TLR5-stimulating activity by the expression of flagellin, a bacterium from which flagellin had been deleted was tested. It was observed that TLR5-stimulating activity was abrogated in the flagellin deleted strain. S. typhimurium possess two genes for flagellin, fliB and fliC (Fujita, J., *J. Gen Microbiol.* 76, 127-34 (1973)). Culture supernatants of fliB–fliC+*S. typhimurium* contained TLR5-stimulating activity, while culture supernatants from *S. typhimurium* lacking both flagellins (fliB–fliC–) expressed

no TLR5-stimulating activity (FIG. 5*c*). The lack of both flagellin genes had no effect on TLR2-stimulating activity (FIG. 5*d*). The observed TLR2-stimulating activity found in *S. typhimurium* supernatants most likely was due to bacterial lipoproteins (Underhill, et al. *Nature* 401, 811-5 (1999); Brightbill et al., *Science* 285, 732-6 (1999)). These results indicate that flagellin is the sole TLR5-stimulating activity present in *S. typhimurium* culture supernatant.

**[0164]** Thus, TLR5-stimulating activity was elicited by introducing the flagellin gene into a non-flagellated bacterium, and abrogated by deleting the flagellin genes from a flagellated bacterium.

## Example VI

Flagellin-Induced System IL-6 Production in Mice

**[0165]** This example shows that TLR signaling is required for the in vivo immune response to flagellin.

**[0166]** To determine if TLR signaling is required for the in vivo immune response to flagellin, wild type mice and mice lacking a component of the TLR5 signal transduction pathway, MyD88, were injected with flagellin and systemic IL-6 production was monitored. MyD88 is an adaptor protein required for TLR5-mediated signal transduction (Aderem A. and Ulevitch, R. J., *Nature* 406:782-787, (2000); Brightbill, H. D. and Modlin. R. L., *Immunology* 101:1-10, (2000)).

**[0167]** MyD88<sup>-/-</sup> mice (129/SvJ×C57B1/6 background) were backcrossed for three generations with C57B1/6 mice (Adachi, O. et al. *Immunity*, 9:143-150 (1998)). Mice from the F<sub>3</sub> generation (MyD88<sup>-/-</sup>, n=5) and littermate controls (MyD88<sup>+/+</sup>, n=5) were injected i.p. with 30 µg purified flagel-lin in 0.5 cc of saline. Blood was sampled at 0, 1, 2, 4 and 8 hours after injection, and IL-6 levels were determined by ELISA (Duoset, R&D Systems, Minneapolis, Minn.).

**[0168]** FIG. **6** shows that flagellin induced systemic IL-6 within 2 h in wile type mice. By contrast, mice deficient in MyD88 were completely unresponsive to flagellin.

**[0169]** Therefore, flagellin stimulates TLR5-mediated responses in vivo.

**[0170]** Throughout this application various publications have been referenced. The disclosures of these publications in their entireties are hereby incorporated by reference in this application in order to more fully describe the state of the art to which this invention pertains.

**[0171]** Although the invention has been described with reference to the disclosed embodiments, those skilled in the art will readily appreciate that the specific experiments detailed are only illustrative of the invention. It should be understood that various modifications can be made without departing from the spirit of the invention.

### SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 43
<210> SEO ID NO 1
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Salmonella typhimurium flagellin
<400> SEOUENCE: 1
ggtgcggtac agaaccgttt caactccgct attacc
<210> SEO ID NO 2
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Salmonella typhimurium flagellin
<400> SEOUENCE: 2
Gly Ala Val Gln Asn Arg Phe Asn Ser Ala Ile Thr
                                    10
<210> SEQ ID NO 3
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthetic construct
<400> SEQUENCE: 3
Gly Ala Val Ala Asn Arg Phe Asn Ser Ala Ile Thr
                                    10
<210> SEQ ID NO 4
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
```

| <220> FEATURE:<br><223> OTHER INFORMATION: synthetic construct                                                                                                                                        |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <400> SEQUENCE: 4                                                                                                                                                                                     |      |
| Gly Ala Val Gln Asn Ala Phe Asn Ser Ala Ile Thr<br>1 5 10                                                                                                                                             |      |
| <pre>&lt;210&gt; SEQ ID NO 5 &lt;211&gt; LENGTH: 4286 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Mus musculus &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: CDS &lt;222&gt; LOCATION: (999)(3575)</pre> |      |
| <400> SEQUENCE: 5                                                                                                                                                                                     |      |
| ttgaaatctc acagcccggt tggttgcagt gacccacttc gttgaacata ttcttcctaa                                                                                                                                     | 60   |
| teetagtact tteaatttge tetatteeet ggtgtetatg catttaaate gaetatgggg                                                                                                                                     | 120  |
| ccattettee ttgaaccace acagaagaca ttagetetet gggateettg ttaattttt                                                                                                                                      | 180  |
| ctcctcttac atagcaccta cgcttggaac atatgccaga cacatctgtg agacacccct                                                                                                                                     | 240  |
| tgccgctgca gctcatggat ggatgctgag ttcccccacg caccacactt cagcaggtgg                                                                                                                                     | 300  |
| gtgtatttct gcttcacatt atactcccac acggccatgc atgtcaggca tggagcaggc                                                                                                                                     | 360  |
| tcataaccca cttaattaag gtgatcatat cagatccttt atcaagatgc atagagtgct                                                                                                                                     | 420  |
| cagtgcctgt actatgatct cggatctttg ggagatgggc tagatagagt ctgggacaga                                                                                                                                     | 480  |
| atacagcaga gaaaccgata tgtttattgt ccgatcatca gctaagcttc tgggagctag                                                                                                                                     | 540  |
| gaatggggct ccttggatga acagaagtaa aaatgcctcg tctttatgac tttcaacttc                                                                                                                                     | 600  |
| cctcagcagg tctggaatgg gtgaacaaac actgcctgcg tgggtgataa atagcctctt                                                                                                                                     | 660  |
| tttgctgctt gtttgctgct tttatggttc tgggagggaa cctagaacct agcacatgct                                                                                                                                     | 720  |
| agacaagtcc tctagcactg agctatctcc ccagcttgga tgaaatatct gtaaagtact                                                                                                                                     | 780  |
| ggtgcccgtg tgtaaaatat gcaccattaa gtgttcaaga agaaaagact gggcatttct                                                                                                                                     | 840  |
| gttccaccaa gacaagaaga atctgccagc agaatgtttg cgcagtcatt tgagcaaagg                                                                                                                                     | 900  |
| ggtccaaggg acagtaccct ccagtgctgg ggacccatgt gccgagcctc aggctgtgat                                                                                                                                     | 960  |
| gtggtgttgt ttttaattet etettteee ataggate atg gea tgt eaa ett gae<br>Met Ala Cys Gln Leu Asp<br>1 5                                                                                                    | 1016 |
| ttg ctc ata ggt gtg atc ttc atg gcc agc ccc gtg ttg gta ata tct<br>Leu Leu Ile Gly Val Ile Phe Met Ala Ser Pro Val Leu Val Ile Ser<br>10 15 20                                                        | 1064 |
| ccc tgt tct tca gac ggc agg ata gcc ttt ttc cga ggc tgt aac ctc<br>Pro Cys Ser Ser Asp Gly Arg Ile Ala Phe Phe Arg Gly Cys Asn Leu<br>25 30 35                                                        | 1112 |
| acc cag att ccc tgg atc ctc aat act acc act gag agg ctc ctg ctc<br>Thr Gln Ile Pro Trp Ile Leu Asn Thr Thr Thr Glu Arg Leu Leu Leu<br>40 45 50                                                        | 1160 |
| agc ttc aac tat atc agt atg gtg gtt gcc aca tca ttt cca ctc ctg<br>Ser Phe Asn Tyr Ile Ser Met Val Val Ala Thr Ser Phe Pro Leu Leu<br>55 60 65 70                                                     | 1208 |
| gag cgg ctc cag ttg ctg gag ctg ggg acc cag tat gct aac ttg acc<br>Glu Arg Leu Gln Leu Leu Glu Leu Gly Thr Gln Tyr Ala Asn Leu Thr<br>75 80 85                                                        | 1256 |
| att ggt cca ggg gct ttc aga aac ctg ccc aat ctt agg atc ttg gac                                                                                                                                       | 1304 |

|     |                   |     |           |     |     |     |     |           |     |     | -   | con |            | uea |     |      | <br> | <br> |
|-----|-------------------|-----|-----------|-----|-----|-----|-----|-----------|-----|-----|-----|-----|------------|-----|-----|------|------|------|
| Ile | Gly               | Pro | Gly<br>90 | Ala | Phe | Arg | Asn | Leu<br>95 | Pro | Asn | Leu | Arg | Ile<br>100 | Leu | Asp |      |      |      |
| -   | ggc<br>Gly        |     | -         | -   |     | -   | -   | -         |     | -   | -   | -   |            |     |     | 1352 |      |      |
| -   | ccc<br>Pro<br>120 |     |           | -   | -   |     |     | -         |     |     | -   |     |            |     | -   | 1400 |      |      |
|     | gtg<br>Val        |     |           |     |     |     |     |           |     |     |     |     |            |     |     | 1448 |      |      |
|     | gac<br>Asp        |     |           |     |     | -   |     |           | -   |     | -   |     |            |     |     | 1496 |      |      |
|     | cgg<br>Arg        |     |           |     |     |     |     |           |     |     |     |     |            |     |     | 1544 |      |      |
|     | ttc<br>Phe        |     |           |     |     |     |     |           |     |     |     |     |            |     |     | 1592 |      |      |
| -   | tct<br>Ser<br>200 |     |           |     |     |     |     |           | -   | -   |     | -   | -          | -   |     | 1640 |      |      |
|     | ggc<br>Gly        |     |           |     | -   |     |     |           |     | -   |     |     |            |     | -   | 1688 |      |      |
|     | cta<br>Leu        |     |           |     |     |     |     |           |     |     |     |     |            |     |     | 1736 |      |      |
|     | agc<br>Ser        |     |           |     |     |     |     |           |     |     |     |     |            |     |     | 1784 |      |      |
|     | cac<br>His        |     |           |     |     |     |     |           |     |     |     |     |            |     |     | 1832 |      |      |
| -   | cag<br>Gln<br>280 | -   |           |     |     | -   | -   | -         | -   |     | -   |     | -          |     | -   | 1880 |      |      |
|     | ctt<br>Leu        |     |           |     |     |     |     |           |     |     |     |     |            |     |     | 1928 |      |      |
|     | ctg<br>Leu        |     |           |     |     |     |     |           |     |     |     |     |            |     |     | 1976 |      |      |
|     | att<br>Ile        |     |           |     |     |     |     |           |     |     |     |     |            |     |     | 2024 |      |      |
|     | cta<br>Leu        |     |           |     |     |     |     |           |     |     |     |     |            |     |     | 2072 |      |      |
|     | ctt<br>Leu<br>360 |     |           |     |     |     |     |           |     |     |     |     |            |     |     | 2120 |      |      |
|     | att<br>Ile        |     |           |     |     |     |     |           |     |     |     |     |            |     |     | 2168 |      |      |
| gat | ctc               | cgt | gac       | aat | gct | ctt | aag | gcc       | att | ggt | ttt | att | cca        | agc | ata | 2216 |      |      |

| -cont | inued |
|-------|-------|
|       |       |

|     |     |     |     |            |     |     |     |                   |            |     | -   | con | ιm  | uea        |     |      |  |  |
|-----|-----|-----|-----|------------|-----|-----|-----|-------------------|------------|-----|-----|-----|-----|------------|-----|------|--|--|
| Asp | Leu | Arg | Asp | Asn<br>395 | Ala | Leu | Lys | Ala               | Ile<br>400 | Gly | Phe | Ile | Pro | Ser<br>405 | Ile |      |  |  |
| -   | -   | -   |     | -          |     |     |     | aag<br>Lys<br>415 | -          | -   |     | -   |     |            |     | 2264 |  |  |
|     |     |     |     |            |     |     |     | tta<br>Leu        |            |     |     |     |     |            |     | 2312 |  |  |
| -   |     | -   |     |            |     |     | -   | cga<br>Arg        | -          |     | -   |     | -   |            |     | 2360 |  |  |
|     | -   |     | -   |            | -   |     | ~   | tca<br>Ser        | -          | -   | -   | ~   |     |            |     | 2408 |  |  |
|     |     |     |     |            |     |     |     | ctt<br>Leu        |            |     |     |     |     |            |     | 2456 |  |  |
|     |     |     |     |            |     |     |     | tgt<br>Cys<br>495 |            |     |     |     |     |            |     | 2504 |  |  |
|     | -   |     | -   |            |     |     | -   | agt<br>Ser        |            |     |     |     |     |            |     | 2552 |  |  |
|     |     |     |     |            |     | -   | -   | gtt<br>Val        | -          |     |     | -   |     | -          |     | 2600 |  |  |
| -   | -   |     | -   | -          |     |     |     | tct<br>Ser        | -          |     | -   |     |     | -          |     | 2648 |  |  |
|     |     |     |     | -          |     |     | -   | aat<br>Asn        | -          |     | -   | -   |     | -          |     | 2696 |  |  |
| -   | -   |     |     | -          |     | -   | -   | ttg<br>Leu<br>575 | -          |     |     |     |     |            |     | 2744 |  |  |
|     |     |     |     |            |     |     |     | ttt<br>Phe        |            |     |     |     |     |            |     | 2792 |  |  |
|     |     |     |     |            |     |     |     | gca<br>Ala        |            |     |     |     |     |            |     | 2840 |  |  |
|     |     |     |     |            |     |     |     | tac<br>Tyr        |            |     |     |     |     |            |     | 2888 |  |  |
|     |     |     |     |            |     |     |     | cta<br>Leu        |            |     |     |     |     |            |     | 2936 |  |  |
|     |     |     |     |            |     |     |     | ctc<br>Leu<br>655 |            |     |     |     |     |            |     | 2984 |  |  |
|     |     |     |     |            |     |     |     | tgc<br>Cys        |            |     |     |     |     |            |     | 3032 |  |  |
|     |     |     |     |            |     |     |     | ttg<br>Leu        |            |     |     |     |     |            |     | 3080 |  |  |
| gat | gcc | tac | ttc | tgc        | ttc | agc | agc | aaa               | gac        | ttt | gaa | tgg | gca | cag        | aat | 3128 |  |  |

| -continued                                                                                                                                            |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Asp Ala Tyr Phe Cys Phe Ser Ser Lys Asp Phe Glu Trp Ala Gln Asn<br>695 700 705 710                                                                    |      |
| gct ttg ctc aaa cac ctg gat gct cac tac agt tcc cga aac agg ctc<br>Ala Leu Leu Lys His Leu Asp Ala His Tyr Ser Ser Arg Asn Arg Leu<br>715 720 725     | 3176 |
| agg cta tgc ttt gaa gaa aga gac ttc att ccg ggg gaa aac cat atc<br>Arg Leu Cys Phe Glu Glu Arg Asp Phe Ile Pro Gly Glu Asn His Ile<br>730 735 740     | 3224 |
| tcc aac atc cag gcg gct gtc tgg ggc agc agg aag acg gtg tgt cta<br>Ser Asn Ile Gln Ala Ala Val Trp Gly Ser Arg Lys Thr Val Cys Leu<br>745 750 755     | 3272 |
| gtg agc aga cac ttc ctg aag gat ggt tgg tgc ctg gag gcc ttc agg<br>Val Ser Arg His Phe Leu Lys Asp Gly Trp Cys Leu Glu Ala Phe Arg<br>760 765 770     | 3320 |
| tat gcc cag agc cgg agt ctg tct gac ctc aag agc att ctc atc gtg<br>Tyr Ala Gln Ser Arg Ser Leu Ser Asp Leu Lys Ser Ile Leu Ile Val<br>775 780 785 790 | 3368 |
| gtg gtg gtg gga tcg ctg tcc cag tat cag ctg atg aga cat gag acc<br>Val Val Val Gly Ser Leu Ser Gln Tyr Gln Leu Met Arg His Glu Thr<br>795 800 805     | 3416 |
| atc aga ggg ttt ctg caa aag caa cag tac ttg agg tgg cct gaa gac<br>Ile Arg Gly Phe Leu Gln Lys Gln Gln Tyr Leu Arg Trp Pro Glu Asp<br>810 815 820     | 3464 |
| ctc cag gat gtt ggc tgg ttt ctc gat aaa ctc tcc gga tgc att cta<br>Leu Gln Asp Val Gly Trp Phe Leu Asp Lys Leu Ser Gly Cys Ile Leu<br>825 830 835     | 3512 |
| aag gaa gaa aaa gga aag aaa aga agc agt tcc atc cag ttg cga acc<br>Lys Glu Glu Lys Gly Lys Lys Arg Ser Ser Ser Ile Gln Leu Arg Thr<br>840 845 850     | 3560 |
| ata gca acc att tcc tagcaggagc gcctcctagc agaagtgcaa gcatcgtaga<br>Ile Ala Thr Ile Ser<br>855                                                         | 3615 |
| taacteteea egetttatee geacageege tgggggteet teeetggagt catttteetg                                                                                     | 3675 |
| acaatgaaaa caacaccaat ctcttgattt ttcatgtcaa cagggagctt tgtcttcact                                                                                     | 3735 |
| gttttccaaa tggaaagtaa gaggtccaga aagctgcctc taagggctct cacctgccat                                                                                     | 3795 |
| tgatgteett teaggeeeaa tgaeatggtt teeeteeate etattgegta etgtetgeta                                                                                     | 3855 |
| cccaggtggc aagagcacct tgggagaagt tacaggcagc ttcatgcttt ctgtgctgtt                                                                                     | 3915 |
| cagttcaaaa gcaggtgcct tgagaatcct gaattcaagc actctgtaga acatggacag                                                                                     | 3975 |
| acaagatggg teettetetg gecataggea tgagggeeag ttgetgagga etgeteteae                                                                                     | 4035 |
| tacacctaag tgcacaagtg ataagaagtt ggacagatag acagatagca gcagtcccat                                                                                     | 4095 |
| tgetgtagee agaatgeaet tattteetgt tetgaeeetg eaggeeeage ttttggggae                                                                                     | 4155 |
| accggcotgc cottetttet tecceacaac tatacaagag etgttgcaac cactgaaaaa                                                                                     | 4215 |
| aaaaaaaaa a                                                                                                                                           | 4286 |
| <210> SEQ ID NO 6<br><211> LENGTH: 859<br><212> TYPE: PRT<br><213> ORGANISM: Mus musculus                                                             |      |
|                                                                                                                                                       |      |

<400> SEQUENCE: 6

Met Ala Cys Gln Leu Asp Leu Leu Ile Gly Val Ile Phe Met Ala Ser

-continued

|            |            |            |            |            |            |            |            |            |            |            | -          | con        | tin        | ued        |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 1          |            |            |            | 5          |            |            |            |            | 10         |            |            |            |            | 15         |            |
| Pro        | Val        | Leu        | Val<br>20  | Ile        | Ser        | Pro        | Суз        | Ser<br>25  | Ser        | Asp        | Gly        | Arg        | Ile<br>30  | Ala        | Phe        |
| Phe        | Arg        | Gly<br>35  | Сув        | Asn        | Leu        | Thr        | Gln<br>40  | Ile        | Pro        | Trp        | Ile        | Leu<br>45  | Asn        | Thr        | Thr        |
| Thr        | Glu<br>50  | Arg        | Leu        | Leu        | Leu        | Ser<br>55  | Phe        | Asn        | Tyr        | Ile        | Ser<br>60  | Met        | Val        | Val        | Ala        |
| Thr<br>65  | Ser        | Phe        | Pro        | Leu        | Leu<br>70  | Glu        | Arg        | Leu        | Gln        | Leu<br>75  | Leu        | Glu        | Leu        | Gly        | Thr<br>80  |
| Gln        | Tyr        | Ala        | Asn        | Leu<br>85  | Thr        | Ile        | Gly        | Pro        | Gly<br>90  | Ala        | Phe        | Arg        | Asn        | Leu<br>95  | Pro        |
| Asn        | Leu        | Arg        | Ile<br>100 | Leu        | Asp        | Leu        | Gly        | Gln<br>105 | Ser        | Gln        | Ile        | Glu        | Val<br>110 | Leu        | Asn        |
| Arg        | Asp        | Ala<br>115 | Phe        | Gln        | Gly        | Leu        | Pro<br>120 | His        | Leu        | Leu        | Glu        | Leu<br>125 | Arg        | Leu        | Phe        |
| Ser        | Cys<br>130 | Gly        | Leu        | Ser        | Ser        | Ala<br>135 | Val        | Leu        | Ser        | Asp        | Gly<br>140 | Tyr        | Phe        | Arg        | Asn        |
| Leu<br>145 | Tyr        | Ser        | Leu        | Ala        | Arg<br>150 | Leu        | Asp        | Leu        | Ser        | Gly<br>155 | Asn        | Gln        | Ile        | His        | Ser<br>160 |
| Leu        | Arg        | Leu        | His        | Ser<br>165 | Ser        | Phe        | Arg        | Glu        | Leu<br>170 | Asn        | Ser        | Leu        | Ser        | Asp<br>175 | Val        |
| Asn        | Phe        | Ala        | Phe<br>180 | Asn        | Gln        | Ile        | Phe        | Thr<br>185 | Ile        | Суз        | Glu        | Asp        | Glu<br>190 | Leu        | Glu        |
| Pro        | Leu        | Gln<br>195 | Gly        | ГЛа        | Thr        | Leu        | Ser<br>200 | Phe        | Phe        | Gly        | Leu        | Lys<br>205 | Leu        | Thr        | Lys        |
| Leu        | Phe<br>210 | Ser        | Arg        | Val        | Ser        | Val<br>215 | Gly        | Trp        | Glu        | Thr        | Cys<br>220 | Arg        | Asn        | Pro        | Phe        |
| Arg<br>225 | Gly        | Val        | Arg        | Leu        | Glu<br>230 | Thr        | Leu        | Asp        | Leu        | Ser<br>235 | Glu        | Asn        | Gly        | Trp        | Thr<br>240 |
| Val        | Asp        | Ile        | Thr        | Arg<br>245 | Asn        | Phe        | Ser        | Asn        | Ile<br>250 | Ile        | Gln        | Gly        | Ser        | Gln<br>255 | Ile        |
| Ser        | Ser        | Leu        | Ile<br>260 | Leu        | Lys        | His        | His        | Ile<br>265 | Met        | Gly        | Pro        | Gly        | Phe<br>270 | Gly        | Phe        |
| Gln        | Asn        | Ile<br>275 | Arg        | Asp        | Pro        | Asp        | Gln<br>280 | Ser        | Thr        | Phe        | Ala        | Ser<br>285 | Leu        | Ala        | Arg        |
| Ser        | Ser<br>290 | Val        | Leu        | Gln        | Leu        | Asp<br>295 | Leu        | Ser        | His        | Gly        | Phe<br>300 | Ile        | Phe        | Ser        | Leu        |
| Asn<br>305 | Pro        | Arg        | Leu        | Phe        | Gly<br>310 | Thr        | Leu        | Lys        | Asp        | Leu<br>315 | Lys        | Met        | Leu        | Asn        | Leu<br>320 |
| Ala        | Phe        | Asn        | Lys        | Ile<br>325 | Asn        | Lys        | Ile        | Gly        | Glu<br>330 | Asn        | Ala        | Phe        | Tyr        | Gly<br>335 | Leu        |
| Asp        | Ser        | Leu        | Gln<br>340 | Val        | Leu        | Asn        | Leu        | Ser<br>345 | Tyr        | Asn        | Leu        | Leu        | Gly<br>350 | Glu        | Leu        |
| Tyr        | Asn        | Ser<br>355 | Asn        | Phe        | Tyr        | Gly        | Leu<br>360 | Pro        | Arg        | Val        | Ala        | Tyr<br>365 | Val        | Asp        | Leu        |
| Gln        | Arg<br>370 | Asn        | His        | Ile        | Gly        | Ile<br>375 | Ile        | Gln        | Asp        | Gln        | Thr<br>380 | Phe        | Arg        | Leu        | Leu        |
| Lys<br>385 | Thr        | Leu        | Gln        | Thr        | Leu<br>390 | Asp        | Leu        | Arg        | Asp        | Asn<br>395 | Ala        | Leu        | Lys        | Ala        | Ile<br>400 |
| Gly        | Phe        | Ile        | Pro        | Ser<br>405 | Ile        | Gln        | Met        | Val        | Leu<br>410 | Leu        | Gly        | Gly        | Asn        | Lys<br>415 | Leu        |

| Val        | His        | Leu        | Pro<br>420 | His        | Ile        | His        | Phe        | Thr<br>425 | Ala        | Asn        | Phe        | Leu        | Glu<br>430 | Leu        | Ser        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Glu        | Asn        | Arg<br>435 | Leu        | Glu        | Asn        | Leu        | Ser<br>440 | Asp        | Leu        | Tyr        | Phe        | Leu<br>445 | Leu        | Arg        | Val        |
| Pro        | Gln<br>450 | Leu        | Gln        | Phe        | Leu        | Ile<br>455 | Leu        | Asn        | Gln        | Asn        | Arg<br>460 | Leu        | Ser        | Ser        | Суз        |
| Lys<br>465 | Ala        | Ala        | His        | Thr        | Pro<br>470 | Ser        | Glu        | Asn        | Pro        | Ser<br>475 | Leu        | Glu        | Gln        | Leu        | Phe<br>480 |
| Leu        | Thr        | Glu        | Asn        | Met<br>485 | Leu        | Gln        | Leu        | Ala        | Trp<br>490 | Glu        | Thr        | Gly        | Leu        | Сув<br>495 | Trp        |
| Asp        | Val        | Phe        | Gln<br>500 | Gly        | Leu        | Ser        | Arg        | Leu<br>505 | Gln        | Ile        | Leu        | Tyr        | Leu<br>510 | Ser        | Asn        |
| Asn        | Tyr        | Leu<br>515 | Asn        | Phe        | Leu        | Pro        | Pro<br>520 | Gly        | Ile        | Phe        | Asn        | Asp<br>525 | Leu        | Val        | Ala        |
| Leu        | Arg<br>530 | Met        | Leu        | Ser        | Leu        | Ser<br>535 | Ala        | Asn        | Lys        | Leu        | Thr<br>540 | Val        | Leu        | Ser        | Pro        |
| Gly<br>545 | Ser        | Leu        | Pro        | Ala        | Asn<br>550 | Leu        | Glu        | Ile        | Leu        | Asp<br>555 | Ile        | Ser        | Arg        | Asn        | Gln<br>560 |
|            |            | -          |            | 565        | Pro        |            |            |            | 570        |            |            | -          |            | 575        | -          |
|            |            |            | 580        |            | Phe        |            | -          | 585        | -          |            |            |            | 590        |            |            |
|            | -          | 595        |            |            | Thr        |            | 600        |            |            |            | -          | 605        |            |            | _          |
|            | 610        | -          |            | -          | Pro        | 615        |            |            |            | _          | 620        |            |            | -          |            |
| 625        |            |            |            | _          | Сув<br>630 |            |            |            |            | 635        |            | -          |            |            | 640        |
|            |            |            |            | 645        | Leu        |            |            |            | 650        |            |            |            |            | 655        |            |
|            |            |            | 660        |            | Ile        | -          |            | 665        | -          |            | -          |            | 670        | -          | -          |
| -          |            | 675        |            | -          | Leu        |            | 680        | -          | -          | -          |            | 685        |            |            |            |
|            | 690        |            | •          | Ū          | Tyr        | 695        |            | -          |            | •          | 700        |            |            | -          | -          |
| 705        |            | -          |            |            | Asn<br>710 |            |            |            | -          | 715        |            | -          |            |            | 720        |
|            |            | -          |            | 725        | Leu        | -          |            | -          | 730        |            |            | -          | _          | 735        |            |
|            | -          |            | 740        |            | Ile        |            |            | 745        |            |            |            |            | 750        | -          |            |
| -          | -          | 755        |            | -          | Leu        |            | 760        | -          |            |            |            | 765        | _          | -          | -          |
| -          | 770        |            |            |            | Arg        | 775        |            |            |            | -          | 780        |            |            | -          |            |
| 785        |            |            |            |            | Val<br>790 |            |            |            |            | 795        |            |            |            |            | 800        |
| Leu        | Met        | Arg        | His        | Glu<br>805 | Thr        | Ile        | Arg        | Gly        | Phe<br>810 | Leu        | Gln        | Lys        | Gln        | Gln<br>815 | Tyr        |

26

Leu Arg Trp Pro Glu Asp Leu Gln Asp Val Gly Trp Phe Leu Asp Lys 820 825 830 Leu Ser Gly Cys Ile Leu Lys Glu Glu Lys Gly Lys Arg Ser Ser 835 840 845 Ser Ile Gln Leu Arg Thr Ile Ala Thr Ile Ser 850 855 <210> SEQ ID NO 7 <211> LENGTH: 3431 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (704) ... (3277) <400> SEQUENCE: 7 ggettatagg getegagegg eegeeegge aggtatagaa tteageggee getgaattet 60 agggttttca ggagcccgag cgaggggcgcc gcttttgcgt ccgggaggag ccaaccgtgg 120 cgcaggcggc gcgggggggg gtcccagagt ctcactctgc cgcccaggct ggactgcagt 180 gacacaatct cggctgactg caaccactgc ctccagggtt caagcgattc tcttgcctca 240 gcctcccaag tagctgggat tacagattga tgttcatgtt cctggcacta ctacaagatt 300 catactcctg atgctactga caacgtggct tctccacagt caccaaacca gggatgctat 360 actquactte cetactetea tetucteeaq ecceetqace ttataqttue ceaucttee 420 tggcaattga ctttgcccat caatacacag gatttagcat ccagggaaga tgtcggagcc 480 tcagatgtta attttctaat tgagaatgtt ggcgctgtcc gaacctggag acagaaaaaac 540 aaaaagtcct ttctcctgat tcaccaaaaa ataaaatact gactaccatc actgtgatga 600 gatteetata gteteaggaa etgaagtett taaacaacea gggaceetet geeeetagaa 660 taagaacata ctagaagtcc cttctgctag gacaacgagg atc atg gga gac cac 715 Met Gly Asp His 1 ctg gac ctt ctc cta gga gtg gtg ctc atg gcc ggt cct gtg ttt gga 763 Leu Asp Leu Leu Cly Val Val Leu Met Ala Gly Pro Val Phe Gly 5 10 15 20 att cct tcc tgc tcc ttt gat ggc cga ata gcc ttt tat cgt ttc tgc 811 Ile Pro Ser Cys Ser Phe Asp Gly Arg Ile Ala Phe Tyr Arg Phe Cys 25 30 35 aac ctc acc cag gtc ccc cag gtc ctc aac acc act gag agg ctc ctg 859 Asn Leu Thr Gln Val Pro Gln Val Leu Asn Thr Thr Glu Arg Leu Leu 40 45 50 ctg agc ttc aac tat atc agg aca gtc act gct tca tcc ttc ccc ttt 907 Leu Ser Phe Asn Tyr Ile Arg Thr Val Thr Ala Ser Ser Phe Pro Phe 55 60 65 ctg gaa cag ctg cag ctg ctg gag ctc ggg agc cag tat acc ccc ttg 955 Leu Glu Gln Leu Glu Leu Glu Leu Gly Ser Gln Tyr Thr Pro Leu 75 70 80 act att gac aag gag gcc ttc aga aac ctg ccc aac ctt aga atc ttg 1003 Thr Ile Asp Lys Glu Ala Phe Arg Asn Leu Pro Asn Leu Arg Ile Leu 85 90 95 100 gac ctg gga agt agt aag ata tac ttc ttg cat cca gat gct ttt cag 1051 Asp Leu Gly Ser Ser Lys Ile Tyr Phe Leu His Pro Asp Ala Phe Gln 105 110 115 gga ctg ttc cat ctg ttt gaa ctt aga ctg tat ttc tgt ggt ctc tct 1099 Gly Leu Phe His Leu Phe Glu Leu Arg Leu Tyr Phe Cys Gly Leu Ser

|   |                   |   |     |   |   |   |   |     |   |   | - | con | tin | ued |   |      |  |
|---|-------------------|---|-----|---|---|---|---|-----|---|---|---|-----|-----|-----|---|------|--|
|   |                   |   | 120 |   |   |   |   | 125 |   |   |   |     | 130 |     |   |      |  |
|   | gct<br>Ala        |   |     |   |   |   |   |     |   |   |   |     |     |     |   | 1147 |  |
|   | ttg<br>Leu<br>150 |   |     |   |   |   |   |     |   |   |   |     |     |     |   | 1195 |  |
|   | ttt<br>Phe        |   | -   | - |   |   |   | -   |   |   | - |     |     |     |   | 1243 |  |
|   | ata<br>Ile        |   |     | • |   | • |   | ~ ~ |   |   |   |     |     | 000 |   | 1291 |  |
|   | ctc<br>Leu        |   |     |   |   |   |   |     |   |   |   |     |     |     |   | 1339 |  |
|   | gtg<br>Val        |   |     |   |   |   |   |     |   |   |   |     |     |     |   | 1387 |  |
|   | ata<br>Ile<br>230 |   |     |   |   |   |   |     |   |   |   |     |     |     |   | 1435 |  |
|   | ttt<br>Phe        | - |     | - |   | - |   | -   | - | - |   |     | -   |     |   | 1483 |  |
| - | cac<br>His        |   |     | - |   | - |   |     |   |   |   |     |     |     | - | 1531 |  |
|   | gac<br>Asp        |   |     |   |   |   |   |     |   |   |   |     |     |     |   | 1579 |  |
| - | gac<br>Asp        |   |     |   |   |   | - |     |   | - |   |     | -   | -   |   | 1627 |  |
|   | aca<br>Thr<br>310 |   | -   | - | - | - | - | -   |   |   | - |     |     | -   |   | 1675 |  |
|   | aag<br>Lys        |   |     |   |   |   |   |     |   |   |   |     |     |     |   | 1723 |  |
|   | aat<br>Asn        |   |     |   |   |   |   |     |   |   |   |     |     |     |   | 1771 |  |
|   | gga<br>Gly        |   |     |   | ~ |   |   |     |   |   |   |     |     |     |   | 1819 |  |
|   | ata<br>Ile        |   |     |   |   |   |   |     |   |   |   |     |     |     |   | 1867 |  |
|   | gat<br>Asp<br>390 |   |     | • |   | • |   |     |   |   |   |     |     |     |   | 1915 |  |
|   | ccc<br>Pro        | - |     |   | - | - |   |     |   |   |   |     | -   |     | - | 1963 |  |
|   | aac<br>Asn        |   |     |   |   |   |   |     |   |   |   |     |     |     |   | 2011 |  |

|   |   |   |   |     |                   |   |   |   |     |   | - | con | tin | ued |   |      |  |
|---|---|---|---|-----|-------------------|---|---|---|-----|---|---|-----|-----|-----|---|------|--|
|   |   |   |   | 425 |                   |   |   |   | 430 |   |   |     |     | 435 |   |      |  |
|   |   | - |   |     | tac<br>Tyr        |   |   |   |     | - |   |     |     | -   |   | 2059 |  |
|   |   |   |   |     | aat<br>Asn        |   |   |   |     |   |   |     |     |     |   | 2107 |  |
|   |   |   |   |     | agc<br>Ser        |   | - | - |     |   |   |     | -   |     | - | 2155 |  |
|   |   |   | • |     | gaa<br>Glu<br>490 |   |   |   |     |   | • | ~   |     | ~ ~ |   | 2203 |  |
|   |   |   |   |     | gtt<br>Val        | - |   | - |     |   |   |     |     |     |   | 2251 |  |
|   |   |   |   |     | ttt<br>Phe        |   |   |   |     |   |   |     |     |     |   | 2299 |  |
|   |   |   |   |     | ctg<br>Leu        |   |   |   |     |   |   |     |     |     |   | 2347 |  |
|   |   |   |   | -   | gac<br>Asp        |   |   |   |     | - |   |     | -   |     |   | 2395 |  |
|   | - | - |   | -   | tca<br>Ser<br>570 |   | - | - | -   | - |   |     |     |     | - | 2443 |  |
|   |   | - | - | -   | gaa<br>Glu        |   | - |   |     |   |   |     |     |     |   | 2491 |  |
|   |   |   |   |     | gct<br>Ala        |   |   |   |     |   |   |     |     |     |   | 2539 |  |
|   |   |   |   |     | д1у<br>ддд        |   |   |   |     |   |   |     |     |     |   | 2587 |  |
|   |   |   |   |     | gtc<br>Val        |   |   |   |     |   |   |     |     |     |   | 2635 |  |
| - | - |   | ~ |     | ctg<br>Leu<br>650 |   | ~ |   |     | ~ |   |     |     |     | - | 2683 |  |
|   |   |   |   |     | ttc<br>Phe        |   |   |   |     |   |   |     |     |     |   | 2731 |  |
|   |   |   |   |     | cat<br>His        |   |   |   |     |   |   |     |     |     |   | 2779 |  |
|   |   |   |   |     | tgc<br>Cys        |   |   |   |     |   |   |     |     |     |   | 2827 |  |
|   | - | - |   |     | cac<br>His        | - | - |   |     |   | - | -   |     |     | - | 2875 |  |
|   |   |   |   |     | gaa<br>Glu        |   |   |   |     |   |   |     |     |     |   | 2923 |  |

-continued

|                                                                                                     |                                                                            | -continued                                                                                   |      |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------|
| 725                                                                                                 | 730 735                                                                    | 740                                                                                          |      |
|                                                                                                     | cag gat gcc atc tgg aac agt<br>Gln Asp Ala Ile Trp Asn Ser<br>745 750      |                                                                                              | 2971 |
|                                                                                                     | cac ttc ctt aga gat ggc tgo<br>His Phe Leu Arg Asp Gly Trr<br>765          |                                                                                              | 3019 |
|                                                                                                     | ggc agg tgc tta tct gac ctt<br>Gly Arg Cys Leu Ser Asp Leu<br>780          |                                                                                              | 3067 |
|                                                                                                     | ggg tcc ttg tcc cag tac cag<br>Gly Ser Leu Ser Gln Tyr Glr<br>795          |                                                                                              | 3115 |
|                                                                                                     | ttt gta cag aaa cag cag tat<br>Phe Val Gln Lys Gln Gln Tyr<br>810 815      | Leu Arg Trp Pro Glu                                                                          | 3163 |
|                                                                                                     | gtt ggc tgg ttt ctt cat aaa<br>Val Gly Trp Phe Leu His Lys<br>825 830      | -                                                                                            | 3211 |
|                                                                                                     | aaa gaa aag aag aaa gac aat<br>Lys Glu Lys Lys Lys Asp Asr<br>845          |                                                                                              | 3259 |
| act gta gca acc<br>Thr Val Ala Thr<br>855                                                           | atc tcc taatcaaagg agcaattt<br>Ile Ser                                     | cc aacttatctc                                                                                | 3307 |
| aagccacaaa taact                                                                                    | cttca ctttgtattt gcaccaagtt                                                | atcattttgg ggtcctctct                                                                        | 3367 |
| ggaggttttt tttt                                                                                     | ctttt tgctactatg aaaacaacat                                                | aaatctctca attttcgtat                                                                        | 3427 |
| caaa                                                                                                |                                                                            |                                                                                              | 3431 |
| <pre>&lt;210&gt; SEQ ID NO &lt;211&gt; LENGTH: 85 &lt;212&gt; TYPE: PRT &lt;213&gt; ORGANISM:</pre> | 8                                                                          |                                                                                              |      |
| <400> SEQUENCE:                                                                                     | 8                                                                          |                                                                                              |      |
| 1                                                                                                   | Leu Asp Leu Leu Leu Gly Val<br>5 10                                        | 15                                                                                           |      |
| 20                                                                                                  | Ile Pro Ser Cys Ser Phe Asp<br>25<br>Asn Leu Thr Gln Val Pro Glr           | 30                                                                                           |      |
| 35                                                                                                  | 40<br>Leu Ser Phe Asn Tyr Ile Arc                                          | 45                                                                                           |      |
| 50<br>Ser Phe Pro Phe<br>65                                                                         | 55<br>Leu Glu Gln Leu Gln Leu Leu<br>70 75                                 | 60<br>Glu Leu Gly Ser Gln<br>80                                                              |      |
|                                                                                                     |                                                                            | Arg Asp Leu Pro Asp                                                                          |      |
|                                                                                                     | Thr Ile Asp Lys Glu Ala Phe<br>85                                          | 95                                                                                           |      |
| Tyr Thr Pro Leu                                                                                     |                                                                            | 95                                                                                           |      |
| Tyr Thr Pro Leu<br>Leu Arg Ile Leu<br>100                                                           | 85 90<br>Asp Leu Gly Ser Ser Lys Ile                                       | 95<br>Tyr Phe Leu His Pro<br>110                                                             |      |
| Tyr Thr Pro Leu<br>Leu Arg Ile Leu<br>100<br>Asp Ala Phe Gln<br>115<br>Cys Gly Leu Ser<br>130       | 85 90<br>Asp Leu Gly Ser Ser Lys Ile<br>105<br>Gly Leu Phe His Leu Phe Glu | 95<br>Tyr Phe Leu His Pro<br>110<br>Leu Arg Leu Tyr Phe<br>125<br>Tyr Phe Arg Asn Leu<br>140 |      |

-continued

|            |            |            |            |            |            |            |            |            |            |            | -          | con        | tin        | ued        |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 145        |            |            |            |            | 150        |            |            |            |            | 155        |            |            |            |            | 160        |
| Tyr        | Leu        | His        | Pro        | Ser<br>165 | Phe        | Gly        | Lys        | Leu        | Asn<br>170 | Ser        | Leu        | Lys        | Ser        | Ile<br>175 | Asp        |
| Phe        | Ser        | Ser        | Asn<br>180 | Gln        | Ile        | Phe        | Leu        | Val<br>185 | Суз        | Glu        | His        | Glu        | Leu<br>190 | Glu        | Pro        |
| Leu        | Gln        | Gly<br>195 | Lys        | Thr        | Leu        | Ser        | Phe<br>200 | Phe        | Ser        | Leu        | Ala        | Ala<br>205 | Asn        | Ser        | Leu        |
| Tyr        | Ser<br>210 | Arg        | Val        | Ser        | Val        | Asp<br>215 | Trp        | Gly        | Lys        | Сүз        | Met<br>220 | Asn        | Pro        | Phe        | Arg        |
| Asn<br>225 | Met        | Val        | Leu        | Glu        | Ile<br>230 | Val        | Asp        | Val        | Ser        | Gly<br>235 | Asn        | Gly        | Trp        | Thr        | Val<br>240 |
| Asp        | Ile        | Thr        | Gly        | Asn<br>245 | Phe        | Ser        | Asn        | Ala        | Ile<br>250 | Ser        | Lys        | Ser        | Gln        | Ala<br>255 | Phe        |
| Ser        | Leu        | Ile        | Leu<br>260 | Ala        | His        | His        | Ile        | Met<br>265 | Gly        | Ala        | Gly        | Phe        | Gly<br>270 | Phe        | His        |
| Asn        | Ile        | Lys<br>275 | Asp        | Pro        | Asp        | Gln        | Asn<br>280 | Thr        | Phe        | Ala        | Gly        | Leu<br>285 | Ala        | Arg        | Ser        |
| Ser        | Val<br>290 | Arg        | His        | Leu        | Asp        | Leu<br>295 | Ser        | His        | Gly        | Phe        | Val<br>300 | Phe        | Ser        | Leu        | Asn        |
| Ser<br>305 | Arg        | Val        | Phe        | Glu        | Thr<br>310 | Leu        | Lys        | Asp        | Leu        | Lys<br>315 | Val        | Leu        | Asn        | Leu        | Ala<br>320 |
| Tyr        | Asn        | Lys        | Ile        | Asn<br>325 | ГЛа        | Ile        | Ala        | Asp        | Glu<br>330 | Ala        | Phe        | Tyr        | Gly        | Leu<br>335 | Asp        |
| Asn        | Leu        | Gln        | Val<br>340 | Leu        | Asn        | Leu        | Ser        | Tyr<br>345 | Asn        | Leu        | Leu        | Gly        | Glu<br>350 | Leu        | Суз        |
| Ser        | Ser        | Asn<br>355 | Phe        | Tyr        | Gly        | Leu        | Pro<br>360 | Lys        | Val        | Ala        | Tyr        | Ile<br>365 | Asp        | Leu        | Gln        |
| Lys        | Asn<br>370 | His        | Ile        | Ala        | Ile        | Ile<br>375 | Gln        | Asp        | Gln        | Thr        | Phe<br>380 | ГЛа        | Phe        | Leu        | Glu        |
| Lys<br>385 | Leu        | Gln        | Thr        | Leu        | Aap<br>390 | Leu        | Arg        | Asp        | Asn        | Ala<br>395 | Leu        | Thr        | Thr        | Ile        | His<br>400 |
| Phe        | Ile        | Pro        | Ser        | Ile<br>405 | Pro        | Asp        | Ile        | Phe        | Leu<br>410 | Ser        | Gly        | Asn        | Lys        | Leu<br>415 | Val        |
| Thr        | Leu        | Pro        | Lys<br>420 | Ile        | Asn        | Leu        | Thr        | Ala<br>425 | Asn        | Leu        | Ile        | His        | Leu<br>430 | Ser        | Glu        |
| Asn        | Arg        | Leu<br>435 | Glu        | Asn        | Leu        | Asp        | Ile<br>440 | Leu        | Tyr        | Phe        | Leu        | Leu<br>445 | Arg        | Val        | Pro        |
| His        | Leu<br>450 | Gln        | Ile        | Leu        | Ile        | Leu<br>455 |            | Gln        | Asn        | Arg        | Phe<br>460 | Ser        | Ser        | Суз        | Ser        |
| Gly<br>465 | Asp        | Gln        | Thr        | Pro        | Ser<br>470 | Glu        | Asn        | Pro        | Ser        | Leu<br>475 | Glu        | Gln        | Leu        | Phe        | Leu<br>480 |
| Gly        | Glu        | Asn        | Met        | Leu<br>485 | Gln        | Leu        | Ala        | Trp        | Glu<br>490 | Thr        | Glu        | Leu        | Суз        | Trp<br>495 | Asp        |
| Val        | Phe        | Glu        | Gly<br>500 | Leu        | Ser        | His        | Leu        | Gln<br>505 | Val        | Leu        | Tyr        | Leu        | Asn<br>510 | His        | Asn        |
| Tyr        | Leu        | Asn<br>515 | Ser        | Leu        | Pro        | Pro        | Gly<br>520 |            | Phe        | Ser        | His        | Leu<br>525 | Thr        | Ala        | Leu        |
| Arg        | Gly<br>530 | Leu        | Ser        | Leu        | Asn        | Ser<br>535 |            | Arg        | Leu        | Thr        | Val<br>540 | Leu        | Ser        | His        | Asn        |
|            | Leu        | Pro        | ∆la        | Δen        | Leu        | Glu        | TIe        | Leu        | Asp        | Ile        | Ser        | Arq        | Asn        | Gln        | Leu        |

| - cont  | inued  |
|---------|--------|
| - COIIC | TITUEU |
|         |        |

| Leu                                  | Ala                                           | Pro            | Asn                                 |                    | Asp        | Val        | Phe        | Val        |            | Leu        | Ser        | Val        | Leu        |            | Ile          |    |
|--------------------------------------|-----------------------------------------------|----------------|-------------------------------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|----|
| Thr                                  | His                                           | Asn            | Lys                                 | 565<br>Phe         | Ile        | Cys        | Glu        | Cys        | 570<br>Glu | Leu        | Ser        | Thr        | Phe        | 575<br>Ile | Asn          |    |
|                                      | T                                             | 3.000          | 580                                 | mla ac             | 3          |            | mla as     | 585        | 71-        | <b>a</b> 1 | Dees       | Deve       | 590        | 7          | <b>T</b> ] - |    |
| тр                                   | Leu                                           | A91<br>595     | HIS                                 | Inr                | Asn        | vai        | 600        | шe         | AIa        | GIÝ        | PIO        | 605        | AIa        | Авр        | IIe          |    |
| Tyr                                  | Cys<br>610                                    | Val            | Tyr                                 | Pro                | Asp        | Ser<br>615 | Leu        | Ser        | Gly        | Val        | Ser<br>620 | Leu        | Phe        | Ser        | Leu          |    |
| Ser<br>625                           | Thr                                           | Glu            | Gly                                 | Сув                | Asp<br>630 | Glu        | Glu        | Glu        | Val        | Leu<br>635 | Lys        | Ser        | Leu        | Lys        | Phe<br>640   |    |
| Ser                                  | Leu                                           | Phe            | Ile                                 | Val<br>645         | Суз        | Thr        | Val        | Thr        | Leu<br>650 | Thr        | Leu        | Phe        | Leu        | Met<br>655 | Thr          |    |
| Ile                                  | Leu                                           | Thr            | Val<br>660                          | Thr                | Lys        | Phe        | Arg        | Gly<br>665 | Phe        | Cys        | Phe        | Ile        | Cys<br>670 | Tyr        | Lys          |    |
| Thr                                  | Ala                                           | Gln<br>675     | Arg                                 | Leu                | Val        | Phe        | Lys<br>680 | Aab        | His        | Pro        | Gln        | Gly<br>685 | Thr        | Glu        | Pro          |    |
| Asp                                  | Met<br>690                                    | Tyr            | Гла                                 | Tyr                | Asp        | Ala<br>695 | Tyr        | Leu        | Cys        | Phe        | Ser<br>700 | Ser        | Lys        | Asp        | Phe          |    |
| Thr<br>705                           | Trp                                           | Val            | Gln                                 | Asn                | Ala<br>710 | Leu        | Leu        | Lys        | His        | Leu<br>715 | Asp        | Thr        | Gln        | Tyr        | Ser<br>720   |    |
| Asp                                  | Gln                                           | Asn            | Arg                                 | Phe<br>725         | Asn        | Leu        | Cys        | Phe        | Glu<br>730 | Glu        | Arg        | Asp        | Phe        | Val<br>735 | Pro          |    |
| Gly                                  | Glu                                           | Asn            | Arg<br>740                          | Ile                | Ala        | Asn        | Ile        | Gln<br>745 | Asp        | Ala        | Ile        | Trp        | Asn<br>750 | Ser        | Arg          |    |
| ГЛа                                  | Ile                                           | Val<br>755     | Суз                                 | Leu                | Val        | Ser        | Arg<br>760 | His        | Phe        | Leu        | Arg        | Asp<br>765 | Gly        | Trp        | Сүз          |    |
| Leu                                  | Glu<br>770                                    | Ala            | Phe                                 | Ser                | Tyr        | Ala<br>775 | Gln        | Gly        | Arg        | Cya        | Leu<br>780 | Ser        | Asp        | Leu        | Asn          |    |
| Ser<br>785                           | Ala                                           | Leu            | Ile                                 | Met                | Val<br>790 | Val        | Val        | Gly        | Ser        | Leu<br>795 | Ser        | Gln        | Tyr        | Gln        | Leu<br>800   |    |
| Met                                  | Lys                                           | His            | Gln                                 | Ser<br>805         | Ile        | Arg        | Gly        | Phe        | Val<br>810 | Gln        | Lys        | Gln        | Gln        | Tyr<br>815 | Leu          |    |
| Arg                                  | Trp                                           | Pro            | Glu<br>820                          | Asp                | Leu        | Gln        | Asp        | Val<br>825 | Gly        | Trp        | Phe        | Leu        | His<br>830 | Lys        | Leu          |    |
| Ser                                  | Gln                                           | Gln<br>835     | Ile                                 | Leu                | Lys        | Lys        | Glu<br>840 | Lys        | Glu        | Lys        | Lys        | Lys<br>845 | Asp        | Asn        | Asn          |    |
| Ile                                  | Pro<br>850                                    | Leu            | Gln                                 | Thr                | Val        | Ala<br>855 | Thr        | Ile        | Ser        |            |            |            |            |            |              |    |
| <212<br><212<br><212<br><220<br><222 | 1 > LI<br>2 > T<br>3 > OI<br>0 > FI<br>1 > N2 | EATUH<br>AME/H | H: 18<br>DNA<br>ISM:<br>RE:<br>KEY: | 339<br>Homo<br>CDS | 5 sa]      |            |            |            |            |            |            |            |            |            |              |    |
|                                      |                                               | EQUEI          |                                     |                    |            | 4          |            |            |            |            |            |            |            |            |              |    |
|                                      |                                               |                |                                     |                    | tct<br>Ser |            |            |            |            |            |            |            |            |            |              | 48 |
|                                      |                                               |                |                                     |                    | gct<br>Ala |            |            |            |            |            |            |            |            |            |              | 96 |

| -continued |
|------------|
|------------|

| And<br>Lys Glu Gly Glu Ger Ala Glu Leu Pro Cys Glu Ser Ser Gln Lys Lys<br>40144atc aca gtc tt acc tgg aag tt c tct gac cag agg agg att ctg ggg<br>10 The The Val Phe The Trp Lys Phe Ser Ang Glu Aug Lys 11e Leu Gly<br>50192cag cat ggc aaa ggg tat ta tt att aga gga ggt ctg cg ct tcg cag tt<br>10 The The Trp Lys Phe Ser Ang Glu Aug Lys 11e Leu Gly<br>50240cag cat ggc aaa gg tat ta att aga gga ggt cg gg ag aag gga tcg tt cct<br>8570240gat cgt tt gat tcc aaa aaa ggg ggc tgg gag aag gga tcg tt cct<br>85240286gat cgt tt gat tcc aaa aag ggg gca tgg gag tat at atc tgt<br>100336336cag ct at aas cat aag att g ga ggc tct agg ctg tt cgt att atc tgt<br>100136336gad ctg gag aac dgg aac gg gg ggg tgg ggt tt cgg gtg tc aaa gt<br>100120120gad ctg gag aac ct ag ag cag ctg gtg tcg ggg tat at atc tgt<br>120134acc tt agt ccg gag aac ct aag acg dg tg tg tgg dtg tcg cat ctg<br>135136acc tta ggt ag aa gg tcg ag gg tgg gag tgg acc gg ag ct ga ga cc tg<br>136135acc tta ggt ag aa ag gg cd gg gag ttg acc agt ga cc atg<br>135136acc tta gg td ag aac tt ad gt tc cas gt cg acc dg acc ctg<br>136576aac cta agg gt cag ga cg ga ga ag cac ct ctg ga aa<br>116130130130135130130135130130136130130135130130130130130130130130130130130130130130130130130 <th></th> |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------|
| <pre>Ile Thr Val Phe Thr Trp Lyb Phe Ser Amp Olh Arg Lyb Ile Leu Oly 50 Cag cat gge aa aggt fat tt a att ag dga ggt teg cet teg cat tt cet cat in His Gly Lyb Gly Val Leu Ile Arg Gly Gly Ser Pro Ser Gln Phe 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |            | Gly        |            |            |            |            | Leu        |            |            |            |            | Ser        |            |            |            | 144  |
| Chi Hig Cily Lye Cily Val Leu Ile Arg Cily Cily Ser Pro Ser Cin Phe         65       70         70       75         75       75         80       288         Arp Arg Phe Arp Ser Lye Lye Oly Ala Trp Cilu Lye Oly Ser Phe Pro Pro Set Cin Phe Pro Set Cin Control (1997)       336         Cto atc at aa aa ctt aag atg gaa gac tct cag act tat atc tgt 100       336         gag ctg gag aac agg aaa gag gag gtg gag ttg tgg gt tt caaa gtg 384       384         Gilu Lue Gilu Arn Arg Lye Gilu Gilu Val Gilu Leu Trp Val Phe Lye Val 100       384         Gilu Lue Gilu Arn Arg Lye Gilu Gilu Val Gilu Leu Trp Val Phe Lye Val 110       384         Act tat agt ccg ggt acc agt cgt tg caa ggg cag ag ctg acc ctg 432       480         135       125       126         146       135       155       160         136       155       176       175         145       159       128       120         145       160       120       175       160         145       150       175       175       160         145       159       128       170       175         160       120       120       120       175       175         161       129       120       120       120                                                                                                                                                                                                                                                                      |            | Thr        |            |            |            |            | Lys        |            |            |            |            | Arg        |            |            |            |            | 192  |
| Any Arg Phe App Ser Lys Lys OIV ALA Trp Olu Lys OIV Ser Phe Proact at a at at at at at a g at g gas gat tot cag at tat at to tgt336Leu IIe IIe Ann Lys Leu Lys Met Glu App Ser Gln Thr Tyr IIe Cys336gag otg gag ac agg aag agg gag gtg gag ttg tgg gtg tt caaa gtg384Glu Leu Glu Ann Arg Lys Glu Glu Val Glu Leu Try Val Phe Lys Val341115120125acc tta gat cag ac cag ot gt tg caa ggg cag agc ctg acc ctg432Thr Phe Ser Pro Gly Thr Ser Leu Leu GIn Gly Gln Ser Leu Thr Leu130136135140acc ttg gat agc aac tot aag gtc tag ag gt ca cag gag tgc aaa480145150150145150110160155170165160170acc ta agg gt cag ga ag gag at to tg aca gtg to caas gtt ct cat at ac agg gt cag aaa gtg ga ac ag gag at ag gg a ac to tag ac to tag to the ser lev Thr Glu Cys Lys165165ac cta agg gtt cag ga age gac tt tg ga act gc ac gtg ac ctg acc dtg acc dtg aca ct agg gt aaa at ag ac tg gt aca ct ct ag gt ca ag gg gg gg agg cag ag cag aca gc gag act aca cag at agg aca ag cag aca ca ct cta gtg ctg ggt ttt180180180195201195202215203216204216205217205218206218207218208210209210209210201210202210203210204210205210<                                                                                                                                                                                                                                                                                                                                  | Gln        |            |            |            |            | Val        |            |            |            |            | Gly        |            |            |            |            | Phe        | 240  |
| Leu Ile Ile Aen Lyg Leu Lyg Met Gu Arg Ser Gln Thr Tyr Ile Cys<br>100<br>100<br>100<br>100<br>101<br>101<br>102<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~          | -          |            | ~          | Ser        |            |            |            | -          | Trp        | ~ ~        |            | ~ ~        | -          | Phe        |            | 288  |
| Glu Leu Glu Aen Arg Lys Glu Glu Val Glu Leu Try Val Phe Lys Val         115       120         acc ttc agt ccg ggt acc agc ctg ttg cas ggg cag agc ctg acc ctg       432         130       115         140       115         140       115         140       110         140       110         140       110         141       110         142       110         143       110         145       150         145       150         145       150         145       150         145       150         145       150         145       150         145       150         145       150         150       155         150       155         150       155         150       155         150       155         150       155         150       155         150       155         150       155         161       157         162       161         161       157         161       157     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |            |            | Asn        |            |            | -          | -          | Glu        | -          |            | -          |            | Tyr        |            | -          | 336  |
| The Phe Ser Pro GIV The Ser Leu Leu Gin GIV GIN Ser Leu The Leu<br>140 140 140 140 140 140 140 140 140 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |            | Glu        |            |            |            |            | Glu        |            |            |            |            | Val        |            |            |            | 384  |
| ThrLeuAspSerAsnSerLyøValSerAsnProLeuThrGluCysLys145145145145141SerGlySer145142Ser145144145LysLysGlyValValSerGlySerGlySerLysLuSerMetSer175aacctaagggtcagggacagggacaggcactcggcactg576AsnLeuArgValGlnAspSerAspPheThyAsnCysThrLeuSerMet180CagacacactctdggacgacgacgadcactccdGagaccadaaaaagacactctdggadcactccdGaGa195LysAsnTrpPheGlyMetThrLeuSerValLeuGlyPhe200LysLysAsnGlyTrpGlyGluGluGluCaGluGluSerGluGluCa210LysAsnThrLauGluGluAsnGlyTrpGluCaGluGluCaGluGluCaGluGluCaGluGluCaGluGluCaGluGlu<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Phe        |            |            |            |            | Ser        |            |            |            |            | Gln        |            |            |            |            |      |
| His Lys Lys Cly Lys Val Val Ser Gly Ser Lys Val Leu Ser Met Ser<br>175aac cta agg gtt cag gac agc agc gac ttc tgg aac tgc acc gtg acc ctg<br>Nam Leu Arg Val Gln Asp Ser Asp Phe<br>180Trp Asn Cys Thr Val Leu Gly Thr Leu<br>190576gac cag aaa aag aac tgg ttc ggc atg aca ctc tca gtg ctg ggt ttt<br>Asp Gln Lys Lys Asn Trp Phe Gly Met Thr Leu Ser Val Leu Gly Phe<br>200672cag agc aca gct atc acg gcc tat aga agt gag ggg gg gg gg ggg ggg gg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Thr<br>145 | Leu        | Asp        | Ser        | Asn        | Ser<br>150 | Lys        | Val        | Ser        | Asn        | Pro<br>155 | Leu        | Thr        | Glu        | Cys        | Lys<br>160 |      |
| Asn Leu Arg Val Gln AspSer AspPhe<br>185Trp Asn CysThr Val Thr Leu<br>190gac cag aaa aag aac tgg tt cg gc atgaca ctc tca gtg ctg ggt ttt<br>200624Asp Gln Lys<br>195Lys Asn Trp Phe<br>200Gly MetThr Leu Ser Val<br>200Leu Gly Phe<br>205672cag agc aca<br>cln Ser Thr Ala IleThr Ala Tyr<br>1215Lys Ser Glu Gly Gly Gly Ser Ala Glu<br>220672ctt ctc<br>210ttc cca ctc<br>225aac ttt gca gag<br>230gaa aac ggg tgg gga gag ctg<br>230720ttc tcc<br>225ttc cca ctc<br>230aac ttt gca gag<br>230gaa aac ggg tgg gga gag ctg<br>235720ttc tcc<br>225ttc cca ctc<br>245aac ttt gca gag<br>230gaa aac ggg tgg gga cag ctc<br>235720ttc tac ctc<br>225aag gaa gag gat tct<br>245ttc ttc cag ccc tgg atc cc ctc<br>255768Met Trp Lys<br>260Asn Lys<br>245Glu Lys Asp Ser<br>265Phe Phe Gln Pro Trp<br>25511e Ser Phe<br>255816Ser Ile<br>Lys<br>260Glu Val Ser<br>260Glu Lys Ser Thr Lys<br>285Aag gac ctc gag<br>270864Ser Ile<br>Lys<br>290Aan Lys<br>Glu Thr Leu<br>285Glu Lys Ser Thr Lys<br>285816Ser Leu Gln Phe<br>290Glu Thr Leu<br>285Glu Asp Asp Leu<br>                                                                                                                                                                                                                                                                                                                                                                                          | His        | Lys        | Lys        | Gly        | Lys<br>165 | Val        | Val        | Ser        | Gly        | Ser<br>170 | ГÀа        | Val        | Leu        | Ser        | Met<br>175 | Ser        |      |
| Asp Gln Lys Lys Asn Trp Phe Gly Met Thr Leu Ser Val Leu Gly Phe<br>205Cag agc aca gct atc acg gcc tat aag agt gag gga gag tca gcg gag<br>Gln Ser Thr Ala Ile Thr Ala Tyr Lys Ser Glu Gly Glu Ser Ala Glu<br>215672ttc tcc ttc cca ctc act tt gca gag gag gag a ac ggg tgg gga gag ctg<br>Phe Ser Phe Pro Leu Asn Phe Ala Glu Glu Asn Gly Trp Gly Glu Leu<br>230720atg tgg aag gca gag aag gat tct ttc ttc cag ccc tgg atc tcc ttc<br>Met Trp Lys Ala Glu Lys Asp Ser Phe Phe Gln Pro Trp Ile Ser Phe<br>245768tcc ata aag aca aa gag gtg tcc gta caa aag tcc acc aaa gac ctc<br>266816ser Ile Lys Asn Lys Glu Val Ser Val Gln Lys Ser Thr Lys Asp Leu<br>266266ag ctc cag ctg aag gaa ac ggt tcc gga ac ctg act ctg at a ccc cag<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Asn        | Leu        | Arg        | 180        | Gln        | Asp        | Ser        | Asp        | Phe<br>185 | Trp        | Asn        | Cys        | Thr        | Val<br>190 | Thr        | Leu        |      |
| GlnSerThrAlaIleThrAlaTyrLysSerGluGlyGluSerAlaGlu210210215215215215220220220720ttctccttcccaactttggaggaggaggaggtgggagagctg720PheSerPhePhoLeuAsmPheAlaGluGluAsmGlyTrpGlyGluLeu225230230230235255768768MetTrpLysAlaGluLysAspSerPhePhePhoTrpIleSerPhe245245245250770768255768768tccataaagaagacaaaggtgtcdgtaaagtcctc768SerIleLysAsnLysAspSerPhePhePhoTrpTrpIleSerPhe260260SetValSetValGluLysSetTrpLysAspLeuPhoSet260275GluThrLeuProLeuProLuLysAspSetSetSetSetSetSetSetSetSetSetSetSetSetSetSetSetSetSetSet <t< td=""><td>Asp</td><td>Gln</td><td>Lys<br/>195</td><td>Lys</td><td>Asn</td><td>Trp</td><td>Phe</td><td>Gly<br/>200</td><td>Met</td><td>Thr</td><td>Leu</td><td>Ser</td><td>Val<br/>205</td><td>Leu</td><td>Gly</td><td>Phe</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Asp        | Gln        | Lys<br>195 | Lys        | Asn        | Trp        | Phe        | Gly<br>200 | Met        | Thr        | Leu        | Ser        | Val<br>205 | Leu        | Gly        | Phe        |      |
| PheSerPhePhoLeuAsnPheAlaGluGluAsnGlyTrpGlyGluLeu225SerPho230adggaggaggaggadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgadgad </td <td>Gln</td> <td>Ser<br/>210</td> <td>Thr</td> <td>Āla</td> <td>Ile</td> <td>Thr</td> <td>Ala<br/>215</td> <td>Tyr</td> <td>Lys</td> <td>Ser</td> <td>Glu</td> <td>Gly<br/>220</td> <td>Glu</td> <td>Ser</td> <td>Ala</td> <td>Glu</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gln        | Ser<br>210 | Thr        | Āla        | Ile        | Thr        | Ala<br>215 | Tyr        | Lys        | Ser        | Glu        | Gly<br>220 | Glu        | Ser        | Ala        | Glu        |      |
| MetTrpLysAlaGluLysAspSerPhePheGlnProTrpIleSerPhe24524524524525077711SerPhe255816tccataaagaacaaagaggtgtccgtacaaaaggcctcc816SerIleLysAsnLysGluValSerValGlnLysSerThrLysAspLeu2602602657026570270270864aagctccagctgaaggcactgctcaag864LysLeuGluThrLeuProLeuLysIleProGln275280280280285285285912gtctcgcttcagttgggcaacctggac91228029029581AsnLeuThrLeuThrLeuAsp91229029029581AsnLeuYalNetLysValAsp960290200201ValAsnLeuYalNetLysValAla320960290203203203203203203203203200200aaagggacactggggggggtg <t< td=""><td>Phe<br/>225</td><td>Ser</td><td>Phe</td><td>Pro</td><td>Leu</td><td>Asn<br/>230</td><td>Phe</td><td>Ala</td><td>Glu</td><td>Glu</td><td>Asn<br/>235</td><td>Gly</td><td>Trp</td><td>Gly</td><td>Glu</td><td>Leu<br/>240</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Phe<br>225 | Ser        | Phe        | Pro        | Leu        | Asn<br>230 | Phe        | Ala        | Glu        | Glu        | Asn<br>235 | Gly        | Trp        | Gly        | Glu        | Leu<br>240 |      |
| Ser       Ile       Lys       Asn       Lys       Glu       Val       Ser       Val       Glu       Lys       Ser       Thr       Lys       Asp       Leu         aag       ctc       cag       ctg       aag       gaa       gaa       gac       ctc       cca       ctc       acc       ctc       aag       ata       ccc       cag       864         Lys       Leu       Glu       Thr       Leu       Pro       Leu       Lys       Ile       Pro       Glu       285         gtc       tcg       ctt       cag       tt       gct       ggt       tct       ggc       aac       ctg       act       ctg       act       ctg       gac       912         val       Ser       Leu       Gln       Phe       Ala       Gly       Ser       Gly       Ser       Gly       Ser       Gly       Ser       Gly       Ser       Gly       Ser       Gln       Glu       Val       Asn       Leu       Thr       Leu       Thr       Leu       Asp       290       960         Lys       Gly       Thr       Leu       His       Gln       Glu       Val       As                                                                                                                                                                                                                                                                                                                                                                                         | Met        | Trp        | Lys        | Āla        | Glu<br>245 | ГАЗ        | Asp        | Ser        | Phe        | Phe<br>250 | Gln        | Pro        | Trp        | Ile        | Ser<br>255 | Phe        |      |
| LysLeuGluLeuLysGluThrLeuProLysIleProGln275275280280285285912gtctcgcttcagttgggttctggcaacctgactctggac912ValSerLeuGlnPheAlaGlySerGlyAsnLeuThrLeuThrLeuAsp290290295295295300960960aaagggacactgctggtggtgatggct960LysGlyThrLeuHisGlnGluValAsnLeuValMetLysValAla3053103103153153203201008cagctcaaaactttgaccttggaggtggtgctdctc1008GlnLeuAsnAsnThrLeuThrCysGluValMetGlyProThrSerPro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ser        | Ile        | Lys        | Asn<br>260 | Lys        | Glu        | Val        | Ser        | Val<br>265 | Gln        | Гүз        | Ser        | Thr        | Lys<br>270 | Asp        | Leu        |      |
| Val       Ser       Leu       Gly       Phe       Ala       Gly       Ser       Gly       Asn       Leu       Thr       Leu       Thr       Leu       Asn       290       295       300       300       300       300       300       300       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       360       3                                                                                                                                                                                                                                                                                                                                                 | ГЛЗ        | Leu        | Gln<br>275 | Leu        | ГАЗ        | Glu        | Thr        | Leu<br>280 | Pro        | Leu        | Thr        | Leu        | Lys<br>285 | Ile        | Pro        | Gln        |      |
| Lys Gly Thr Leu His Gln Glu Val Asn Leu Val Val Met Lys Val Ala<br>305 310 315 320<br>cag ctc aac aat act ttg acc tgt gag gtg atg gga cct acc tct ccc 1008<br>Gln Leu Asn Asn Thr Leu Thr Cys Glu Val Met Gly Pro Thr Ser Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Val        | Ser<br>290 | Leu        | Gln        | Phe        | Āla        | Gly<br>295 | Ser        | Gly        | Asn        | Leu        | Thr<br>300 | Leu        | Thr        | Leu        | Asp        |      |
| Gln Leu Asn Asn Thr Leu Thr Cys Glu Val Met Gly Pro Thr Ser Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lуя<br>305 | Gly        | Thr        | Leu        | His        | Gln<br>310 | Glu        | Val        | Asn        | Leu        | Val<br>315 | Val        | Met        | Lys        | Val        | Ala<br>320 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -          |            |            |            | Thr        | -          |            | -          |            | Val        | -          |            |            |            | Ser        |            | 1008 |

|     |                   |       |      |     |     |            |     |     |                   |     | -          | con | tin | ued |     |      |  |  |
|-----|-------------------|-------|------|-----|-----|------------|-----|-----|-------------------|-----|------------|-----|-----|-----|-----|------|--|--|
| -   | -                 | -     | -    |     | -   | -          | -   |     | aac<br>Asn        | -   |            | -   |     | -   |     | 1056 |  |  |
|     |                   |       |      |     |     |            |     |     | gcc<br>Ala        |     |            |     |     |     |     | 1104 |  |  |
|     |                   |       |      |     |     |            |     |     | gtc<br>Val        |     |            |     |     |     |     | 1152 |  |  |
|     |                   |       |      |     |     |            |     |     | ttc<br>Phe        |     |            |     |     |     |     | 1200 |  |  |
|     |                   |       |      |     |     |            |     |     | acc<br>Thr<br>410 |     |            |     |     |     |     | 1248 |  |  |
|     |                   |       |      |     |     |            |     |     | aag<br>Lys        |     |            |     |     |     |     | 1296 |  |  |
|     | -                 | -     |      |     | -   |            |     | -   | cct<br>Pro        | -   | -          |     |     |     | -   | 1344 |  |  |
|     |                   |       |      |     |     |            |     |     | ttc<br>Phe        |     |            |     |     |     |     | 1392 |  |  |
| -   |                   |       |      | -   | -   |            |     |     | agt<br>Ser        | -   |            |     | -   |     |     | 1440 |  |  |
| -   | -                 |       | -    | -   | -   | -          |     | -   | cca<br>Pro<br>490 |     | -          |     | -   |     | -   | 1488 |  |  |
|     |                   |       |      |     |     |            |     |     | aga<br>Arg        |     |            |     |     |     |     | 1536 |  |  |
|     |                   |       |      |     |     |            |     |     | tgc<br>Cys        |     |            |     |     |     |     | 1584 |  |  |
| Āla | Gln<br>530        | Gly   | Arg  | Суз | Leu | Ser<br>535 | Asp | Leu | aac<br>Asn        | Ser | Åla<br>540 | Leu | Ile | Met | Val | 1632 |  |  |
|     |                   | 000   |      |     |     |            |     |     | ttg<br>Leu        |     |            |     |     |     |     | 1680 |  |  |
| -   |                   |       | -    | -   |     | -          | -   |     | ttg<br>Leu<br>570 |     |            |     |     | -   |     | 1728 |  |  |
|     |                   |       |      |     |     |            |     |     | ctc<br>Leu        |     |            |     |     |     |     | 1776 |  |  |
|     |                   |       |      |     |     |            |     |     | aac<br>Asn        |     |            |     |     |     |     | 1824 |  |  |
|     | acc<br>Thr<br>610 |       |      |     |     |            |     |     |                   |     |            |     |     |     |     | 1839 |  |  |
| <21 | D> SI             | EQ II | о мо | 10  |     |            |     |     |                   |     |            |     |     |     |     |      |  |  |

<210> SEQ ID NO 10 <211> LENGTH: 612

|            |            |              |            |            |            |            |            |            |            |            |            | 0.011      | C III      | aca        |            |
|------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|            |            | PE :<br>RGAN |            | Home       | o saj      | pien       | 3          |            |            |            |            |            |            |            |            |
| <400       | )> SI      | EQUEI        | ICE :      | 10         |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1   | Cys        | Arg          | Ala        | Ile<br>5   | Ser        | Leu        | Arg        | Arg        | Leu<br>10  | Leu        | Leu        | Leu        | Leu        | Leu<br>15  | Gln        |
| Leu        | Ser        | Gln          | Leu<br>20  | Leu        | Ala        | Val        | Thr        | Gln<br>25  | Gly        | Lys        | Thr        | Leu        | Val<br>30  | Leu        | Gly        |
| LYa        | Glu        | Gly<br>35    | Glu        | Ser        | Ala        | Glu        | Leu<br>40  | Pro        | ÇÀa        | Glu        | Ser        | Ser<br>45  | Gln        | Lys        | Lya        |
| Ile        | Thr<br>50  | Val          | Phe        | Thr        | Trp        | Lys<br>55  | Phe        | Ser        | Asp        | Gln        | Arg<br>60  | Гла        | Ile        | Leu        | Gly        |
| Gln<br>65  | His        | Gly          | Lys        | Gly        | Val<br>70  | Leu        | Ile        | Arg        | Gly        | Gly<br>75  | Ser        | Pro        | Ser        | Gln        | Phe<br>80  |
| Asp        | Arg        | Phe          | Asp        | Ser<br>85  | Lys        | Lys        | Gly        | Ala        | Trp<br>90  | Glu        | Lys        | Gly        | Ser        | Phe<br>95  | Pro        |
| Leu        | Ile        | Ile          | Asn<br>100 | Lys        | Leu        | Lys        | Met        | Glu<br>105 | Asp        | Ser        | Gln        | Thr        | Tyr<br>110 | Ile        | Сув        |
| Glu        | Leu        | Glu<br>115   | Asn        | Arg        | ГЛа        | Glu        | Glu<br>120 | Val        | Glu        | Leu        | Trp        | Val<br>125 | Phe        | Lys        | Val        |
| Thr        | Phe<br>130 | Ser          | Pro        | Gly        | Thr        | Ser<br>135 | Leu        | Leu        | Gln        | Gly        | Gln<br>140 | Ser        | Leu        | Thr        | Leu        |
| Thr<br>145 | Leu        | Asp          | Ser        | Asn        | Ser<br>150 | Lys        | Val        | Ser        | Asn        | Pro<br>155 | Leu        | Thr        | Glu        | Cys        | Lys<br>160 |
| His        | Lys        | Lys          | Gly        | Lys<br>165 | Val        | Val        | Ser        | Gly        | Ser<br>170 | Lys        | Val        | Leu        | Ser        | Met<br>175 | Ser        |
| Asn        | Leu        | Arg          | Val<br>180 | Gln        | Asp        | Ser        | Asp        | Phe<br>185 | Trp        | Asn        | Суз        | Thr        | Val<br>190 | Thr        | Leu        |
| Asp        | Gln        | Lys<br>195   | ГЛа        | Asn        | Trp        | Phe        | Gly<br>200 | Met        | Thr        | Leu        | Ser        | Val<br>205 | Leu        | Gly        | Phe        |
| Gln        | Ser<br>210 | Thr          | Ala        | Ile        | Thr        | Ala<br>215 | Tyr        | Lys        | Ser        | Glu        | Gly<br>220 | Glu        | Ser        | Ala        | Glu        |
| Phe<br>225 | Ser        | Phe          | Pro        | Leu        | Asn<br>230 | Phe        | Ala        | Glu        | Glu        | Asn<br>235 | Gly        | Trp        | Gly        | Glu        | Leu<br>240 |
| Met        | Trp        | Lys          | Ala        | Glu<br>245 | Гла        | Asp        | Ser        | Phe        | Phe<br>250 | Gln        | Pro        | Trp        | Ile        | Ser<br>255 | Phe        |
| Ser        | Ile        | Lys          | Asn<br>260 | ГЛа        | Glu        | Val        | Ser        | Val<br>265 | Gln        | Lys        | Ser        | Thr        | Lys<br>270 | Asp        | Leu        |
| Lys        | Leu        | Gln<br>275   | Leu        | ГЛа        | Glu        | Thr        | Leu<br>280 |            | Leu        | Thr        | Leu        | Lys<br>285 | Ile        | Pro        | Gln        |
| Val        | Ser<br>290 | Leu          | Gln        | Phe        | Ala        | Gly<br>295 |            | Gly        | Asn        | Leu        | Thr<br>300 | Leu        | Thr        | Leu        | Asp        |
| Lys<br>305 | Gly        | Thr          | Leu        | His        | Gln<br>310 |            | Val        | Asn        | Leu        | Val<br>315 | Val        | Met        | Гла        | Val        | Ala<br>320 |
| Gln        | Leu        | Asn          | Asn        | Thr<br>325 |            | Thr        | Суз        | Glu        | Val<br>330 | Met        | Gly        | Pro        | Thr        | Ser<br>335 | Pro        |
| Гла        | Met        | Arg          | Leu<br>340 | Thr        | Leu        | ГЛа        | Gln        | Glu<br>345 |            | Gln        | Glu        | Ala        | Arg<br>350 | Val        | Ser        |
| Glu        | Glu        | Gln<br>355   | Lys        | Val        | Val        | Gln        | Val<br>360 | Val        | Ala        | Pro        | Glu        | Thr<br>365 | Gly        | Leu        | Trp        |
| Gln        | Суз<br>370 | Leu          | Leu        | Ser        | Glu        | Gly<br>375 | Asp        | Lys        | Val        | Lya        | Met<br>380 | Asp        | Ser        | Arg        | Ile        |
|            |            |              |            |            |            |            |            |            |            |            |            |            |            |            |            |

| Thr Val Thr Leu Thr Leu PheLeu MetThr Ile Leu Thr ValThr I<br>410PheArg GlyPheCysPheIle CysTyr LysThr AlaGlnArg Leu V<br>430PheArg GlyPheCysPheIle CysTyr LysTyr AlaGlnArg Leu V<br>430PheLysAspHisProGlnGlyThr GluProAspMetTyr LysTyr AlaPheLysAspHisProGlnGlyThr GluProAspMetTyr LysTyr AlaAlaTyrLeuCysPheSerSerLysAspPheThr Trp ValGlnAsn AlaLeuLeuLysHisLeu AspThr GlnTyrSerAspGlnAsn ArgPhe        | 400<br>Lys<br>Val<br>Asp |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 405       410       415         Phe Arg Gly Phe Cys Phe Cys Phe Ile Cys Tyr Lys Thr Ala Gln Arg Leu Y       430       Arg Leu Y         Phe Lys Asp His Pro Gln Gly Thr 440       Glu Pro Asp Met Tyr Lys Tyr 445       Yr Lys Tyr 445         Ala Tyr Leu Cys Phe Ser Ser Lys Asp Phe Thr Trp Val Gln Asn 4450       Leu Lys His Leu Asp Thr Gln Tyr Ser Asp Gln Asn Arg Phe 445       Yr Lys Tyr 4450 | Val<br>Asp               |
| 420425430Phe Lys Asp His Pro Gln Gly Thr Glu Pro Asp Met Tyr Lys Tyr 2<br>435Ala Tyr Leu Cys Phe Ser Ser Lys Asp Phe Thr Trp Val Gln Asn 2<br>450Ala Cyr Leu Cys Phe Ser Ser Lys Asp Phe Thr Trp Val Gln Asn 2<br>460Leu Lys His Leu Asp Thr Gln Tyr Ser Asp Gln Asn Arg Phe 2                                                                                                                          | Asp                      |
| 435 440 445<br>Ala Tyr Leu Cys Phe Ser Ser Lys Asp Phe Thr Trp Val Gln Asn A<br>450 455 460<br>Leu Leu Lys His Leu Asp Thr Gln Tyr Ser Asp Gln Asn Arg Phe A                                                                                                                                                                                                                                            | -                        |
| 450 455 460<br>Leu Leu Lys His Leu Asp Thr Gln Tyr Ser Asp Gln Asn Arg Phe 2                                                                                                                                                                                                                                                                                                                            | Ala                      |
|                                                                                                                                                                                                                                                                                                                                                                                                         |                          |
| 105 - 10 - 1/5                                                                                                                                                                                                                                                                                                                                                                                          | Asn<br>480               |
| Leu Cys Phe Glu Glu Arg Asp Phe Val Pro Gly Glu Asn Arg Ile A<br>485 490 495                                                                                                                                                                                                                                                                                                                            | Ala                      |
| Asn Ile Gln Asp Ala Ile Trp Asn Ser Arg Lys Ile Val Cys Leu V<br>500 505 510                                                                                                                                                                                                                                                                                                                            | Val                      |
| Ser Arg His Phe Leu Arg Asp Gly Trp Cys Leu Glu Ala Phe Ser 7<br>515 520 525                                                                                                                                                                                                                                                                                                                            | Tyr                      |
| Ala Gln Gly Arg Cys Leu Ser Asp Leu Asn Ser Ala Leu Ile Met V<br>530 535 540                                                                                                                                                                                                                                                                                                                            | Val                      |
| Val Val Gly Ser Leu Ser Gln Tyr Gln Leu Met Lys His Gln Ser 3<br>545 550 555 5                                                                                                                                                                                                                                                                                                                          | Ile<br>560               |
| Arg Gly Phe Val Gln Lys Gln Gln Tyr Leu Arg Trp Pro Glu Asp I<br>565 570 575                                                                                                                                                                                                                                                                                                                            | Leu                      |
| Gln Asp Val Gly Trp Phe Leu His Lys Leu Ser Gln Gln Ile Leu I<br>580 585 590                                                                                                                                                                                                                                                                                                                            | Lys                      |
| Lys Glu Lys Glu Lys Lys Asp Asn Asn Ile Pro Leu Gln Thr V<br>595 600 605                                                                                                                                                                                                                                                                                                                                | Val                      |
| Ala Thr Ile Ser<br>610                                                                                                                                                                                                                                                                                                                                                                                  |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                         |                          |
| <210> SEQ ID NO 11<br><211> LENGTH: 572                                                                                                                                                                                                                                                                                                                                                                 |                          |
| <212> TYPE: PRT<br><213> ORGANISM: C. jejuni                                                                                                                                                                                                                                                                                                                                                            |                          |
| <400> SEQUENCE: 11                                                                                                                                                                                                                                                                                                                                                                                      |                          |
| ~<br>Met Gly Phe Arg Ile Asn Thr Asn Val Ala Ala Leu Asn Ala Lys A<br>1 5 10 15                                                                                                                                                                                                                                                                                                                         | Ala                      |
| Asn Ala Asp Leu Asn Ser Lys Ser Leu Asp Ala Ser Leu Ser Arg I<br>20 25 30                                                                                                                                                                                                                                                                                                                               | Leu                      |
| Ser Ser Gly Leu Arg Ile Asn Ser Ala Ala Asp Asp Ala Ser Gly M<br>35 40 45                                                                                                                                                                                                                                                                                                                               | Met                      |
| Ala Ile Ala Asp Thr Leu Arg Ser Gln Ala Asn Thr Leu Gly Gln A<br>50 55 60                                                                                                                                                                                                                                                                                                                               | Ala                      |
| Ile Ser Asn Gly Asn Asp Ala Ile Gly Ile Leu Gln Thr Ala Asp I<br>65 70 75 8                                                                                                                                                                                                                                                                                                                             | Lys<br>80                |
| Ala Met Asp Glu Gln Leu Lys Ile Leu Asp Thr Ile Lys Thr Lys A<br>85 90 95                                                                                                                                                                                                                                                                                                                               | Ala                      |
| Thr Gln Ala Ala Gln Asp Gly Gln Ser Leu Lys Thr Arg Thr Met I<br>100 105 110                                                                                                                                                                                                                                                                                                                            | Leu                      |

Gln Ala Asp Ile Asn Arg Leu Met Glu Glu Leu Asp Asn Ile Ala Asn

| -continued |  |
|------------|--|
| 105        |  |

| _          |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|            |            | 115        |            |            |            |            | 120        |            |            |            |            | 125        |            |            |            |
| Thr        | Thr<br>130 | Ser        | Phe        | Asn        | Gly        | Lys<br>135 | Gln        | Leu        | Leu        | Ser        | Gly<br>140 | Asn        | Phe        | Ile        | Asn        |
| Gln<br>145 | Glu        | Phe        | Gln        | Ile        | Gly<br>150 | Ala        | Ser        | Ser        | Asn        | Gln<br>155 |            | Val        | Lys        | Ala        | Thr<br>160 |
| Ile        | Gly        | Ala        | Thr        | Gln<br>165 | Ser        | Ser        | Lys        | Ile        | Gly<br>170 | Leu        | Thr        | Arg        | Phe        | Glu<br>175 | Thr        |
| Gly        | Gly        | Arg        | Ile<br>180 | Ser        | Thr        | Ser        | Gly        | Glu<br>185 | Val        | Gln        | Phe        | Thr        | Leu<br>190 | Lys        | Asn        |
| Tyr        | Asn        | Gly<br>195 | Ile        | Asp        | Asp        | Phe        | Gln<br>200 | Phe        | Gln        | Lys        | Val        | Val<br>205 | Ile        | Ser        | Thr        |
| Ser        | Val<br>210 | Gly        | Thr        | Gly        | Leu        | Gly<br>215 | Ala        | Leu        | Ala        | Asp        | Glu<br>220 | Ile        | Asn        | Lys        | Asn        |
| Ala<br>225 | Asp        | Lys        | Thr        | Gly        | Val<br>230 | Arg        | Ala        | Thr        | Phe        | Thr<br>235 |            | Glu        | Thr        | Arg        | Gly<br>240 |
| Ile        | Ala        | Ala        | Val        | Arg<br>245 | Ala        | Gly        | Ala        | Thr        | Ser<br>250 | Asp        | Thr        | Phe        | Ala        | Ile<br>255 | Asn        |
| Gly        | Val        | Lys        | Ile<br>260 | Gly        | Lys        | Val        | Asp        | Tyr<br>265 | Гла        | Asp        | Gly        | Asp        | Ala<br>270 | Asn        | Gly        |
| Ala        | Leu        | Val<br>275 | Ala        | Ala        | Ile        | Asn        | Ser<br>280 | Val        | Lys        | Aap        | Thr        | Thr<br>285 | Gly        | Val        | Glu        |
| Ala        | Ser<br>290 | Ile        | Asp        | Ala        | Asn        | Gly<br>295 | Gln        | Leu        | Leu        | Leu        | Thr<br>300 | Ser        | Arg        | Glu        | Gly        |
| Arg<br>305 | Gly        | Ile        | Lys        | Ile        | Asp<br>310 | Gly        | Asn        | Ile        | Gly        | Gly<br>315 | -          | Ala        | Phe        | Ile        | Asn<br>320 |
| Ala        | Asp        | Met        | Lys        | Glu<br>325 | Asn        | Tyr        | Gly        | Arg        | Leu<br>330 | Ser        | Leu        | Val        | Lys        | Asn<br>335 | Asp        |
| Gly        | Lys        | Asp        | Ile<br>340 | Leu        | Ile        | Ser        | Gly        | Ser<br>345 | Asn        | Leu        | Ser        | Ser        | Ala<br>350 | Gly        | Phe        |
| Gly        | Ala        | Thr<br>355 | Gln        | Phe        | Ile        | Ser        | Gln<br>360 | Ala        | Ser        | Val        | Ser        | Leu<br>365 | Arg        | Glu        | Ser        |
| Lys        | Gly<br>370 | Gln        | Ile        | Asp        | Ala        | Asn<br>375 | Ile        | Ala        | Asp        | Ala        | Met<br>380 | Gly        | Phe        | Gly        | Ser        |
| Ala<br>385 | Asn        | Lys        | Gly        | Val        | Val<br>390 | Leu        | Gly        | Gly        | Tyr        | Ser<br>395 | Ser        | Val        | Ser        | Ala        | Tyr<br>400 |
|            | Ser        | Ser        | Ala        | Gly<br>405 |            | Gly        | Phe        | Ser        | Ser<br>410 |            | Ser        | Gly        | Tyr        | Ser<br>415 |            |
| Gly        | Ser        | Gly        | Lys<br>420 |            | Tyr        | Ser        | Thr        | Gly<br>425 |            | Ala        | Asn        | Ala        | Ile<br>430 |            | Ile        |
| Ser        | Ala        | Ala<br>435 |            | Gln        | Leu        | Ser        | Thr<br>440 | Val        | Tyr        | Asn        | Val        | Ser<br>445 |            | Gly        | Ser        |
| Gly        | Phe<br>450 |            | Ser        | Gly        | Ser        | Thr<br>455 |            | Ser        | Gln        | Phe        | Ala<br>460 |            | Met        | Lys        | Thr        |
| Thr<br>465 |            | Phe        | Gly        | Val        | Lys<br>470 | Asp        | Glu        | Thr        | Ala        | Gly<br>475 | Val        | Thr        | Thr        | Leu        | Lys<br>480 |
|            | Ala        | Met        | Ala        | Val<br>485 |            |            | Ile        | Ala        | Glu<br>490 |            |            | Thr        | Thr        | Asn<br>495 |            |
| Asp        | Gln        | Ile        |            |            | Asp        | Ile        | Gly        | Ser        | Val        | Gln        | Asn        | Gln        |            |            | Ser        |
| Thr        | Ile        |            | 500<br>Asn | Ile        | Thr        | Val        |            | 505<br>Gln |            | Asn        | Val        |            | 510<br>Ala | Ala        | Glu        |
|            |            | 515        |            |            |            |            | 520        |            |            |            |            | 525        |            |            |            |

Ser Gln Ile Arg Asp Val Asp Phe Ala Ala Glu Ser Ala Asn Tyr Ser Lys Ala Asn Ile Leu Ala Gln Ser Gly Ser Tyr Ala Met Ala Gln Ala Asn Ser Val His Gln Asn Val Leu Arg Leu Leu Gln <210> SEQ ID NO 12 <211> LENGTH: 510 <212> TYPE: PRT <213> ORGANISM: H. pylori <400> SEQUENCE: 12 Met Ala Phe Gln Val Asn Thr Asn Ile Asn Ala Met Asn Ala His Val Gln Ser Ala Leu Thr Gln Asn Ala Leu Lys Thr Ser Leu Glu Arg Leu Ser Ser Gly Leu Arg Ile Asn Lys Ala Ala Asp Asp Ala Ser Gly Met 35 40 45 Thr Val Ala Asp Ser Leu Arg Ser Gln Ala Ser Ser Leu Gly Gln Ala Ile Ala Asn Thr Asn Asp Gly Met Gly Ile Ile Gln Val Ala Asp Lys Ala Met Asp Glu Gln Leu Lys Ile Leu Asp Thr Val Lys Val Lys Ala Thr Gln Ala Ala Gln Asp Gly Gln Thr Thr Glu Ser Arg Lys Ala Ile Gln Ser Asp Ile Val Arg Leu Ile Gln Gly Leu Asp Asn Ile Gly Asn Thr Thr Thr Tyr Asn Gly Gln Ala Leu Leu Ser Gly Gln Phe Thr Asn Lys Glu Phe Gln Val Gly Ala Tyr Ser Asn Gln Ser Ile Lys Ala Ser Ile Gly Ser Thr Thr Ser Asp Lys Ile Gly Gln Val Arg Ile Ala Thr Gly Ala Leu Ile Thr Ala Ser Gly Asp Ile Ser Leu Thr Phe Lys Gln Val Asp Gly Val Asn Asp Val Thr Leu Glu Ser Val Lys Val Ser Ser Ser Ala Gly Thr Gly Ile Gly Val Leu Ala Glu Val Ile Asn Lys Asn Ser Asn Arg Thr Gly Val Lys Ala Tyr Ala Ser Val Ile Thr Thr Ser Asp Val Ala Val Gln Ser Gly Ser Leu Ser Asn Leu Thr Leu Asn Gly Ile His Leu Gly Asn Ile Ala Asp Ile Lys Lys Asn Asp Ser Asp Gly Arg Leu Val Ala Ala Ile Asn Ala Val Thr Ser Glu Thr Gly Val Glu Ala Tyr Thr Asp Gln Lys Gly Arg Leu Asn Leu Arg Ser Ile Asp Gly Arg Gly Ile Glu Ile Lys Thr Asp Ser Val Ser Asn Gly Pro Ser Ala

|            |            |                         |            |            |            |            |            |            |            |            | _          | con        | tin        | ued        |            |
|------------|------------|-------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 305        |            |                         |            |            | 310        |            |            |            |            | 315        |            |            |            |            | 320        |
| Leu        | Thr        | Met                     | Val        | Asn<br>325 | Gly        | Gly        | Gln        | Asp        | Leu<br>330 | Thr        | Lys        | Gly        | Ser        | Thr<br>335 | Asn        |
| Tyr        | Gly        | Arg                     | Leu<br>340 |            | Leu        | Thr        | Arg        | Leu<br>345 | Asp        | Ala        | Lys        | Ser        | Ile<br>350 | Asn        | Val        |
| Val        | Ser        | Ala<br>355              | Ser        | Asp        | Ser        | Gln        | His<br>360 | Leu        | Gly        | Phe        | Thr        | Ala<br>365 | Ile        | Gly        | Phe        |
| Gly        | Glu<br>370 |                         | Gln        | Val        | Ala        | Glu<br>375 | Thr        | Thr        | Val        | Asn        | Leu<br>380 | Arg        | Asp        | Val        | Thr        |
| Gly<br>385 | Asn        | Phe                     | Asn        | Ala        | Asn<br>390 | Val        | Lys        | Ser        | Ala        | Ser<br>395 | Gly        | Ala        | Asn        | Tyr        | Asn<br>400 |
| Ala        | Val        | Ile                     | Ala        | Ser<br>405 | Gly        | Asn        | Gln        | Ser        | Leu<br>410 | Gly        | Ser        | Gly        | Val        | Thr<br>415 | Thr        |
| Leu        | Arg        | Gly                     | Ala<br>420 |            | Val        | Val        | Ile        | Asp<br>425 | Ile        | Ala        | Glu        | Ser        | Ala<br>430 | Met        | Lys        |
| Met        | Leu        | Asp<br>435              | Lys        | Val        | Arg        | Ser        | Asp<br>440 | Leu        | Gly        | Ser        | Val        | Gln<br>445 | Asn        | Gln        | Met        |
| Ile        | Ser<br>450 | Thr                     | Val        | Asn        | Asn        | Ile<br>455 | Ser        | Ile        | Thr        | Gln        | Val<br>460 | Asn        | Val        | Lys        | Ala        |
| Ala<br>465 |            | Ser                     | Gln        | Ile        | Arg<br>470 |            | Val        | Asp        | Phe        | Ala<br>475 |            | Glu        | Ser        | Ala        | Asn<br>480 |
|            | Asn        | Lys                     | Asn        | Asn<br>485 |            | Leu        | Ala        | Gln        | Ser<br>490 |            | Ser        | Tyr        | Ala        | Met<br>495 |            |
| Gln        | Ala        | Asn                     |            | Val        | Gln        | Gln        | Asn        | Ile        |            | Arg        | Leu        | Leu        |            | 770        |            |
|            |            |                         | 500        |            |            |            |            | 505        |            |            |            |            | 510        |            |            |
| <211       | L> LI      | EQ II<br>ENGTI<br>YPE : | H: 3       | 79         |            |            |            |            |            |            |            |            |            |            |            |
|            |            |                         |            | V.         | chol       | erae       |            |            |            |            |            |            |            |            |            |
| <400       | )> SI      | EQUEI                   | NCE :      | 13         |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1   | Thr        | Ile                     | Asn        | Val<br>5   | Asn        | Thr        | Asn        | Val        | Ser<br>10  | Ala        | Met        | Thr        | Ala        | Gln<br>15  | Arg        |
| Tyr        | Leu        | Thr                     | Lys<br>20  | Ala        | Thr        | Gly        | Glu        | Leu<br>25  | Asn        | Thr        | Ser        | Met        | Glu<br>30  | Arg        | Leu        |
| Ser        | Ser        | Gly<br>35               | Asn        | Arg        | Ile        | Asn        | Ser<br>40  | Ala        | Гла        | Asp        | Asp        | Ala<br>45  | Ala        | Gly        | Leu        |
| Gln        | Ile<br>50  | Ser                     | Asn        | Arg        | Leu        | Thr<br>55  | Ala        | Gln        | Ser        | Arg        | Gly<br>60  | Leu        | Asp        | Val        | Ala        |
| Met<br>65  | Arg        | Asn                     | Ala        | Asn        | Asp<br>70  | Gly        | Ile        | Ser        | Ile        | Ala<br>75  | Gln        | Thr        | Ala        | Glu        | Gly<br>80  |
| Ala        | Met        | Asn                     | Glu        | Ser<br>85  | Thr        | Ser        | Ile        | Leu        | Gln<br>90  | Arg        | Met        | Arg        | Asp        | Leu<br>95  | Ala        |
| Leu        | Gln        | Ser                     | Ala<br>100 |            | Gly        | Thr        | Asn        | Ser<br>105 | Ala        | Ser        | Glu        | Arg        | Gln<br>110 | Ala        | Leu        |
| Asn        | Glu        | Glu<br>115              | Ser        | Val        | Ala        | Leu        | Gln<br>120 | Asp        | Glu        | Leu        | Asn        | Arg<br>125 | Ile        | Ala        | Glu        |
| Thr        | Thr<br>130 | Ser                     | Phe        | Gly        | Gly        | Arg<br>135 | Lys        | Leu        | Leu        | Asn        | Gly<br>140 | Ser        | Phe        | Gly        | Glu        |
| Ala<br>145 |            | Phe                     | Gln        | Ile        | Gly<br>150 |            | Ser        | Ser        | Gly        | Glu<br>155 |            | Ile        | Ile        | Met        | Gly<br>160 |
| 110        |            |                         |            |            | 100        |            |            |            |            |            |            |            |            |            | 100        |

| -continued |   |
|------------|---|
|            | • |

|                         | Thr                              | Ser                      | Val                      | Arg<br>165                     | Ala                            | Asp                            | Asp                            | Phe                             | Arg<br>170                     | Met                            | Gly                            | Gly                            | Gln                             | Ser<br>175                     | Phe                            |
|-------------------------|----------------------------------|--------------------------|--------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------------|--------------------------------|
| Ile                     | Ala                              | Glu                      | Gln<br>180               | Pro                            | Гла                            | Thr                            | Гла                            | Glu<br>185                      | Trp                            | Gly                            | Val                            | Pro                            | Pro<br>190                      | Thr                            | Ala                            |
| Arg                     | Asp                              | Leu<br>195               | Lys                      | Phe                            | Glu                            | Phe                            | Thr<br>200                     | Lys                             | Lys                            | Asp                            | Gly                            | Glu<br>205                     | Ala                             | Val                            | Val                            |
| Leu                     | Asp<br>210                       | Ile                      | Ile                      | Ala                            | Lys                            | Asp<br>215                     | Gly                            | Asp                             | Asp                            | Ile                            | Glu<br>220                     | Glu                            | Leu                             | Ala                            | Thr                            |
| Tyr<br>225              | Ile                              | Asn                      | Gly                      | Gln                            | Thr<br>230                     | Asp                            | Leu                            | Phe                             | Lys                            | Ala<br>235                     | Ser                            | Val                            | Asp                             | Gln                            | Glu<br>240                     |
| Gly                     | Lys                              | Leu                      | Gln                      | Ile<br>245                     | Phe                            | Val                            | Ala                            | Glu                             | Pro<br>250                     | Asn                            | Ile                            | Glu                            | Gly                             | Asn<br>255                     | Phe                            |
| Asn                     | Ile                              | Ser                      | Gly<br>260               | Gly                            | Leu                            | Ala                            | Thr                            | Glu<br>265                      | Leu                            | Gly                            | Leu                            | Asn                            | Gly<br>270                      | Gly                            | Pro                            |
| Gly                     | Val                              | Lys<br>275               | Thr                      | Thr                            | Val                            | Gln                            | Asp<br>280                     | Ile                             | Asp                            | Ile                            | Thr                            | Ser<br>285                     | Val                             | Gly                            | Gly                            |
| Ser                     | Gln<br>290                       | Asn                      | Ala                      | Val                            | Gly                            | Ile<br>295                     | Ile                            | Asp                             | Ala                            | Ala                            | Leu<br>300                     | Lys                            | Tyr                             | Val                            | Asp                            |
| Ser<br>305              | Gln                              | Arg                      | Ala                      | Asp                            | Leu<br>310                     | Gly                            | Ala                            | Lys                             | Gln                            | Asn<br>315                     | Arg                            | Leu                            | Ser                             | His                            | Ser<br>320                     |
| Ile                     | Ser                              | Asn                      | Leu                      | Ser<br>325                     | Asn                            | Ile                            | Gln                            | Glu                             | Asn<br>330                     | Val                            | Glu                            | Ala                            | Ser                             | Lys<br>335                     | Ser                            |
| Arg                     | Ile                              | Lys                      | Asp<br>340               | Thr                            | Asp                            | Phe                            | Ala                            | Lys<br>345                      | Glu                            | Thr                            | Thr                            | Gln                            | Leu<br>350                      | Thr                            | Гла                            |
| Ser                     | Gln                              | Ile<br>355               | Leu                      | Gln                            | Gln                            | Ala                            | Gly<br>360                     | Thr                             | Ser                            | Ile                            | Leu                            | Ala<br>365                     | Gln                             | Ala                            | Lys                            |
| Gln                     | Leu<br>370                       | Pro                      | Asn                      | Ser                            | Ala                            | Ile<br>375                     | Ser                            | Leu                             | Leu                            | Gln                            |                                |                                |                                 |                                |                                |
| <21<br><21              | 0> SH<br>1> LH<br>2> TY<br>3> OH | ENGTH<br>7PE :           | H: 39<br>PRT             | 94                             | aeru                           | gino:                          | a                              |                                 |                                |                                |                                |                                |                                 |                                |                                |
| < 40                    | 0> SH                            | EQUEI                    | ICE :                    | 14                             |                                |                                |                                |                                 |                                |                                |                                |                                |                                 |                                |                                |
| Met<br>1                | Ala                              | Leu                      | Thr                      | Val<br>5                       | Asn                            | Thr                            | Asn                            | Ile                             | Ala<br>10                      | Ser                            | Leu                            | Asn                            | Thr                             | Gln<br>15                      | Arg                            |
| Asn                     | Leu                              | Asn                      | Asn<br>20                | Ser                            | Ser                            | Ala                            | Ser                            | Leu<br>25                       | Asn                            | Thr                            | Ser                            | Leu                            | Gln<br>30                       | Arg                            | Leu                            |
| Ser                     | Thr                              |                          | Ser                      | Ara                            | T 1 0                          | 7 000                          | Cor                            | 712                             | T                              |                                | _                              |                                |                                 | <b>C1</b>                      | T                              |
|                         |                                  | 35                       |                          | лıд                            | ITe                            | ASII                           | 40                             | AIA                             | цув                            | Asp                            | Asp                            | Ala<br>45                      | AIA                             | GIY                            | Leu                            |
| Gln                     | Ile<br>50                        |                          | Asn                      |                                |                                |                                | 40                             |                                 |                                |                                |                                | 45                             |                                 |                                |                                |
|                         |                                  | Ala                      |                          | Arg                            | Leu                            | Thr<br>55                      | 40<br>Ser                      | Gln                             | Val                            | Asn                            | Gly<br>60                      | 45<br>Leu                      | Asn                             | Val                            | Ala                            |
| Thr<br>65               | 50                               | Ala<br>Asn               | Ala                      | Arg<br>Asn                     | Leu<br>Asp<br>70               | Thr<br>55<br>Gly               | 40<br>Ser<br>Ile               | Gln<br>Ser                      | Val<br>Leu                     | Asn<br>Ala<br>75               | Gly<br>60<br>Gln               | 45<br>Leu<br>Thr               | Asn<br>Ala                      | Val<br>Glu                     | Ala<br>Gly<br>80               |
| Thr<br>65<br>Ala        | 50<br>Lys                        | Ala<br>Asn<br>Gln        | Ala<br>Gln               | Arg<br>Asn<br>Ser<br>85        | Leu<br>Asp<br>70<br>Thr        | Thr<br>55<br>Gly<br>Asn        | 40<br>Ser<br>Ile<br>Ile        | Gln<br>Ser<br>Leu               | Val<br>Leu<br>Gln<br>90        | Asn<br>Ala<br>75<br>Arg        | Gly<br>60<br>Gln<br>Met        | 45<br>Leu<br>Thr<br>Arg        | Asn<br>Ala<br>Asp               | Val<br>Glu<br>Leu<br>95        | Ala<br>Gly<br>80<br>Ser        |
| Thr<br>65<br>Ala<br>Leu | 50<br>Lys<br>Leu                 | Ala<br>Asn<br>Gln<br>Ser | Ala<br>Gln<br>Ala<br>100 | Arg<br>Asn<br>Ser<br>85<br>Asn | Leu<br>Asp<br>70<br>Thr<br>Gly | Thr<br>55<br>Gly<br>Asn<br>Ser | 40<br>Ser<br>Ile<br>Ile<br>Asn | Gln<br>Ser<br>Leu<br>Ser<br>105 | Val<br>Leu<br>Gln<br>90<br>Asp | Asn<br>Ala<br>75<br>Arg<br>Ser | Gly<br>60<br>Gln<br>Met<br>Glu | 45<br>Leu<br>Thr<br>Arg<br>Arg | Asn<br>Ala<br>Asp<br>Thr<br>110 | Val<br>Glu<br>Leu<br>95<br>Ala | Ala<br>Gly<br>80<br>Ser<br>Leu |

| С | 0 | n  | t   | i    | n     | u      | e       | d        |
|---|---|----|-----|------|-------|--------|---------|----------|
|   |   |    |     |      |       |        |         |          |
|   | С | со | con | cont | conti | contin | continu | continue |

| Ala<br>145 | Ser                              | Phe            | Gln          | Val        | Gly<br>150 | Ser        | Ala        | Ala        | Asn        | Glu<br>155 | Ile        | Ile        | Ser        | Val        | Gly<br>160 |
|------------|----------------------------------|----------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ile        | Asp                              | Glu            | Met          | Ser<br>165 | Ala        | Glu        | Ser        | Leu        | Asn<br>170 | Gly        | Thr        | Tyr        | Phe        | Lys<br>175 | Ala        |
| Asp        | Gly                              | Gly            | Gly<br>180   | Ala        | Val        | Thr        | Ala        | Ala<br>185 | Thr        | Ala        | Ser        | Gly        | Thr<br>190 | Val        | Asp        |
| Ile        | Ala                              | Ile<br>195     | Gly          | Ile        | Thr        | Gly        | Gly<br>200 | Ser        | Ala        | Val        | Asn        | Val<br>205 | Lys        | Val        | Asp        |
| Met        | Lys<br>210                       | Gly            | Asn          | Glu        | Thr        | Ala<br>215 | Glu        | Gln        | Ala        | Ala        | Ala<br>220 | Lys        | Ile        | Ala        | Ala        |
| Ala<br>225 | Val                              | Asn            | Asp          | Ala        | Asn<br>230 | Val        | Gly        | Ile        | Gly        | Ala<br>235 | Phe        | Ser        | Asp        | Gly        | Asp<br>240 |
| Thr        | Ile                              | Ser            | Tyr          | Val<br>245 | Ser        | Lys        | Ala        | Gly        | Lys<br>250 | Asp        | Gly        | Ser        | Gly        | Ala<br>255 | Ile        |
| Thr        | Ser                              | Ala            | Val<br>260   | Ser        | Gly        | Val        | Val        | Ile<br>265 | Ala        | Asp        | Thr        | Gly        | Ser<br>270 | Thr        | Gly        |
| Val        | Gly                              | Thr<br>275     | Ala          | Ala        | Gly        | Val        | Ala<br>280 | Pro        | Ser        | Ala        | Thr        | Ala<br>285 | Phe        | Ala        | Lys        |
| Thr        | Asn<br>290                       | Asp            | Thr          | Val        | Ala        | Lys<br>295 | Ile        | Aab        | Ile        | Ser        | Thr<br>300 | Ala        | Lys        | Ala        | Leu        |
| Ser<br>305 | Arg                              | Arg            | Ala          | Gly        | Asp<br>310 | Arg        | Thr        | Thr        | Ala        | Ile<br>315 | Lys        | Gln        | Ile        | Asp        | Ala<br>320 |
| Ser        | Val                              | Pro            | Thr          | Ser<br>325 | Val        | Ala        | Val        | Gln        | Asn<br>330 | Arg        | Phe        | Asp        | Asn        | Thr<br>335 | Ile        |
| Asn        | Asn                              | Leu            | Lys<br>340   | Asn        | Ile        | Gly        | Glu        | Asn<br>345 | Val        | Ser        | Ala        | Ala        | Arg<br>350 | Gly        | Arg        |
| Ile        | Glu                              | Asp<br>355     | Thr          | Asp        | Phe        | Ala        | Ala<br>360 | Glu        | Thr        | Ala        | Asn        | Leu<br>365 | Thr        | Гла        | Asn        |
| Gln        | Val<br>370                       | Leu            | Gln          | Gln        | Ala        | Gly<br>375 | Thr        | Ala        | Ile        | Leu        | Ala<br>380 | Gln        | Ala        | Asn        | Gln        |
| Leu<br>385 | Pro                              | Gln            | Ser          | Val        | Leu<br>390 | Ser        | Leu        | Leu        | Arg        |            |            |            |            |            |            |
| <21<br><21 | 0> SI<br>1> LI<br>2> TY<br>3> OH | ENGTH<br>YPE : | H: 1'<br>PRT | 70         | sphae      | eroid      | des        |            |            |            |            |            |            |            |            |
| <40        | 0> SI                            | EQUEI          | ICE :        | 15         |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1   | Thr                              | Thr            | Ile          | Asn<br>5   | Thr        | Asn        | Ile        | Gly        | Ala<br>10  | Ile        | Ala        | Ala        | Gln        | Ala<br>15  | Asn        |
| Met        | Thr                              | Lys            | Val<br>20    | Asn        | Asp        | Gln        | Phe        | Asn<br>25  | Thr        | Ala        | Met        | Thr        | Arg<br>30  | Leu        | Ser        |
| Thr        | Gly                              | Leu<br>35      | Arg          | Ile        | Asn        | Ala        | Ala<br>40  | Lys        | Asp        | Asp        | Ala        | Ala<br>45  | Gly        | Met        | Ala        |
| Ile        | Gly<br>50                        | Glu            | Lys          | Met        | Thr        | Ala<br>55  | Gln        | Val        | Met        | Gly        | Leu<br>60  | Asn        | Gln        | Ala        | Ile        |
| Arg<br>65  | Asn                              | Ala            | Gln          | Asp        | Gly<br>70  | Lys        | Asn        | Leu        | Val        | Asp<br>75  | Thr        | Thr        | Glu        | Gly        | Ala<br>80  |
| His        | Val                              | Glu            | Val          | Ser<br>85  | Ser        | Met        | Leu        | Gln        | Arg<br>90  | Leu        | Arg        | Glu        | Leu        | Ala<br>95  | Val        |
| Gln        | Ser                              | Ser            | Asn          | Asp        | Thr        | Asn        | Thr        | Ala        | Ala        | Asp        | Arg        | Gly        | Ser        | Leu        | Ala        |

Ala Glu Gly Lys Gln Leu Ile Ala Glu Ile Asn Arg Val Ala Glu Ser Thr Thr Phe Asn Gly Met Lys Val Leu Asp Gly Ser Phe Thr Gly Lys Gln Leu Gln Ile Gly Ala Asp Ser Gly Gln Thr Met Ala Ile Asn Val Asp Ser Ala Ala Ala Thr Asp Ile Gly Ala <210> SEQ ID NO 16 <211> LENGTH: 365 <212> TYPE: PRT <213> ORGANISM: P. mirabilis1 <400> SEQUENCE: 16 Met Ala Gln Val Ile Asn Thr Asn Tyr Leu Ser Leu Val Thr Gln Asn Asn Leu Asn Lys Ser Gln Gly Thr Leu Gly Ser Ala Ile Glu Arg Leu Ser Ser Gly Leu Arg Ile Asn Ser Ala Lys Asp Asp Ala Ala Gly Gln 35 40 45 Ala Ile Ala Asn Arg Phe Thr Ser Asn Val Asn Gly Leu Thr Gln Ala Ser Arg As<br/>n Ala As<br/>n Asp Gly Ile Ser Ile Ala Gl<br/>n Thr $\mbox{Thr}$ Glu Gly Ala Leu Asn Glu Ile Asn Asn Asn Leu Gln Arg Ile Arg Glu Leu Thr Val Gln Ala Lys Asn Gly Thr Asn Ser Asn Ser Asp Ile Thr Ser Ile Gln Asn Glu Val Lys Asn Val Leu Asp Glu Ile Asn Arg Ile Ser Glu Gln Thr Gln Phe Asn Gly Val Lys Val Leu Ser Gly Glu Lys Ser Glu Met Val Ile Gln Val Gly Thr Asn Asp Asn Glu Thr Ile Lys Phe Asn Leu Asp Lys Val Asp Asn Asp Thr Leu Gly Val Ala Ser Asp Lys Leu Phe Asp Thr Lys Thr Glu Lys Lys Gly Val Thr Ala Ala Gly Ala Gly Val Thr Asp Ala Lys Lys Ile Asn Ala Ala Ala Thr Leu Asp Met Met Val Ser Leu Val Lys Glu Phe Asn Leu Asp Gly Lys Pro Val Thr Asp Lys Phe Ile Val Thr Lys Gly Gly Lys Asp Tyr Val Ala Thr Lys Ser Asp Phe Glu Leu Asp Ala Thr Gly Thr Lys Leu Gly Leu Lys Ala Ser Ala Thr Thr Glu Phe Lys Val Asp Ala Gly Lys Asp Val Lys Thr Leu Asn Val Lys Asp Asp Ala Leu Ala Thr Leu Asp Lys Ala Ile Asn Thr 

Ile Asp Glu Ser Arg Ser Lys Leu Gly Ala Ile Gln Asn Arg Phe Glu Ser Thr Ile Asn Asn Leu Asn Asn Thr Val Asn Asn Leu Ser Ala Ser Arg Ser Arg Ile Leu Asp Ala Asp Tyr Ala Thr Glu Val Ser Asn Met Ser Arg Gly Gln Ile Leu Gln Gln Ala Gly Thr Ser Val Leu Ala Gln Ala Asn Gln Val Pro Gln Thr Val Leu Ser Leu Leu Arg <210> SEQ ID NO 17 <211> LENGTH: 367 <212> TYPE: PRT <213> ORGANISM: P. mirabilis2 <400> SEQUENCE: 17 Met Ala Gln Val Ile Asn Thr Asn Tyr Leu Ser Leu Val Thr Gln Asn Asn Leu Asn Arg Ser Gln Ser Ala Leu Gly Asn Ala Ile Glu Arg Leu Ser Ser Gly Met Arg Ile Asn Ser Ala Lys Asp Asp Ala Ala Gly Gln Ala Ile Ala Asn Arg Phe Thr Ser Asn Ile Asn Gly Leu Thr Gln Ala Ser Arg Asn Ala Asn Asp Gly Ile Ser Val Ser Gln Thr Thr Glu Gly Ala Leu Asn Glu Ile Asn Asn Asn Leu Gln Arg Ile Arg Glu Leu Thr Val Gln Ala Lys Asn Gly Thr Asn Ser Asn Ser Asp Ile Asn Ser Ile Gln Asn Glu Val Asn Gln Arg Leu Asp Glu Ile Asn Arg Val Ser Glu Gln Thr Gln Phe Asn Gly Val Lys Val Leu Ser Gly Glu Lys Ser Lys Met Thr Ile Gln Val Gly Thr Asn Asp Asn Glu Val Ile Glu Phe Asn Leu Asp Lys Ile Asp Asn Asp Thr Leu Gly Val Ala Ser Asp Lys Leu Phe Asp Ala Lys Thr Glu Lys Lys Gly Val Thr Ala Ala Gly Asp Ala Ile Asp Ala Asn Ala Leu Gly Ile Ser Gly Ser Lys Lys Tyr Val Thr 2.05 Gly Ile Ser Val Lys Glu Tyr Lys Val Asp Gly Lys Val Ser Ser Asp Lys Val Val Leu Asn Asp Gly Ser Asp Asp Tyr Ile Val Ser Lys Ser Asp Phe Thr Leu Lys Ser Gly Thr Thr Thr Gly Glu Val Glu Phe Thr 245 250 Gly Ser Lys Thr Thr Lys Phe Thr Ala Asp Ala Gly Lys Asp Val Lys Val Leu Asn Val Lys Asp Asp Ala Leu Ala Thr Leu Asp Asn Ala Ile 

| Ser          | Lys<br>290                       | Val            | Asp          | Glu        | Ser        | Arg<br>295 | Ser        | Lys        | Leu        | Gly        | Ala<br>300 | Ile        | Gln        | Asn        | Arg        |
|--------------|----------------------------------|----------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Phe<br>305   | Gln                              | Ser            | Thr          | Ile        | Asn<br>310 | Asn        | Leu        | Asn        | Asn        | Thr<br>315 | Val        | Asn        | Asn        | Leu        | Ser<br>320 |
| Ala          | Ser                              | Arg            | Ser          | Arg<br>325 | Ile        | Leu        | Asp        | Ala        | Asp<br>330 | Tyr        | Ala        | Thr        | Glu        | Val<br>335 | Ser        |
| Asn          | Met                              | Ser            | Lys<br>340   | Asn        | Gln        | Ile        | Leu        | Gln<br>345 | Gln        | Ala        | Gly        | Thr        | Ala<br>350 | Val        | Leu        |
| Ala          | Gln                              | Ala<br>355     | Asn          | Gln        | Val        | Pro        | Gln<br>360 | Thr        | Val        | Leu        | Ser        | Leu<br>365 | Leu        | Arg        |            |
| <213<br><212 | )> SH<br>L> LH<br>2> TY<br>3> OH | ENGTI<br>ZPE : | H: 50<br>PRT |            | zyph:      | imur:      | ium2       |            |            |            |            |            |            |            |            |
| <400         | )> SH                            | EQUEI          | NCE :        | 18         |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1     | Ala                              | Gln            | Val          | Ile<br>5   | Asn        | Thr        | Asn        | Ser        | Leu<br>10  | Ser        | Leu        | Leu        | Thr        | Gln<br>15  | Asn        |
| Asn          | Leu                              | Asn            | Lys<br>20    | Ser        | Gln        | Ser        | Ala        | Leu<br>25  | Gly        | Thr        | Ala        | Ile        | Glu<br>30  | Arg        | Leu        |
| Ser          | Ser                              | Gly<br>35      | Leu          | Arg        | Ile        | Asn        | Ser<br>40  | Ala        | Lys        | Asp        | Asp        | Ala<br>45  | Ala        | Gly        | Gln        |
| Ala          | Ile<br>50                        | Ala            | Asn          | Arg        | Phe        | Thr<br>55  | Ala        | Asn        | Ile        | Lys        | Gly<br>60  | Leu        | Thr        | Gln        | Ala        |
| Ser<br>65    | Arg                              | Asn            | Ala          | Asn        | Asp<br>70  | Gly        | Ile        | Ser        | Ile        | Ala<br>75  | Gln        | Thr        | Thr        | Glu        | Gly<br>80  |
| Ala          | Leu                              | Asn            | Glu          | Ile<br>85  | Asn        | Asn        | Asn        | Leu        | Gln<br>90  | Arg        | Val        | Arg        | Glu        | Leu<br>95  | Ala        |
| Val          | Gln                              | Ser            | Ala<br>100   | Asn        | Ser        | Thr        | Asn        | Ser<br>105 | Gln        | Ser        | Aab        | Leu        | Asp<br>110 | Ser        | Ile        |
| Gln          | Ala                              | Glu<br>115     | Ile          | Thr        | Gln        | Arg        | Leu<br>120 | Asn        | Glu        | Ile        | Asp        | Arg<br>125 | Val        | Ser        | Gly        |
| Gln          | Thr<br>130                       | Gln            | Phe          | Asn        | Gly        | Val<br>135 | ГÀа        | Val        | Leu        | Ala        | Gln<br>140 | Asp        | Asn        | Thr        | Leu        |
| Thr<br>145   | Ile                              | Gln            | Val          | Gly        | Ala<br>150 | Asn        | Asp        | Gly        | Glu        | Thr<br>155 | Ile        | Asp        | Ile        | Asp        | Leu<br>160 |
| LYa          | Gln                              | Ile            | Asn          | Ser<br>165 | Gln        | Thr        | Leu        | Gly        | Leu<br>170 | Asp        | Ser        | Leu        | Asn        | Val<br>175 | Gln        |
| Lys          | Ala                              | Tyr            | Asp<br>180   | Val        | Lys        | Asp        | Thr        | Ala<br>185 | Val        | Thr        | Thr        | Lys        | Ala<br>190 | Tyr        | Ala        |
| Asn          | Asn                              | Gly<br>195     | Thr          | Thr        | Leu        | Asp        | Val<br>200 | Ser        | Gly        | Leu        | Asp        | Asp<br>205 | Ala        | Ala        | Ile        |
| ГЛЗ          | Ala<br>210                       | Ala            | Thr          | Gly        | Gly        | Thr<br>215 | Asn        | Gly        | Thr        | Ala        | Ser<br>220 | Val        | Thr        | Gly        | Gly        |
| Ala<br>225   | Val                              | Lys            | Phe          | Asp        | Ala<br>230 | Asp        | Asn        | Asn        | Lys        | Tyr<br>235 | Phe        | Val        | Thr        | Ile        | Gly<br>240 |
| Gly          | Phe                              | Thr            | Gly          | Ala<br>245 | Asp        | Ala        | Ala        | Lys        | Asn<br>250 | Gly        | Asp        | Tyr        | Glu        | Val<br>255 | Asn        |
| Val          | Ala                              | Thr            | Asp<br>260   | Gly        | Thr        | Val        | Thr        | Leu<br>265 | Ala        | Ala        | Gly        | Ala        | Thr<br>270 | Lys        | Thr        |
| Thr          | Met                              | Pro            | Ala          | Gly        | Ala        | Thr        | Thr        | ГЛа        | Thr        | Glu        | Val        | Gln        | Glu        | Leu        | Lys        |

| a | ıe | nu | 1 | cont  |
|---|----|----|---|-------|
| ł | лe | шu | т | COILC |

| Aap 1<br>2<br>3ly 0<br>305<br>Ser 1<br>Lys A | Thr<br>290<br>Gly<br>Tyr | Val                   |                     |            | Val        |            | 280<br>Ala | _          |            |            |            | 285        |            |            |            |  |  |  |  | _ |  |
|----------------------------------------------|--------------------------|-----------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--|--|--|--|---|--|
| 31y 0<br>305<br>Ser 1                        | 290<br>Gly<br>Tyr        | Val                   |                     |            | Val        |            | Ala        | _          |            |            |            |            |            |            |            |  |  |  |  |   |  |
| 305<br>Ser 1                                 | Tyr                      |                       | Asp                 |            |            | 295        |            | Asp        | Ala        | Lys        | Asn<br>300 | Ala        | Leu        | Ile        | Ala        |  |  |  |  |   |  |
|                                              | -                        | Thr                   |                     | AIA        | Thr<br>310 | Asp        | Ala        | Asn        | Gly        | Ala<br>315 | Glu        | Leu        | Val        | Гла        | Met<br>320 |  |  |  |  |   |  |
| Lys A                                        | Ala                      |                       | Asp                 | Lys<br>325 | Asn        | Gly        | Lys        | Thr        | Ile<br>330 | Glu        | Gly        | Gly        | Tyr        | Ala<br>335 | Leu        |  |  |  |  |   |  |
|                                              |                          | Gly                   | Asp<br>340          | Lys        | Tyr        | Tyr        | Ala        | Ala<br>345 | Aab        | Tyr        | Asp        | Glu        | Ala<br>350 | Thr        | Gly        |  |  |  |  |   |  |
| Ala I                                        |                          | Lys<br>355            | Ala                 | Lys        | Thr        | Thr        | Ser<br>360 | Tyr        | Thr        | Ala        | Ala        | Asp<br>365 | Gly        | Thr        | Thr        |  |  |  |  |   |  |
| Суз 1<br>З                                   | Thr<br>370               | Ala                   | Ala                 | Asn        | Gln        | Leu<br>375 | Gly        | Gly        | Val        | Asp        | Gly<br>380 | Гла        | Thr        | Glu        | Val        |  |  |  |  |   |  |
| Val 1<br>385                                 | Thr                      | Ile                   | Asp                 | Gly        | Lys<br>390 | Thr        | Tyr        | Asn        | Ala        | Ser<br>395 | Lys        | Ala        | Ala        | Gly        | His<br>400 |  |  |  |  |   |  |
| Asp P                                        | Phe                      | Lys                   | Ala                 | Gln<br>405 | Pro        | Glu        | Leu        | Ala        | Glu<br>410 | Ala        | Ala        | Ala        | Lys        | Thr<br>415 | Thr        |  |  |  |  |   |  |
| Glu A                                        | Asn                      | Pro                   | Leu<br>420          | Gln        | Гла        | Ile        | Asp        | Ala<br>425 | Ala        | Leu        | Ala        | Gln        | Val<br>430 | Asp        | Ala        |  |  |  |  |   |  |
| Leu A                                        | -                        | Ser<br>435            | Asp                 | Leu        | Gly        | Ala        | Val<br>440 | Gln        | Asn        | Arg        | Phe        | Asn<br>445 | Ser        | Ala        | Ile        |  |  |  |  |   |  |
| Thr A                                        | Asn<br>450               | Leu                   | Gly                 | Asn        | Thr        | Val<br>455 | Asn        | Asn        | Leu        | Ser        | Glu<br>460 | Ala        | Arg        | Ser        | Arg        |  |  |  |  |   |  |
| Ile 0<br>465                                 | Glu                      | Asp                   | Ser                 | Asp        | Tyr<br>470 | Ala        | Thr        | Glu        | Val        | Ser<br>475 | Asn        | Met        | Ser        | Arg        | Ala<br>480 |  |  |  |  |   |  |
| Gln I                                        | Ile                      | Leu                   | Gln                 | Gln<br>485 | Ala        | Gly        | Thr        | Ser        | Val<br>490 | Leu        | Ala        | Gln        | Ala        | Asn<br>495 | Gln        |  |  |  |  |   |  |
| Val E                                        | Pro                      | Gln                   | Asn<br>500          | Val        | Leu        | Ser        | Leu        | Leu<br>505 | Arg        |            |            |            |            |            |            |  |  |  |  |   |  |
| <210><br><211><br><212><br><213><br><400>    | > LE<br>> TY<br>> OR     | NGTH<br>PE :<br>.GANI | I: 49<br>PRT<br>SM: | 90<br>S. 1 | zyphi      | imur:      | ium1       |            |            |            |            |            |            |            |            |  |  |  |  |   |  |
| Met A<br>1                                   | Ala                      | Gln                   | Val                 | Ile<br>5   | Asn        | Thr        | Asn        | Ser        | Leu<br>10  | Ser        | Leu        | Leu        | Thr        | Gln<br>15  | Asn        |  |  |  |  |   |  |
| Asn I                                        | Leu                      | Asn                   | Lys<br>20           |            | Gln        | Ser        | Ala        | Leu<br>25  |            | Thr        | Ala        | Ile        | Glu<br>30  |            | Leu        |  |  |  |  |   |  |
| Ser S                                        |                          | Gly<br>35             |                     | Arg        | Ile        | Asn        | Ser<br>40  |            | Lys        | Asp        | Asp        | Ala<br>45  |            | Gly        | Gln        |  |  |  |  |   |  |
| Ala I<br>5                                   | Ile<br>50                | Ala                   | Asn                 | Arg        | Phe        | Thr<br>55  | Ala        | Asn        | Ile        | Гла        | Gly<br>60  | Leu        | Thr        | Gln        | Ala        |  |  |  |  |   |  |
| Ser A<br>65                                  | Arg                      | Asn                   | Ala                 | Asn        | Asp<br>70  | Gly        | Ile        | Ser        | Ile        | Ala<br>75  | Gln        | Thr        | Thr        | Glu        | Gly<br>80  |  |  |  |  |   |  |
| Ala I                                        | Leu                      | Asn                   | Glu                 | Ile<br>85  | Asn        | Asn        | Asn        | Leu        | Gln<br>90  | Arg        | Val        | Arg        | Glu        | Leu<br>95  | Ala        |  |  |  |  |   |  |
| Val G                                        | Gln                      | Ser                   | Ala<br>100          | Asn        | Ser        | Thr        | Asn        | Ser<br>105 | Gln        | Ser        | Asp        | Leu        | Asp<br>110 | Ser        | Ile        |  |  |  |  |   |  |
| Gln A                                        |                          | Glu<br>115            | Ile                 | Thr        | Gln        | Arg        | Leu<br>120 | Asn        | Glu        | Ile        | Asp        | Arg<br>125 | Val        | Asn        | Gly        |  |  |  |  |   |  |

| <u></u>    | The        | <b>C1</b> ~    | Dh c       | C.~~       | <u></u>    | W~7        | Line       | 17-1       | Lett       | 7,1,-      |            | con        |            |            | Lor        |
|------------|------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| GIN        | Thr<br>130 | GIN            | гле        | Ser        | сту        | Va1<br>135 | гда        | vai        | ьeu        | АІА        | G1n<br>140 | чар        | Asn        | Inr        | ьeu        |
| Thr<br>145 | Ile        | Gln            | Val        | Gly        | Ala<br>150 | Asn        | Asp        | Gly        | Glu        | Thr<br>155 | Ile        | Asp        | Ile        | Asp        | Leu<br>160 |
| LYa        | Gln        | Ile            | Asn        | Ser<br>165 | Gln        | Thr        | Leu        | Gly        | Leu<br>170 | Asp        | Thr        | Leu        | Asn        | Val<br>175 | Gln        |
| Gln        | Lys        | Tyr            | Lys<br>180 | Val        | Ser        | Asp        | Thr        | Ala<br>185 | Ala        | Thr        | Val        | Thr        | Gly<br>190 | -          | Ala        |
| Asp        | Thr        |                |            | Ala        | Leu        | Asp        |            |            | Thr        | Phe        | Lys        |            |            |            | Thr        |
| Gly        | Leu        | 195<br>Gly     | Gly        | Thr        | Asp        | Glu        | 200<br>Lys | Ile        | Asp        | Gly        | Asp        | 205<br>Leu | Lys        | Phe        | Asp        |
| -          | 210        | -              | -          |            |            | 215        | -          |            | -          | -          | 220        |            | -          |            | -          |
| Asp<br>225 | Thr        | Thr            | Gly        | Lys        | Tyr<br>230 | Tyr        | Ala        | Lys        | Val        | Thr<br>235 | Val        | Thr        | Gly        | Gly        | Thr<br>240 |
| Gly        | Lys        | Asp            | Gly        | Tyr<br>245 | Tyr        | Glu        | Val        | Ser        | Val<br>250 | Asp        | Lys        | Thr        | Asn        | Gly<br>255 | Glu        |
| Val        | Thr        | Leu            | Ala<br>260 | Ala        | Val        | Thr        | Pro        | Ala<br>265 | Thr        | Val        | Thr        | Thr        | Ala<br>270 | Thr        | Ala        |
| Leu        | Ser        | Gly<br>275     | Гла        | Met        | Tyr        | Ser        | Ala<br>280 | Asn        | Pro        | Asp        | Ser        | Asp<br>285 | Ile        | Ala        | Lys        |
| Ala        |            |                | Thr        | Ala        | Ala        |            |            | Thr        | Gly        | Thr        |            |            | Val        | Val        | Lys        |
| Met        | 290<br>Ser | Tyr            | Thr        | Asp        | Asn        | 295<br>Asn | Glv        | Lys        | Thr        | Ile        | 300<br>Asp | Glv        | Glv        | Leu        | Ala        |
| 305        |            | -              |            | _          | 310        |            | -          | -          |            | 315        | _          | -          | -          |            | 320        |
| Val        | ГЛа        | Val            | GIY        | Asp<br>325 | Asp        | Tyr        | Tyr        | Ser        | A1a<br>330 | Thr        | GIn        | Asp        | ГЛЗ        | Asp<br>335 | GIY        |
| Ser        | Ile        | Ser            | Ile<br>340 | Asp        | Thr        | Thr        | ГЛа        | Tyr<br>345 | Thr        | Ala        | Aap        | Asn        | Gly<br>350 | Thr        | Ser        |
| Lys        | Thr        | Ala<br>355     | Leu        | Asn        | Гла        | Leu        | Gly<br>360 |            | Ala        | Asp        | Gly        | Lys<br>365 | Thr        | Glu        | Val        |
| Val        | Thr<br>370 | Ile            | Asp        | Gly        | Lys        | Thr<br>375 | Tyr        | Asn        | Ala        | Ser        | Lys<br>380 | Ala        | Ala        | Gly        | His        |
| -          |            | Lys            | Ala        | Glu        |            |            | Leu        | Ala        | Glu        |            |            | Ala        | Lys        | Thr        |            |
| 385<br>Glu | Asn        | Pro            | Leu        | Gln        | 390<br>Lys | Ile        | Asp        | Ala        | Ala        | 395<br>Leu | Ala        | Gln        | Val        | Asp        | 400<br>Thr |
|            |            |                |            | 405        | •          |            | -          |            | 410        |            |            |            |            | 415        |            |
| Leu        | Arg        | Ser            | Asp<br>420 | Leu        | GIY        | AIa        | Val        | GIn<br>425 | Asn        | Arg        | Pne        | Asn        | Ser<br>430 | AIa        | IIe        |
| Thr        | Asn        | Leu<br>435     | Gly        | Asn        | Thr        | Val        | Asn<br>440 | Asn        | Leu        | Ser        | Ser        | Ala<br>445 | Arg        | Ser        | Arg        |
| Ile        | Glu<br>450 | Asp            | Ser        | Asp        | Tyr        | Ala<br>455 | Thr        | Glu        | Val        | Ser        | Asn<br>460 | Met        | Ser        | Arg        | Ala        |
| Gln<br>465 | Ile        | Leu            | Gln        | Gln        | Ala<br>470 | Gly        | Thr        | Ser        | Val        | Leu<br>475 | Ala        | Gln        | Ala        | Asn        | Gln<br>480 |
| Val        | Pro        | Gln            | Asn        | Val<br>485 | Leu        | Ser        | Leu        | Leu        | Arg<br>490 |            |            |            |            |            |            |
|            |            |                |            | 105        |            |            |            |            | 190        |            |            |            |            |            |            |
|            |            | EQ II<br>ENGTH |            |            |            |            |            |            |            |            |            |            |            |            |            |

<213> ORGANISM: S. marcesens

<400> SEQUENCE: 20

| - | COI | nt. | lr | ıu | ed |
|---|-----|-----|----|----|----|

| Met<br>1   | Ala                              | Gln        | Val          | Ile<br>5   | Asn        | Thr        | Asn        | Ser        | Leu<br>10  | Ser        | Leu        | Met        | Ala        | Gln<br>15  | Asn        |
|------------|----------------------------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asn        | Leu                              | Asn        | Lys<br>20    | Ser        | Gln        | Ser        | Ser        | Leu<br>25  |            | Thr        | Ala        | Ile        | Glu<br>30  | Arg        | Leu        |
| Ser        | Ser                              | Gly<br>35  | Leu          | Arg        | Ile        | Asn        | Ser<br>40  | Ala        | Lys        | Asp        | Asp        | Ala<br>45  | Ala        | Gly        | Gln        |
| Ala        | Ile<br>50                        | Ser        | Asn          | Arg        | Phe        | Thr<br>55  | Ala        | Asn        | Ile        | Lys        | Gly<br>60  | Leu        | Thr        | Gln        | Ala        |
| Ser<br>65  | Arg                              | Asn        | Ala          | Asn        | Asp<br>70  | Gly        | Ile        | Ser        | Leu        | Ala<br>75  | Gln        | Thr        | Thr        | Glu        | Gly<br>80  |
| Ala        | Leu                              | Asn        | Glu          | Val<br>85  | Asn        | Asp        | Asn        | Leu        | Gln<br>90  | Asn        | Ile        | Arg        | Arg        | Leu<br>95  | Thr        |
| Val        | Gln                              | Ala        | Gln<br>100   | Asn        | Gly        | Ser        | Asn        | Ser<br>105 | Thr        | Ser        | Asp        | Leu        | Lys<br>110 | Ser        | Ile        |
| Gln        | Aab                              | Glu<br>115 | Ile          | Thr        | Gln        | Arg        | Leu<br>120 | Ser        | Glu        | Ile        | Asn        | Arg<br>125 | Ile        | Ser        | Glu        |
| Gln        | Thr<br>130                       | Asp        | Phe          | Asn        | Gly        | Val<br>135 | Lys        | Val        | Leu        | Ser        | Ser<br>140 | Asp        | Gln        | Lys        | Leu        |
| Thr<br>145 | Ile                              | Gln        | Val          | Gly        | Ala<br>150 | Asn        | Asp        | Gly        | Glu        | Thr<br>155 | Thr        | Asp        | Ile        | Asp        | Leu<br>160 |
| Lys        | Lys                              | Ile        | Asp          | Ala<br>165 | Lys        | Gln        | Leu        | Gly        | Met<br>170 | Asp        | Thr        | Phe        | Asp        | Val<br>175 | Thr        |
| Thr        | Lys                              | Ser        | Ala<br>180   | Lys        | Ala        | Gly        | Ala        | Glu<br>185 | Ile        | Ala        | Thr        | Gly        | Thr<br>190 | Lys        | Ile        |
| Thr        | Val                              | Asp<br>195 | Ser          | Asp        | Ala        | Thr        | Lys<br>200 | Gln        | Ala        | Asp        | Ala        | Asp<br>205 | Val        | Thr        | Gly        |
| Leu        | Ala<br>210                       | Lys        | Gly          | Gln        | Thr        | Leu<br>215 | Val        | Ser        | Gly        | Thr        | Asp<br>220 | Ala        | Asp        | Gly        | ГЛа        |
| Ser<br>225 | Ala                              | Tyr        | Phe          | Ile        | Ala<br>230 | Thr        | Lys        | Asp        | Asp        | Ala<br>235 | Thr        | Gly        | Asp        | Val        | Ala<br>240 |
| Tyr        | Thr                              | Lys        | Ala          | Lys<br>245 | Val        | Ala        | Aab        | Asp        | Gly<br>250 | ГÀа        | Val        | Thr        | Asp        | Ser<br>255 | Gly        |
| Thr        | Asp                              | Ala        | Gly<br>260   | Val        | Lys        | Asn        | Pro        | Leu<br>265 | Ala        | Thr        | Leu        | Asp        | Lys<br>270 | Ala        | Leu        |
| Ala        | Gln                              | Val<br>275 | Asp          | Gly        | Leu        | Arg        | Ser<br>280 | Ser        | Leu        | Gly        | Ala        | Val<br>285 | Gln        | Asn        | Arg        |
| Phe        | Asp<br>290                       | Ser        | Val          | Ile        | Asn        | Asn<br>295 | Leu        | Asn        | Ser        | Thr        | Val<br>300 | Asn        | Asn        | Leu        | Ser        |
| Ala<br>305 | Ser                              | Gln        | Ser          | Arg        | Ile<br>310 | Gln        | Aab        | Ala        | Asp        | Tyr<br>315 | Ala        | Thr        | Glu        | Val        | Ser<br>320 |
| Asn        | Met                              | Ser        | Arg          | Ala<br>325 | Asn        | Ile        | Leu        | Gln        | Gln<br>330 | Ala        | Gly        | Thr        | Ser        | Val<br>335 | Leu        |
| Ala        | Gln                              | Ala        | Asn<br>340   | Gln        | Ser        | Thr        | Gln        | Asn<br>345 | Val        | Leu        | Ser        | Leu        | Leu<br>350 | Arg        |            |
| <21<br><21 | 0> SH<br>1> LH<br>2> TY<br>3> OH | ENGTH      | 1: 5!<br>PRT | 54         | coli       |            |            |            |            |            |            |            |            |            |            |

<400> SEQUENCE: 21

Met Ala Gln Val Ile Asn Thr Asn Ser Leu Ser Leu Ile Thr Gln Asn

-continued

|            |            |            |            |            |            |            |            |            |            |            |            | con        | tin        | ued        |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 1          |            |            |            | 5          |            |            |            |            | 10         |            |            |            |            | 15         |            |
| Asn        | Ile        | Asn        | Lys<br>20  | Asn        | Gln        | Ser        | Ala        | Leu<br>25  | Ser        | Ser        | Ser        | Ile        | Glu<br>30  | Arg        | Leu        |
| Ser        | Ser        | Gly<br>35  | Leu        | Arg        | Ile        | Asn        | Ser<br>40  | Ala        | ГЛа        | Asp        | Asp        | Ala<br>45  | Ala        | Gly        | Gln        |
| Ala        | Ile<br>50  | Ala        | Asn        | Arg        | Phe        | Thr<br>55  | Ser        | Asn        | Ile        | ГЛа        | Gly<br>60  | Leu        | Thr        | Gln        | Ala        |
| Ala<br>65  | Arg        | Asn        | Ala        | Asn        | Asp<br>70  | Gly        | Ile        | Ser        | Val        | Ala<br>75  | Gln        | Thr        | Thr        | Glu        | Gly<br>80  |
| Ala        | Leu        | Ser        | Glu        | Ile<br>85  | Asn        | Asn        | Asn        | Leu        | Gln<br>90  | Arg        | Ile        | Arg        | Glu        | Leu<br>95  | Thr        |
| Val        | Gln        | Ala        | Thr<br>100 | Thr        | Gly        | Thr        | Asn        | Ser<br>105 | Asp        | Ser        | Asp        | Leu        | Asp<br>110 | Ser        | Ile        |
| Gln        | Asp        | Glu<br>115 | Ile        | Lys        | Ser        | Arg        | Leu<br>120 | Asp        | Glu        | Ile        | Asp        | Arg<br>125 | Val        | Ser        | Gly        |
| Gln        | Thr<br>130 | Gln        | Phe        | Asn        | Gly        | Val<br>135 | Asn        | Val        | Leu        | Ser        | Lys<br>140 | Asp        | Gly        | Ser        | Met        |
| Lys<br>145 | Ile        | Gln        | Val        | Gly        | Ala<br>150 | Asn        | Asp        | Gly        | Glu        | Thr<br>155 | Ile        | Thr        | Ile        | Asp        | Leu<br>160 |
| ГЛа        | Lys        | Ile        | Asp        | Ser<br>165 | Asp        | Thr        | Leu        | Asn        | Leu<br>170 | Ala        | Gly        | Phe        | Asn        | Val<br>175 | Asn        |
| Gly        | Glu        | Gly        | Glu<br>180 | Thr        | Ala        | Asn        | Thr        | Ala<br>185 | Ala        | Thr        | Leu        | Lys        | Asp<br>190 | Met        | Val        |
| Gly        | Leu        | Lys<br>195 | Leu        | Asp        | Asn        | Thr        | Gly<br>200 | Val        | Thr        | Thr        | Ala        | Gly<br>205 | Val        | Asn        | Arg        |
| Tyr        | Ile<br>210 | Ala        | Asp        | Lys        | Ala        | Val<br>215 | Ala        | Ser        | Ser        | Thr        | Asp<br>220 | Ile        | Leu        | Asn        | Ala        |
| Val<br>225 | Ala        | Gly        | Val        | Asp        | Gly<br>230 | Ser        | Lys        | Val        | Ser        | Thr<br>235 | Glu        | Ala        | Asp        | Val        | Gly<br>240 |
| Phe        | Gly        | Ala        | Ala        | Ala<br>245 | Pro        | Gly        | Thr        | Pro        | Val<br>250 | Glu        | Tyr        | Thr        | Tyr        | His<br>255 | Lys        |
| Asp        | Thr        | Asn        | Thr<br>260 | Tyr        | Thr        | Ala        | Ser        | Ala<br>265 | Ser        | Val        | Aap        | Ala        | Thr<br>270 | Gln        | Leu        |
| Ala        | Ala        | Phe<br>275 | Leu        | Asn        | Pro        | Glu        | Ala<br>280 | Gly        | Gly        | Thr        | Thr        | Ala<br>285 | Ala        | Thr        | Val        |
| Ser        | Ile<br>290 | Gly        | Asn        | Gly        | Thr        | Thr<br>295 | Ala        | Gln        | Glu        | Gln        | Lys<br>300 | Val        | Ile        | Ile        | Ala        |
| Lys<br>305 |            | Gly        | Ser        | Leu        | Thr<br>310 |            | Ala        | Asp        | Asp        | Gly<br>315 |            | Ala        | Leu        | Tyr        | Leu<br>320 |
|            | Asp        | Thr        | Gly        | Asn<br>325 |            | Ser        | Lys        | Thr        | Asn<br>330 |            | Gly        | Thr        | Asp        | Thr<br>335 |            |
| Ala        | Lys        | Leu        | Ser<br>340 |            | Leu        | Met        | Ala        | Asn<br>345 |            | Ala        | Asn        | Ala        | Lys<br>350 |            | Val        |
| Ile        | Thr        | Thr<br>355 |            | Lys        | Gly        | Thr        | Phe<br>360 |            | Ala        | Asn        | Thr        | Thr<br>365 |            | Phe        | Asp        |
| Gly        | Val<br>370 |            | Ile        | Ser        | Val        | Asp<br>375 | Ala        | Ser        | Thr        | Phe        | Ala<br>380 |            | Ala        | Val        | Lys        |
| Asn<br>385 |            | Thr        | Tyr        | Thr        | Ala<br>390 |            | Val        | Gly        | Val        | Thr<br>395 |            | Pro        | Ala        | Thr        | Tyr<br>400 |
|            | Val        | Asn        | Asn        | -          |            | Ala        | Ala        | Ser        |            |            | Leu        | Val        | Asp        | -          |            |
|            |            |            |            | 405        |            |            |            |            | 410        |            |            |            |            | 415        |            |

Val Ser Lys Thr Pro Ala Glu Tyr Phe Ala Gln Ala Asp Gly Thr Ile Thr Ser Gly Glu Asn Ala Ala Thr Ser Lys Ala Ile Tyr Val Ser Ala Asn Gly Asn Leu Thr Thr Asn Thr Thr Ser Glu Ser Glu Ala Thr Thr Asn Pro Leu Ala Ala Leu Asp Asp Ala Ile Ala Ser Ile Asp Lys Phe Arg Ser Ser Leu Gly Ala Ile Gln Asn Arg Leu Asp Ser Ala Val Thr Asn Leu Asn Asn Thr Thr Thr Asn Leu Ser Glu Ala Gln Ser Arg Ile Gln Asp Ala Asp Tyr Ala Thr Glu Val Ser Asn Met Ser Lys Ala Gln Ile Ile Gln Gln Ala Gly Asn Ser Val Leu Ala Lys Ala Asn Gln Val Pro Gln Gln Val Leu Ser Leu Gln Gln Gly <210> SEQ ID NO 22 <211> LENGTH: 550 <212> TYPE: PRT <213> ORGANISM: S. flexneri <400> SEQUENCE: 22 Met Ala Gln Val Ile Asn Thr Asn Ser Leu Ser Leu Ile Thr Gln Asn Asn Ile Asn Lys Asn Gln Ser Ala Leu Ser Ser Ser Ile Glu Arg Leu Ser Ser Gly Leu Arg Ile Asn Ser Ala Lys Asp Asp Ala Ala Gly Gln Ala Ile Ala Asn Arg Phe Thr Ser Asn Ile Lys Gly Leu Thr Gln Ala Ala Arg Asn Ala Asn Asp Gly Ile Ser Val Ala Gln Thr Thr Glu Gly Ala Leu Ser Glu Ile Asn Asn Asn Leu Gln Arg Ile Arg Glu Leu Thr Val Gln Ala Ser Thr Gly Thr Asn Ser Asp Ser Asp Leu Asp Ser Ile Gln Asp Glu Ile Lys Ser Arg Leu Asp Glu Ile Asp Arg Val Ser Gly Gln Thr Gln Phe Asn Gly Val Asn Val Leu Ala Lys Asp Gly Ser Met Lys Ile Gl<br/>n $\operatorname{Val}$ Gly Ala As<br/>n Asp Gly Gl<br/>n Thr Ile Thr Ile Asp Leu Lys Lys Ile Asp Ser Asp Thr Leu Gly Leu Asn Gly Phe Asn Val Asn Gly Gly Gly Ala Val Ala Asn Thr Ala Ala Ser Lys Ala Asp Leu Val Ala Ala Asn Ala Thr Val Val Gly Asn Lys Tyr Thr Val Ser Ala Gly Tyr Asp Ala Ala Lys Ala Ser Asp Leu Leu Ala Gly Val Ser Asp Gly

-continued

|            |                        |                |             |             |            |            |            |            |            |            | -          | con        | tin        | ued        |            |
|------------|------------------------|----------------|-------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|            | 210                    |                |             |             |            | 215        |            |            |            |            | 220        |            |            |            |            |
| Asp<br>225 |                        | Val            | Gln         | Ala         | Thr<br>230 | Ile        | Asn        | Asn        | Gly        | Phe<br>235 | Gly        | Thr        | Ala        | Ala        | Ser<br>240 |
| Ala        | Thr                    | Asn            | Tyr         | Lys<br>245  | Tyr        | Asp        | Ser        | Ala        | Ser<br>250 | Lys        | Ser        | Tyr        | Ser        | Phe<br>255 | Asp        |
| Thr        | Thr                    | Thr            | Ala<br>260  | Ser         | Ala        | Ala        | Asp        | Val<br>265 | Gln        | Lys        | Tyr        | Leu        | Thr<br>270 | Pro        | Gly        |
| Val        | Gly                    | Asp<br>275     | Thr         | Ala         | Lys        | Gly        | Thr<br>280 | Ile        | Thr        | Ile        | Asp        | Gly<br>285 | Ser        | Ala        | Gln        |
| Asp        | Val<br>290             | Gln            | Ile         | Ser         | Ser        | Asp<br>295 | -          | Lys        | Ile        | Thr        | Ala<br>300 | Ser        | Asn        | Gly        | Asp        |
| Lys<br>305 |                        | Tyr            | Ile         | Asp         | Thr<br>310 | Thr        | Gly        | Arg        | Leu        | Thr<br>315 |            | Asn        | Gly        | Ser        | Gly<br>320 |
| Ala        | Ser                    | Leu            | Thr         | Glu<br>325  | Ala        | Ser        | Leu        | Ser        | Thr<br>330 | Leu        | Ala        | Ala        | Asn        | Asn<br>335 | Thr        |
| Lys        | Ala                    | Thr            | Thr<br>340  | Ile         | Asp        | Ile        | Gly        | Gly<br>345 |            | Ser        | Ile        | Ser        | Phe<br>350 | Thr        | Gly        |
| Asn        | Ser                    | Thr<br>355     | Thr         | Pro         | Asp        | Thr        | Ile<br>360 | Thr        | Tyr        | Ser        | Val        | Thr<br>365 | Gly        | Ala        | Гла        |
| Val        | Asp<br>370             | Gln            | Ala         | Ala         | Phe        | Asp<br>375 |            | Ala        | Val        | Ser        | Thr<br>380 | Ser        | Gly        | Asn        | Asn        |
| Val<br>385 |                        | Phe            | Thr         | Thr         | Ala<br>390 | Gly        | Tyr        | Ser        | Val        | Asn<br>395 | -          | Thr        | Thr        | Gly        | Ala<br>400 |
| Val        | Thr                    | Lys            | Gly         | Val<br>405  | Asp        | Ser        | Val        | Tyr        | Val<br>410 | Asp        | Asn        | Asn        | Glu        | Ala<br>415 | Leu        |
| Thr        | Thr                    | Ser            | Asp<br>420  | Thr         | Val        | Asp        | Phe        | Tyr<br>425 | Leu        | Gln        | Asp        | Asp        | Gly<br>430 | Ser        | Val        |
| Thr        | Asn                    | Gly<br>435     | Ser         | Gly         | Lya        | Ala        | Val<br>440 | -          | Lys        | Aap        | Ala        | Asp<br>445 | Gly        | ГЛа        | Leu        |
| Thr        | Thr<br>450             | Asp            | Ala         | Glu         | Thr        | Lys<br>455 | Ala        |            | Thr        | Thr        | Ala<br>460 | Asp        | Pro        | Leu        | Lys        |
| Ala<br>465 | Leu                    | Asp            | Glu         | Ala         | Ile<br>470 |            |            | Ile        | Asp        | Lys<br>475 | Phe        | Arg        | Ser        | Ser        | Leu<br>480 |
|            |                        | Val            | Gln         | Asn<br>485  | Arg        | Leu        | Asp        | Ser        | Ala<br>490 |            |            | Asn        | Leu        | Asn<br>495 |            |
| Thr        | Thr                    | Thr            | Asn<br>500  | Leu         | Ser        | Glu        | Ala        | Gln<br>505 | Ser        | Arg        | Ile        | Gln        | Asp<br>510 | Ala        | Asp        |
| Tyr        | Ala                    | Thr<br>515     |             |             | Ser        | Asn        | Met<br>520 |            |            | Ala        | Gln        | Ile<br>525 |            |            | Gln        |
| Ala        | Gly<br>530             |                | Ser         | Val         | Leu        | Ala<br>535 | Lys        | Ala        | Asn        | Gln        | Val<br>540 |            | Gln        | Gln        | Val        |
|            | Ser                    | Leu            | Leu         | Gln         | -          | 535        |            |            |            |            | 540        |            |            |            |            |
| 545        |                        |                |             | <b>A</b> .C | 550        |            |            |            |            |            |            |            |            |            |            |
| <21<br><21 | 0> SI<br>1> LI<br>2> T | ENGTH<br>YPE : | H: 2<br>PRT | 86          |            |            |            |            |            |            |            |            |            |            |            |
|            |                        |                |             |             | pall       | ıdum       | A          |            |            |            |            |            |            |            |            |
|            | )> SI<br>Ile           | -              |             |             | Asn        | Met        | Ser        | Ala        | Met        | Phe        | Ala        | Gln        | Arq        | Thr        | Leu        |
| 1          |                        |                |             | 5           | 11011      |            | 201        |            | 10         | 1110       |            |            |            | 15         | 204        |

| nued |
|------|
|      |

|              |                |                                  |             |           |           |            |            |            |            |            | -          | con        | tın        | ued        |            |  |  |  |  |  |
|--------------|----------------|----------------------------------|-------------|-----------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--|--|--|--|--|
| Gly          | His            | Thr                              | Asn<br>20   | Val       | Gln       | Val        | Gly        | Lys<br>25  | Gly        | Ile        | Glu        | ГЛа        | Leu<br>30  | Ser        | Ser        |  |  |  |  |  |
| Gly          | Tyr            | Arg<br>35                        | Ile         | Asn       | Arg       | Ala        | Gly<br>40  | Asp        | Asp        | Ala        | Ser        | Gly<br>45  | Leu        | Ala        | Val        |  |  |  |  |  |
| Ser          | Glu<br>50      | Lys                              | Met         | Arg       | Ser       | Gln<br>55  | Ile        | Arg        | Gly        | Leu        | Asn<br>60  | Gln        | Ala        | Ser        | Thr        |  |  |  |  |  |
| Asn<br>65    | Ala            | Ser                              | Asn         | Gly       | Val<br>70 | Asn        | Phe        | Ile        | Gln        | Val<br>75  | Thr        | Glu        | Ala        | Tyr        | Leu<br>80  |  |  |  |  |  |
| Gln          | Glu            | Thr                              | Thr         | Asp<br>85 | Ile       | Met        | Gln        | Arg        | Ile<br>90  | Arg        | Glu        | Leu        | Ala        | Ile<br>95  | Gln        |  |  |  |  |  |
| Ala          | Ala            | Asn                              | Gly<br>100  |           | Tyr       | Ser        | Ala        | Glu<br>105 | -          | Arg        | Met        | Gln        | Ile<br>110 | Gln        | Val        |  |  |  |  |  |
| Glu          | Val            | Ser<br>115                       |             |           | Val       | Ala        | Glu<br>120 |            |            | Arg        | Ile        | Ala<br>125 |            | Ser        | Ala        |  |  |  |  |  |
| Gln          | Phe<br>130     | Asn                              | Gly         | Met       | Asn       | Leu<br>135 |            | Thr        | Gly        | Arg        | Phe<br>140 |            | Arg        | Thr        | Glu        |  |  |  |  |  |
|              | Glu            | Asn                              | Val         | Ile       | -         | Gly        | Ser        | Met        | Trp        |            | His        | Ile        | Gly        | Ala        |            |  |  |  |  |  |
| 145<br>Met   |                | Gln                              | Arg         |           | -         |            | Tyr        | Ile        | -          | 155<br>Thr |            | Thr        | Ala        |            | 160<br>Ala |  |  |  |  |  |
| Leu          | Gly            | Val                              |             |           |           | Val        | Asp        |            | 170<br>Ser | Ile        | Met        | Ser        |            | 175<br>Glu | Thr        |  |  |  |  |  |
| Ala          | Asp            | Ser                              | 180<br>Ala  |           | Lys       | Ser        |            | 185<br>Gly | Thr        | Ile        | Asp        |            | 190<br>Ala | Leu        | Lys        |  |  |  |  |  |
| Arg          | Ile            | 195<br>Asn                       | Lys         | Gln       | Arg       | Ala        | 200<br>Asp | Leu        | Gly        | Gly        | Tyr        | 205<br>Gln | Asn        | Arg        | Met        |  |  |  |  |  |
| Glu          | 210<br>Tvr     | Thr                              | Val         | Val       | Glv       | 215<br>Leu | Asp        | Ile        | Ala        | Ala        | 220<br>Glu | Asn        | Leu        | Gln        | Ala        |  |  |  |  |  |
| 225          | -              | Ser                              |             |           | 230       |            | _          |            |            | 235        |            |            |            |            | 240        |  |  |  |  |  |
|              |                |                                  | _           | 245       | -         |            |            |            | 250        |            | -          |            |            | 255        |            |  |  |  |  |  |
| -            |                | Lys                              | 260         |           |           |            |            | 265        |            | -          |            |            | 270        | Бец        | AId        |  |  |  |  |  |
| GIn          | Ala            | Asn<br>275                       | Thr         | Ser       | AIa       | GIn        | Ser<br>280 |            | Leu        | Ser        | lle        | Leu<br>285 | Arg        |            |            |  |  |  |  |  |
| <213<br><212 | 1> L1<br>2> T1 | EQ II<br>ENGTH<br>YPE :<br>RGANI | ł: 2<br>PRT | 86        | pall:     | iduml      | в          |            |            |            |            |            |            |            |            |  |  |  |  |  |
| <400         | 0> SI          | EQUEI                            | ICE :       | 24        |           |            |            |            |            |            |            |            |            |            |            |  |  |  |  |  |
| Met<br>1     | Ile            | Ile                              | Asn         | His<br>5  | Asn       | Met        | Ser        | Ala        | Met<br>10  | Phe        | Ala        | Gln        | Arg        | Thr<br>15  | Leu        |  |  |  |  |  |
| Gly          | Asn            | Thr                              | Asn<br>20   | Leu       | Ser       | Val        | Gln        | Lys<br>25  | Asn        | Met        | Glu        | Lys        | Leu<br>30  | Ser        | Ser        |  |  |  |  |  |
| Gly          | Leu            | Arg<br>35                        | Ile         | Asn       | Arg       | Ala        | Gly<br>40  | Asp        | Asp        | Ala        | Ser        | Gly<br>45  | Leu        | Ala        | Val        |  |  |  |  |  |
| Ser          | Glu<br>50      | Lys                              | Met         | Arg       | Ser       | Gln<br>55  | Ile        | Arg        | Gly        | Leu        | Asn<br>60  | Gln        | Ala        | Ser        | Thr        |  |  |  |  |  |
| Asn<br>65    | Ala            | Gln                              | Asn         | Gly       | Ile<br>70 | Ser        | Phe        | Ile        | Gln        | Val<br>75  | Ala        | Glu        | Ser        | Tyr        | Leu<br>80  |  |  |  |  |  |
| Gln          | Glu            | Thr                              | Thr         | Asp<br>85 | Val       | Ile        | Gln        | Arg        | Ile<br>90  | Arg        | Glu        | Leu        | Ser        | Val<br>95  | Gln        |  |  |  |  |  |
|              |                |                                  |             |           |           |            |            |            |            |            |            |            |            |            |            |  |  |  |  |  |

| Ser                                                                                             | Ala                                                                                           | Asn                                                                                                | Gly<br>100                                                                                               | Ile                                                                                  | Tyr                                                               | Ser                                                                      | Ala                                                                      | Glu<br>105                                                        | Asp                                                       | Arg                                                        | Met                                                               | Tyr                                                               | Ile<br>110                                                        | Gln                                                              | Val                                                        |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|
| Glu                                                                                             | Val                                                                                           | Ser<br>115                                                                                         | Gln                                                                                                      | Leu                                                                                  | Val                                                               | Ala                                                                      | Glu<br>120                                                               | Ile                                                               | Asp                                                       | Arg                                                        | Ile                                                               | Ala<br>125                                                        | Ser                                                               | His                                                              | Ala                                                        |
| Gln                                                                                             | Phe<br>130                                                                                    | Asn                                                                                                | Gly                                                                                                      | Met                                                                                  | Asn                                                               | Met<br>135                                                               | Leu                                                                      | Thr                                                               | Gly                                                       | Arg                                                        | Phe<br>140                                                        | Ala                                                               | Arg                                                               | Glu                                                              | Thr                                                        |
| Gly<br>145                                                                                      | Glu                                                                                           | Asn                                                                                                | Thr                                                                                                      | Val                                                                                  | Thr<br>150                                                        | Ala                                                                      | Ser                                                                      | Met                                                               | Trp                                                       | Phe<br>155                                                 | His                                                               | Ile                                                               | Gly                                                               | Ala                                                              | Asn<br>160                                                 |
| Met                                                                                             | Asp                                                                                           | Gln                                                                                                | Arg                                                                                                      | Thr<br>165                                                                           | Arg                                                               | Ala                                                                      | Tyr                                                                      | Ile                                                               | Gly<br>170                                                | Thr                                                        | Met                                                               | Thr                                                               | Ala                                                               | Ala<br>175                                                       | Ala                                                        |
| Leu                                                                                             | Gly                                                                                           | Val                                                                                                | Arg<br>180                                                                                               | Asp                                                                                  | Val                                                               | Gly                                                                      | Asp                                                                      | Glu<br>185                                                        | Ser                                                       | Ile                                                        | Leu                                                               | Asn                                                               | Ile<br>190                                                        | Asp                                                              | Asp                                                        |
| Pro                                                                                             | Glu                                                                                           | Lys<br>195                                                                                         | Ala                                                                                                      | Asn                                                                                  | Arg                                                               | Ala                                                                      | Ile<br>200                                                               | Gly                                                               | Thr                                                       | Leu                                                        | Asp                                                               | Glu<br>205                                                        | Ala                                                               | Ile                                                              | Гла                                                        |
| Гла                                                                                             | Ile<br>210                                                                                    | Asn                                                                                                | Lys                                                                                                      | Gln                                                                                  | Arg                                                               | Ala<br>215                                                               | Asp                                                                      | Leu                                                               | Gly                                                       | Ala                                                        | Tyr<br>220                                                        | Gln                                                               | Asn                                                               | Arg                                                              | Leu                                                        |
| Glu<br>225                                                                                      | Tyr                                                                                           | Thr                                                                                                | Val                                                                                                      | Ile                                                                                  | Gly<br>230                                                        | Val                                                                      | Asn                                                                      | Val                                                               | Ala                                                       | Ala<br>235                                                 | Glu                                                               | Asn                                                               | Leu                                                               | Gln                                                              | Ala<br>240                                                 |
| Ala                                                                                             | Glu                                                                                           | Ser                                                                                                | Arg                                                                                                      | Ile<br>245                                                                           | Arg                                                               | Asp                                                                      | Val                                                                      | Asp                                                               | Met<br>250                                                | Ala                                                        | Lys                                                               | Glu                                                               | Met                                                               | Val<br>255                                                       | Aap                                                        |
| Tyr                                                                                             | Thr                                                                                           | Lys                                                                                                | Asn<br>260                                                                                               | Gln                                                                                  | Ile                                                               | Leu                                                                      | Val                                                                      | Gln<br>265                                                        | Ser                                                       | Gly                                                        | Thr                                                               | Ala                                                               | Met<br>270                                                        | Leu                                                              | Ala                                                        |
| Gln                                                                                             | Ala                                                                                           | Asn<br>275                                                                                         | Gln                                                                                                      | Ala                                                                                  | Thr                                                               | Gln                                                                      | Ser<br>280                                                               | Val                                                               | Leu                                                       | Ser                                                        | Leu                                                               | Leu<br>285                                                        | Arg                                                               |                                                                  |                                                            |
| -210                                                                                            | )> SH                                                                                         | EQ II                                                                                              | O NO                                                                                                     | 25                                                                                   |                                                                   |                                                                          |                                                                          |                                                                   |                                                           |                                                            |                                                                   |                                                                   |                                                                   |                                                                  |                                                            |
| <213<br><213                                                                                    | L> LH<br>2> TY<br>3> OF                                                                       | YPE :                                                                                              | H: 28<br>PRT                                                                                             | 33                                                                                   | pneur                                                             | noph:                                                                    | ila                                                                      |                                                                   |                                                           |                                                            |                                                                   |                                                                   |                                                                   |                                                                  |                                                            |
| <21:<br><21:<br><21:                                                                            | 2> TY                                                                                         | YPE :<br>RGANI                                                                                     | H: 28<br>PRT<br>ISM:                                                                                     | 33<br>L. <u>F</u>                                                                    | oneur                                                             | noph:                                                                    | ila                                                                      |                                                                   |                                                           |                                                            |                                                                   |                                                                   |                                                                   |                                                                  |                                                            |
| <211<br><212<br><213<br><400                                                                    | 2> T)<br>3> OF                                                                                | YPE :<br>RGANI<br>EQUEN                                                                            | H: 28<br>PRT<br>ISM:<br>NCE:                                                                             | 33<br>L. <u>1</u><br>25                                                              |                                                                   |                                                                          |                                                                          | Ala                                                               | Val<br>10                                                 | Asn                                                        | Ala                                                               | His                                                               | Arg                                                               | Ser<br>15                                                        | Leu                                                        |
| <211<br><211<br><211<br><211<br><400<br>Met<br>1                                                | 2> T)<br>3> OF<br>0> SF                                                                       | YPE:<br>RGANI<br>EQUEN<br>Ile                                                                      | H: 28<br>PRT<br>ISM:<br>NCE:<br>Asn                                                                      | 33<br>L. <u>P</u><br>25<br>His<br>5                                                  | Asn                                                               | Leu                                                                      | Ser                                                                      |                                                                   | 10                                                        |                                                            |                                                                   |                                                                   | -                                                                 | 15                                                               |                                                            |
| <21:<br><21:<br><21:<br><400<br>Met<br>1<br>Lys                                                 | 2> TY<br>3> OF<br>D> SH<br>Ile                                                                | YPE:<br>RGANI<br>EQUEN<br>Ile<br>Asn                                                               | H: 28<br>PRT<br>ISM:<br>NCE:<br>Asn<br>Glu<br>20                                                         | 33<br>L. <u>1</u><br>25<br>His<br>5<br>Leu                                           | Asn<br>Ala                                                        | Leu<br>Val                                                               | Ser<br>Asp                                                               | Lys<br>25                                                         | 10<br>Thr                                                 | Met                                                        | Гла                                                               | Ala                                                               | Leu<br>30                                                         | 15<br>Ser                                                        | Ser                                                        |
| <21:<br><21:<br><21:<br><400<br>Met<br>1<br>Lys<br>Gly                                          | 2> TY<br>3> OF<br>D> SF<br>Ile<br>Phe                                                         | YPE:<br>RGANI<br>EQUEN<br>Ile<br>Asn<br>Arg<br>35                                                  | H: 28<br>PRT<br>ISM:<br>NCE:<br>Asn<br>Glu<br>20<br>Ile                                                  | 33<br>L. p<br>25<br>His<br>5<br>Leu<br>Asn                                           | Asn<br>Ala<br>Ser                                                 | Leu<br>Val<br>Ala                                                        | Ser<br>Asp<br>Ala<br>40                                                  | Lys<br>25<br>Asp                                                  | 10<br>Thr<br>Asp                                          | Met<br>Ala                                                 | Lys<br>Ser                                                        | Ala<br>Gly<br>45                                                  | Leu<br>30<br>Leu                                                  | 15<br>Ser<br>Ala                                                 | Ser<br>Val                                                 |
| <21:<br><21:<br><21:<br><400<br>Met<br>1<br>Lys<br>Gly<br>Ser                                   | 2> TY<br>3> OF<br>D> SE<br>Ile<br>Phe<br>Met<br>Glu                                           | YPE:<br>GANJ<br>EQUEN<br>Ile<br>Asn<br>Arg<br>35<br>Lys                                            | H: 28<br>PRT<br>ISM:<br>NCE:<br>Asn<br>Glu<br>20<br>Ile<br>Leu                                           | L. 1<br>25<br>His<br>Leu<br>Asn<br>Arg                                               | Asn<br>Ala<br>Ser<br>Thr                                          | Leu<br>Val<br>Ala<br>Gln<br>55                                           | Ser<br>Asp<br>Ala<br>40<br>Val                                           | Lys<br>25<br>Asp<br>Asn                                           | 10<br>Thr<br>Asp<br>Gly                                   | Met<br>Ala<br>Leu                                          | Lys<br>Ser<br>Arg<br>60                                           | Ala<br>Gly<br>45<br>Gln                                           | Leu<br>30<br>Leu<br>Ala                                           | 15<br>Ser<br>Ala<br>Glu                                          | Ser<br>Val<br>Arg                                          |
| <211<br><212<br><211<br><400<br>Met<br>1<br>Lys<br>Gly<br>Ser<br>Asn<br>65                      | 2> TY<br>3> OF<br>D> SF<br>Ile<br>Phe<br>Met<br>Glu<br>50                                     | (PE:<br>RGANJ<br>EQUEN<br>Ile<br>Asn<br>Arg<br>35<br>Lys<br>Glu                                    | H: 28<br>PRT<br>ISM:<br>JCE:<br>Asn<br>Glu<br>20<br>Ile<br>Leu<br>Asp                                    | L. 1<br>25<br>His<br>5<br>Leu<br>Asn<br>Arg<br>Gly                                   | Asn<br>Ala<br>Ser<br>Thr<br>Met<br>70                             | Leu<br>Val<br>Ala<br>Gln<br>55<br>Ser                                    | Ser<br>Asp<br>Ala<br>40<br>Val<br>Phe                                    | Lys<br>25<br>Asp<br>Asn<br>Ile                                    | 10<br>Thr<br>Asp<br>Gly<br>Gln                            | Met<br>Ala<br>Leu<br>Thr<br>75                             | Lys<br>Ser<br>Arg<br>60<br>Ala                                    | Ala<br>Gly<br>45<br>Gln<br>Glu                                    | Leu<br>30<br>Leu<br>Ala<br>Gly                                    | 15<br>Ser<br>Ala<br>Glu<br>Phe                                   | Ser<br>Val<br>Arg<br>Leu<br>80                             |
| <211<br><212<br><213<br><400<br>Met<br>1<br>Lys<br>Gly<br>Ser<br>Asn<br>65<br>Glu               | 2> TY<br>3> OF<br>Ile<br>Phe<br>Met<br>Glu<br>50<br>Thr                                       | YPE:<br>CGANJ<br>EQUEN<br>Ile<br>Asn<br>Arg<br>35<br>Lys<br>Glu<br>Thr                             | H: 28<br>PRT<br>ISM:<br>JCE:<br>Asn<br>Glu<br>20<br>Ile<br>Leu<br>Asp<br>Ser                             | L. P<br>25<br>His<br>5<br>Leu<br>Asn<br>Arg<br>Gly<br>Asn<br>85                      | Asn<br>Ala<br>Ser<br>Thr<br>Met<br>70<br>Ile                      | Leu<br>Val<br>Ala<br>Gln<br>55<br>Ser<br>Ile                             | Ser<br>Asp<br>Ala<br>40<br>Val<br>Phe<br>Gln                             | Lys<br>25<br>Asp<br>Asn<br>Ile<br>Arg                             | 10<br>Thr<br>Asp<br>Gly<br>Gln<br>Ile<br>90               | Met<br>Ala<br>Leu<br>Thr<br>75<br>Arg                      | Lys<br>Ser<br>Arg<br>60<br>Ala<br>Val                             | Ala<br>Gly<br>45<br>Gln<br>Glu<br>Leu                             | Leu<br>30<br>Leu<br>Ala<br>Gly<br>Ala                             | 15<br>Ser<br>Ala<br>Glu<br>Phe<br>Ile<br>95                      | Ser<br>Val<br>Arg<br>Leu<br>80<br>Gln                      |
| <211<br><212<br><212<br><400<br>Met<br>1<br>Lys<br>Gly<br>Ser<br>Asn<br>65<br>Glu<br>Thr        | 2> TY<br>3> OF<br>D> SE<br>Ile<br>Phe<br>Met<br>Glu<br>50<br>Thr<br>Gln                       | YPE:<br>RGANJ<br>EQUEN<br>Ile<br>Asn<br>Arg<br>35<br>Lys<br>Glu<br>Thr<br>Asn                      | H: 28<br>PRT<br>ISM:<br>VCE:<br>Asn<br>Glu<br>20<br>Ile<br>Leu<br>Asp<br>Ser<br>Gly<br>100               | L. 1<br>25<br>His<br>5<br>Leu<br>Asn<br>Gly<br>Asn<br>85<br>Ile                      | Asn<br>Ala<br>Ser<br>Thr<br>Met<br>70<br>Ile<br>Tyr               | Leu<br>Val<br>Ala<br>Gln<br>55<br>Ser<br>Ile<br>Ser                      | Ser<br>Asp<br>Ala<br>40<br>Val<br>Phe<br>Gln<br>Asn                      | Lys<br>25<br>Asp<br>Asn<br>Ile<br>Arg<br>Glu<br>105               | 10<br>Thr<br>Asp<br>Gly<br>Gln<br>Ile<br>90<br>Asp        | Met<br>Ala<br>Leu<br>Thr<br>75<br>Arg<br>Arg               | Lys<br>Ser<br>Arg<br>60<br>Ala<br>Val<br>Gln                      | Ala<br>Gly<br>45<br>Gln<br>Glu<br>Leu<br>Leu                      | Leu<br>30<br>Leu<br>Ala<br>Gly<br>Ala<br>Val<br>110               | 15<br>Ser<br>Ala<br>Glu<br>Phe<br>Jle<br>95<br>Gln               | Ser<br>Val<br>Arg<br>Leu<br>80<br>Gln<br>Val               |
| <211<br><211<br><211<br><400<br>Met<br>1<br>Lys<br>Gly<br>Ser<br>Asn<br>65<br>Glu<br>Thr<br>Glu | 2> TY<br>3> OF<br>Ile<br>Phe<br>Met<br>Glu<br>50<br>Thr<br>Gln<br>Ser                         | YPE:<br>(RGAN)<br>EQUEN<br>Ile<br>Asn<br>Arg<br>35<br>Lys<br>Glu<br>Thr<br>Asn<br>Ser<br>115       | H: 28<br>PRT<br>ISM:<br>VCE:<br>Asn<br>Glu<br>20<br>Ile<br>Leu<br>Asp<br>Ser<br>Gly<br>100<br>Ala        | L. I<br>25<br>His<br>5<br>Leu<br>Asn<br>Gly<br>Asn<br>85<br>Ile<br>Leu               | Asn<br>Ala<br>Ser<br>Thr<br>Met<br>70<br>Ile<br>Tyr<br>Val        | Leu<br>Val<br>Ala<br>Gln<br>55<br>Ser<br>Ile<br>Ser<br>Asp               | Ser<br>Asp<br>Ala<br>40<br>Val<br>Phe<br>Gln<br>Asn<br>Glu<br>120        | Lys<br>25<br>Asp<br>Asn<br>Ile<br>Arg<br>Glu<br>105<br>Val        | 10<br>Thr<br>Asp<br>Gly<br>Gln<br>Jle<br>90<br>Asp<br>Asp | Met<br>Ala<br>Leu<br>Thr<br>75<br>Arg<br>Arg<br>Arg        | Lys<br>Ser<br>Arg<br>60<br>Ala<br>Val<br>Gln<br>Ile               | Ala<br>Gly<br>45<br>Gln<br>Glu<br>Leu<br>Leu<br>Ala<br>125        | Leu<br>30<br>Leu<br>Ala<br>Gly<br>Ala<br>Val<br>110<br>Ser        | 15<br>Ser<br>Ala<br>Glu<br>Phe<br>Jle<br>95<br>Gln<br>Gln        | Ser<br>Val<br>Arg<br>Leu<br>80<br>Gln<br>Val<br>Ala        |
| <211<br><211<br><400<br>Met<br>1<br>Lys<br>Gly<br>Ser<br>Asn<br>65<br>Glu<br>Thr<br>Glu<br>Glu  | 2> TY<br>3> OF<br>0D> SF<br>11e<br>Phe<br>Met<br>Glu<br>50<br>Thr<br>Gln<br>Ser<br>Val<br>Phe | (PE:<br>(GAN)<br>EQUEN<br>Ile<br>Asn<br>Arg<br>35<br>Lys<br>Glu<br>Thr<br>Asn<br>Ser<br>115<br>Asn | H: 28<br>PRT<br>(SM:<br>VCE:<br>Asn<br>Glu<br>20<br>Ile<br>Leu<br>Asp<br>Ser<br>Gly<br>100<br>Ala<br>Lys | L. H<br>25<br>His<br>5<br>Leu<br>Asn<br>Arg<br>Gly<br>Asn<br>85<br>Ile<br>Leu<br>Phe | Asn<br>Ala<br>Ser<br>Thr<br>Met<br>70<br>Ile<br>Tyr<br>Val<br>Lys | Leu<br>Val<br>Ala<br>Gln<br>55<br>Ser<br>Ile<br>Ser<br>Asp<br>Leu<br>135 | Ser<br>Asp<br>Ala<br>40<br>Val<br>Phe<br>Gln<br>Asn<br>Glu<br>120<br>Phe | Lys<br>25<br>Asp<br>Asn<br>Ile<br>Arg<br>Glu<br>105<br>Val<br>Glu | 10<br>Thr<br>Asp<br>Gly<br>Gln<br>Ile<br>90<br>Asp<br>Gly | Met<br>Ala<br>Leu<br>Thr<br>75<br>Arg<br>Arg<br>Arg<br>Gln | Lys<br>Ser<br>Arg<br>60<br>Ala<br>Val<br>Gln<br>Ile<br>Phe<br>140 | Ala<br>Gly<br>45<br>Gln<br>Glu<br>Leu<br>Leu<br>Ala<br>125<br>Ala | Leu<br>30<br>Leu<br>Ala<br>Gly<br>Ala<br>Val<br>110<br>Ser<br>Arg | 15<br>Ser<br>Ala<br>Glu<br>Phe<br>Jle<br>95<br>Gln<br>Gln<br>Gly | Ser<br>Val<br>Arg<br>Leu<br>80<br>Gln<br>Val<br>Ala<br>Ser |

-continued

|                      |            |            |            |            |            |            |            |            |            |            | con        | tin        | ued        |            |
|----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                      |            |            | 165        |            |            |            |            | 170        |            |            |            |            | 175        |            |
| Lys Ala              | Asp        | Gly<br>180 | Arg        | Pro        | Ile        | Ala        | Ile<br>185 | Ser        | Ser        | Pro        | Gly        | Glu<br>190 | Ala        | Asn        |
| Asp Val              | Ile<br>195 | Gly        | Leu        | Ala        | Asp        | Ala<br>200 |            | Leu        | Thr        | Lys        | Ile<br>205 |            | Lys        | Gln        |
| Arg Ala<br>210       | _          | Met        | Gly        | Ala        | Tyr<br>215 |            | Asn        | Arg        | Leu        | Glu<br>220 | Tyr        | Thr        | Ala        | Lys        |
| Gly Leu<br>225       | Met        | Gly        | Ala        | Tyr<br>230 | Glu        | Asn        | Met        | Gln        | Ala<br>235 | Ser        | Glu        | Ser        | Arg        | Ile<br>240 |
| Arg Asp              | Ala        | Asp        | Met<br>245 |            | Glu        | Glu        | Val        | Val<br>250 | Ser        | Leu        | Thr        | Thr        | Lys<br>255 | Gln        |
| Ile Leu              | Val        | Gln<br>260 |            |            | Thr        | Ala        | Met<br>265 |            | Ala        | Arg        | Ala        | Asn<br>270 |            | Lys        |
| Pro Asn              | Ser<br>275 |            | Leu        | Lys        | Leu        | Leu<br>280 | Gln        | His        | Ile        |            |            | 270        |            |            |
|                      | 275        |            |            |            |            | 200        |            |            |            |            |            |            |            |            |
| <210> SH<br><211> LH |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| <212> TY<br><213> OF |            |            | в. 1       | burg       | dorf       | erei       |            |            |            |            |            |            |            |            |
| <400> SH             | equei      | ICE :      | 26         |            |            |            |            |            |            |            |            |            |            |            |
| Met Ile<br>1         | Ile        | Asn        | His<br>5   | Asn        | Thr        | Ser        | Ala        | Ile<br>10  | Asn        | Ala        | Ser        | Arg        | Asn<br>15  | Asn        |
| Gly Ile              | Asn        | Ala<br>20  | Ala        | Asn        | Leu        | Ser        | Lys<br>25  | Thr        | Gln        | Glu        | Lys        | Leu<br>30  | Ser        | Ser        |
| Gly Tyr              | Arg<br>35  | Ile        | Asn        | Arg        | Ala        | Ser<br>40  | Asp        | Asp        | Ala        | Ala        | Gly<br>45  | Met        | Gly        | Val        |
| Ser Gly<br>50        | Lys        | Ile        | Asn        | Ala        | Gln<br>55  | Ile        | Arg        | Gly        | Leu        | Ser<br>60  | Gln        | Ala        | Ser        | Arg        |
| Asn Thr<br>65        | Ser        | Lys        | Ala        | Ile<br>70  | Asn        | Phe        | Ile        | Gln        | Thr<br>75  | Thr        | Glu        | Gly        | Asn        | Leu<br>80  |
| Asn Glu              | Val        | Glu        | Lys<br>85  | Val        | Leu        | Val        | Arg        | Met<br>90  | Lys        | Glu        | Leu        | Ala        | Val<br>95  | Gln        |
| Ser Gly              | Asn        | Gly<br>100 | Thr        | Tyr        | Ser        | Asp        | Ala<br>105 | Asp        | Arg        | Gly        | Ser        | Ile<br>110 | Gln        | Ile        |
| Glu Ile              | Glu<br>115 | Gln        | Leu        | Thr        | Asp        | Glu<br>120 |            | Asn        | Arg        | Ile        | Ala<br>125 | -          | Gln        | Ala        |
| Gln Tyr<br>130       |            | Gln        | Met        | His        | Met<br>135 |            | Ser        | Asn        | Lys        | Ser<br>140 | Ala        | Ser        | Gln        | Asn        |
| Val Arg<br>145       |            | Ala        | Glu        | Glu<br>150 | Leu        |            | Met        | Gln        | Pro<br>155 | Ala        | Lys        | Ile        | Asn        | Thr<br>160 |
| Pro Ala              | Ser        | Leu        | Ser<br>165 |            | Ser        | Gln        | Ala        | Ser<br>170 |            | Thr        | Leu        | Arg        | Val<br>175 | His        |
| Val Gly              | Ala        | Asn<br>180 | Gln        | Asp        | Glu        | Ala        | Ile<br>185 | Ala        | Val        | Asn        | Ile        | Tyr<br>190 |            | Ala        |
| Asn Val              | Ala<br>195 | Asn        | Leu        | Phe        | Ser        | Gly<br>200 |            | Gly        | Ala        | Gln        | Ala<br>205 |            | Gln        | Thr        |
| Ala Pro<br>210       |            | Gln        | Glu        | Gly        | Ala<br>215 |            | Gln        | Glu        | Gly        | Ala<br>220 | Gln        | Gln        | Pro        | Ala        |
| Pro Val<br>225       | Thr        | Ala        | Pro        | Ser<br>230 | Gln        | Gly        | Gly        | Val        | Asn<br>235 |            | Pro        | Val        | Asn        | Val<br>240 |
|                      |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

| The The The Val Age Ala Age Ala See Int: See Lev Ala Lye Ile Glu Age Ala Age Ala Age Clu $_{255}^{250}$ Ala See The Glu $_{256}^{250}$ Ala See Ile Lye Age Gee The Glu $_{256}^{250}$ Ala Ile Glu Age Lev Glu Age Gee The Glu $_{265}^{250}$ Ala Ile Glu Age Lev Glu Age Gee The Glu $_{265}^{250}$ Ala The Age Glu Val $_{290}^{250}$ Ala See Tye Ala Glu Ile Lye Age Ala The Mee The Age Glu Val $_{290}^{250}$ Ala Ala The The Age Glu The Glu Tye Ala Glu Ala Mee Ilev $_{315}^{250}$ Ala Mee Ala Mee Ilev $_{10}^{250}$ Ala Mee Ala Glu Lye Mee Ilev $_{10}^{250}$ Ala Mee Ala Glu Lye Mee Ala Ala Glu Ala Ala Glu Ala Ala Clu Lye Mee Ala Glu Jlev Glu Mee Ala See Lye $_{50}^{60}$ Ala Glu Age Mee Arg Gly Glu Ile Arg Gly Lev Glu Mee Ala See Lye $_{50}^{60}$ Ala Glu Age Mee Ala Ile Arg Glu Hee Glu Mee Ala See Lye $_{50}^{60}$ Ala Glu Age Mee Ala Ile Arg Glu Hee Glu Mee Ala See Lye $_{50}^{60}$ Ala Glu Age Mee Ala Ile Arg Glu Hee Glu Mee Ala See Lye $_{50}^{60}$ Ala Glu Age Glu The His Ala Ile Lev Glu Arg Glu Lev Val Val Glu $_{50}^{90}$ Ala Glu Age Glu The His Ala Ile Lev Glu Arg Glu Hee Age Glu Jle Elev Ile Glu Arg Glu Lev Val Val Glu $_{50}^{90}$ Ala Glu An The Glu The Glu Age Lye Lye Lev Lev Arg Gly Glu Ile Arg Glu Glu Jle Hee $_{100}^{110}$ Ala Ane Ala The Clu Ile Arg Gly Glu Ile Arg Glu Glu Jle Hee $_{100}^{110}$ Ala Ane Ala The Clu Ile Arg Glu See Ilev Arg Glu Glu Ala $_{120}^{110}$ Ala Ane Ala The Clu Arg Glu Ase Arg Gly See Ile Ala Ala Arg Mee Ala Ala Arg $_{110}^{110}$ Ala Ane Ala The Clu Arg Val Arg Glu See Ilev Arg $_{110}^{110}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |       |       |      |     |      |      |     |     |     |     |     |     |     |     |     |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|------|-----|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|
| 260265270Arg Leu Clu Ser IIe Lye Aep Ser Thr Glu Tyr Ala 1le Glu Aem Leu<br>280285Lye Ala Ser Tyr Ala Gln IIe Lye Aep Ala Thr Met Thr Aep Glu Val<br>290Val Ala Ala Thr Thr Aon Ser IIe Leu Thr Cln Ser Ala Met Ala Met<br>315305Val Ala Ala Thr Thr Aon Ser IIe Leu Thr Cln Ser Ala Met Ala Met<br>32011e Ala Gln Ala Aem Gln Val Pro Gln Tyr Val Leu Ser Leu Leu Arg<br>3232210 SEQ ID NO 27<br>2211: LEMTRH: 304<br>2212: STPE: PET<br>2213 ORGANISM: B. subtlue<400> SEQUENCE: 27Met Arg IIe Aon His Aen IIe Ala Ala Leu Aen Thr Leu Aen Arg Leu<br>11Ser Ser An Aon Ser Ala Ser Gln Lye Aen Met Glu Lye Leu Ser Ser<br>20201 Leu Arg IIe Aen Arg Ala Gly Aep Aen Ala Ala Gly Leu Ala IIe<br>405Ser Glu Lye Met Arg Gly Gln IIe Arg Gly Leu Glu Met Ala Ser Lye<br>55Aem Ser Gln Aep Gly IIe Ser Leu IIe Gln Thr Ala Glu Gly Ala Leu<br>75Ala Gly Aen Thr Glu Thr Gln Aep Lye Ala Thr Aep Leu Gln Ser IIe<br>100Gln Aep Glu IIe Ser Ala Leu Thr Apg Glu Leu Val Val Gln<br>95Ala Gly Aen Thr Glu Thr Gln Aep Lye Aen Leu Aep Gly Thr Tyr Lye Val<br>135Arg Thr Glu Phe Aen Gly Lye Lye Leu Leu Apg Gly Thr Tyr Lye Val<br>136136Arg Thr Ala Thr Pro Ala Aen Gln Lye Aen Leu Val Phe Gln IIe Gly<br>145Ang Thr Ala Thr Pro Ala Aen Gln Lye Aen Leu Val Phe Gln IIe Gly<br>145Aep Ala Leu Gly Thr Lye Glu Ala Apg Gly Ser IIe Ala Ala Ala App<br>150Ang Thr Ala Thr Pro Ala Aen Gln Lye Aen Leu Yal Val Aep<br>160Ala Aen Ala Thr Glu Glu Ala Apg Gly Ser IIe Ala Ala Ala App<br>150Ala Ann Ala Thr Glu Glu Ala Apg Gly Ser IIe Ala Ala Aep<br>150Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Thr  | Thr   | Thr   | Val  |     | Ala  | Asn  | Thr | Ser |     | Ala | Lys | Ile | Glu |     | Ala |  |  |
| Lyg Ala Ser Tyr Ala Ghn The Lyg Asp Ala Thr Met Thr Asp Glu Val<br>295Val Ala Ser Tyr Ala Ghn The Lyg Asp Ala Thr Met Thr Asp Glu Val<br>295Val Ala Ala Thr Thr Asn Ser He Leu Thr Gln Ser Ala Met Ala Met<br>32511e Ala Gln Ala Asm Gln Val Pro Gln Tyr Val Leu Ser Leu Leu Arg<br>325*210> SEQ ID NO 27<br>*211> LENGTH: 304*212> TYPE RFT<br>*212> GRGANISM: B. subtilue*400> SEQUENCE: 27Met Arg He Asn Asp Ser Ala Ser Gln Lyg Asn Met Glu Lyg Leu Ser Ser<br>20Gly Leu Arg He Asn Arg Ala Gly Asp Asp Ala Ala Gly Leu Ala He<br>40Ser Ser Asn Asn Ser Ala Ser Gln Lyg Asn Met Glu Lyg Leu Ser Ser<br>20Gly Leu Arg He Asn Arg Gly Gln He Arg Gly Leu Glu Met Ala Ser Lyg<br>50Ser Glu Lyg Met Arg Gly Glu He Arg Gly Leu Glu Met Ala Ser Lyg<br>50Asn Ser Gln Asp Gly The Ser Leu He Gln Thr Ala Glu Gly Ala Leu<br>7061 Asp Glu Thr Gln Asp Gly Thr Glu Asp Glu Leu Val Val<br>125Ala Glu Asn Thr Gly Thr Gln Asp Lyg Ala Thr Asp Leu Gln Ser He<br>110Gln Asp Glu Thr Glu Thr Gln Asp Lyg Ala Thr Asp Leu Gln Ser He<br>125Ang Thr Glu Phe Asn Gly Lyg Lyg Leu Leu Asp Gly Thr Tyr Lyg Val<br>135Asp Thr Ala Thr Pro Ala Asn Glu Lyg Asn Leu Val Phe Gln He Gly<br>145Asp Ala Leu Gly Jie Lyg Glu Ala Asp Gly Ser Tie Ala Ala Leu His<br>180Ser Val Asn Asp Leu Asp Val Thr Lyg Phe Ala Asp Asm Ala Ala Asp<br>200Asp Ala Leu Gly The Var Thry Var Phe Ala Asp Asm Ala Ala Asp<br>200Asp Ala Leu Gly The Karp Ala Glu Leu Ser Glu Asp<br>200Asp Ala Leu Glu Fie Far Ala Chu Phe Ala Asp Asm Ala Ala Asp<br>200Asp Ala Leu Gly The Mar Ala Ala Lyg Clu Asp Clu Ala<br>210Asp Ala Leu Gly The Mar Ala Chu Cyg Lya Lau Glu Ala<br><td>Ile</td> <td>Arg</td> <td>Met</td> <td></td> <td>Ser</td> <td>Asp</td> <td>Gln</td> <td>Arg</td> <td></td> <td>Asn</td> <td>Leu</td> <td>Gly</td> <td>Ala</td> <td></td> <td>Gln</td> <td>Asn</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ile  | Arg   | Met   |      | Ser | Asp  | Gln  | Arg |     | Asn | Leu | Gly | Ala |     | Gln | Asn |  |  |
| 290295300Val Ala Ala Thr Thr Am Ser Ile Leu Thr Gln Ser Ala Met Ala Met Ala Met Ala Met Ala And Thr Thr Am Ser Ile Leu Thr Gln Ser Ala Met Ala Met Ala Met Ala Met Ala Gln Ala Am Gln Val Pro Gln Tyr Val Leu Ser Leu Leu Arg 325(210) SEQ ID NO 27(211) LENGTH: 304(212) TIPE FRT(212) TIPE FRT(212) SEQUENCE: 27Met Arg Ile Am His Am Ile Ala Ala Leu Am Thr Leu Am Arg Leu15Ser Ser Am Am Ser Ala Ser Gln Lye Am Met Glu Lye Leu Ser Ser 2020214 TIPE FRT(215) TIPE FRT(216) Ter Am Arg Ala Gly Amp Amp Ala Ala Gly Leu Ala Ile 46Ser Glu Lye Met Arg Gly Gln Ile Arg Gly Leu Glu Met Ala Ser Lye 5660Am Ser Gln Apg Gly Ile Ser Leu Ile Gln Thr Ala Glu Gly Ala Leu 657071< Glu Thr His Ala Ile Leu Gln Arg Val Arg Glu Leu Val Val Gln 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Arg  | Leu   |       | Ser  | Ile | Lys  | Asp  |     | Thr | Glu | Tyr | Ala |     | Glu | Asn | Leu |  |  |
| <pre>Val Ala Ala Thr Thr Aan Ser lle Leu Thr Gin Ser Ala Met Ala Met<br/>320<br/>11e Ala Gin Ala Aam Gin Val Pro Gin Tyr Val Leu Ser Leu Leu Arg<br/>335<br/>22100 SEQ ID NO 27<br/>22115 LEWRTH: 304<br/>22123 VTFE: PRT<br/>22130 ORCHINGMES : e.ubtilue<br/>40000 SEQUENCE: 27<br/>Met Arg Ile Aan His Aam Ile Ala Ala Leu Aan Thr Leu Aan Arg Leu<br/>1<br/>5<br/>Ser Ser Aan Aan Ser Ala Ser Gin Lys Aam Met Giu Lys Leu Ser Ser<br/>20<br/>Gily Leu Arg Ile Aan Arg Ala Gily Aap Aap Ala Ala Gily Leu Ala Ile<br/>35<br/>Ser Giu Lys Met Arg Gily Gin Ile Arg Gily Leu Gilu Met Ala Ser Lys<br/>50<br/>Aam Ser Gin Aap Gily 11e Ser Leu Ile Gin Thr Ala Giu Gily Ala Leu<br/>70<br/>70<br/>Thr Glu Thr His Ala Ile Leu Gin Arg Val Arg Gilu Leu Val Val Gin<br/>65<br/>Aan Ser Gilu Lys Met Arg Gily Gin Leu Gila Thr Aap Leu Giln Ser Ile<br/>100<br/>Gin Aap Giu Ile Ser Ala Leu Thr Aap Giu Ile Aep Gily Ile Ser Aan<br/>115<br/>Aag Thr Glu Phe Aan Gily Lys Leu Leu Aap Gily Thr Ser Aan<br/>115<br/>Aag Thr Glu Phe Aan Gily Lys Leu Leu Aap Gily Thr 7 Lys Val<br/>130<br/>Aap Thr Ala Thr Pro Ala Aan Gin Lys Aan Leu Val Phe Gin Ile Gily<br/>145<br/>Aap Ala Aan Ala Thr Gin Gin Lie Ser Val Ann 16 Giu Aap Met Gily Ala<br/>160<br/>Ala Aan Ala Thr Gin Gin Les Val Ann 11e Gilu Aap Met Gily Ala<br/>160<br/>Ala Aan Ala Thr Gin Gin Lys Aap Gily Ser Ile Ala Ala Leu His<br/>180<br/>Ser Val Aan App Leu Aap Val Thr Lys Phe Ala Aap Aan Ala Ala Aap<br/>195<br/>Air Gin Aap Ile Gily Phe Aap Ala Gin Leu Val Val Val Aap<br/>195<br/>Ala Cin Aap Ile Gily Phe Aap Ala Gin Leu Va Val Val Aap Giu Ala<br/>205<br/>Fir Ala Aap Ile Gily Phe Aap Ala Gin Leu Lys Val Val Aap Giu Ala<br/>205<br/>Fir Ala Aap Ile Gily Phe Aap Ala Gin Leu Lys Val Val Aap Giu Ala<br/>220<br/>Arg Leu Giu His Thr 11e Aan Ane Leu Ser Ala Ser Gily Ciu Ann<br/>225<br/>Thr Ala Ala Giu Ser Arg Ile Arg Ala Lys Euc Gily Ala Yai Gin Aap<br/>225<br/>Thr Ala Ala Giu Ser Arg Ile Arg Ala Lys Giu Ala Ser Gily Ciu Ann<br/>225<br/>Thr Ala Ala Giu Ser Arg Ile Arg Ala Lys Giu Ala Ser Gily Ciu Ann<br/>225<br/>Thr Ala Ala Giu Ser Arg Ile Arg Ala Lys Giu Ala Ser Gily Ciu Ann<br/>225<br/>Thr Ala Ala Giu Ser Arg Ile Arg Ala Kya Kas Gily Giu Ann<br/>225<br/>Arg Leu Giu His Thr 11e Aan Ann Leu Ser Ala Ser Gily Ciu Ann<br/>226<br/>Arg Leu Giu His Thr 11e Ann Ann Leu Ser Ala Ser</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rÀa  |       | Ser   | Tyr  | Ala | Gln  |      | ГЛа | Asp | Ala | Thr |     | Thr | Asp | Glu | Val |  |  |
| <pre>11e Ala Gin Ala Agm Gin Val Pro Gin Tyr Val Leu Ser Leu Leu Arg<br/>335</pre> <pre> 2210&gt; SEQ ID NO 27<br/>2211&gt; LENGTH: 304<br/>2212&gt; TYFE PRT<br/>2213&gt; ORGANISM: B. subtilus </pre> <pre> 2400&gt; SEQUENCE: 27 Met Arg Ile Aon His Aon Ile Ala Ala Leu Aon Thr Leu Aon Arg Leu<br/>1 5 Ser Ser Aon Aon Ser Ala Ser Gin Lys Aon Met Giu Lys Leu Ser Ser<br/>20 Giy Leu Arg Ile Aon Arg Ala Giy Aop Aop Ala Ala Giy Leu Ala Ile<br/>35 Ser Giu Lys Met Arg Giy Gin Ile Arg Giy Leu Gin Kala Ser Lys<br/>60 Ann Ser Gin Aop Giy Ile Ser Leu Ile Gin Thr Ala Giu Giy Ala Leu<br/>65 Ann Ser Gin Aop Giy Ile Ser Leu Ile Gin Thr Ala Giu Leu Val Yal Gin<br/>60 Ann Ser Gin Aop Giy Thr Gin App Lys Ala Thr App Leu Gin Ser Ile<br/>100 Gin App Giu Ile Ser Ala Leu Thr App Giu Ile Arg Giy Leu Gin Ser Ile<br/>100 Gin App Giu Phe Aon Gin Lys Aon Ile Val Phe Gin Ile Giy<br/>115 Arg Thr Giu Phe Aon Gin Lys Leu Leu App Giy Thr Tyr Lys Val<br/>125 Ang Thr Ala Thr Pro Ala Ann Gin Lys Ann Ile Giu Aop Met Giy Ala<br/>126 Ang Ann Ala Thr Gin Gin Ile Ser Val Ann Ile Giu Aop Met Giy Ala<br/>127 Ang Ala Leu Gin Ile Ser Val Ann Ile Giu Aop Met Giy Ala<br/>126 Ang Ala Leu Gin Ley Gin Jie Ser Ile Ala Ala App Ann Ala Ala App<br/>127 Ang Ala Leu Gin Gin Ile Ser Val Ann Ile Giu App Met Giy Ala<br/>128 Arg Inr Ala Ann Ang Leu Ang Val Thr Lys Phe Ala App Ann Ala Ala App<br/>129 Ala Ann Ala Thr Gin Gin Ile Ser Val Ann Ile Giu App Met Giy Ala<br/>126 Ang Ala Leu Gin Gin Ile Ser Val Ann Ile Giu App Met Giy Ala<br/>126 Ang Ala Leu Gin Chin Ile Ser Val Ann Ile Val Phe Gin Ile Giy<br/>125 Ang Ala Leu Gin Val Ser Ser Gin Arg Ala Lys Leu Giy Ala Val Gin Ann<br/>220 Arg Leu Giu His Ang Ala Cin Leu Lys Val Val App Giu Ala<br/>220 Arg Leu Giu His Ang Ala Cin Leu Lys Val Val App Giu Ala<br/>220 Arg Leu Giu His Ang Ala Cin Leu Lys Val Val App Giu Ala<br/>225 Thr Ala Ala Giu Ser Krg Ile Arg Ala Lys Lys Leu Cin App Ciu App Leu<br/>225 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       | Ala   | Thr  | Thr |      |      | Ile | Leu | Thr |     |     | Ala | Met | Ala |     |  |  |
| <pre>-210 &gt; SEQ ID NO 27<br/>-211 &gt; LENGTH: 304<br/>-2212&gt; TYPE: PET<br/>-213 &gt; ORGANISM: B. subtilue<br/>&lt;400 &gt; SEQUENCE: 27<br/>Met Arg Ile Am His Am Ile Ala Ala Leu Am ITr Leu Am Arg Leu<br/>1<br/>1</pre><br>Ser Ser Am Am Ser Ala Ser Gln Lys Am Met Glu Lys Leu Ser Ser<br>20<br>Gly Leu Arg Ile Am Arg Ala Gly Amp Amp Ala Ala Gly Leu Ala Ile<br>5<br>Ser Glu Lym Met Arg Gly Gln Ile Arg Gly Leu Glu Met Ala Ser Lym<br>50<br>7<br>Ser Glu Lym Met Arg Gly Gln Ile Arg Gly Leu Glu Met Ala Ser Lym<br>65<br>7<br>Thr Glu Thr Him Ala Ile Leu Gln Arg Val Arg Glu Leu Val Val Gln<br>85<br>Ala Gly Am Thr Gly Thr Gln Amp Lym Ala Thr Amp Leu Gln Ser Ile<br>100<br>6<br>Gln Amp Glu Ile Ser Ala Leu Thr Amp Glu Ile Amp Gly Ile Ser Am<br>115<br>Arg Thr Glu Phe Am Gly Lym Leu Yam Amp Glu Ile Amp Gly Thr Tyr Lym Val<br>120<br>Am Ser Glu Phe Am Gly Lym Leu Leu Amp Gly Thr Tyr Lym Val<br>120<br>Gln Amp Glu Ile Ser Ala Leu Thr Amp Glu Ile Amp Gly Ile Ser Am<br>115<br>Arg Thr Glu Phe Am Gly Lym Lym Am Leu Val Phe Gln Ile Gly<br>120<br>Ala Ann Ala Thr Pro Ala Amm Gln Lym Amn ILe Glu Amp Met Gly Ala<br>170<br>Amp Ala Leu Gly Ile Lym Glu Ala App Gly Ser Ile Ala Ala Leu Him<br>180<br>Ser Val Am Amp Leu Amp Val Thr Lym Phe Ala Amp Am Ala La Lam Him<br>190<br>Ser Val Amn Amp Leu Amp Val Thr Lym Phe Ala Amp Am Ala Lam Amp<br>195<br>Ser Val Amn Amp Leu Amp Val Thr Lym Phe Ala Amp Am Ala Ala Amp<br>195<br>Arg Leu Glu Him Thr Ile Am Amm Leu Ser Gly Ala Yam Glu Ala<br>220<br>Clie Amp Cln Val Ser Ser Gln Amp Ala Lym Leu Gly Ala Val Gln Am<br>225<br>Thr Ala Ala Glu Ser Xrg Ile Amp Am Ala Lym Lym Glu Ala Ser Gly Glu Amn<br>225<br>Thr Ala Ala Glu Kim Thr Ile Am Amm Leu Ser Ala Ser Gly Clu Amn<br>225<br>Thr Ala Ala Glu Kim Thr Ile Amp Am Leu Ser Ser Gln Amp Ala Lym Amp Clu Amp<br>225<br>Thr Ala Ala Glu Kim Thr Ile Amp Amp Leu Ser Ser Gln Amp Ala Lym Amp Met Ala Lym Glu Amn<br>225<br>Thr Ala Ala Glu Kim Thr Ile Amp Amp Leu Ser Ser Gly Amp Met Ala Ser Gly Clu Amp<br>255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Ala   | Gln   | Ala  |     |      | Val  | Pro | Gln | -   |     | Leu | Ser | Leu |     |     |  |  |
| <pre>-211: LENGTH: 304<br/>&lt;2123 TVB: PRT<br/>&lt;213&gt; ORGANISM: B. subtilus<br/>&lt;400&gt; SEQUENCE: 27<br/>Met Arg Ile Asn His Asn Ile Ala Ala Leu Asn Thr Leu Asn Arg Leu<br/>1 5<br/>Ser Ser Asn Asn Ser Ala Ser Gln Lys Asn Met Glu Lys Leu Asn Arg Leu<br/>25<br/>Gly Leu Arg Ile Asn Arg Ala Gly Asp Asp Ala Ala Gly Leu Ala Ile<br/>35<br/>6<br/>Gly Leu Arg Ile Asn Arg Ala Gly Asp Asp Ala Ala Gly Leu Ala Ile<br/>35<br/>6<br/>Asn Ser Gln Asp Gly Ile Ser Leu Ile Gln Thr Ala Glu Gly Ala Leu<br/>65<br/>70<br/>Asn Ser Gln Asp Gly Ile Ser Leu Ile Gln Thr Ala Glu Gly Ala Leu<br/>65<br/>Ala Gly Asn Thr Gly Thr Gln Asp Lys Ala Thr Asp Leu Gln Ser Ile<br/>100<br/>Gln Asp Glu Ile Ser Ala Leu Thr Asp Glu Ile Asp Gly Ile Ser Asn<br/>115<br/>Arg Thr Glu Phe Asn Gly Lys Lys Leu Leu Asp Gly Thr Tyr Lys Val<br/>130<br/>Asp Thr Ala Thr Pro Ala Asn Gln Lys Asn Leu Val Phe Gln Ile Gly<br/>145<br/>Asp Ala Leu Cly Ile Lys Glu Ala Asp Gly Ser Ile Ala Ala Leu His<br/>180<br/>Asp Ala Leu Cly Ile Lys Glu Ala Asp Gly Ser Ile Ala Ala Leu His<br/>180<br/>Asp Ala Leu Cly Ile Lys Glu Ala Asp Gly Ser Ile Ala Ala Leu His<br/>180<br/>Asp Ala Leu Cly Ile Lys Glu Ala Asp Gly Ser Ile Ala Ala Lau His<br/>180<br/>Asp Ala Leu Cly Ile Lys Glu Ala Asp Gly Ser Ile Ala Ala Lau His<br/>180<br/>Asp Ala Leu Cly Ile Lys Glu Ala Asp Gly Ser Ile Ala Ala Lau His<br/>180<br/>Asp Ala Leu Gly The Asp Ala Gln Leu Lys Val Val Asp Glu Ala<br/>215<br/>Asp Ala Leu Gly Phe Asp Ala Gln Leu Lys Val Val Asp Glu Ala<br/>220<br/>Thr Ala Ang Ile Gly Phe Asp Ala Gln Leu Lys Val Val Asp Glu Ala<br/>215<br/>Arg Leu Glu His Thr Ile Asn Asen Leu Ser Ala Ser Gly Glu Asn Leu<br/>225<br/>Thr Ala Ala Glu Ser Arg Ile Arg App Val Asp Met Ala Lys Glu Met</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |       |      | 325 |      |      |     |     | 330 |     |     |     |     | 335 |     |  |  |
| <pre>&lt;400&gt; SEQUENCE: 27</pre> Mat Arg Ile Aon Hio Aon Ile Ala Ala Leu Aon Thr Leu Aon Arg Leu 1 Ser Ser Aon Aon Ser Ala Ser Gln Lys Aon Met Glu Lys Leu Ser Ser 20 Gly Leu Arg Ile Aon Arg Ala Gly Aon Aon Ala Ala Gly Leu Ser Ser 30 Gly Leu Arg Ile Aon Arg Ala Gly Gly Leu Glu Met Ala Ser Lys 50 Ser Glu Lys Met Arg Gly Gln Ile Arg Gly Leu Glu Met Ala Ser Lys 50 Ann Ser Gln Aon Gly Ile Ser Leu Ile Gln Thr Ala Glu Gly Ala Leu 65 Ann Ser Gln Aon Gly Thr Gln Arg Ala Gly Aon Arg Glu Leu Val Val Gln 65 Ala Gly Aon Thr Gly Thr Gln Ang Lys Ala Thr Ang Leu Gln Ser Ile 100 Ala Gly Aon Thr Gly Lys Lys Leu Leu Ang Gly Thr Tyr Lys Val 135 Ang Thr Ala Thr Pro Ala Aon Gln Lys Ann Glu Lys Ann He Gln Ile Gly 145 Ang Ala Leu Gly Ile Ser Val Ang Gly Ser Ile Ala Ala Leu 150 Ang Ala Leu Gly Ile Lys Glu Ala Ang Gly Ser Ile Ala Ala Leu 165 Ang Ala Ang Ile Gly Phe Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Val Ser Ser Gln Arg Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Ha Fir Thr Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Arg Leu Glu Ha Fir Thr Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Ha Fir Thr Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Ha Fir Thr Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Ha Fir Thr Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Ha Fir Thr Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Ha Fir Thr Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Ha Fir Thr Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Ha Fir Thr Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Ha Fir Thr Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Ha Fir Thr Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Ha Fir Thr Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Ha Fir Thr Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Ha Fir Thr Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Ha Fir Thr Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Ha Fir Thr Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Ha Fir Thr Ang Ala Cli Leu Lys Val Ang Glu Ala 220 Ang Leu Glu Ha Cli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <211 | L> LI | ENGTI | H: 3 |     |      |      |     |     |     |     |     |     |     |     |     |  |  |
| Met Arg Ile Asn His Asn Ile Ala Ala Leu Asn Thr Leu Asn Arg Leu 15<br>Ser Ser Asn Asn Ser Ala Ser Gln Lys Asn Met Glu Lys Leu Ser Ser 30<br>Gly Leu Arg Ile Asn Arg Ala Gly Asp Asp Ala Ala Gly Leu Ala Ile 45<br>Ser Glu Lys Met Arg Gly Gln Ile Arg Gly Leu Glu Met Ala Ser Lys 60<br>For Glu Lys Met Arg Gly Gln Ile Arg Val Arg Glu Leu Glu Met Ala Ser Lys 60<br>Asn Ser Gln Asp Gly The Ser Leu Ile Gln Thr Ala Glu Gly Ala Leu 80<br>Thr Glu Thr His Ala Ile Leu Gln Arg Val Arg Glu Leu Val Val Gln 95<br>Ala Gly Asn Thr Gly Thr Gln Asp Lys Ala Thr Asp Leu Gln Ser Ile 100<br>Gln Asp Glu Ile Ser Ala Leu Thr Asp Glu Ile Asp Gly Ile Ser Asn 125<br>Arg Thr Glu Phe Asn Gly Lys Lys Leu Leu Asp Gly The Ser Asn 125<br>Asg Thr Glu Phe Asn Gly Lys Lys Leu Leu Asp Gly The Tyr Lys Val 136<br>Ala Asn Ala Thr Gln Gln Ile Ser Val Asn Ile Glu Asp Met Gly Ala Leu 160<br>Asg Ala Thr Gln Glu Ile Ser Val Asn Ile Glu Asp Met Gly Ala 175<br>Asg Ala Chr Asn Asp Leu Asp Val Thr Lys Phe Ala Asp Esp Ala Leu His 190<br>Ser Val Asn Asp Leu Asp Val Thr Lys Phe Ala Asp Asp Ala Ala Asp 200<br>Thr Ala Asp Ile Gly Phe Asp Ala Gln Leu Lys Val Val Asp Glu Ala Asp 200<br>Thr Ala Asp Ile Gly Phe Asp Ala Chr Leu Ser Cly Ala Asp Glu Ala Asp 200<br>Thr Ala Asp Ile Gly Phe Asp Ala Gln Leu Lys Val Val Asp Glu Ala 200<br>Arg Leu Glu His Thr Ile Asn Asn Leu Ser Ala Ser Gly Glu Ala Val Gln Asp 200<br>Arg Leu Glu His Thr Ile Asn Asn Leu Ser Ala Ser Gly Glu Ana 200<br>Arg Leu Glu His Thr Ile Asn Asn Leu Ser Ala Ser Gly Glu Ana 200<br>Arg Leu Glu His Thr Ile Asn Asn Leu Ser Ala Ser Gly Glu Ana 205<br>Thr Ala Ala Glu Ser Arg Ile Arg Asp Val Asp Met Ala Lys Glu Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |       |       |      |     | subt | ilus |     |     |     |     |     |     |     |     |     |  |  |
| Ser Ser Asn Agon Ser Ala Ser Gln $\frac{1}{25}$ Asn Met Glu Lys Leu Ser Ser $\frac{30}{30}$ Ser Ser $\frac{1}{20}$ Arg Ile Asn Arg Ala Gly Asp Asp Ala Ala Gly Leu Ala Ile $\frac{35}{35}$ Ser Glu Lys Met Arg Gly Gln 1le Arg Gly Leu Glu Met Ala Ser Lys $\frac{60}{60}$ Ser Gln Asp Cly Ile Ser Leu Ile Gln Thr Ala Glu Cly Ala Leu $\frac{80}{55}$ Ser Gln Asp Cly Ile Ser Leu Ile Gln Thr Ala Glu Leu Val Val Gln $\frac{95}{75}$ Ser Gln Asp Cly Ile Ser Leu Gln Arg Val Arg Glu Leu Val Val Gln $\frac{95}{10}$ Ser Asn $\frac{1}{100}$ Gly Thr Gln Asp Lys Ala Thr Asp Leu Gln Ser Ile $\frac{110}{110}$ Ser Asn $\frac{1}{115}$ Ser Asn Gly Lys Val $\frac{1}{105}$ Ser Asp Glu Ile Ser Asn $\frac{1}{125}$ Ser $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Met  |       |       |      | His | Asn  | Ile  | Ala | Ala |     | Asn | Thr | Leu | Asn | -   | Leu |  |  |
| Gly Leu $\underset{35}{35}$ le $\underset{40}{35}$ Ang $\underset{40}{40}$ Ang $\underset{45}{35}$ Ang $\underset{60}{45}$ Ang $\underset{60}{45}$ Ang $\underset{60}{60}$ Met $\underset{81}{8}$ Ang $\underset{70}{60}$ Ser $\underset{60}{10}$ Ang $\underset{80}{60}$ Ser $\underset{70}{60}$ Ang $\underset{70}{80}$ Ser $\underset{70}{60}$ Ang $\underset{70}{80}$ Ser $\underset{70}{60}$ Ang $\underset{70}{60}$ Ser $\underset{70}{60}$ Ang $\underset{70}{70}$ Ser $\underset{70}{70}$ Ser $\underset{70}{70}$ Ang $\underset{70}{70}$ Ser $\underset{70}{$ |      | Ser   | Asn   |      |     | Ala  | Ser  | Gln | -   |     | Met | Glu | ГЛа |     |     | Ser |  |  |
| 354045Ser Glu Lys Met Arg Gly Gln Ile Arg Gly Leu Glu Met Ala Ser Lys<br>50Aon Ser Gln Asp Gly Ile Ser Leu Ile Gln Thr Ala Glu Gly Ala Leu<br>70Aon Ser Gln Asp Gly Ile Ser Leu Gln Arg Val Arg Glu Leu Val Val Gln<br>95Ala Gly Asn Thr Gly Thr Gln Asp Lys Ala Thr Asp Leu Gln Ser Ile<br>100Gln Asp Glu Ile Ser Ala Leu Thr Asp Glu Ile Asp Gly Ile Ser Asn<br>115Arg Thr Glu Phe Asn Gly Lys Lys Leu Leu Asp Gly Thr Tyr Lys Val<br>130Asp Thr Ala Thr Pro Ala Asn Gln Lys Asn Leu Val Phe Gln Ile Gly<br>150Ala Asn Ala Thr Gln Gln Ile Ser Val Asn Ile Glu Asp Met Gly Ala<br>185Arg Tha Leu Gly Ile Lys Glu Ala Asp Gly Ser Ile Ala Ala Leu His<br>180Ser Val Asn Asp Leu Asp Val Thr Lys Phe Ala Asp Asn Ala Ala Asp<br>210Ser Val Asn Gln Val Ser Ser Gln Arg Ala Lys Leu Gly Ala Val Gln Asp<br>225Thr Ala App Ile Gly Phe Asp Asn Leu Ser Ala Ser Gly Glu Asp Leu<br>220Arg Leu Glu His Thr Ile Asn Asn Leu Ser Ala Ser Gly Glu Asn Leu<br>225Thr Ala Ala Glu Ser Arg Ile Arg Asp Val Asp Met Ala Lys Glu Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gly  | Leu   | Arg   |      | Asn | Arg  | Ala  | Gly |     | Asp | Ala | Ala | Gly |     | Ala | Ile |  |  |
| 50 155 60 160 175 60 160 175 160 175 60 175 160 175 160 175 175 160 175 175 175 175 175 175 175 175 175 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       | 35    |      |     |      |      | 40  |     |     |     |     | 45  |     |     |     |  |  |
| 65707580Thr Glu Thr His Ala Ile Leu Gln Arg Val<br>85Arg Glu Leu Val Val Gln<br>95Gln<br>95Ala Gly Asn Thr Gly Thr Gln Asp Lys Ala<br>100Thr Asp Leu<br>105Gln Ser Ile<br>110Gln Asp Glu Ile Ser Ala Leu<br>115Thr Asp Glu Ile Asp Gly Ile Ser Asn<br>120Arg Thr Glu Phe Asn Gly Lys Lys Leu Leu Asp Gly Thr Tyr Lys Val<br>140Asp Thr Ala Thr Pro<br>145Ala Asn Ala Thr Gln Gln Ile Ser Val Asn<br>160Ale Ser Val Asn Asp Leu Asp Gly Ser Ile Ala Ala Leu His<br>180Asp Ala Leu Gly Ile Gly Phe Asp Val Thr Lys Phe Ala Asp Asn Ala Asp 205Asn Ala Asp<br>205Thr Ala Asp Ile Gly Phe Asp Ala Gln Leu Lys Val Val Asp Glu Ala<br>210Asp Asp Asp Leu Asp Val Thr Lys Phe Ala Asp Asp Ash Ala Asp<br>220Leu Glu Na Ser Ser Gln Arg Ala Lys Leu Gly Ala Val Gln Asp<br>230Asp Gly Asp Clu Asp Met Ala Val Gln Asp<br>240Arg Leu Glu His<br>245Thr Ala Asp Leu Asp Asp Asp Ala Lys Glu Ala<br>230Thr Ala Ala Glu Ser Arg Ile Asp Asp Val Asp Met Ala Lys Glu Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 50    |       |      |     |      | 55   |     |     |     |     | 60  |     |     |     |     |  |  |
| 95 $90$ $95$ AlaGlyAsnThrGlyThrGlnAspLys $110$ ThrAspLeu $110$ SerIleGlnAspGluIleSerAlaLeuThrAspGlyIleSerAsnArgThrGluPheAsnGlyLysLysLeuAspGlyThrTyrLysValArgThrAlaThrProAlaAsnGlnLysAsnGlyThrTyrLysValArgThrAlaThrProAlaAsnGlnLysAsnLusAspGlyThrTyrLysValArgThrAlaThrProAlaAsnGlnLysAsnLusAspGlyThrTyrLysValArgThrAlaThrProAlaAsnGlnLysAsnLusAspGlyThrTyrLysValArgThrAlaThrProAlaAsnGlnLysAsnLusAspAspGlyAspAspAspAlaLusGlnIleSerValAspLusAspAspAspAspAspAspAlaLusGluAlaAspCluAspAspAspAspAspAspAspAspAspAspAsp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65   |       |       | -    | -   | 70   |      |     |     |     | 75  |     |     | -   |     | 80  |  |  |
| 100105110Gln Asp Glu Ile Ser Ala Leu Thr Asp Glu Ile Asp Gly Ile Ser Asn<br>115115Arg Thr Glu Phe Asn Gly Lys Lys Leu Leu Asp Gly Thr Tyr Lys Val<br>130Asp Thr Ala Thr Pro Ala Asn Gln Lys Asn Leu Val Phe Gln Ile Gly<br>145Ala Asn Ala Thr Gln Gln Ile Ser Val Asn Ile Glu Asp Met Gly Ala<br>160Asp Ala Leu Gly Ile Lys Glu Ala Asp Gly Ser Ile Ala Ala Leu His<br>180Ser Val Asn Asp Leu Asp Val Thr Lys Phe Ala Asp Asn Ala Ala Asp<br>195Thr Ala Asp Ile Gly Phe Asp Ala Gln Leu Lys Val Val Asp Glu Ala<br>210Thr Ala Asp Glu Val Ser Ser Gln Arg Ala Lys Leu Gly Ala Val Gln Asn<br>235Arg Leu Glu His Thr Ile Asn Asn Leu Ser Ala Ser Gly Glu Ala Val Glu Asn<br>255Thr Ala Ala Glu Ser Arg Ile Arg Asp Val Asp Met Ala Lys Glu Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Thr  | Glu   | Thr   | His  |     | Ile  | Leu  | Gln | Arg |     | Arg | Glu | Leu | Val |     | Gln |  |  |
| 115120125Arg Thr Glu Phe Asn Gly Lys Lys Lys Leu Leu Asp Gly Thr Tyr Lys Val<br>135Asp Thr Ala Thr Pro Ala Asn Gln Lys Asn Leu Val Phe Gln Ile Gly<br>160Asp Thr Ala Thr Pro Ala Asn Gln Ile Ser Val Asn Ile Glu Asp Met Gly Ala<br>165The Gly Ile Gly Ile Cly Glu Ala Asp Gly Ser Ile Ala Ala Ala Leu His<br>180Asp Ala Leu Gly Ile Lys Glu Ala Asp Val Thr Lys Phe Ala Asp Asn Asn Ala Asp<br>195Thr Ala Asp Ile Gly Phe Asp Ala Gln Leu Lys Val Asp Asp Asp Ala Asp<br>205Thr Ala Asp Ile Gly Phe Asp Cli And Cli Leu Lys Val Cli Asp Asp Glu Ala<br>210Thr Lys Phe Ala Asp Asp Asp Ala Asp<br>225Thr Ala Asp Glu Val Ser Ser Gln Arg Ala Lys Leu Gly Ala Val Gln Asp<br>255Thr Ala Ala Glu Ser Arg Ile Arg Asp Val Asp Met Ala Lys Glu Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ala  | Gly   | Asn   |      | Gly | Thr  | Gln  | Asp | -   | Ala | Thr | Asp | Leu |     | Ser | Ile |  |  |
| 130135140Asp<br>145ThrAlaAsnGlnLysAsnLeuValPheGlnIleGly145ThrAlaThrProAlaAsnGlnLysAsnLeuValPheGlnIleGlyAlaAsnAlaThrGlnGlnIleSerValAsnMetGlyAlaAspAlaLeuGlyIleLysGluAlaAspGlySerIleAlaAlaLeuHisSerValAsnAspLeuAspValThrLysPheAlaAspAsnAlaAspSerValAsnAspLeuAspAsnAlaAsp205AlaAspThrAlaAspIleGlyPheAspAlaGlnAsp205AlaThrAlaAspIleGlyPheAspAlaGlnAsp205AlaThrAlaAspIleAspAlaLysValAspGluAla210PheAspAlaLysLeuLysValAspGluAla225PheAlaLysLeuSerGlyAlaAspLeu255ThrAlaAlaGluSerArgIleArgAspValAspMetAlaLys<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gln  | Asb   |       | Ile  | Ser | Ala  | Leu  |     | Asb | Glu | Ile | Asp | -   | Ile | Ser | Asn |  |  |
| 145150155160Ala Asn Ala ThrGln Gln Gln Ile Ser Val Asn Ile Glu Asp Met Gly Ala<br>165Asp Ala Leu Gly Ile Lys Glu Ala Asp Gly Ser Ile Ala Ala Leu His<br>190Asp Ala Leu Asp Val Thr Lys Phe Ala Asp Asn Ala Asp<br>205Ser Val Asn Asp Leu Asp Val Thr Lys Phe Ala Asp Asn Ala Asp<br>205Asp Ala Asp<br>205ThrAla Asp Ile Gly Phe Asp Ala Gln Leu Lys Val Val Asp Glu Ala<br>210Ser Gln Val Ser Ser Gln Arg Ala Lys Leu Gly Ala Val Gln Asn<br>235Ser Gly Glu Asn Leu<br>240Arg Leu Glu His<br>Thr Ala Ala Glu Ser Arg Ile Arg Asp Val Asp Met Ala Lys Glu MetSer Glu Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Arg  |       | Glu   | Phe  | Asn | Gly  | -    | Гла | Leu | Leu | Asp | -   | Thr | Tyr | Lys | Val |  |  |
| 165170175AspAlaGlyIleLysGluAlaAspGlySerIleAlaAlaJpoLeuHisSerValAspAspLeuAspValThrAlaAspAspLeuAspAspAspAspAspAspThrAlaAspIleGluPheAspAlaGluLeuLeuAspAspAspAspAspAsp11eAsnGluValSerSerGluAspAlaAspAspAspAspAspAspAsp12eAsnGluValSerSerGluAspAspAspLeuSerGluAsp225KauGluHisThrIleAspIleAspValAspKeuAspLeuArgLeuGluHisThrIleAspAspValSerGluAspLeuThrAlaAlaGluSerArgIleAspIleAspValSerGluAspLeuThrAlaAlaGluSerArgIleAspIleAspValSerGluAspLeuThrAlaAlaGluSerArgIleAspIleAspKeiSeiGluAspLeuThrAlaAlaGluSer <td< td=""><td>-</td><td>Thr</td><td>Ala</td><td>Thr</td><td>Pro</td><td></td><td>Asn</td><td>Gln</td><td>Lys</td><td>Asn</td><td></td><td>Val</td><td>Phe</td><td>Gln</td><td>Ile</td><td>-</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -    | Thr   | Ala   | Thr  | Pro |      | Asn  | Gln | Lys | Asn |     | Val | Phe | Gln | Ile | -   |  |  |
| 180       185       190         Ser       Val       Asn       Asp       Val       Asp       Val       Thr       Lu       Asp       Val       Thr       Ala       Asp       As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ala  | Asn   | Ala   | Thr  |     | Gln  | Ile  | Ser | Val |     | Ile | Glu | Asp | Met |     | Ala |  |  |
| SerValAsnAspLeuAspValThrLysPheAlaAspAsnAlaAspThrAlaAspIleGlyPheAspAlaGlnLeuLysValValAspGluAla210NIleGlyPheAspAlaGlnLeuLysValValAspGluAla225AsnGlnValSerSerGlnArgAsnLeuSerGlyAlaValGlnAsn225ChuHisThrIleAsnAsnLeuSerAlaSerGlyGluAsnLeu250ThrAlaAlaGluSerArgIleArgAspValAspMetAlaLysGluMet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Asp  | Ala   | Leu   |      | Ile | ГЛЗ  | Glu  | Ala |     | Gly | Ser | Ile | Ala |     | Leu | His |  |  |
| ThrAlaAspIleGlyPheAspAlaGlnLeuLysValValAspGluAla1leAsnGluValSerSerGlnArgAlaLysLeuGlyAlaValGlnAsn225230230AspLeuSerGlyAlaValGlnAsp240ArgLeuGluHisThrIleAsnAspLeuSerGlyGluAspLeu245ThrAlaGluSerArgIleArgAspValAspMetAlaLysGluMet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ser  | Val   |       |      | Leu | Asp  | Val  |     |     | Phe | Ala | Asp |     |     | Ala | Asp |  |  |
| Ile Asn Gln Val Ser Ser Gln Arg Ala Lys Leu Gly Ala Val Gln Asn<br>225 Arg Leu Glu His Thr Ile Asn Asn Leu Ser Ala Ser Gly Glu Asn Leu<br>245 Thr Ala Ala Glu Ser Arg Ile Arg Asp Val Asp Met Ala Lys Glu Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Thr  |       |       | Ile  | Gly | Phe  |      |     | Gln | Leu | Lys |     |     | Asp | Glu | Ala |  |  |
| 225230235240Arg Leu Glu His Thr Ile Asn Asn Leu Ser Ala Ser Gly Glu Asn Leu<br>245250255Thr Ala Ala Glu Ser Arg Ile Arg Asp Val Asp Met Ala Lys Glu Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ile  |       | Gln   | Val  | Ser | Ser  |      | Arg | Ala | Lys | Leu |     | Ala | Val | Gln | Asn |  |  |
| 245 250 255<br>Thr Ala Ala Glu Ser Arg Ile Arg Asp Val Asp Met Ala Lys Glu Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 225  |       |       |      |     | 230  |      |     |     |     | 235 |     |     |     |     | 240 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |      | 245 |      |      |     |     | 250 |     |     |     |     | 255 |     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inr  | АІА   | АΙА   |      | Ser | Arg  | тте  | Arg |     | val | чаb | Met | АІА |     | GIU | Met |  |  |

Ser Glu Phe Thr Lys Asn Asn Ile Leu Ser Gln Ala Ser Gln Ala Met Leu Ala Gln Ala Asn Gln Gln Pro Gln Asn Val Leu Gln Leu Leu Arg <210> SEQ ID NO 28 <211> LENGTH: 281 <212> TYPE: PRT <213> ORGANISM: C. difficile <400> SEQUENCE: 28 Met Arg Val Asn Thr Asn Val Ser Ala Leu Ile Ala Asn Asn Gln Met Gly Arg Asn Val Ser Gly Gln Ser Lys Ser Met Glu Lys Leu Ser Ser Gly Leu Arg Ile Lys Arg Ala Ala Asp Asp Ala Ala Gly Leu Ala Ile Ser Glu Lys Met Arg Ala Gln Leu Lys Gly Leu Asp Gln Ala Gly Arg Asn Val Gln Asp Gly Ile Ser Val Val Gln Thr Ala Glu Gly Ala Leu Glu Glu Thr Gly Asn Ile Leu Thr Arg Met Arg Thr Leu Ala Val Gln Ala Ser Asn Glu Thr Asn Ser Lys Asp Glu Arg Ala Lys Ile Ala Gly Glu Met Glu Gln Leu Arg Ser Glu Val Asp Arg Ile Ala Asp Ser Thr Lys Phe Asn Gly Glu Asn Leu Leu Ser Ser Asp Lys Lys Ile Ala Leu Gln Val Gly Ala Glu Ala Val Ser Asn Asn Val Ile Glu Val Ser Leu Ile Asn Thr Lys Gly Val Leu Thr Thr Arg Asn Val Asn Ser Ala Asn Ile Asp Ala Met Ser Val Ser Gly Ser Ile Gly Thr Glu Ala Ala Ser Lys Met Ile Val Asn Leu Asp Ser Ser Leu Ala Asp Ile Asn Ser Ala Arg Ala Leu Leu Gly Ala Gln Gln Asn Arg Leu Glu Ser Thr Gln Asn Asn Leu Asn Asn Thr Val Glu Asn Val Thr Ala Ala Glu Ser Arg Ile Arg Asp Thr Asp Val Ala Ser Glu Met Val Asn Leu Ser Lys Met Asn Ile Leu Val Gln Ala Ser Gln Ser Met Leu Ser Gln Ala Asn Gln Gln Pro Gln Gly Val Leu Gln Leu Leu Gly <210> SEQ ID NO 29 <211> LENGTH: 394 <212> TYPE: PRT <213> ORGANISM: R. meliloti

|            |            | -          |            | _          |            | _          | _          | -          |            |            |            |            | _          |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Met<br>1   | Thr        | Ser        | Ile        | Leu<br>5   | Thr        | Asn        | Asn        | Ser        | Ala<br>10  | Met        | Ala        | Ala        | Leu        | Ser<br>15  | Thr        |
| Leu        | Arg        | Ser        | Ile<br>20  | Ser        | Ser        | Ser        | Met        | Glu<br>25  | Asp        | Thr        | Gln        | Ser        | Arg<br>30  | Ile        | Ser        |
| Ser        | Gly        | Leu<br>35  | Arg        | Val        | Gly        | Ser        | Ala<br>40  | Ser        | Asp        | Asn        | Ala        | Ala<br>45  | Tyr        | Trp        | Ser        |
| Ile        | Ala<br>50  | Thr        | Thr        | Met        | Arg        | Ser<br>55  | Asp        | Asn        | Gln        | Ala        | Leu<br>60  | Ser        | Ala        | Val        | Gln        |
| Asp<br>65  | Ala        | Leu        | Gly        | Leu        | Gly<br>70  | Ala        | Ala        | Lys        | Val        | Asp<br>75  | Thr        | Ala        | Tyr        | Ser        | Gly<br>80  |
| Met        | Glu        | Ser        | Ala        | Ile<br>85  | Glu        | Val        | Val        | Lys        | Glu<br>90  | Ile        | Lys        | Ala        | Lys        | Leu<br>95  | Val        |
| Ala        | Ala        | Thr        | Glu<br>100 | Asp        | Gly        | Val        | Asp        | Lys<br>105 | Ala        | Lys        | Ile        | Gln        | Glu<br>110 | Glu        | Ile        |
| Thr        | Gln        | Leu<br>115 | Гла        | Asp        | Gln        | Leu        | Thr<br>120 | Ser        | Ile        | Ala        | Glu        | Ala<br>125 | Ala        | Ser        | Phe        |
| Ser        | Gly<br>130 | Glu        | Asn        | Trp        | Leu        | Gln<br>135 | Ala        | Asp        | Leu        | Ser        | Gly<br>140 | Gly        | Pro        | Val        | Thr        |
| Lys<br>145 | Ser        | Val        | Val        | Gly        | Gly<br>150 | Phe        | Val        | Arg        | Asp        | Ser<br>155 | Ser        | Gly        | Ala        | Val        | Ser<br>160 |
| Val        | Lys        | Lys        | Val        | Asp<br>165 | Tyr        | Ser        | Leu        | Asn        | Thr<br>170 | Asp        | Thr        | Val        | Leu        | Phe<br>175 | Asp        |
| Thr        | Thr        | Gly        | Asn<br>180 | Thr        | Gly        | Ile        | Leu        | Asp<br>185 | Lys        | Val        | Tyr        | Asn        | Val<br>190 | Ser        | Gln        |
| Ala        | Ser        | Val<br>195 | Thr        | Leu        | Pro        | Val        | Asn<br>200 | Val        | Asn        | Gly        | Thr        | Thr<br>205 | Ser        | Glu        | Tyr        |
| Thr        | Val<br>210 | Gly        | Ala        | Tyr        | Asn        | Val<br>215 | Asp        | Aab        | Leu        | Ile        | Asp<br>220 | Ala        | Ser        | Ala        | Thr        |
| Phe<br>225 | Aab        | Gly        | Asp        | Tyr        | Ala<br>230 | Asn        | Val        | Gly        | Ala        | Gly<br>235 | Ala        | Leu        | Ala        | Gly        | Asp<br>240 |
| Tyr        | Val        | Lys        | Val        | Gln<br>245 | Gly        | Ser        | Trp        | Val        | Lys<br>250 | Ala        | Val        | Asp        | Val        | Ala<br>255 | Ala        |
| Thr        | Gly        | Gln        | Glu<br>260 | Val        | Val        | Tyr        | Asp        | Asp<br>265 | Gly        | Thr        | Thr        | Гла        | Trp<br>270 | Gly        | Val        |
| Asp        | Thr        | Thr<br>275 | Val        | Thr        | Gly        | Ala        | Pro<br>280 | Ala        | Thr        | Asn        | Val        | Ala<br>285 | Ala        | Pro        | Ala        |
| Ser        | Ile<br>290 | Ala        | Thr        | Ile        | Asp        | Ile<br>295 | Thr        | Ile        | Ala        | Ala        | Gln<br>300 | Ala        | Gly        | Asn        | Leu        |
| Asp<br>305 | Ala        | Leu        | Ile        | Ala        | Gly<br>310 | Val        | Asp        | Glu        | Ala        | Leu<br>315 | Thr        | Asp        | Met        | Thr        | Ser<br>320 |
| Ala        | Ala        | Ala        | Ser        | Leu<br>325 | Gly        | Ser        | Ile        | Ser        | Ser<br>330 | Arg        | Ile        | Asp        | Leu        | Gln<br>335 | Ser        |
| Asp        | Phe        | Val        | Asn<br>340 | Lys        | Leu        | Ser        | Asp        | Ser<br>345 | Ile        | Asp        | Ser        | Gly        | Val<br>350 | Gly        | Arg        |
| Leu        | Val        | Asp<br>355 | Ala        | Asp        | Met        | Asn        | Glu<br>360 | Glu        | Ser        | Thr        | Arg        | Leu<br>365 | ГЛа        | Ala        | Leu        |
| Gln        | Thr<br>370 | Gln        | Gln        | Gln        | Leu        | Ala<br>375 | Ile        | Gln        | Ala        | Leu        | Ser<br>380 | Ile        | Ala        | Asn        | Ser        |
| Asp<br>385 | Ser        | Gln        | Asn        | Val        | Leu<br>390 | Ser        | Leu        | Phe        | Arg        |            |            |            |            |            |            |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

```
-continued
```

<210> SEQ ID NO 30 <211> LENGTH: 306 <212> TYPE: PRT <213> ORGANISM: A. tumefaciens <400> SEOUENCE: 30 Met Ala Ser Ile Leu Thr Asn Asn Asn Ala Met Ala Ala Leu Ser Thr Leu Arg Ser Ile Ala Ser Asp Leu Ser Thr Thr Gln Asp Arg Ile Ser 2.0 Ser Gly Leu Lys Val Gly Ser Ala Ser Asp Asn Ala Ala Tyr Trp Ser Ile Ala Thr Thr Met Arg Ser Asp Asn Lys Ala Leu Gly Ala Val Ser Asp Ala Leu Gly Met Gly Ala Ala Lys Val Asp Thr Ala Ser Ala Gly Met Asp Ala Ala Ile Lys Val Val Thr Asp Ile Lys Ala Lys Val Val Ala Ala Lys Glu Gln Gly Val Asp Lys Thr Lys Val Gln Glu Glu Val Ser Gln Leu Leu Asp Gln Leu Lys Ser Ile Gly Thr Ser Ala Ser Phe Asn Gly Glu Asn Trp Leu Val Ser Ser Ala Asn Ala Thr Lys Thr Val Val Ser Gly Phe Val Arg Asp Ala Gly Gly Thr Val Ser Val Lys Thr Thr Asp Tyr Ala Leu Asp Ala Asn Ser Met Leu Tyr Thr Glu Gly Thr Pro Gly Thr Ile Asp Ala Asn Ser Gly Ile Leu Asn Ala Thr Gly Ala Thr Thr Thr Val Gly Ala Lys Thr Tyr Thr Gln Ile Ser Val Leu Asp Met Asn Val Gly Thr Asp Asp Leu Asp Asn Ala Leu Tyr Ser Val Glu Thr Ala Leu Thr Lys Met Thr Ser Ala Gly Ala Lys Leu Gly Ser Leu Ser Ala Arg Ile Asp Leu Gln Ser Gly Phe Ala Asp Lys Leu Ser Asp Thr Ile Glu Lys Gly Val Gly Arg Leu Val Asp Ala Asp Met Asn Glu Glu Ser Thr Lys Leu Lys Ala Leu Gln Thr Gln Gln Gln Leu Ala Ile Gln Ala Leu Ser Ile Ala Asn Ser Asp Ser Gln Asn Ile Leu Ser Leu Phe Arg <210> SEQ ID NO 31 <211> LENGTH: 410 <212> TYPE: PRT <213> ORGANISM: R. lupini

<400> SEQUENCE: 31

-continued

| Note Ala Ser Val Leu       Not Yer Ala Leu Chu Thr         1       10         10       10         10       10         10       10         10       10         20       10         20       11       11       20         20       11       21       20         20       11       21       20       20         20       11       21       20       20       20         20       20       20       20       20       20         20       20       20       20       20       20         20       20       20       20       20       20       20         20       20       20       20       20       20       20       20         20       20       20       20       20       20       20       20         20       20       20       20       20       20       20       20       20         20       20       20       20       20       20       20       20       20       20       20       20       20       20       20 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th>con</th><th>tin</th><th>ued</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |     |     |     |     |     |     |     |     |     |     | -   | con | tin | ued |     |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|--|--|--|
| 20 25 26 $01^{\circ}$ Met $keg$ Val 019 Ser Ala $kag$ $kag$ Aan Ala $kag$ $krg$ Aan Ala $kag$ $krg$ Val 019 Ser $kag$ Aan Ala $kag$ $krg$ Thr Ala $kag$ $krg$ Val 019 $krg$ $kag$ Thr Ala $kag$ $krg$ Thr $kag$ $kag$ Thr Ala $kag$ $krg$ Thr $kg$ Thr $kg$ Thr $kg$ Thr $kg$ $kag$ Thr $kag$ Thr $kag$ $kag$ Thr $kag$ Thr $kag$ Thr $kag$ $kag$ Thr The Thr Thr Thr $kag$ Thr $kag$ Thr $kag$ Thr $kag$ Thr The The Thr The Thr $kag$ Thr $kag$ Thr The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Ala | Ser | Val |     | Thr | Asn | Ile | Asn |     | Met | Ser | Ala | Leu |     | Thr |  |  |  |  |  |
| 11 $\frac{1}{50}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{50}$ $\frac{1}{5$ | Leu | Arg | Ser |     | Ser | Ser | Asn | Met |     | Asb | Thr | Gln | Ser | -   | Ile | Ser |  |  |  |  |  |
| 50       50       60         Amp Ala 1le Gly Leu Gly Ala Ala Lys Val Amp Tr Xala Ser Ala Gly       75       Thr Ala Ser Ala Gly         Net Aep Ala Val Ile Asp Val Val Lys Gln Ile Lys Aen Lys Leu Val       100       France       100         Thr Ala Gln Glu Ger Ser Ala Aep Lys Thr Lys Aen Amp Lys Leu Val       100       France       100         Glu Glu Aen Trp Leu Lys Gly Ile Val Amp Lys Thr Thr Thr Thr Thr Lys       100       110       110         Ser Val Val Gly Ser Phe Val Arg Glu Gly Gly Thr Val Ser Val Lys 160       110       110       110         116       Thr Val Arg Glu Gly Anp Leu Ser Thr Thr Thr Thr Lys 160       110       110         Ser Val Val Gly Ser Phe Val Arg Glu Gly Gly Thr Val Ser Val Lys 160       110       110       110         116       Thr Gly Thr Lys Thr Gly Ile Leu Ang Thr Ala Tyr Thr Gly Leu 180       110       110         Ann Ala Arg Ala Tyr Ser Thr Ang Glu Gly Gly Ser Val Arg Glu Gly Gly Gly 21       110       110         110       Thr Val Thr Val Arg Tr Ser Thr Ang Glu Gly Gly Gly Gly Tar Hang Gly Cla Leu Ser Leu Gly 210       110         110       Ang Gly Ser Trp Val Lyo Gly Ser Trp Val Ala Gly Gly Ser Trp Val Lyo Gly Ser Val Arg Ala 20       110       110         110       Thr Ala Clu Thr Ang Clu Thr Ala Ala Glu Ala Gly Hang Ala 20       110       110       110         110       Thr Val Arg G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ser | Gly |     | Arg | Val | Gly | Ser |     | Ser | Asp | Asn | Ala |     | Tyr | Trp | Ser |  |  |  |  |  |
| 45 $70$ $75$ $80$ Met Amp Ala Val The Amp Val Val Lye Gin He Lye Am Lye Leu Val<br>$35$ $85$ Thr Ala Gin Giu Gar Ser Ala Amp Lye Thr Lye IIe Gin Gly Giu Val<br>$110$ $105$ Lyø Gin Leu Gin Giu Gin Leu Lye Giy Amp Leu Ser Thr Thr Thr Thr Lye<br>$120$ $110$ Lyø Gin Leu Gin Giu Gin Leu Lye Giy Amp Leu Ser Thr Thr Thr Thr Lye<br>$120$ $110$ Ser Val Val Giy Ser Phe Val Arg Giu Giy Giy Thr Val Ser Val Lye<br>$145$ $160$ Thr He Amp Tyr Ala Leu Am Ala Ser Lye Val Leu Val Amp Thr Arg<br>$145$ $160$ Thr He Amp Tyr Ala Leu Am Ala Ser Lye Val Leu Val Amp Thr Arg<br>$115$ $161$ An Ala Am Thr Val Thr Val Amp Thr Amp Giu Wet Leu Ser Leu Giy<br>$210$ $210$ An Ala Am Thr Val Thr Val Amp Ser Thr Amp Giu Wet Leu Ser Leu Giy<br>$210$ $210$ Ala Phe Val Lye Val Amp Giy Ser Thr Amp Giu Wet Leu Ser Leu Giy<br>$220$ $210$ Ala Phe Val Lye Val Amp Giy Ser Thr Amp Giu Wet Leu Ser Leu Giy<br>$220$ $210$ Ala Phe Val Lye Val Amp Giy Ser Thr Yal Lye Giy Ser Val Amp Ala<br>$225$ $210$ Ala Phe Val Lye Val Amp Giy Ser Thr Yal Lye Giy Ser Val Amp Ala<br>$226$ Ala Phe Val Lye Val Amp Giy Ser Thr Yal Lye Giy Ser Val Amp Ala<br>$220$ $215$ $210$ $210$ $215$ $210$ $215$ $210$ $215$ $210$ $215$ $210$ $215$ $210$ $215$ $210$ $215$ $210$ $215$ $210$ $215$ $210$ $215$ $210$ $215$ $210$ $215$ $210$ $215$ $210$ <t< td=""><td>Ile</td><td></td><td>Thr</td><td>Thr</td><td>Met</td><td>Arg</td><td></td><td>Asp</td><td>Asn</td><td>Ala</td><td>Ser</td><td></td><td>Ser</td><td>Ala</td><td>Val</td><td>Gln</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ile |     | Thr | Thr | Met | Arg |     | Asp | Asn | Ala | Ser |     | Ser | Ala | Val | Gln |  |  |  |  |  |
| The Ala Gin Glu Ser Ser Ala Asp Lys The Lys IIe Gin Gly Glu Val<br>110<br>Lys Gin Leu Gin Glu Gin Leu Lys Gly IIe Val Asp Ser Ala Ser Phe<br>115<br>116<br>117<br>118<br>119<br>119<br>119<br>119<br>119<br>119<br>119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -   | Ala | Ile | Gly | Leu |     | Ala | Ala | Lys | Val |     | Thr | Ala | Ser | Ala | -   |  |  |  |  |  |
| 100         105         104           149         11         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Met | Asp | Ala | Val |     | Asp | Val | Val | Lys |     | Ile | ГЛа | Asn | ГЛа |     | Val |  |  |  |  |  |
| 115         120         124           81 30         61         81         81         120         125           81 130         61         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Thr | Ala | Gln |     | Ser | Ser | Ala | Asp |     | Thr | Lys | Ile | Gln |     | Glu | Val |  |  |  |  |  |
| 130       140         Ser V:       V:       0.1 Ser       Pis       V:       V:       0.1 Ser       V:       Ser V:       V:       Ser V:       V:       Ser V:       V:       Ser V:<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lys | Gln |     | Gln | Glu | Gln | Leu |     | Gly | Ile | Val | Asp |     | Ala | Ser | Phe |  |  |  |  |  |
| 143         150         150         160           The         1e         Ver $\frac{1}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ser |     | Glu | Asn | Trp | Leu |     | Gly | Asp | Leu | Ser |     | Thr | Thr | Thr | Lys |  |  |  |  |  |
| AlaTheLisThAlsThAlsThAlsThAlsThAlsThAlsThAlsThAlsThAlsThAlsThAlsThAlsThAlsThAlsThAlsThAlsThAlsThAlsThAlsThAlsThAlsThAlsThAlsThAlsAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppAppA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | Val | Val | Gly | Ser |     | Val | Arg | Glu | Gly |     | Thr | Val | Ser | Val |     |  |  |  |  |  |
| AsnAlaAsnThrValThrValAspIleAsnLysGlyGlyGlyValIleThr195ThrValThrValAspGlyGlyGlyGlyValIleThr195ThrValThrValAspGlyGlyGlyGlyValIleThr195ThrValArgAlaTyrSerThrAspGlyGlyValIleThr210YalAspGlyAlaTyrSerThrAspGlyGlyGlyGlyGlySer240AlaPheValLysGlyAspGlySerTryValAspAlaSerYal225ValAspGlySerTryValAlaGlySerValAspAla245AspGlySerTryValAlaGlySerValAspAla250ValAspAlaGlySerValAspAlaAlaAlaAla250ValAspGlySerTryValAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAla<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Thr | Ile | Asp | Tyr |     | Leu | Asn | Ala | Ser | -   | Val | Leu | Val | Asp |     | Arg |  |  |  |  |  |
| 195       200       205         Gln       Ala       Ser       Val       Arg       Ala       Tr       Ser       Th       Asp       Glu       Mat       Leu       Ser       Leu       Gly         Ala       Ya       Asp       Gly       Ala       Tr       Ser       Th       Asp       Gly       Gly </td <td>Ala</td> <td>Thr</td> <td>Gly</td> <td></td> <td>ГЛа</td> <td>Thr</td> <td>Gly</td> <td>Ile</td> <td></td> <td>Asp</td> <td>Thr</td> <td>Ala</td> <td>Tyr</td> <td></td> <td>Gly</td> <td>Leu</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ala | Thr | Gly |     | ГЛа | Thr | Gly | Ile |     | Asp | Thr | Ala | Tyr |     | Gly | Leu |  |  |  |  |  |
| 210       215       220         Ala       Asp       Gly       Ala       Asn       Ser       Asn       Val       Ala       Val       Gly       Gly       Gly       Ser       240         Ala       Val       Lys       Val       Asp       Gly       Ser       Val       Asp       Asp       Ser       Top       Val       Lys       Gly       Ser       Val       Asp       Asp       Asp       Asp       Asp       Asp       Gly       Ser       Val       Asp       Asp       Asp       Asp       Ser       Top       Val       Lys       Gly       Ser       Val       Asp       Ala       Asp       Asp       Asp       Asp       Ser       Top       Val       Asp       Gly       Ser       Val       Asp       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Asn | Ala |     | Thr | Val | Thr | Val |     | Ile | Asn | Lys | Gly |     | Val | Ile | Thr |  |  |  |  |  |
| 225       230       235       240         Ala       Phe       Val       Lys       Val       Asp       Gly       Ser       Trp       Val       Lys       Gly       Ser       Val       Asp         Ala       Ala       Ser       Thr       Ala       Gly       Ser       Val       Asp       Ala       Ser       Ala       Ala       Gly       Ser       Val       Asp       Ala       Ala       Ser       Ala       Ala       Gly       Ser       Val       Asp       Ala       Ala       Ser       Ala       Ala       Gly       Ser       Phe       Ala       Ala       Ala       Za5       Ala       Za5       Ala       Ala       Ala       Za5       Ala       Ala       Za5       Ala       Za5       Ala       Za5       Ala       Za50       Ala       Za5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gln |     | Ser | Val | Arg | Ala |     | Ser | Thr | Aab | Glu |     | Leu | Ser | Leu | Gly |  |  |  |  |  |
| AlaAlaSerIleThrAlaSerThrProValAlaGlyLysPheAlaAlaAlaAlaSerThrAlaGlyThrAlaAlaAlaAlaAlaAlaAlaThrAlaAlaGlyThrAlaAlaAlaAlaAlaAlaAlaAlaThrAlaAlaGlyThrAlaAlaAlaAlaAlaAlaAla290ValAspGluThrAsnSerGlyAlaAlaAlaAlaAspAla290ValAspGluThrAsnSerGlyAlaAsnLeuThr290ValAspGluThrAsnSerGlyAsnLeuThr290ValAspGluThrAsnSerSerSerThrAspAsp300SerValAspSerSerSerSerThrAspVal300SerValSerSerSerSerThrAspVal300SerValSerSerSerSerThrAspVal300SerValSerSerSerSerThrAspYal300SerThrSerSerSerSerSerSerSer300SerThrSerSer </td <td></td> <td>Lys</td> <td>Val</td> <td>Asp</td> <td>Gly</td> <td></td> <td>Asn</td> <td>Ser</td> <td>Asn</td> <td>Val</td> <td></td> <td>Val</td> <td>Gly</td> <td>Gly</td> <td>Gly</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | Lys | Val | Asp | Gly |     | Asn | Ser | Asn | Val |     | Val | Gly | Gly | Gly |     |  |  |  |  |  |
| 260       265       270         Ala       Tyr       Thr       Ala       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ala | Phe | Val | Lys |     | Asp | Gly | Ser | Trp |     | Lys | Gly | Ser | Val |     | Ala |  |  |  |  |  |
| 275       280       285         11e       129       Va       Asp       Gu       Asp       Gu       Asp       Gu       Asp       Gu       Asp       Gu       Su       Gu       Asp       Va       Su       Su       Su       Tu       Tu       Tu       Su       Su       Su       Su       Su       Su       Tu       Tu       Tu       Su       Su       Su       Su       Su       Tu       Tu       Tu       Su       Su       Su       Su       Su       Tu       Tu       Su       Su       Su       Su       Su       Su       Tu       Tu       Su       Su <td>Ala</td> <td>Ala</td> <td>Ser</td> <td></td> <td>Thr</td> <td>Ala</td> <td>Ser</td> <td>Thr</td> <td></td> <td>Val</td> <td>Ala</td> <td>Gly</td> <td>Lys</td> <td></td> <td>Ala</td> <td>Ala</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ala | Ala | Ser |     | Thr | Ala | Ser | Thr |     | Val | Ala | Gly | Lys |     | Ala | Ala |  |  |  |  |  |
| 290     295     300       Gln     Ser     Val     Leu     Th     Math     Asp     Val     Ser     Math     Ser     Ser     Math     Ser     Val     Sada       Gly     Ser     Val     Leu     Thr     Math     Asp     Val     Ser     Math     Ser     Ser     Math     Ser     Ser     Sada       Ala     Gly     Val     Leu     Thr     Sada     Ser     Ser     Ser     Ser     Ser     Ser     Ser       Ala     Gly     Ala     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser       Ala     Gly     Ala     Ser     Ser     Ser     Ser     Ser     Ser     Ser       Ala     Gly     Ala     Ser     Ser     Ser     Ser     Ser     Ser       Ala     Gly     Ala     Ser     Ser     Ser     Ser     Ser     Ser     Ser       Ala     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser       Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser       Ser     Ser     S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ala | Tyr |     | Ala | Ala | Glu | Ala |     | Thr | Ala | Ala | Ala |     | Gly | Asp | Ala |  |  |  |  |  |
| 305     310     315     320       Gly Ser Tyr Leu Thr 325     Gly Val Glu Val Glu Lys Ala Chu Shang Leu Thr 335     Ser 335       Ala Gly Ala Glu Leu Gly Ser Lus Glu Ser Glu Glu Ser Glu Sago     Ile Lys Glu Ser Glu Sago     Ile Ser 345       Arsp Pre Als Ser 375     Ser Arg     Ser 375     Ser 375       Glu Thr Ser 385     Ser 395     Ser 395     Ser 395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ile |     | Val | Asp | Glu | Thr |     | Ser | Gly | Ala | Gly |     | Val | Asn | Leu | Thr |  |  |  |  |  |
| 325     330     335       Ala     Glu     Glu     Glu     Glu     Ser     Ser     Glu     Ser     Ser     Glu     Ser     Ser     Glu     Ser       Glu     Ser       Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser     Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |     | Val | Leu | Thr |     | Asp | Val | Ser | Ser |     | Ser | Ser | Thr | Asp |     |  |  |  |  |  |
| 340     345     350       Asp     Ala     Ser     Lys     Lue     Ala     Lue     Ala     Lys     Gly     Ile     Gly     Arg       Lue     Val     Asp     Ala     Asp     Glu     Glu     Ser     Thr     Lys     Ala     Lue     Lue     Ala     Lue     Lue     Ala     Lue     Lue     Ala     Lue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gly | Ser | Tyr | Leu |     | Gly | Val | Glu | Lys |     | Leu | Thr | Ser | Leu |     | Ser |  |  |  |  |  |
| 355     360     365       Leu     Val     Asp     Ala     Asp     Met     Asn     Glu     Glu     Ser     Thr     Lys     Leu     Leu       370     375     375     Ser     380     Leu     Lys     Ala     Leu       Gln     Thr     Gln     Gln     Gln     Leu     Ala     Ile     Gln     Ser       385     390     395     395     1     He     Asn     Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ala | Gly | Ala |     | Leu | Gly | Ser | Ile |     | Gln | Arg | Ile | Asp |     | Gln | Val |  |  |  |  |  |
| 370375380Gln Thr Gln Gln Leu Ala Ile Gln Ser Leu Ser Ile Ala Asn Ser385390395400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Asp | Phe |     | Ser | ГЛа | Leu | Gly |     | Ala | Leu | Ala | ГЛа |     | Ile | Gly | Arg |  |  |  |  |  |
| 385         390         395         400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Leu |     | Asp | Ala | Asp | Met |     | Glu | Glu | Ser | Thr |     | Leu | Lys | Ala | Leu |  |  |  |  |  |
| Asp Ser Gln Asn Ile Leu Ser Leu Phe Arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Thr | Gln | Gln | Gln |     | Ala | Ile | Gln | Ser |     | Ser | Ile | Ala | Asn |     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Asp | Ser | Gln | Asn | Ile | Leu | Ser | Leu | Phe | Arg |     |     |     |     |     |     |  |  |  |  |  |

<210> SEQ ID NO 32 <211> LENGTH: 287 <212> TYPE: PRT <213> ORGANISM: L. monocytogenes <400> SEQUENCE: 32 Met Lys Val Asn Thr Asn Ile Ile Ser Leu Lys Thr Gln Glu Tyr Leu Arg Lys Asn Asn Glu Gly Met Thr Gln Ala Gln Glu Arg Leu Ala Ser Gly Lys Arg Ile Asn Ser Ser Leu Asp Asp Ala Ala Gly Leu Ala Val Val Thr Arg Met Asn Val Lys Ser Thr Gly Leu Asp Ala Ala Ser Lys Asn Ser Ser Met Gly Ile Asp Leu Leu Gln Thr Ala Asp Ser Ala Leu Ser Ser Met Ser Ser Ile Leu Gln Arg Met Arg Gln Leu Ala Val Gln Ser Ser Asn Gly Ser Phe Ser Asp Glu Asp Arg Lys Gln Tyr Thr Ala Glu Phe Gly Ser Leu Ile Lys Glu Leu Asp His Val Ala Asp Thr Thr Asn Tyr Asn Asn Ile Lys Leu Leu Asp Gln Thr Ala Thr Gly Ala Ala 130 135 Thr Gln Val Ser Ile Gln Ala Ser Asp Lys Ala Asn Asp Leu Ile Asn Ile Asp Leu Phe Asn Ala Lys Gly Leu Ser Ala Gly Thr Ile Thr Leu Gly Ser Gly Ser Thr Val Ala Gly Tyr Ser Ala Leu Ser Val Ala Asp Ala Asp Ser Ser Gln Glu Ala Thr Glu Ala Ile Asp Glu Leu Ile Asn Asn Ile Ser Asn Gly Arg Ala Leu Leu Gly Ala Gly Met Ser Arg Leu Ser Tyr Asn Val Ser Asn Val Asn Asn Gln Ser Ile Ala Thr Lys Ala Ser Ala Ser Ser Ile Glu Asp Ala Asp Met Ala Ala Glu Met Ser Glu Met Thr Lys Tyr Lys Ile Leu Thr Gln Thr Ser Ile Ser Met Leu Ser Gln Ala Asn Gln Thr Pro Gln Met Leu Thr Gln Leu Ile Asn Ser <210> SEQ ID NO 33 <211> LENGTH: 399 <212> TYPE: PRT <213> ORGANISM: B. clarridgeiae <400> SEQUENCE: 33 Met Gly Thr Ser Leu Leu Thr Asn Lys Ser Ala Met Thr Ala Leu Gln Thr Leu Arg Ser Ile Asp Ala Asn Leu Asp Arg Ser Lys Asp Arg Val

continued

|            |            |                                |              |            |            |            |            |            |            |            | -          | con        | tin        | ued        |            |
|------------|------------|--------------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|            |            |                                | 20           |            |            |            |            | 25         |            |            |            |            | 30         |            |            |
| Ser        | Thr        | Gly<br>35                      | Leu          | Arg        | Ile        | Ser        | Asn<br>40  | Ala        | Ser        | Glu        | Asn        | Thr<br>45  | Ala        | Tyr        | Trp        |
| Ser        | Ile<br>50  | Ser                            | Ser          | Met        | Met        | Arg<br>55  | His        | Asp        | Ser        | Asn        | Thr<br>60  | Met        | Ser        | Ala        | Ile        |
| Val<br>65  | Asp        | Ala                            | Ile          | Asn        | Leu<br>70  | Gly        | Lys        | Glu        | Gln        | Val<br>75  | Gly        | Ile        | Ala        | Asp        | Thr<br>80  |
| Ala        | Ile        | Gly                            | Leu          | Thr<br>85  | Lys        | Glu        | Ala        | Leu        | Asp<br>90  | Asp        | Ile        | Gln        | Lys        | Ser<br>95  | Met        |
| Val        | Ser        | Ala                            | Arg<br>100   | Glu        | Lys        | Gly        | Ser        | Asp<br>105 | Asp        | Ile        | Ala        | Lys        | Ile<br>110 | Gln        | Asp        |
| Ser        | Ile        | Ile<br>115                     | Gly          | Asn        | Met        | Lys        | Asn<br>120 | Ile        | Ser        | Asn        | Ala        | Val<br>125 | Gln        | Ser        | Ala        |
| Ser        | Phe<br>130 | Gly                            | Gly          | Гла        | Asn        | Ile<br>135 | Leu        | Ser        | Asn        | Gly        | Gly<br>140 | Gln        | Thr        | Val        | Gly        |
| Met<br>145 | Ala        | Ala                            | Gly          | Tyr        | Arg<br>150 | Arg        | Glu        | Gly        | Thr        | Ala<br>155 | Val        | Tyr        | Val        | Asp        | Met<br>160 |
| Ile        | Asp        | Val                            | Gly          | Gly<br>165 | Ser        | Glu        | Leu        | Asn        | Phe<br>170 | Gly        | Thr        | Ile        | Gly        | Ser<br>175 | Asp        |
| Gly        | Thr        | Ile                            | Asp<br>180   | Met        | Ser        | Gln        | Gly        | Val<br>185 | Leu        | Gly        | Gly        | Ile        | Phe<br>190 | Gly        | Thr        |
| Ser        | Lys        | Gly<br>195                     |              | Glu        | Gly        | Glu        | Asp<br>200 |            | Val        | Gly        | ГЛа        | Gly<br>205 |            | Gly        | Ala        |
| Phe        | Ser<br>210 |                                | Ala          | His        | Ala        | Thr<br>215 | Tyr        | Lys        | Gly        | Leu        | Glu<br>220 | Asp        | Thr        | Leu        | Arg        |
| Asn<br>225 |            | Glu                            | Ala          | Asp        | Leu<br>230 | Ala        | Гла        | Ala        | Ile        | Ala<br>235 |            | Tyr        | Gly        | Glu        | Ser<br>240 |
|            | Glu        | Asp                            | Glu          | Pro<br>245 |            | Lys        | Ala        | Ile        | Ile<br>250 |            | Lys        | Ala        | Lys        | Gln<br>255 |            |
| Val        | Glu        | Thr                            |              |            | Thr        | Gly        | Leu        | -          |            | Gly        | Gln        | Glu        |            |            | Asn        |
| Lys        | Ala        | -                              | 260<br>Gly   | Glu        | Phe        | Gln        |            | 265<br>Val | Leu        | Asp        | Gly        |            | 270<br>Thr | Leu        | Ala        |
| Asp        |            | 275<br>Thr                     | Glu          | Leu        | Lys        | Gly        | 280<br>Leu | Gly        | Glu        | Leu        |            | 285<br>Ser | Asp        | Ile        | Gln        |
| Arg        | 290<br>Met | Ile                            | Met          | Thr        | Ser        | 295<br>Val | Gln        | Asn        | Thr        | Val        | 300<br>Arg | Asp        | Ala        | Val        | Asn        |
| 305<br>Val | Thr        | Leu                            | Thr          | Ala        | 310<br>Gly | Ser        | Lys        | Ile        | Gly        | 315<br>Ala | Ala        | Val        | Asn        | Leu        | 320<br>Val |
|            |            |                                |              | 325        | -          | Val        | -          |            | 330        |            |            |            |            | 335        |            |
|            |            |                                | 340          |            |            |            | -          | 345        |            |            | -          |            | 350        |            |            |
| -          |            | 355                            |              |            |            | Asp        | 360        | -          |            |            |            | 365        |            |            | -          |
| Leu        | Ala<br>370 | Ala                            | Leu          | Gln        | Val        | Gln<br>375 | Gln        | Gln        | Leu        | Gly        | Ile<br>380 | Gln        | Ala        | Leu        | Ser        |
| Ile<br>385 | Ala        | Asn                            | Gln          | Gly        | Ser<br>390 | Gln        | Asn        | Ile        | Leu        | Ala<br>395 | Leu        | Phe        | Arg        | Asn        |            |
| 211<br>212 | L> LI      | EQ II<br>ENGTH<br>(PE :<br>CON | I: 1:<br>PRT | 81         | ifia       | ial (      | Secu       | ance       |            |            |            |            |            |            |            |

<213> ORGANISM: Artificial Sequence

# -continued

| <220> FI<br><223> O                                                 |                                  |                          | RMA        | rion       | : coi      | nsen       | sus s      | equ        | ence       |            |            |            |            |            |    |  |  |  |
|---------------------------------------------------------------------|----------------------------------|--------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|--|--|--|
| <400> SI                                                            | EQUEN                            | CE :                     | 34         |            |            |            |            |            |            |            |            |            |            |            |    |  |  |  |
| Met Ile<br>1                                                        | Asn                              | Thr                      | Asn<br>5   | Val        | Ala        | Leu        | Ala        | Gln<br>10  | Asn        | Leu        | ГЛа        | Gln        | Leu<br>15  | Ser        |    |  |  |  |
| Leu Glu                                                             | -                                | Leu<br>20                | Ser        | Ser        | Gly        | Leu        | Arg<br>25  | Ile        | Asn        | Ser        | Ala        | Asp<br>30  | Asp        | Ala        |    |  |  |  |
| Ala Gly                                                             | Met<br>35                        | Ala                      | Ile        | Ala        | Arg        | Leu<br>40  | Ser        | Gln        | Val        | Arg        | Gly<br>45  | Leu        | Gln        | Ala        |    |  |  |  |
| Thr Arg<br>50                                                       | Asn .                            | Ala                      | Asn        | Asp        | Gly<br>55  | Ile        | Ser        | Ile        | Leu        | Gln<br>60  | Thr        | Ala        | Glu        | Gly        |    |  |  |  |
| Ala Leu<br>65                                                       | Glu                              | Ile                      | Leu        | Gln<br>70  | Arg        | Ile        | Arg        | Asp        | Leu<br>75  | Val        | Gln        | Ala        | Asn        | Gly<br>80  |    |  |  |  |
| Thr Gln                                                             | Ser .                            | Asp                      | Arg<br>85  | Ile        | Gln        | Glu        | Ile        | Gln<br>90  | Leu        | Met        | Glu        | Glu        | Ile<br>95  | Asp        |    |  |  |  |
| Arg Ile                                                             |                                  | Thr<br>100               | Phe        | Asn        | Gly        | Met        | Lys<br>105 | Leu        | Leu        | Gly        | Gln        | Ile<br>110 | Gly        | Val        |    |  |  |  |
| Ile Val                                                             | Ile<br>115                       | Gly                      | Leu        | Leu        | Met        | Met<br>120 | Ile        | Asp        | Ala        | Met        | Leu<br>125 | Arg        | Ala        | Leu        |    |  |  |  |
| Gly Ala<br>130                                                      | Val                              | Gln                      | Asn        | Arg        | Val<br>135 | Asp        | Ile        | Asn        | Leu        | Glu<br>140 | Asn        | Leu        | Ala        | Ala        |    |  |  |  |
| Ser Arg<br>145                                                      | Ile .                            | Asp                      | Ala        | Asp<br>150 | Ala        | Glu        | Val        | Thr        | Asn<br>155 | Leu        | Ser        | Lys        | Gln        | Ile<br>160 |    |  |  |  |
| Leu Gln                                                             | Gln                              | Gly                      | Ser<br>165 | Ile        | Leu        | Ala        | Gln        | Ala<br>170 | Asn        | Gln        | Pro        | Gln        | Asn<br>175 | Val        |    |  |  |  |
| Leu Ser                                                             |                                  | Leu<br>180               | Arg        |            |            |            |            |            |            |            |            |            |            |            |    |  |  |  |
| <210> SJ<br><211> LJ<br><212> T<br><213> OJ<br><220> FJ<br><223> O  | ENGTH<br>YPE:<br>RGANI<br>EATUR  | : 39<br>DNA<br>SM:<br>E: | Art:       |            |            | . –        | ence       |            |            |            |            |            |            |            |    |  |  |  |
| <400> SI                                                            | EQUEN                            | CE :                     | 35         |            |            |            |            |            |            |            |            |            |            |            |    |  |  |  |
| ttaaagto                                                            | ggt a                            | ccag                     | Ittet      | ce eq      | cttt       | tcati      | t gta      | atgca      | act        |            |            |            |            |            | 39 |  |  |  |
| <210> SI<br><211> LI<br><212> T<br><213> OI<br><220> FI<br><223> OI | ENGTH<br>YPE:<br>RGANI<br>EATUR  | : 35<br>DNA<br>SM:<br>E: | Art        |            |            |            | ence       |            |            |            |            |            |            |            |    |  |  |  |
| <400> SI                                                            | EQUEN                            | CE :                     | 36         |            |            |            |            |            |            |            |            |            |            |            |    |  |  |  |
| cgggatco                                                            | ccg t                            | tagg                     | Jagat      | cg gt      | ttgci      | taca       | g tti      | gc         |            |            |            |            |            |            | 35 |  |  |  |
| <210> SI<br><211> Li<br><212> T<br><213> OI<br><220> FI<br><223> O  | ENGTH<br>YPE :<br>RGANI<br>EATUR | : 18<br>PRT<br>SM:<br>E: | Art:       |            |            |            |            | const      | truct      | ī.         |            |            |            |            |    |  |  |  |
| <400> SI                                                            | EQUEN                            | CE :                     | 37         |            |            |            |            |            |            |            |            |            |            |            |    |  |  |  |
| Ala Asp                                                             | Thr .                            | Arg                      | Asp        | Leu        | Gly        | Ala        | Val        | Gln        | Asn        | Arg        | Phe        | Asn        | Ser        | Ala        |    |  |  |  |

-continued 1 5 10 15 Ile Thr <210> SEQ ID NO 38 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic construct <400> SEQUENCE: 38 Val Asp Ala Arg Asp Leu Gly Ala Val Gln Asn Arg Phe Asn Ser Ala 1 5 10 15 Ile Thr <210> SEQ ID NO 39 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic construct <400> SEQUENCE: 39 Val Asp Thr Ala Asp Leu Gly Ala Val Gln Asn Arg Phe Asn Ser Ala 1 5 10 15 Ile Thr <210> SEQ ID NO 40 <211> LENGTH: 15 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic construct <400> SEQUENCE: 40 Arg Ser Asp Leu Gly Ala Val Gln Asn Arg Phe Asn Ser Ala Ile 1 5 10 15 <210> SEQ ID NO 41 <211> LENGTH: 15 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic construct <400> SEQUENCE: 41 Asp Leu Gly Ala Val Gln Asn Arg Phe Asn Ser Ala Ile Thr Asn 1 5 10 15 <210> SEQ ID NO 42 <211> LENGTH: 15 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic construct <400> SEQUENCE: 42 Gly Ala Val Gln Asn Arg Phe Asn Ser Ala Ile Thr Asn Leu Gly 1 5 10 15 <210> SEQ ID NO 43 <211> LENGTH: 15

| <212> TYPE: PRT  |                       |                   |        |  |
|------------------|-----------------------|-------------------|--------|--|
| <213> ORGANISM:  | Artificial Sequence   |                   |        |  |
| <220> FEATURE:   | _                     |                   |        |  |
| <223> OTHER INFO | ORMATION: synthetic o | construct         |        |  |
|                  |                       |                   |        |  |
| <400> SEQUENCE:  | 43                    |                   |        |  |
|                  |                       |                   |        |  |
| Val Gln Asn Arg  | Phe Asn Ser Ala Ile   | Thr Asn Leu Gly A | sn Thr |  |
| 1                | 5                     | 10                | 15     |  |

1-35. (canceled)

**36**. A method of inducing an antigen-specific immune response in an individual,

said method comprising administering to said individual an immunogenic amount of an immunogenic composition, said immunogenic composition comprising an antigen and a flagellin peptide that stimulates TLR5 which peptide consists of the conserved regions of a naturally occurring flagellin protein or a TLR5 stimulatory portion of said conserved regions, wherein said conserved regions are defined as sequences that align with consensus sequence SEQ ID NO:34.

**37**. The method of claim **36**, wherein said antigen and said flagellin peptide form a chimeric polypeptide.

**38**. The method of claim **36**, wherein said antigen is coupled to the flagellin peptide.

**39**. The method of claim **36**, wherein said antigen is selected from the group consisting of polypeptides, polysac-charides, pathologically aberrant cells and bacteria.

**40**. The method of claim **36**, wherein said flagellin peptide further comprises an ADCC targeting molecule.

**41**. A flagellin peptide that stimulates TLR5, which peptide consists of the conserved regions of a naturally occurring flagellin protein or a TLR5 stimulatory portion of said conserved regions, wherein said conserved regions are defined as sequences that align with consensus sequence SEQ ID NO:34; and wherein said peptide coupled to an antigen or to a heterologous moiety.

**42**. The method of claim **41**, wherein said heterologous moiety is an antibody-dependent cell cytotoxicity (ADCC) targeting moiety.

**43**. The peptide of claim **41**, wherein the heterologous moiety is a targeting moiety or facilitates detection, facilitates purification, or enhances immunostimulation activity of TLR5.

44. The peptide of claim 41, wherein the heterologous moiety is a cytokine.

**45**. The peptide of claim **44**, wherein the cytokine is TNF $\alpha$ , IL-1 or IL-6.

46. The peptide of claim 41, wherein the heterologous moiety is an antigen.

**47**. The method of claim **46**, wherein the antigen is selected from the group consisting of polypeptides, polysaccharides, pathologically aberrant cells and bacteria.

**48**. A method of stimulating a TLR5 dependent immune response in an individual having a pathological condition which method comprises administering to said individual an effective amount of the peptide of claim **41**.

**49**. A method of stimulating a TLR5-dependent immune response in an individual having a pathological condition,

said method comprising administering to said individual a combination of the peptide of claim **41** along with an additional immunomodulatory molecule.

**50**. The method of claim **49**, wherein said additional immunomodulatory molecule is an antibody, cytokine or growth factor.

**51**. A method of stimulating a TLR5-dependent immune response in an individual having a pathological condition,

said method comprising administering to said individual a combination of the peptide of claim **42** along with an additional immunomodulatory molecule.

**52**. The method of claim **49**, wherein said pathological condition is selected from the group consisting of proliferative disease, autoimmune disease, infectious disease and inflammatory disease.

\* \* \* \* \*