
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0153657 A1

Pandya

US 20110153657A1

(43) Pub. Date: Jun. 23, 2011

(54)

(76)

(21)

(22)

(63)

(60)

FSA EXTENSION ARCHITECTURE FOR
PROGRAMMABLE INTELLIGENT SEARCH
MEMORY

Inventor: Ashish A. Pandya, El Dorado Hills,
CA (US)

Appl. No.: 13/006,265

Filed: Jan. 13, 2011

Related U.S. Application Data

Continuation of application No. 11/952,110, filed on
Dec. 6, 2007, now Pat. No. 7,899,976.

Provisional application No. 60/965,267, filed on Aug.
17, 2007, provisional application No. 60/965,170,
filed on Aug. 17, 2007, provisional application No.
60/963,059, filed on Aug. 1, 2007, provisional appli
cation No. 60/961,596, filed on Jul. 23, 2007, provi
sional application No. 60/933,313, filed on Jun. 6,
2007, provisional application No. 60/933,332, filed on
Jun. 6, 2007, provisional application No. 60/930,607,
filed on May 17, 2007, provisional application No.
60/928,883, filed on May 10, 2007, provisional appli
cation No. 60/873,632, filed on Dec. 8, 2006, provi

--

sional application No. 60/873,889, filed on Dec. 8,
2006.

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/769; 707/E17.014
(57) ABSTRACT

Memory architecture provides capabilities for high perfor
mance content search. The architecture creates an innovative
memory that can be programmed with content search rules
which are used by the memory to evaluate presented content
for matching with the programmed rules. When the content
being searched matches any of the rules programmed in the
Programmable Intelligent Search Memory (PRISM) action
(s) associated with the matched rule(s) are taken. Content
search rules comprise of regular expressions which are con
Verted to finite state automata (FSA) and then programmed in
PRISM for evaluating content with the search rules. PRISM
architecture comprises of a plurality of programmable
PRISM Search Engines (PSE), each capable of supporting a
predetermined size FSAs. FSA extension architecture is cre
ated to extend the predetermined size limit of an FSA Sup
ported by PSE, by coupling multiple PSEs together to behave
as a composite PSE to support larger FSAs.

...------.806 -

80 Cluster is04
Address is
Decode
Anc
SA

Controller

Serse A

Cluster Search 3uffer

Cluster Se

Cluster PRISM
; Search Engine Array

mp3s/Drivers J-aos 81
os,

8. f Bit Line Control logic-810

82. OCa 816, Priority
EnCOder
Arc

Evaluation
Processor

PRSV Memory Cluster Block Diagram

US 2011/O153657 A1 Jun. 23, 2011 Sheet 1 of 21 Patent Application Publication

0 || k ~~

US 2011/O153657 A1 Jun. 23, 2011 Sheet 2 of 21 Patent Application Publication

gºxxxxxxxxxxxxxxx@xxxxxxxxxxxx

US 2011/O153657 A1 Jun. 23, 2011 Sheet 3 of 21 Patent Application Publication

US 2011/O153657 A1 Jun. 23, 2011 Sheet 4 of 21 Patent Application Publication

S 3 is 338 to a 3 x 3 x :

US 2011/O153657 A1 Jun. 23, 2011 Sheet 5 of 21 Patent Application Publication

US 2011/O153657 A1 Jun. 23, 2011 Sheet 6 of 21 Patent Application Publication

US 2011/O153657 A1 Jun. 23, 2011 Sheet 7 of 21 Patent Application Publication

~ | ¡

(?ºos v xoola eles

US 2011/O153657 A1 Jun. 23, 2011 Sheet 8 of 21 Patent Application Publication

(~~~~ (209 Arºs)-----------------------|Z X43049 3484$

US 2011/O153657 A1 Jun. 23, 2011 Sheet 9 of 21 Patent Application Publication

~~~~~--~~~~~--~~~~~~--~~~~--~~~~);------.-.-.-.-.-.-.-.-.-.------ 
  

    

  

  

  

  



US 2011/O153657 A1 

z V8 ~ | ¡eoori 

Patent Application Publication 

?onuooqõJeesTeismo 9øg, 1-~~~~-----------|-~~~~--~~~~ 
ve 
s 

o-x: 

  

  

  

  

  



US 2011/O153657 A1 Jun. 23, 2011 Sheet 11 of 21 Patent Application Publication 

{ | 

| | | | | | | 

lae 

. . 

  

  

  

  

  

  

  

  

  

  

  





US 2011/0153657 A1 Jun. 23, 2011 Sheet 13 of 21 Patent Application Publication 

---| aa=awsºla eteero:O? mola uanduoo vsa wsiad ou ‘?la 

|- 

  



US 2011/O153657 A1 Jun. 23, 2011 Sheet 14 of 21 Patent Application Publication 

—~~~~ y? 1 ! 

  

  

    

  

  

  

    

  

  



US 2011/O153657 A1 Patent Application Publication 

  

    

  

  

  

  



US 2011/O153657 A1 Jun. 23, 2011 Sheet 16 of 21 Patent Application Publication 

  

  

  



US 2011/O153657 A1 Jun. 23, 2011 Sheet 17 of 21 Patent Application Publication 

• • • * * * · * * · * * * * · · · · · -| 

  



US 2011/O153657 A1 Jun. 23, 2011 Sheet 18 of 21 Patent Application Publication 

! zzan zz.An? zzo 
y_x 

  

  

  



US 2011/O153657 A1 Jun. 23, 2011 Sheet 19 of 21 Patent Application Publication 

|× ----+---- 

o   

  

  

  

  

  



ºidudexa uo?sue4xza vsa ?ustad øs?nae-uuunjoo egy ºfi?a 

US 2011/O153657 A1 Patent Application Publication 

  



US 2011/O153657 A1 Jun. 23, 2011 Sheet 21 of 21 Patent Application Publication 

ºldu.exa uo?sue, a vsa ?ustad esina-uun ?oo pue es?an-moya q9 , -6?a 

EA-r-r---+ …, 

  



US 2011/0153657 A1 

FSA EXTENSION ARCHITECTURE FOR 
PROGRAMMABLE INTELLIGENT SEARCH 

MEMORY 

RELATED APPLICATIONS 

0001. This application is a continuation of U.S. patent 
application Ser. No. 11/952,110, filed Dec. 6, 2007, which 
claims priority to Provisional Application Serial No. 60/965, 
267 filed on Aug. 17, 2007 entitled “Embedded program 
mable intelligent search memory”. Provisional Application 
Serial No. 60/965,170 filed on Aug. 17, 2007 entitled “100 
Gbps security and search architecture using programmable 
intelligent search memory”. Provisional Application Ser. No. 
60/963,059 filed on Aug. 1, 2007 entitled “Signature search 
architecture for programmable intelligent search memory'. 
Provisional Application Serial No. 60/961,596 filed on Jul. 
23, 2007 entitled “Interval symbol architecture for program 
mable intelligent search memory”. Provisional Application 
Ser. No. 60/933,313 filed on Jun. 6, 2007 entitled “FSA 
context Switch architecture for programmable intelligent 
search memory”. Provisional Application Ser. No. 60/933, 
332 filed on Jun. 6, 2007 entitled “FSA extensionarchitecture 
for programmable intelligent search memory”. Provisional 
Application Ser. No. 60/930,607 filed on May 17, 2007 
entitled “Compiler for programmable intelligent search 
memory”, Provisional Application Ser. No. 60/928,883 filed 
on May 10, 2007 entitled “Complex symbol evaluation for 
programmable intelligent search memory. Provisional 
Application Ser. No. 60/873,632 filedon Dec. 8, 2006 entitled 
“Programmable intelligent search memory”. Provisional 
Application Ser. No. 60/873,889 filedon Dec. 8, 2006 entitled 
"Dynamic programmable intelligent search memory’, which 
are all incorporated herein by reference in their entirety as if 
fully set forth herein. 
0002 U.S. patent application Ser. No. 11/952,110, filed 
Dec. 6, 2007 also claims priority to U.S. patent application 
Ser. No. 11/952,028 filed on Dec. 6, 2007 entitled “Embedded 
programmable intelligent search memory, U.S. patent appli 
cation Ser. No. 11/952,043 filed on Dec. 6, 2007 entitled “100 
Gbps security and search architecture using programmable 
intelligent search memory”; U.S. patent application Ser. No. 
11/952,103 filed on Dec. 6, 2007 entitled “Signature search” 
architecture for programmable intelligent search memory'. 
U.S. patent application Ser. No. 11/952,104 filed on Dec. 6, 
2007 entitled “Interval symbol architecture for program 
mable intelligent search memory’, U.S. patent application 
Ser. No. 11/952,108 on Dec. 6, 2007 entitled “FSA context 
Switch architecture for programmable intelligent search 
memory, U.S. patent application Ser. No. 11/952,111 filed 
on Dec. 6, 2007 entitled “Compiler for programmable intel 
ligent search memory’, U.S. patent application Ser. No. 
11/952,112 filed on Dec. 6, 2007 entitled “Complex symbol 
evaluation for programmable intelligent search memory'. 
U.S. patent application Ser. No. 11/952,114 filed on Dec. 6, 
2007 entitled “Programmable intelligent search memory'. 
U.S. patent application Ser. No. 11/952,117 filed on Dec. 6, 
2007 entitled “Dynamic programmable intelligent search 
memory’ which are all co-pending U.S. patent applications 
of common ownership. 

BACKGROUND OF THE INVENTION 

0003. This invention relates generally to memory technol 
ogy and in particular to a new high performance intelligent 
content search memory and a regular expression compiler for 
it. 

Jun. 23, 2011 

0004. Many modem applications depend on fast informa 
tion search and retrieval. With the advent of the world-wide 
web and the phenomenal growth in its usage, content search 
has become a critical capability. A large number of servers get 
deployed in web search applications due to the performance 
limitations of the State of the art microprocessors for regular 
expression driven search. 
0005. There have been significant research and develop 
ment resources devoted to the topic of searching of lexical 
information or patterns in Strings. Regular expressions have 
been used extensively since the mid 1950s to describe the 
patterns in Strings for content search, lexical analysis, infor 
mation retrieval systems and the like. Regular expressions 
were first studied by S. C. Kleene in mid-1950s to describe the 
events of nervous activity. It is well understood in the industry 
that regular expression (RE) can also be represented using 
finite state automata (FSA). Non-deterministic FSA (NFA) 
and deterministic FSA (DFA) are two types of FSAs that have 
been used extensively over the history of computing. Rabin 
and Scott were the first to show the equivalence of DFA and 
NFA as far as their ability to recognize languages in 1959. In 
general a significant body of research exists on regular 
expressions. Theory of regular expressions can be found in 
“Introduction to Automata Theory, Languages and Compu 
tation” by Hoperoft and Ullman and a significant discussion 
of the topics can also be found in book “Compilers: Prin 
ciples, Techniques and Tools” by Aho, Sethi and Ullman. 
0006 Computers are increasingly networked within enter 
prises and around the world. These networked computers are 
changing the paradigm of information management and Secu 
rity. Vast amount of information, including highly confiden 
tial, personal and sensitive information is now being gener 
ated, accessed and stored over the network. This information 
needs to be protected from unauthorized access. Further, 
there is a continuous onslaught of spam, viruses, and other 
inappropriate content on the users through email; web access, 
instant messaging, web download and other means, resulting 
in significant loss of productivity and resources. 
0007 Enterprise and service provider networks are rap 
idly evolving from 10/100Mbps line rates to 1Gbps, 10Gbps 
and higher line rates: Traditional model of perimeter security 
to protect information systems pose many issues due to the 
blurring boundary of an organization's perimeter. Today as 
employees, contractors, remote users, partners and customers 
require access to enterprise networks from outside, a perim 
eter security model is inadequate. This usage model poses 
serious security vulnerabilities to critical information and 
computing resources for these organizations. Thus the tradi 
tional model of perimeter security has to be bolstered with 
security at the core of the network. Further, the convergence 
of new Sources of threats and high line rate networks is 
making Software based perimetersecurity to stop the external 
and internal attacks inadequate. There is a clear need for 
enabling security processing in hardware inside core or end 
systems beside a perimeter security as one of the prominent 
means of security to thwart ever increasing security breaches 
and attacks. 

0008 FBI and other leading research institutions have 
reported in recent years that over 70% of intrusions in orga 
nizations have been internal. Hence a perimeter defense rely 
ing on protecting an organization from external attacks is not 
Sufficient as discussed above. Organizations are also required 
to screen outbound traffic to prevent accidental or malicious 
disclosure of proprietary and confidential information as well 



US 2011/0153657 A1 

as to prevent its network resources from being used to prolif 
erate spam, viruses, worms and other malware. There is a 
clear need to inspect the data payloads of the network traffic 
to protect and secure an organization's network for inbound 
and outbound security. 
0009 Data transported using TCP/IP or other protocols is 
processed at the source, the destination or intermediate sys 
tems in the network or a combination thereof to provide data 
security or other services like secure sockets layer (SSL) for 
Socket layer security, Transport layer security, encryption/ 
decryption, RDMA, RDMA security, application layer secu 
rity, Virtualization or higher application layer processing, 
which may further involve application level protocol process 
ing (for example, protocol processing for HTTP, HTTPS, 
XML, SGML, Secure XML, other XML derivatives, Telnet, 
FTP, IP Storage, NTS, CIFS, DAPS, and the like). Many of 
these processing tasks put a significant burden on the host 
processor that can have a direct impact on the performance of 
applications and the hardware system. Hence, Some of these 
tasks need to be accelerated using dedicated hardware for 
example SSL, or TLS acceleration. As the usage of XML 
increases for web applications, it is creating a significant 
performance burden on the host processor and can also ben 
efit significantly from hardware acceleration. Detection of 
spam, viruses and other inappropriate content require deep 
packet inspection and analysis. Such tasks can put huge pro 
cessing burden on the host processor and can Substantially 
lower network line rate. Hence, deep packet content search 
and analysis hardware is also required. 
0010 Internet has become an essential tool for doing busi 
ness at Small to large organizations. HTML based Static web 
is being transformed into a dynamic environment over last 
several years with deployment of XML based services. XML 
is becoming the lingua-franca of the web and its usage is 
expected to increase substantially. XML is a descriptive lan 
guage that offers many advantages by making the documents 
self-describing for automated processing but is also known to 
cause huge performance overhead for best of class server 
processors. Decisions can be made by processing the intelli 
gence embedded in XML documents to enable business to 
business transactions as well as other information exchange. 
However, due to the performance overload on the best of class 
server processors from analyzing XML documents, they can 
not be used in systems that require network line rate XML 
processing to provide intelligent networking. There is a clear 
need for acceleration Solutions for XML document parsing 
and content inspection at network line rates which are 
approaching 1 Gbps and 10Gbps, to realize the benefits of a 
dynamic web based on XML services. 
0011 Regular expressions can be used to represent the 
content search Strings for a variety of applications like those 
discussed above. A set of regular expressions can then form a 
rule set for searching for a specific application and can be 
applied to any document, file, message, packet or stream of 
data for examination of the same. Regular expressions are 
used in describing anti-spam rules, anti-virus rules, anti-spy 
ware rules, anti-phishing rules, intrusion detection rules, 
extrusion detection rules, digital rights management rules, 
legal compliance rules, worm detection rules, instant mes 
sage inspection rules, VOIP security rules, XML document 
security and search constructs, genetics, proteomics, XML 
based protocols like XMPP web search, database search, 
bioinformatics, signature recognition, speech recognition, 
web indexing and the like. These expressions get converted 

Jun. 23, 2011 

into NFAS or DFAs for evaluation on a general purpose pro 
cessor. However, significant performance and storage limita 
tions arise for each type of the representation. For example an 
Ncharacter regular expression can take up to the order of 2^ 
memory for the states of a DFA, while the same for an NFA is 
in the order of N. On the other hand the performance for the 
DFA evaluation for an M byte input data stream is in the order 
of M memory accesses and the order of (NM) processor 
cycles for the NFA representation on modern microproces 
SOS. 

0012. When the number of regular expressions increases, 
the impact on the performance deteriorates as well. For 
example, in an application like anti-spam, there may be hun 
dreds of regular expression rules. These regular expressions 
can be evaluated on the server processors using individual 
NFAS or DFAs. It may also be possible to create a composite 
DFA to represent the rules. Assuming that there are XREs for 
an application, then a DFA based representation of each indi 
vidual RE would result up to the order of (X*2') states 
however the evaluation time would grow up to the order of 
(X*N) memory cycles. Generally, due to the potential expan 
sion in the number of states for a DFA they would need to be 
stored in off chip memories. Using a typical access time 
latency of main memory systems of 60 ns, it would require 
about (X*60 ns N*M) time to process an XRE DFA with N 
states over an M byte data stream. This can result in tens of 
Mbps performance for modest size of X, N & M. Such per 
formance is obviously significantly below the needs of 
today's network line rates of 1 Gbps to 10 Gbps and beyond. 
On the other hand, if a composite DFA is created, it can result 
in an upper bound of storage in the order of 2 which may 
not be within physical limits of memory size for typical 
commercial computing systems even for a few hundred RES. 
Thus the upper bound in memory expansion for DFAs can be 
a significant issue. Then on the other hand NFAS are non 
deterministic in nature and can result in multiple state transi 
tions that can happen simultaneously. NFAS can only be pro 
cessed on a state of the art microprocessor in a scalar fashion, 
resulting in multiple executions of the NFA for each of the 
enabled paths. X REs with N characters on average can be 
represented in the upper bound of (X*N) states as NFAS. 
However, each NFA would require Miterations for an M-byte 
stream, causing an upper bound of (X*N*M* processor 
cycles per loop). Assuming the number of processing cycles 
are in the order of 10 cycles, then for a best of class processor 
at 4 GHz, the processing time can be around (X*N*M*2.5 
ins), which for a nominal N of 8 and X in tens can result in 
below 100Mbps performance. There is a clear need to create 
high performance regular expression based content search 
acceleration which can provide the performance in line with 
the network rates which are going to 1Gbps and 10Gbps. 
0013 The methods for converting a regular expression to 
Thompson's NFA and DFA are well known. The resulting 
automata are able to distinguish whether a string belongs to 
the language defined by the regular expression however it is 
not very efficient to figure out if a specific sub-expression of 
a regular expression is in a matching string or the extent of the 
string. Tagged NFAS enable such queries to be conducted 
efficiently without having to scan the matching string again. 
For a discussion on Tagged NFA refer to the paper "NFAs 
with Tagged Transitions. their Conversion to Deterministic 
Automata and. Application to Regular Expressions', by Ville 
Laurikari, Helsinki University of Technology, Finland. 

SUMMARY OF THE INVENTION 

0014) A programmable intelligent search memory 
(PRISM) is a memory technology that supports orders of 



US 2011/0153657 A1 

magnitude larger number of regular expressions in a single 
chip for current and emerging content search applications. 
PRISM memory supports FSAs of a number of states in 
which may be any integer like 8, 16, 32 and the like. However, 
at times there may be a need to support regular expressions 
with number of states which are more than that represented in 
a single PRISMFSA. For such cases it may be necessary to 
allow multiple PRISM FSAS to be coupled together to sup 
port the bigger REs. Further, there are certain applications 
where the rules are specified as a group of rules that are 
evaluated together and there may be nesting amongst the rule 
groups. Such applications may have groups of rules that may 
be evaluated simultaneously or one after the other and need a 
means of communicating from one FSA to another. My 
invention describes an architecture that enables creation of 
extensible FSAS to support needs such as the ones described 
above and the like. There is a need for creating a compiler 
flow that can target converting regular expression rules into a 
form that PRISM based search engines can use to process 
input data for content specified by the regular expression 
rules. My invention describes a compiler for regular expres 
sions that can be used for PRISM. 

0.015 I describe an FSA extensionarchitecture and a com 
piler for a high performance Programmable Intelligent 
Search MemoryTM (PRISMTM) for searching content with 
regular expressions as well as other pattern searches. Pro 
grarn.mable intelligent search memory of this patent can have 
many uses wherever any type of content needs to be searched 
for example in networking, storage, security, web search 
applications, XML processing, bio informatics, signature 
recognition, genetics, proteomics, speech recognition, data 
base search, enterprise search and the like. The program 
mable intelligent search memory of my invention may be 
embodied as independent PRISM memory integrated circuits 
working with or may also be embodied within microproces 
sors, multi-core processors, network processors, TCPOffload 
Engines, network packet classification engines, protocol pro 
cessors, regular expression processors, content search pro 
cessors, network search engines, content addressable memo 
ries, mainframe computers, grid computers, servers, 
workstations, personal computers, laptops, notebook com 
puters, PDAs, handheld devices, cellular phones, wired or 
wireless networked devices, Switches, routers, gateways, uni 
fied threat management devices, firewalls, VPNs, intrusion 
detection and prevention systems, extrusion detection sys 
tems, compliance management systems, wearable comput 
ers, data warehouses, storage area network devices, storage 
systems, data vaults, chipsets and the like or their derivatives 
or any combination thereof. 
0016. The regular expressions may optionally be tagged to 
detect Sub expression matches beside the full regular expres 
sion match. The regular expressions are converted into 
equivalent FSAs that may optionally be NFAS and may 
optionally be converted into tagged NFAS. The PRISM 
memory also optionally provides ternary content addressable 
memory functionality. So fixed string searches may option 
ally be programmed into the PRISMTM memory of my 
invention. PRISM memory of this invention enables a very 
efficient and compact realization of intelligent content search 
using FSA to meet the needs of current and emerging content 
search applications. For clarity, as used in this patent the 
terms “programmable intelligent search memory”, “search 
memory”, “content search memory’, or “PRISM memory” 
are used interchangeably and have the same meaning unless 

Jun. 23, 2011 

specifically noted. Further for clarity, as used in this patent the 
term “memory’ when used independently is used to refer to 
random access memory or RAM or Dynamic RAM (DRAM) 
or DDR or QDR or RLDRAM or RDRAM or FCRAM or 
Static RAM (SRAM) or read only memory (ROM) or FLASH 
or cache memory or the like or any future derivatives of such 
memories. 

0017. The PRISM memory performs simultaneous search 
of regular expressions and other patterns (also referred to as 
“rules' or “regular expression rules' or “pattern search rules' 
or “patterns” or “regular expressions' in this patent) against 
the content being examined. The content may be presented to 
the search memory by a companion processor or PRISM 
controller or content stream logic or a master processor or the 
like which may be on the same integrated circuit chip as the 
PRISM memory or may be on a separate device. The content 
to be searched may be streaming content or network packets 
or data from a master processor or data from a disk or a file or 
reside in on-chip memory or off-chip memory or buffers or 
the like from which a controller may present it to the search 
memory arrays for examination. The content search memory 
arrays may initially be configured with the regular expression 
rules converted into NFAS or tagged NFAS and optionally 
other pattern search rules. I describe a compiler for converting 
regular expressions into rules supported by PRISM. PRISM 
memory may optionally comprise of configuration control 
logic which may be distributed or central or a combination 
thereof. The configuration control logic may optionally 
address PRISM memory cells to read and/or write FSA rules 
or other patterns to be searched. Once the PRISM memory is 
setup with all the related information about the NFAS and 
other rules, the content to be examined can be presented to the 
PRISM memory. PRISM memory provides capabilities to 
update rules or program new rules or additional rules, in line 
with the content examination within a few clock cycles unlike 
the current regular expression processors which require the 
content evaluation to stop for long periods of time until large 
tables of composite DFAs are updated in an external or inter 
nal memory. Typically the content is presented as a stream of 
characters or symbols which get examined against the rules in 
the PRISM memory simultaneously and whenever a rule is 
matched the PRISM memory array provides that indication as 
a rule match signal which is interpreted by the control logic of 
the PRISM. There may be multiple rule matches simulta 
neously in which case a priority encoder which may also be 
prottrammable is used to select one or more matches as the 
winner(s). The priority encoder may then provide a tag oran 
address or an action or a combination that may have already 
been programmed in the priority encoder which may be used 
to look-up related data from associated on-chip or off-chip 
memory that may optionally determine the next set of actions 
that may need to be taken on the content being examined. For 
example, in case of a security application if a set of regular 
expressions are defined and programmed for Spain detection, 
then if one or more of these rules when matched can have 
action(s) associated with them that the message or content 
may need to quarantined for future examination by a user or 
it can have an action that says the content should be dropped 
or enable a group of regular expressions in the PRISM 
memory to be applied to the content or the like depending on 
the specific application. The PRISM memory architecture 
comprises of means or circuits or the like for programming 
and reprogramming of the FSA rules and optionally CAM 
signatures and masks. It further comprises of means or cir 



US 2011/0153657 A1 

cuits or the like to stream the content to be searched to the 
PRISM memory arrays. It May further comprise of priority 
encoder which may optionally be programmable. The PRISM 
memory may optionally comprise of random access memory 
(on-chip or off-chip) which is used to store actions associated 
with specific rule matches. The PRISM memory may option 
ally comprise of database extension ports which may be 
optionally used when the number of rules is larger than those 
that may fit in a single integrated circuit chip. The PRISM 
memory may optionally comprise of clusters of PRISM 
memory cells that enable a group of FSA rules to be pro 
grammed per cluster. The PRISM clusters may optionally 
comprise of memory for fast storage and retrieval of FSA 
states for examination of content that belongs to different 
streams or contexts or flows or sessions or the like as 
described below referred to as context memory. For clarity, 
context memory or global context memory or local context 
memory or cluster context memory, all comprise of memory 
like random access memory or RAM or Dynamic RAM 
(DRAM) or DDR or QDR or RLDRAM or RDRAM or 
FC.RAM or Static RAM (SRAM) or read only memory 
(ROM) or FLASH or cache memory or the like or any future 
derivatives of such memories as discussed above. The PRISM 
memory may optionally comprise of global context memory 
beside the local cluster context memory for storage and 
retrieval of FSA states of different contexts and enable sup 
porting a large number of contexts. The cluster context 
memory may optionally cache a certain number of active 
contexts while the other contexts may be stored in the global 
context memory. There may optionally be off-chip context 
memory as well, which can be used to store and retrieve FSA 
states for much larger number of contexts. The PRISM 
memory may optionally comprise of cache or context control 
logic (also referred as “context controller) that manages the 
cluster, global or external context memory or cache or a 
combination thereof. The cache or context control logic may 
optionally be distributed per cluster or may be central for the 
PRISM memory or any combination thereof. The PRISM 
controller or the content stream logic that streams the content 
to be searched may be provided with an indication of the 
context of the content being searched or it may detect the 
context of the content or a combination thereof, and may 
optionally direct the context memory and associated control 
logic i.e. the context controller to get the appropriate context 
ready. Once the context memory has the required context 
available an indication may be provided to PRISM configu 
ration control logic that it may program or load the context 
states in the PRISM memory. The PRISM configuration con 
trol logic (also referred as “configuration controller” in this 
patent) may optionally first save the current context loaded in 
the set of active FSA blocks before loading the new context. 
The configuration controller(s) and the context controller(s) 
may thus optionally store and retrieve appropriate contexts of 
the FSAS and start searching the content against the pro 
grammed rules with appropriate context states of the FSAS 
restored. Thus PRISM memory may optionally dynamically 
reconfigure itself at run-time based on the context of the 
content or the type of the application or the like or a combi 
nation thereof enabling run-time adaptable PRISM memory 
architecture. The contexts as referred to in this patent may, as 
examples without limitation, be related to specific streams, or 
documents, or network connections or message streams or 
sessions or the like. The PRISM memory may process content 
from multiple contexts arriving in data groups or packets or 

Jun. 23, 2011 

the like. For content search in applications where the content 
belonging to one context may arrive interspersed with content 
from other contexts, it may be important to maintain the state 
of the content searched for a context up to the time when 
content from a different context gets searched by PRISM 
memory. The context memory or cache with the associated 
controllers as described in this patent enable handling of 
multiple contexts. 
0018 For clarification, the description in this patent appli 
cation uses term NFA to describe the NFAS and optionally, 
when tagging is used in regular expressions, to describe 
tagged NFA unless tagged NFA is specifically indicated. All 
NFAS may optionally be tagged to form tagged NFAS, hence 
the description is not to be used as a limiter to apply only to 
tagged NFAS. The descriptions of this patent are applicable 
for non-tagged NFAS as well and tagging is an optional func 
tion which may or may not be implemented or used, and thus 
non-tagged NFAS are covered by the teachings of this patent 
as will be appreciated by one skilled in the art. At various 
places in this patent application the term content search 
memory, content search memory, search memory and the like 
are used interchangeably for programmable intelligent search 
memory or PRISM memory. These usages are meant to indi 
cate the content search memory or PRISM memory of this 
invention without limitation. 

(0019. Berry and Sethi in their paper “From Regular 
Expressions to Deterministic Automata' Published in Theo 
retical Computer Science in 1986, showed that regular 
expressions (REs) can be represented by NFAS such that a 
given state in the State machine is entered by one symbol, 
unlike the Thompson NFA. Further, the Berry-Sethi NFAS are 
c-free. A V term RE can be represented using V+1 states 
NFA using Berry-Sethi like NFA realization method. The 
duality of Berry-Sethi method also exists where all transitions 
that lead the machine out of a state are dependent on the same 
symbol. This is shown in the paper 'A Taxonomy of finite 
automata construction algorithms' by Bruce Watson pub 
lished in 1994 in section 4.3. I show a method of creating NFA 
search architecture in a memory leveraging the principles of 
Berry-Sethi's NFA realization and the dual of their construct. 
The NFA search memory is programmable to realize an arbi 
trary regular expression using the compiler flow of this inven 
tion to convert a regular expression to that usable by PRISM. 
The compiler of this invention follows the principles of 
Berry-Sethi FSA construction to convert regular expressions 
into an FSAS and creates various data structures that are 
required for PRISM to operate as a programmable regular 
expressions engine. 
(0020. This PRISM memory and the compiler for PRISM 
of this patent may be used for many applications like those for 
detecting intrusions, extrusions and confidential information 
disclosure (accidental or malicious or intended), regulatory 
compliance search using hardware for regulations like 
HIPAA, Sarbanes-Oxley, Graham-Leach-Bliley act, Califor 
nia security bills, security bills of various states and/or coun 
tries and the like, deep packet inspection, detecting spam, 
detecting viruses, detecting worms, detecting spyware, 
detecting digital rights management information, instant 
message inspection, URL matching, application detection, 
detection of malicious content, and other content, policy 
based access control as well as other policy processing, con 
tent based Switching, load balancing, virtualization or other 
application layer content inspection for application level pro 
tocol analysis and processing for web applications based on 



US 2011/0153657 A1 

HTTP, XML and the like and applying specific rules which 
may enable anti-spam, anti-virus, other security capabilities 
like anti-spyware, anti-phishing and the like capabilities. The 
content inspection memory may be used for detecting and 
enforcing digital rights management rules for the content. 
The content inspection memory may also be used for URL 
matching, string searches, genetic database searches, pro 
teomics, bio informatics, web indexing, content based load 
balancing, sensitive information search like credit card num 
bers or social security numbers or health information or the 
like. 
0021 Classification of network traffic is another task that 
consumes up to half of the processing cycles available on 
packet processors leaving few cycles for deep packet inspec 
tion and processing at high line rates. The described content 
search memory can Sienificantly reduce the classification 
overhead when deployed as companion search memory to 
packet processors or network processors or TOE or storage 
network processors or the like. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0022 FIG. 1a illustrates Thompson's NFA (prior art) 
0023 FIG. 1b illustrates Berry-Sethi NFA (prior art) 
0024 FIG. 1c illustrates DFA (prior art) 
0025 FIG.2a illustrates a left-biased NFA and state tran 
sition table (prior art) 
0026 FIG.2b illustrates a right-biased NFA and state tran 
sition table (prior art) 
0027 FIG.3a illustrates state transition controls 
0028 FIG. 3b illustrates configurable next state tables per 
State 

0029 FIG. 4a illustrates state transition logic (STL) for a 
State 

0030 FIG. 4b illustrates a state logic block 
0031 FIG. 5a illustrates state transition logic (STL) for a 
state in Left-Biased FSA 
0032 FIG. 5b illustrates state transition logic (STL) for a 
state in Right-Biased FSA 
0033 FIG. 6A illustrates Right-biased Tagged FSA Rule 
block in PRISM 
0034 FIG. 6B illustrates Left-biased Tagged FSA Rule 
block in PRISM 
0035 FIG. 7 illustrates PRISM Block Diagram 
0036 FIG. 8a illustrates PRISM Memory Cluster Block 
Diagram 
0037 FIG. 8b illustrates PRISM Memory Cluster 
Detailed Block Diagram 
0038 FIG. 9 illustrates PRISM search compiler flow 
(full--incremental rule distribution) 
0039 FIG. 10 illustrates PRISM HA Compiler flow 
0040 FIG. 11 illustrates PRISM Row-Wise FSA Exten 
sion 
004.1 FIG. 11A illustrates PRISM Rule Group FSA 
Extension. 
0042 FIG. 12 illustrates PRISM. Row-Wise FSA Exten 
sion Example #1 
0043 FIG. 13 illustrates PRISM Row-Wise FSA Exten 
sion Example #2 
0044 FIG. 14 illustrates PRISM Column-Wise FSA 
Extension 
004.5 FIG. 15 illustrates PRISM FSA Extension Example 
H1 
0046 FIG. 16a illustrates Column-Wise PRISM FSA 
Extension Example 

Jun. 23, 2011 

0047 FIG. 16b illustrates Row-Wise and Column-Wise 
PRISM BA Extension Example 

DESCRIPTION 

0048 I describe a FSA extension architecture and a regu 
lar expression compiler for high performance Programmable 
Intelligent Search Memory for searching content with regular 
expressions as well as other pattern searches. The regular 
expressions may optionally be tagged to detect Sub expres 
sion matches beside the full regular expression match. The 
regular expressions are converted into equivalent FSAS that 
may optionally be NFAS and may optionally be converted into 
tagged NFAS. The PRISM memory also optionally supports 
ternary content addressable memory functionality. So fixed 
string searches may optionally be programmed into the 
PRISM memory. PRISM memory enables avery efficient and 
compact realization of intelligent content search using FSA to 
meet the needs of current and emerging content search appli 
cations. Unlike a regular expression processor based 
approach, the PRISM memory can support tens of thousands 
to hundreds of thousands of content search rules defined as 
regular expressions as well as patterns of strings of characters. 
A compiler for compiling these regular expression rules into 
PRISM. compatible data structure is described in this inven 
tion to enable PRISM to perform the content inspection using 
the compiled rules. The PRISM memory performs simulta 
neous search of regular expressions and other patterns. The 
content search memory can perform high speed content 
search at line rates from 1Gbps to 10Gbps and higher, when 
the best of class server microprocessor can only perform the 
same tasks at well below 100 Mbps. The content search 
memory can be used not only to perform layer 2 through layer 
4 searches that may be used for classification and security 
applications, it can also be used to perform deep packet 
inspection and layer 4 through layer 7 content analysis. 
0049. Following are some of the embodiments, without 
limitations, that can implement PRISM memory: 
0050. The PRISM memory may be embodied inside net 
work interface cards of servers, workstations, client PCs, 
notebook computers, handheld devices, Switches, routers and 
other networked devices. The servers may be web servers, 
remote access servers, file servers, departmental servers, Stor 
age servers, network attached storage servers, database serv 
ers, blade servers, clustering servers, application servers, con 
tent /media servers, VOIP servers and systems, grid 
computers/servers, and the like. The PRISM memory may 
also be used inside an I/O chipset of one of the end systems or 
network core systems like a Switch or router or appliance or 
the like. 
0051. The PRISM memory may also be embodied on 
dedicated content search acceleration cards that may be used 
inside various systems described in this patent. Alternatively, 
PRISM memory may also be embodied as a content search 
memory inside a variety of hardware and/or integrated cir 
cuits like ASSPs, ASICs, FPGA, microprocessors, multi-core 
processors, network processors, TCP Offload Engines, net 
workpacket classification engines, protocol processors, regu 
lar expression processors, content search processors, main 
frame computers, grid computers, servers, workstations, 
personal computers, laptops, handheld devices, cellular 
phones, wired, or wireless networked devices, Switches, rout 
ers, gateways, XML accelerators, VOIP servers, Speech rec 
ognition systems, bio informatics systems, genetic and pro 
teomics search systems, web search servers, electronic vault 



US 2011/0153657 A1 

application networks and systems, Data Warehousing sys 
tems, Storage area network systems, content indexing appli 
ances like web indexing, email indexing and the like, chipsets 
and the like or any combination thereof Alternatively, PRISM 
memory blocks may be embedded inside other memory tech 
nologies like DRAM, SDRAM, DDR DRAM, DDR II 
DRAM, RLDRAM, SRAM, RDRAM, RDRAM, QDR 
SRAM, DDR SRAM, CAMs, Boundary Addressable Memo 
ries, Magnetic memories, Flash or other special purpose 
memories or a combination thereofor future derivates of such 
memory technologies to enable memory based content 
search. 

0052 One preferred embodiment of the invention is in an 
integrated circuit memory chip that may support around 128, 
000 8-symbol regular expression rules in current process 
technologies. A second preferred embodiment of the PRISM 
technology is an integrated circuit memory chip that may 
Support around 8,000 regular expression rules in current pro 
cess technologies to support applications where a lower con 
tent search memory cost is required. Each process generation 
may provide ability to store around twice as many PRISM 
memory bits as the previous generation. Thus in one preferred 
embodiment the PRISM memory would be able to support 
tens of thousands of eight state FSA and can. potentially 
support over 100,000 FSAs. There are many variations of the 
PRISM memory architecture that can be created that can 
Support more or less FSAS depending upon various factors 
like the number of states per FSA, the chip die area, cost, 
manufacturability expectations and the like which will be 
appreciated by a person with ordinary skill in the art. 

DETAILED DESCRIPTION 

0053 describe a FSA extension architecture and a regular 
expression compiler for a high performance Programmable 
IntelligentSearch Memory for searching content with regular 
expressions as well as other pattern searches. The regular 
expressions may optionally be tagged to detect Sub expres 
sion matches beside the full regular expression match. The 
regular expressions are converted into equivalent FSAS or 
NFAS and optionally into tagged NFAS. The PRISM memory 
also optionally Supports ternary content addressable memory 
functionality. So fixed string searches may optionally be pro 
grammed into the PRISM memory of my invention. PRISM 
memory of this invention enables a very efficient and compact 
realization of intelligent content search using FSA to meet the 
needs of current and emerging content search applications. 
Unlike a regular expression processor based approach, the 
PRISM memory can support tens of thousands to hundreds of 
thousands of content search rules defined as regular expres 
sions as well as patterns of strings of characters. The PRISM 
memory performs simultaneous search of regular expressions 
and other patterns. The content search memory can perform 
high speed content search at linerates from 1Gbps to 10Gbps 
and higher using current process technologies. The descrip 
tion here is with respect to one preferred embodiment of this 
invention in an integrated circuit (IC) chip, it will be appre 
ciated by those with ordinary skill in the art that changes in 
these embodiments may be made without departing from the 
principles and spirit of the invention. The illustrations are 
made to point out salient aspects of the invention and do not 
illustrate well understood IC design elements, components 
and the like implementation of the invention in integrated 
circuits so as not to obscure the invention. 

Jun. 23, 2011 

0054 Ability to perform content search has become a 
critical capability in the networked world. As the network line 
rates go up to 1Gbps, 10Gbps and higher, it is important to be 
able to perform deep packet inspection for many applications 
at line rate. Several Security issues, like viruses, worms, con 
fidential information leaks and the like, can be detected and 
prevented from causing damage if the network traffic can be 
inspected at high line rates. In general, content search rules 
can be represented using regular expressions. Regular expres 
sion rules can be represented and computed using FSAS. 
NFAS and DFAs are the two types of FSAs that are used for 
evaluation of regular expressions. For high line rate applica 
tions a composite DFA can be used, where each character of 
the input stream can be processed per cycle of memory 
access. However, this does have a limit on how fast the search 
can be performed dictated by the memory access speed. 
Another limiter of Such approach is the amount of memory 
required to search even a modest number of regular expres 
sion rules. As discussed above, NFAS also have their limita 
tions to achieve high performance on general purpose proces 
sors. In general, today's best of class microprocessors can 
only achieve less than 100Mbps performance using NFAS or 
DFAs for a small number of regular expressions. Hence, there 
is a clear need to create targeted content search acceleration 
hardware to raise the performance of the search to the line 
rates of 1 Gbps and 10Gbps. PRISM memory is such a high 
performance content search hardware that can be targeted for 
high line rates. The invention of this patent describes a com 
piler to make PRISM memory structures useful for process 
ing content against a large number of regular expressions 
compiled to leverage PRISM capabilities. 
0055 As described earlier, regular expression can be rep 
resented using FSA like NFA or DFA. FIG. 1a illustrates 
Thompson's construction for the regular expression (xy+y) 
yx. Thompson's construction proceeds in a step by step 
manner where each step introduces two new states, so the 
resulting NFA has at most twice as many states as the symbols 
or characters and operators in the regular expression. An FSA 
is comprised of states, state transitions, and symbols that 
cause the FSA to transition from one state to another. An FSA 
comprises at least one start state, and at least one accept state 
where the start state is where the FSA evaluation begins and 
the accept state is a state which is reached when the FSA 
recognizes a string. Block 101 represent the start state of the 
FSA, while block105 is an accept state. Block 102 represents 
state 2 and 104 represents state 3. The transition from state 2 
to state 3 is triggered on the symbol X, 103 and is represented 
as a directed edge between the two states. Thompson's NFA 
comprises of 'e' transitions, 116, which are transitions among 
states which may be taken without any input symbol. 
0056 FIG. 1b illustrates Berry-Sethi NFA for the regular 
expression (xy+y)*yx. Berry and Sethi described an algo 
rithm of converting regular expressions into FSA using a 
technique called marking of a regular expression. It results 
in an NFA which has a characteristic that all transitions into 
any state are from the same symbol. For example, all transi 
tions into state 1, 107, are from symbol x . The other char 
acteristic of the Berry-Sethi construct is that number of NFA 
states are the same as the number of symbols in the regular 
expression and one start state. In this type of construction, 
each occurrence of a symbol is treated as a new symbol. The 
construction converts the regular expression (Xy+y)*yx to a 
marked expression (xy+y)*y Xs where each X leads to the 
same state, 107. The figure does not illustrate the markings. 



US 2011/0153657 A1 

Once the FSA is constructed the markings are removed. The 
FIG. 1b illustrates the NFA with the markings removed. As 
can be seen from the figure, in Berry-Sethi construction all 
incoming transitions into a state are all dependent on the same 
symbol. Similarly, a duality of Berry-Sethi construct also has 
been studied and documented in the literature as discussed 
earlier, where instead of all incoming transitions being depen 
dent on the same symbol, all outgoing transitions from a state 
are dependent on the same symbol. The Berry-Sethi construct 
is also called a left-biased type of construct, where as its dual 
is called a right-biased construct. 
0057 Finite State Automaton can evaluate incoming sym 
bols or characters against the regular expression language of 
the automaton and detect when an input string is one of the 
strings recognized by it. However, it is advantageous in cer 
tain conditions to know if a certain Sub-expression of the 
regular expression is also matched. That may be enabled by 
tagging the NFA as described in the paper by Ville Laurikari 
referred earlier. Following description illustrates how the 
inventions of this patent enable tagged NM realization in 
PRISM memory. The tagging for Sub-expression checking 
may involve further processing of the FSA to uniquely iden 
tify sub-expression matching. However for illustration pur 
pose, if in the regular expression"(xy+y)*yx’ done desires to 
detect if the Sub-expression "xy' is in the recognized String, 
one can tag the state 4, 110, as a tagged state. Thus, whenever 
the regular expression transitions through state 4, 110, the 
sub-expression match or tag match may be indicated. There 
may also be need to detect if a specific transition leads the 
regular expression through a desired sub-expression. In Such 
a case a tag start state and a tag end state may be marked. For 
instance, if it is desired to detect if the transition from state 0 
to state 2, 117, is taken then the state 0 may be marked as a tag 
start state and state 2 may be marked as a tag end State. The 
tagged FSA implementation may then indicate the beginning 
of the tag transition when the FSA reaches the tag start state 
and then indicate the end of the tag transition when the FSA 
reaches the tag end state. If the FSA moves from the tag start 
state immediately followed by transitioning into tag end State, 
then the tagged FSA can indicate the match of a tagged 
transition. The illustrations in the description below do not 
illustrate this aspect of tagged NFA, though it may optionally 
be supported in PRISM and may be easily implemented as 
follows or other means for example by adding a tag start and 
tag end State flags (as memory bits or flip-flops) and the logic 
for the tag transition detection to follow the steps described 
above as can be appreciated by those with ordinary skill in the 
art. The patent of this disclosure enables detection of sub 
expressions using tagging. 
0058 FIG. 1c illustrates a DFA for the same regular 
expression (xy+y)*yx. DFA is deterministic in that only one 
of its states is active at a given time, and only one transition is 
taken dependent on the input symbol. Whereas in an NFA, 
multiple states can be active at the same time and transitions 
can be taken from one state to multiple states based on one 
input symbol. There are well known algorithms in the litera 
ture, like subset construction, to convert a RE or NFA to a 
DFA. This DFA may be realized in the PRISM Memory using 
the constructs described below to represent an FSA, using a 
left-biased realization. Thus PRISM memory of this inven 
tion may also be used to program certain DFAs where all 
incoming transitions to each state are with the same symbol 
like the DFA of this illustration. 

Jun. 23, 2011 

0059 FIG. 2a illustrates a left-biased NFA and its state 
transition table (prior art). The illustration is a generic four 
state Berry-Sethi like NFA with all transitions from each node 
to the other shown with the appropriate symbol that the tran 
sition depends on. For example, state A, 201 has all incoming 
transitions dependent on symbola as illustrated by example 
transitions labeled 202 and 203. When the FSA is in State A, 
201, an input symbol 'd', transitions the FSA to state D with 
the transition, 204, from state A to state D. The table in the 
figure illustrates the same FSA using a state transition table. 
The column PS, 211, is the present state of the FSA, while 
the row sym, 212, is a list of all the symbols that the state 
transitions depend on. The table 213, illustrates the next state 
(NS) that the FSA will transition to from the present state (PS) 
when an input symbol from those in the sym header row is 
received. In this FSA, state A is the start state and state C is 
an accept state. Hence, if the FSA is in the present state A and 
an input symbol b is received, the FSA transitions to the next 
state B. So when the next input symbol is received, the FSA 
is in present state Band is evaluated for state transition with 
the row corresponding to present state B. 
0060 FIG.2b illustrates a right-biased NFA and its state 
transition table (prior art). The illustration is a generic four 
state dual of Berry-Sethi NFA with all transitions from each 
node to the other shown with the appropriate symbol that the 
transition depends on. For example, state A. 205 has all 
outgoing transitions dependent on symbola as illustrated by 
example transitions labeled 208 and 209 where as unlike the 
left-biased NFA described above, each incoming transition is 
not on the same symbol, for example transitions labeled 206 
and 207 depend on symbols band'd respectively. The state 
transition table in this figure is similar to the left biased one, 
except that the FSA transitions to multiple states based on the 
same input symbol. For example if the FSA is in the present 
state Band a symbol b is received, then the FSA transitions 
to all states A, B, C and D. When an input symbol is 
received which points the FSA to an empty box, like 216, the 
FSA has received a string which it does not recognize. The 
FSA can then be initialized to start from the start state again 
to evaluate the next string and may indicate that the string is 
not recognized. 
0061 The FIG.2a and FIG.2b, illustrate generic four state 
NFAS where all the transitions from each state to the other are 
shown based on the left-biased or right-biased construct char 
acteristics. However not all four state NFAS would need all 
the transitions to be present. Thus if a symbol is received 
which would require the FSA to transition from the present 
state to the next state when such transition on the received 
input symbol is not present, the NFA is said to not recognize 
the input string. At such time the NFA may be restarted in the 
start state to recognize the next string. In general, one can use 
these example four state NFAS to represent any four state RE 
in a left-biased (LB) or right-biased (RB) form provided there 
is a mechanism to enable or disable a given transition based 
on the resulting four states NFA for the RE. 
0062 FIG. 3a illustrates state transition controls for a 
left-biased and right-biased NFA. The figure illustrates a left 
biased NFA with a state A, 300, which has incoming tran 
sitions dependent on receiving inputSymbol S1 from states 
B, 301, C, 302, and D, 303. However, the transitions 
from each of the states B, C and D to state A, occur only 
if the appropriate state dependent control is set besides receiv 
ing the input symbol S1. The state dependent control for 
transition from state B to state A is V, while those from 



US 2011/0153657 A1 

states C and 'D' to state A is V and V respectively. Tran 
sition to the next state A is dependent on present state A 
through the state dependent control V. Thus transition into a 
state A occurs depending on the received inputSymbol being 
S1 and if the state dependent control for the appropriate 
transition is set. Thus, one can represent any arbitrary four 
states NFA by setting or clearing the state dependent control 
for a specific transition. Thus, if a four states left biased NFA 
comprises of transition into state A. from state B and C 
but not from the states A or D, the state dependent controls 
can be set as V=0, V-1, V-1 and V-0. Hence if the NFA 
is in state D and a symbol S1 is received, the NFA will not 
transition into state A, however if the NFA is in state Band 
a symbol S1 is received the NFA will transition into state 
A. 

0063 Similarly, FIG. 3a also illustrates states and transi 
tions for a right-biased NFA. The figure illustrates a right 
biased NFA with a state A, 306, which has incoming tran 
sitions from state B, 307, state “C, 308, and state D, 309, 
on receiving input symbols S2, S3 and S4 respectively. 
However, the transitions from each of the states B, C and 
'D' to state A, occur only if the appropriate state dependent 
control is set besides receiving the appropriate input symbol. 
The state dependent control for transition from state B to 
state A is V, while those from states C and D to state A 
is V, and V respectively. Transition to the next state A is 
dependent on present state A through the state dependent 
control V. Thus transition into a state ‘A’ occurs based on the 
received input symbol and if the state dependent control for 
the appropriate transition is set. Thus, one can represent any 
arbitrary four states right-biased NFA by setting or clearing 
the state dependent control for a specific transition. All State 
transition controls for a given state form a state dependent 
vector (SDV), which is comprised of V, V, V, and V for 
the illustration in FIG. 3a for the left-biased and the right 
biased NFAS. 

0064 FIG. 3b illustrates configurable next state table per 
state. The left-biased state table for NS=A, is shown by the 
table 311, whereas the right-biased state table for NS=A, is 
shown by the table 312. The state dependent vector for both 
left-biased and right-biased NFA state is the same, while the 
received input symbol that drive the transition are different 
for the left-biased vs. right-biased NFA states. Thus a state 
can be represented with properties like left-biased (LB), 
right-biased (RB), start state, accept state, SDV as well as 
action that may be taken if this state is reached during the 
evaluation of input strings to the NFA that comprises this 
State. 

0065 FIG. 4a illustrates state transition logic (STL) for a 
state. The STL is used to evaluate the next state for a state. The 
next state computed using the STL for a state depends on the 
current state of the NFA, the SDV, and the received symbol or 
symbols for a left-biased NFA and right-biased NFA respec 
tively. The InChar input is evaluated against symbols SI 
through Sn using the symbol detection logic, block 400, 
where n is an integer representing the number of symbols in 
the RE of the NFA. The choice of n depends on how many 
states are typically expected for the NFAs of the applications 
that may use the search memory. Thus, in may be chosen to 
be 8, 16, 32 or any other integer. The simplest operation for 
symbol detection may be a compare of the input symbol with 
S1 through Sn. The output of the symbol detection logic is 
called the received symbol vector (RSV) comprised of indi 
vidual detection signals RS1 through RSn. LB/RBi is a 

Jun. 23, 2011 

signal that indicates if a left-biased NFA or a right-biased 
NFA is defined. LB/RBi is also used as an input in evaluating 
state transition. The STL for a state supports creation of a 
left-biased as well as right-biased NFA constructs. The 
LB/RBill signal controls whether the STL is realizing a left 
biased or a right-biased construct. The state dependent vector 
in the form of V1 through Vn, is also applied as input to the 
STL. The SDV enables creation of arbitrary n-state NFAs 
using STL as a basis for a state logic block illustrated in FIG. 
4b. Present states are fed into STL as a current state vector 
(CSV) comprised of Q1 through Qn. STL generates a 
signal N1 which gets updated in the state memory, block 
402, on the next input clock signal. N1 is logically repre 
sented as N1=(V1 and Q1 and (LB/RBit OR RS1)) OR (V2 
and Q2 and (LB/RBit OR RS2)) OR . . . (Vn and Qn and 
(LB/RBit OR RSn)) AND ((NOT LB/RBit OR RS1). Similar 
signal for another state n, would be generated with similar 
logic, except that the signal 401, feeding into the OR gate, 
415, would be RSn, which is the output of the n-th symbol 
detection logic, changing the last term of the node N1 logic 
from ((NOT LB/RBit OR RS1) to ((NOT LB/RBit OR RSn). 
The state memory, 402, can be implemented as a single bit 
flip-flop or a memory bit in the state logic block discussed 
below. 

0066 FIG. 4b illustrates a state logic block (SLB). The 
SLB comprises the STL. 406. Init logic. 408, state memory, 
410, the accept state detect logic, 411, the SDV for this state, 
407, start flag, 409, accept flag, 412, tag associated with this 
state, 419, or action associated with this state, 413 or a com 
bination of the foregoing. The SLB receives current state 
vector and the received symbol vector which are fed to STL to 
determine the next state. The realization of a state of an 
arbitrary NFA can then be done by updating the SDV for the 
state and selecting the symbols that the NFA detects and takes 
actions on. Further, each state may get marked as a start state 
or an accept state or tagged NFA state or a combination or 
neither start or accept or tagged State through the start, tag and 
accept flags. The init logic block, 408, receives control signals 
that indicate if the state needs to be initialized from the start 
state or cleared or disabled from updates, or loaded directly 
with another state value, or may detect a counter value and 
decide to accept a transition or not and the like. The init block 
also detects if the FSA has received a symbol not recognized 
by the language of the regular expression and then may take 
the FSA into a predefined initial state to start processing the 
stream at the next symbol and not get into a state where it 
stops recognizing the stream. The Init block can be used to 
override the STL evaluation and set the state memory to active 
or inactive state. The STL, 406, provides functionality as 
illustrated in FIG. 4a, except that the state memory is included 
in the SLB as independent functional block, 410. The state 
memory, 410, can be implemented as a single bit flip-flop or 
a memory bit. When the state memory is set it indicates-that 
the state is active otherwise the state is inactive. The accept 
detect logic, 411, detects if this state has been activated and if 
it is an accept state of the realized NFA. If the state is an accept 
state, and if this state is reached during the NFA evaluation, 
then the associated action is provided as an output of the SLB 
on the A1 signal, 416, and an accept state activation indicated 
on M1, 417. If the FSA reaches a state which is flagged as a 
tagged State using the tag flag, then the match detect logic 
may indicate a tag match, not illustrated, which another cir 
cuit can use to determine the action to be taken for the par 
ticular tag. The action could be set up to be output from the 



US 2011/0153657 A1 

SLB on the state activation as an accept state as well as when 
the state is not an accept state, like a tagged state, as required 
by the implementation of the NFA. This can enable the SLB 
to be used for tagged NFA implementation where an action or 
tag action can be associated with a given transition into a 
State. 

0067. If there are n states supported per FSA rule, then 
each SLB needs 'n'-bit SDV which can be stored as a n-bit 
memory location, 3-bits allocated to start, tag and accept 
flags, 1-bit for LB/RBil, m-bit action storage. Thus if n=16 
and m=6, then the total storage used per SLB would be a 
26-bit register equivalent which is a little less than 4 bytes per 
state. If tag start flag and tag end flags are Supported, not 
illustrated, then the number of memory bits would be 28-bits. 
If multiple tagged expressions need to be enabled then the 
number of bits for tagging may be appropriately increased. 
When the number of states in a resulting FSA of a RE is more 
than n supported by the FSA of PRISM, a mechanism is 
required that would allow the PRISM memory to support 
Such rules. The patent of this application describes Such a 
mechanism and, an architecture described below. 
0068 FIG. 5a illustrates State transition logic (STL) for a 
state in a left-biased FSA. This figure illustrates state transi 
tion logic for a state of an FSA when the logic illustrated 
above for FIG. 4a is simplified with the LB/RBi set to active 
and symbol detection logic for one of the states illustrated. 
The symbol bits are illustrated as m-bit wide as S...S. 
illustrated in block 502. The input character symbol bits are 
labeled as cIn, . . . cIn, 501. The symbol detection logic 
illustrated in FIG. 4a, 400, is illustrated as individual bits 
labeled E. . . . E. 503, and is also referred to as symbol 
evaluation logic in this patent. The symbol dependent vector 
is labeled V. ...V. 504 which indicates the symbol depen 
dent vector bit enabling transition into state 1 from each of the 
'n' states that represent the CSV, Q, ... Q, 509, of the FSA. 
RS1,505, is the result of the evaluation of the input character 
symbol with one symbol of the FSA, S, ... S. illustrated in 
block 502. The logic gates, 506 and 507, are NAND gates that 
form the logic function to generate the next state, Q1, based 
on the RS1, SDV, V, ...V, and CSV. Q, ... Q. States Q, 
...Q. would be generated using similar circuit structure as the 
one illustrated in FIG.5a, except the RSV bit, SDV and the 
symbol specific to the particular state will be used. For 
example, for the generation of state Q, the Symbol would be 
S. . . . S., the SDV vector would be V. . . . V, and the 
RSV bit would be RSn instead of RS1. 

0069 FIG.5b illustrates State transition logic (STL) for a 
state in a right-biased FSA. This figure illustrates state tran 
sition logic for a state when the logic illustrated above for 
FIG. 4a is simplified with the LB/RBi setto inactive state and 
symbol detection logic for one of the states illustrated. Key 
differences between the right biased FSA circuit illustrated in 
this figure and the left-biased FSA illustrated in FIG. 5a, is 
that the next state generation logic depends on all received 
symbol vector bits, RS1,505, through RSn, 505m, which are 
the result of the evaluation of the input character symbol with 
each of then symbols of the FSA instead of only one RSV 
bit, RS1,505, illustrated in FIG.5a. The logic gates. 506a and 
507b, represent the right-biased FSA logic function to gen 
erate the next state based on the RSV. RS1,505, through RSn, 
505n, SDV, V, ...V, and CSV, Q, ... Q. States Q, ... Q. 
would be generated using similar circuit structure as the one 
illustrated in FIG.5b, except the SDV and the symbol specific 
to the particular state will be used. For example, for the 

Jun. 23, 2011 

generation of State Q, the Symbol would be S. . . . S., the 
SDV vector would beV...V. and the RSV vector would 
be the same, RS1,505, through RSn, 505n. 
(0070 PRISM memory allows various elements of the 
ESAblocks to be programmable such that the compiler of this 
invention can accept a regular expression and compile it with 
information for various PRISM state elements to make the 
general purpose programmable state machine of PRISMFSA 
to implement the specific regular expression rule. The com 
piler can compile other rules and later replace the current rule 
with another rule in the same PRISMFSA or may use another 
PRISM FSA or a combination of the like. 

(0071 FIG. 6A illustrates Right-biased Tagged FSA Rule 
block in PRISM. As discussed earlier the FSA of PRISM are 
optionally Tagged. For clarity, FSA rule block, PRISM FSA 
rule block, PRISM FSA rule memory block, rule block, rule 
memory block, are used interchangeable in this application. 
Further, NFA rule block or PRISM NFA rule block or NFA 
rule memory block, are also used interchangeably and mean 
a PRISMFSA rule block where the FSA type is an NFA in this 
patent. The discussion below is with respect to tagged NFA, 
though it is also applicable for non-tagged NFAS or other FSA 
types where the tagging elements, described below, are not 
used or not present. This figure illustrates a state block 1, 601, 
which comprises of Some elements of the state transition 
logic illustrated in FIG. 5b. The figure illustrates other state 
blocks, 602 and 603, that represent state blocks 2 through n, 
where n is the number of states of the NFA or FSA pro 
grammed in this PRISM FSA rule block. These blocks are 
illustrated without details unlike state block 1. The primary 
difference between the blocks is that each state block gener 
ates its own RSV bit and uses only its own state bit from the 
CSV. For instance state block 2, generates RS2 by evaluating 
the received character with the symbol programmed in its 
symbol logic block which is similar to block 502. The state 
blocks are organized slightly differently than the illustration 
in FIG. 5b. The logic for one state illustrated in FIG. 5b, is 
illustrated to be organized in a vertical slice like, 614, where 
each state block holds portion of the logic necessary to form 
the final state. In this illustration the state Qn, 508n, is gen 
erated by processing the outputs from each state blocks’ n-th 
slice. The SDV vector bits held in each state block are for 
transition control from the specific state to all other states. For 
instance the blocks, like 504a, hold different members of the 
SDV vectors compared to the blocks, like 504. Thus the SDV 
for each state is distributed amongst multiple state blocks 
unlike that illustrated in FIG. 5b. For example state block 1, 
holds SDV vector bits V, V, through V indicating 
state transition vectorbits for transitioning out of state 1 to the 
in states, unlike FIG.5b which are transposed where the state 
transition logic for a state holds bits V, V, through V. 
for transition into state 1. The indices V indicate the state 
dependent vector bit that enables or disables transition from 
state X to state Y where each X and Y may have a range from 
1 through where n is the number of states of the FSA. Thus the 
SDV of a state indicates the controls for enabling transitions 
from any state to itself as illustrated in 504, which indicates 
SDV transition controls from states in through 1 to state 1. As 
can be noticed the indices of the vector bits are reversed 
between the FIG.5b and FIG. 6a. Thus a specific state's SDV 
is distributed in multiple state blocks and is illustrated aligned 
vertically like slice 614. This figure also illustrates the initial 
ization logic, 408, illustrated in FIG. 4b as block 605 that 
affects what value gets loaded in the state memory bit, 508n, 



US 2011/0153657 A1 

under different conditions.like initialization, startup, error 
state, store and load or context switch and the like. Thus SDV 
vectors for an FSA are written to the FSA rule block in a state 
transposed manner as described above. The initialization 
block comprises of initialization/start state vector memory 
bits. Thus the input into the init block, 605, is logically 
equivalent to the node Nth in FIG.5b, adjusted for the appro 
priate state bit. The state control block, 604, comprises of the 
logic gates, 507a, which logically NANDs the partial state 
output, like 615, from the state blocks 1 through state block n. 
The state control block, 604, further comprises of the init 
logic blocks, like 605, and the state memory blocks, like 
508a. The FSA Rule block also comprises of tagged match 
detect block, 613, which may optionally comprise of tagging 
elements for Supporting. tagged NFAS. The tagged match 
detect block comprises of Accept vector blocks, like 610, 
which comprise of accept vector memory bits and may 
optionally comprise of tag memory bits. The tagged match 
detect block further comprises of accept detect blocks, like 
611, which comprise of accept state detection and may 
optionally comprise of tagged state or state transition detec 
tion logic. The state memory blocks, like 508, may be con 
trolled be clock or enable or a combination signals to step the 
FSA amongst its states as new input characters arc evaluated. 
The clocked enable signals may provide more control over 
simple clock by enabling when the FSA should be evaluated. 
For instance upon finding a match, the FSA controller, 802. 
described below may be programmed to hold further evalua 
tion of any symbols for this FSA until the match information 
is processed. The FSA rule block generates multiple output 
signals that can be used to indicate the progress of the FSA. 
The FSA rule block outputs comprise of a Rule Match, 609, 
which indicates when the regular expression rule pro 
grammed in the FSA rule block is matched with characters of 
the input stream. The Rule Match signal may be used by the 
local or global priority encoder and evaluation processor, 
blocks 815 and 713 respectively described below, to decide 
on next steps to be taken based on user programmed actions 
and/or policies. The priority encoder and evaluation proces 
sors may optionally comprise of counters that may be trig 
gered upon specific rule matches. The counters may be used 
for several purposes like statistical events monitoring, match 
location detection in the input stream and the like. The prior 
ity encoders may also decide the highest priority winner if 
multiple matches are triggered and then the output may be 
used to find the appropriate action associated with the 
matched regular expression rule. The FSA rule block output 
may optionally comprise of Tag Match signal(s) that may be 
used by the priority encoders and evaluation processors to 
detect partial regular expression matches. The number of tag 
match signals per FSA rule block may depend on the number 
of sub-expressions that are allowed to be detected in a given 
NFA. The FSA rule block is organized as a series of memory 
locations that each hold a portion of the NFA rule evaluation 
information using memory circuits like the SDV memory, 
Symbols memory, Mask vectors (discussed below) memory, 
initialization or start state vector memory, accept state vector 
memory, optionally tag state flag or vector memory, the FSA 
states memory or current state vector memory and the like. 
The FSA rule block comprises of FSA evaluation circuits 
interspersed amongst the memory blocks storing the FSA 
programmable information like the SDV, start state, accept 
state, symbols and the like. The FSA rule blocks evaluate 
multiple symbols against input stream for matches to step the 

Jun. 23, 2011 

FSA. Each symbol evaluation block, like 503, may optionally 
output an indication of a pattern comparison between the 
input character or symbol and the programmed symbol. 
These output signals, like 617, 614, 616, can be treated as 
local content addressable memory match signals. The PRISM 
memory may optionally Support logic that enables generating 
merged CAM match signals from multiple FSA rule blocks 
organized in PRISM memory clusters, which may in turn be 
laid out in rows and columns of PRISM FSA rule blocks, to 
support larger width pattern matches. Thus the PRISM 
memory can be used as content addressable memory when 
enabled to process the CAM match signals. The PRISM 
memory can be optionally configured Such that portions of 
the memory support CAM functionality while other portions 
may support FSA functionality or the entire PRISM memory 
may optionally be configured to behave like FSA memory or 
CAM memory. The CAM memories typically support func 
tionality to detect 4 byte patterns, 18 byte patterns or even 144 
byte patterns. PRISM memory may optionally provide con 
figuration mechanisms to Support similar large pattern evalu 
ation by chaining multiple FSA rule blocks CAM match 
signals using appropriate logic to generate composite CAM 
match signals for desired pattern width. 
(0072 FIG. 6B illustrates Left-biased Tagged FSA Rule 
block in PRISM. As discussed earlier the FSA of PRISM are 
optionally Tagged. The discussion below is with respect to 
tagged NFA, though it is also applicable for non-tagged NFAS 
or other FSA types where the tagging elements, described 
below, are not used or not present. Left-biased FSA Rule 
blocks are similar in functionality as those discussed above 
for the Right-biased FSAs except for a few minor differences 
that enable the FSA rule block to behave as a Left-biased 
FSA. The state blocks, 601a, 602a, 603a, in the left-biased 
NFAs receive all RSV vectorbits, like 505n, unlike a specific 
RSV bit per state block in the right-biased NFA. The input to 
NAND gates like 506b, is... the specific RSV bit depending on 
the bit slice at the bit location in the state block of the NAND 
gate. Thus bit location p' where p can range from 1 through 
n, uses RSp (Received Symbol Vectorbit p) to generate the 
partial state block output, 6.15a. By making Such a change in 
the blocks the NFA may now function as a left-biased NFA. 
The rest of the blocks perform similar functions as described 
above for a right-biased NFA. 
(0073 PRISM memory may comprise of left-biased NFAs, 
right-biased NFAS or left-biased FSA or right-biased FSA or 
a combination of them or may be comprised as selectable 
left-biased or right-biased NFAs with logic similar to FIG.4a. 
All Such variations are within the scope of this invention, as 
may be appreciated by one with ordinary skill in the art. 
(0074 FIG. 9 illustrates PRISM search compiler flow 
which is used for full and incremental rules distribution. For 
clarity, the PRISM search compiler is also referred to as 
search compiler or compiler in this patent application and the 
terms are used interchangeably. The search compiler of FIG. 
9 allows an IT manager or user to create and compile the 
search and security rules of different types as illustrated by 
901,902 and 903, without limitations. Even though, the illus 
trated rules list primarily security type rules there may be 
regular expression rules for any other application that needs 
content search like many applications listed in this patent 
application. The compiler flow would optionally be provided 
with information about the specific nodes or networked sys 
tems or otherwise that may use PRISM and the characteristics 
of these nodes, like the security capability, the rules commu 



US 2011/0153657 A1 

nication method, the size of the rule base supported, the 
performance metrics of the node, deployment location e.g. 
LAN or SAN or WAN or other, or the like for specific security 
or network related search applications. The compiler flow 
may optionally use this knowledge to compile node specific 
rules from the rule set(s) created by the IT manager or the 
user. The compiler comprises a rules parser, block 904, for 
parsing the rules to be presented to the PRISMFSA Compiler 
Flow, block 906, illustrated further in FIG. 10, which ana 
lyzes the rules and creates rules database that needs to be 
programmed into PRISM memory of the specific nodes or 
systems for analyzing the content. The rule parser may read 
the rules from files of rules or directly from the command line 
or a combination depending on the output of the rule engines 
like blocks 901,902 and 903. The rules for a specific node are 
parsed to recognize the language specific tokens used to 
describe the rules or regular expression tokens and outputs 
regular expression (RE) rules, 905. The parser then presents 
the REs to the PRISM FSA compiler flow which processes 
the REs and generates NFA for RE. Optionally if tagging is 
supported by the specific PRISM instance, and if REs use 
tagging, the PRISM FSA compiler then decides whether the 
RE will be processed as a NFA or tagged NFA based on the 
PRISM memory capability. It then generates the NFA or 
tNFA rule in a format loadable or programmable into PRISM 
memory and stores the database in the compiled rules data 
base storage, 908. 
0075 Rules distribution engine, block 909, then commu 
nicates the rules to specific system or systems that comprise 
of PRISM memory. The search rules targeted to specific 
systems may be distributed to a host processor or a control 
processor or other processor oldie system that includes 
PRISM memory. A software or hardware on the receiving 
processor may then optionally communicate the rules to the 
PRISM memory by communicating with the external inter 
face, block 702, and the PRISM controller, block 703, 
described below to configure and/or program the PRISM 
memory with the FSA rules. The Rules distribution engine, 
909, may optionally communicate directly with the PRISM 
controller, block 703, through the external interface block 
702, if the external interface and PRISM controller optionally 
Support such functionality. The rules may be distributed using 
a secure link or insecure link using proprietary or standard 
protocols as appropriate per the specific node's capability 
over a network. 

0076 FIG. 7 illustrates PRISM block diagram. As may be 
appreciated by one with ordinary skill in the art, that many 
different variations of these blocks and their configuration, 
organization and the like can be created from the teachings of 
this patent and are all covered without limitations. PRISM 
controller, block 703, communicates with the rules distribu 
tion engine, block 909, or with a master processor or a com 
panion processor like a host system microprocessor or a con 
trol processor or a network processor or a Switch processor or 
an ASIC based controller or processor or the like to receive 
appropriate compiled rule tables prior to starting the content 
inspection. It programs the received rules into the appropriate 
PRISM FSA rule blocks, described earlier, by working with 
the address decode and control logic block 704, coupled to the 
PRISM controller, block 703, and the PRISM memory cluster 
arrays, block 710. There may be multiple rules being stored in 
each PRISM memory cluster array's FSA rule blocks. There 
may optionally be multiple application specific contexts, not 
illustrated, supported by the PRISM memory cluster arrays. 

Jun. 23, 2011 

Once the rules distribution engine provides the compiled 
rules to the control processor and Scheduler and they are setup 
in their respective NFA rule blocks, PRISM memory is ready 
to start processing the data stream to perform content inspec 
tion. The PRISM memory state configuration information is 
received via the external interface block, 702, which may 
communicate on a system bus or a network or the like with a 
master processor or companion processor, not illustrated. The 
PRISM memory of this patent may be deployed in various 
configurations like a look-aside configuration or flow 
through configuration oran accelerator adapter configuration 
or may be embedded inside variety of processors or logic or 
ASICs or FPGA or the like as discussed earlier as well others 
not illustrated. In a look-aside or an accelerator adapter con 
figuration, the PRISM memory may optionally be under con 
trol of a master processor which may be a network processor 
or a switch processor or a TCP/IP processor or classification 
processor or forwarding processor or a host processor or a 
microprocessor or the like depending on the system in which 
such a card would reside. The PRISM controller, 703, 
receives the configuration information under the control of 
Such master processor that communicates with the rule 
engine to receive the configuration information and commu 
nicates it on to the PRISM memory. Once the configuration is 
done, the master processor provides packets or data files or 
content to the PRSIM memory for which content inspection 
needs to be done. The external interface, 702, used to com 
municated with a master processor may be standard buses like 
PCI, PCI-X, PCI express, Processor Direct Connect bus, 
RapidIO, HyperTransport or LA-1 or DDR or RDRAM or 
SRAM memory interface or SPI4 or Interlaken Protocol or 
their derivatives or the like or a proprietary bus. The band 
width on the bus should be sufficient to keep the content 
search memory operating at its peak line rate to fully utilize 
the capability of PRISM, however a lower bandwidth bus or 
higher bandwidth bus may be used as well. If a lower band 
width bus is used the total throughput may not be higher than 
the bus throughput. When a higher throughput bus is utilized, 
the external interface may need to stall the bus or drop some 
packets, or the like and process the content at the maximum 
bandwidth supported by that implementation of PRISM. The 
PRISM memory may preferably be a memory mapped or may 
optionally be an 10 mapped device in the master processor 
space for it to receive the content and other configuration 
information in a look-aside or accelerator configuration. 
PRISM memory optionally may be polled by the master 
processor or may provide a doorbell or interrupt mechanism 
to the master to indicate when it is done with a given packet or 
content or when it finds a content match to the programmed 
rules. 

(0077. The PRISM controller receives incoming data for 
examination using regular expression rules or for examina 
tion using patterns to be matched, and may optionally store 
them into data buffer/memory, block 707, before presenting it 
to the PRISM memory cluster arrays. The PRISM memory 
may optionally directly stream the content to be examined to 
the content stream logic, block 708, which may stage the 
content for examination by the PRISM memory cluster 
arrays, block 710. The PRISM controller maintains the record 
of the content being processed and once the content is pro 
cessed it informs the master processor. The PRISM memory 
cluster arrays inform the global priority encoder and evalua 
tion processor, block 713, of the results of the search. Whena. 
match to a rule is found the priority encoder and evaluation 



US 2011/0153657 A1 

processor may retrieve an action associated with the rule from 
the global action memory, block 717, depending on program 
mable policies and may optionally provide this to the PRISM 
controller. The PRISM controller may optionally inform the 
master processor about the search results. The PRISM con 
troller may execute the specific action or policy defined for 
the rule match. The actions may optionally comprise to stop 
further content evaluation, enable a certain set of rules to he 
examined by enabling appropriate cluster array and pass the 
content through that PRISM memory cluster array for further 
examination, or inform the master processor of the result and 
continue further examination or hold the match result in on 
chip or off-chip memory or buffers for the master processor to 
request this information later or any combination thereof or 
the like lithe PRISM memory is configured to examine net 
work traffic in a flow-through configuration, not illustrated, it 
may also be programmed to drop the offending packet or stop 
the specific TCP connection or the session or the like. Option 
ally the master processor may receive the match information 
and may take specific actions on the content stream. 
0078. The address decode and control logic, block 704, is 
coupled to the PRISM controller, 703, the external interface, 
702, the PRISM memory cluster arrays, 710, the global pri 
ority encoder and evaluation processor, 713, the database 
expansion port, 718 as well as other blocks through a cou 
pling interface, 715. The PRISM memory may supporta large 
number of regular expressions in some preferred embodi 
ments as discussed above, however if there are applications 
that need more rules, then there may optionally be a database 
expansion port, 718, which would enable the expansion of the 
rules by adding additional PRISM memory(ies) to the data 
base expansion port. The database expansion port may pro 
vide a seamless extension of the number of rules and may use 
additional memory space in the host or master processor. 
There are multiple ways of enabling the database expansion 
as may be appreciated by those with ordinary skill in the art. 
The address decode and control logic is also coupled to 
optional, cluster address decode and FSA controller, block 
802, and decodes addresses for the PRISM memory locations 
which are used to hold FSA rule block programming infor 
mation as well as the FSA state information. It may perform 
the address decode, memory read, memory write and other 
PRISM memory management control functions by itself or 
working in conjunction with cluster address decode and FSA 
controller. The blocks 704 and optionally 802, may be pro 
grammed to provide configuration information for the clus 
ters. The configuration information may optionally comprise 
of size of the NFAS e.g. 8-state or 16-state or the like, CAM 
functionality enabling, tagged NFA related configuration, 
context addresses if appropriate for local cluster context 
addressing and/or global context addresses, clusters specific 
configurations that may support a mixed CAM. and Regular 
Expression functionality at the PRISM memory level, action 
memory association for specific FSA rules or clusters or a 
combination thereof and the like. The PRISM memory cluster 
arrays and other blocks like global and local priority encoder 
and evaluation processor, blocks 713 and 815, local (not 
illustrated) and global action memories, block 717, and the 
like may get configured and programmed with information 
before the content inspection begins. Further, since PRISM 
memory Supports dynamic reconfiguration of rules, its pro 
gramming and configuration may be updated during the con 
tent inspection as well for example when a new security threat 
has been discovered and a new rule to catch that security 

Jun. 23, 2011 

violation needs to be programmed. The PRISM memory may 
provide multiple content streams to be processed through the 
PRISM memory cluster arrays, using context mechanism 
which associates each content stream with a specific context, 
which may optionally be assigned a specific context ID. 
(0079 FIG. 8a illustrates PRISM Memory cluster block 
diagram. There may be options to have multiple content 
streams and hence multiple contexts may optionally be simul 
taneously operated upon in different memory FSA clusters, 
illustrated in FIG. 8a. For clarity, PRISM Memory cluster, 
memory FSA cluster, a cluster, memory cluster and memory 
FSA cluster are used interchangeably in this patent. A given 
cluster and its associated FSAS may also be able to Support 
multiple content streams using the context information. 
When a new content stream starts getting processed by a FSA 
rule block or a cluster or the like, it may traverse through 
various FSAs whose states may need to be saved, if the 
content stream is not fully processed, when the same FSAs 
need to start processing another content stream. The local 
context memory, block 812, or global context memory, block 
712, or external memory (not illustrated) coupled to external 
memory controller, block 1221, or a combination thereofmay 
be used to save the state of active FSAs for a given context 
before the FSAs are switched to operate on a different con 
text. Further, the new context may have its saved context 
restored in the specific FSAs before content from that context 
starts to be processed. The local context memory along with 
global context memory affords the benefit of very fast context 
switching for active contexts simultaneously across multiple 
clusters and FSAs without creating a context switch bottle 
neck. The number of contexts being store locally per cluster 
and those stored globally or externally is a function of the 
manufacturing cost and other tradeoffs which will be appar 
ent to the one with ordinary skill in the art. Typically the 
amount of information that needs to be stored and retrieved 
per context may be limited to the NFAS or FSAs that are in the 
process of recognizing a specific string defined by its regular 
expression. In general most NFAS or FSAs may be continu 
ously be starting to analyze the input streams from a start state 
if the strings being searched are not very frequent in the 
content being search. The FSA controller, block 802, coupled 
with blocks 704, and the local and global context memories 
and their respective memory controllers as well as the blocks 
713 and 815, the local priority encoder and evaluation pro 
cessor, takes the steps to perform the context Switch if con 
texts are enabled before processing a new context. 
0080. The cluster address decode and FSA controller, 
block 802, may decode incoming addresses for configuring, 
reading or writing from PRISM memory locations or the like 
of the cluster PRISM array, block 808 which is comprised of 
an array of PRISM FSA rule blocks illustrated above in FIG. 
6A and FIG. 6B, and also referred to as PRISM Search 
Engines (PSE) or programmable PRISM Search Engines or 
programmable search engines, block 803, in this patent, and 
activates memory location's word line and/orbit lines or other 
word lines or content lines or mask lines or the like or a 
combination thereof, described below to read, write and/or 
access the specific PRISM memory location. There may 
optionally be cluster specific bit line drivers and sense ampli 
fiers, block 809, and bit line control logic, block 810, which 
may be used to read or write specific bits in the PRISM. 
cluster Memory array, block 808. These circuits are well 
understood by memory designers with ordinary skill in the 
art. The sense amplifiers and drivers may optionally be 



US 2011/0153657 A1 

present at the global PRISM memory level illustrated in FIG. 
7 depending on the tradeoffs of die area, performance, cost, 
power and the like which one with ordinary skill in the art can 
easily appreciate. The benefit of having local sense amps and 
drivers is potentially creating lower interconnect load for 
individual memory bits, which in turn can help improve the 
performance. Typically the block 802 may he operating dur 
ing the configuration, context Switching or other maintenance 
operations like storing and retrieving specific NFA or FSA 
state information, or refreshing specific PRISMFSA memory 
hits if appropriate and the like. Generally during content 
processing the block 802 may be dormant unless there is a 
match or an error or the like when it may start performing the 
necessary tasks like communicating the match, action, policy, 
error or the like to the PRISM controller, initiating context 
switching and the like. The PRISM controller, block 703, 
coupled with the content stream logic, block 708, content 
staging buffer, 709, address decode and control logic, block 
704, and the cluster FSA controllers, block 802, may present 
the content to be examined to the PRISM FSA rule blocks. 
The content to be examined may be streamed by the block 708 
from the data buffer or memory, 707, or from external 
memory, or a combination into the content staging buffer. The 
content staging buffer, 709, is coupled to cluster search buffer, 
806, and cluster search control. 807 to align the appropriate 
content to the clusters for searching. The content staging 
buffer may hold content from the same context or multiple 
contexts depending on the configuration of the clusters and 
the like. The content is presented to the cluster PRISM array, 
808, that comprises of the PRISMNFA rule blocks for exami 
nation in a sequence timed using a control signal like a clock 
or enable or a combination. The NFA rule blocks perform 
their inspection and indicate whether there is any rule match 
or optionally if there is any CAM pattern match or optionally 
any tag match and the like. The match signals are looked at by 
cluster level local priority encoder and evaluation processor, 
block 815, which may determine if there is a match and if 
there are multiple matches which match should be used, or all 
matches should be used or the like depending on the configu 
ration. This block 815, may be coupled to global priority 
encoder and evaluation processor, block 713, which may 
perform a similar operation by examining match signals from 
multiple clusters. The local and global evaluation processors 
of these blocks may optionally generate address(es) for the 
winning matches) to the global action memory or external 
memory or a combination that may store appropriate action 
information that needs to be retrieved and processed to deter 
mine action(s) that need to be taken as a result of specific rule 
match(es). There may be optional cluster level action 
memory, not illustrated, for fast retrieval of action informa 
tion. This cluster level action memory may act as a cache of 
the global and/or external memory based action storage. As 
described earlier the FSA controller, block 802, coupled with 
local context memory, block 812, its memory controller, 
block 813, along with the local and global evaluation proces 
Sorand priority encoders coupled to global action and context 
memories, may be used to store and retrieve context informa 
tion from and to configure the PRISM cluster arrays with 
appropriate FSA states. 
I0081 FIG. 8b illustrates PRISM Memory cluster detailed 
block diagram. This figure illustrates more detail of the 
PRISM memory cluster block diagram illustrated in FIG. 8a 
and described above. The PRISM memory clusters comprise 
of PRISM Search. Engines (PSE), blocks 803, which com 

Jun. 23, 2011 

prise of the right-biased or left-biased NFA or FSA rule 
blocks or a combination which may optionally be tagged as 
illustrated in FIG. 6A and FIG. 6B and described above. The 
PSEs may optionally comprise row-wise, column-wise or a 
combination there of or the like mechanisms described below 
to enable PRISM FSA extension (also referred to as PRISM 
Search Engine Extension or PSE Extension, in this patent) 
and optionally allow creation of PRISM based FSA rule 
groups (also referred to as Regular expression rule groups or 
PRISM Search Engine rule groups or PSE rule groups, in this 
patent). The FIG. 8b illustrates the PSEs arranged in an array 
with 'n' rows and m columns where n and 'm may be any 
integer value and may depend on design, cost, process tech 
nology, performance, power and other parameters that one 
with ordinary skill in the art will appreciate. One exemplary 
embodiment may comprise of n=128 and m=8 providing 
1024 PSEs per PRISM memory cluster. The PSEs may 
optionally comprise of mechanisms for extending the FSAS 
using methods described below. The PSEs may comprise 
row-wise FSA extension, column-wise FSA extension or a 
combination thereof. The PSEs are coupled to each other and 
may optionally be coupled to the local priority encoder and 
evaluation processor, block 815, for row-wise FSA extension 
using one or more signals, illustrated by lines 821(1) through 
821(n). The PSEs may also be coupled to each other in a 
column-wise manner using one or more signals represented 
as a group of lines, 820(21) through 820(nm), coupling PSEs 
to their column-wise neighbors. Such signals may be used to 
provide a column-wise FSA extension using mechanism and 
architecture described below. The PRISM cluster priority 
encoder and evaluation processor, block 815, may further 
comprise configurable controls that would allow any group of 
extensible FSAS to be coupled to other groups of FSAs local 
to the PRISM memory cluster or inter-clusters (i.e. between 
multiple PRISM memory clusters) or a combination thereof 
Cluster Address Decode and FSA Controller, block 802, pro 
vides controls, 804(1) through 804(n) like word line address 
and the like for each PSE and its internal memory elements 
like the SDV, Symbols and the like which are used to config 
ure the PSEs with appropriate RE rules converted or compiled 
in to programmable ESA data structures. It may also be 
coupled to the cluster search controller, block 807, and sense 
amps and read buffers, block 819. The cluster search control 
ler, block 807, may receive the byte values to be configured 
into the PSEs and may comprise the bit line drivers for the 
PSE memories. The sense amps and read buffers may com 
prise the sense amplifiers and data read buffers to read and 
store the information retrieved from the PSE array. Once the 
PRISM memory clusters are configured with the RE rules, the 
content to be processed may be presented to the cluster search 
controller. The cluster search controller, block 807, is coupled 
to the columns of PSEs using signals, 822(1) through 822(m), 
that may comprise bit lines for each of them columns of the 
PSE array. The cluster search controller may present the same 
content symbols or characters or bytes or the like, to each 
column of the array Such that every FSA can process each 
incoming symbol and be evaluated simultaneously. However, 
if the PRISM cluster is configured to be used as content 
addressable memory, the content search controller may 
present the content in chunks of m symbols or chunks of two 
m/2 symbols or the like to the PSE array. The PSEs provide 
the indication of whether a match with the programmed rules 
is detected or not or if a tag is matched or not or the like in a 
row-wise manner to the local priority encoder and the evalu 



US 2011/0153657 A1 

ation processor, block 815, using the signals, 811(1) through 
811(n), that couple the PSEs in a row with the block 815. The 
local priority encoder and evaluation processor may receive 
the match signals and based on optional policy programmed, 
provide the winning match if multiple match signals are 
asserted simultaneously or may record each match or a com 
bination. It may also provide counters to keep track of the 
specific location in the incoming content stream where a 
match or a set of matches were generated. It may further 
provide actions associated with specific RE or FSA rules 
being activated and may comprise of stopping the processing 
of the specific content flow or content stream or content 
session or the like; or generating an alert or activating a new 
rule group or stopping a certain rule group from further 
examination or a combination there of or the like. It also 
communicates with the global priority encoder and evalua 
tion processor, 713, to take appropriate actions similar to 
those described above. The content read into the read buffers 
of block 819, may be coupled to the local cluster context 
memory, 812, or global context memory, 712, or external 
memory controller, 721, through the signals 817, block 815, 
signal 814, signals 711 and signals 715 for storage to the 
appropriate memory location internal to the PRISM chip or 
an external memory coupled to the block 721 using the exter 
nal interface signals 720. 
I0082 Each PSE of a PRISM memory cluster may be 
addressed using one PRISM Memory location or a set of 
PRISM memory locations or a combination thereof. All inter 
nal memory elements of a PSE like the each state dependent 
symbol memory, mask vector memory, SDV memory, or the 
initialization vector memory and the like may each be 
mapped as individual memory locations in the PRISM 
memory address space or may each be addressable in a PSE 
address space once the PSE is selected from a PRISM 
memory address or the like as may be appreciated by one with 
ordinary skill in the art. One preferred embodiment may 
comprise of 22 PRISM Memory address bits where in the 
upper 17 address bits are used to select a specific PSE in an 
embodiment with 128,000 PSEs and the lower 5 address bits 
are used to select a specific memory element of the selected 
PSE as described. above. Other variations of such an arrange 
ment are within the scope and spirit of this invention as may 
be appreciated by one with ordinary skill in the art. The 
number of address bits allocated to select PSEs depends on 
the number of PSEs and the number of address bits allocated 
to select memory elements of a PSE depend on the number of 
memory elements in one PSE, which may in turn depend on 
the number of states per PSE, FSA extension mechanisms per 
PSE, symbol size and the like as may be appreciated by one 
with ordinary skill in the art. Further, a specific PSE within a 
cluster may be addressed or selected by PRISM memory 
cluster row address and a column address which would be 
derived from the PSE address bits. One preferred embodi 
ment of PRISM memory with 128,000 PSEs may use 128 
rows and 8 columns of PSEs per PRISM memory cluster, 
there by supporting 1024 PSEs per PRISM memory cluster. 
In such a PRISM memory embodiment, upper 7-bits of the 
22-bits for PSE address may be allocated to select a specific 
PRISM memory cluster, and the next 10 bits of the PSE 
address may optionally be used to select a specific PSE in a 
PRISM memory cluster while the lower 5 bits may optionally 
be used to select a specific memory clement of the selected 
PSE of the selected PRISM memory cluster. The 10-bit 
address for selecting a specific PSE of a PRISM memory 

Jun. 23, 2011 

cluster, may further be allocated such that upper 7-bits of that 
may be used as a PSE row address selection and the remaining 
3-bits of the address used as a PSE column address selection. 
There are multiple other ways to perform the addressing of 
PRISM memory as may be appreciated by one with ordinary 
skill in the art and all such variations are within the spirit and 
Scope of the teachings of this invention. 
0083 FIG. 11 illustrates PRISM row-wise FSA extension. 
The figure illustrates PRISM Search Engines as FSA 1, 1101 
(1), FSA 2, 1101(2) through FSA M, 1101(M), which may 
optionally be PSEs in a row of a PRISM cluster. The PSEs are 
similar to those illustrated in FIG. 6A and FIG. 6B with some 
additional blocks described below that enable the PRISM 
PSEs to become extensible to support FSAs that need more 
states than those supported by a single PSE. The State Blocks 
1 through N, 1102(1) through 1102(N) are similar to state 
blocks 601, 602, 603 of the left-biased or right-biased tagged 
NFAS or FSAS rule blocks described above. The State Control 
and Match detect blocks, 1105(1) through 1105(N) and 1106 
(1) through 1106(N), are also similar in functionality to state 
control, block 604, and match detect, block 613, described 
above for FIG. 6A and. FIG. 6B, with some minor addition to 
accept another term of partial state transition control feeding 
into the transition logic illustrated in block 507a or 507n or 
the like. The additional state transition control is based on a 
global state transition described below. Row-wise FSA 
Extensionarchitecture in PRISM comprises of a Global State 
Dependent Vector (GSDV), block 1103(1) through 1103(N). 
It may optionally comprise of a Global Control Vector 
(GCV), blocks 1107(1) through 1107(N), and may optionally 
comprise of a Global Transition. Logic (GTL), blocks 1108 
(1) through 1108(N). They may optionally be coupled to the 
state transition logic of each FSA being extended using a 
Global Control Network (GCN) which may comprise of mul 
tiple circuits like those illustrated by blocks 1113, 1114, 
1115, 1116, 1121, 1122, 1123, 1124, 1104(1) through 1104 
(N) per FSA block or the like or a combination thereof. The 
GSDV may optionally be an N-bit Vector, where each bit of 
the vector may enable a transition into the corresponding State 
of the FSA from a state external to the FSA. It is possible to 
restrict the number of Global entry points into an FSA, in 
which case the GSDV may be a vector with fewer than. N-bits 
corresponding to the states that may be entered from other 
FSAs using the FSA extension mechanisms described in this 
patent. Similarly GCV and GTL may also be N-bit vectors or 
vectors with fewer bits. The decision to use N-bits or less bits 
for these vectors may depend on the RE characteristics, appli 
cation requirements, device size, implementation costs and 
the like as will he apparent to those with ordinary skill in the 
art. The GSDV and GCV vectors are memory locations and 
realized using memory circuits similar to other memory bit 
vectors like SDV, Symbols, the mask vectors and the like of 
this patent as may be appreciated by one with ordinary skill in 
the art. The specific memory bits circuits are not illustrated to 
avoid obscuring the invention. When a bit of GSDV is set to 
1 or an active state, the input to the logic gate, like 1104(1), 
from GSDV is set and would then enable a transition to the 
corresponding state if symbol associated with that state is 
received like RS11, and the state from another FSA that 
controls the extended FSA state transition is set to 1 or active 
state. Descriptions below illustrate a few examples to clarify 
the GSDV controls. Thus the GSDV controls the transition 
into a particular state of the associated FSA from another 
FSA. Similarly GCV, controls a global out state transition 



US 2011/0153657 A1 

where the transition is out of a specific state of an FSA to 
another FSA that is coupled to it using the FSA extension 
mechanisms described in this patent. When a GCV vectorbit, 
like 1107(1) is set to an active state like 1, and if the corre 
sponding state, 1106(1) of the FSA, 1101(1) is set, then the 
GTL logic, 1108(1) would be activated. FIG. 11 illustrates a 
pre-charge and discharge circuit forming a wired-NOR logic 
between the GTL blocks of the FSAs coupled to form row 
wise FSA extension. For example, the GTL blocks like 1108 
(1) of each of the coupled FSA is coupled to a precharge line 
like 1109,1110, 1111, 1112 or the like, which are precharged 
by transistors like 1113, 1114, 1115, 1116 or the like. When 
any of the GTL receives its inputs like 1125(1) and 1126(1) as 
active, it pulls the coupled precharge line 1109 to a low value. 
When none of the GTL outputs pull the precharge lines like 
1109, they stay at their precharged high value that has been 
precharged by the corresponding precharge transistor like 
1113. The output of the precharged signals may optionally be 
buffered or inverted as illustrated by inverters like 1121, 
through 1124 which then drive those signals to all the FSAs 
coupled to the output signals, like 1117 through 1120, of the 
inverters with the corresponding FSA gates like, 1104(1) 
through 1104(N). Hence, when signal 1109 is pulled low, the 
output 1117 may be pulled high. Thus if the GSDV bit con 
nected to the device, 1104(N) of an FSA is high and the 
received symbol is RSn1, the transition into that state is 
enabled. Although the figure illustrates the precharge signals, 
like 1109, to be coupled to inverters, like 1121, they may 
optionally be coupled to a multiplexer input, not illustrated, 
such that another input of the multiplexer may be used to 
control whether the value on the signals, like 1117, is from the 
local FSA group or from an input state external to the FSA 
group, not illustrated. Such a multiplexer or other logic or a 
combination may be used to create a rule group transition 
control network, where a rule group may be enabled when 
another event is detected by other PRISM FSAS or PRISM 
clusters. 

I0084 FIG. 11A illustrates PRISM Rule Group FSA 
Extension. PRISM memory of this patent may optionally 
allow formation of a group of REs to be treated as a rule 
group, Such that one group of RES may be enabled when 
another RE or RE group is evaluated to be active. This figure 
illustrates a mechanism to enable Such rule group FSA exten 
sions. The Rule group architecture leverages all the features 
of the Row-Wise FSA Extension logic described above, with 
a small modification... where the inverters, 1.121 through 
1124, are replaced by Rule Group Transition Logic (RGTL), 
block1128, which enables the transition to a set of FSAs from 
other Rows of PRISM cluster or other PRISM clusters or 
other groups of FSAS or other groups of regular expressions. 
The Rule Group FSA Extension architecture further com 
prises of Rule Group Control Vector (RCV), 1126, which may 
bean N-bit vector or the same width as the width of the GTL 
of each FSA. When a bit of RCV is set, then the corresponding 
output signal in the group, 1127, is set which in turn may let 
the corresponding output signal, like 1117, of the RGTL 
block be coupled to a corresponding signal of External State 
Vector (ESV), line 1125 instead of the Row-wise FSA Exten 
sion precharge signal, like 1109. The ESV bits may be state 
output from a group of rules within the PRISM Cluster or 
another PRISM cluster or other groups of FSAS or other 
groups of regular expressions. When Such a group's state that 
indicates a transition to another rule group is activated, the 
global evaluation processor, block 713, or the local evaluation 

Jun. 23, 2011 

processor, block 815, or a combination couple that state sig 
nal to the corresponding ESV bit which then enables the 
transition to the state enabled by the output of the RGTL. 
Optionally the PRISM local evaluation processor, block 815, 
or global evaluation processor, block 713, or PRISM control 
ler, block 703, may set the appropriate ESV bits to cause the 
nile group to be activated. ESVs for various rule groups may 
be memory mapped such that by writing to such an ESV 
memory location a specific rule group may be activated. 
When a rule group transition like the one described here is 
enabled, the corresponding Symbol detection could option 
ally be ignored by setting the mask bits for that specific 
symbol, or the like, Such that the rule group is activated once 
the corresponding ESV bit is asserted. Another output of the 
RGTL, may be ESV out, signal 1129, which may be the 
outputs of this rule group that can be used to trigger transition 
into a state of another rule group. The ESV out may be an 
N-bit or less vector as an output from RGTL which may 
optionally comprise an internal RCV out vector, not illus 
trated, that may control which state bits are enabled on to 
ESV out from this rule group. The RGTL may comprise a 
simple multiplexer based logic circuits, but may also com 
prise a mesh network connecting each precharge input or 
ESV input to the output or a combination there of or the like. 
I0085 Although the description here and elsewhere within 
this patent may be with regards to precharge circuits, it will be 
appreciated by those with ordinary skill in the art, that other 
non-precharge circuits or logic may be used to realize the 
same functionality and all such variations are within the scope 
and spirit of the teachings of this patent. 
0086 FIG. 12 illustrates PRISMRow-wise FSA extension 
example #1. The FSAs in FIG. 12 are assumed to be four state 
FSAs. Thus if a RE has more than four states, it would not fit 
in a single FSA or PSE. In such a case FSA extension archi 
tecture and mechanisms described in this patent will need to 
be used. FIG. 12 illustrates a PRISM row with four FSAs, 
FSA1, through FSA4, blocks 1201(1) through 1201(4), each 
with four states that can be used to represent a 16-state RE 
abcdefghijkLimnop using the row-wise FSA extension. In 
this example, the RE is a simple 16-character string which is 
split up into four chunks of four characters each by the com 
piler and assigned each chunk, to one of the FSAS. The states 
of each FSA state bits are illustrated to represent a specific 
symbol or character like 1202(1) which is used to represent 
the state corresponding to the symbola. This state bit is set 
when the received input symbol is an 'a. The value of the 
state bit is represented as the symbol in the description below 
for ease of explanation and would otherwise be a logical value 
like 1 or 0 or the like. The symbol 'a' is the start state 
indicated by the single circle around the symbol, 1202(1). 
Thus when the input content has a symbol a the RE rule or 
FSA starts the evaluation of the content and enters the state 
a. The figure does not illustrate the SDV for each of the 
states and the FSAS to avoid obscuring the description of the 
FSA extension as may be appreciated by those with ordinary 
skill in the art. The SDVs, symbols and other controls of the 
FSA 1, block 1201(1) are set such that the state transition 
within the FSA progresses from a to b to c to d, if a series of 
input symbols received is abed. Similarly, for FSA 2, block 
1201(2) through FSA4, block 1201(4) the internal transitions 
are implied and not explicitly illustrated. The FSA extension 
is created by setting the GSDV and GCV such that the 
sequence of states that are enabled detect the desired RE 
string, abcdefghijkLimnop. The GCV vector bit 4, 1203(4) 



US 2011/0153657 A1 

of FSA 1 is set to 1 while its other bits are set to O. Thus 
when the FSA 1 reaches the stated, block 1202(4), the GTL 
bit 4, 1210, is pulled low, which indicates that the FSA 1 has 
reached a state that can now enable a transition to a state in 
another FSA. The GSDV bit 1, block 1214, of FSA 2, block 
1201(2) is set to 1 which enables the transition into state 'e', 
block 1218, when the received symbol is RS12 (e) and the 
line 1204, coupled to the third input of NAND gate, 1217, 
through the inverter coupled to 1204 is activated. If the input 
string received so far is abcde then the state 'e' of FSA 2 is 
activated. However, if the fifth character of the input string is 
not an 'e', the FSA 1 state 'd' is deactivated and thus even if 
the following symbol i.e. the sixth symbol is an 'e', the FSA 
2 state 'e' is not activated. Assuming that the string received is 
abcde, then the state ‘e’ is activated. FSA 2 traverses through 
the states fgh if the following three symbols received are 
fgh. As may be noted in this illustration, the states are not 
sequentially arranged, for example the state happears as the 
third state, block 1208, instead of the fourth state in FSA 2. To 
enable such organization of the states, the SDV of the stateh 
of FSA 2 is setup such that state his logically the fourth state 
that is entered after state g is activated, where state g is the 
third logical state entered from state f. setup to depend on 
state f in SDV of state g’. Thus physical location of the 
symbol is not required to be in a sequential order because the 
state transition in PRISM depends on the current state, the 
received symbol and the state dependent vector. Similarly, the 
stateh of FSA 2 is coupled to state T of FSA 3 using GCV 
bit 3, 1207, GTL bit 3, 1209, and signal 1205, coupled to the 
GSDV bit 2, 1215, coupled to the transition input gate for the 
state i of FSA 3, 1201(3). Similarly the state Lof FSA 3 is 
coupled to statem of FSA 4 using the appropriate GCV and 
GSDV bits as illustrated. When the state p’ of FSA 4 is 
reached, the RE is matched and the input string is recognized 
to be abcdefghijklmnop. The state p is marked as the 
accept state by the compiler, illustrated by double circles, 
1219, such that accept vector of the FSA 4 is set as 0100, so 
that p is the accept state. When the accept state p is reached 
a match signal, like 609, of FSA 4 is asserted which is then 
recognized by the cluster priority encoder, block 815, and a 
RE match is flagged and appropriate action associated with 
this RE match taken or initiated. 

0087 FIG. 13 illustrates PRISM Row-wise FSA Exten 
sion example #2. In this illustration, similar to that in FIG. 12, 
the FSAS are assumed to be four state FSAs. However the 
regular expression rule to be evaluated is: (abcdefghi)+kL. 
which recognizes a string of characters that contain one or 
more occurrences of sequences abc or defghi followed by 
the sequence kL. Note the one or more occurrences of 
sequence abc followed by defghi’ which is followed by 
jKL once or one or more occurrence of sequence defghi 
followed by abc’ which is followed by jKL may also be 
recognized by the regular expression. The expression 
(abcdefghi)+indicates that the terms abc or defghi may 
occur one or more times or may occur one after the other one 
or more times. The FIG. 13 illustrates how such a RE be 
evaluated using a Row-wise FSA extension architecture and 
mechanisms of this patent. In this expression, whenever the 
states 'c' or are reached, the expression can start evaluating at 
states a, “d or T. since they are all the follow states of the 
states 'c' and i. To enable such a transition the compiler 
assigns GCV vectors of FSA 1 and FSA 3 to be 0001, such 
that when state 'c' is reached, signal 1302 is coupled to 
precharged signal 1314, or when the state T is reached. Signal 

Jun. 23, 2011 

1304, is coupled to precharged signal 1316, which is coupled 
to line 1314. These outputs are then coupled to the states a. 
“d and by the GSDV vectors for FSA 1. FSA 2 and FSA 4 
where the bits, 1305, 1308 and 1312 are each set to 1 
enabling a transition into the states a, d and j from the 
states 'c' ori. The expression defghi is compiled to occupy 
two FSAS, FSA2 and FSA3, which are coupled by the GCV 
and GSDV bits that couple the output 1315 from the state 
location g of FSA 2 to input gate, 1310, which transitions 
into stateh when the received symbolish since the GSDV 
bit 2, block 1309, is set to 1. When the FSA 4 reaches the 
state L, which is marked as an accept state the FSA 4 asserts 
the match signal like 609, which is then recognized by the 
clusterpriority encoder, block 815, and a RE match is flagged 
and appropriate action associated with this RE match taken or 
initiated. 

0088 FIG. 14 illustrates PRISM Column-wise FSA 
extension. The figure illustrates a group of four FSAS on the 
left where each FSA is in one row. Each FSA is illustrated to 
comprise of eight states where each state and its state transi 
tion logic, match detection logic and the like is represented by 
a box each, like 1401(1) through 1401(8). The FSA state bits 
are illustrated to be aligned in columns labeled Bit 1 through 
Bit 8. Each state bit of an FSA is illustrated to be coupled to 
its neighbor using up and down control Switches illustrated as 
lines 1403(1), 1403(2) and the like. Blocks 1404(1), 1404(2), 
1405(1) and 1405(2) illustrate FSA state bits 1 and 2 of two 
FSAs, ESA 1 and FSA 2 illustrating the column-wise FSA 
extensionarchitecture (also referred to as column-wise exten 
sion architecture in this patent) in detail and mechanism and 
do not illustrate all other components of PSE state like the 
RSV, SDV and the like. The state bits of adjoining.FSA rows 
are coupled to transfer their state information to the neighbor 
in a column-wise manner. FSAbits 1 are illustrated to transfer 
the state information in the down direction from block 1404 
(1) to block 1404(2), while the FSA bits 2 are illustrated to 
transfer the state information in the up direction from block 
1405(2) to block 1405(1). Each FSA state bit may comprise 
of both up and down transfer mechanisms or they may be 
alternating as illustrated in this figure or there may be other 
pattern like skipping one state bit to transfer the states or the 
like and all Such variations are covered by this patent as may 
be appreciated by one with ordinary skill in the art. The 
illustrated column-wise ESA extension logic enables each bit 
to accept an incoming State, and originate the transfer of its 
state to the next neighbor. The column-wise ESA extension 
comprises a global Fonvarding vector (FV) which comprises 
of bits like FV11 of block 1404(1). It may further comprise of 
local forwarding vector (LV) which comprises of bits like 
LV11. It may further comprise of circuits that allow the state 
bits to be merged and forwarded down or up or a combination 
thereof using gates like 1406, 1407 and 1408 that forms 
column state transition control circuit forming an AND-OR 
logic function between the inputs, such that if FV11 is set to 
1 and LV11 is set to 0, then signal group forward down 
signal GD11 of block 1404(1) is coupled to output of gate 
1408, onto the signal GD21 of block 1404(2). Similarly, if 
FV11 is set to a “0” and LV11 is set to a 1, then the state Q11 
of the FSA bit 1, block 1404(1) is coupled to the signal GD2I. 
Further, the gate 1409, may enable the transition into the state 
bit 1, if UC11 is set to 1 and the received symbol is RS 11 
when GD11 is set. The Up Control Vector (UC), comprises 
of control bits like UC11 per FSA state bit, and enables that 
particular state bit to accept a transition into that state if the 



US 2011/0153657 A1 

UC bit is set enabling FSA extension from another FSA. 
Similarly, the logic gates 1410, 1411, 1412 and 1413, coupled 
to the FV, LV and UCbits FV21, LV21 and UC21 respectively 
enable the column-wise FSA extension into and out of state 
bit 1 of FSA 2. The FV and LV vectors are not required to be 
mutually exclusive. Hence, an FSA State bit may accept an 
incoming state and allow the same state to be forwarded if FV 
and UC bits are set to 1. It is also optionally feasible to 
merge the state bit output of the current bit to the incoming 
state bit, by setting both FV and LV vectorbits to 1. In such 
a case the forwarded output state is a 1 when either the 
incoming state bit is a 1 or the local state bit is a 1 or both. 
The FSA bits 2, illustrate a very similar mechanism as the one 
described above to transfer the state in the opposite direction. 
The upwards FSA column-wise extension Mechanism may 
comprise of global Forwarding Vector-Up (UV), Local For 
warding Vector-Up (UN), Down Control Vector (DC) and 
may further comprise of the logic like gates 1418, 1419, 1420, 
1421 forming column state transition circuit in the reverse 
direction as the one above and the like that enable the transfer 
of a local state like Q22, upwards as well as forward an 
incoming state, like group forward up signal GUP22. 
upwards, coupling to output GUP12, a well as accept an 
incoming state, GUP22, from a lower FSA to enable transi 
tion to its state bit by coupling through a gate like 1418 and the 
like. Again the LUV. UV and DC are not required to be 
mutually exclusive. The FV, LV, UC, UV, LUV, DC bits may 
each be setup as memory locations that get programmed like 
other control vectors for example the SDV, Symbols, mask 
vectors and the like. The memory circuits for these bits are not 
illustrated to not obscure the invention and are similar to any 
other memory bits of PRISM as may be appreciated by one 
with ordinary skill in the art. 
I0089 FIG. 15 illustrates PRISM FSA Extension Example 
#1. This figure illustrates a Column-Wise Extension on the 
left and it also illustrates Row-Wise and Column-Wise Exten 
sion on the right. These figures illustrate PSE comprised of 8 
states per FSA. The figures illustrate how four regular expres 
sions may be programmed in PRISM using the FSA extension 
architecture and mechanism of this patent. Block 1501, illus 
trates how a regular expression REI: (abcdefghi)+kL may be 
programmed using the column-wise FSA extension. Each 
box like 1513 represents an FSA state bit and all the other 
associated circuits, similar to block 614 with circuits for FSA 
extensions described above added, and is labeled with the 
state that it represents using the states corresponding symbol 
likea. Block 1504, illustrates how a regular expression RE2: 
abcdefghijkLimnop' may be programmed using the column 
wise FSA extension. The figure does not illustrate the GSDV, 
GCV, SDV and the like vector bits being setup to simplify the 
illustration and description, but are implied to be setup prop 
erly by the PRISM search compiler to enable the right tran 
sitions between multiple states. Further, the figures illustrat 
ing RE examples in this patent, local state transitions within 
an FSA are implied to exist and proper programming gener 
ated by the compiler but are not illustrated to not obscure the 
figures. The arrows in the figure, like 1508 and 1507 are used 
to indicate inter-FSA transitions enabled using the FSA 
extension mechanisms of this patent. The RE1 is pro 
grammed to include two terms abc and kL of the RE1 in 
the FSA in Row1. However, the term “defghi is programmed 
using the column-wise FSA extension mechanisms described 
above and is distributed between FSAs in Row 1 and Row 2. 
For instance, the state disassigned to Row1 and column B3, 

Jun. 23, 2011 

block 1514. The local vector of this state bit is set to 1. Thus 
when the stated is activated the output from B3 Row1 to 133 
Row 2, arrow 1508, is activated. The UC vector bit 3 for the 
Row 2 state hit 3 is setto a 1 which enables the transition into 
state 'e', Row 2 column B3, if the received symbolise’. Thus 
if the input content is “de, then the downward transition, 
arrow 1508, will be taken and the FSA in Row 2 will be in 
state ‘e’. However, if the second symbol is not an 'e', then the 
state ‘e’ is not activated. The states of FSA in Row 2 are 
programmed such that they transition from ‘e’ to f to g to 
h' when a sequence of efgh is received after a symbold. 
When FSA 2 reaches state h, the upward state forwarding 
mechanism between Row2 column B8 and Row1 column 88 
is activated and the FSA in Row 1 will reach the state i if the 
next symbol received is i. For the upward transition, the 
local forwarding vector-up (LUV) bit for Row 2 column 138 
is set to 1 and the down control vector (DC) bit for Row 1 
column 138 is set to 1, which enable the transition from 
Row2 FSA State h to Rawl FSA State i. When the State c’ 
ori of Row 1 is active, then the following states that the FSA 
may enter as per the RE1 are 'a', d' or depending on the 
received input symbol and so the SDV vectors for those states 
are set up to transition from the states 'c' or T. When the Row 
1 FSA reaches state L, which is programmed as an accept 
state, the RE1 is activated and the input string recganized by 
this RE has been received on the input. A match signal like 
609 from this FSA is activated and send to the cluster priority 
encoder and evaluation processor which takes appropriate 
action based on this regular expression match. Block 1504, 
illustrates a regular expression RE2: abcdefghijkLimnop 
programmed using the column-wise FSA extension mecha 
nisms of this patent. The state a which is the start state, block 
1512, is assigned to Row 4 and column B1 and other seven 
states are assigned in the other state bit slice columns of FSA 
4. Then the state his coupled to state 'i' of Row3 column B8 
using the up column-wise FSA extension similar to block 
1501 described above. As may be noticed the states kLim 
nop are assigned in a reverse order in Row3, though as 
discussed above the state assignment order is not critical in 
PRISM, since the state transition controls like SDV are set 
properly to follow the correct transitions. Thus for the Row 3. 
the FSA states are programmed to transition in the order 
ijkLimnop, if a string corresponding to that sequence is 
received after abcdefgh. When the state p. 1511 is reached, 
the RE2 is matched and the match signal for this RE is 
asserted to the cluster local priority encoder and evaluation 
processor, block 815, which takes appropriate actions that are 
programmed based on activation of RE2. 
0090 Blocks 1502, 1505, 1503 and 1506 illustrate the 
programming of RE1 (abcdefghi)+jkL. RE2 abcdef 
ghijkLimnop, RE3 (xyzdefghi)+jkL and RE4 xyzdef 
ghijkLimnop respectively using the Row-wise and Column 
wise FSA extension mechanisms of this patent. The block 
1502, column 1, Row 1 FSA, programs the terms abc; and 
jkL of REI where as the term 'defghi is programmed in the 
column 2, Row 1 FSA. The Row-wise extension architecture 
and mechanisms described above and illustrated in FIG. 11 is 
used her except that the width of each FSA is 8 states. In an 
exemplary 8-state FSA based FSA extension, there may be 
eight precharge lines like 1109, 1110 and the like which may 
each beactivated by the corresponding state bit of the coupled 
FSAs which may provide a greater freedom for coupling 
various state terms of a large FSA. The transitions 1520 and 
1519, take the FSA from one FSA to the next FSA as per the 



US 2011/0153657 A1 

regular expression state transitions. Local state transitions 
within an FSA are not illustrated as described above. Thus 
when the FSA reaches state 'c', it may enable local transitions 
into states a and ’ and enable an inter-FSA transition 1520 
into state d’. Similarly the state i may enable a local tran 
sition within that FSA to state d' and enable an inter-FSA 
transition 1519 to states 'a' and of Columnl Row1 FSA. 
When the accept state is reached the match signal for the 
associated FSA is asserted and the cluster priority encoder 
and evaluation processor, block 815, takes the appropriate 
action that is programmed. 
0091. The compiler may assign various FSA states to 
appropriate State bit slices like 614 depending on the row 
wise coupling architecture which may be different than that 
illustrated in FIG. 11 as may be appreciated by one with 
ordinary skill in the art and such variations are within the 
Scope this invention. For instance instead of coupling pre 
charge line 1109 to line 1117, another scheme could couple it 
to a signal like 1118, 1119 or 1120 or the like and any such 
variations are covered within the scope of this invention. 
0092 Block 1503, illustrates RE3 to be programmed 
using the column-wise FSA extension. The compiler may 
assign different terms of the RE to appropriate state bit slices 
of the FSAS to enable the transitions required to complete the 
correct RE state transitions between various terms of the RE, 
and may optionally do it based on the available FSA state bits 
and the like. For instance, in this assignment, the term 'def 
ghi is assigned to Row 3, Column 1 FSA, where the stated 
is assigned to B3, which aligns directly below state Z of the 
term xyz' assigned to Row 2, Columnl FSA. This enables the 
column-wise state transition between these two terms of the 
regular expression when state z is reached and the RE needs 
to transition to state d’ based on the next received input 
symbol. One salient point to notice, is that the state of Row 3 
Column 1 is aligned with the accept state L in 38 of Row2. 
This would prevent a required transition from state Si to 
states x or state of the RE using column-wise transition. This 
is avoided by creating a duplicate state i in FSA in Row 2 
Column1, B7, which is entered from state 'h' in Row3 Col 
umn1. Thus the column-wise FSA extension architecture 
enables the State i to be reached in FSA in Row2 B7. Both 
states i in both FSAS would be active simultaneously when 
a symbol i is received following a string defgh. The state 
i in Row 2 is then locally enabled to cause transitions into 
states x' or states i of the follow states as per the RE, where 
as the state i in Row3 is enabled to cause a local transition to 
stated in Row3 which is also required to be taken as per the 
regular expression. Thus, the PRISM compiler has freedom to 
align various RE terms to effect the proper transitions by 
duplicating the same state in multiple FSA bits and FSAs. 
When the accept state L is reached the match signal for the 
associated FSA is asserted and the cluster priority encoder 
and evaluation processor, block 815, takes the appropriate 
action that is programmed. 
0093. Block 1506, illustrates RE4 to be programmed 
using column-wise FSA extension as well, where the freedom 
of assignments of various states to the compiler are illustrated 
using assignments between two rows of the Column 2 FSAs 
where multiple transitions are illustrated between various 
state bits distributed between the two FSAs. 

0094 FIG. 16a illustrates column-wise PRISM FSA 
extension example. In this example, a RE: 
(abcdefghil Limnopqrstuv)+jkL is illustrated to be pro 
grammed using column-wise FSA extension architecture. 

Jun. 23, 2011 

The RE spans across four rows of FSAs in one column of 
PRISM memory cluster array. The PRISM compiler selects to 
program each of the first three terms starting at B1 location of 
the first three rows, for example state a is assigned to block 
1601, state *d is assigned to block 1602, and the state L is 
assigned to block 1603. The compiler then tries to assign all 
the states of the specific term within the same FSA if they fit, 
otherwise it uses neighboring FSAS to assign the remaining 
states of the term for example it splits the term Limnopqrstuv' 
in Row 3 and Row 4. The compiler triplicates state ‘c’ block 
1608, 1606 and 1607, to enable the required transition from 
state 'c' into its various follow states like state 'a', 'd', 'L' or 
j'. Similarly state i is also repeated three times and state 'V' 

is repeated two times, block 1614 and 1615, to enable appro 
priate transitions required by the R.E.The appropriate FV, LV. 
UV. LUV, DC and UC vector bits are set to enable the right 
state transitions required by the RE terms as assigned to the 
group, of four FSAs by the compiler. The transition 1610 and 
1612, illustrate a composite transition, where both LUV and 
UV for state 'i' in Row2, B7 are set to 2, enabling the state 
transition from state v. 1615 to state' as well as transition 
from state i to state j. However, the DC vector bit for the 
state i is set to 0 to prevent state v from causing a transi 
tion into state when the inputs received are a v followed by 
an 'i'. When the accept state L. Row 1, B5 is reached the 
match signal for FSA in Row 1 is asserted and the cluster 
priority encoder and evaluation processor, block 815, takes 
the appropriate action that is programmed. 
0095 FIG. 16b illustrates Row-wise and column-wise 
PRISM FSA extension example. In this example, a RE: 
(abcdefghi Limnopqrstuv)+jkL is illustrated to be pro 
grammed using column-wise and row-wise FSA extension 
architectures together. In this illustration the compiler uses 
three columns of FSAs of one row of FSAS or PSEs, blocks 
803, of the PRISM memory cluster, block 808, to program 
various terms of the RE and uses Row 2 of column 3 for a few 
states of one term. The FSAs in Row1 are coupled to each 
other using the row-wise FSA extension mechanisms, where 
as the column 3 Rows 1 and Row 2 FSAs are coupled using 
the column-wise FSA extensionarchitecture. The states 'u' is 
duplicated, block 1627 and 1628, and the state 'v' is also 
duplicated, block 1619 an 1623 to enable the right transitions 
between various states and terms of the RE. The term “abc 
and kL are assigned to FSA in Row 1 in Columm1, where as 
the term “defghi is assigned to Row 1 in Column 2. and the 
term Limnopqrstuv is assigned to Column 3 FSAS in Rows 
1 and Rows 2. The transition 1629, enables the FSA to go 
from state q to state rusing the column-wise transition, as 
well as the transitions from duplicated states u, 1627 and 
1628, to duplicated states v. states 1619 and 1623, respec 
tively are also enabled using column-wise transition. The 
transition 1620, enables transition from state “c”, state vand 
state i to states “d or state L, while the transition 1624, 
enables the state transition from states vand T to states 'a' or 
T. Transitions within an FSA are not illustrated to not com 
plicate the figure but are implied and properly programmed 
by the PRISM compiler. When the accept state L, Row 1, 
Column 1 is reached the match signal for FSA in Row 1 is 
asserted and the cluster priority encoder and evaluation pro 
cessor, block 815, takes the appropriate action that is pro 
grammed. 
0096. In one exemplary embodiment, there may be col 
umn-wise FSA extension enabled between each group of four 
PRISM Memory cluster PSE rows, and the row-wise exten 



US 2011/0153657 A1 

sion may be enabled between each of those rows and eight 
columns of PSEs. Ha regular expression needs more states 
than the states enabled by Such a large group of FSAS, Such an 
RE may optionally be split into multiple FSAS or may option 
ally use rule group FSA extension architecture and mecha 
nisms illustrated in FIG. 1 IA and described above. Thus by 
using the column-wise and row-wise FSA extensions of this 
patent any arbitrary FSA may be represented within PRISM, 
even when the individual PSE may support lot fewer FSA 
states as illustrated above. 

0097 FIG. 9 illustrates a PRISM search compiler flow 
(full and incremental rule distribution). The flow can be used 
for distributing search rules or security rules when the full set 
of rules are defined or when any updates or modifications are 
made to the rule set and incremental changes to the rule set 
need to be communicated and configured in the PRISM 
search memory. The search memory may be used in distrib 
uted security architecture within system nodes across a net 
work which may be a LAN, WAN, MAN, SAN, wireless or 
wired LAN and the like. The rules like application layer rules, 
network layer rules or storage network layer rules or any other 
content search rules may be created using manual or auto 
mated means and provided as inputs to the search compiler 
flow in a predefined format. The rules may be created per each 
layer of a seven layer OSI networking stack or there may be 
other non OSI layer specific rules. The search compiler's rule 
parser, 904, parses the rules and converts them into regular 
expression format if the rules are not already in that form. 
Then the regular expression rules are converted into FSA 
rules compiled to the node capabilities of the node that has the 
PRISM content search memory and stored in the rules data 
base. The rules from the rule database are retrieved and dis 
tributed by the rules distribution engine to the appropriate 
node(s) with the PRISM search memory. The search or secu 
rity rules may be distributed to the host processor or a control 
processor or a host microprocessor or a network processor or 
a master processor or a combination thereof as appropriate 
depending on the node capability. The rules may be distrib 
uted using a secure link or insecure link using proprietary or 
standard protocols as appropriate per the specific node's 
capability over a network. The network may be a local area 
network (LAN), wide area network (WAN), internet, metro 
area network (MAN), wireless LAN, storage area network 
(SAN) or a system area network or another network type 
deployed or a combination thereof. The network may be 
Ethernet based, Internet protocol based or SONET based or 
other protocol based or a combination thereof. 
0.098 FIG. 10 illustrates PRISM FSA Compiler flow. The 
regular expressions for the content search are presented to the 
PRISM FSA Compiler flow by the rules parser, block 904. 
PRISM compiler flow may optionally be implemented as a 
stand alone compiler as well and may read regular expres 
sions for the content search rules or security rules or the like 
generated by an IT manager or a user or another tool or a 
combination or the like for compilation to PRISM. PRISM 
FSA compiler reads the regular expressions, block 1002, 
from a storage device like a disk drive or a file server or 
memory or the like or directly from the output of another tool 
or a combination and processes these regular expressions 
optionally in the order specified. Since PRISM processes RE 
rules using independent FSAS or NFAs, the REs are compiled 
individually, however it may be possible for the PRISM FSA 
compiler to process more REs for one FSA for PRISM that 
supports multiple REs per FSA block. The PRISM compiler 

Jun. 23, 2011 

flow comprises of one or more of the steps illustrated in the 
FIG. 10 and described below which may be performed in the 
illustrated order or another order to compile the rules for 
PRISM as may be appreciated by one with ordinary skill in 
the art. PRISM compiler flow checks if all the regular expres 
sions have been processed or not, block 1003, and if any 
expressions are left, it goes through the path, 1004, otherwise 
it follows the path, 1017. When a regular expression is read by 
the block, 1005, it is parsed, block 1006, to understand vari 
ous constructs of the regular expression. The PRISM com 
piler flow may at this stage indicate an error if there are any 
issues with the regular expression like any syntax being 
invalidor the like. The error flow is not illustrated in the figure 
but may optionally comprise of logging the regular expres 
sion with an error, informing the user or the application or the 
like of the error, ignore the error and move on to the next 
regular expression, or stop the processing altogether or the 
like or a combination of the foregoing. However, if no errors 
are discovered, the regular expressions syntax tree is con 
structed, block 1007, and various symbols of the regular 
expression are extracted, block 1008. The regular expression 
symbols are then marked, block 1009, to make each symbol 
unique as per the requirement of the Berry-Sethi's FSA con 
struction algorithm. For example a regular expression like 
(ab)*cd(alef)* may be marked as (ab)*cd(a les?)* 
there by making each symbol of the regular expression 
unique. This regular expression is now linear and is pro 
cessed, block 1010, to find the determinants that extract 
whether empty string is part of the language of the regular 
expression and its components. The compiler flow may 
extract the first states that are entered from the start state of the 
regular expression, block 1011. For the above example the 
first states are: a, b, and c which may all be entered on 
processing the first symbol from the start state. Then the 
PRISM FSA compiler flow may extract the follow states, 
block 1012 for each of the states or symbols of the FSA. For 
the example above the following may be the follow states per 
each state: 
0099 State ao: Follow states: a, b, and c. 
0100 State b: Follow states: a, b, and c. 
0101 State c. Follow states: d 
I0102 Stated: Follow states: a or es 
(0103 State as: Follow states: a or es 
0104 State es. Follow states: f 
0105 State f: Follow states: aa or es 
0106. The PRISM compiler flow then creates the state 
transition list per state, 1013, from the follow states above 
which essentially form the state transition list from each state. 
The PRISM compiler flow then extracts terminal or accept 
states, 1014 of the regular expression. For the example 
expression above the accept states are: daa, and f. Once all 
the processing of the FSA states is done, the marked symbols 
are converted back to their unmarked form and the appropri 
ate PRISM programmable FSA data structures generated, 
block 1015 for example, SDV per FSA state, state symbols, 
symbol mask if any, initial or first states, accept states as well 
as optional tag states if the regular expression is tagged, a left 
biased or right-biased control if PRISM implements such 
option, any associated action to be taken, the FSAID that will 
hold this RE and the like. If the regular expression needs to 
use more states than those Supported in a single PSE, the 
compiler assigns the RE to multiple FSAs and couples them 
together using row-wise, column-wise, or rule group FSA 
extensions or a combination there of or may split the RE into 



US 2011/0153657 A1 

multiple rules to fit the specific embodiment of PRISM, its 
characteristics and the like. This RE in the PRISM compiled 
form may either be kept in memory or storage or the like and 
once all such REs are processed they may all be stored in a 
compiled rules database, block 1018. Each compiled RE may 
be deposited individually in the database or all rules may be 
deposited once they are all processed or a combination. The 
compiled rules database may be an actual database or a file or 
a storage element or the like that records the compiled rules 
data that may then be programmed into an appropriate 
PRISM device by the rules distribution engine, 909, working 
with the PRISM controller of the corresponding PRISM 
device. 

0107 The PRISM memory of this invention may be manu 
factured into hardware products in the chosen embodiment of 
various possible embodiments using a manufacturing pro 
cess, without limitation, broadly outlined below. The PRISM 
memory in its chosen embodiment may be designed and 
verified at various levels of chip design abstractions like RTL 
level, circuit/schematic/gate level, layout level etc. for func 
tionality, timing and other design and manufacturability con 
straints for specific target manufacturing process technology. 
The design would be verified at various design abstraction 
levels before manufacturing and may be verified in a manu 
factured form before being shipped. The PRISM memory 
design with other Supporting circuitry of the chosen embodi 
ment at the appropriate physical/layout level may be used to 
create mask sets to be used for manufacturing the chip in the 
target process technology. The mask sets are then used to 
build the PRISM memory based chip through the steps used 
for the selected process technology. The PRISM memory 
based chip then may go through testing/packaeing process as 
appropriate to assure the quality of the manufactured product. 
0108. Thus the inventions of this patent cover various 
aspects like: 
0109. A memory architecture comprising programmable 
intelligent search memory (PRISM) for content search 
wherein the PRISM memory provides search capability for 
regular expression based search and a regular expressions are 
compiled into a format recognized by PRISM and that fol 
lows the PRISM FSA algorithm. 
0110. The regular expression compiler comprises of one 
or more of the following steps in no specific order: 

0111 1. Read mechanism to read regular expressions 
and a read process to do the same 

0112 2. Parse mechanism to parse RE and a parse pro 
cess to do the same 

0113. 3. Syntax tree generation mechanism to generate 
Syntax tree and a syntax tree generation process to do the 
Sale 

0114. 4. RE error handling mechanism to handle RE 
errors and a process to handle RE errors 

0115 5. RE symbol extraction mechanism to extract RE 
symbols and an RE symbol extraction process to do the 
Sale 

0116 6. RE marking mechanism to mark RE symbols 
with unique integers and a RE marking process to do the 
Sale 

0117 7. A FSA linearization mechanism to create a 
linear FSA and create its determinants to extract pres 
ence or absence of empty sting in the language defined 
by the RE and a process to do FSA linearization 

20 
Jun. 23, 2011 

0118 8. A mechanism to find and extract first states of 
the linear FSA and a process for first state identification 
and extraction 

0119) 9. A mechanism to find and extract follow states 
of the linearized FSA and a process for follow state 
identification and extraction 

0120 10. A mechanism to find and extract the state 
transition list per state and a process for state transition 
list identification and extraction 

0121 11. A mechanism to find and extract the accept or 
terminal states and a process for acceptor terminal states 
identification and extraction 

(0.122 12. Create PRISM programmable FSA data pro 
grammable database structure for the RE comprises one 
or more of SDV, state symbols, LB/RB, Accept state, 
Initial States or Initial vector, tag states, FSAID, GSDV, 
GCV, RCV, ESV, LUV, UV, FV, DC, UC, LV or a com 
bination of the foregoing 

0123 13. A mechanism to generate the Compiled RE 
expressions rules database comprising the PRISM pro 
grammable FSA data structures and a method for the 
compiled RE rules database generation. 

0.124 14. A mechanism to provide the compiled rules 
database to a rules distribution engine or other agent to 
program these rules in the target PRISM device and a 
method to do the same 

0.125 15. A mechanism to generate a programmable 
FSA rule ID for programming the linear FSA in one 
specific memory location of PRISM memory locations 
that are randomly accessible to access, store or program 
the programmable FSA rule memory circuits 

0.126 16. A mechanism to generate specific actions that 
need to be taken when a particular regular expression 
programmed in the PRISMFSA rule blocks is matched 
O 

0127. 17. a combination of the foregoing. 
I0128. The PRISM memory comprises of FSA extension 
architecture and mechanisms to enable programming of regu 
lar expressions that are larger than the basic PSE FSA search 
states. The FSA extension architecture may optionally com 
prise of Row-wise FSA extension mechanisms or column 
wise FSA extension mechanisms or FSA rule groups exten 
sions or a combination thereof to Support large regular 
expressions and optionally to Support groups of regular 
expressions that can be used to enable execution of other 
groups of regular expressions when a certain event in the first 
rule group is activated. 
I0129. The PRISM memory Rule group FSA extension 
architecture may comprise of External state vectors, and may 
optionally comprising of rule group control vectors. The 
ESVs and RCVs may optionally be addressed as memory 
locations that may be programmed by the PRISM controller, 
or an external master processor or the cluster evaluation pro 
cessor or a global evaluation processor or a combination to 
enable transitions into and out of rule groups in. PRISM. 
0.130. The Column-wise FSA architecture may further 
comprise of Forwarding vector- up or down, local forwarding 
vectors-up or down, up control vector, down control vector, 
or a combination there of 

I0131 The row-wise FSA architecture may further com 
prise of global state dependent vectors, global control vectors, 
global state transition controls, global control network or a 
combination. 



US 2011/0153657 A1 

(0132) The PRISM control vectors like GSDV, GCV, FV. 
LV. LUV. UV, DC, UC, RCV, or the like may be implemented 
as memory locations accessed for from programming from 
the PRISM address decode and control logic or PRISM clus 
ter address decode and FSA controller or PRISM controlleror 
a combination there of 
0.133 PRISM memory architecture that enables replicat 
ing states of an FSA that may enable proper FSA extensions 
of RES using FSA extension architecture and mechanisms 
described above. 
0134. The PRISM memory further comprises an array of 
search memory circuits that provide the regular expression 
search functions for searching content from documents, mes 
sages or packets or other data received from the network or 
the local host or a master processor or a network processor or 
TCP Offload Engine or Processor or Storage Network pro 
cessor or a security processor or other processor or a combi 
nation thereof. 
0135. The PRISM memory further comprises of a plural 
ity of clusters of the search memory circuits that provide 
regular expression search functions for a plurality of regular 
expressions. The search memory circuits comprise of 
memory elements to store symbols of finite state automata 
representing the regular expressions. The search memory cir 
cuits further comprise memory elements to store mask vec 
tors (MV) that may be applied to the stored symbols. The 
mask vectors are coupled to the symbol memory elements and 
the content being searched through symbol evaluation cir 
cuits that detect whether the received content comprises of the 
symbols being searched. The search memory circuits further 
comprise of memory elements to store elements of State 
dependent vectors (SDV) which are used to decide the state 
traversal by the search memory for the finite state automata. 
The search memory circuits further comprise of match detect 
circuits that operate by coupling with the memory elements 
for symbols, MVs, SDVs, and the symbol evaluation circuits 
for multiple states of the FSAS to decide on the traversal of the 
states in the FSA based on the content being searched and the 
programmed symbols. SDVs, and MVs. The search memory 
circuits may further comprise tag and match detect circuits 
that operate to provide tagged FSA and regular expression 
search, wherein the tagged FSA is used to detect Sub-string or 
partial regular expression match beside a full regular expres 
sion match. 

0136. The memory elements of the PRISM memory com 
prise of static memory cells. The memory elements are each 
independently addressable in a random order. The PRISM 
memory further comprises of circuits to couple the content 
search memory with other logic to provide coupling with 
processors that can interface to the PRISM memory inte 
grated circuits. The PRISM memory further comprises of a 
controller for interfacing with the processors to receive the 
content to be searched. The PRISM memory may further 
comprise of address decode logic circuits which decode the 
received address to select the specific static memory cells 
location to be read or written. The memory elements of the 
search memory may each be uniquely addressed to read or 

Jun. 23, 2011 

write appropriate values in the memory elements. The 
address decoding logic and the controller generate control 
signals necessary to address the appropriate memory loca 
tions of the static memory cells based search memory. The 
control signals are coupled to the PRISM arrays as a series of 
word lines and bit lines that can randomly be used to access 
desired memory locations. 
I0137 The memory elements of PRISM support detection 
of character pattern strings. The PRISM memory comprises 
of symbol detection circuits and may optionally comprise of 
mask vectors per symbol bits, that may be used to evaluate 
received character string using simple XOR based compare 
or other logic function and create a match indication. The 
PRISM match signal processing circuits may logically com 
bine multiple match signals from each symbol detection 
block to generate a composite match signal which would be 
activated only if all the symbols have a match. The composite 
match signal creates a match functionality like a traditional 
CAM chip and thus enable PRISM chip to be partially or fully 
configured to behave like a CAM provide a pattern matching 
functionality beside regular expression search. 
0.138. While the foregoing has been with reference to par 
ticular embodiments of the invention, it will be appreciated by 
those with ordinary skill in the art that changes in these 
embodiments may be made without departing from the prin 
ciples and spirit of the invention. 

1. A memory architecture comprising programmable intel 
ligent search memory for content search wherein said pro 
grammable intelligent search memory performs regular 
expression based search and comprises of a plurality of pro 
grammable search engines to perform search using a plurality 
of regular expressions, said plurality of regular expressions 
converted into plurality of finite state automata to program in 
said plurality of programmable search engines. 

2. An integrated circuit chip comprising programmable 
intelligent search memory for content search wherein, said 
programmable intelligent search memory performs regular 
expression based search and comprises of a plurality of pro 
grammable search engines to perform search using a plurality 
of regular expressions, said plurality of regular expressions 
converted into plurality of finite state automata to program in 
said plurality of programmable search. engines. 

3. A hardware processor comprising an integrated circuit 
chip memory said integrated circuit chip memory comprising 
programmable intelligent search memory for content search, 
wherein said programmable intelligent search memory per 
forms regular expression based search and comprises of a 
plurality of programmable search engines to perform search 
using a plurality of regular expressions, said plurality of regu 
lar expressions converted into plurality of finite state 
automata to program in said plurality of programmable 
Search engines. 

4. An integrated circuit chip of claim 2 comprising a pro 
cessor, said processor comprising memory, said memory 
comprising said programmable intelligent search memory for 
content search. 


