US 20110153657A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2011/0153657 A1

Pandya

43) Pub. Date: Jun. 23, 2011

(54)

(76)

@
(22)

(63)

(60)

FSA EXTENSION ARCHITECTURE FOR
PROGRAMMABLE INTELLIGENT SEARCH
MEMORY

Inventor: Ashish A. Pandya, El Dorado Hills,
CA (US)

Appl. No.: 13/006,265

Filed: Jan. 13, 2011

Related U.S. Application Data

Continuation of application No. 11/952,110, filed on
Dec. 6, 2007, now Pat. No. 7,899,976.

Provisional application No. 60/965,267, filed on Aug.
17, 2007, provisional application No. 60/965,170,
filed on Aug. 17, 2007, provisional application No.
60/963,059, filed on Aug. 1, 2007, provisional appli-
cation No. 60/961,596, filed on Jul. 23, 2007, provi-
sional application No. 60/933,313, filed on Jun. 6,
2007, provisional application No. 60/933,332, filed on
Jun. 6, 2007, provisional application No. 60/930,607,
filed on May 17, 2007, provisional application No.
60/928,883, filed on May 10, 2007, provisional appli-
cation No. 60/873,632, filed on Dec. 8, 2006, provi-

sional application No. 60/873,889, filed on Dec. 8,

2006.
Publication Classification
(51) Int.ClL
GO6F 17/30 (2006.01)
(52) US.CL ..ooovvvviviviiiiieene 707/769; 707/E17.014
57 ABSTRACT

Memory architecture provides capabilities for high perfor-
mance content search. The architecture creates an innovative
memory that can be programmed with content search rules
which are used by the memory to evaluate presented content
for matching with the programmed rules. When the content
being searched matches any of the rules programmed in the
Programmable Intelligent Search Memory (PRISM) action
(s) associated with the matched rule(s) are taken. Content
search rules comprise of regular expressions which are con-
verted to finite state automata (FSA) and then programmed in
PRISM for evaluating content with the search rules. PRISM
architecture comprises of a plurality of programmable
PRISM Search Engines (PSE), each capable of supporting a
predetermined size FSAs. FSA extension architecture is cre-
ated to extend the predetermined size limit of an FSA sup-
ported by PSE, by coupling multiple PSEs together to behave
as a composite PSE to support larger FSAs.

; - 2 806
| Cluster Search Buffeﬂ/

e 807
Cluster Search Contr&r
803 - Local | ez
o Context
Memory s
Mem Ctrl]
5814
sor | Cluster lsas | Cluster PRISM —
%W Address ged Search Engine Array
Decode a1 Local 816,
And g, L, 2 e,
wiig Priority ;
FSA Encoder
Controller And
Evaluation
808
Processor
! Sense Amps/Drivers Lm 815
05, N i
802 i%%) Bit Line Control Logic.|—s10

PRISM Memory Cluster Block Diagram

US 2011/0153657 Al

Jun. 23,2011 Sheet 1 of 21

Patent Application Publication

{1y 101Ld) waa 23 By

} J\.SL

(1 101d) V4N Uleg-Aag gl "Bidg

\ B
\A
biL 601 £/ X \ /x

~

o
Oy @D 5

abl
_y 2

xAx(A + Ax) ruoissaldxg seinbay

US 2011/0153657 Al

Jun. 23,2011 Sheet 2 of 21

Patent Application Publication

{1y soud) eiqe) uomisuel]
931018 % VAN poserubiy v qz ‘Biy

{1y 1oud) sj0e), vonisuel]

8115 9 VAN poselq-yle v ey 'Big

a'o

-4

1A

HITY S

'ay Q
29 Y Jrmmst

- av €l
o] v e
D A q e mamz ‘iz
mR\\ 1d200y cpp

ELS g

1424

WAG

arao g vila
dy,o714d, vy o
a2 d) v 4

Q1O 4| Vilvie—
bl o] al e Sd ™
- SN

F4%4 1des0y

MG o

US 2011/0153657 Al

Jun. 23,2011 Sheet 3 of 21

Patent Application Publication

apels sod sjge) syels N sjqenbyuos g Biy
uonoy Jdaesuy Mers ‘A0S ‘Gy ‘g idoid g

paserg 1By pasely 14e7
"N PSs | A "'ALs | O
AL €S D AL D
4 A es| o ‘N 1S | 9
Al LS ¥ Al LS VY
Aas wis gd AQS whs gd
v = SN ¥ = SN

sjonuon uopisuel] s1eye eg "Bl
pasers] by paselg Jer

@5:?« meu ﬁ> @A..’< PMWQ v>
s mex m>
U v?\% % _\wrg r @ mwﬁ —Vﬂlu v>
20¢

208

/Nm “EA ,mom / wm i\
fm Sose Am& v0g

US 2011/0153657 Al

Jun. 23,2011 Sheet 4 of 21

Patent Application Publication

..................................... / R M.wwmm
[o5Y |\ [Jde95y]._ _ AOS o o
i Zhy
ey W WE A zw ; ; : m
: Mo MUy “prop) LA I
4 3 (39 B .
& 10838(] 48 | ’
aLy— 1danay ” ; 1Ls) ASD O e
A1 v 21507 5 50%
L N WO o uonisuel ugy
LD \ el wuy | PN amg | A
- Ly \ ﬁ% : 18
184 3 \ : Y
\ ‘ 80%
o 9ok bSY |
e S .
\ oip 0
ayeys & 404 (M 15) o1Bo] uoimisuesy syelg ey Biy
o \ cop PR FT>
&lil«vﬁg
_ g!i\ + x .
J W3 / . :
10 a1e1s | LN\)
S : ljeq |
v zov _ — P LS
L { & ¢ y \
=T o] \yor O seyouy
giv
............ #A/a7

US 2011/0153657 Al

Jun. 23, 2011 Sheet 5 of 21

Patent Application Publication

VS poseig-ye ul ajes e 404 (1115) o1o) uoiisurly eyeys vg By

Vo
|
|
B ta— yi0)
LN
//./
ELN 14114
S
408

i

J q\ N
A hv% h b A b A /Twom
s118
O el Y | Lksy
I
HA]l orsnmsnscoioaisoniooas. Ml p
T
Qg
o SRR e
f i
“ﬂ P poe
=3 OO Wi Mig
it
ALY
]
bupo Moo Yupo 408

US 2011/0153657 Al

Jun. 23,2011 Sheet 6 of 21

Patent Application Publication

vS4 peselg-ybiy ul e1e3s ¢ 10j (111.8) 2160] vomsues syeig gg Biy

Well e— 3o

QPZH 0¥

...

& A Ay A A A ﬂ 904
_\G _\-C@_ G u
\\ vwm FZWW_ m..vN..w /:mom
604
AL i oo g Wa ,
|- N .
50 705
0 PPN errenene Pyl wimy
* S NN h/{./
m 208
Bras | rrocressamsasarasssanes gl e
~
™~ 20S
‘ups byl Wy 108

US 2011/0153657 Al

Jun. 23,2011 Sheet 7 of 21

Patent Application Publication

29 %E& by xugﬁ gsm VS m%mﬁ, Ew@ﬁxmﬁ i3 mi

Yarein mm..m. 4 J e #o0ig
£MH_\MW§ mV_m.._ - rng G axarsounensrarnonaxassavarinasvavans N avAstavAEesvAVATNAVAELANAY % QQF QQ‘: MU@H@Q F_QUMWE m@mwmmmsms
609 — %20 2% TEET TRE Pt
09 ~+—dPAL | e T_ ik <L —ols
v e T) A ug0g
S eveeasenserereararenrarans . [T S i
L D o P i Yo e MU
2R0G r}— .. v.,:\ﬁ :>_ [S mcw
L2 \m ®00ld joue] ayely
[) b\?}r.\\\
“ ... ﬂp ,l_ Mm/,/ I)IH.:J/Q.IIII. wucm
LS Tes08
wg// o, Mv
u yorep YD | | _ | = P09
; T UOj301Y elelg
L9 : 20|¢ DIe
WM,, iiiii im h v _ K\},\N fao|g o1elg
& U2IeIN VYD T 209
T e _(w s
- -
O ORI remsaoanar ~B905 | ¥20|Qg 18IS
_.!.IMV /w.l //.\\
M 4, », Py w P ?M »\.
FG & LEY e GOG
605~ —
i (k)L Ui 109
A . . bi FNENY
v%/ ep0s
e -
L U= WY L 7 P el Whey ol
.‘% - %H‘ /mnm \\S‘m
F-3 ﬂ \\\\
e wesrerse nonsanarenerersarisesns E:,m Mgl a0
:: S i gioﬁwv.ﬁam

US 2011/0153657 Al

Jun. 23, 2011 Sheet 8 of 21

Patent Application Publication

zie INSIMA Ul Y2016 8iny vg4 pebbe) poseig-yo1 g9 Big

ﬁQPNE mwm“m.n/fwﬂ[/ v - O Vmuomm
SQMWE @—w_\mﬂw\w\\\\s\\\ QM\.M: . P A PP Cresuioamravararsrnsn .A.,:Q‘Q_.w. chﬁ.— MUQMQQ\SQGNE ﬁﬂvmmm._r
o - BE &
603 TR e 17,12 KU 4 u —
Al Awill “AvL ~pig
. e vﬁu &&_U\C& CrvavAmcaARIuSryar . v.cﬂu :NU 2 xwg\ﬁm
E&Q@ _,>w .. —,:C\/m :>_ [S S QO@
M/ L N30 (0U0D) k1S
b\\)l.\\
7 bees o insarerenns e r s e s asaasans R aenes et —
() (Y
918 w 1 o L I
// M 3
U Yole YD | | _ | e —-¥E09
: s unjoolyg 91elg
Lo : s0]g a1e
| - | _ _ _ _m\)/\mwom ¥20ly e1e1g
Z UMEIN NYD i S BT
- - \my
ﬁ /J ... ﬂ J[fo_w 5% L Y201 91eg
thw M;k::y% ba\‘/\\
2 e UG0G
Smu LSY pugy| usY
o ——
bi (RTiT BTTY TTeLe9
Al e o A L
tm// o O A epog
pr S —
b UDEN VD Mo erereneererees Y bubgl Wl | |
~ 12%:
4 5E TR nnm\\\
it
3 IO, R Wligl el Lo
o o a&.w\x\ém

US 2011/0153657 Al

Jun. 23,2011 Sheet 9 of 21

Patent Application Publication

JB||0u00)
Ascuiap
[euIaI]

178

Hod

Juoisuedxs

aseqele(]

e
bl

0wy

FATA

AOLUBIN
Loy
(BG40l

v_.:m

weibeic Yool WS £ Bid

v0L

21607
[oJIUO
puy
apoos(]
- ss2IpPY

£14 0kL
lossoonld | | i
uonen|easy
puy sheusry
Jopoous el 1BIsn|o
Ao Alowspy
1eqoio NS oo/
ww\\ M‘&mﬁ%« Awm@
EO Em_z Jayng mcam“w ¥ Elolg!
mch\
[AYA
folisley Emmﬁw RO &
Alowisiy 2047 ;
IXBILIOD) £l
[eqoi

AOWB Jeyng/erec]

7

1OJJOAU0N
NG

i

2oL

— Z W ou <€ QW

X Wy 2 <4

US 2011/0153657 Al

Jun. 23,2011 Sheet 10 of 21

Patent Application Publication

wieaBeigl Yooig 491snjsy AJCWBK NSIHd 28 Bid

5ie

JOSS04]
uoneneas
puy
J2poous
Aold
1zelon]

LMD Wely
€l8
Alowap
b lozg)
AT R B -Tolo

k8 —T0IBO™ [0JUOT) aUlT Ug

608~

%

- sreAlLCl/sdWy osueg

808

Aeny subuz youe
... NSldd 48lsnig

S
/IJM///

18[j0AUsH)
VS
puy
apooa(]
SSIPPY
Jesn|n

408

e

Jayng UoIesS J9isnio

908" e
-

£08

b

B

i

US 2011/0153657 Al

Jun. 23,2011 Sheet 11 of 21

Patent Application Publication

weaBelg yoolg pajielec 1e1sni) Alowsiy WSiId 98 ‘Bid

518

(U} Lz

618

sieuNg pear/sduy 88

Ueg

a&“w&w\? A
7 m»\.«

=

B
B

{1u} 12g
o~

H48d | A8d | 38d | 38d | 884

AGd

H8d i
w u)08

AESRNESE

P

(L) 078

J0S8820. ¢}

puy
lapoauy
Ajaatiy
1eo07

@) 128

~

vogeniess | (j-u) Lig) M

38d | 48d

y
D s
P—s
-

A8d

Sy
asd 4

{--ultrog
!

exmoxReEN

iy
P S
G
Sl
e

48d

AS8d

e

¥ (L) oze

IR0 Way

£18

T8

Ajowaip
XS0
(8OO

'

208

J9fj0auon
Y84
puy

apooa(]
ssaIppy
AMBNH

A08

18ing UoIeag 181snio

908

A
fe)
i
i

] P
o
i

108

US 2011/0153657 Al

Jun. 23,2011 Sheet 12 of 21

Patent Application Publication

{uonngUISIP ojnJ [LIUBSWISISUY] 4 |jNy) MOl J8pRdILoS UDIeag WS § Big

L06

asegeEg

\

i

auIBU UoNNGLISICT S9JNY ~

e \

“
afeics
aseqeleq 806
sap
pepdwon

VAN 906
== MOl JedWIod VS INSIYd

)

F5i) suoisseidxg | |, 906
iemnbey

i ¥06

18814 88N}

606

..

pos g
\\\ 4//.
£06 P \ 206 I 106

$o[NY HIOMIBN ealy oBelo)g

sajny JeAe] YIOMISN

sapny 1ehe uopesiddy

| seimy NySBuio |

mm:i sakeT YomsN ESO

sainy ddy Jeuin/ssiny a:>_x_“, SBINY UOIDDIR(] LOISNIXTY _

SN SSAULPY HO0IE agmog_

_ S9Ny OHINRdS (000101

| sany buusyi4 euieiy _

so|ny adA) ddyalod

sy JIOA __ Big 1wbyy subry reubiy

[seiny bupisey NNT |

38Ny &N _

_ sy Buiuoy _

| s8Ny $83IpPpyY MUN
m 89Ny J0JUOD) 88800y

m
_ ~ $9jny owvads uonedddy __ soiny Buibessapy ueisuf |
1k ,
_ _ i sainmeubls sniA |
In _

soiny AENUspyUos : sainy Wedg-puy

-
<
~
&
e . 90 34 WShid e1esl) Moj4 sepduwiod ¥vs4 WS 01 *Biy
m 404 % Y101
- SERIG 1800y puly
e
m 2 2oL
o) 2118 lod 18Y UoRISURL] 918010
= sroL” % any
SBIBIG MO0 10BN
= 3 211
o $8101S 18114 100X
ot 7 0101
- xabay Jeaul] JO JUeLiLLSS (]
= 4 6001
2 S]OQUWAS MiB
m i 200. \Wﬁs
Q SIOQUUAS 10BIIXT puz |
o ¥ 1001 ot
o ao1) XBIUAS 218810 y aseqeled T g,
.m ry 9004 SN
xafioy osied pajdwoy
a 2)B8I7)
_ 5001 e
xebay 1xeN 180 ﬁ
f/-l' v»\\\\
FON
oL Eoak LL0% %
- ,
2 /@cca T _
Z004

e

stdxebay pesy
' Loot
C wmg Y

Patent Application Publication

US 2011/0153657 Al

Jun. 23,2011 Sheet 14 of 21

Patent Application Publication

UOISUSINT VS 9SIM-MOY INSIdd L1 "Bid

oifio] uomsuel) RAOID LD I0198A JOIUOD [BO0ID ADD 103084 Juspuada() 8181G [BYOID AUSD
rARN)
bELL
ik M ® 1 ® 9 0Ll
et > o 4 60LE
MNM 4 (1) 8014
% w “ezi
P P meont_ | | : | “_Mw\:v 5211
P T1T 17 71 G Y s O A O \\\\: 2011
[] N I A oy el L \wwmci
(N) gzLE — Lssiaoig 109100
(N} 90117 yojep pue
zziy bkl gLiL L6bi (N) 0L i Oiuos 93eig
' - N 5041
/ e
iiiii A ﬂx .
77 > EWJ HW HWJ / e WW _.;WU xj ﬁwu gg:&u ﬁmw %u (1) y0i1
50 o P !
.r:/ii. LS| wxEY |WZsY | WisY \ \ qusuzxsy zzst| z1sH ugd| 1Xgu | Lzgd | LLey
/ [
_ bzLL 6LLL 0ZiL 4 | | _inaso
N Au_ ﬂtx /VN: | | (N} eoid - {1) €611
/ N = N 201G 3G
Zob)
E: T i 2: ” " “
¢ t 3
W _p I %001Y 93eIg
e 1 AP okt g
{A) 1oL {2) 1oLt {1 1oLl

US 2011/0153657 Al

Jun. 23,2011 Sheet 15 of 21

Patent Application Publication

UOISUDIXE Y84 dnoas oy NSIdd Vi1 61y

103984 1043107 dnois) apny

10100/ BI81E [RUISIXT (ASH
21607 UOISURL) [2GOI) LY

‘ADH

10338 joNUe] jeqoigy IADD

21607 vogsuri) dnoug Ny Loy

Iopap wepuadad 812G [eqoS TACSD

Ziil
- ® ® @ BT
& &, L) 0Lt
489 @ o LY
[%A3) B @
55 (L) oLy
ﬂ w w \.\w\P\EmN:
O AST _ _ . m | | N sorl | | | 9 {1z
_ 0 I A 1 OO 1 2 = oo P
L] L L Dwsonp LD LD LT 117799
(N) szL i AL 90b
() mo:\\ T e Eeed
- yIjely pue
“ gLil PN (M) qoL1. L oguon aelg
i By A A (1) 5004
A O Wf \f / WJ J¥U £ - KJ o0 1,#/
. A TE T4 B . %, T | (M) #0LLTTT& T (1) P01
L9 8 P ® PN ;
N " f _
% UGH | WXGY |UITSY | WisH / / AUSH| ZXSY |728M | Zi8H usSH! IXSH I LZSH] LIS
m oo Bill 0z T LZTT T T aaso
iﬁ/lu_ﬁm,! ﬁ Ié_ﬁ {N) cort =~ (L) €011
AN RN _/ N} - N o0l 9ye)
N // Er z011 * s
9LLL GLLL YiLb ; ")
f l ' 1
[ATH |) _F L §001g 230G
7 Wvsd @ o & vsd corr () ory” LS4

\ (M) LOLL
124
ASH

9g

l

2

14 1

US 2011/0153657 Al

Jun. 23,2011 Sheet 16 of 21

Patent Application Publication

L# sjdwexy uoisueIxy vS4 oSIp-Moy WS z1 "Bid

{¥) ozt
e

119

| Aveozi
T AOD

Y0014 19812
YRR pue

%@_oo a8

(L) zoz}
///
vy zogy

AASD

N 0lg ajelg

v
aigt PLeL

L ¥20ig ajelg

VY Vsd ¢V5d TENSA

() LoZL {g 1oes (z)ioz) b VS

(1) 1oz

a4 J8d sajeis p uondiunssy v 4
douwrpihybiepage 1

US 2011/0153657 Al

Jun. 23,2011 Sheet 17 of 21

Patent Application Publication

z# ajdurexs UoISUSING VS oSIM-MOY NSTE £ Bl

kLEk

Dicl

60et

Y1085

9081

G0tL

7 Lot

(£} LOSL

e Vs

{ZhLog

\
{1} 1081

L¥sd

ADD

SOOI 30918(]
Yo pue
[ofuo] ey

/] RASD

N Mool alElg

L ooy g

vad Jed soiels pruapdiinssy v&d
Pl +(uBjop | oge) i3y

US 2011/0153657 Al

Jun. 23,2011 Sheet 18 of 21

Patent Application Publication

uoIsuBlXg VS esip-uwnjod WSikd i Bid

10108A |ONUOS UM 170
108 jonuon dn on
dfy — 401084 PIeMIGS (820 ANTT
UMO(] — JOIDOA PIBAIO] 1820 AT
dii - J0J08A PIRAIOY AR
UMOC] - J01D8A PIBMIOS A4
(z) sovt
., lezano o Augao
o AR | [2eD 349)
v v | S]] | [s T EW
= wj.‘%m‘.,
ZVsd
z25y ﬁ _Lmﬂ :
8ivL jbdﬁﬁ i haids
zzog | bEon - ~
vmﬁ_v LEAT LEAd [%duly] (2) vovt
{ ﬁ>:.§>3 Zi0 | CLD 1D
v 4 w TSt | US 8ov)
=) L oy ZVSd
Gl e
iyl ﬂ ﬂ M w . b vsd
S— —_— Zi5Y L rsy 40P
Ww B 00 | an % %x ﬂ WM L V&4
9Lt T~
» LD VAT LEAd L ao () vovL
d}-lq«(!i:d{qL
Weor ¥

Z g 2IvIg Y8

L 3g 818G Y&

516071 UOISUSIN BSIAR-ULIN|OY

8ug Lud 91d g viG cug Zug Lug

\ VAT
L s
(z) zovl
i) \\.\\\\
T T~ zovs
L~ 2) sov)
\ cT 1
e
\ (1) covi
VNV N LN / .
/E LoV /@ LO¥E /5 LOvL /E LovL
{8) Lovi (o) LovL (¥) LovL (z) Lovi
dnoib vy 4

US 2011/0153657 Al

Jun. 23,2011 Sheet 19 of 21

Patent Application Publication

L ejdwiexy UolsUSINY VS NSIEd 61 Big

UOISUaIX aSIA-UINIOT DUR BSIAA-MOY UOISUBINE SSR-LILINION

ge L€ 94 mm ot sa e Fla /g 94 s9 ve ¢g zg 1A Zi61
1T

b Moy

i ©
l.fit..z! //Momv P05 - ,/./_.w.w.v

Kivs 1% S Lo R e e o -
r@ Yy B gt oe o 1 L Moy
G161 Z0GL || &

mmﬂ

8life|

< 0LG1
“g0g) -

L4GE

H
m—
- o £

80614

Ot

ey

e s

= I o
;

Biss i e s s B b e e 80§k

L0GE A
A

/ T g’ 8 99 s9 g nm//mm vy ELE

6051 { BuInjon /¢emv

Y

8 E]
0
i

7 UWINjGsy r2éi / L uwnon 0Z5L

dowwrpiiyBiepzAx oy
Pl +{1ufep | 2Ax) gy
douwrpifiyByspoge 12y
il +(uBsp | oge) 1oy

apdulex;] UOISUSINT V4 NSIMd 9SIpA-LULINOY Byl i

US 2011/0153657 Al

19}
7
P18l
S LA I Y Fl sl 3l nl AT
=]
S B Al b 209l
= g1g) d A
2 gmoy | d | t o | ujw]| o | 051
............. i A 03}
= clal A I S T 1 ——— 919}
< b9y ——"" sy 1T
& ¢ mod Liu b e @ 001
g .
= oLaL ——— b = == % ™.
8091 — ‘ | | 29
MO , N T
v | |0 |@ | o] 8 [@
\ ™~

89 L9 99 59 vy mm/ za 1g 08

L BUNjos 8091

M +(amssbdouw | ubiep | oge) 1a

Patent Application Publication

US 2011/0153657 Al

Jun. 23,2011 Sheet 21 of 21

Patent Application Publication

afdwexsy UoISUSIXY YS4 NS 9SIAR-UWINIOY) PUB 98IM-MOY 091 *Bi

1291

AL

£ U O D , ¢ Unjos b uunijon
b M0y
1729 e ¢ MOY
I.l}'?»)f.lf;ltt
6291~ | I e
\3://,///1w glaln Z MOy
ozar ;/;//;n@ m
v g W @ 5 .
A o |u ju A K i
cror1 @ \ 4 3 @ N @ A1 f{ @ g 2 |1 moy
) ‘
\ ‘ T 4191,
oL T % 3 \
oo \
A azgl
/mrwv// 8191 //

2Z91

9€3i

Pl +(amssbdouwry [1yBiep | aqe) 15y

US 2011/0153657 Al

FSA EXTENSION ARCHITECTURE FOR
PROGRAMMABLE INTELLIGENT SEARCH
MEMORY

RELATED APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 11/952,110, filed Dec. 6, 2007, which
claims priority to Provisional Application Serial No. 60/965,
267 filed on Aug. 17, 2007 entitled “Embedded program-
mable intelligent search memory”, Provisional Application
Serial No. 60/965,170 filed on Aug. 17, 2007 entitled “100
Gbps security and search architecture using programmable
intelligent search memory”, Provisional Application Ser. No.
60/963,059 filed on Aug. 1, 2007 entitled “Signature search
architecture for programmable intelligent search memory”,
Provisional Application Serial No. 60/961,596 filed on Jul.
23, 2007 entitled “Interval symbol architecture for program-
mable intelligent search memory”, Provisional Application
Ser. No. 60/933,313 filed on Jun. 6, 2007 entitled “FSA
context switch architecture for programmable intelligent
search memory”, Provisional Application Ser. No. 60/933,
332 filed on Jun. 6, 2007 entitled “FS A extension architecture
for programmable intelligent search memory”, Provisional
Application Ser. No. 60/930,607 filed on May 17, 2007
entitled “Compiler for programmable intelligent search
memory”, Provisional Application Ser. No. 60/928,883 filed
on May 10, 2007 entitled “Complex symbol evaluation for
programmable intelligent search memory”, Provisional
Application Ser. No. 60/873,632 filed on Dec. 8, 2006 entitled
“Programmable intelligent search memory”, Provisional
Application Ser. No. 60/873,889 filed on Dec. 8, 2006 entitled
“Dynamic programmable intelligent search memory”, which
are all incorporated herein by reference in their entirety as if
fully set forth herein.

[0002] U.S. patent application Ser. No. 11/952,110, filed
Dec. 6, 2007 also claims priority to U.S. patent application
Ser.No. 11/952,028 filed on Dec. 6, 2007 entitled “Embedded
programmable intelligent search memory™, U.S. patent appli-
cation Ser. No. 11/952,043 filed on Dec. 6, 2007 entitled “100
Gbps security and search architecture using programmable
intelligent search memory”’; U.S. patent application Ser. No.
11/952,103 filed on Dec. 6, 2007 entitled “Signature search”
architecture for programmable intelligent search memory”,
U.S. patent application Ser. No. 11/952,104 filed on Dec. 6,
2007 entitled “Interval symbol architecture for program-
mable intelligent search memory”, U.S. patent application
Ser. No. 11/952,108 on Dec. 6, 2007 entitled “FSA context
switch architecture for programmable intelligent search
memory”, U.S. patent application Ser. No. 11/952,111 filed
on Dec. 6, 2007 entitled “Compiler for programmable intel-
ligent search memory”, U.S. patent application Ser. No.
11/952,112 filed on Dec. 6, 2007 entitled “Complex symbol
evaluation for programmable intelligent search memory”,
U.S. patent application Ser. No. 11/952,114 filed on Dec. 6,
2007 entitled “Programmable intelligent search memory”,
U.S. patent application Ser. No. 11/952,117 filed on Dec. 6,
2007 entitled “Dynamic programmable intelligent search
memory” which are all co-pending U.S. patent applications
of common ownership.

BACKGROUND OF THE INVENTION

[0003] This invention relates generally to memory technol-
ogy and in particular to a new high performance intelligent
content search memory and a regular expression compiler for
it.

Jun. 23, 2011

[0004] Many modem applications depend on fast informa-
tion search and retrieval. With the advent of the world-wide-
web and the phenomenal growth in its usage, content search
has become a critical capability. A large number of servers get
deployed in web search applications due to the performance
limitations of the state of the art microprocessors for regular
expression driven search.

[0005] There have been significant research and develop-
ment resources devoted to the topic of searching of lexical
information or patterns in strings. Regular expressions have
been used extensively since the mid 1950s to describe the
patterns in strings for content search, lexical analysis, infor-
mation retrieval systems and the like. Regular expressions
were first studied by S. C. Kleene in mid-1950s to describe the
events of nervous activity. It is well understood in the industry
that regular expression (RE) can also be represented using
finite state automata (FSA). Non-deterministic FSA (NFA)
and deterministic FSA (DFA) are two types of FSAs that have
been used extensively over the history of computing. Rabin
and Scott were the first to show the equivalence of DFA and
NFA as far as their ability to recognize languages in 1959. In
general a significant body of research exists on regular
expressions. Theory of regular expressions can be found in
“Introduction to Automata Theory, Languages and Compu-
tation” by Hoperoft and Ullman and a significant discussion
of the topics can also be found in book “Compilers: Prin-
ciples, Techniques and Tools” by Aho, Sethi and Ullman.
[0006] Computers are increasingly networked within enter-
prises and around the world. These networked computers are
changing the paradigm of information management and secu-
rity. Vast amount of information, including highly confiden-
tial, personal and sensitive information is now being gener-
ated, accessed and stored over the network. This information
needs to be protected from unauthorized access. Further,
there is a continuous onslaught of spam, viruses, and other
inappropriate content on the users through email; web access,
instant messaging, web download and other means, resulting
in significant loss of productivity and resources.

[0007] Enterprise and service provider networks are rap-
idly evolving from 10/100 Mbps line rates to 1 Gbps, 10 Gbps
and higher line rates: Traditional model of perimeter security
to protect information systems pose many issues due to the
blurring boundary of an organization’s perimeter. Today as
employees, contractors, remote users, partners and customers
require access to enterprise networks from outside, a perim-
eter security model is inadequate. This usage model poses
serious security vulnerabilities to critical information and
computing resources for these organizations. Thus the tradi-
tional model of perimeter security has to be bolstered with
security at the core of the network. Further, the convergence
of new sources of threats and high line rate networks is
making software based perimeter security to stop the external
and internal attacks inadequate. There is a clear need for
enabling security processing in hardware inside core or end
systems beside a perimeter security as one of the prominent
means of security to thwart ever increasing security breaches
and attacks.

[0008] FBI and other leading research institutions have
reported in recent years that over 70% of intrusions in orga-
nizations have been internal. Hence a perimeter defense rely-
ing on protecting an organization from external attacks is not
sufficient as discussed above. Organizations are also required
to screen outbound traffic to prevent accidental or malicious
disclosure of proprietary and confidential information as well

US 2011/0153657 Al

as to prevent its network resources from being used to prolif-
erate spam, viruses, worms and other malware. There is a
clear need to inspect the data payloads of the network traffic
to protect and secure an organization’s network for inbound
and outbound security.

[0009] Data transported using TCP/IP or other protocols is
processed at the source, the destination or intermediate sys-
tems in the network or a combination thereof to provide data
security or other services like secure sockets layer (SSL) for
socket layer security, Transport layer security, encryption/
decryption, RDMA, RDMA security, application layer secu-
rity, virtualization or higher application layer processing,
which may further involve application level protocol process-
ing (for example, protocol processing for HI'TP, HTTPS,
XML, SGML, Secure XML, other XML derivatives, Telnet,
FTP, IP Storage, NTS, CIFS, DAPS, and the like). Many of
these processing tasks put a significant burden on the host
processor that can have a direct impact on the performance of
applications and the hardware system. Hence, some of these
tasks need to be accelerated using dedicated hardware for
example SSL, or TLS acceleration. As the usage of XML
increases for web applications, it is creating a significant
performance burden on the host processor and can also ben-
efit significantly from hardware acceleration. Detection of
spam, viruses and other inappropriate content require deep
packet inspection and analysis. Such tasks can put huge pro-
cessing burden on the host processor and can substantially
lower network line rate. Hence, deep packet content search
and analysis hardware is also required.

[0010] Internet has become an essential tool for doing busi-
ness at small to large organizations. HTML based static web
is being transformed into a dynamic environment over last
several years with deployment of XML based services. XML
is becoming the lingua-franca of the web and its usage is
expected to increase substantially. XML is a descriptive lan-
guage that offers many advantages by making the documents
self-describing for automated processing but is also known to
cause huge performance overhead for best of class server
processors. Decisions can be made by processing the intelli-
gence embedded in XML documents to enable business to
business transactions as well as other information exchange.
However, due to the performance overload on the best of class
server processors from analyzing XML documents, they can-
not be used in systems that require network line rate XML
processing to provide intelligent networking. There is a clear
need for acceleration solutions for XML document parsing
and content inspection at network line rates which are
approaching 1 Gbps and 10 Gbps, to realize the benefits of a
dynamic web based on XML services.

[0011] Regular expressions can be used to represent the
content search strings for a variety of applications like those
discussed above. A set of regular expressions can then form a
rule set for searching for a specific application and can be
applied to any document, file, message, packet or stream of
data for examination of the same. Regular expressions are
used in describing anti-spam rules, anti-virus rules, anti-spy-
ware rules, anti-phishing rules, intrusion detection rules,
extrusion detection rules, digital rights management rules,
legal compliance rules, worm detection rules, instant mes-
sage inspection rules, VOIP security rules, XML document
security and search constructs, genetics, proteomics, XML
based protocols like XMPP, web search, database search,
bioinformatics, signature recognition, speech recognition,
web indexing and the like. These expressions get converted

Jun. 23, 2011

into NFAs or DFAs for evaluation on a general purpose pro-
cessor. However, significant performance and storage limita-
tions arise for each type of the representation. For example an
N character regular expression can take up to the order of 2%
memory for the states of a DFA, while the same for an NFA is
in the order of N. On the other hand the performance for the
DFA evaluation for an M byte input data stream is in the order
of M memory accesses and the order of (N*M) processor
cycles for the NFA representation on modern microproces-
SOIS.

[0012] When the number of regular expressions increases,
the impact on the performance deteriorates as well. For
example, in an application like anti-spam, there may be hun-
dreds of regular expression rules. These regular expressions
can be evaluated on the server processors using individual
NFAs or DFAs. It may also be possible to create a composite
DFA to represent the rules. Assuming that there are X REs for
an application, then a DFA based representation of each indi-
vidual RE would result up to the order of (X*2V) states
however the evaluation time would grow up to the order of
(X*N) memory cycles. Generally, due to the potential expan-
sion in the number of states for a DFA they would need to be
stored in off chip memories. Using a typical access time
latency of main memory systems of 60 ns, it would require
about (X*60 ns*N*M) time to process an X RE DFA with N
states over an M byte data stream. This can result in tens of
Mbps performance for modest size of X, N & M. Such per-
formance is obviously significantly below the needs of
today’s network line rates of 1 Gbps to 10 Gbps and beyond.
On the other hand, if a composite DFA is created, it can result
in an upper bound of storage in the order of 2" which may
not be within physical limits of memory size for typical
commercial computing systems even for a few hundred REs.
Thus the upper bound in memory expansion for DFAs can be
a significant issue. Then on the other hand NFAs are non-
deterministic in nature and can result in multiple state transi-
tions that can happen simultaneously. NFAs can only be pro-
cessed on a state of the art microprocessor in a scalar fashion,
resulting in multiple executions of the NFA for each of the
enabled paths. X REs with N characters on average can be
represented in the upper bound of (X*N) states as NFAs.
However, each NFA would require M iterations for an M-byte
stream, causing an upper bound of (X*N*M* processor
cycles per loop). Assuming the number of processing cycles
are in the order of 10 cycles, then for a best of class processor
at 4 GHz, the processing time can be around (X*N*M*2.5
ns), which for a nominal N of 8 and X in tens can result in
below 100 Mbps performance. There is a clear need to create
high performance regular expression based content search
acceleration which can provide the performance in line with
the network rates which are going to 1 Gbps and 10 Gbps.
[0013] The methods for converting a regular expression to
Thompson’s NFA and DFA are well known. The resulting
automata are able to distinguish whether a string belongs to
the language defined by the regular expression however it is
not very efficient to figure out if a specific sub-expression of
aregular expression is in a matching string or the extent of the
string. Tagged NFAs enable such queries to be conducted
efficiently without having to scan the matching string again.
For a discussion on Tagged NFA refer to the paper “NFAs
with Tagged Transitions. their Conversion to Deterministic
Automata and. Application to Regular Expressions”, by Ville
Laurikari, Helsinki University of Technology, Finland.

SUMMARY OF THE INVENTION

[0014] A programmable intelligent search memory
(PRISM) is a memory technology that supports orders of

US 2011/0153657 Al

magnitude larger number of regular expressions in a single
chip for current and emerging content search applications.
PRISM memory supports FSAs of a number of states ‘n’
which may be any integer like 8, 16, 32 and the like. However,
at times there may be a need to support regular expressions
with number of states which are more than that represented in
a single PRISM FSA. For such cases it may be necessary to
allow multiple PRISM FSAs to be coupled together to sup-
port the bigger REs. Further, there are certain applications
where the rules are specified as a group of rules that are
evaluated together and there may be nesting amongst the rule
groups. Such applications may have groups of rules that may
be evaluated simultaneously or one after the other and need a
means of communicating from one FSA to another. My
invention describes an architecture that enables creation of
extensible FSAs to support needs such as the ones described
above and the like. There is a need for creating a compiler
flow that can target converting regular expression rules into a
form that PRISM based search engines can use to process
input data for content specified by the regular expression
rules. My invention describes a compiler for regular expres-
sions that can be used for PRISM.

[0015] Idescribe an FSA extension architecture and a com-
piler .for a high performance Programmable Intelligent
Search Memory™ (PRISM™) for searching content with
regular expressions as well as other pattern searches. Pro-
grarn.mable intelligent search memory of this patent can have
many uses wherever any type of content needs to be searched
for example in networking, storage, security, web search
applications, XML processing, bio informatics, signature
recognition, genetics, proteomics, speech recognition, data-
base search, enterprise search and the like. The program-
mable intelligent search memory of my invention may be
embodied as independent PRISM memory integrated circuits
working with or may also be embodied within microproces-
sors, multi-core processors, network processors, TCP Offload
Engines, network packet classification engines, protocol pro-
cessors, regular expression processors, content search pro-
cessors, network search engines, content addressable memo-
ries, mainframe computers, grid computers, servers,
workstations, personal computers, laptops, notebook com-
puters, PDAs, handheld devices, cellular phones, wired or
wireless networked devices, switches, routers, gateways, uni-
fied threat management devices, firewalls, VPNs, intrusion
detection and prevention systems, extrusion detection sys-
tems, compliance management systems, wearable comput-
ers, data warehouses, storage area network devices, storage
systems, data vaults, chipsets and the like or their derivatives
or any combination thereof.

[0016] The regular expressions may optionally be tagged to
detect sub expression matches beside the full regular expres-
sion match. The regular expressions are converted into
equivalent FSAs that may optionally be NFAs and may
optionally be converted into tagged NFAs. The PRISM
memory also optionally provides ternary content addressable
memory functionality. So fixed string searches may option-
ally be programmed into the PRISMTM memory of my
invention. PRISM memory of this invention enables a very
efficient and compact realization of intelligent content search
using FSA to meet the needs of current and emerging content
search applications. For clarity, as used in this patent the

terms “programmable intelligent search memory”, “search
»

memory”, “content search memory”, or “PRISM memory”
are used interchangeably and have the same meaning unless

Jun. 23, 2011

specifically noted. Further for clarity, as used in this patent the
term “memory” when used independently is used to refer to
random access memory or RAM or Dynamic RAM (DRAM)
or DDR or QDR or RLDRAM or RDRAM or FCRAM or
Static RAM (SRAM) or read only memory (ROM) or FLASH
or cache memory or the like or any future derivatives of such
memories.

[0017] The PRISM memory performs simultaneous search
of regular expressions and other patterns (also referred to as
“rules” or “regular expression rules” or “pattern search rules”
or “patterns” or “regular expressions™ in this patent) against
the content being examined. The content may be presented to
the search memory by a companion processor or PRISM
controller or content stream logic or a master processor or the
like which may be on the same integrated circuit chip as the
PRISM memory or may be on a separate device. The content
to be searched may be streaming content or network packets
or data from a master processor or data from a disk or a file or
reside in on-chip memory or off-chip memory or buffers or
the like from which a controller may present it to the search
memory arrays for examination. The content search memory
arrays may initially be configured with the regular expression
rules converted into NFAs or tagged NFAs and optionally
other pattern search rules. I describe a compiler for converting
regular expressions into rules supported by PRISM. PRISM
memory may optionally comprise of configuration control
logic which may be distributed or central or a combination
thereof. The configuration control logic may optionally
address PRISM memory cells to read and/or write FSA rules
or other patterns to be searched. Once the PRISM memory is
setup with all the related information about the NFAs and
other rules, the content to be examined can be presented to the
PRISM memory. PRISM memory provides capabilities to
update rules or program new rules or additional rules, in line
with the content examination within a few clock cycles unlike
the current regular expression processors which require the
content evaluation to stop for long periods of time until large
tables of composite DFAs are updated in an external or inter-
nal memory. Typically the content is presented as a stream of
characters or symbols which get examined against the rules in
the PRISM memory simultaneously and whenever a rule is
matched the PRISM memory array provides that indication as
arule match signal which is interpreted by the control logic of
the PRISM. There may be multiple rule matches simulta-
neously in which case a priority encoder which may also be
prottrammable is used to select one or more matches as the
winner(s). The priority encoder may then provide a tag or an
address or an action or a combination that may have already
been programmed in the priority encoder which may be used
to look-up related data from associated on-chip or oft-chip
memory that may optionally determine the next set of actions
that may need to be taken on the content being examined. For
example, in case of a security application if a set of regular
expressions are defined and programmed for spain detection,
then if one or more of these rules when matched can have
action(s) associated with them that the message or content
may need to quarantined for future examination by a user or
it can have an action that says the content should be dropped
or enable a group of regular expressions in the PRISM
memory to be applied to the content or the like depending on
the specific application. The PRISM memory architecture
comprises of means or circuits or the like for programming
and reprogramming of the FSA rules and optionally CAM
signatures and masks. It further comprises of means or cir-

US 2011/0153657 Al

cuits or the like to stream the content to be searched to the
PRISM memory arrays. It May further comprise of priority
encoder which may optionally be programmable. The PRISM
memory may optionally comprise of random access memory
(on-chip or oft-chip) which is used to store actions associated
with specific rule matches. The PRISM memory may option-
ally comprise of database extension ports which may be
optionally used when the number of rules is larger than those
that may fit in a single integrated circuit chip. The PRISM
memory may optionally comprise of clusters of PRISM
memory cells that enable a group of FSA rules to be pro-
grammed per cluster. The PRISM clusters may optionally
comprise of memory for fast storage and retrieval of FSA
states for examination of content that belongs to different
streams or contexts or flows or sessions or the like as
described below referred to as context memory. For clarity,
context memory or global context memory or local context
memory or cluster context memory, all comprise of memory
like random access memory or RAM or Dynamic RAM
(DRAM) or DDR or QDR or RLDRAM or RDRAM or
FC.RAM or Static RAM (SRAM) or read only memory
(ROM) or FLASH or cache memory or the like or any future
derivatives of such memories as discussed above. The PRISM
memory may optionally comprise of global context memory
beside the local cluster context memory for storage and
retrieval of FSA states of different contexts and enable sup-
porting a large number of contexts. The cluster context
memory may optionally cache a certain number of active
contexts while the other contexts may be stored in the global
context memory. There may optionally be off-chip context
memory as well, which can be used to store and retrieve FSA
states for much larger number of contexts. The PRISM
memory may optionally comprise of cache or context control
logic (also referred as “context controller””) that manages the
cluster, global or external context memory or cache or a
combination thereof. The cache or context control logic may
optionally be distributed per cluster or may be central for the
PRISM memory or any combination thereof. The PRISM
controller or the content stream logic that streams the content
to be searched may be provided with an indication of the
context of the content being searched or it may detect the
context of the content or a combination thereof, and may
optionally direct the context memory and associated control
logic i.e. the context controller to get the appropriate context
ready. Once the context memory has the required context
available an indication may be provided to PRISM configu-
ration control logic that it may program or load the context
states in the PRISM memory. The PRISM configuration con-
trol logic (also referred as “configuration controller” in this
patent) may optionally first save the current context loaded in
the set of active FSA blocks before loading the new context.
The configuration controller(s) and the context controller(s)
may thus optionally store and retrieve appropriate contexts of
the FSAs and start searching the content against the pro-
grammed rules with appropriate context states of the FSAs
restored. Thus PRISM memory may optionally dynamically
reconfigure itself at run-time based on the context of the
content or the type of the application or the like or a combi-
nation thereof enabling run-time adaptable PRISM memory
architecture. The contexts as referred to in this patent may, as
examples without limitation, be related to specific streams, or
documents, or network connections or message streams or
sessions or the like. The PRISM memory may process content
from multiple contexts arriving in data groups or packets or

Jun. 23, 2011

the like. For content search in applications where the content
belonging to one context may arrive interspersed with content
from other contexts, it may be important to maintain the state
of the content searched for a context up to the time when
content from a different context gets searched by PRISM
memory. The context memory or cache with the associated
controllers as described in this patent enable handling of
multiple contexts.

[0018] For clarification, the description in this patent appli-
cation uses term NFA to describe the NFAs and optionally,
when tagging is used in regular expressions, to describe
tagged NFA unless tagged NFA is specifically indicated. All
NFAs may optionally be tagged to form tagged NFAs, hence
the description is not to be used as a limiter to apply only to
tagged NFAs. The descriptions of this patent are applicable
for non-tagged NFAs as well and tagging is an optional func-
tion which may or may not be implemented or used, and thus
non-tagged NFAs are covered by the teachings of this patent
as will be appreciated by one skilled in the art. At various
places in this patent application the term content search
memory, content search memory, search memory and the like
are used interchangeably for programmable intelligent search
memory or PRISM memory. These usages are meant to indi-
cate the content search memory or PRISM memory of this
invention without limitation.

[0019] Berry and Sethi in their paper “From Regular
Expressions to Deterministic Automata” Published in Theo-
retical Computer Science in 1986, showed that regular
expressions (REs) can be represented by NFAs such that a
given state in the state machine is entered by one symbol,
unlike the Thompson NFA. Further, the Berry-Sethi NFAs are
c-free. A “V’ term RE can be represented using ‘V+1’ states
NFA using Berry-Sethi like NFA realization method. The
duality of Berry-Sethi method also exists where all transitions
that lead the machine out of a state are dependent on the same
symbol. This is shown in the paper “A Taxonomy of finite
automata construction algorithms” by Bruce Watson pub-
lished in 1994 in section 4.3. I show a method of creating NFA
search architecture in a memory leveraging the principles of
Berry-Sethi’s NFA realization and the dual of their construct.
The NFA search memory is programmable to realize an arbi-
trary regular expression using the compiler flow of'this inven-
tion to convert a regular expression to that usable by PRISM.
The compiler of this invention follows the principles of
Berry-Sethi FSA construction to convert regular expressions
into an FSAs and creates various data structures that are
required for PRISM to operate as a programmable regular
expressions engine.

[0020] This PRISM memory and the compiler for PRISM
of'this patent may be used for many applications like those for
detecting intrusions, extrusions and confidential information
disclosure (accidental or malicious or intended), regulatory
compliance search using hardware for regulations like
HIPAA, Sarbanes-Oxley, Graham-Leach-Bliley act, Califor-
nia security bills, security bills of various states and/or coun-
tries and the like, deep packet inspection, detecting spam,
detecting viruses, detecting worms, detecting spyware,
detecting digital rights management information, instant
message inspection, URL matching, application detection,
detection of malicious content, and other content, policy
based access control as well as other policy processing, con-
tent based switching, load balancing, virtualization or other
application layer content inspection for application level pro-
tocol analysis and processing for web applications based on

US 2011/0153657 Al

HTTP, XML and the like and applying specific rules which
may enable anti-spam, anti-virus, other security capabilities
like anti-spyware, anti-phishing and the like capabilities. The
content inspection memory may be used for detecting and
enforcing digital rights management rules for the content.
The content inspection memory may also be used for URL
matching, string searches, genetic database searches, pro-
teomics, bio informatics, web indexing, content based load
balancing, sensitive information search like credit card num-
bers or social security numbers or health information or the
like.

[0021] Classification of network traffic is another task that
consumes up to half of the processing cycles available on
packet processors leaving few cycles for deep packet inspec-
tion and processing at high line rates. The described content
search memory can sienificantly reduce the classification
overhead when deployed as companion search memory to
packet processors or network processors or TOE or storage
network processors or the like.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] FIG. 1q illustrates Thompson’s NFA (prior art)
[0023] FIG. 15 illustrates Berry-Sethi NFA (prior art)
[0024] FIG. 1¢ illustrates DFA (prior art)

[0025] FIG. 2a illustrates a left-biased NFA and state tran-

sition table (prior art)
[0026] FIG.2b1llustrates aright-biased NFA and state tran-
sition table (prior art)

[0027] FIG. 3a illustrates state transition controls

[0028] FIG. 34 illustrates configurable next state tables per
state

[0029] FIG. 4aq illustrates state transition logic (STL) for a
state

[0030] FIG. 45 illustrates a state logic block

[0031] FIG. 5aq illustrates state transition logic (STL) for a

state :in Left-Biased FSA

[0032] FIG. 55 illustrates state transition logic (STL) for a
state in Right-Biased FSA

[0033] FIG. 6A illustrates Right-biased Tagged FSA Rule
block in PRISM

[0034] FIG. 6B illustrates Left-biased Tagged FSA Rule
block in PRISM

[0035] FIG. 7 illustrates PRISM Block Diagram

[0036] FIG. 8a illustrates PRISM Memory Cluster Block
Diagram

[0037] FIG. 8b illustrates PRISM Memory Cluster

Detailed Block Diagram
[0038] FIG. 9 illustrates PRISM search compiler flow
(full+incremental rule distribution)

[0039] FIG. 10 illustrates PRISM HA Compiler flow
[0040] FIG. 11 illustrates PRISM Row-Wise FSA Exten-
sion

[0041] FIG. 11A illustrates PRISM Rule Group FSA
Extension.

[0042] FIG. 12 illustrates PRISM. Row-Wise FSA Exten-

sion Example #1
[0043] FIG. 13 illustrates PRISM Row-Wise FSA Exten-
sion Example #2

[0044] FIG. 14 illustrates PRISM Column-Wise FSA
Extension

[0045] FIG. 15 illustrates PRISM FSA Extension Example
#1

[0046] FIG. 16a illustrates Column-Wise PRISM FSA

Extension Example

Jun. 23, 2011

[0047] FIG. 1654 illustrates Row-Wise and Column-Wise
PRISM BA Extension Example

DESCRIPTION

[0048] I describe a FSA extension architecture and a regu-
lar expression compiler for high performance Programmable
Intelligent Search Memory for searching content with regular
expressions as well as other pattern searches. The regular
expressions may optionally be tagged to detect sub expres-
sion matches beside the full regular expression match. The
regular expressions are converted into equivalent FSAs that
may optionally be NFAs and may optionally be converted into
tagged NFAs. The PRISM memory also optionally supports
ternary content addressable memory functionality. So fixed
string searches may optionally be programmed into the
PRISM memory. PRISM memory enables a very efficient and
compact realization of intelligent content search using FSA to
meet the needs of current and emerging content search appli-
cations. Unlike a regular expression processor based
approach, the PRISM memory can support tens of thousands
to hundreds of thousands of content search rules defined as
regular expressions as well as patterns of strings of characters.
A compiler for compiling these regular expression rules into
PRISM. compatible data structure is described in this inven-
tion to enable PRISM to perform the content inspection using
the compiled rules. The PRISM memory performs simulta-
neous search of regular expressions and other patterns. The
content search memory can perform high speed content
search at line rates from 1 Gbps to 10 Gbps and higher, when
the best of class server microprocessor can only perform the
same tasks at well below 100 Mbps. The content search
memory can be used not only to perform layer 2 through layer
4 searches that may be used for classification and security
applications, it can also be used to perform deep packet
inspection and layer 4 through layer 7 content analysis.
[0049] Following are some of the embodiments, without
limitations, that can implement PRISM memory:

[0050] The PRISM memory may be embodied inside net-
work interface cards of servers, workstations, client PCs,
notebook computers, handheld devices, switches, routers and
other networked devices. The servers may be web servers,
remote access servers, file servers, departmental servers, stor-
age servers, network attached storage servers, database serv-
ers, blade servers, clustering servers, application servers, con-
tent /media servers, VOIP servers and systems, grid
computers/servers, and the like. The PRISM memory may
also be used inside an I/O chipset of one of the end systems or
network core systems like a switch or router or appliance or
the like.

[0051] The PRISM memory may also be embodied on
dedicated content search acceleration cards that may be used
inside various systems described in this patent. Alternatively,
PRISM memory may also be embodied as a content search
memory inside a variety of hardware and/or integrated cir-
cuits like ASSPs, ASICs, FPGA, microprocessors, multi-core
processors, network processors, TCP Offload Engines, net-
work packet classification engines, protocol processors, regu-
lar expression processors, content search processors, main-
frame computers, grid computers, servers, workstations,
personal computers, laptops, handheld devices, cellular
phones, wired, or wireless networked devices, switches, rout-
ers, gateways, XML accelerators, VOIP servers, Speech rec-
ognition systems, bio informatics systems, genetic and pro-
teomics search systems, web search servers, electronic vault

US 2011/0153657 Al

application networks and systems, Data Warehousing sys-
tems, Storage area network systems, content indexing appli-
ances like web indexing, email indexing and the like, chipsets
and the like or any combination thereof Alternatively, PRISM
memory blocks may be embedded inside other memory tech-
nologies like DRAM, SDRAM, DDR DRAM, DDR II
DRAM, RLDRAM, SRAM, RDRAM, RDRAM, QDR
SRAM, DDR SRAM, CAMs, Boundary Addressable Memo-
ries, Magnetic memories, Flash or other special purpose
memories or a combination thereof or future derivates of such
memory technologies to enable memory based content
search.

[0052] One preferred embodiment of the invention is in an
integrated circuit memory chip that may support around 128,
000 8-symbol regular expression rules in current process
technologies. A second preferred embodiment of the PRISM
technology is an integrated circuit memory chip that may
support around 8,000 regular expression rules in current pro-
cess technologies to support applications where a lower con-
tent search memory cost is required. Each process generation
may provide ability to store around twice as many PRISM
memory bits as the previous generation. Thus in one preferred
embodiment the PRISM memory would be able to support
tens of thousands of eight state FSA and can. potentially
support over 100,000 FSAs. There are many variations of the
PRISM memory architecture that can be created that can
support more or less FSAs depending upon various factors
like the number of states per FSA, the chip die area, cost,
manufacturability expectations and the like which will be
appreciated by a person with ordinary skill in the art.

DETAILED DESCRIPTION

[0053] describe a FSA extension architecture and a regular
expression compiler for a high performance Programmable
Intelligent Search Memory for searching content with regular
expressions as well as other pattern searches. The regular
expressions may optionally be tagged to detect sub expres-
sion matches beside the full regular expression match. The
regular expressions are converted into equivalent FSAs or
NFAs and optionally into tagged NFAs. The PRISM memory
also optionally supports ternary content addressable memory
functionality. So fixed string searches may optionally be pro-
grammed into the PRISM memory of my invention. PRISM
memory of this invention enables a very efficient and compact
realization of intelligent content search using FSA to meet the
needs of current and emerging content search applications.
Unlike a regular expression processor based approach, the
PRISM memory can support tens of thousands to hundreds of
thousands of content search rules defined as regular expres-
sions as well as patterns of strings of characters. The PRISM
memory performs simultaneous search of regular expressions
and other patterns. The content search memory can perform
high speed content search at line rates from 1 Gbps to 10 Gbps
and higher using current process technologies. The descrip-
tion here is with respect to one preferred embodiment of this
invention in an integrated circuit (IC) chip, it will be appre-
ciated by those with ordinary skill in the art that changes in
these embodiments may be made without departing from the
principles and spirit of the invention. The illustrations are
made to point out salient aspects of the invention and do not
illustrate well understood IC design elements, components
and the like implementation of the invention in integrated
circuits so as not to obscure the invention.

Jun. 23, 2011

[0054] Ability to perform content search has become a
critical capability in the networked world. As the network line
rates go up to 1 Gbps, 10 Gbps and higher, it is important to be
able to perform deep packet inspection for many applications
at line rate. Several security issues, like viruses, worms, con-
fidential information leaks and the like, can be detected and
prevented from causing damage if the network traffic can be
inspected at high line rates. In general, content search rules
can be represented using regular expressions. Regular expres-
sion rules can be represented and computed using FSAs.
NFAs and DFAs are the two types of FSAs that are used for
evaluation of regular expressions. For high line rate applica-
tions a composite DFA can be used, where each character of
the input stream can be processed per cycle of memory
access. However, this does have a limit on how fast the search
can be performed dictated by the memory access speed.
Another limiter of such approach is the amount of memory
required to search even a modest number of regular expres-
sion rules. As discussed above, NFAs also have their limita-
tions to achieve high performance on general purpose proces-
sors. In general, today’s best of class microprocessors can
only achieve less than 100 Mbps performance using NFAs or
DFAs for a small number of regular expressions. Hence, there
is a clear need to create targeted content search acceleration
hardware to raise the performance of the search to the line
rates of 1 Gbps and 10 Gbps. PRISM memory is such a high
performance content search hardware that can be targeted for
high line rates. The invention of this patent describes a com-
piler to make PRISM memory structures useful for process-
ing content against a large number of regular expressions
compiled to leverage PRISM capabilities.

[0055] As described earlier, regular expression can be rep-
resented using FSA like NFA or DFA. FIG. 1a illustrates
Thompson’s construction for the regular expression (xy+y)
*yx. Thompson’s construction proceeds in a step by step
manner where each step introduces two new states, so the
resulting NFA has at most twice as many states as the symbols
or characters and operators in the regular expression. An FSA
is comprised of states, state transitions, and symbols that
cause the FSA to transition from one state to another. An FSA
comprises at least one start state, and at least one accept state
where the start state is where the FSA evaluation begins and
the accept state is a state which is reached when the FSA
recognizes a string. Block 101 represent the start state of the
FSA, while block 105 is an accept state. Block 102 represents
state 2 and 104 represents state 3. The transition from state 2
to state 3 is triggered on the symbol x, 103 and is represented
as a directed edge between the two states. Thompson’s NFA
comprises of ‘€’ transitions, 116, which are transitions among
states which may be taken without any input symbol.

[0056] FIG. 15 illustrates Berry-Sethi NFA for the regular
expression (xy+y)*yx. Berry and Sethi described an algo-
rithm of converting regular expressions into .FSA using a
technique called ‘marking’ of a regular expression. It results
in an NFA which has a characteristic that all transitions into
any state are from the same symbol. For example, all transi-
tions into state 1, 107, are from symbol ‘x’. The other char-
acteristic of the Berry-Sethi construct is that number of NFA
states are the same as the number of symbols in the regular
expression and one start state. In this type of construction,
each occurrence of a symbol is treated as a new symbol. The
construction converts the regular expression (xy+y)*yx to a
marked expression (X,y,+y;)*y,Xs where each x, leads to the
same state, 107. The figure does not illustrate the markings.

US 2011/0153657 Al

Once the FSA is constructed the markings are removed. The
FIG. 15 illustrates the NFA with the markings removed. As
can be seen from the figure, in Berry-Sethi construction all
incoming transitions into a state are all dependent on the same
symbol. Similarly, a duality of Berry-Sethi construct also has
been studied and documented in the literature as discussed
earlier, where instead of all incoming transitions being depen-
dent on the same symbol, all outgoing transitions from a state
are dependent on the same symbol. The Berry-Sethi construct
is also called a left-biased type of construct, where as its dual
is called a right-biased construct.

[0057] Finite State Automaton can evaluate incoming sym-
bols or characters against the regular expression language of
the automaton and detect when an input string is one of the
strings recognized by it. However, it is advantageous in cer-
tain conditions to know if a certain sub-expression of the
regular expression is also matched. That may be enabled by
tagging the NFA as described in the paper by Ville Laurikari
referred earlier. Following description illustrates how the
inventions of this patent enable tagged NM realization in
PRISM memory. The tagging for sub-expression checking
may involve further processing of the FSA to uniquely iden-
tify sub-expression matching. However for illustration pur-
pose, it in the regular expression “(xy+y)*yx” done desires to
detect if the sub-expression “xy” is in the recognized string,
one can tag the state 4, 110, as a tagged state. Thus, whenever
the regular expression transitions through state 4, 110, the
sub-expression match or tag match may be indicated. There
may also be need to detect if a specific transition leads the
regular expression through a desired sub-expression. In such
a case a tag start state and a tag end state may be marked. For
instance, if it is desired to detect if the transition from state 0
to state 2, 117, is taken then the state 0 may be marked as a tag
start state and state 2 may be marked as a tag end state. The
tagged FSA implementation may then indicate the beginning
of the tag transition when the FSA reaches the tag start state
and then indicate the end of the tag transition when the FSA
reaches the tag end state. If the FSA moves from the tag start
state immediately followed by transitioning into tag end state,
then the tagged FSA can indicate the match of a tagged
transition. The illustrations in the description below do not
illustrate this aspect of tagged NFA, though it may optionally
be supported in PRISM and may be easily implemented as
follows or other means for example by adding a tag start and
tag end state flags (as memory bits or flip-flops) and the logic
for the tag transition detection to follow the steps described
above as can be appreciated by those with ordinary skill in the
art. The patent of this disclosure enables detection of sub-
expressions using tagging.

[0058] FIG. 1c illustrates a DFA for the same regular
expression (xy+y)*yx. DFA is deterministic in that only one
of'its states is active at a given time, and only one transition is
taken dependent on the input symbol. Whereas in an NFA,
multiple states can be active at the same time and transitions
can be taken from one state to multiple states based on one
input symbol. There are well known algorithms in the litera-
ture, like subset construction, to convert a RE or NFA to a
DFA. This DFA may be realized in the PRISM Memory using
the constructs described below to represent an FSA, using a
left-biased realization. Thus PRISM memory of this inven-
tion may also be used to program certain DFAs where all
incoming transitions to each state are with the same symbol
like the DFA of this illustration.

Jun. 23, 2011

[0059] FIG. 2a illustrates a left-biased NFA and its state
transition table (prior art). The illustration is a generic four
state Berry-Sethi like NFA with all transitions from each node
to the other shown with the appropriate symbol that the tran-
sition depends on. For example, state A, 201 has all incoming
transitions dependent on symbol ‘a’ as illustrated by example
transitions labeled 202 and 203. When the FSA is in State A,
201, an input symbol ‘d’, transitions the FSA to state D with
the transition, 204, from state A to state D. The table in the
figure illustrates the same FSA using a state transition table.
The column ‘PS’, 211, is the present state of the FSA, while
the row ‘sym’, 212, is a list of all the symbols that the state
transitions depend on. The table 213, illustrates the next state
(NS) that the FSA will transition to from the present state (PS)
when an input symbol from those in the sym header row is
received. In this FSA, state ‘A’ is the start state and state C is
anaccept state. Hence, ifthe FSA is in the present state ‘A’ and
aninput symbol ‘b’is received, the FSA transitions to the next
state ‘B’. So when the next input symbol is received, the FSA
is in present state ‘B’ and is evaluated for state transition with
the row corresponding to present state ‘B’.

[0060] FIG. 25 illustrates a right-biased NFA and its state
transition table (prior art). The illustration is a generic four
state dual of Berry-Sethi NFA with all transitions from each
node to the other shown with the appropriate symbol that the
transition depends on. For example, state ‘A’, 205 has all
outgoing transitions dependent on symbol ‘a’ as illustrated by
example transitions labeled 208 and 209 where as unlike the
left-biased NFA described above, each incoming transition is
not on the same symbol, for example transitions labeled 206
and 207 depend on symbols ‘b’ and ‘d’ respectively. The state
transition table in this figure is similar to the left biased one,
except that the FSA transitions to multiple states based on the
same input symbol. For example if the FSA is in the present
state ‘B’ and a symbol ‘b’ is received, then the FSA transitions
to all states ‘A’, ‘B’, ‘C” and ‘D’. When an input symbol is
received which points the FSA to an empty box, like 216, the
FSA has received a string which it does not recognize. The
FSA can then be initialized to start from the start state again
to evaluate the next string and may indicate that the string is
not recognized.

[0061] TheFIG.2aand FIG. 24, illustrate generic four state
NFAs where all the transitions from each state to the other are
shown based on the left-biased or right-biased construct char-
acteristics. However not all four state NFAs would need all
the transitions to be present. Thus if a symbol is received
which would require the FSA to transition from the present
state to the next state when such transition on the received
input symbol is not present, the NFA is said to not recognize
the input string. At such time the NFA may be restarted in the
start state to recognize the next string. In general, one can use
these example four state NFAs to represent any four state RE
in aleft-biased (LB) or right-biased (RB) form provided there
is a mechanism to enable or disable a given transition based
on the resulting four states NFA for the RE.

[0062] FIG. 3a illustrates state transition controls for a
left-biased and right-biased NFA. The figure illustrates a left-
biased NFA with a state ‘A’, 300, which has incoming tran-
sitions dependent on receiving input Symbol ‘S1° from states
‘B’, 301, C’, 302, and ‘D’, 303. However, the transitions
from each of'the states ‘B’, ‘C’and ‘D’ to state ‘A’, occur only
if the appropriate state dependent control is set besides receiv-
ing the input symbol ‘S1’. The state dependent control for
transition from state ‘B’ to state ‘A’ is V, while those from

US 2011/0153657 Al

states ‘C” and ‘D’ to state ‘A’ is V; and V, respectively. Tran-
sition to the next state ‘A’ is dependent on present state ‘A’
through the state dependent control V. Thus transition into a
state ‘A’ occurs depending on the received input symbol being
‘S1” and if the state dependent control for the appropriate
transition is set. Thus, one can represent any arbitrary four
states NFA by setting or clearing the state dependent control
for a specific transition. Thus, if a four states left biased NFA
comprises of transition into state ‘A’, from state ‘B’ and ‘C’
but not from the states ‘A’ or ‘D’ the state dependent controls
can be set as V,=0,V,=1, V,=1 and V,=0. Hence if the NFA
is in state ‘D’ and a symbol S1’ is received, the NFA will not
transition into state ‘A’, however if the NFA is in state ‘B’ and
a symbol ‘S1’ is received the NFA will transition into state
A

[0063] Similarly, FIG. 3a also illustrates states and transi-
tions for a right-biased NFA. The figure illustrates a right-
biased NFA with a state ‘A’, 306, which has incoming tran-
sitions from state ‘B’, 307, state ‘C’, 308, and state ‘D’, 309,
on receiving input symbols ‘S2’, ‘S3” and ‘S4’ respectively.
However, the transitions from each of the states ‘B’, ‘C” and
‘D’ to state ‘A’, occur only if the appropriate state dependent
control is set besides receiving the appropriate input symbol.
The state dependent control for transition from state ‘B’ to
state ‘A’ is V, while those from states ‘C’ and ‘D’ to state ‘A’
is V5 and V,, respectively. Transition to the next state ‘A’ is
dependent on present state ‘A’ through the state dependent
control V. Thus transition into a state ‘A’ occurs based on the
received input symbol and if the state dependent control for
the appropriate transition is set. Thus, one can represent any
arbitrary four states right-biased NFA by setting or clearing
the state dependent control for a specific transition. All state
transition controls for a given state form a state dependent
vector (SDV), which is comprised of V|, V,, V;, and V| for
the illustration in FIG. 3a for the left-biased and the right-
biased NFAs.

[0064] FIG. 35 illustrates configurable next state table per
state. The left-biased state table for ‘NS=A’, is shown by the
table 311, whereas the right-biased state table for ‘NS=A’, is
shown by the table 312. The state dependent vector for both
left-biased and right-biased NFA state is the same, while the
received input symbol that drive the transition are different
for the left-biased vs. right-biased NFA states. Thus a state
can be represented with properties like left-biased (LB),
right-biased (RB), start state, accept state, SDV as well as
action that may be taken if this state is reached during the
evaluation of input strings to the NFA that comprises this
state.

[0065] FIG. 4a illustrates state transition logic (STL) for a
state. The STL is used to evaluate the next state for a state. The
next state computed using the STL for a state depends on the
current state of the NFA, the SDV, and the received symbol or
symbols for a left-biased NFA and right-biased NFA respec-
tively. The InChar input is evaluated against symbols SI
through ‘Sn’ using the symbol detection logic, block 400,
where ‘n’ is an integer representing the number of symbols in
the RE of the NFA. The choice of ‘n’ depends on how many
states are typically expected for the NFAs of the applications
that may use the search memory. Thus, ‘n’ may be chosen to
be 8, 16, 32 or any other integer. The simplest operation for
symbol detection may be a compare of the input symbol with
‘S1’ through ‘Sn’. The output of the symbol detection logic is
called the received symbol vector (RSV) comprised of indi-
vidual detection signals ‘RS1’ through ‘RSn’. LB/RB# is a

Jun. 23, 2011

signal that indicates if a left-biased NFA or a right-biased
NFA is defined. LB/RB# s also used as an input in evaluating
state transition. The STL for a state supports creation of a
left-biased as well as right-biased NFA constructs. The
LB/RB# signal controls whether the STL is realizing a left-
biased or a right-biased construct. The state dependent vector
in the form of ‘V1’through ‘Vn’, is also applied as input to the
STL. The SDV enables creation of arbitrary ‘n’-state NFAs
using STL as a basis for a state logic block illustrated in FI1G.
4b. Present states are fed into STL as a current state vector
(CSV) comprised of ‘Q1’ through ‘Qn’. STL generates a
signal ‘N1’ which gets updated in the state memory, block
402, on the next input clock signal. ‘N1’ is logically repre-
sented as N1=((V1 and Q1 and (LB/RB# OR RS1)) OR (V2
and Q2 and (LB/RB# OR RS2)) OR . .. (Vn and Qn and
(LB/RB# OR RSn)) AND (NOT LB/RB# OR RS1). Similar
signal for another state ‘n’, would be generated with similar
logic, except that the signal 401, feeding into the OR gate,
415, would be ‘RSn’, which is the output of the ‘n’-th symbol
detection logic, changing the last term of the node ‘N1’ logic
from ((NOT LB/RB# OR RS 1) to (NOT LB/RB# OR RSn).
The state memory, 402, can be implemented as a single bit
flip-flop or a memory bit in the state logic block discussed
below.

[0066] FIG. 454 illustrates a state logic block (SLB). The
SL.B comprises the STL. 406, Init logic. 408, state memory,
410, the accept state detect logic, 411, the SDV for this state,
407, start flag, 409, accept flag, 412, tag associated with this
state, 419, or action associated with this state, 413 or a com-
bination of the foregoing. The SLB receives current state
vector and the received symbol vector which are fed to STL to
determine the next state. The realization of a state of an
arbitrary NFA can then be done by updating the SDV for the
state and selecting the symbols that the NFA detects and takes
actions on. Further, each state may get marked as a start state
or an accept state or tagged NFA state or a combination or
neither start or accept or tagged state through the start, tag and
accept flags. The init logic block, 408, receives control signals
that indicate if the state needs to be initialized from the start
state or cleared or disabled from updates, or loaded directly
with another state value, or may detect a counter value and
decide to accept a transition or not and the like. The init block
also detects if the FSA has received a symbol not recognized
by the language of the regular expression and then may take
the FSA into a predefined initial state to start processing the
stream at the next symbol and not get into a state where it
stops recognizing the stream. The Init block can be used to
override the STL evaluation and set the state memory to active
or inactive state. The STL, 406, provides functionality as
illustrated in FIG. 44, except that the state memory is included
in the SLB as independent functional block, 410. The state
memory, 410, can be implemented as a single bit flip-flop or
a memory bit. When the state memory is set it indicates-that
the state is active otherwise the state is inactive. The accept
detect logic, 411, detects if this state has been activated and if
itis an accept state of the realized NFA. Ifthe state is an accept
state, and if this state is reached during the NFA evaluation,
then the associated action is provided as an output of the SLB
onthe Al signal, 416, and an accept state activation indicated
on M1, 417. If the FSA reaches a state which is flagged as a
tagged state using the tag flag, then the match detect logic
may indicate a tag match, not illustrated, which another cir-
cuit can use to determine the action to be taken for the par-
ticular tag. The action could be set up to be output from the

US 2011/0153657 Al

SLB on the state activation as an accept state as well as when
the state is not an accept state, like a tagged state, as required
by the implementation of the NFA. This can enable the SLB
to be used for tagged NFA implementation where an action or
tag action can be associated with a given transition into a
state.

[0067] If there are ‘n’ states supported per FSA rule, then
each SLB needs ‘n’-bit SDV which can be stored as a n-bit
memory location, 3-bits allocated to start, tag and accept
flags, 1-bit for LB/RB#, m-bit action storage. Thus if n=16
and m=6, then the total storage used per SLLB would be a
26-bit register equivalent which is a little less than 4 bytes per
state. If tag start flag and tag end flags are supported, not
illustrated, then the number of memory bits would be 28-bits.
If multiple tagged expressions need to be enabled then the
number of bits for tagging may be appropriately increased.
When the number of states in a resulting FSA of a RE is more
than ‘n’ supported by the FSA of PRISM, a mechanism is
required that would allow the PRISM memory to support
such rules. The patent of this application describes such a
mechanism and, an architecture described below.

[0068] FIG. 5a illustrates State transition logic (STL) for a
state in a left-biased FSA. This figure illustrates state transi-
tion logic for a state of an FSA when the logic illustrated
above for FIG. 4a is simplified with the LB/RB# set to active
and symbol detection logic for one of the states illustrated.
The symbol bits are illustrated as ‘m-bit’wide as S,,,...S;;
illustrated in block 502. The input character symbol bits are
labeled as cIn,, . . . cIn;, 501. The symbol detection logic
illustrated in FIG. 4a, 400, is illustrated as individual bits
labeled E,, . . . E,;, 503, and is also referred to as symbol
evaluation logic in this patent. The symbol dependent vector
islabeledV,, ...V, 504 which indicates the symbol depen-
dent vector bit enabling transition into state 1 from each of the
‘n’ states that represent the CSV, Q,, . . . Q,, 509, of the FSA.
RS1, 505, is the result of the evaluation of the input character
symbol with one symbol of the FSA, S,,, ... S, illustrated in
block 502. The logic gates, 506 and 507, are NAND gates that
form the logic function to generate the next state, Q1, based
onthe RS1,SDV,V,, ... V,,,and CSV,Q,, ... Q. States Q,,
... Q, would be generated using similar circuit structure as the
one illustrated in FIG. 54, except the .RSV bit, SDV and the
symbol specific to the particular state will be used. For
example, for the generation of state Q,, the Symbol would be
S,m - - - S,,, the SDV vector would be V,,,,, . .. V,,,, and the

nm

RSV bit would be RSn instead of RS1.

[0069] FIG. 55 illustrates State transition logic (STL) for a
state in a right-biased FSA. This figure illustrates state tran-
sition logic for a state when the logic illustrated above for
FIG. 4ais simplified with the LB/RB# set to inactive state and
symbol detection logic for one of the states illustrated. Key
differences between the right biased FSA circuit illustrated in
this figure and the left-biased FSA illustrated in FIG. Sa, is
that the next state generation logic depends on all received
symbol vector bits, RS1, 505, through RSn, 5057, which are
the result of the evaluation of the input character symbol with
each of the ‘n” symbols of the FSA instead of only one RSV
bit, RS1, 505, illustrated in FIG. 5a. The logic gates. 5064 and
5075, represent the right-biased FSA logic function to gen-
erate the next state based on the RSV, RS1, 505, through RSn,
50512, SDV,V,, ... V,,andCSV,Q,,...Q,.States Q,, ... Q,
would be generated using similar circuit structure as the one
illustrated in FIG. 55, except the SDV and the symbol specific
to the particular state will be used. For example, for the

Jun. 23, 2011

generation of state Q,, the Symbol would be S, . . . S, the
SDV vector wouldbeV,, ...V, and the RSV vector would
be the same, RS1, 505, through RSn, 505x.

[0070] PRISM memory allows various elements of the
ESA blocks to be programmable such that the compiler of this
invention can accept a regular expression and compile it with
information for various PRISM state elements to make the
general purpose programmable state machine of PRISM FSA
to implement the specific regular expression rule. The com-
piler can compile other rules and later replace the current rule
with another rule in the same PRISM FSA or may use another
PRISM FSA or a combination of the like.

[0071] FIG. 6A illustrates Right-biased Tagged FSA Rule
block in PRISM. As discussed earlier the FSA of. PRISM are
optionally Tagged. For clarity, FSA rule block, PRISM FSA
rule block, PRISM FSA rule memory block, rule block, rule
memory block, are used interchangeable in this application.
Further, NFA rule block or PRISM NFA rule block or NFA
rule memory block, are also used interchangeably and mean
aPRISM FSA ruleblock where the FSA type is an NFA in this
patent. The discussion below is with respect to tagged NFA,
though it is also applicable for non-tagged NFAs or other FSA
types where the tagging elements, described below, are not
used or not present. This figure illustrates a state block 1, 601,
which comprises of some elements of the state transition
logic illustrated in FIG. 55. The figure illustrates other state
blocks, 602 and 603, that represent state blocks 2 through n,
where ‘n’ is the number of states of the NFA or FSA pro-
grammed in this PRISM FSA rule block. These blocks are
illustrated without details unlike state block 1. The primary
difference between the blocks is that each state block gener-
ates its own RSV bit and uses only its own state bit from the
CSV. For instance state block 2, generates RS2 by evaluating
the received character with the symbol programmed in its
symbol logic block which is similar to block 502. The state
blocks are organized slightly differently than the illustration
in FIG. 5b. The logic for one state illustrated in FIG. 55, is
illustrated to be organized in a vertical slice like, 614, where
each state block holds portion of the logic necessary to form
the final state. In this illustration the state Qn, 508n, is gen-
erated by processing the outputs from each state blocks’*n’-th
slice. The SDV vector bits held in each state block are for
transition control from the specific state to all other states. For
instance the blocks, like 5044, hold different members of the
SDV vectors compared to the blocks, like 504. Thus the SDV
for each state is distributed amongst multiple state blocks
unlike that illustrated in FIG. 5. For example state block 1,
holds SDV vector bits V,,, V,, ,, through V,, indicating
state transition vector bits for transitioning out of state 1 to the
‘n’ states, unlike FIG. 55 which are transposed where the state
transition logic for a state holds bits V,,,, V, ,,, throughV
for transition into state 1. The indices V4, indicate the state
dependent vector bit that enables or disables transition from
state X to state Y where each X and Y may have a range from
1 through where nis the number of states of the FSA. Thus the
SDV of a state indicates the controls for enabling transitions
from any state to itself as illustrated in 504, which indicates
SDV transition controls from states n through 1 to state 1. As
can be noticed the indices of the vector bits are reversed
between the FI1G. 556 and FIG. 6a. Thus a specific state’s SDV
is distributed in multiple state blocks and is illustrated aligned
vertically like slice 614. This figure also illustrates the initial-
ization logic, 408, illustrated in FIG. 4b as block 605 that
affects what value gets loaded in the state memory bit, 508n,

US 2011/0153657 Al

under different conditions.like initialization, startup, error
state, store and load or context switch and the like. Thus SDV
vectors for an FSA are written to the FSA rule block in a state
transposed manner as described above. The initialization
block comprises of initialization/start state vector memory
bits. Thus the input into the init block, 605, is logically
equivalent to the node Nth in FIG. 55, adjusted for the appro-
priate state bit. The state control block, 604, comprises of the
logic gates, 5074, which logically NANDs the partial state
output, like 615, from the state blocks 1 through state block n.
The state control block, 604, further comprises of the init
logic blocks, like 605, and the state memory blocks, like
508a. The FSA Rule block also comprises of tagged match
detect block, 613, which may optionally comprise of tagging
elements for supporting. tagged NFAs. The tagged match
detect block comprises of Accept vector blocks, like 610,
which comprise of accept vector memory bits and may
optionally comprise of tag memory bits. The tagged match
detect block further comprises of accept detect blocks, like
611, which comprise of accept state detection and may
optionally comprise of tagged state or state transition detec-
tion logic. The state memory blocks, like 508, may be con-
trolled be clock or enable or a combination signals to step the
FSA amongst its states as new input characters arc evaluated.
The clocked enable signals may provide more control over
simple clock by enabling when the FSA should be evaluated.
For instance upon finding a match, the FSA controller, 802,
described below may be programmed to hold further evalua-
tion of any symbols for this FSA until the match information
is processed. The FSA rule block generates multiple output
signals that can be used to indicate the progress of the FSA.
The FSA rule block outputs comprise of a Rule Match, 609,
which indicates when the regular expression rule pro-
grammed in the FSA rule block is matched with characters of
the input stream. The Rule Match signal may be used by the
local or global priority encoder and evaluation processor,
blocks 815 and 713 respectively described below, to decide
on next steps to be taken based on user programmed actions
and/or policies. The priority encoder and evaluation proces-
sors may optionally comprise of counters that may be trig-
gered upon specific rule matches. The counters may be used
for several purposes like statistical events monitoring, match
location detection in the input stream and the like. The prior-
ity encoders may also decide the highest priority winner if
multiple matches are triggered and then the output may be
used to find the appropriate action associated with the
matched regular expression rule. The FSA rule block output
may optionally comprise of Tag Match signal(s) that may be
used by the priority encoders and evaluation processors to
detect partial regular expression matches. The number of tag
match signals per FSA rule block may depend on the number
of sub-expressions that are allowed to be detected in a given
NFA. The FSA rule block is organized as a series of memory
locations that each hold a portion of the NFA rule evaluation
information using memory circuits like the SDV memory,
Symbols memory, Mask vectors (discussed below) memory,
initialization or start state vector memory, accept state vector
memory, optionally tag state flag or vector memory, the FSA
states memory or current state vector memory and the like.
The FSA rule block comprises of.FSA evaluation circuits
interspersed amongst the memory blocks storing the FSA
programmable information like the SDV, start state, accept
state, symbols and the like. The FSA rule blocks evaluate
multiple symbols against input stream for matches to step the

Jun. 23, 2011

FSA. Each symbol evaluation block, like 503, may optionally
output an indication of a pattern comparison between the
input character or symbol and the programmed symbol.
These output signals, like 617, 614, 616, can be treated as
local content addressable memory match signals. The PRISM
memory may optionally support logic that enables generating
merged CAM match signals from multiple FSA rule blocks
organized in PRISM memory clusters, which may in turn be
laid out in rows and columns of PRISM FSA rule blocks, to
support larger width pattern matches. Thus the PRISM
memory can be used as content addressable memory when
enabled to process the CAM match signals. The PRISM
memory can be optionally configured such that portions of
the memory support CAM functionality while other portions
may support FSA functionality or the entire PRISM memory
may optionally be configured to behave like FSA memory or
CAM memory. The CAM memories typically support func-
tionality to detect 4 byte patterns, 18 byte patterns or even 144
byte patterns. PRISM memory may optionally provide con-
figuration mechanisms to support similar large pattern evalu-
ation by chaining multiple FSA rule blocks” CAM match
signals using appropriate logic to generate composite CAM
match signals for desired pattern width.

[0072] FIG. 6B illustrates Left-biased Tagged FSA Rule
block in PRISM. As discussed earlier the FSA of PRISM are
optionally Tagged. The discussion below is with respect to
tagged NFA, though itis also applicable for non-tagged NFAs
or other FSA types where the tagging elements, described
below, are not used or not present. Left-biased FSA Rule
blocks are similar in functionality as those discussed above
for the Right-biased FSAs except for a few minor differences
that enable the FSA rule block to behave as a Left-biased
FSA. The state blocks, 601a, 602a, 6034, in the left-biased
NFAs receive all RSV vector bits, like 5057, unlike a specific
RSV bit per state block in the right-biased NFA. The input to
NAND gates like 5065, is. the specific RSV bit depending on
the bit slice at the bit location in the state block of the NAND
gate. Thus bit location ‘p’ where ‘p’ can range from 1 through
‘n’, uses RSp (Received Symbol Vector bit ‘p’) to generate the
partial state block output, 615a. By making such a change in
the blocks the NFA may now function as a left-biased NFA.
The rest of the blocks perform similar functions as described
above for a right-biased NFA.

[0073] PRISM memory may comprise of left-biased NFAs,
right-biased NFAs or left-biased FSA or right-biased FSA or
a combination of them or may be comprised as selectable
left-biased or right-biased NFAs with logic similar to FIG. 4a.
All such variations are within the scope of this invention, as
may be appreciated by one with ordinary skill in the art.

[0074] FIG. 9 illustrates PRISM search compiler flow
which is used for full and incremental rules distribution. For
clarity, the PRISM search compiler is also referred to as
search compiler or compiler in this patent application and the
terms are used interchangeably. The search compiler of FIG.
9 allows an IT manager or user to create and compile the
search and security rules of different types as illustrated by
901, 902 and 903, without limitations. Even though, the illus-
trated rules list primarily security type rules there may be
regular expression rules for any other application that needs
content search like many applications listed in this patent
application. The compiler flow would optionally be provided
with information about the specific nodes or networked sys-
tems or otherwise that may use PRISM and the characteristics
of these nodes, like the security capability, the rules commu-

US 2011/0153657 Al

nication method, the size of the rule base supported, the
performance metrics of the node, deployment location e.g.
LAN or SAN or WAN or other, or the like for specific security
or network related search applications. The compiler flow
may optionally use this knowledge to compile node specific
rules from the rule set(s) created by the IT manager or the
user. The compiler comprises a rules parser, block 904, for
parsing the rules to be presented to the PRISM FSA Compiler
Flow, block 906, illustrated further in FIG. 10, which ana-
lyzes the rules and creates rules database that needs to be
programmed into PRISM memory of the specific nodes or
systems for analyzing the content. The rule parser may read
the rules from files of rules or directly from the command line
or a combination depending on the output of the rule engines
like blocks 901, 902 and 903. The rules for a specific node are
parsed to recognize the language specific tokens used to
describe the rules or regular expression tokens and outputs
regular expression (RE) rules, 905. The parser then presents
the REs to the PRISM FSA compiler flow which processes
the REs and generates NFA for RE. Optionally if tagging is
supported by the specific PRISM instance, and if REs use
tagging, the PRISM FSA compiler then decides whether the
RE will be processed as a NFA or tagged NFA based on the
PRISM memory capability. It then generates the NFA or
tNFA rule in a format loadable or programmable into PRISM
memory and stores the database in the compiled rules data-
base storage, 908.

[0075] Rules distribution engine, block 909, then commu-
nicates the rules to specific system or systems that comprise
of PRISM memory. The search rules targeted to specific
systems may be distributed to a host processor or a control
processor or other processor oldie system that includes
PRISM memory. A software or hardware on the receiving
processor may then optionally communicate the rules to the
PRISM memory by communicating with the external inter-
face, block 702, and the PRISM controller, block 703,
described below to configure and/or program the PRISM
memory with the FSA rules. The Rules distribution engine,
909, may optionally communicate directly with the PRISM
controller, block 703, through the external interface block
702, if the external interface and PRISM controller optionally
support such functionality. The rules may be distributed using
a secure link or insecure link using proprietary or standard
protocols as appropriate per the specific node’s capability
over a network.

[0076] FIG.7 illustrates PRISM block diagram. As may be
appreciated by one with ordinary skill in the art, that many
different variations of these blocks and their configuration,
organization and the like can be created from the teachings of
this patent and are all covered without limitations. PRISM
controller, block 703, communicates with the rules distribu-
tion engine, block 909, or with a master processor or a com-
panion processor like a host system microprocessor or a con-
trol processor or a network processor or a switch processor or
an ASIC based controller or processor or the like to receive
appropriate compiled rule tables prior to starting the content
inspection. It programs the received rules into the appropriate
PRISM FSA rule blocks, described earlier, by working with
the address decode and control logic block 704, coupled to the
PRISM controller, block 703, and the PRISM memory cluster
arrays, block 710. There may be multiple rules being stored in
each PRISM memory cluster array’s FSA rule blocks. There
may optionally be multiple application specific contexts, not
illustrated, supported by the PRISM memory cluster arrays.

Jun. 23, 2011

Once the rules distribution engine provides the compiled
rules to the control processor and scheduler and they are setup
in their respective NFA rule blocks, PRISM memory is ready
to start processing the data stream to perform content inspec-
tion. The PRISM memory state configuration information is
received via the external interface block, 702, which may
communicate on a system bus or a network or the like with a
master processor or companion processor, not illustrated. The
PRISM memory of this patent may be deployed in various
configurations like a look-aside configuration or flow-
through configuration or an accelerator adapter configuration
or may be embedded inside variety of processors or logic or
ASICs or FPGA or the like as discussed earlier as well others
not illustrated. In a look-aside or an accelerator adapter con-
figuration, the PRISM memory may optionally be under con-
trol of a master processor which may be a network processor
or a switch processor or a TCP/IP processor or classification
processor or forwarding processor or a host processor or a
microprocessor or the like depending on the system in which
such a card would reside. The PRISM controller, 703,
receives the configuration information under the control of
such master processor that communicates with the rule
engine to receive the configuration information and commu-
nicates it on to the PRISM memory. Once the configuration is
done, the master processor provides packets or data files or
content to the PRSIM memory for which content inspection
needs to be done. The external interface, 702, used to com-
municated with a master processor may be standard buses like
PCI, PCI-X, PCI express, Processor Direct Connect bus,
RapidlO, HyperTransport or LA-1 or DDR or RDRAM or
SRAM memory interface or SP14 or Interlaken Protocol or
their derivatives or the like or a proprietary bus. The band-
width on the bus should be sufficient to keep the content
search memory operating at its peak line rate to fully utilize
the capability of PRISM, however a lower bandwidth bus or
higher bandwidth bus may be used as well. If a lower band-
width bus is used the total throughput may not be higher than
the bus throughput. When a higher throughput bus is utilized,
the external interface may need to stall the bus or drop some
packets, or the like and process the content at the maximum
bandwidth supported by that implementation of PRISM. The
PRISM memory may preferably be amemory mapped or may
optionally be an 10 mapped device in the master processor
space for it to receive the content and other configuration
information in a look-aside or accelerator configuration.
PRISM memory optionally may be polled by the master
processor or may provide a doorbell or interrupt mechanism
to the master to indicate when it is done with a given packet or
content or when it finds a content match to the programmed
rules.

[0077] The PRISM controller receives incoming data for
examination using regular expression rules or for examina-
tion using patterns to be matched, and may optionally store
them into data buffer/memory, block 707, before presenting it
to the PRISM memory cluster arrays. The PRISM memory
may optionally directly stream the content to be examined to
the content stream logic, block 708, which may stage the
content for examination by the PRISM memory cluster
arrays, block 710. The PRISM controller maintains the record
of the content being processed and once the content is pro-
cessed it informs the master processor. The PRISM memory
cluster arrays inform the global priority encoder and evalua-
tion processor, block 713, of the results of the search. When a.
match to a rule is found the priority encoder and evaluation

US 2011/0153657 Al

processor may retrieve an action associated with the rule from
the global action memory, block 717, depending on program-
mable policies and may optionally provide this to the PRISM
controller. The PRISM controller may optionally inform the
master processor about the search results. The PRISM con-
troller may execute the specific action or policy defined for
the rule match. The actions may optionally comprise to stop
further content evaluation, enable a certain set of rules to he
examined by enabling appropriate cluster array and pass the
content through that PRISM memory cluster array for further
examination, or inform the master processor of the result and
continue further examination or hold the match result in on-
chip or oft-chip memory or buffers for the master processorto
request this information later or any combination thereof or
the like lithe PRISM memory is configured to examine net-
work traffic in a flow-through configuration, not illustrated, it
may also be programmed to drop the offending packet or stop
the specific TCP connection or the session or the like. Option-
ally the master processor may receive the match information
and may take specific actions on the content stream.

[0078] The address decode and control logic, block 704, is
coupled to the PRISM controller, 703, the external interface,
702, the PRISM memory cluster arrays, 710, the global pri-
ority encoder and evaluation processor, 713, the database
expansion port, 718 as well as other blocks through a cou-
pling interface, 715. The PRISM memory may support a large
number of regular expressions in some preferred embodi-
ments as discussed above, however if there are applications
that need more rules, then there may optionally be a database
expansion port, 718, which would enable the expansion of the
rules by adding additional PRISM memory(ies) to the data-
base expansion port. The database expansion port may pro-
vide a seamless extension of the number of rules and may use
additional memory space in the host or master processor.
There are multiple ways of enabling the database expansion
as may be appreciated by those with ordinary skill in the art.
The address decode and control logic is also coupled to
optional, cluster address decode and FSA controller, block
802, and decodes addresses for the PRISM memory locations
which are used to hold FSA rule block programming infor-
mation as well as the FSA state information. It may perform
the address decode, memory read, memory write and other
PRISM memory management control functions by itself or
working in conjunction with cluster address decode and FSA
controller. The blocks 704 and optionally 802, may be pro-
grammed to provide configuration information for the clus-
ters. The configuration information may optionally comprise
of size of the NFAs e.g. 8-state or 16-state or the like, CAM
functionality enabling, tagged NFA related configuration,
context addresses if appropriate for local cluster context
addressing and/or global context addresses, clusters specific
configurations that may support a mixed CAM. and Regular
Expression functionality at the PRISM memory level, action
memory association for specific FSA rules or clusters or a
combination thereof and the like. The PRISM memory cluster
arrays and other blocks like global and local priority encoder
and evaluation processor, blocks 713 and 815, local (not
illustrated) and global action memories, block 717, and the
like may get configured and programmed with information
before the content inspection begins. Further, since PRISM
memory supports dynamic reconfiguration of rules, its pro-
gramming and configuration may be updated during the con-
tent inspection as well for example when a new security threat
has been discovered and a new rule to catch that security

Jun. 23, 2011

violation needs to be programmed. The PRISM memory may
provide multiple content streams to be processed through the
PRISM memory cluster arrays, using context mechanism
which associates each content stream with a specific context,
which may optionally be assigned a specific context ID.

[0079] FIG. 8a illustrates PRISM Memory cluster block
diagram. There may be options to have multiple content
streams and hence multiple contexts may optionally be simul-
taneously operated upon in different memory FSA clusters,
illustrated in FIG. 8a. For clarity, PRISM Memory cluster,
memory FSA cluster, a cluster, memory cluster and memory
FSA cluster are used interchangeably in this patent. A given
cluster and its associated FSAs may also be able to support
multiple content streams using the context information.
When a new content stream starts getting processed by a FSA
rule block or a cluster or the like, it may traverse through
various FSAs whose states may need to be saved, if the
content stream is not fully processed, when the same FSAs
need to start processing another content stream. The local
context memory, block 812, or global context memory, block
712, or external memory (not illustrated) coupled to external
memory controller, block 1221, or a combination thereof may
be used to save the state of active FSAs for a given context
before the FSAs are switched to operate on a different con-
text. Further, the new context may have its saved context
restored in the specific FSAs before content from that context
starts to be processed. The local context memory along with
global context memory affords the benefit of very fast context
switching for active contexts simultaneously across multiple
clusters and FSAs without creating a context switch bottle-
neck. The number of contexts being store locally per cluster
and those stored globally or externally is a function of the
manufacturing cost and other tradeoffs which will be appar-
ent to the one with ordinary skill in the art. Typically the
amount of information that needs to be stored and retrieved
per context may be limited to the NFAs or FSAs that are in the
process of recognizing a specific string defined by its regular
expression. In general most NFAs or FSAs may be continu-
ously be starting to analyze the input streams from a start state
if the strings being searched are not very frequent in the
content being search. The FSA controller, block 802, coupled
with blocks 704, and the local and global context memories
and their respective memory controllers as well as the blocks
713 and 815, the local priority encoder and evaluation pro-
cessor, takes the steps to perform the context switch if con-
texts are enabled before processing a new context.

[0080] The cluster address decode and FSA controller,
block 802, may decode incoming addresses for configuring,
reading or writing from PRISM memory locations or the like
of'the cluster PRISM array, block 808 which is comprised of
an array of PRISM FSA rule blocks illustrated above in FIG.
6A and FIG. 6B, and also referred to as PRISM Search
Engines (PSE) or programmable PRISM Search Engines or
programmable search engines, block 803, in this patent, and
activates memory location’s word line and/or bit lines or other
word lines or content lines or mask lines or the like or a
combination thereof, described below to read, write and/or
access the specific PRISM memory location. There may
optionally be cluster specific bit line drivers and sense ampli-
fiers, block 809, and bit line control logic, block 810, which
may be used to read or write specific bits in the PRISM.
cluster Memory array, block 808. These circuits are well
understood by memory designers with ordinary skill in the
art. The sense amplifiers and drivers may optionally be

US 2011/0153657 Al

present at the global PRISM memory level illustrated in FIG.
7 depending on the tradeofts of die area, performance, cost,
power and the like which one with ordinary skill in the art can
easily appreciate. The benefit of having local sense amps and
drivers is potentially creating lower interconnect load for
individual memory bits, which in turn can help improve the
performance. Typically the block 802 may he operating dur-
ing the configuration, context switching or other maintenance
operations like storing and retrieving specific NFA or FSA
state information, or refreshing specific PRISM FSA memory
hits if appropriate and the like. Generally during content
processing the block 802 may be dormant unless there is a
match or an error or the like when it may start performing the
necessary tasks like communicating the match, action, policy,
error or the like to the PRISM controller, initiating context
switching and the like. The PRISM controller, block 703,
coupled with the content stream logic, block 708, content
staging buffer, 709, address decode and control logic, block
704, and the cluster FSA controllers, block 802, may present
the content to be examined to the PRISM FSA rule blocks.
The content to be examined may be streamed by the block 708
from the data buffer or memory, 707, or from external
memory, or a combination into the content staging buffer. The
content staging buffer, 709, is coupled to cluster search buffer,
806, and cluster search control, 807 to align the appropriate
content to the clusters for searching. The content staging
buffer may hold content from the same context or multiple
contexts depending on the configuration of the clusters and
the like. The content is presented to the cluster PRISM array,
808, that comprises of the PRISM NFA rule blocks for exami-
nation in a sequence timed using a control signal like a clock
or enable or a combination. The NFA rule blocks perform
their inspection and indicate whether there is any rule match
or optionally if there is any CAM pattern match or optionally
any tag match and the like. The match signals are looked at by
cluster level local priority encoder and evaluation processor,
block 815, which may determine if there is a match and if
there are multiple matches which match should be used, or all
matches should be used or the like depending on the configu-
ration. This block 815, may be coupled to global priority
encoder and evaluation processor, block 713, which may
perform a similar operation by examining match signals from
multiple clusters. The local and global evaluation processors
of these blocks may optionally generate address(es) for the
winning matches) to the global action memory or external
memory or a combination that may store appropriate action
information that needs to be retrieved and processed to deter-
mine action(s) that need to be taken as a result of specific rule
match(es). There may be optional cluster level action
memory, not illustrated, for fast retrieval of action informa-
tion. This cluster level action memory may act as a cache of
the global and/or external memory based action storage. As
described earlier the .FSA controller, block 802, coupled with
local context memory, block 812, its memory controller,
block 813, along with the local and global evaluation proces-
sor and priority encoders coupled to global action and context
memories, may be used to store and retrieve context informa-
tion from and to configure the PRISM cluster arrays with
appropriate FSA states.

[0081] FIG. 85 illustrates PRISM Memory cluster detailed
block diagram. This figure illustrates more detail of the
PRISM memory cluster block diagram illustrated in FIG. 8a
and described above. The PRISM memory clusters comprise
of PRISM Search. Engines (PSE), blocks 803, which com-

Jun. 23, 2011

prise of the right-biased or left-biased NFA or FSA rule
blocks or a combination which may optionally be tagged as
illustrated in FIG. 6A and FIG. 6B and described above. The
PSEs may optionally comprise row-wise, column-wise or a
combination there of or the like mechanisms described below
to enable PRISM FSA extension (also referred to as PRISM
Search Engine Extension or PSE Extension, in this patent)
and optionally allow creation of PRISM based FSA rule
groups (also referred to as Regular expression rule groups or
PRISM Search Engine rule groups or PSE rule groups, in this
patent). The FIG. 85 illustrates the PSEs arranged in an array
with ‘n’ rows and ‘m’ columns where ‘n’ and ‘m’ may be any
integer value and may depend on design, cost, process tech-
nology, performance, power and other parameters that one
with ordinary skill in the art will appreciate. One exemplary
embodiment may comprise of ‘n=128" and ‘m=8’ providing
1024 PSEs per PRISM memory cluster. The PSEs may
optionally comprise of mechanisms for extending the FSAs
using methods described below. The PSEs may comprise
row-wise FSA extension, column-wise FSA extension or a
combination thereof. The PSEs are coupled to each other and
may optionally be coupled to the local priority encoder and
evaluation processor, block 815, for row-wise FSA extension
using one or more signals, illustrated by lines 821(1) through
821(n). The PSEs may also be coupled to each other in a
column-wise manner using one or more signals represented
as a group of lines, 820(21) through 820(7m), coupling PSEs
to their column-wise neighbors. Such signals may be used to
provide a column-wise FSA extension using mechanism and
architecture described below. The PRISM cluster priority
encoder and evaluation processor, block 815, may further
comprise configurable controls that would allow any group of
extensible FSAs to be coupled to other groups of FSAs local
to the PRISM memory cluster or inter-clusters (i.e. between
multiple PRISM memory clusters) or a combination thereof
Cluster Address Decode and FSA Controller, block 802, pro-
vides controls, 804(1) through 804(») like word line address
and the like for each PSE and its internal memory elements
like the SDV, Symbols and the like which are used to config-
ure the PSEs with appropriate RE rules converted or compiled
in to programmable ESA data structures. It may also be
coupled to the cluster search controller, block 807, and sense
amps and read buffers, block 819. The cluster search control-
ler, block 807, may receive the byte values to be configured
into the PSEs and may comprise the bit line drivers for the
PSE memories. The sense amps and read buffers may com-
prise the sense amplifiers and data read buffers to read and
store the information retrieved from the PSE array. Once the
PRISM memory clusters are configured with the RE rules, the
content to be processed may be presented to the cluster search
controller. The cluster search controller, block 807, is coupled
to the columns of PSEs using signals, 822(1) through 822(m),
that may comprise bit lines for each of the ‘m’ columns of'the
PSE array. The cluster search controller may present the same
content symbols or characters or bytes or the like, to each
column of the array such that every FSA can process each
incoming symbol and be evaluated simultaneously. However,
if the PRISM cluster is configured to be used as content
addressable memory, the content search controller may
present the content in chunks of ‘m’ symbols or chunks oftwo
‘m/2’ symbols or the like to the PSE array. The PSEs provide
the indication of whether a match with the programmed rules
is detected or not or if a tag is matched or not or the like in a
row-wise manner to the local priority encoder and the evalu-

US 2011/0153657 Al

ation processor, block 815, using the signals, 811(1) through
811(n), that couple the PSEs in a row with the block 815. The
local priority encoder and evaluation processor may receive
the match signals and based on optional policy programmed,
provide the winning match if multiple match signals are
asserted simultaneously or may record each match or a com-
bination. It may also provide counters to keep track of the
specific location in the incoming content stream where a
match or a set of matches were generated. It may further
provide actions associated with specific RE or FSA rules
being activated and may comprise of stopping the processing
of the specific content flow or content stream or content
session or the like; or generating an alert or activating a new
rule group or stopping a certain rule group from further
examination or a combination there of or the like. It also
communicates with the global priority encoder and evalua-
tion processor, 713, to take appropriate actions similar to
those described above. The content read into the read buffers
of block 819, may be coupled to the local cluster context
memory, 812, or global context memory, 712, or external
memory controller, 721, through the signals 817, block 815,
signal 814, signals 711 and signals 715 for storage to the
appropriate memory location internal to the PRISM chip or
an external memory coupled to the block 721 using the exter-
nal interface signals 720.

[0082] Each PSE of a PRISM memory cluster may be
addressed using one PRISM Memory location or a set of
PRISM memory locations or a combination thereof. All inter-
nal memory elements of a PSE like the each state dependent
symbol memory, mask vector memory, SDV memory, or the
initialization vector memory and the like may each be
mapped as individual memory locations in the PRISM
memory address space or may each be addressable in a PSE
address space once the PSE is selected from a PRISM
memory address or the like as may be appreciated by one with
ordinary skill in the art. One preferred embodiment may
comprise of 22 PRISM Memory address bits where in the
upper 17 address bits are used to select a specific PSE in an
embodiment with 128,000 PSEs and the lower 5 address bits
are used to select a specific memory element of the selected
PSE as described. above. Other variations of such an arrange-
ment are within the scope and spirit of this invention as may
be appreciated by one with ordinary skill in the art. The
number of address bits allocated to select PSEs depends on
the number of PSEs and the number of address bits allocated
to select memory elements of a PSE depend on the number of
memory elements in one PSE, which may in turn depend on
the number of states per PSE, FSA extension mechanisms per
PSE, symbol size and the like as may be appreciated by one
with ordinary skill in the art. Further, a specific PSE within a
cluster may be addressed or selected by PRISM memory
cluster row address and a column address which would be
derived from the PSE address bits. One preferred embodi-
ment of PRISM memory with 128,000 PSEs may use 128
rows and 8 columns of PSEs per PRISM memory cluster,
there by supporting 1024 PSEs per PRISM memory cluster.
In such a PRISM memory embodiment, upper 7-bits of the
22-bits for PSE address may be allocated to select a specific
PRISM memory cluster, and the next 10 bits of the PSE
address may optionally be used to select a specific PSE in a
PRISM memory cluster while the lower 5 bits may optionally
be used to select a specific memory clement of the selected
PSE of the selected PRISM memory cluster. The 10-bit
address for selecting a specific PSE of a PRISM memory

Jun. 23, 2011

cluster, may further be allocated such that upper 7-bits of that
may beused as a PSE row address selection and the remaining
3-bits of the address used as a PSE column address selection.
There are multiple other ways to perform the addressing of
PRISM memory as may be appreciated by one with ordinary
skill in the art and all such variations are within the spirit and
scope of the teachings of this invention.

[0083] FIG. 11 illustrates PRISM row-wise FS A extension.
The figure illustrates PRISM Search Engines as FSA 1,1101
(1), FSA 2, 1101(2) through FSA M, 1101(M), which may
optionally be PSEs in arow of a PRISM cluster. The PSEs are
similar to those illustrated in FIG. 6A and FIG. 6B with some
additional blocks described below that enable the PRISM
PSEs to become extensible to support FSAs that need more
states than those supported by a single PSE. The State Blocks
1 through N, 1102(1) through 1102(N) are similar to state
blocks 601, 602, 603 of the left-biased or right-biased tagged
NFAs or FSAs rule blocks described above. The State Control
and Match detect blocks, 1105(1) through 1105(N) and 1106
(1) through 1106(N), are also similar in functionality to state
control, block 604, and match detect, block 613, described
above for FIG. 6A and. FIG. 6B, with some minor addition to
accept another term of partial state transition control feeding
into the transition logic illustrated in block 5074 or 507% or
the like. The additional state transition control is based on a
global state transition described below. Row-wise FSA
Extension architecture in PRISM comprises of a Global State
Dependent Vector (GSDV), block 1103(1) through 1103(N).
It may optionally comprise of a Global Control Vector
(GCV), blocks 1107(1) through 1107(N), and may optionally
comprise of a Global Transition. Logic (GTL), blocks 1108
(1) through 1108(N). They may optionally be coupled to the
state transition logic of each FSA being extended using a
Global Control Network (GCN) which may comprise of mul-
tiple circuits like those illustrated by blocks 1113, 1114,
1115, 1116, 1121, 1122, 1123, 1124, 1104(1) through 1104
(N) per FSA block or the like or a combination thereof. The
GSDV may optionally be an N-bit Vector, where each bit of
the vector may enable a transition into the corresponding state
of'the FSA from a state external to the FSA. It is possible to
restrict the number of Global entry points into an FSA, in
which case the GSDV may be a vector with fewer than. N-bits
corresponding to the states that may be entered from other
FSAs using the FSA extension mechanisms described in this
patent. Similarly GCV and GTL may also be N-bit vectors or
vectors with fewer bits. The decision to use N-bits or less bits
for these vectors may depend on the RE characteristics, appli-
cation requirements, device size, implementation costs and
the like as will he apparent to those with ordinary skill in the
art. The GSDV and GCV vectors are memory locations and
realized using memory circuits similar to other memory bit
vectors like SDV, Symbols, the mask vectors and the like of
this patent as may be appreciated by one with ordinary skill in
the art. The specific memory bits circuits are not illustrated to
avoid obscuring the invention. When a bit of GSDV is set to
‘1’ or an active state, the input to the logic gate, like 1104(1),
from GSDV is set and would then enable a transition to the
corresponding state if symbol associated with that state is
received like RS11, and the state from another FSA that
controls the extended FSA state transition is setto ‘1’ or active
state. Descriptions below illustrate a few examples to clarify
the GSDV controls. Thus the GSDV controls the transition
into a particular state of the associated FSA from another
FSA. Similarly GCV, controls a global out state transition

US 2011/0153657 Al

where the transition is out of a specific state of an FSA to
another FSA that is coupled to it using the FSA extension
mechanisms described in this patent. When a GCV vector bit,
like 1107(1) is set to an active state like ‘1°, and if the corre-
sponding state, 1106(1) of the FSA, 1101(1) is set, then the
GTL logic, 1108(1) would be activated. FIG. 11 illustrates a
pre-charge and discharge circuit forming a wired-NOR logic
between the GTL blocks of the FSAs coupled to form row-
wise FSA extension. For example, the GTL blocks like 1108
(1) of each of the coupled FSA is coupled to a precharge line
like 1109,1110, 1111, 1112 or the like, which are precharged
by transistors like 1113, 1114, 1115, 1116 or the like. When
any ofthe GTL receives its inputs like 1125(1) and 1126(1) as
active, it pulls the coupled precharge line 1109 to a low value.
When none of the GTL outputs pull the precharge lines like
1109, they stay at their precharged high value that has been
precharged by the corresponding precharge transistor like
1113. The output of the precharged signals may optionally be
buffered or inverted as illustrated by inverters like 1121,
through 1124 which then drive those signals to all the FSAs
coupled to the output signals, like 1117 through 1120, of the
inverters with the corresponding FSA gates like, 1104(1)
through 1104(N). Hence, when signal 1109 is pulled low, the
output 1117 may be pulled high. Thus if the GSDV bit con-
nected to the device, 1104(N) of an FSA is high and the
received symbol is RSnl, the transition into that state is
enabled. Although the figure illustrates the precharge signals,
like 1109, to be coupled to inverters, like 1121, they may
optionally be coupled to a multiplexer input, not illustrated,
such that another input of the multiplexer may be used to
control whether the value on the signals, like 1117, is from the
local FSA group or from an input state external to the FSA
group, not illustrated. Such a multiplexer or other logic or a
combination may be used to create a rule group transition
control network, where a rule group may be enabled when
another event is detected by other PRISM FSAs or PRISM
clusters.

[0084] FIG. 11A illustrates PRISM Rule Group FSA
Extension. PRISM memory of this patent may optionally
allow formation of a group of REs to be treated as a rule
group, such that one group of REs may be enabled when
another RE or RE group is evaluated to be active. This figure
illustrates a mechanism to enable such rule group FSA exten-
sions. The Rule group architecture leverages all the features
of'the Row-Wise FSA Extension logic described above, with
a small modification,. where the inverters, 1.121 through
1124, are replaced by Rule Group Transition Logic (RGTL),
block 1128, which enables the transition to a set of FSAs from
other Rows of PRISM cluster or other PRISM clusters or
other groups of FSAs or other groups of regular expressions.
The Rule Group FSA Extension architecture further com-
prises of Rule Group Control Vector (RCV), 1126, which may
be an N-bit vector or the same width as the width of the GTL
ofeach FSA. When abitof RCV is set, then the corresponding
output signal in the group, 1127, is set which in turn may let
the corresponding output signal, like 1117, of the RGTL
block be coupled to a corresponding signal of External State
Vector (ESV), line 1125 instead of the Row-wise FSA Exten-
sion precharge signal, like 1109. The ESV bits may be state
output from a group of rules within the PRISM Cluster or
another PRISM cluster or other groups of FSAs or other
groups of regular expressions. When such a group’s state that
indicates a transition to another rule group is activated, the
global evaluation processor, block 713, or the local evaluation

Jun. 23, 2011

processor, block 815, or a combination couple that state sig-
nal to the corresponding ESV bit which then enables the
transition to the state enabled by the output of the RGTL.
Optionally the PRISM local evaluation processor, block 815,
or global evaluation processor, block 713, or PRISM control-
ler, block 703, may set the appropriate ESV bits to cause the
nile group to be activated. ESVs for various rule groups may
be memory mapped such that by writing to such an ESV
memory location a specific rule group may be activated.
When a rule group transition like the one described here is
enabled, the corresponding Symbol detection could option-
ally be ignored by setting the mask bits for that specific
symbol, or the like, such that the rule group is activated once
the corresponding ESV bit is asserted. Another output of the
RGTL, may be ESV_out, signal 1129, which may be the
outputs of this rule group that can be used to trigger transition
into a state of another rule group. The ESV_out may be an
N-bit or less vector as an output from RGTL which may
optionally comprise an internal RCV_out vector, not illus-
trated, that may control which state bits are enabled on to
ESV_out from this rule group. The RGTL may comprise a
simple multiplexer based logic circuits, but may also com-
prise a mesh network connecting each precharge input or
ESV input to the output or a combination there of or the like.

[0085] Although the description here and elsewhere within
this patent may be with regards to precharge circuits, it will be
appreciated by those with ordinary skill in the art, that other
non-precharge circuits or logic may be used to realize the
same functionality and all such variations are within the scope
and spirit of the teachings of this patent.

[0086] FIG.12illustrates PRISM Row-wise FSA extension
example #1. The FSAs in FIG. 12 are assumed to be four state
FSAs. Thus if a RE has more than four states, it would not fit
in a single FSA or PSE. In such a case FSA extension archi-
tecture and mechanisms described in this patent will need to
be used. FIG. 12 illustrates a PRISM row with four FSAs,
FSA1, through FSA4, blocks 1201(1) through 1201(4), each
with four states that can be used to represent a 16-state RE
‘abedefghijklLmnop’ using the row-wise FSA extension. In
this example, the RE is a simple 16-character string which is
split up into four chunks of four characters each by the com-
piler and assigned each chunk, to one of the FSAs. The states
of each FSA state bits are illustrated to represent a specific
symbol or character like 1202(1) which is used to represent
the state corresponding to the symbol ‘a’. This state bit is set
when the received input symbol is an ‘a’. The value of the
state bit is represented as the symbol in the description below
for ease of explanation and would otherwise be a logical value
like ‘1’ or ‘0’ or the like. The symbol ‘a’ is the start state
indicated by the single circle around the symbol, 1202(1).
Thus when the input content has a symbol ‘a’ the RE rule or
FSA starts the evaluation of the content and enters the state
‘a’. The figure does not illustrate the SDV for each of the
states and the FSAs to avoid obscuring the description of the
FSA extension as may be appreciated by those with ordinary
skill in the art. The SDVs, symbols and other controls of the
FSA 1, block 1201(1) are set such that the state transition
within the FSA progresses from a to b to ¢ to d, if a series of
input symbols received is ‘abed’. Similarly, for FSA 2, block
1201(2) through FSA 4, block 1201(4) the internal transitions
are implied and not explicitly illustrated. The FSA extension
is created by setting the GSDV and GCV such that the
sequence of states that are enabled detect the desired RE
string, ‘abedefghijkl.mnop’. The GCV vector bit 4, 1203(4)

US 2011/0153657 Al

of FSA 1 is set to “1” while its other bits are set to ‘0’. Thus
when the FSA 1 reaches the state ‘d’, block 1202(4), the GTL
bit 4, 1210, is pulled low, which indicates that the FSA 1 has
reached a state that can now enable a transition to a state in
another FSA. The GSDV bit 1, block 1214, of FSA 2, block
1201(2) is set to ‘1” which enables the transition into state ‘e’,
block 1218, when the received symbol is RS12 (‘e’) and the
line 1204, coupled to the third input of NAND gate, 1217,
through the inverter coupled to 1204 is activated. If the input
string received so far is =abcde’ then the state ‘e’ of FSA 2 is
activated. However, if the fifth character of the input string is
not an ‘e’, the FSA 1 state ‘d’ is deactivated and thus even if
the following symbol i.e. the sixth symbol is an ‘e’, the FSA
2 state ‘e’ is not activated. Assuming that the string received is
‘abede’, then the state ‘e’ is activated. FSA 2 traverses through
the states ‘fgh’ if the following three symbols received are
‘fgh’. As may be noted in this illustration, the states are not
sequentially arranged, for example the state ‘h’ appears as the
third state, block 1208, instead of the fourth state in FSA 2. To
enable such organization of the states, the SDV of the state ‘h’
of FSA 2 is setup such that state ‘h’ is logically the fourth state
that is entered after state ‘g’ is activated, where state ‘g’ is the
third logical state entered from state ‘f, setup to depend on
state “f” in SDV of state ‘g’. Thus physical location of the
symbol is not required to be in a sequential order because the
state transition in PRISM depends on the current state, the
received symbol and the state dependent vector. Similarly, the
state ‘h’ of FSA 2 is coupled to state T of FSA 3 using GCV
bit 3,1207, GTL bit 3, 1209, and signal 1205, coupled to the
GSDV bit 2, 1215, coupled to the transition input gate for the
state ‘i’ of FSA 3, 1201(3). Similarly the state ‘[." of FSA 3 is
coupled to state ‘m’ of FSA 4 using the appropriate GCV and
GSDV bits as illustrated. When the state ‘p” of FSA 4 is
reached, the RE is matched and the input string is recognized
to be ‘abcdefghijklmnop’. The state ‘p’ is marked as the
accept state by the compiler, illustrated by double circles,
1219, such that accept vector of the FSA 4 is set as ‘0100°, so
that ‘p’is the accept state. When the accept state ‘p’ is reached
a match signal, like 609, of FSA 4 is asserted which is then
recognized by the cluster priority encoder, block 815, and a
RE match is flagged and appropriate action associated with
this RE match taken or initiated.

[0087] FIG. 13 illustrates PRISM Row-wise FSA Exten-
sion example #2. In this illustration, similar to that in FIG. 12,
the FSAs are assumed to be four state FSAs. However the
regular expression rule to be evaluated is: (abcldefghi)+kL,
which recognizes a string of characters that contain one or
more occurrences of sequences ‘abe’ or “‘defghi’ followed by
the sequence ‘jkI’. Note the one or more occurrences of
sequence ‘abc’ followed by ‘defghi’ which is followed by
‘jKI. once or one or more occurrence of sequence ‘defghi’
followed by ‘abc’ which is followed by JKL” may also be
recognized by the regular expression. The expression
(abcldefghi)+indicates that the terms ‘abc’ or ‘defghi” may
occur one or more times or may occur one after the other one
or more times. The FIG. 13 illustrates how such a RE be
evaluated using a Row-wise FSA extension architecture and
mechanisms of this patent. In this expression, whenever the
states ‘¢’ or are reached, the expression can start evaluating at
states ‘a’, ‘d’ or T, since they are all the follow states of the
states ‘c’ and ‘i’. To enable such a transition the compiler
assigns GCV vectors of FSA 1 and FSA 3 to be ‘0001°, such
that when state ‘c’ is reached, signal 1302 is coupled to
precharged signal 1314, or when the state T is reached. signal

Jun. 23, 2011

1304, is coupled to precharged signal 1316, which is coupled
to line 1314. These outputs are then coupled to the states ‘a’,
‘d’” and ‘j* by the GSDV vectors for FSA 1, FSA 2 and FSA 4
where the bits, 1305, 1308 and 1312 are each set to ‘1’
enabling a transition into the states ‘a’, ‘d’ and ‘j” from the
states ‘c’or ‘1’. The expression ‘defghi’ is compiled to occupy
two FSAs, FSA2 and FSA3, which are coupled by the GCV
and GSDV bits that couple the output 1315 from the state
location ‘g’ of FSA 2 to input gate, 1310, which transitions
into state “h’ when the received symbol is ‘h’ since the GSDV
bit 2, block 1309, is set to “1°. When the FSA 4 reaches the
state [, which is marked as an accept state the FSA 4 asserts
the match signal like 609, which is then recognized by the
cluster priority encoder, block 815, and a RE match is flagged
and appropriate action associated with this RE match taken or
initiated.

[0088] FIG. 14 illustrates PRISM Column-wise FSA
extension. The figure illustrates a group of four FSAs on the
left where each FSA is in one row. Each FSA is illustrated to
comprise of eight states where each state and its state transi-
tion logic, match detection logic and the like is represented by
a box each, like 1401(1) through 1401(8). The FSA state bits
are illustrated to be aligned in columns labeled Bit 1 through
Bit 8. Each state bit of an FSA is illustrated to be coupled to
its neighbor using up and down control switches illustrated as
lines 1403(1), 1403(2) and the like. Blocks 1404(1), 1404(2),
1405(1) and 1405(2) illustrate FSA state bits 1 and 2 of two
FSAs, ESA 1 and FSA 2 illustrating the column-wise FSA
extension architecture (also referred to as column-wise exten-
sion architecture in this patent) in detail and mechanism and
do not illustrate all other components of PSE state like the
RSV, SDV and the like. The state bits of adjoining .FSA rows
are coupled to transfer their state information to the neighbor
in a column-wise manner. FSA bits 1 are illustrated to transfer
the state information in the down direction from block 1404
(1) to block 1404(2), while the FSA bits 2 are illustrated to
transfer the state information in the up direction from block
1405(2) to block 1405(1). Each FSA state bit may comprise
of both up and down transfer mechanisms or they may be
alternating as illustrated in this figure or there may be other
pattern like skipping one state bit to transfer the states or the
like and all such variations are covered by this patent as may
be appreciated by one with ordinary skill in the art. The
illustrated column-wise ESA extension logic enables each bit
to accept an incoming state, and originate the transfer of its
state to the next neighbor. The column-wise ESA extension
comprises a global Fonvarding vector (FV) which comprises
of'bits like FV11 of block 1404(1). It may further comprise of
local forwarding vector (LV) which comprises of bits like
LV11. It may further comprise of circuits that allow the state
bits to be merged and forwarded down or up or a combination
thereof using gates like 1406, 1407 and 1408 that forms
column state transition control circuit forming an AND-OR
logic function between the inputs, such that if FV11 is set to
‘1’ and LV11 is set to ‘0°, then signal group forward down
signal GD11 of block 1404(1) is coupled to output of gate
1408, onto the signal GD21 of block 1404(2). Similarly, if
FV1lissettoa ‘0’and LV11issettoa ‘1’ then the state Q11
of'the FSA bit 1, block 1404(1) is coupled to the signal GD2I.
Further, the gate 1409, may enable the transition into the state
bit 1, if UC11 is set to ‘1° and the received symbol is RS 11
when GD11 is ‘set’. The Up Control Vector (UC), comprises
of control bits like UC11 per FSA state bit, and enables that
particular state bit to accept a transition into that state if the

US 2011/0153657 Al

UC bit is set enabling .FSA extension from another FSA.
Similarly, the logic gates 1410,1411,1412 and 1413, coupled
tothe FV, LV and UC bits FV21, L.V21 and UC21 respectively
enable the column-wise FSA extension into and out of state
bit 1 of FSA 2. The FV and LV vectors are not required to be
mutually exclusive. Hence, an FSA state bit may accept an
incoming state and allow the same state to be forwarded it FV
and UC bits are set to “1°. It is also optionally feasible to
merge the state bit output of the current bit to the incoming
state bit, by setting both .FV and LV vector bitsto ‘1°. In such
a case the forwarded output state is a ‘1’ when either the
incoming state bitis a ‘1’ or the local state bit is a ‘1’ or both.
The FSA bits 2, illustrate a very similar mechanism as the one
described above to transfer the state in the opposite direction.
The upwards FSA column-wise extension Mechanism may
comprise of global Forwarding Vector-Up (UV), Local For-
warding Vector-Up (UN), Down Control Vector (DC) and
may further comprise of the logic like gates 1418, 1419, 1420,
1421 forming column state transition circuit in the reverse
direction as the one above and the like that enable the transfer
of a local state like Q22, upwards as well as forward an
incoming state, like group forward up signal GUP22,
upwards, coupling to output GUP12, a well as accept an
incoming state, GUP22, from a lower FSA to enable transi-
tion to its state bit by coupling through a gate like 1418 and the
like. Again the LUV, UV and DC are not required to be
mutually exclusive. The FV, LV, UC, UV, LUV, DC bits may
each be setup as memory locations that get programmed like
other control vectors for example the SDV, Symbols, mask
vectors and the like. The memory circuits for these bits are not
illustrated to not obscure the invention and are similar to any
other memory bits of PRISM as may be appreciated by one
with ordinary skill in the art.

[0089] FIG. 15 illustrates PRISM FSA Extension Example
#1. This figure illustrates a Column-Wise Extension on the
leftand it also illustrates Row- Wise and Column-Wise Exten-
sion on the right. These figures illustrate PSE comprised of 8
states per FSA. The figures illustrate how four regular expres-
sions may be programmed in PRISM using the FSA extension
architecture and mechanism of this patent. Block 1501, illus-
trates how a regular expression REI: (abcldefghi)+jkL may be
programmed using the column-wise FSA extension. Each
box like 1513 represents an FSA state bit and all the other
associated circuits, similar to block 614 with circuits for FSA
extensions described above added, and is labeled with the
state that it represents using the states corresponding symbol
like “a’. Block 1504, illustrates how a regular expression RE2:
‘abedefghijkLmnop’ may be programmed using the column-
wise FSA extension. The figure does not illustrate the GSDV,
GCV, SDV and the like vector bits being setup to simplify the
illustration and description, but are implied to be setup prop-
erly by the PRISM search compiler to enable the right tran-
sitions between multiple states. Further, the figures illustrat-
ing RE examples in this patent, local state transitions within
an FSA are implied to exist and proper programming gener-
ated by the compiler but are not illustrated to not obscure the
figures. The arrows in the figure, like 1508 and 1507 are used
to indicate inter-FSA transitions enabled using the FSA
extension mechanisms of this patent. The RE1 is pro-
grammed to include two terms ‘abc’ and ‘jkL” of the RE1 in
the FSA in Row1. However, the term ‘defghi’ is programmed
using the column-wise FSA extension mechanisms described
above and is distributed between FSAs in Row 1 and Row 2.
For instance, the state ‘d’ is assigned to Row1 and column B3,

Jun. 23, 2011

block 1514. The local vector of this state bitis set to ‘1”. Thus
when the state ‘d’is activated the output from B3 Row1 to 133
Row 2, arrow 1508, is activated. The UC vector bit 3 for the
Row 2 state hit 3 is settoa ‘1’ which enables the transition into
state ‘e’, Row 2 column B3, if the received symbolis ‘e’. Thus
if the input content is ‘de’, then the downward transition,
arrow 1508, will be taken and the FSA in Row 2 will be in
state ‘e’. However, if the second symbol is not an ‘e’, then the
state ‘e’ is not activated. The states of FSA in Row 2 are
programmed such that they transition from ‘e’ to ‘f”to ‘g’ to
‘h’” when a sequence of ‘efgh’ is received after a symbol ‘d’.
When FSA 2 reaches state ‘h’, the upward state forwarding
mechanism between Row2 column B8 and Row1 column 88
is activated and the FSA in Row 1 will reach the state ‘i’ if the
next symbol received is ‘i’. For the upward transition, the
local forwarding vector-up (LUV) bit for Row 2 column 138
is set to ‘1” and the down control vector (DC) bit for Rowl
column 138 is set to ‘1, which enable the transition from
Row2 FSA state ‘h’ to Rawl FSA state ‘i”. When the state ‘¢’
or ‘i’ of Row 1 is active, then the following states that the FSA
may enter as per the RE1 are ‘a’, ‘d’ or ‘j” depending on the
received input symbol and so the SDV vectors for those states
are set up to transition from the states ‘c’ or T. When the Row
1 FSA reaches state ‘L’, which is programmed as an accept
state, the RE1 is activated and the input string recganized by
this RE has been received on the input. A match signal like
609 from this FSA is activated and send to the cluster priority
encoder and evaluation processor which takes appropriate
action based on this regular expression match. Block 1504,
illustrates a regular expression RE2: ‘abcdefghijkl.mnop’
programmed using the column-wise FSA extension mecha-
nisms of this patent. The state ‘a’which is the start state, block
1512, is assigned to Row 4 and column B1 and other seven
states are assigned in the other state bit slice columns of FSA
4. Then the state ‘h’ is coupled to state ‘i’ of Row3 column B8
using the up column-wise FSA extension similar to block
1501 described above. As may be noticed the states ‘jkL.m-
nop’ are assigned in a reverse order in Row3, though as
discussed above the state assignment order is not critical in
PRISM, since the state transition controls like SDV are set
properly to follow the correct transitions. Thus for the Row 3,
the FSA states are programmed to transition in the order
‘ijkLmnop’, if a string corresponding to that sequence is
received after ‘abcdefgh’. When the state ‘p’, 1511 is reached,
the RE2 is matched and the match signal for this RE is
asserted to the cluster local priority encoder and evaluation
processor, block 815, which takes appropriate actions that are
programmed based on activation of RE2.

[0090] Blocks 1502, 1505, 1503 and 1506 illustrate the
programming of RE1 [(abcldefghi)+jkl], RE2 [abcdef-
ghijkLmnop], RE3 [(xyzldefghi)+jkl.] and RE4 [xyzdef-
ghijkL.mnop] respectively using the Row-wise and Column-
wise FSA extension mechanisms of this patent. The block
1502, column 1, Row 1 FSA, programs the terms ‘abc’; and
JkL of REI where as the term ‘defghi’ is programmed in the
column 2, Row 1 FSA. The Row-wise extension architecture
and mechanisms described above and illustrated in FIG. 11 is
used her except that the width of each FSA is ‘8’ states. In an
exemplary 8-state FSA based FSA extension, there may be
eight precharge lines like 1109, 1110 and the like which may
each be activated by the corresponding state bit of the coupled
FSAs which may provide a greater freedom for coupling
various state terms of a large FSA. The transitions 1520 and
1519, take the FSA from one FSA to the next FSA as per the

US 2011/0153657 Al

regular expression state transitions. Local state transitions
within an FSA are not illustrated as described above. Thus
when the FSA reaches state ‘c’, it may enable local transitions
into states ‘a’ and ‘j” and enable an inter-FSA transition 1520
into state ‘d’. Similarly the state ‘i” may enable a local tran-
sition within that FSA to state ‘d’ and enable an inter-FSA
transition 1519 to states ‘a’ and ‘j” of Columnl Row1 FSA.
When the accept state is reached the match signal for the
associated FSA is asserted and the cluster priority encoder
and evaluation processor, block 815, takes the appropriate
action that is programmed.

[0091] The compiler may assign various FSA states to
appropriate state bit slices like 614 depending on the row-
wise coupling architecture which may be different than that
illustrated in FIG. 11 as may be appreciated by one with
ordinary skill in the art and such variations are within the
scope this invention. For instance instead of coupling pre-
charge line 1109 to line 1117, another scheme could couple it
to a signal like 1118, 1119 or 1120 or the like and any such
variations are covered within the scope of this invention.
[0092] Block 1503, illustrates RE3 to be programmed
using the column-wise FSA extension. The compiler may
assign different terms of the RE to appropriate state bit slices
of'the FSAs to enable the transitions required to complete the
correct RE state transitions between various terms of the RE,
and may optionally do it based on the available FSA state bits
and the like. For instance, in this assignment, the term ‘def-
ghi’ is assigned to Row 3, Column1 FSA, where the state ‘d’
is assigned to B3, which aligns directly below state ‘z’ of the
term ‘xyz’ assigned to Row 2, Columnl FSA. This enables the
column-wise state transition between these two terms of the
regular expression when state ‘z” is reached and the RE needs
to transition to state ‘d’ based on the next received input
symbol. One salient point to notice, is that the state of Row 3
Column1 is aligned with the accept state ‘L’ in 38 of Row2.
This would prevent a required transition from state Si’ to
states ‘X’ or state of the RE using column-wise transition. This
is avoided by creating a duplicate state ‘i’ in FSA in Row 2
Columnl, B7, which is entered from state ‘h’ in Row3 Col-
umnl. Thus the column-wise FSA extension architecture
enables the state ‘i’ to be reached in FSA in Row2 B7. Both
states ‘i’ in both FSAs would be active simultaneously when
a symbol ‘1’ is received following a string ‘defgh’. The state
‘1> in Row 2 is then locally enabled to cause transitions into
states ‘x” or states ‘i’ of the follow states as per the RE, where
as the state ‘i’ in Row3 is enabled to cause a local transition to
state ‘d” in Row3 which is also required to be taken as per the
regular expression. Thus, the PRISM compiler has freedom to
align various RE terms to effect the proper transitions by
duplicating the same state in multiple FSA bits and FSAs.
When the accept state ‘L’ is reached the match signal for the
associated FSA is asserted and the cluster priority encoder
and evaluation processor, block 815, takes the appropriate
action that is programmed.

[0093] Block 1506, illustrates RE4 to be programmed
using column-wise FSA extension as well, where the freedom
of assignments of various states to the compiler are illustrated
using assignments between two rows of the Column 2 FSAs
where multiple transitions are illustrated between various
state bits distributed between the two FSAs.

[0094] FIG. 16a illustrates column-wise PRISM FSA
extension example. In this example, a RE:
‘(abcldefghilLmnopqrstuv)+kL’ is illustrated to be pro-
grammed using column-wise FSA extension architecture.

Jun. 23, 2011

The RE spans across four rows of FSAs in one column of
PRISM memory cluster array. The PRISM compiler selects to
program each of'the first three terms starting at B1 location of
the first three rows, for example state ‘a’ is assigned to block
1601, state “d’ is assigned to block 1602, and the state ‘L’ is
assigned to block 1603. The compiler then tries to assign all
the states of the specific term within the same FSA if they fit,
otherwise it uses neighboring FSAs to assign the remaining
states of the term for example it splits the term ‘Lmnopqrstuv’
in Row 3 and Row 4. The compiler triplicates state ‘c’, block
1608, 1606 and 1607, to enable the required transition from
state ‘c’ into its various follow states like state ‘a’, ‘d’, ‘L’ or
‘J’. Similarly state ‘1’ is also repeated three times and state ‘v’
is repeated two times, block 1614 and 1615, to enable appro-
priate transitions required by the R.E. The appropriate FV, LV,
UV, LUV, DC and UC vector bits are set to enable the right
state transitions required by the RE terms as assigned to the
group, of four FSAs by the compiler. The transition 1610 and
1612, illustrate a composite transition, where both LUV and
UV for state ‘i’ in Row2, B7 are set to ‘2’, enabling the state
transition from state ‘v’, 1615 to state ‘j” as well as transition
from state ‘i’ to state ‘j°. However, the DC vector bit for the
state ‘1’ is set to ‘0’ to prevent state ‘v’ from causing a transi-
tion into state when the inputs received are a ‘v’ followed by
an ‘1’. When the accept state ‘L’, Row 1, B5 is reached the
match signal for FSA in Rowl1 is asserted and the cluster
priority encoder and evaluation processor, block 815, takes
the appropriate action that is programmed.

[0095] FIG. 164 illustrates Row-wise and column-wise
PRISM FSA extension example. In this example, a RE:
‘(abeldefghilLmnopqrstuv)+kL’ is illustrated to be pro-
grammed using column-wise and row-wise FSA extension
architectures together. In this illustration the compiler uses
three columns of FSAs of one row of FSAs or PSEs, blocks
803, of the PRISM memory cluster, block 808, to program
various terms of the RE and uses Row 2 of column 3 for a few
states of one term. The FSAs in Rowl1 are coupled to each
other using the row-wise FSA extension mechanisms, where
as the column 3 Rows 1 and Row 2 FSAs are coupled using
the column-wise FSA extension architecture. The states ‘u’is
duplicated, block 1627 and 1628, and the state ‘v’ is also
duplicated, block 1619 an 1623 to enable the right transitions
between various states and terms of the RE. The term ‘abc’
and kL are assigned to FSA in Row 1 in Colunm1, where as
the term ‘defghi’ is assigned to Row 1 in Column 2. and the
term ‘Lmnopqrstuv’ is assigned to Column 3 FSAS in Rows
1 and Rows 2. The transition 1629, enables the FSA to go
from state ‘q’ to state ‘r’ using the column-wise transition, as
well as the transitions from duplicated states “u’, 1627 and
1628, to duplicated states ‘v’, states 1619 and 1623, respec-
tively are also enabled using column-wise transition. The
transition 1620, “enables transition from state ‘c’, state ‘v’ and
state ‘i’ to states ‘d’ or state ‘L’, while the transition 1624,
enables the state transition from states ‘v’ and T to states ‘a’ or
T. Transitions within an FSA are not illustrated to not com-
plicate the figure but are implied and properly programmed
by the PRISM compiler. When the accept state ‘I’, Row 1,
Column 1 is reached the match signal for FSA in Row 1 is
asserted and the cluster priority encoder and evaluation pro-
cessor, block 815, takes the appropriate action that is pro-
grammed.

[0096] In one exemplary embodiment, there may be col-
umn-wise FSA extension enabled between each group of four
PRISM Memory cluster PSE rows, and the row-wise exten-

US 2011/0153657 Al

sion may , be enabled between each of those rows and eight
columns of PSEs. Ha regular expression needs more states
than the states enabled by such a large group of FSAs, such an
RE may optionally be split into multiple FSAs or may option-
ally use rule group FSA extension architecture and mecha-
nisms illustrated in FIG. 1 IA and described above. Thus by
using the column-wise and row-wise FSA extensions of this
patent any arbitrary FSA may be represented within PRISM,
even when the individual PSE may support lot fewer FSA
states as illustrated above.

[0097] FIG. 9 illustrates a PRISM search compiler flow
(full and incremental rule distribution). The flow can be used
for distributing search rules or security rules when the full set
of rules are defined or when any updates or modifications are
made to the rule set and incremental changes to the rule set
need to be communicated and configured in the PRISM
search memory. The search memory may be used in distrib-
uted security architecture within system nodes across a net-
work which may be a LAN, WAN, MAN, SAN, wireless or
wired LAN and the like. The rules like application layer rules,
network layer rules or storage network layer rules or any other
content search rules may be created using manual or auto-
mated means and provided as inputs to the search compiler
flow in a predefined format. The rules may be created per each
layer of a seven layer OSI networking stack or there may be
other non OSI layer specific rules. The search compiler’s rule
parser, 904, parses the rules and converts them into regular
expression format if the rules are not already in that form.
Then the regular expression rules are converted into FSA
rules compiled to the node capabilities of the node that has the
PRISM content search memory and stored in the rules data-
base. The rules from the rule database are retrieved and dis-
tributed by the rules distribution engine to the appropriate
node(s) with the PRISM search memory. The search or secu-
rity rules may be distributed to the host processor or a control
processor or a host microprocessor or a network processor or
a master processor or a combination thereof as appropriate
depending on the node capability. The rules may be distrib-
uted using a secure link or insecure link using proprietary or
standard protocols as appropriate per the specific node’s
capability over a network. The network may be a local area
network (LAN), wide area network (WAN), internet, metro
area network (MAN), wireless LAN, storage area network
(SAN) or a system area network or another network type
deployed or a combination thereof. The network may be
Ethernet based, Internet protocol based or SONET based or
other protocol based or a combination thereof.

[0098] FIG. 10 illustrates PRISM FSA Compiler flow. The
regular expressions for the content search are presented to the
PRISM FSA Compiler flow by the rules parser, block 904.
PRISM compiler flow may optionally be implemented as a
stand alone compiler as well and may read regular expres-
sions for the content search rules or security rules or the like
generated by an IT manager or a user or another tool or a
combination or the like for compilation to PRISM. PRISM
FSA compiler reads the regular expressions, block 1002,
from a storage device like a disk drive or a file server or
memory or the like or directly from the output of another tool
or a combination and processes these regular expressions
optionally in the order specified. Since PRISM processes RE
rules using independent FSAs or NFAs, the REs are compiled
individually, however it may be possible for the PRISM FSA
compiler to process more REs for one FSA for PRISM that
supports multiple REs per FSA block. The PRISM compiler

Jun. 23, 2011

flow comprises of one or more of the steps illustrated in the
FIG. 10 and described below which may be performed in the
illustrated order or another order to compile the rules for
PRISM as may be appreciated by one with ordinary skill in
the art. PRISM compiler flow checks if all the regular expres-
sions have been processed or not, block 1003, and if any
expressions are left, it goes through the path, 1004, otherwise
it follows the path, 1017. When a regular expression is read by
the block, 1005, it is parsed, block 1006, to understand vari-
ous constructs of the regular expression. The PRISM com-
piler flow may at this stage indicate an error if there are any
issues with the regular expression like any syntax being
invalid or the like. The error flow is not illustrated in the figure
but may optionally comprise of logging the regular expres-
sion with an error, informing the user or the application or the
like of the error, ignore the error and move on to the next
regular expression, or stop the processing altogether or the
like or a combination of the foregoing. However, if no errors
are discovered, the regular expressions syntax tree is con-
structed, block 1007, and various symbols of the regular
expression are extracted, block 1008. The regular expression
symbols are then marked, block 1009, to make each symbol
unique as per the requirement of the Berry-Sethi’s FSA con-
struction algorithm. For example a regular expression like
(alb)*cd(alef)* may be marked as (aylb,)*c,d;(a,lesfy)™
there by making each symbol of the regular expression
unique. This regular expression is now linear and is pro-
cessed, block 1010, to find the determinants that extract
whether empty string is part of the language of the regular
expression and its components. The compiler flow may
extract the first states that are entered from the start state of the
regular expression, block 1011. For the above example the
first states are: a,, b;, and ¢, which may all be entered on
processing the first symbol from the start state. Then the
PRISM FSA compiler flow may extract the follow states,
block 1012 for each of the states or symbols of the FSA. For
the example above the following may be the follow states per
each state:

[0099] State a,: Follow states: a,, b, and ¢,

[0100] State b,: Follow states: a,, b;, and ¢,

[0101] State c,: Follow states: d;

[0102] State d,: Follow states: a, or es

[0103] State a,: Follow states: a, or e

[0104] State esL Follow states: f

[0105] State f,: Follow states: a, or es

[0106] The PRISM compiler flow then creates the state

transition list per state, 1013, from the follow states above
which essentially form the state transition list from each state.
The PRISM compiler flow then extracts terminal or accept
states, 1014 of the regular expression. For the example
expression above the accept states are: d;, a,, and f;. Once all
the processing of the FSA states is done, the marked symbols
are converted back to their unmarked form and the appropri-
ate PRISM programmable FSA data structures generated,
block 1015 for example, SDV per FSA state, state symbols,
symbol mask if any, initial or first states, accept states as well
as optional tag states if the regular expression is tagged, a left
biased or right-biased control if PRISM implements such
option, any associated action to be taken, the FSA 1D that will
hold this RE and the like. If the regular expression needs to
use more states than those supported in a single PSE, the
compiler assigns the RE to multiple FSAs and couples them
together using row-wise, column-wise, or rule group FSA
extensions or a combination there of or may split the RE into

US 2011/0153657 Al

multiple rules to fit the specific embodiment of PRISM, its
characteristics and the like. This RE in the PRISM compiled
form may either be kept in memory or storage or the like and
once all such REs are processed they may all be stored in a
compiled rules database, block 1018. Each compiled RE may
be deposited individually in the database or all rules may be
deposited once they are all processed or a combination. The
compiled rules database may be an actual database or a file or
a storage element or the like that records the compiled rules
data that may then be programmed into an appropriate
PRISM device by the rules distribution engine, 909, working
with the PRISM controller of the corresponding PRISM
device.

[0107] The PRISM memory of this invention may be manu-
factured into hardware products in the chosen embodiment of
various possible embodiments using a manufacturing pro-
cess, without limitation, broadly outlined below. The PRISM
memory in its chosen embodiment may be designed and
verified at various levels of chip design abstractions like RTL
level, circuit/schematic/gate level, layout level etc. for func-
tionality, timing and other design and manufacturability con-
straints for specific target manufacturing process technology.
The design would be verified at various design abstraction
levels before manufacturing and may be verified in a manu-
factured form before being shipped. The PRISM memory
design with other supporting circuitry of the chosen embodi-
ment at the appropriate physical/layout level may be used to
create mask sets to be used for manufacturing the chip in the
target process technology. The mask sets are then used to
build the PRISM memory based chip through the steps used
for the selected process technology. The PRISM memory
based chip then may go through testing/packaeing process as
appropriate to assure the quality of the manufactured product.

[0108] Thus the inventions of this patent cover various
aspects like:
[0109] A memory architecture comprising programmable

intelligent search memory (PRISM) for content search
wherein the PRISM memory provides search capability for
regular expression based search and a regular expressions are
compiled into a format recognized by PRISM and that fol-
lows the PRISM FSA algorithm.
[0110] The regular expression compiler comprises of one
or more of the following steps in no specific order:
[0111] 1. Read mechanism to read regular expressions
and a read process to do the same
[0112] 2. Parse mechanism to parse RE and a parse pro-
cess to do the same
[0113] 3. Syntax tree generation mechanism to generate
syntax tree and a syntax tree generation process to do the
same
[0114] 4. RE error handling mechanism to handle RE
errors and a process to handle RE errors

[0115] 5.RE symbol extraction mechanism to extract RE
symbols and an RE symbol extraction process to do the
same

[0116] 6. RE marking mechanism to mark RE symbols
with unique integers and a RE marking process to do the
same

[0117] 7. A FSA linearization mechanism to create a
linear FSA and create its determinants to extract pres-
ence or absence of empty sting in the language defined
by the RE and a process to do FSA linearization

Jun. 23, 2011

[0118] 8. A mechanism to find and extract first states of
the linear FSA and a process for first state identification
and extraction

[0119] 9. A mechanism to find and extract follow states
of the linearized FSA and a process for follow state
identification and extraction

[0120] 10. A mechanism to find and extract the state
transition list per state and a process for state transition
list identification and extraction

[0121] 11. A mechanism to find and extract the accept or
terminal states and a process for accept or terminal states
identification and extraction

[0122] 12. Create PRISM programmable FSA data pro-
grammable database structure for the RE comprises one
or more of SDV, state symbols, LB/RB, Accept state,
Initial States or Initial vector, tag states, FSA ID, GSDV,
GCV,RCV, ESV, LUV, UV, FV, DC, UC, LV or a com-
bination of the foregoing

[0123] 13. A mechanism to generate the Compiled RE
expressions rules data base comprising the PRISM pro-
grammable FSA data structures and a method for the
compiled RE rules data base generation.

[0124] 14. A mechanism to provide the compiled rules
data base to a rules distribution engine or other agent to
program these rules in the target PRISM device and a
method to do the same

[0125] 15. A mechanism to generate a programmable
FSA rule ID for programming the linear FSA in one
specific memory location of PRISM memory locations
that are randomly accessible to access, store or program
the programmable FSA rule memory circuits

[0126] 16.A mechanism to generate specific actions that
need to be taken when a particular regular expression
programmed in the PRISM FSA rule blocks is matched

or
[0127] 17. a combination of the foregoing.
[0128] The PRISM memory comprises of FSA extension

architecture and mechanisms to enable programming of regu-
lar expressions that are larger than the basic PSE FSA search
states. The FSA extension architecture may optionally com-
prise of Row-wise FSA extension mechanisms or column-
wise FSA extension mechanisms or FSA rule groups exten-
sions or a combination thereof to support large regular
expressions and optionally to support groups of regular
expressions that can be used to enable execution of other
groups of regular expressions when a certain event in the first
rule group is activated.

[0129] The PRISM memory Rule group FSA extension
architecture may comprise of External state vectors, and may
optionally comprising of rule group control vectors. The
ESVs and RCVs may optionally be addressed as memory
locations that may be programmed by the PRISM controller,
or an external master processor or the cluster evaluation pro-
cessor or a global evaluation processor or a combination to
enable transitions into and out of rule groups in. PRISM.
[0130] The Column-wise FSA architecture may further
comprise of Forwarding vector- up or down, local forwarding
vectors- up or down, up control vector, down control vector,
or a combination there of

[0131] The row-wise FSA architecture may further com-
prise of global state dependent vectors, global control vectors,
global state transition controls, global control network or a
combination.

US 2011/0153657 Al

[0132] The PRISM control vectors like GSDV, GCV, FV,
LV, LUV, UV, DC, UC, RCV, or the like may be implemented
as memory locations accessed for from programming from
the PRISM address decode and control logic or PRISM clus-
ter address decode and FSA controller or PRISM controller or
a combination there of

[0133] PRISM memory architecture that enables replicat-
ing states of an FSA that may enable proper FSA extensions
of REs using FSA extension architecture and mechanisms
described above.

[0134] The PRISM memory further comprises an array of
search memory circuits that provide the regular expression
search functions for searching content from documents, mes-
sages or packets or other data received from the network or
the local host or a master processor or a network processor or
TCP Offload Engine or Processor or Storage Network pro-
cessor or a security processor or other processor or a combi-
nation thereof.

[0135] The PRISM memory further comprises of a plural-
ity of clusters of the search memory circuits that provide
regular expression search functions for a plurality of regular
expressions. The search memory circuits comprise of
memory elements to store symbols of finite state automata
representing the regular expressions. The search memory cir-
cuits further comprise memory elements to store mask vec-
tors (MV) that may be applied to the stored symbols. The
mask vectors are coupled to the symbol memory elements and
the content being searched through symbol evaluation cir-
cuits that detect whether the received content comprises of the
symbols being searched. The search memory circuits further
comprise of memory elements to store elements of state
dependent vectors (SDV) which are used to decide the state
traversal by the search memory for the finite state automata.
The search memory circuits further comprise of match detect
circuits that operate by coupling with the memory elements
for symbols, MVs, SDVs, and the symbol evaluation circuits
for multiple states of the FSAs to decide on the traversal of the
states in the FSA based on the content being searched and the
programmed symbols. SDVs, and MVs. The search memory
circuits may further comprise tag and match detect circuits
that operate to provide tagged FSA and regular expression
search, wherein the tagged FSA is used to detect sub-string or
partial regular expression match beside a full regular expres-
sion match.

[0136] The memory elements of the PRISM memory com-
prise of static memory cells. The memory elements are each
independently addressable in a random order. The PRISM
memory further comprises of circuits to couple the content
search memory with other logic to provide coupling with
processors that can interface to the PRISM memory inte-
grated circuits. The PRISM memory further comprises of a
controller for interfacing with the processors to receive the
content to be searched. The PRISM memory may further
comprise of address decode logic circuits which decode the
received address to select the specific static memory cells
location to be read or written. The memory elements of the
search memory may each be uniquely addressed to read or

Jun. 23, 2011

write appropriate values in the memory elements. The
address decoding logic and the controller generate control
signals necessary to address the appropriate memory loca-
tions of the static memory cells based search memory. The
control signals are coupled to the PRISM arrays as a series of
word lines and bit lines that can randomly be used to access
desired memory locations.

[0137] The memory elements of PRISM support detection
of character pattern strings. The PRISM memory comprises
of symbol detection circuits and may optionally comprise of
mask vectors per symbol bits, that may be used to evaluate
received character stringusing simple XOR based compare
or other logic function and create a match indication. The
PRISM match signal processing circuits may logically com-
bine multiple match signals from each symbol detection
block to generate a composite match signal which would be
activated only if all the symbols have a match. The composite
match signal creates a match functionality like a traditional
CAM chip and thus enable PRISM chip to be partially or fully
configured to behave like a CAM provide a pattern matching
functionality beside regular expression search.

[0138] While the foregoing has been with reference to par-
ticular embodiments of the invention, it will be appreciated by
those with ordinary skill in the art that changes in these
embodiments may be made without departing from the prin-
ciples and spirit of the invention.

1. A memory architecture comprising programmable intel-
ligent search memory for content search wherein said pro-
grammable intelligent search memory performs regular
expression based search and comprises of a plurality of pro-
grammable search engines to perform search using a plurality
of regular expressions, said plurality of regular expressions
converted into plurality of finite state automata to program in
said plurality of programmable search engines.

2. An integrated circuit chip comprising programmable
intelligent search memory for content search wherein, said
programmable intelligent search memory performs regular
expression based search and comprises of a plurality of pro-
grammable search engines to perform search using a plurality
of regular expressions, said plurality of regular expressions
converted into plurality of finite state automata to program in
said plurality of programmable search. engines.

3. A hardware processor comprising an integrated circuit
chip memory said integrated circuit chip memory comprising
programmable intelligent search memory for content search,
wherein said programmable intelligent search memory per-
forms regular expression based search and comprises of a
plurality of programmable search engines to perform search
using a plurality of regular expressions, said plurality of regu-
lar expressions converted into plurality of finite state
automata to program in said plurality of programmable
search engines.

4. An integrated circuit chip of claim 2 comprising a pro-
cessor, said processor comprising memory, said memory
comprising said programmable intelligent search memory for
content search.

