

US 20160122738A1

(19) United States (12) Patent Application Publication Babe et al.

(10) Pub. No.: US 2016/0122738 A1 May 5, 2016 (43) **Pub. Date:**

(54) NOVEL METALLOPROTEASES

- (71) Applicant: DANISCO US INC., Palo Alto, CA (US)
- (72) Inventors: Lilia M. Babe, Emerald Hills, CA (US); Roopa Ghirnikar, Sunnyvale, CA (US); Frits Goedegebuur, Vlaardingen (NL); Xiaogang Gu, Shanghai (CN); Marc Kolkman, Oegsteest (NL); Jian Yao, Sunnyvale, CA (US)
- (21) Appl. No.: 14/893,473
- (22) PCT Filed: May 29, 2014
- (86) PCT No.: PCT/US2014/039928 § 371 (c)(1), Nov. 23, 2015 (2) Date:

(30)**Foreign Application Priority Data**

May 29, 2013	(CN)	PCT/CN2013/076384
May 29, 2013	(CN)	PCT/CN2013/076387

May 29, 2013	(CN)	PCT/CN2013/076398
May 29, 2013	(CN)	PCT/CN2013/076401
May 29, 2013	(CN)	PCT/CN2013/076406
May 29, 2013	(CN)	PCT/CN2013/076414
May 29, 2013	(CN)	PCT/CN2013/076415
May 29, 2013	(CN)	PCT/CN2013/076419

Publication Classification

- (51) Int. Cl. C12N 9/52
- (2006.01)C11D 3/386 (2006.01)(52) U.S. Cl.
 - CPC C12N 9/52 (2013.01); C11D 3/38681 (2013.01); C11D 3/386 (2013.01); C12Y 304/24 (2013.01)

(57)ABSTRACT

Aspects of the present compositions and methods relate to novel metalloproteases, polynucleotides encoding the novel metalloproteases, and compositions and methods for use thereof.

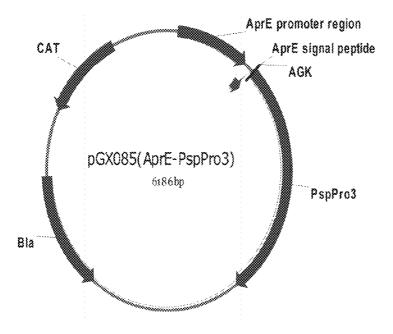


Figure 1.1. Plasmid map of pGX085(AprE-PspPro3).

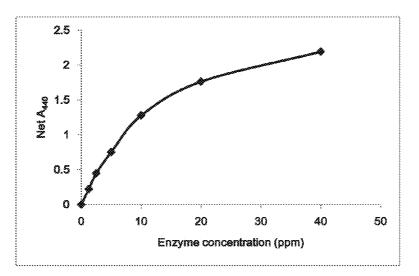


Figure 1.2. Dose response of PspPro3 in azo-casein assay at pH 7.

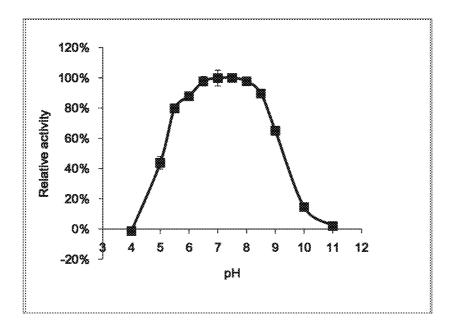


Figure 1.3. pH profile of PspPro3.

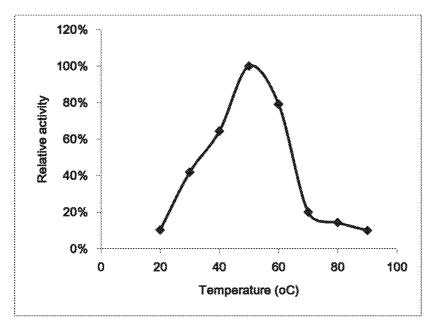


Figure 1.4. Temperature profile of PspPro3.

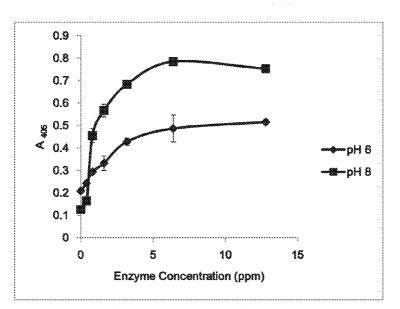


Figure 1.5A. Cleaning performance of PspPro3 at pH 6 and 8 in AT dish detergent.

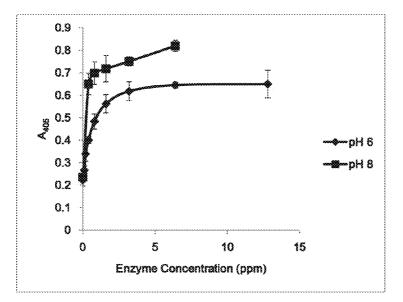


Figure 1.5B. Cleaning performance of PspPro3 at pH 6 and 8 in AT dish detergent with bleach

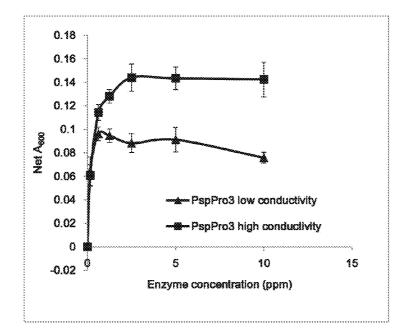
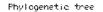



Figure 1.6. Cleaning performance of PspPro3 in liquid laundry detergent at pH 8

PspPro3 Paenibacillus_sp_Alce-11 B_thermoproteclyticus_F00800	ATGTCKGVLGDTKTPNTTASCSSYQLRDTTRCNGTVTYTASNRQS NBATGTGKGVLGDTKTFNTTASGSSYQLRDTTRGMGIVTYTASNRQS ITGTSTVGVGRGVLGDQKNINTTYS-TYYYLQDNTRGMGIFTYDAKYRTT :.*.*:***** *.:*** * : * *:**********
PspPro3 Paenibacillhs_sp_Aloe-11 B_thermoproteclyticus_P00800	IPGTILTDADNVWNOPAGVDAHAYAAKTYDYYNEKFNRNSIDGRGLQ IPGTILTDADNVWNDPAGVDAHAYAAKTYDYYKEKFNRNSIDGRGLQ LPGSLWADADNQFFASYDAPAVDAHYYAGYTYDYYKNVHNRLSYDGNNAA :**:: :**** : *
PspPro3 Paenibacillus_sp_Aloe-11 B_thermoproteclyticus_P00800	LRSTVHYGNRYNNAFWNGSQMTYGDGDGTTFIAFSGDFDVVGHELTHGVT LRSTVHYGNRYNNAFWNGSQMTYGDGDGTTFIAFSGDFDVVGHELTHGVT IRSSVHYSQGYNNAFWNGSQMVYGDGDGDGTFIFLSGGIDVVAHELTHAVT :**:***:: ****************************
PspPro3 Paenibacillus_sp_Alos-11 B_thermoproteolyticus_P00800	BYTSNLEYYGESGALNEAFSDIIGNDIQRKNWLVGDDIYTFFIAG EYTSNLEYYGESGALNEAFSDIIGNDIQRKNWLVGDDIYTFRIAG DYTAGLIYQNESGAINEAISDIFGTLVEFYANKNPDWEIGEDVYTFGISG :**:.* * .****:***:** :: . :* :*:*:***
PapPro3 Paenibacillus_sp_Aloe-11 B_thermoproteolyticus_P00800	DALRSMSNPTLYDQPDHYSNLYRGSSDNGGVHINSGIINKAYYLLAQGGT DALRSMSNPTLYDQPDHYSNLYRGSSDNGGVHINSGIINKAYYLLAQGGT DSLRSMSDPAKYGDPDHYSNRYTGTQDNGGVHINSGIINKAAYLISQGGT *:*****:*: *::****: *::*****
PspPro3 Paenibacillus_sp_Aloe-11 B_thermoproteclyticus_P00800	FHGVTVNGIGRDAAVQIYXSAFTNYLTSSSDFSNARDAVVQAAKDLYGAS PHGVTVNGIGRDAAVQIYYSAFTNYLISSSDFSNARDAVVQAARDLYGAS HYGVSVVGIGRDKLGKIFYRALTQYLTPTSNFSQLRAAAVQSATDLYGST .:**:* ***** ::::**:.:::**::* **:
PspPro3 Paenibacillus_sp_Aloe-11 B_thermoproteclyticus_P00800	SAQATAAAKSFDAVGVN (SEQ ID NO: 3) SAQATAAAKSFDAVGVN (SEQ ID NO: 44) SQEVASVKQAFDAVGVK (SEQ ID NO: 45) * :.;:. ::******:

Figure 1.7. Alignment of PspPro3 with protease homologs

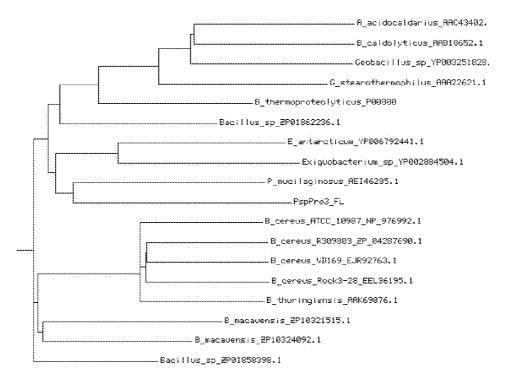


Figure 1.8. Phylogenetic tree of PspPro3 and homologs.

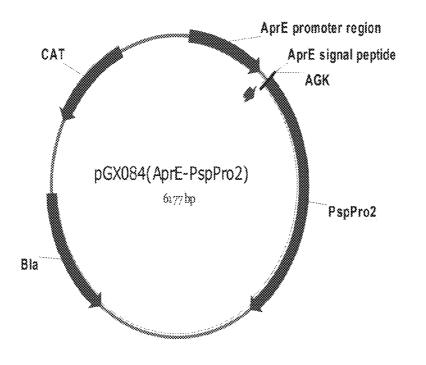


Figure 2.1. The map of plasmid pGX084(AprE-PspPro2).

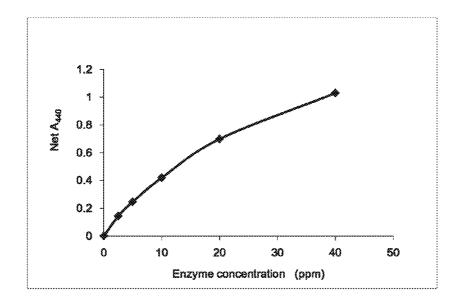


Figure 2.2. Dose response curve of PspPro2 in azo-casein assay at pH 7.

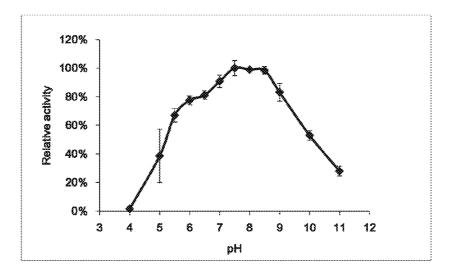


Figure 2.3. pH profile of purified PspPro2.

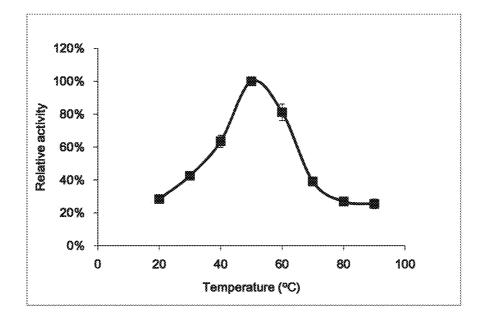


Figure 2.4. Temperature profile of purified PspPro2.

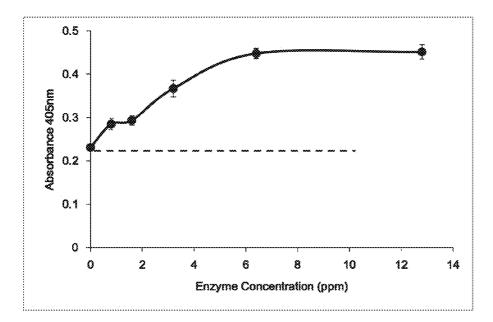


Figure 2.5A. Cleaning performance of PspPro2 protein at pH 6 in AT detergent with bleach.

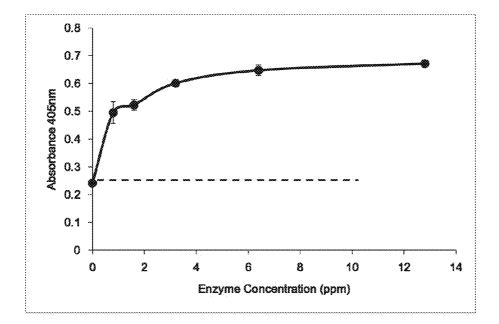


Figure 2.5B. Cleaning performance of PspPro2 protein at pH 8 in AT detergent with bleach.



Figure 2.6A. Cleaning performance of PspPro2 protein in liquid laundry detergent.

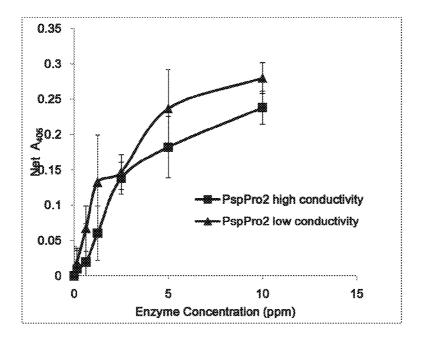


Figure 2.6B. Cleaning performance of PspPro2 protein in powder laundry detergent.

PspPro2 ZP_09775365.1_P_sp_Alce-11 B_thermoproteclyticus_P00800	A TGTGRGVD GK TKSFT TTA SGNRYQLKDT TRSNG IVT YI AGNROT A TGTGRGVD GR TKSFT TTA SGNRYQLKDT TRSNG IVT YI AGNROT I TGT ST VSVGRGVLGDQKN IN TTY E-TYYYIQDN TRGNG IFT YD AKY RTT : .*.**** *. *.; .** *. * .* .* .* .* .** .*
PspPro2 ZP_09775365.1_P_sp_Alce-11 B_thermoproteolyticus_P00800	TPGT IL IDTDNVWEDP AAVDA HAYAI KTYDYYKNKF GRD SIDGRGMQ TPGT IL IDTDNVWEDP AAVDA HAYAI KTYDYYKNKF GRD SIDGRGMQ LPGS LWADADNQFF ASYDA PAVDA HYYAG VTYDYYKNVH NRL SYDGNNAA **:::::::::::::::::::::::::::::::::
<pre>PspPro2 2P_09775365.1_P_sp_Alce-11 B_thermoproteolyticus_P00800</pre>	IRSTVHYGKEYNNAFWNGSQMIYGDGDGSTPTFPSGDPDVVGHELTHGVT IRSTVHYGKKYNNAFWNGSQMIYGDGDGSTPTFFSGDPDVVGHELTHGVT IRSSVHYSQGYNNAFWNGSQMVYGDGDGQTFIPLSGGIDVVAHELTHAVT ***;***.: ***********.**
PspFrc2 2P_09775365,1_P_sp_Alce-11 B_thermoproteclyticus_P00800	EPTS NLEYYGE SGALNEAF SO IIGNDIDGTSWLLGDG IYTPN IPG EFTS NLEYYGE SGALNEAF SD IIGNDIDGTSWLLGDG IYTPN IPG DYTAGL IYQNE SGA INEAI SO IFGTIMEF YAN KNPDWEI GEDVYTPGISG ::*:,* * * .****:***:***:**:*
PspFro2 2P_09775365.1_P_sp_Aloc-1f B_thermoproteclyticus_P00800	DALRSLSDPTRFGOPDHYSNFYPDPNNDDEGGVHTNSGIINKAYYLLAOG DALRSLSDPTRFGOPDHYSNFYPDPNNDDEGGVHTNSGIINKAYYLLAOG DSLRSMSDPARYGDPDHYSNRYT-GTODNGGVHTNSGIINKAAYLISOG *:***:***
PspPro2 ZP_09775365.1_P_sp_Alce-11 B_thermoproteclyticus_F00800	GTSH GV IVT GI GRE AA VFI YYNAF INYLLT STSNF SNARA AVI QA AKO FYG GTSH GV IVT GI GRE AA VFI YYNAF INYLLT STSNF SNARA AVI QA AKD FYG GTHY GV SVVGI GRD KLGKI FY RAL TQVLT PTSNF SQLRA AAVQS ATD LYG ** :**:*.***: *:*:**:*:*:*
PspPro2 ZP_09775365.1_P_sp_Alce-11 B_thermoproteolyticus_P00800	ADSLAVISAIQSEDAVGIK SEQ ID NO: 8 ADSLAVISAIQSEDAVGIK SEQ ID NO: 46 SISQEVASVKQAPDAVSVK SEQ ID NO: 45 ; * *;*. *;*****;*

Figure 2.7: Alignment of PspPro2 protein with homologous protease sequences.

Phylogenetic tree

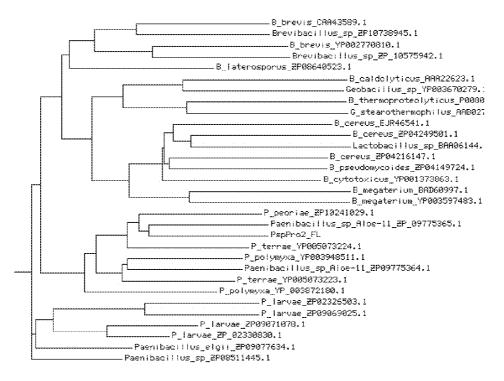


Figure 2.8: Phylogenetic tree for PspPro2 and its homologs

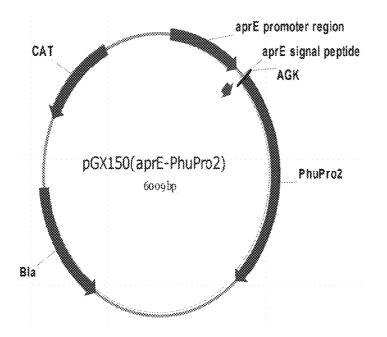


Figure 3.1. The plasmid map of pGX150 (AprE-PhuPro2).

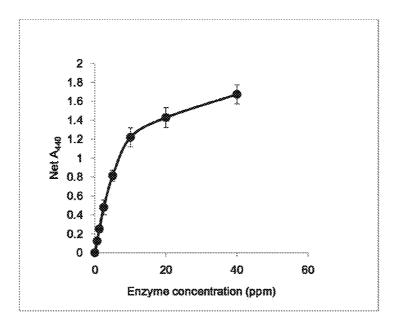


Figure 3.2. Dose response curve of PhuPro2 in azo-casein assay at pH 7.

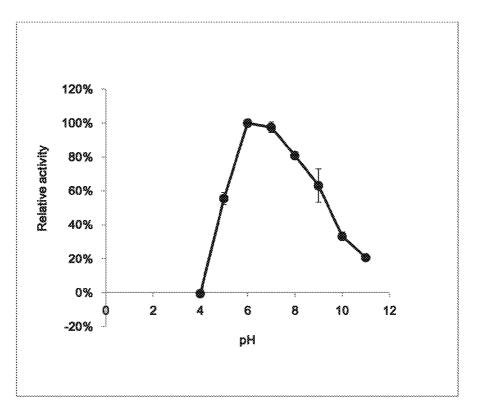


Figure 3.3. pH profile of PhuPro2.

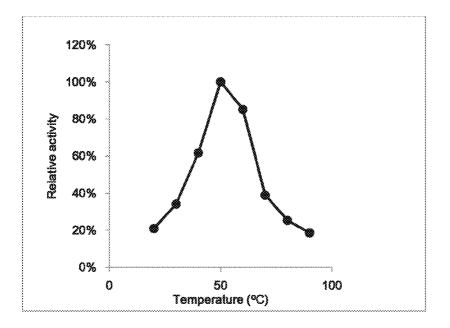


Figure 3.4. Temperature profile of PhuPro2.

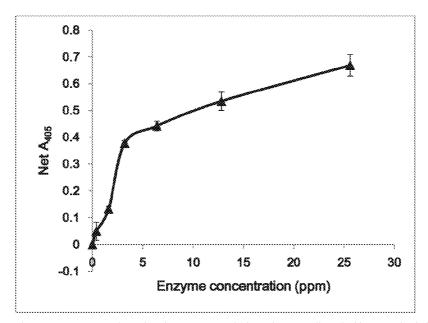


Figure 3.5A. Cleaning performance of PhuPro2 in AT dish detergent at pH 6.

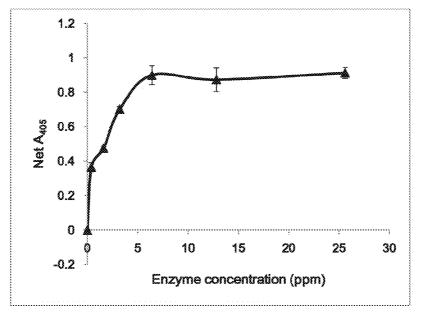


Figure 3.5B. Cleaning performance of PhuPro2 in AT dish detergent at pH 8.

PhuP ro?	ATGSGTGVLGDNKTFQTTLSGSTYQLKETTRGNGIYTYTASNBIT
P_terrae_HPL-003_YP_005073223. B_thermoproteolyticus_P00800	AT GT GKGVLGDT KS FNT TQSGS SYQLK DTT RGNGI VI YTA SNRQT I I GT STV GV GRGVLGDQRN INT TYS −T YYY LQDNT RGNGI FT YDA KYR TT
	, * × ×**×× * * * * * * * * * * * *
PhuFro2	IP GT LLTDA DNVWT DC AAV DAH TY AGK VY DFY KT KFG RN SLD GNG LL
P_terrae_HFL 003_YP_005073223.	IF GT LLT DA DNVWN DF AGV DAHAY AAK TY DYY KD KFGRN SID GRG LQ
B_thermoproteolyticus_P00800	lp gs lwadadnoff asy dapav dah yy asv ty dyy kn ven rl sydgnnaa
	***** ***** * ***** ******** * **.
FhuPro2	IRSS VHY SSRVNNAFWNGT QIV FGDGDGSTFIPLS GDLDV VG HELSHG VI
P_terrae_HPL-003_YP_005073223.	lr stveygsrynnafwngsomt ygdgdgttfiafsgópdvvgheltêgvt
B_thermoproteolyticus_P00300	IRSS VHY SQGYNNAFWNGS QMV YCDGD CQTFIPLS GG IDV VAHELTHA VT

PhuPro2	EY TS NLQYLNES GALNE SY ADVLGN SI QAKNWLIGDD VYTPGI SG
P_terrae_HPL-003_YP_005073223.	EY ISNLD YY GES GAINE, SF SDIIGNDIQRENWLVG DOIYT PSIAG
B_thermoproteolyticus_P00800	DY TAGLI YONES GAINE AI SDIFGTLVEFY AN ENPOWEIGED VYTPGLSG
	:**:.* * .****:**: :*::*: :* :*:*:*:*:*:
PhuProž	dalr sm5 np tly gopdn yanry tos sdnogvh tns gi tnkaf yllaog gt
P_terrae_RPL-003_YP_005073223.	OALR SMSNPTLYDQ PDH YSNLYKGS SDNGGVH TNSGT INKAY YLLAQGGT
B_themoprotcolyticus_P00800	ĎS LE SMS DP AKY GDPDH VS KRY TGT QÓ NGGVHÍNS GT INKAA YLI SQG GT
	*:*****:*: *************************
PhuPro2	QN GV TVA GI GRDAA VNI FYNTV AYYLT STSNF AAA KNAS I QA AKDLYG TG
P_terrae_MPL-003_YP_005073223.	PHNVTVS GEGRDAAVQEYY SAF TNY LT STENF SNTRAAVV QAAKD LYGAN
B_thermoproteolyticus_P00800	hy gý svýgi grókligki fýral toy lt pýsne sol ra bavos ato lyg st
	·*** ****** :**** :** *****************
PhuF ro2	SSYVISVINAFRAVGL- SEQ ID NO: 13
P_terrae_HPL-003_YP_005073223.	SAQATAAAKSFDAVGVN SEQ ID NO: 47
B_thermoproteolyticus_P00800	SQEVASVKQAFDAVGVK SEQ ID NO: 45
	*

Figure 3.6: Alignment of PhuPro2 with homologous protease sequences.

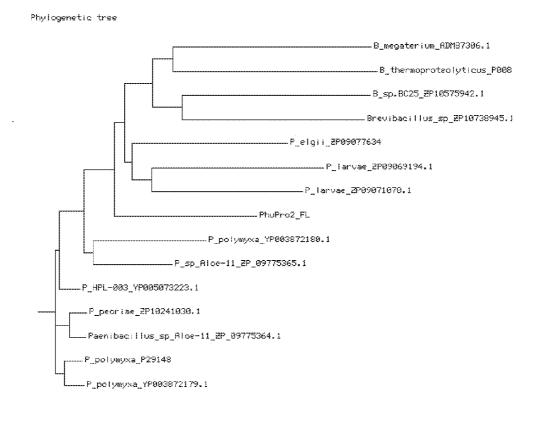


Figure 3.7: Phylogenetic tree for PhuPro2 and homologs.

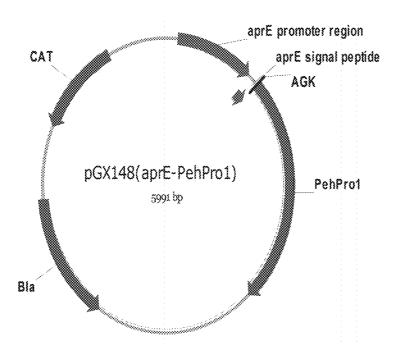


Figure 4.1. The plasmid map of pGX148 (AprE-PehPro1).

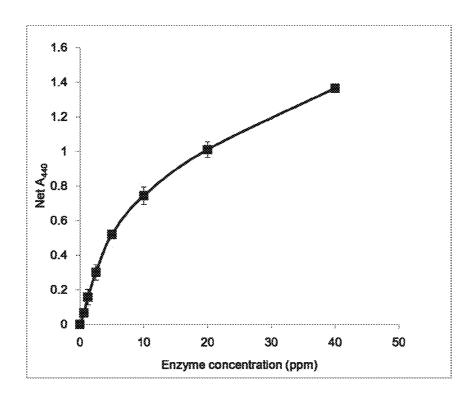


Figure 4.2. Dose response curve of PehPro1 in azo-casein assay at pH 7.

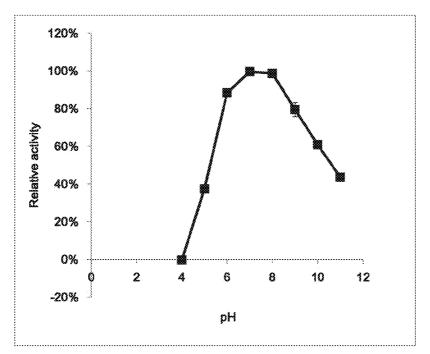


Figure 4.3. pH profile of PehPro1.

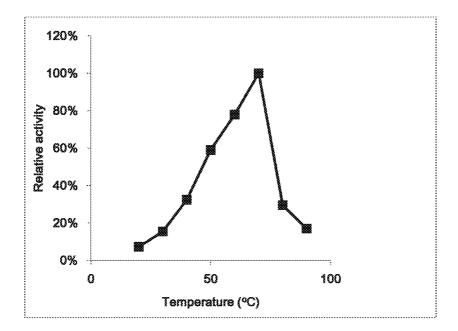


Figure 4.4. Temperature profile of PehPro1.

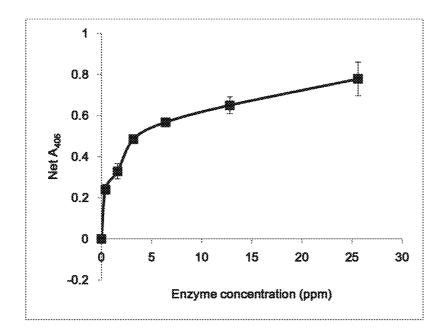


Figure 4.5A: Cleaning performance of PehPro1 in AT detergent at pH 6.

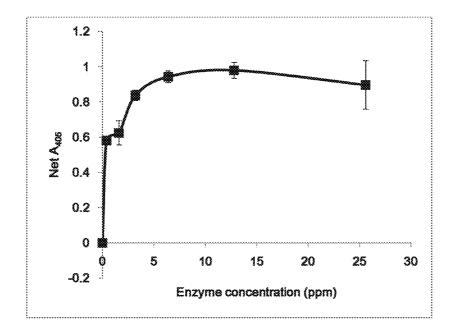


Figure 4.5B: Cleaning performance of PehPro1 in AT detergent at pH 8.

PehPro1_mature Paenibacillus_elgii_B69_2F_090 B_thermoproteclyticus_P00800	AT GTGKGVLGDT NSFTT TQS CS TYQLKDTT RCQGI VT YSAONP.SS AT GTGKGVLGDT KSFTT TQS CS SYQLK DTT RCQGI VT YSA GNR TS IT GT SIV GV GRGVLGDQ KN INT TYST YYY LQDNT RGNGYFTYDA KYR TT :.*.^:****** *.:.** * : * *:************
PehProl_wature Paenibacillus_elgii_669_2P_090 B_thermoproteolyticus_P00800	LP GT LL T SS SNT WNDGAAV DAHAY TAK VY DYY KN KFG RN S ID GNG PQ LP GS LL T ST NNI WNDG SAV DAHAY TGK VY DYY KN KFG RN S ID GNG LQ LP GS LWA DA DNQ FF ASY DA PAV DAH YY AGV TY DYY KN VHNRL SYD GNN AA ***; * ;,;; * ; * * ***** *:******** * ***
PehProl_mature Paenibacillus_elgii_B69_2P_090 B_thermoproteolyticus_P00800	LK ST VHY SS RYNNA FWN GVQMV YGD CD GVTF I FFS AD PDV IG HEL THG VT LK ST VHY ST RYNNA FWN GVQMV YGD GD GVTFR SFP AD PDV IG HEL THG VT IR SS VHY SQ GYNNAFWN GS QMV YGD SD GQTF I PLS GG ID VA HEL THA VT (;*;*****.*****************************
PenFrol_mature Paenibacillus_elgii_869_2P_090 B_thermoproteclyticus_P00800	EB TA GLE YYGEB GÀLMESI SOI I GNAI DGKNW LIGDLIYTPNT PG ES TA GLE YYGES GALNE SI SDI PGNAI EGKNW LIGDLITLNA DYTA GLI YQNES GA INEAI SDI FGT LVEFYAN KNP DWEIGED VYTPGI SG : **** :
PehProl_mature Faenibacillus_algii_B69_ZP_090 B_thermoproteclyticus_P00800	DALR SMENP KLY NO FOR YORRY TOP SONGEVE INS GINNKAP YLI AQG GT GALR SMENP KLY ROPDR YORRY TOF SONGEVE INS GINNKAP HLI AOG GT DS LR SMS DP AKY GD PDH YS KRY TG TODNEGVE INS GINNKAA YLI SOGGT
PehProl_mature Paenibacillus_elgii_B69_3P_090 B_thermoproteclyticus_P00800	HY GV TVNGI GPDAAVQI FY GAL INYLT PTSNE SAMPAAAI QAATDLYGAN HY GV TVNGI GRSAAEQI FY DAL THYLT PTSNE SAI RAAAI QAATDSEGAN HY GV SVVGI GPDKLGKI PY RAL TQYLT PTSNE SQLRAAAVQSATDLYG ST ****** :* ****, :*** :** :*** :**:
PehProl_mature Paenibacillus_elgii_869_8P_090 B_thermoproteolyticus_P00800	SSQVNAVKKAYTAVGVN SEQ ID NO: 16 SSQVDAVKKAYNAVGVN SEQ ID NO: 48 SQEVASVKQAFDAVGVK SEQ ID NO: 45 *.;* :**:*: ****:

Figure 4.6: Alignment of PehPro1 protein with homologous protease sequences.

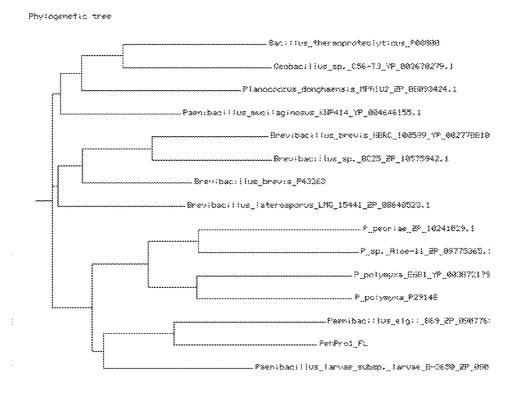


Figure 4.7: Phylogenetic tree for PehPro1 and its homologs.

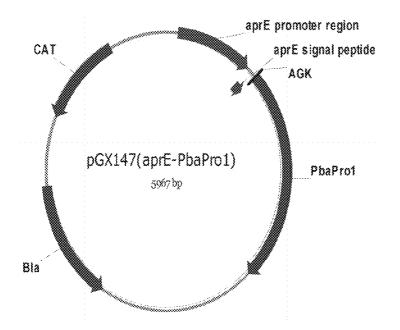


Figure 5.1. The plasmid map of pGX147(AprE-PbaPro1).

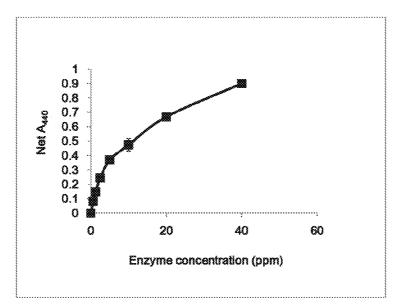


Figure 5.2. Dose response curve of PbaPro1 in azo-casein assay at pH 7.

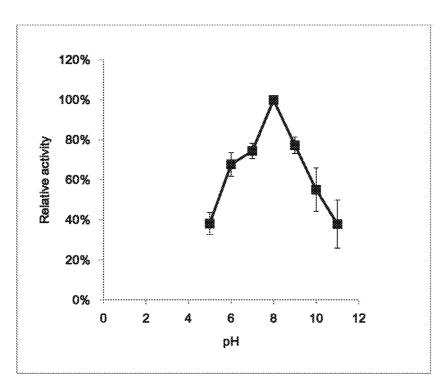


Figure 5.3. pH profile of PbaPro1.

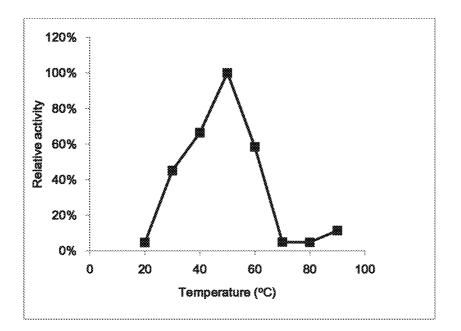


Figure 5.4. Temperature profile of PbaPro1.

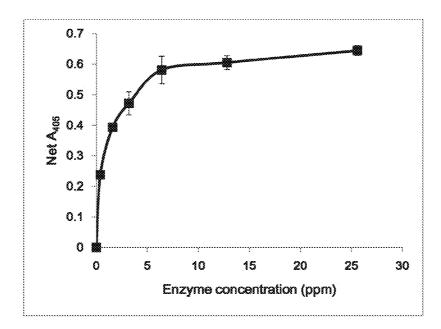


Figure 5.5A: Cleaning performance of PbaPro1 in AT dish detergent at pH 6.

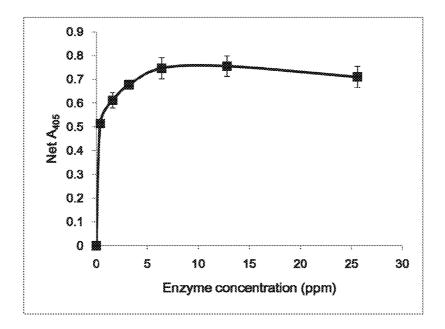
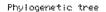



Figure 5.5B: Cleaning performance of PbaPro1 in AT dish detergent at pH 8.

PbaProl P_polymyxa_SC2 B_thermoproteolyticus_P00800	ATGTGTGVHGDTKTLTTTQEGGTYQLKDTTRGKGLQTYTANNRSS NEATGTGKGVLGDSKSFTTTASGSSYQLKDTTRGNGIVTYTASNRQS ITGTSTVGVGRGVLGDQKNINTTYS-TYYYLQDNTRGNGIFTYDAKYRTT
	:,*.* ** ** [*] *.:.** * : * *:*.********* ** *. * :
PbaProl P.polymyxa_SC2	LPGSLSTSSNNVWTDRAAVDAHAYBAATYDFYKNKFNRNGIDGNGLL IPGTILTDADNVWNDPAGVDAHAYBAKTYDYYKAKFGRNSIDGRGLO
B_thermoproteclyticus_P00800	LPG5LWADAONQFFASYD3PAVDAHYYAGVTYDYYKNVHNRLSYDGNN3A
	;**;; `.;;* : * ,.**** **. ***;`*** . **
PbaProl	IRSTVHYGSNYRNAFWNGAQIVYGÔGDGIEFGPFSGDLDVVGRELTHGVI
P_polymyxa_SC2 B_thermoproteolyticus_P00800	LRSTVHYGSRYNNAFWNGSQMTYGDGDGSTFIAFSGDPDVVGHELTHGVT IRSSVHYSOGYNNAFWNGSOMVYGDGDGOTFIPLSGGIDVVAHELTHAVT
s"rusumobrocsorAcreus":cosoo	182011200100000000000000000000000000000
PbaProl	EYTANLEYRNEPGALNEAFADIMGNTIESKNWLLGDGIYTPNIEG
P_polymyxa_SC2 B_thermoproteolyticus_P00800	EYTSNLEYYCESGALNEAFSDVIGNDIQRKNWLVGDDIYTPNIAG DYTAGLIYONESGAINEAISDIFGTLVEFYANKNPOWEIGEDVYTPGISG
pTerenwhrenéer76réer [*] agana	:**);* * .*.**;***);*(;*. :: :* :*:::*:***********************
PbaPro1	DALRSLSDPTLYNOPDKYSDRYTGSODNOGVHINSGIINKAYYLAAQGGT
P_polymyxa_SC2 B_thermoproteclyticus_P00800	DALRSMSNFTLYDQPDHYSNLYRGESDNGGVHTNSGIINKAYYLLAQGGN DSLRSMSDPAXYGDPDHYSKRYTGTQDNGGVHINSGIINKAYYLISQGGT
	*;***;*:*; *.;**;**, * *:****** *********************
PhaProl	HNGVTVSGTGRDKAVRTEXSTLVNYLTPTSKFAAAKTATIQAAKDLYGAN
P_polymyxa_SC2 B_thermoproteolyticus_P00800	FHGVTVNGIGROBAVQIYYSAFTNYLTSSSOFSNARAAVIQAAKDLYGAN HYGVSVVGIGRDKLGKIFYRALTOYLTPTSNFSOLRAAAVOSATDLYGST
PTGGETWONTGGGTAFTC49T: 00000	. xx'ş xxxx :x'x ::''şxx;'x'şx'ş ::'x'x'x'x'x'z' HIGADAQIGYNGOYI IMBIĞIHI IDM GĞHYNMAĞOYIDIGƏI
PbaProl	SARATAITKAYQAVGL- SEQ ID NO: 23
P_polymyxa_3C2	SAEATAAAXSFDAVGVN SEQ ID NO: 49
B_thermoproteclyticus_P00800	SQEVASVRQAFDAVGVK SEQ ID NO: 45 * *.:: ::::***:

Figure 5.6: Alignment of PbaPro1 protein with homologous protease sequences.

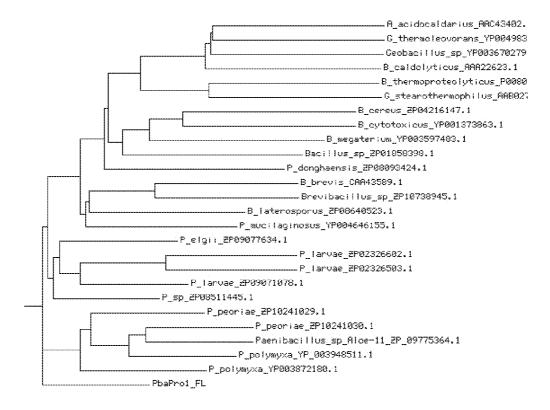


Figure 5.7: Phylogenetic tree for PbaPro1 and homologs.

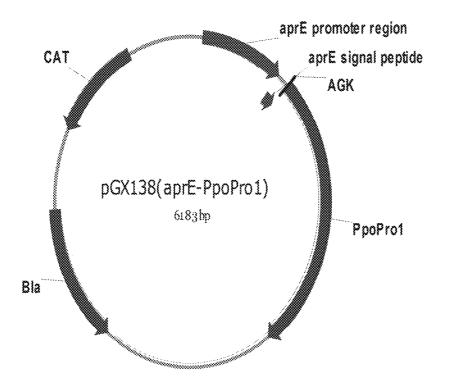


Figure 6.1. The plasmid map of pGX138 (AprE-PpoPro1).

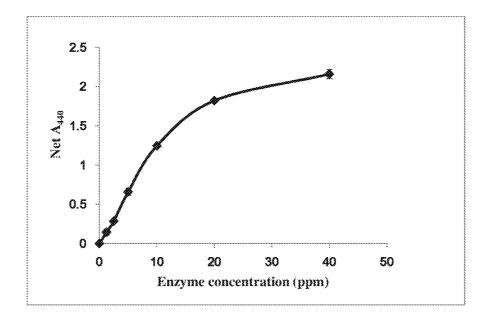


Figure 6.2. Dose response of PpoPro1 in azo-casein assay at pH 7.

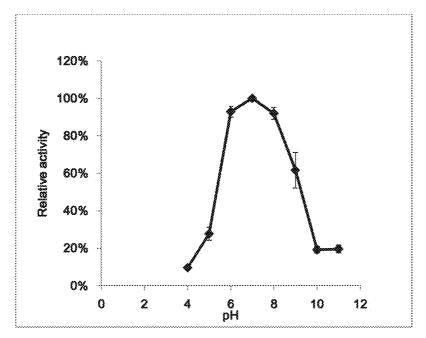


Figure 6.3. pH profile of purified PpoPro1.

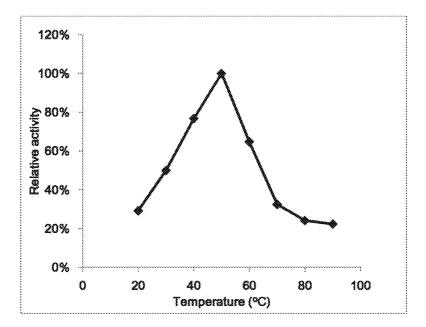


Figure 6.4. Temperature profile of purified PpoPro1.

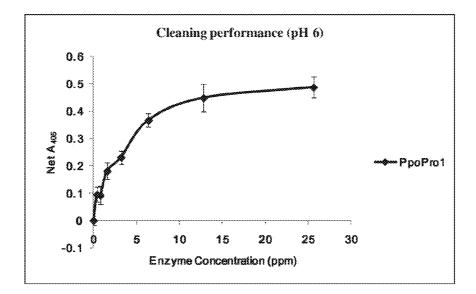


Figure 6.5A: Cleaning performance of PpoPro1 at pH 6 in AT detergent with PAP.

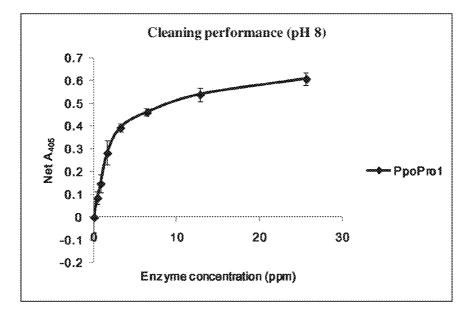


Figure 6.5B: Cleaning performance of PpoPro1 at pH 8 in AT detergent with PAP.

PpoProl P_polymyxa_SC2_YP_003948511.1 B_thermoproteolyticus_P00800	ATGTGKGVLGDSKSFTTTASGSSYQLKDTTRGNGIVTYTASNRQS NEATGTGKGVLGDSKSFTTTASGSSYQLKDTTRGNGIVTYTASNRQS ITGTSTVGVGRGVLGDQKNINTTYS-TYYYLQDNTRGNGIFTYDAKYRTT :.*.*:******: * * : * *:*.****** *, * ;
FpoProl P_polymyxa_SC2_YP_003948511.1 B_thermoproteolyticus_F00800	IPGTILTDADNVWNDPAGVDAHAYAAKTYDYYKAKFGRNSIDGRGLQ IPGTILTDADNVWNDPAGVDAHAYAAKTYDYYKAKFGRNSIDGRGLQ LPGSLWADADNQFFASYDAPAVDAHYYAGVTYDYYKNVHNRLSYDGNNAA :**::::**** :
PpoPro1 P_polymyxa_SC2_YP_003948511.1 B_thermoproteolyticus_F00800	LRSTVHYGSRYNNAFWNGSQMTYGDGDGSTFIAFSGDPDVVGHELTHGVT LRSTVHYGSRYNNAFWNGSQMTYGDGDGSTFIAFSGDPDVVGHELTHGVT IRSSVHYSQGYNNAFWNGSQMVYGDGDGDGQTFIPLSGGIDVVAHELTHAVT :**:***
FpoProl P_polymyxa_SC2_YP_003948511.1 B_thermoproteolyticus_P00800	EYTSNLEYYGESGALNEAFSDVIGNDIQRKNWLVGDDIYTPNIAG EYTSNLEYYGESGALNEAFSDVIGNDIQRKNWLVGDDIYTPNIAG DYTAGLIYQNESGAINEAISDIFGTLVEFYANKNPDWEIGEDVYTPGISG :**:.* * .****:***:**::*: ::** :*:*:**
PpoProl F_polymyxa_\$C2_YP_003948511.1 B_thermoproteolyticus_P00800	DALRSMSNPTLYDQPDHYSNLYRGSSDNGGVHTNSGIINKAYYLLAQGGN DALRSMSNPILYDQPDHYSNLYRGSSDNGGVHTNSGIINKAYYLLAQGGN DSLRSMSDPAKYGDPDHYSRRYTGTQDNGGVHINSGIINKAAYLISQGGT *;*****;*: *.;******; * *:.****** ******* ******
PpdProl P_polymyxa_SC2_YP_003948511.1 B_thermoproteolyticus_F00800	FHGVTVNGIGRDAAVQIYYSAFTNYLTSSSDFSNARAAVIQAAKDLYGAN FHGVTVNGIGRDAAVQIYYSAFTNYLTSSSDFSNARAAVIQAAKDLYGAN HYGVSVVGIGRDKLGKIFYRALTQYLTPTSNFSQLRAAAVQSATDLYGST .:**:* ***** :*:* *;*:**::*:**: ***.:*:*:*
PpoPro1 P_polymyxa_SC2_YP_003948511.1 B_thermoproteolyticus_P00800	SAFAIAAAKSFDAVGVN SEQ ID NO: 28 SABATAAAKSFDAVGVN SEQ ID NO: 50 SQEVASVKQAFDAVGVK SEQ ID NO: 45 * *.::. ::******

Figure 6.6. Alignment of PpoPro1 with protease homologs.

Phylogenetic tree

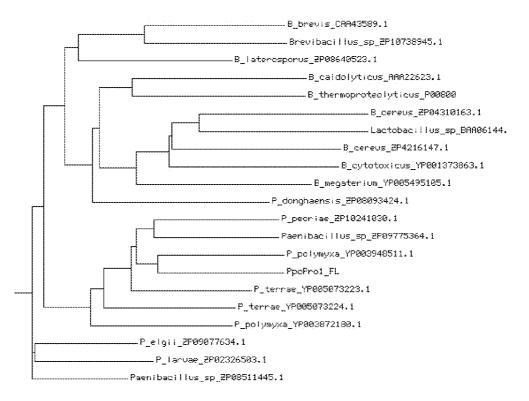


Figure 6.7. Phylogenetic tree of PpoPro1 and homologs.

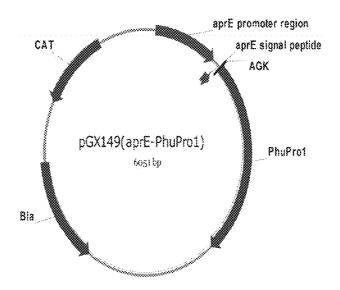


Figure 7.1. The plasmid map of pGX149(AprE-PhuPro1).

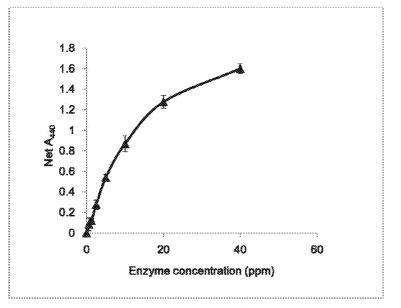


Figure 7.2. Dose response curve of PhuPro1 in azo-casein assay at pH 7.

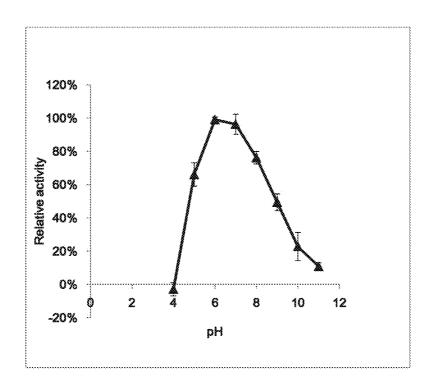


Figure 7.3. pH profile of PhuPro1.

Figure 7.4. Temperature profile of PhuPro1.

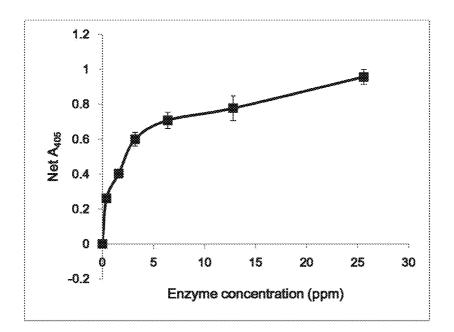


Figure 7.5A. Cleaning performance of PhuPro1 in dish detergent at pH 6.

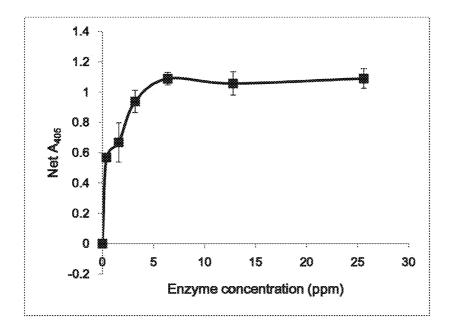
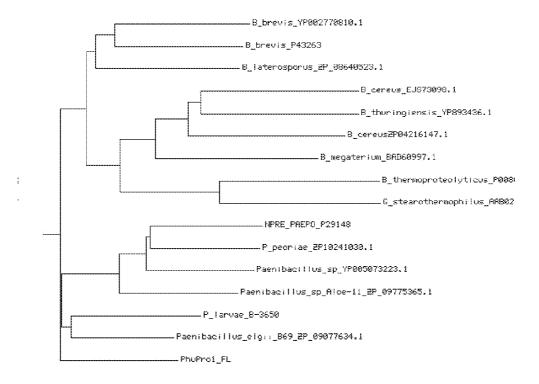



Figure 7.5B. Cleaning performance of PhuPro1 in dish detergent at pH 8.

CLUSTAL W (1.83) multiple sequence alignment

PhuProl P ternae HPL-003 YP 005073223.	ATGTCKGVLGDTKSFTVGTSGSSYVMTDSTRGKGIQTYTASNRTS ATGTCKGVLGDTKSFNTTCSGSSYOLKDTTRGNGLVTYTASNROT
B_thermoproteolyticus_P00800	IFGTSTVGVGRGVLGDQININTTYS-TYYYLQDNTGONGIFTYDAXYRTT ;.*.*:***** *.: * ; * ; *.****:** *.* ; * ;
PhuProl P_terrae_HPL-003_YP_005073223, B_thermoproteolyticus_F00800	LP GS TVT SS SËTEN DP ASVOAHAY AQK VY DFY KS NFNRN SID GNGLA IP GT LLTDADNVWN DP AGV DAHAY AAK TY DYY KDRFGRN SID GRG LQ LP GGLMADADNQFF ASY DA PAV DAH YY AGV TY DYY HR VENH, SYD GNN AA :**: :* **** ********
PhtFiol P_ternae_HPL-003_YP_005073223. B_thermoproteclyticus_P00800	IR ST THY ST RYNNA FWNGS OMV YGD GD GSOFIAFS GD LDVVCHELTHGVF LR ST VHY GS RYNNAFWNGS OMT YGD CD GTTFIAFS GD PDVVCHELTHGVT IR SS VHY SO GYNNAFWNGS OMV YGD OD GOTFI PLS GG 1D VVA HELTHA VT ;**:.**. *******************************
PhuProl P_terrae_HPL-003_YP_005073223. B_thermoproteclyticus_P00800	EYTANLEYY GOS GALNESI SEI FGN TI EGR NNWYG DA TYT PGV SG EY TSNLD YY GES GALNESF SEI IGNEI QRENNLYG DE IYT PSI AG DY TA GLI YONES GALNEAT SEI FGT LVEFYANKNP DMEIGED VYT PGI SG ;**:.* * .:***:**:;**;:*:; ;* ;* ;* ;* ;* ;* ;* ;* ;* ;*
PhuFrol P.terrae.HPL-003.YP.005073223. B.thermoproteolyticus_F00800	DALR WEDDP TEGEQ PARMA DYN NTSAD NEGVA TNSELPNN AY YLLAGGET DALR SMSNP TLYDQ PDH YS NLY KES SD NGGVH TNSET INRAY YLLAGGET DSLR SMSDP AKY GDPDH YS KRY TET QD NEGVH TNSET INK AA YLLS QGGT *:** *.:^: :::::::::::::::::::::::::::::
PhuPin1 P.térrae.HPL-003.YP005673223, B.thermoproteolyticus.P00800	FGGVNVTGIGRSQA IQIVYPALTYYLTSTSNESNYRSAMVQA STDLYGAN FHNVTVSGIGRDAAVQIYYSAFTNYLTSTSNESNYRSAMVQA SKDLYGAN HYGVSVVGIGRDKLGKIFYRALTQYLTPTSNESQLRAAVQSATDLYGST , ,*.* ****. :* * *;* ***.****; *;* ***;;****;
PhuProl P_ternae_HPL-003_YP_005073223. B_thermoproteolyticus_P00800	STQTTAVKNSLSAVGIN SEQ ID NO: 33 SAQATAAAKSFDAVGVN SEQ ID NO: 51 SQEVASVKQAPDAVGVK SEQ ID NO: 45 * :.::. ::::***::

Figure 7.6: Alignment of PhuPro1 with homologous protease sequences.

Phylogenetic tree

0.1

Figure 7.7: Phylogenetic tree for PhuPro1 and homologs.

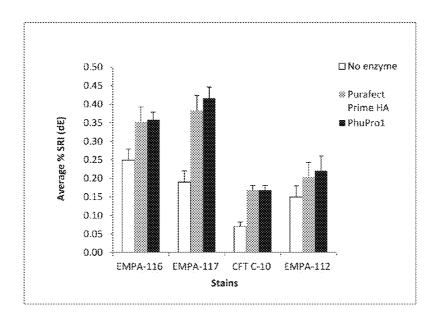


Figure 7.8A: Cleaning performance in Terg-o-Tometer assay at 32°C, on four technical stains.

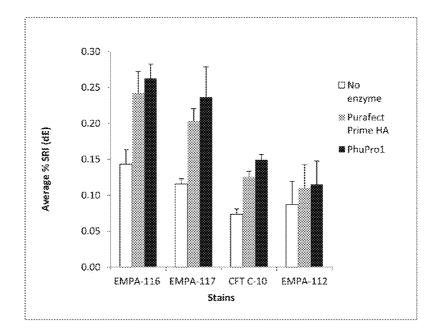


Figure 7.8B: Cleaning performance in Terg-o-Tometer assay at 16°C, on four technical stains.

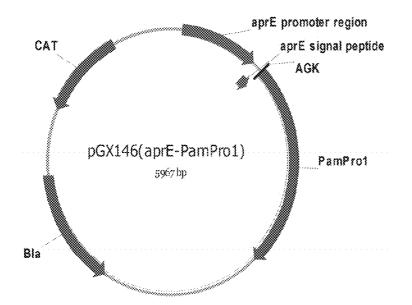


Figure 8.1. The plasmid map of pGX146(AprE-PamPro1).

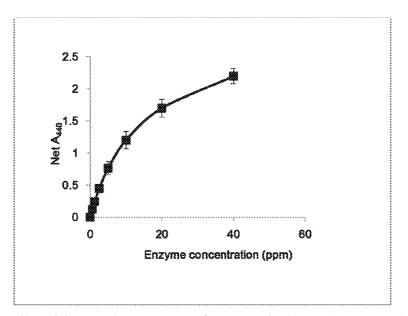


Figure 8.2. Dose response curve of PamPro1 the azo-casein assay at pH 7.

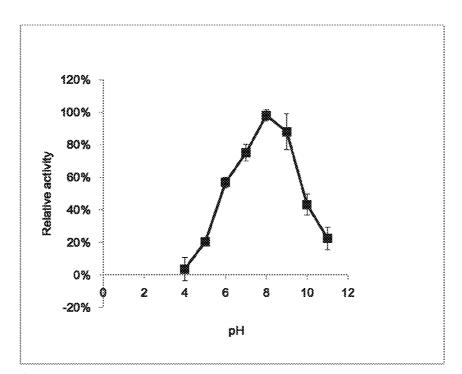


Figure 8.3. pH profile of PamPro1.

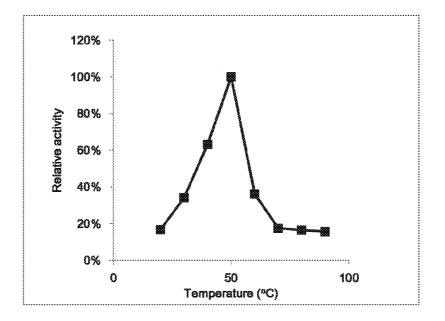


Figure 8.4. Temperature profile of PamPro1.

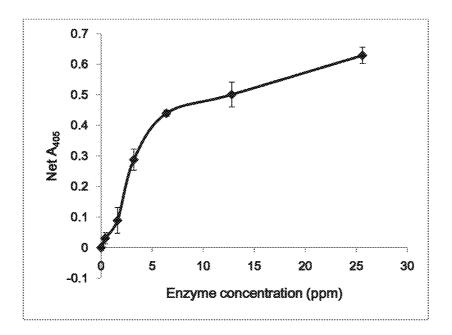


Figure 8.5A: Cleaning performance of PamPro1 in AT dish detergent at pH 6.

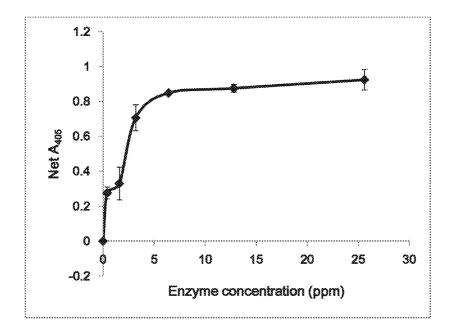
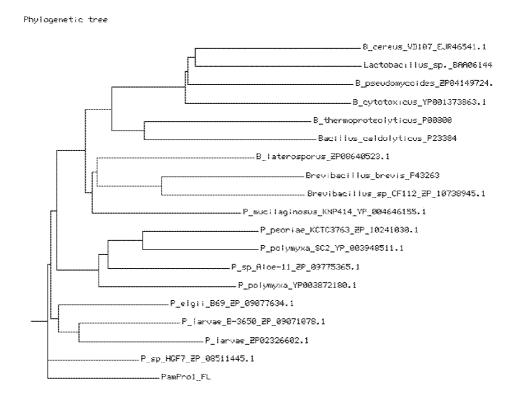



Figure 8.5B: Cleaning performance of PamPro1 in AT dish detergent at pH 8,

CLUSTAL W (1.83) multiple sequence alignment

PamProl P_peoriae_KCTC B_thermoproteolyticus_P00800	ATGTGTGVLGDTKTLTTTQSGSTFQLKDTTRGNGIQTYTANNGSS DIINEATGTGKGVLGDTKSFTTTASGSSYQLRDTTRGNGIVTYTASNRQS ITGISTVGVGRGVLGDQKNINTTYS-TYYYLQDNIRGNGIFTYDAKYRTT :.*.* ***** *.:.** * : : *;*.****** ** *. ;
PamProl P_peoriae_KCTC B_thermoproteolyticus_P00800	LPGSLLTDSDNVWTDRAGVDAHAHAAATYDFYKNKFNRNGINGNGLL IPGTILTDADNVWNDPAGVDAHAYAAKTYDYYKEKFNRNSIDGRGLQ LPGSLWADADNQFFASYDAPAVDAHYYAGVTYDYYKNVHNRLSYDGNNAA ;**:; ;*:** ; ***** :*, ***;**;** .:*.
PamProl P_peoriae_KCTC B_thermoproteolyticus_P00800	IRSTVHÝGSNYNNAFNNGAQIVFGEGDGTMFRSLSGELDVVGHELTHGVÍ LRSTVHYGNRYNNAFWNGSQMTYGDGDGTTFIAFSGDPDVVGHELTHGVT IRSSVHYSQGYNNAFWNGSQMVYGDGDGQTFIPLSGGIDVVAHELTHAVT :**:**********:::::*****
PamProl P_peoriae_XCTC B_thermoproteolyticus_P00800	EYTANLEYRNEPGALNEAFADIFGNTIQSKNWLLGDDIYTPNTPG EYTSNLEYYGESGALNESESDIIGNDIQRKNWLVGODIYTPRIAG DYTAGLIYQNESGAINEAISDIFGILVEFYANKNPDWBIGEDVYTPGISG ;**;,* * .*.**:**:::**;*.:; :* :* :* :*:;*:
PamProl P_peoriae_XCTC B_thermoproteolyticus_P00800	DALRSLSNFTLYGOFDNYSDRYTGSODNGGVBINSGIINKAYFLAAOGGT DALRSMSNFTLYDOPDHYSNLYRGSSDNGGVHINGGIINKAYYLLAOGGT DSLRSMSDFAKYGDFDHYSKRYTGTODNGGVBINSGLINKAAYLISOGGT *:***:*:*: *.;**:**. *.;****** *******
PamProl P_peoriae_XCTC B_thermoproteolytichs_P00800	HNGVTVTGIGRDKAIQIFYSTLVNYLTPTSKFAAAKTATIQAARDLYGAT FHGVTVNGIGRDAAVQIYYSAFTNYLTSSSDFSNAPDAVVQAAKDLYGAS HYGVSVVGIGRDKLGKIFYRALTQYLTFTSNFSQLRARAVQSATDLYGST . **;* ***** :*:* ::::***.;*.*: : *.:*:****:;
PamProl P_peoriae_KCTC B_thermoproteolyticus_P00800	SAEATAITKAYQAVGL- SEQ ID NO: 38 SAQATAAAKAFDAVGVN SEQ ID NO: 52 SQEVASVKQAFDAVGVK SEQ ID NO: 45 * :.;: :*::***:

Figure 8.6: Alignment of PamPro1 with homologous protease sequences

0.1

Figure 8.7: Phylogenetic tree for PamPro1 and homologs

1821.A ITGTSTVGVGRGVLGDQKNINTTYSTYY----YLQDNTRGNGIFTYDAKYR B_caldolyticus_AAA22623.1 --TSTVGVGRGVLGDQKYINTTYSSYYGYYYLQDNTRGSGIFTYDGRNR B_anthracis_NP843132.1 VTGTNAVGTCKGVLGDTKSLNTTLSASS---YYLQDNTRGATIFTYDAKNR B_thuringiensis_YP893436.1 VTGTNAVGTGKGVLGDTKSLNTTLSASS--YYLQDNTRGATIFTYDAKNR B_cereus_ZP04310163.1 ---TNAVGTGKGVLGDTKSLNTTLSASS--YYLODNTRGATIFTYDAKNR Lactobacillus_sp_BAA06144.1 VTGTNAVGTGKGVLGDTKSENTTLSASS----YYLODNTRGATIFTYDAKNR VTGTNKVGTGKGVLGDTKSLNTTLSGSS--YYLQDNTRGATIFTYDAKNR INPC. A B_cytotozicus_YP001373863.1 VTGTNAVGTGTGVLGDKKSINTTLSGST--YYLODNTRGAOIFTYDAKNR B_megaterium_YP005495105.1 ---TNAIGSCKGVLGDTKSLKTTLSGSA--YYLQDNTRGATIYTYDAKNR B_sp_SG-1_ZP01858398.1 VSGTDQVGTGKGVLGDTKSLNTTLSNGT---YYLQDNTRGGGIMTYDMKNR -----RTGTGTGVLGDTKTLTTTQSGST--FQLKDTTRGNGIQTYTANNG PamProl PhaProl ----ATCTGTGVWGDTKTLTTTQSGST--YQLKDTTRGKGIQTYTANNR -----ATGSGTGVLGDNKTFQTTLSGST---YQLKDTTRGNGIYTYTASNR PhuPro2 **PpeFrol** ----ATGTGRGVDGVTKSFTTTASGNG--YOLKDTTRSNGTVTYTANNR -----ATGTGRGVDGKTKSFITTASGNR--YQLKDTTRSNGIVTYTAGNR PspPro2 PpoPro1 ----ATGTGKGVLGDSKSFTTTASGSS--YQLKDTTRGNGIVTYTASNR PpoPro2 -----ATGTGKGVLGDTKSFTTTASGSS--YQLKDTTRGNGIVTYTASNR PspPro3 -----ATCTGKGVLCDTKTFNTTASGSS--YQLEDTTEGNGIVTYTASNR -----ATGTGKGVLGDTKSFTTTQSGST--YQLKDTTRGQGIVTYSAGNR PehProl PhuProl -----ATGTGKGVLGDTKSFTVGTSGSS---YVMTDSTRGKGIQTYTASNR PteFro1 ----ATGTGVGVLCDTKTFTTTQSGTQ--YVMQDTTRGGCIVTYSAGNT -----VTATGKGVLGDTKOFETTKOGST--YMLKDTTRGKGIETYTANNR BbrProl ---AATTGTGTTLKGKTVSLNISSESGKYVLRDLSKPTGTOIITYDLONR NorE NprE_variant ----AATTGTGTTLKGKTVSLNISSESGKIVLRDL\$KPTGTOIITYDLONR ÷ * : • IKET.A TT-----LPGSLWADADNQFFASYDAPAVDAHYYAGVTYDYYKNVHNRLS B_caldolyticus_AAA22623.1 TV-----LFGSLWADGDNQFFASYDAAAVDAHYYAGVVYDYYKNVAGRLS B_anthracis_NP843132.1 ST-----LPGTLWVDADNVFNAAYDAAAVDAHYYAGRTYDYYKATFNRNS B_thuringiensis_YP893436.1 ST----- LPGTLWVDADNVFNAAYDAAAVDAHYYAGKTYDYYKATFNRNS B__cereus_ZP04310163.1 ST-----DEGTLWVDADNVENAAYDAAAVDAHYYAGKTYDYYKATENRNS ST----LPGTLWVDADNVFNAAYDAAAVDAHYYAGKTYDYYKATFNRNS Lactobacillus_sp_BAA06144.1 ST-----LPGTLWADADNVFNAAYDAAAVDAHYYAGKTYDYYKATFNRNS 1NPC.A B_dytotoxicus_YP001373863.1 SS-----LPGTLWADVDNAFHANYDAAAVDAHYYAGVTYDYYKNTFNRNS E_megaterium_YP005495105.1 TS----LPGTLWADTDNTYNATRDAAAVDAHYYAGVTYDYYKNKFNRNS B_sp_SC-1_ZP01858398.1 TFFPQFYLPGSLWSDADNVYNQAYDAAAVDAHYFAGATFDYYKDVFGRNS PamProl \$5-----LPGSLLTDSDNVWTDRAGVDAHAHAAATYDFYKNKFNRNG PhaProl SS------LPGSLSTSSNNVWTDRAAVDAHAYAAATYDFYKNKFNRNG PhuPro2 TT-----IPGTLLTDADNVWTDGAAVDAHTYAGKVYDFYKTKFGRMS PpeProl OT-----TPGTIMTDADNVWNDFAAVOAHAYAIKTYDYYNNKFGROS PspPro2 OT-----TPGTILTDTDNVWEDPAAVDAHAYAIKTYDYYKNKFGRDS QS-----IPGTILTDADNVWNDPAGVDAHAYAAETYDYYKAEFGENS PpoProl PpoPro2 QS------IPGTLLTDADŇVWŇDPAGVDAHAYAAKŤYDYYKŠKFGRDS PspPro3 QS------IPGTILTDADNVWNDPAGVDAHAYAAKTYDYYKEKFNRNS SS------DPGTLLTSSSNIWNDGAAVDAHAYTAKVYDYYKNKFGRNS PehProl PhuFrol TS-----LPGSTVTSSSSTFNDPASVDAHAYAQKVYDFYKSNFNRNS QS-----LPGTLMRDTDNVWTDPAAVDAHAYAAVVYDYFKNNFNRDS PteProl TS-----LPGTLMFDSDNYWTDGAAVDAHAHAQKTYDYFRNVHNRNS BbrPro1 EYN----DEGTLVSSTTNOFTTSSOBAAVDAHVNLGEVYDYFYOEFNENS NOTE NprE_variant EYN-----LPGTLVSSTTNQFTTSSQRAAVDAHYNLGKVYDYFYQKFNRNS : ..**** .:*:: . . * .

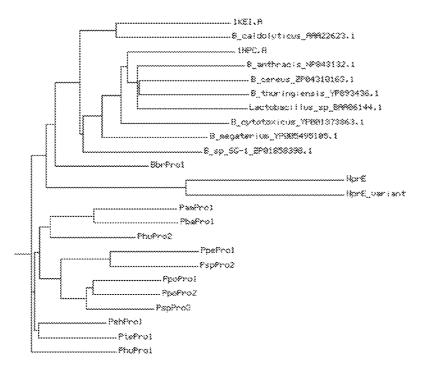
Figure 9.1A CLUSTAL 2.0.10 multiple sequence alignment of the various Paenibacillus metalloproteases with other bacterial metalloprotease homologs.

IKEI.A YDGNNAAIRSSVHYSOGYNNAFWNGSOMVYGDGDGOTFIPLSGGIDVVAH B_caldolyticus_AAA22623.1 YDGSNAAIRSTVHYGRGYNNAFWNGSQMVYGDGDGQTFLPFSGGIDVVGH INDAGAPLKSTVHYGSRYNNAFWNGSQMVYGDGDGVTFISL3GGIDVIGH B_anthracis_NP843132.1 INDAGAFLKSTVHYGSRYMNAFWNGSQMVYGDGDGVTFTSLSGG10V1GH B_thuringiensis_YP893436.1 B__cereus_2P04310163.1 INDAGAPLKSTVHYGSRYNNAFWNGSQMVYGDGDGVTFTSLSGGIDVIGH Lactobacillus_sp_BAA06144.1 INDAGAPLKSTVHYGSKYNNAFWNGSQMVYGDGDGVTFTSLSGGIDVIGH INPC.A INDAGAPLESTVEYGSNYNNAFWNGSOMVYGDGDGVTFTSLSGGIDVIGH B_cytotoxicus_YP001373863.1 INDAGAALKSTVHYGSNYNNAFWNGSQMVYGDGDGVTFTSLSGGIDVIGH B_megaterium_YP005495105.1 YDNAGAPLKSTVHYSSGYNNAFWNGSQMVYGDCDGTTFVPLSGGLDVIGH B_sp_SG-1_ZP01858398.1 YDNKGTTIQSSVHYSKNYNNAFWNGSOMVYGDGDGTTFIPLSGGLDVVAH INGNGLLIRSTVHYGSNYNNAFWNGAQIVFGDGDGTMFRSL3GDLDVVGH FamProl PbaProl IDGNGLLIRSTVHYGSNYRNAFWNGAQIVYGDGDGIEFGPFSGDLDVVGH PhuPro2 LDGNGLLIRSSVHYSSRYNNAFWNGTQIVFGDGDGSTFIPLSGDLDVVGH PcePro1 IDGRGMQIRSTVHYGKKYVNAFWNGSQMTYGDGDGSTFIFFSGDPDVVGH PspPro2 IDGRGMQIPSTVHYGKKYNNAFWNGSQMTYGDGDGSTFTFFSGDPDVVGH IDGRGLQLRSTVHYGSRYNNAFWNGSQMTYGDGDGSTFIAFSGDPDVVGH **PpoFrol** VDGRGLQLRSTVHYGSRYNNAFWNGSQMTYGDGDGSTFIAFSGDPDVVGH PpoPro2 PapPro3 IDGRGLQLRSTVHYGNRYNNAPWNGSQMTYGDGDGITFIAPSGDPDVVGH PehPro1 IDGNGFQLK5TVHYSSRYNNAFWNGVQMVYGDGDGVTFIPFSADPDVIGH IDGNGLAIRSTTHYSTRYNNAFWNGSQMVYGDGDGSQFIAFSGDLDVVGH PhuProl Pterrol LDGRGMAIKSTVHYGSRYWNAFWNGTQIAYGDGDGTTFRAFSGDLDVIGH BbrProl YDGNGAVIRSTVHYSTRYNNAFWNGSQMVYGDGDGTTFLPLSGGLDVVAH NprE YDNKGGKIVSSVHYGSRYNNAAWIGDQMIYGDGDGSFFSPLSGSMDVTAH NprE_variant YDNKGGKIVSSVHYGSRYNNAAWIGDQMIYGDGDGILFSPL3GSLDVTAH ;*. ×* * 1KET.A ELTHAVTDYTAGLIYQNESGAINEAISDIFGTLVEFYANKNPDWEIGEDV B_caldolyticus_AAA22623.1 ELTRAVIDYIAGLVYQNESGAINEAMSDIFGILVEFYANRNPDWEIGEDI B_anthracis_NP843132.1 ELTHAVTEYSSDLIYQNESGALNEAISDVFGTLVEYYDNRNPDWEIGEDI B_thuringiensis_YP893436.1 ELTHAVTEYSSDLINQNESGALMEAISDVFGTLVEFYDNRNPDWEIGEDI B_cereus_ZP04310163.1 ELTHAVTEYSSDLIYQNESGALNEAISDVFGTLVEFYDNRNPDWEIGEDI Lactobacillus_sp_BAA06144.1 ELTHAVTEYSSDLIYONESGALNEAISDVFGTLVEYYDNRNPDWEIGEDI ELTHAVTENSSNILIYONESGALNEAISDIFGTLVEFYDNRNPDWEIGEDI INPO. A B_cytotoxicus_YP001373863.1 ELTHAVTEYSSNLTYQYESGALMEAISDIFGTLVEYYDNRNPDWEIGEDI B_megaterium_YP005495105.1 ELTHAVTERSSNLIYQYESGALNEAISDIFGTLVEYYDNRNPDWEIGEDI B_sp_SG-1_ZP01858398.1 ELTHAVIDISSDLVYQNESGALNEAISDIFGILVEYHENHNPDFEIGEDI ELTHGVIEYTANLEYRNEPGALNEAFADIFGNTIQ-----SKNWLLGDDI TamFrol ELTHOVIENTANLEYRNEPGALNEAFADIMONTIE-----SKNWLLGDGI PhaProl ELSHGVTEXTSNLQYLNESGALNESYADVLGNSIQ----AKNWLIGDDV PhuPro2 **FpeFroi** ELTHGVTEFTSNLEYYGESGALNEAFSDIIGNDID-----GANWLLGDGI ELTHGVTEFTSNLEYYGESGALNEAFSDIIGNDID-----GTSWLLGDGI PspPro2 PpoProl ELTHGVTEYTSNLEYYGESGALNEAFSDVIGNDIQ------RKNWLVGDDI PpoPro2 ELTHGVTEYTSNLEYYGESGALNEAFSDVIGNDIQ----RKNWLVGDDI PspPro3 ELTHGVTEYTSNLEYYGESGALNEAFSDIIGNDIQ----RKNWLVGDDI ELTHGVTENTAGLEYYGRSGALNESISDIIGNAID-----GKNWLIGDLI FehProl PhuProl ELTHOVTEXTANLEYYGQSGALNESISDIFGNTIE-----GKNWMVGDAI PteFrol ELTHGITEKTÄGLIYQGESGALNESISDVFGNTIQ----GKNWLIGDDI ELTHAVTERTAGLVYQNESGALNESMSDIFGAMVD-----NDDWLMGEDI BbrPro1 EMTHGVTQETANLNVENQPGALNESFSDVFGYFND-----TEDWDIGEDI NorE NprE_variant EMTHGVTQETANLNYENQPGALNESFSDVFGYFND-----TEDWDIGEDT *::*:: : :::* * ::**:**::**::* .: :*: :

Figure 9.1B CLUSTAL 2.0.10 multiple sequence alignment of the various Paenibacillus metalloproteases with other bacterial metalloprotease homologs.

```
IKEI.A
                                 YTPGISGDSLRSMSDPAKYGDPDHYSKRYT---GTQDNGGVHINSGIIN
B_caldolyticus_AAA22623.1
                                 YTPGVAGDALRSMSDPAKYGDPDHYSKRYT----GTQDNGGVHTNSGIIN
B_anthracis_NP843132.1
                                 YTPGKAGDALRSMSDPTKYGDPDHYSKRYT----GTGDNGGVHTNSGIIN
                                 YTPGKAGDALRSMSDPTKYGDPDHYSKRYT---GTGDNGGVHTNSGIIN
B_thuringiensis_YP893436.1
B_cereus_ZP04310163.1
                                 YTPGKAGDALRSMSDPTKYGDPDHYSKRYT-----GTGDNGGVHTNSGIIN
                                 YTPGKAGDALRSMSDPTKYGDPDHYSKRYT----GTSDNGGVHTNSGIIN
Lactobacillus_sp_BAA06144.1
                                 YTPGKAGDALRSMSDPTKYGDPDHYSKRYT----GSSDNGGVHTNSGIIN
INPC.A
                                 YTPGKAGDALRSMSDPTKYGDPDHYSKRYT-----GSGDNGGVHTNSGIIN
B_cytotoxicus_YP001373863.1
                                 YTPGTSGDALRSMSNPAKYGDPDHYSKEYT----GSSDNGGVHTNSGIIN
B_megaterium_YP005495105.1
B_sp_SG-1_ZP01858398.1
                                 YTPNTPNDALRSMSDPAKYGDPDHYSVRYT-----GTQDNGGVHINSGIIN
                                 YTPNTPGDALRSLSNPTLYGQPDKYSDRYT-----GSQDNGGVHINSGIIN
PamProl
PbaProl
                                 YTPNIFGDALRSLSDFTLYNQPDKYSDRYT----GSQDNGGVBINSGIIN
PhuPro2
                                 YTPGISGDALRSMSNPTLYGQPDNYANRYT----GSSONGGVHTNSGITN
PpeProl
                                 YTPGIPGDALRSLSDPTREGOPDHYSNFYPDP--NNDDEGGVBTNSGIIN
PspPro2
                                 YTPNIPGDALRSLSDPTRFGQPDHYSNFYPDP---NNDDEGGVHTNSGIIN
PpoPrc1
                                 YTPNIAGDALRSMSNFTLYDQPDHYSNLYR----GSSDNGGVHTNSGIIN
                                 YTPNIAGDALRSMSNPTLYDQPDHYSNLYK----GSSDNGGVHTNSGIIN
PpoPro2
                                 YTPRIAGDALRSMSNPTLYDQPDHYSNLYR----GSSDNGGVHINSGIIN
PspPro3
                                 YTPNTPGDALRSMENPKLYNQPDRYQDRYT----GPSDNGGVHINSGINN
PehProl
                                 YTPGVSGDALRYMDDPTKGGQPARMADYNN----TSADNGGVHTNSGIPN
PhuPrc1
                                 YTPSIPGDALRSMENPTLFNQPDHYSNIYR----GSDDNGGVHTNSGIPN
PtePro1
BbrProl
                                 YTPGRSGDALRSLQDPAAYGDPDHYSKEYT----GSQDNGGVHINSGINN
                                 ----TVSQPALRSLSNPTKYGQPDNFKNYKNLPNTDAGDYGGVHTNSGIPN
NDIE
                                 ----TISQPALRSLSNPTKYGQPONFKNYKNLPNTPAGDYGGVHTNSGIPN
NprE_variant
                                         ;** :.:*
                                                    ·:* ·
                                                                       * **** ****
                                 KAAYLISQGGTHYGVSVVGIGRDKLGKIFYRALTQYLTFTSNFSQLRAAA
1KEL.A
B_caldolyticus_AAA22623.1
                                 KAAYLLSQGGVHYGVSVTGIGRDKMGKIFYRALVYYLTPTSNFSQLRAAC
B_anthracis_NP843132.1
                                 KAAYLLANGGTHYGVTVNGIGKDKVGAIYYRANTQYFTQSTTFSQARAGL
B_thuringiensis_YP893436.1
                                 KAAYLLANGGTHYGVTVNGIGKERVGAIYYRANTQNFTQSTTFSQARAGL
B._cereus_2P04310163.1
                                 KÁAYLLANGGTHYGVTVNGIGKDKVGAIYYŘAŇTQYFTQSTTFSQARAGL
Lactobacillus_sp_BAA06144.1
                                 KAAYLLANGGTHYGVTVNGIGKEEVGAIYYRANTQYFTQSTTFSQARAGL
INPC.A
                                 KQAYLLANGGTHYGVTVTGIGKDKLGAIYYRANTQYFTQSTTFSQARAGA
B_cytotoxicus_YP001373863.1
                                 KAAYLLANGGTHYGVTVNGIGKEKVGAIYYRANTQYFTQSTTFSQARAGL
B_megaterium_YP005495105.1
                                 KAAYLLANGGTHYGVTVTGIGGDKLGKIYYRANTLYFTQSTTFSQARAGL
B_sp_SG-1_ZP01858398.1
                                 KQAYLLSEGGTHYGVNVTGIGREKLGEIYYRMNTVYLTASSTFSQARSAA
PamPrcl
                                 KAYFLAAQGGTHNGVTVTGIGRDKAIQIFYSTLVNYLTPISKFAAAKTAT
PbaPro1
                                 KAYYLAAQGGTHNGVTVSGIGREKAVRIFYSTLVNYLTPTSKFAAAKTAT
PhuPrc2
                                 KAFYLLAQGGTQNGVTVAGIGRDAAVNIFYNTVAYYLTS ISNFAAAKNAS
PpePro1
                                 KAYYLLAQGGTSHGVKVTGIGREAAVFIYYNAFTNYLTSTSNFSNARAAV
PspPrc2
                                 KAYYLLAQGGTSHGVTVTGIGREAAVFIYYNAFTNYLTSTSNFSNARAAV
PpoPro1
                                 KAYYLLAQGGNFHGVTVNGIGRDAAVQIYYSAFTNYLTSSSDFSNARAAV
                                 KAYYLLAQGGTFHGVAVNGIĞRDAAVQIYYSAFTNYLTSSSDFSNARAAV
PpoPro2
PapPro3
                                 KAYYLLAQGGTFHGVTVNGIGRDAAVQIYYSAFTNYLTSSSDESNAEDAV
PehProl
                                 KAFYLIAQGGTHYGVTVNGIGRDAAVQIFYDALINYLTPISNFSAMRAAA
PhuProl
                                 KAYYLLAQGGTFGGVNVTGIGRSQAIQIVYRALTYYLTSTSNFSNYESAM
PtePro1
                                 KAFYLLAQGGTHRÖVSVTGIGRGDAAKIVYKALTYYLTSTSNFAAMRQAA
BbrProl
                                 KAAYLLAEGGTHYGVRVNGIGRTDTAKIYYHALTHYLTPYSNPSAMRRAA
NprE
                                 KAAYN-----TITRIGVNKAEQIYYRALTVYLTPSSTFKDAKAAL
                                 KAAYN----TITKIGVNKAEQIYYRALTVYLTPSSTFKDAKAAL
NprE_variant
                                                 **
                                                                    * * *
                                   :
                                                                               : .
```

Figure 9.1C CLUSTAL 2.0.10 multiple sequence alignment of the various Paenibacillus


metalloproteases with other bacterial metalloprotease homologs.

1KEI.A	VQSATDLYGSTSQEVASVKQAFDAVGVK	SEQ	ID	NO:	53
B_caldolyticus_AAA22623.1	VQAAADLYGSTSQEVNSVKQAFNAVGVY	SEQ	ID	NO:	54
B_anthracis_NP843132.1	VQA	SEQ	ΊD	NO:	55
B_thuringiensis_YP893436.1	VQAATDLYGASSAEVAAVKQSYSAVGVN	SEQ	ID	NO:	56
B_cereus_ZP04310163.1	VQAAADLYGASSAEVAAVKQSYSAVGVN	SEQ	ID	NO:	57
Lactobacillus_sp_BAA06144.1	VQAAADLYGASSAEVAAVKQSYSAVGVN	SEQ.	ID	NO:	58
INPC.A	VQAAADLYGANSAEVAAVKQSFSAVGVN	SEQ	ID	NO:	59
B_cytotoxicus_YP001373863.1	VQAAADLYGANSAEVTAVKQSYDAVGVK	SEQ	ID	NO:	60
B_megaterium_YP005495105.1	VQAAADLYGSGSQEVISVGKSFDAVGVQ	SEQ	ID	NO:	61
B_sp_SG-1_ZP01858398.1	VQAASDLYGSNSPEVQSVNQSFDAVGIN	SEQ.	ΙD	NO:	62
PamProl	IQAAKDI.YGATSAEATAITKAYQAVGL-	SEQ.	ID	NO:	38
PbaProl	IQAAKDLYGANSAEATAIIKAYQAVGL-	SEQ	ID	NO:	23
PhuPro2	IQAAKDLYGTGSSYVTSVTNAFRAVGL-	SEQ	ID	NO:	13
PpePro1	IQAAKDFYGADSLAVISAIKSFDAVGIK	SEQ	ID	NO:	63
PspPro2	IQAAKDFYGADSLAVTSAIQSFDAVGIK	SEQ	ID	NO:	8
PpoProl	IQAAKDLYGANSAEATAAAKSFDAVGVN	SEQ	ID	NO:	28
PpoPro2	IQAAKDLYGANSAEATAAAKSFDAVGVN	SEQ	ID	'NO :	64
PspPro3	VQAARDLYGASSAQATAAAKSFDAVGVN	SEQ	ΠD	NO:	3
PehPro1	IQAAIDLYGANSSQVNAVKKAYTAVGVN	ŞEQ	ID	NO:	18
PhuProl	VQASTDLYGANSTQTTAVKNSLSAVGIN	SEQ	ID	NO:	33
PteProl	ISSATDLFGANSAQVNSVKAAYAAVGI-	SEQ	ID	NO:	65
BbrProl	VLSATDLFGANSRQVQAVNAAYDAVGVK	SEQ	ID	NO:	66
NprE	iqsardlygsqdaasveaawnavgl	SEQ	10	NO:	67
NprE_variant	IQSARDLYGSQDAASVEAAWNAVGL	SEQ	ID	NO:	68
	::				

Figure 9.1D CLUSTAL 2.0.10 multiple sequence alignment of the various Paenibacillus

metalloproteases with other bacterial metalloprotease homologs.

Phylogenetic tree

....

Figure 9.2 The phylogenetic tree of the various Paenibacillus metalloproteases with other bacterial metalloprotease homologs.

NOVEL METALLOPROTEASES

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims benefit of priority from International patent applications Serial No. PCT/CN2013/ 076419; Serial No. PCT/CN2013/076387; Serial No. PCT/ CN2013/076401; Serial No. PCT/CN2013/076406; Serial No. PCT/CN2013/076414; Serial No. PCT/CN2013/076384; Serial No. PCT/CN2013/076398; and Serial No. PCT/ CN2013/076415; all filed on 29 May 2013, the contents of which are incorporated herein by reference in their entirety.

FIELD OF THE INVENTION

[0002] The present disclosure relates to proteases and variants thereof. Compositions containing the proteases are suitable for use in cleaning, food and feed as well as in a variety of other industrial applications.

BACKGROUND

[0003] Metalloproteases (MPs) are among the hydrolases that mediate nucleophilic attack on peptide bonds using a water molecule coordinated in the active site. In their case, a divalent ion, such as zinc, activates the water molecule. This metal ion is held in place by amino acid ligands, usually 3 in number. The clan MA consists of zinc-dependent MPs in which two of the zinc ligands are the histidines in the motif: HisGluXXHis (SEQ ID NO: 41). This Glu is the catalytic residue. These are two domain proteases with the active site between the domains. In subclan MA(E), also known as Gluzincins, the 3rd ligand is a Glu located C-terminal to the HDXXH (SEQ ID NO: 42) motif. Members of the families: M1, 3, 4, 13, 27 and 34 are all secreted proteases, almost exclusively from bacteria (Rawlings and Salvessen (2013) Handbook of Proteolytic Enzymes, Elsevier Press). They are generally active at elevated temperatures and this stability is attributed to calcium binding. Thermolysin-like proteases are found in the M4 family as defined by MEROPS (Rawlings et al., (2012) Nucleic Acids Res 40:D343-D350). Although proteases have long been known in the art of industrial enzymes, there remains a need for novel proteases that are suitable for particular conditions and uses.

SUMMARY

[0004] The present disclosure provides novel metalloprotease enzymes, nucleic acids encoding the same, and compositions and methods related to the production and use thereof. [0005] In some embodiments, the invention is a polypeptide comprising an amino acid sequence having at least 60%, at least 80%, or at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 3. In some embodiments, the invention is any of the above, wherein said polypeptide is derived from a member of the order Bacillales; family Bacillaceae, Paenibacillaceae, Alicyclobacillaceae, Lactobacillaceae, or a Bacillus, Alicyclobacillus, Geobacillus, Exiguobacterium, Lactobacillus, or Paenibacillus spp., such as Paenibacillus polymyxa. In some embodiments, the invention is any of the above, wherein said polypeptide is derived from a member of the Pseudococcidae, or a Planococcus spp., such as Planococcus donghaensis. In various embodiments of the invention, any of the above polypeptides has protease activity, such as azo-casein hydrolysis. In various embodiments of the invention, any of the above polypeptides retains at least 50% of its maximal activity between pH 5 and 9.5. In various embodiments of the invention, any of the above polypeptides retains at least 50% of its maximal activity between 30° C. and 70° C. In various embodiments of the invention, any of the above polypeptides has cleaning activity in a detergent composition, such as an ADW, laundry, liquid laundry, or powder laundry detergent composition.

[0006] In some embodiments, the invention is a polypeptide comprising an amino acid sequence having at least 60%, at least 80%, or at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 8. In some embodiments, the invention is any of the above, wherein said polypeptide is derived from a member of the order Bacillales; family Bacillaceae, Paenibacillaceae, or Brevibacillaceae, or a Bacillus, Brevibacillus, or Paenibacillus spp., such as Paenibacillus sp. In some embodiments, the invention is any of the above, wherein said polypeptide is derived from Brevibacillus sp. In various embodiments of the invention, any of the above polypeptides has protease activity, such as azo-casein hydrolysis. In various embodiments of the invention, any of the above polypeptides retains at least 50% of its maximal activity between pH 5 and 10. In various embodiments of the invention, any of the above polypeptides retains at least 50% of its maximal activity between 35° C. and 70° C. In various embodiments of the invention, any of the above polypeptides has cleaning activity in a detergent composition, such as an ADW, laundry, liquid laundry, or powder laundry detergent composition.

[0007] In some embodiments, the invention is a polypeptide comprising an amino acid sequence having at least 60%, at least 80%, or at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 13. In some embodiments, the invention is any of the above, wherein said polypeptide is derived from a member of the order Bacillales; family Bacillaceae, Paenibacillaceae, or Brevibacillaceae, or a Bacillus, Geobacillus, Brevibacillus, or Paenibacillus spp., such as Paenibacillus humicus. In some embodiments, the invention is any of the above, wherein said polypeptide is derived from Bacillus polymyxa. In various embodiments of the invention, any of the above polypeptides has protease activity, such as azo-casein hydrolysis. In various embodiments of the invention, any of the above polypeptides retains at least 50% of its maximal activity between pH 5 and 9.5. In various embodiments of the invention, any of the above polypeptides retains at least 50% of its maximal activity between 35° C. and 70° C. In various embodiments of the invention, any of the above polypeptides has cleaning activity in a detergent composition, such as an ADW, laundry, liquid laundry, or powder laundry detergent composition.

[0008] In some embodiments, the invention is a polypeptide comprising an amino acid sequence having at least 60%, at least 80%, or at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 18. In some embodiments, the invention is any of the above, wherein said polypeptide is derived from a member of the order Bacillales; family Bacillaceae, Paenibacillaceae, or Brevibacillaceae, or a *Bacillus*, *Geobacillus*, *Brevibacillus*, or *Paenibacillus* spp., such as *Paenibacillus ehimensis*. In some embodiments, the invention is any of the above, wherein said polypeptide is derived from *Brevibacillus* sp. In various embodiments of the invention, any of the above polypeptides has protease activity, such as azo-casein hydrolysis. In various embodiments of the invention, any of the above polypeptides retains at least 50% of its maximal activity between pH 5 and 10.5. In various embodiments of the invention, any of the above polypeptides retains at least 50% of its maximal activity between 45° C. and 75° C. In various embodiments of the invention, any of the above polypeptides has cleaning activity in a detergent composition, such as an ADW, laundry, liquid laundry, or powder laundry detergent composition.

[0009] In some embodiments, the invention is a polypeptide comprising an amino acid sequence having at least 60%, at least 80%, or at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 23. In some embodiments, the invention is any of the above, wherein said polypeptide is derived from a member of the order Bacillales; family Bacillaceae, Paenibacillaceae, Alicyclobacillaceae, Lactobacillaceae, or a Bacillus, Geobacillus, Alicyclobacillus, Brevibacillus, Paenibacillus, or Lactobacillus spp., such as Paenibacillus barcinonensis. In some embodiments, the invention is any of the above, wherein said polypeptide is derived from a member of the family Pseudococcidae, or a Planococcus spp., such as Planococcus donghaensis. In various embodiments of the invention, any of the above polypeptides has protease activity, such as azo-casein hydrolysis. In various embodiments of the invention, any of the above polypeptides retains at least 50% of its maximal activity between pH 5 and 10. In various embodiments of the invention, any of the above polypeptides retains at least 50% of its maximal activity between 35° C. and 65° C. In various embodiments of the invention, any of the above polypeptides has cleaning activity in a detergent composition, such as an ADW, laundry, liquid laundry, or powder laundry detergent composition.

[0010] In some embodiments, the invention is a polypeptide comprising an amino acid sequence having at least 60%, at least 80%, or at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 28. In some embodiments, the invention is any of the above, wherein said polypeptide is derived from a member of the order Bacillales; family Bacillaceae, Paenibacillaceae, or a Bacillus, Brevibacillus, Paenibacillus, or Lactobacillus spp., such as Paenibacillus polymyxa. In some embodiments, the invention is any of the above, wherein said polypeptide is derived from a member of the family Pseudococcidae, or a *Planococcus* spp., such as Planococcus donghaensis. In various embodiments of the invention, any of the above polypeptides has protease activity, such as azo-casein hydrolysis. In various embodiments of the invention, any of the above polypeptides retains at least 50% of its maximal activity between pH 5 and 9.5. In various embodiments of the invention, any of the above polypeptides retains at least 50% of its maximal activity between 30° C. and 65° C. In various embodiments of the invention, any of the above polypeptides has cleaning activity in a detergent composition, such as an ADW, laundry, liquid laundry, or powder laundry detergent composition.

[0011] In some embodiments, the invention is a polypeptide comprising an amino acid sequence having at least 60%, at least 80%, or at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 33. In some embodiments, the invention is any of the above, wherein said polypeptide is derived from a member of the order Bacillales; family Bacillaceae, Paenibacillaceae, or a *Bacillus, Geobacillus, Brevibacillus, or Paenibacillus* spp., such as *Paenibacillus hunanensis*. In some embodiments, the invention is any of the above, wherein said polypeptide is derived from *Bacillus polymyxa*. In various embodiments of the invention, any of the above polypeptides has protease activity, such as azo-casein hydrolysis. In various embodiments of the invention, any of the above polypeptides retains at least 50% of its maximal activity between pH 4.5 and 9.0. In various embodiments of the invention, any of the above polypeptides retains at least 50% of its maximal activity between 35° C. and 70° C. In various embodiments of the invention, any of the above polypeptides has cleaning activity in a detergent composition, such as an ADW, laundry, liquid laundry, or powder laundry detergent composition.

[0012] In some embodiments, the invention is a polypeptide comprising an amino acid sequence having at least 60%, at least 80%, or at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 38. In some embodiments, the invention is any of the above, wherein said polypeptide is derived from a member of the order Bacillales; family Bacillaceae, Paenibacillaceae, Lactobacillaceae, or a Bacillus, Brevibacillus, Lactobacillus, Paenibacillus, or Geobacillus spp., such as Paenibacillus amylolyticus. In various embodiments of the invention, any of the above polypeptides has protease activity, such as azo-casein hydrolysis. In various embodiments of the invention, any of the above polypeptides retains at least 50% of its maximal activity between pH 5.5 and 10. In various embodiments of the invention, any of the above polypeptides retains at least 50% of its maximal activity between 35° C. and 65° C. In various embodiments of the invention, any of the above polypeptides has cleaning activity in a detergent composition, such as an ADW, laundry, liquid laundry, or powder laundry detergent composition.

[0013] In some embodiments, the invention is a composition comprising any of the above, such as a cleaning or detergent composition. In some embodiments, the composition further comprises a surfactant, at least one calcium ion and/or zinc ion, at least one stabilizer, at least one bleaching agent, and can contain phosphate, or be phosphate-free. In some embodiments, the composition further comprises one or more additional enzymes or enzyme derivatives selected from the group consisting of acyl transferases, alpha-amylases, betaamylases, alpha-galactosidases, arabinosidases, aryl esterases, beta-galactosidases, carrageenases, catalases, cellobiohydrolases, cellulases, chondroitinases, cutinases, endo-beta-1,4-glucanases, endo-beta-mannanases, esterases, exo-mannanases, galactanases, glucoamylases, hemicellulases, hvaluronidases, keratinases, laccases, lactases, ligninases, lipases, lipoxygenases, mannanases, oxidases, pectate lyases, pectin acetyl esterases, pectinases, pentosanases, peroxidases, phenoloxidases, phosphatases, phospholipases, phytases, polygalacturonases, proteases, pullulanases, reductases, rhamnogalacturonases, beta-glucanases, tannases, transglutaminases, xylan acetyl-esterases, xylanases, xyloglucanases, and xylosidases, and combinations thereof. In some embodiments, the composition is formulated at a pH of from about 5.5 to about 8.5. In some embodiments, the invention is a method of cleaning using any of the above polypeptides or compositions. In some embodiments, the invention is a textile processing composition, animal feed composition, leather processing composition, or feather processing composition.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. **1.1** provides a plasmid map of pGX085 (aprE-PspPro3), described in Example 1.2.

[0015] FIG. **1.2** provides a dose response curve of PspPro3 in the azo-casein assay.

[0016] FIG. 1.3 provides the pH profile of PspPro3.

[0017] FIG. 1.4 provides the temperature profile of Psp-Pro3.

[0018] FIG. **1.5**A shows dose response for cleaning of PA-S-38 microswatches by PspPro3 protein in ADW detergent at pH 6 and 8.

[0019] FIG. **1.5**B shows dose response for cleaning of PA-S-38 microswatches shows by PspPro3 protein in ADW detergent at pH 6 and 8 in the presence of bleach.

[0020] FIG. **1.6** shows cleaning performance of PspPro3 protein in liquid laundry detergent.

[0021] FIG. **1.7** (SEQ ID NOS: 3, 44, and 45, respectively) shows alignment of PspPro3 with other protein homologs.

[0022] FIG. **1.8** provides the phylogenetic tree for PspPro3 and its homologs.

[0023] FIG. **2.1** provides a plasmid map of pGX084 (aprE-PspPro2), described in Example 2.2.

[0024] FIG. **2.2** provides a dose response curve of PspPro2 in the azo-casein assay.

[0025] FIG. 2.3 provides the pH profile of purified PspPro2. [0026] FIG. 2.4 provides the temperature profile of purified PspPro2.

[0027] FIG. **2.5**A shows dose response for cleaning performance of PspPro2 at pH 6 in AT dish detergent with bleach.

[0028] FIG. **2.5**B shows dose response for cleaning performance of purified PspPro2 at pH 8 in AT detergent with bleach.

[0029] FIG. **2.6**A shows cleaning performance of PspPro2 protein in liquid laundry detergent.

[0030] FIG. **2.6**B shows cleaning performance of PspPro2 protein in powder laundry detergent.

[0031] FIG. **2.7** (SEQ ID NOS: 8, 46, and 45, respectively) shows alignment of PspPro2 with other protein homologs.

[0032] FIG. **2.8** provides the phylogenetic tree for PspPro2 and its homologs.

[0033] FIG. **3.1** provides a plasmid map of pGX150 (aprE-PhuPro2), described in Example 3.2.

[0034] FIG. **3.2** provides a dose response curve of PhuPro2 in the azo-casein assay.

[0035] FIG. **3.3** provides the pH profile of purified Phu-Pro2.

[0036] FIG. **3.4** provides the temperature profile of purified PhuPro2.

[0037] FIG. **3.5**A shows dose response for c leaning performance of PhuPro2 in AT dish detergent at pH 6.

[0038] FIG. **3.5**B shows dose response for cleaning performance of PhuPro2 in AT dish detergent at pH 8.

[0039] FIG. **3.6** (SEQ ID NOS: 13, 47 and 45, respectively) shows alignment of PhuPro2 with other protein homologs.

[0040] FIG. 3.7 provides the phylogenetic tree for PhuPro2 and its homologs.

[0041] FIG. **4.1** provides a plasmid map of pGX148 (aprE-PehPro1), described in Example 4.2.

[0042] FIG. **4.2** provides a dose response curve of PehPro1 in the azo-casein assay.

[0043] FIG. **4.3** provides the pH profile of purified Peh-Pro1.

[0044] FIG. **4.4** provides the temperature profile of purified PehPro1.

[0045] FIG. 4.5A shows dose response for cleaning performance of PehPro1 at pH 6 in AT dish detergent with bleach. [0046] FIG. 4.5B shows dose response for cleaning performance of purified PehPro1 at pH 8 in AT detergent with bleach. **[0047]** FIG. **4.6** (SEQ ID NOS: 18, 48, and 45, respectively) shows alignment of PehPro1 with other protein homologs.

[0048] FIG. **4.7** provides the phylogenetic tree for PehPro1 and its homologs.

[0049] FIG. **5.1** provides a plasmid map of pGX147 (aprE-PbaPro1), described in Example 5.2.

[0050] FIG. **5.2** provides a dose response curve of PbaPro1 in the azo-casein assay.

[0051] FIG. 5.3 provides the pH profile of purified PbaPro1.

[0052] FIG. **5.4** provides the temperature profile of purified PbaPro1.

[0053] FIG. **5.5**A shows dose response for cleaning of PA-S-38 microswatches by PbaPro1protein in ADW detergent at pH 6.

[0054] FIG. **5.5**B shows dose response for cleaning of PA-S-38 microswatches shows by PbaPro1protein in ADW detergent at pH 8.

[0055] FIG. **5.6** (SEQ ID NOS: 23, 49, and 45, respectively) shows the alignment of PbaPro1 with protease homologs.

[0056] FIG. **5.7** provides the phylogenetic tree for PbaPro1 and its homologs.

[0057] FIG. **6.1** provides a plasmid map of pGX138 (aprE-PpoPro1), described in Example 6.2.

[0058] FIG. **6.2** provides a dose response curve of PpoPro1 in the azo-casein assay.

[0059] FIG. **6.3** provides the pH profile of purified Ppo-Pro1.

[0060] FIG. **6.4** provides the temperature profile of purified PpoPro1.

[0061] FIG. **6.5**A shows dose response for cleaning of PA-S-38 microswatches by PpoPro1protein in ADW detergent at pH 6 in the presence of bleach.

[0062] FIG. **6.5**B shows dose response for cleaning of PA-S-38 microswatches shows by PpoPro1protein in ADW detergent at pH 8 in the presence of bleach.

[0063] FIG. **6.6** (SEQ ID NOS: 28, 50, and 45, respectively) shows the alignment of PpoPro1 with protease homologs.

[0064] FIG. 6.7 provides the phylogenetic tree for PpoPro1 and its homologs.

[0065] FIG. **7.1** provides a plasmid map of pGX149 (aprE-PhuPro1), described in Example 7.2.

[0066] FIG. **7.2** provides a dose response curve of PhuPro1 in the azo-casein assay.

[0067] FIG. 7.3 provides the pH profile of purified Phu-Pro1.

[0068] FIG. **7.4** provides the temperature profile of purified PhuPro1.

[0069] FIG. **7.5**A shows dose response for cleaning of PA-S-38 microswatches by PhuPro1 protein in ADW detergent at pH 6.

[0070] FIG. **7.5**B shows dose response for cleaning of PA-S-38 microswatches shows by Phu Pro1protein in ADW detergent at pH 8.

[0071] FIG. **7.6** (SEQ ID NOS: 33, 51, and 45, respectively) shows alignment of PhuPro1 with other protein homologs.

[0072] FIG. **7.7** provides the phylogenetic tree for PhuPro1 and its homologs.

[0073] FIGS. **7.8**A and **7.8**B show cleaning performances of PhuPro1 and Purafect[®] Prime HA proteases.

[0074] FIG. **8.1** provides a plasmid map of pGX146 (aprE-PamPro1), described in Example 8.2.

[0075] FIG. **8.2** provides a dose response curve of PamPro1 in the azo-casein assay.

4

[0076] FIG. **8.3** provides the pH profile of purified Pam-Pro1.

[0077] FIG. **8.4** provides the temperature profile of purified PamPro1.

[0078] FIG. **8.5**A shows dose response for cleaning of PA-S-38 microswatches by PamPro1 protein in ADW detergent at pH 6.

[0079] FIG. **8.5**B shows dose response for cleaning of PA-S-38 microswatches shows by PamPro1 protein in ADW detergent at pH 8.

[0080] FIG. **8.6** (SEQ ID NOS: 38, 52, and 45, respectively) shows the alignment of PamPro1 with protease homologs.

[0081] FIG. **8.7** provides the phylogenetic tree for PamPro1 and its homologs.

[0082] FIGS. **9.1**A thru **9.1**D (SEQ ID NOS: 53-62, 38, 23, 13, 63, 8, 28, 64, 3, 18, 33, 65-68, respectively) show the alignment of the various *Paenibacillus* metalloproteases with other bacterial metalloprotease homologs.

[0083] FIG. **9.2** provides the phylogenetic tree of the various *Paenibacillus* metalloproteases with other bacterial metalloprotease homologs.

DETAILED DESCRIPTION

[0084] The present invention provides novel metalloprotease enzymes, especially enzymes useful for detergent compositions cloned from various Paenibacillus sp. The compositions and methods are based, in part, on the observation that the novel metalloproteases of the present invention have proteolytic activity in the presence of detergent compositions. This feature makes metalloproteases of the present invention particularly well suited to and useful in a variety of cleaning applications where the enzyme can hydrolyze polypeptides in the presence of surfactants and other components found in detergent compositions. The invention includes compositions comprising at least one of the novel metalloprotease enzymes set forth herein. Some such compositions comprise detergent compositions. The metalloprotease enzymes of the present invention can be combined with other enzymes useful in detergent compositions. The invention also provides methods of cleaning using metalloprotease enzymes of the present invention.

DEFINITIONS AND ABBREVIATIONS

[0085] Unless otherwise indicated, the practice of the present invention involves conventional techniques commonly used in molecular biology, protein engineering, microbiology, and recombinant DNA technology, which are within the skill of the art. Such techniques are known to those of skill in the art and are described in numerous texts and reference works well known to those of skill in the art. All patents, patent applications, articles and publications mentioned herein, both supra and infra, are hereby expressly incorporated herein by reference.

[0086] Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Many technical dictionaries are known to those of skill in the art. Although any methods and materials similar or equivalent to those described herein find use in the practice of the present invention, some suitable methods and materials are described herein. Accordingly, the terms defined immediately below are more fully described by reference to the Specification as a whole. Also, as used herein,

the singular "a", "an" and "the" includes the plural reference unless the context clearly indicates otherwise. Unless otherwise indicated, nucleic acids are written left to right in 5' to 3' orientation; amino acid sequences are written left to right in amino to carboxy orientation, respectively. It is to be understood that this invention is not limited to the particular methodology, protocols, and reagents described, as these may vary, depending upon the context they are used by those of skill in the art.

[0087] Furthermore, the headings provided herein are not limitations of the various aspects or embodiments of the invention.

[0088] It is intended that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.

[0089] As used herein, the terms "protease" and "proteinase" refer to an enzyme that has the ability to break down proteins and peptides. A protease has the ability to conduct "proteolysis," by hydrolysis of peptide bonds that link amino acids together in a peptide or polypeptide chain forming the protein. This activity of a protease as a protein-digesting enzyme is referred to as "proteolytic activity." Many well known procedures exist for measuring proteolytic activity (See e.g., Kalisz, "Microbial Proteinases," In: Fiechter (ed.), Advances in Biochemical Engineering/Biotechnology, (1988)). For example, proteolytic activity may be ascertained by comparative assays which analyze the respective protease's ability to hydrolyze a suitable substrate. Exemplary substrates useful in the analysis of protease or proteolytic activity, include, but are not limited to, di-methyl casein (Sigma C-9801), bovine collagen (Sigma C-9879), bovine elastin (Sigma E-1625), and bovine keratin (ICN Biomedical 902111). Colorimetric assays utilizing these substrates are well known in the art (See e.g., WO 99/34011 and U.S. Pat. No. 6,376,450, both of which are incorporated herein by reference). The pNA peptidyl assay (See e.g., Del Mar et al., Anal. Biochem. 99:316-320 [1979]) also finds use in determining the active enzyme concentration. This assay measures the rate at which p-nitroaniline is released as the enzyme hydrolyzes a soluble synthetic substrate, such as succinylalanine-alanine-proline-phenylalanine-p-nitroanilide (suc-AAPF-pNA) (SEQ ID NO: 43). The rate of production of yellow color from the hydrolysis reaction is measured at 410 nm on a spectrophotometer and is proportional to the active enzyme concentration. In addition, absorbance measurements at 280 nanometers (nm) can be used to determine the total protein concentration in a sample of purified protein. The activity on substrate/protein concentration gives the enzyme specific activity.

[0090] As used herein, the term "variant polypeptide" refers to a polypeptide comprising an amino acid sequence that differs in at least one amino acid residue from the amino acid sequence of a parent or reference polypeptide (including but not limited to wild-type polypeptides).

[0091] As used herein, "the genus *Bacillus*" includes all species within the genus "*Bacillus*," as known to those of skill

in the art, including but not limited to B. subtilis, B. licheniformis, B. lentus, B. brevis, B. stearothermophilus, B. alkalophilus, B. amyloliquefaciens, B. clausii, B. halodurans, B. megaterium, B. coagulans, B. circulans, and B. thuringiensis. It is recognized that the genus Bacillus continues to undergo taxonomical reorganization. Thus, it is intended that the genus include species that have been reclassified, including but not limited to such organisms as B. stearothermophilus, which is now named "Geobacillus stearothermophilus." The production of resistant endospores under stressful environmental conditions is considered the defining feature of the genus Bacillus, although this characteristic also applies to the recently named Alicyclobacillus, Amphibacillus, Aneurinibacillus, Paenibacillus, Brevibacillus, Filobacillus, Gracilibacillus, Halobacillus, Paenibacillus, Salibacillus, Thermobacillus, Ureibacillus, and Virgibacillus.

[0092] The terms "polynucleotide" and "nucleic acid," which are used interchangeably herein, refer to a polymer of any length of nucleotide monomers covalently bonded in a chain. DNA (deoxyribonucleic acid), a polynucleotide comprising deoxyribonucleotides, and RNA (ribonucleic acid), a polymer of ribonucleotides, are examples of polynucleotides or nucleic acids having distinct biological function. Polynucleotides or nucleic acids include, but are not limited to, a single-, double- or triple-stranded DNA, genomic DNA, cDNA, RNA, DNA-RNA hybrid, or a polymer comprising purine and pyrimidine bases, or other natural, chemically, biochemically modified, non-natural or derivatized nucleotide bases. The following are non-limiting examples of polynucleotides: genes, gene fragments, chromosomal fragments, expressed sequence tag(s) (EST(s)), exons, introns, messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), ribozymes, complementary DNA (cDNA), recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers.

[0093] As used herein, the term "mutation" refers to changes made to a reference amino acid or nucleic acid sequence. It is intended that the term encompass substitutions, insertions and deletions.

[0094] As used herein, the term "vector" refers to a nucleic acid construct used to introduce or transfer nucleic acid(s) into a target cell or tissue. A vector is typically used to introduce foreign DNA into a cell or tissue. Vectors include plasmids, cloning vectors, bacteriophages, viruses (e.g., viral vector), cosmids, expression vectors, shuttle vectors, and the like. A vector typically includes an origin of replication, a multicloning site, and a selectable marker. The process of inserting a vector into a target cell is typically referred to as transformation. The present invention includes, in some embodiments, a vector that comprises a DNA sequence encoding a metalloprotease polypeptide (e.g., precursor or mature metalloprotease polypeptide) that is operably linked to a suitable prosequence (e.g., secretory, signal peptide sequence, etc.) capable of effecting the expression of the DNA sequence in a suitable host, and the folding and translocation of the recombinant polypeptide chain.

[0095] As used herein, the term "expression cassette," "expression plasmid" or "expression vector" refers to a nucleic acid construct or vector generated recombinantly or synthetically for the expression of a nucleic acid of interest in a target cell. An expression vector or expression cassette typically comprises a promoter nucleotide sequence that drives expression of the foreign nucleic acid. The expression vector or cassette also typically includes any other specified nucleic acid elements that permit transcription of a particular nucleic acid in a target cell. A recombinant expression cassette can be incorporated into a plasmid, chromosome, mitochondrial DNA, plastid DNA, virus, or nucleic acid fragment. Many prokaryotic and eukaryotic expression vectors are commercially available.

[0096] In some embodiments, the ends of the sequence are closed such that the DNA construct forms a closed circle. The nucleic acid sequence of interest, which is incorporated into the DNA construct, using techniques well known in the art, may be a wild-type, mutant, or modified nucleic acid. In some embodiments, the DNA construct comprises one or more nucleic acid sequences homologous to the host cell chromosome. In other embodiments, the DNA construct comprises one or more non-homologous nucleotide sequences. Once the DNA construct is assembled in vitro, it may be used, for example, to: 1) insert heterologous sequences into a desired target sequence of a host cell; and/or 2) mutagenize a region of the host cell chromosome (i.e., replace an endogenous sequence with a heterologous sequence); 3) delete target genes; and/or 4) introduce a replicating plasmid into the host. "DNA construct" is used interchangeably herein with "expression cassette."

[0097] As used herein, a "plasmid" refers to an extrachromosomal DNA molecule which is capable of replicating independently from the chromosomal DNA. A plasmid is double stranded (ds) and may be circular and is typically used as a cloning vector.

[0098] As used herein in the context of introducing a nucleic acid sequence into a cell, the term "introduced" refers to any method suitable for transferring the nucleic acid sequence into the cell. Such methods for introduction include but are not limited to protoplast fusion, transfection, transformation, electroporation, conjugation, and transduction (See e.g., Ferrari et al., "Genetics," in Hardwood et al. (eds.), *Bacillus*, Plenum Publishing Corp., pp. 57-72 [1989]).

[0099] Transformation refers to the genetic alteration of a cell which results from the uptake, optional genomic incorporation, and expression of genetic material (e.g., DNA).

[0100] As used herein, a nucleic acid is "operably linked" with another nucleic acid sequence when it is placed into a functional relationship with another nucleic acid sequence. For example, a promoter or enhancer is operably linked to a nucleotide coding sequence if the promoter affects the transcription of the coding sequence. A ribosome binding site may be operably linked to a coding sequence if it is positioned so as to facilitate translation of the coding sequence. Typically, "operably linked" DNA sequences are contiguous. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers may be used in accordance with conventional practice. [0101] As used herein the term "gene" refers to a polynucleotide (e.g., a DNA segment), that encodes a polypeptide and includes regions preceding and following the coding regions as well as intervening sequences (introns) between individual coding segments (exons).

[0102] As used herein, "recombinant" when used with reference to a cell typically indicates that the cell has been modified by the introduction of a foreign nucleic acid sequence or that the cell is derived from a cell so modified. For example, a recombinant cell may comprise a gene not found in identical form within the native (non-recombinant) form of

the cell, or a recombinant cell may comprise a native gene (found in the native form of the cell) but which has been modified and re-introduced into the cell. A recombinant cell may comprise a nucleic acid endogenous to the cell that has been modified without removing the nucleic acid from the cell; such modifications include those obtained by gene replacement, site-specific mutation, and related techniques known to those of ordinary skill in the art. Recombinant DNA technology includes techniques for the production of recombinant DNA in vitro and transfer of the recombinant DNA into cells where it may be expressed or propagated, thereby producing a recombinant polypeptide. "Recombination," "recombining," and "recombined" of polynucleotides or nucleic acids refer generally to the assembly or combining of two or more nucleic acid or polynucleotide strands or fragments to generate a new polynucleotide or nucleic acid. The recombinant polynucleotide or nucleic acid is sometimes referred to as a chimera. A nucleic acid or polypeptide is "recombinant" when it is artificial or engineered.

[0103] A nucleic acid or polynucleotide is said to "encode" a polypeptide if, in its native state or when manipulated by methods known to those of skill in the art, it can be transcribed and/or translated to produce the polypeptide or a fragment thereof. The anti-sense strand of such a nucleic acid is also said to encode the sequence.

[0104] "Host strain" or "host cell" refers to a suitable host for an expression vector comprising a DNA sequence of interest.

[0105] A "protein" or "polypeptide" comprises a polymeric sequence of amino acid residues. The terms "protein" and "polypeptide" are used interchangeably herein. The single and 3-letter code for amino acids as defined in conformity with the IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN) is used through out this disclosure. The single letter X refers to any of the twenty amino acids. It is also understood that a polypeptide may be coded for by more than one nucleotide sequence due to the degeneracy of the genetic code. Mutations can be named by the one letter code for the parent amino acid, followed by a position number and then the one letter code for the variant amino acid. For example, mutating glycine (G) at position 87 to serine (S) is represented as "G087S" or "G87S". Mutations can also be named by using the three letter code for an amino acid followed by its position in the polypeptide chain as counted from the N-terminus; for example, Ala10 for alanine at position 10. Multiple mutations are indicated by inserting a "-" between the mutations. Mutations at positions 87 and 90 are represented as either "G087S-A090Y" or "G87S-A90Y" or "G87S+A90Y" or "G87S+A90Y" or "G087S+A090Y". For deletions, the one letter code "Z" is used. For an insertion relative to the parent sequence, the one letter code "Z" is on the left side of the position number. For a deletion, the one letter code "Z" is on the right side of the position number. For insertions, the position number is the position number before the inserted amino acid(s), plus 0.01 for each amino acid. For example, an insertion of three amino acids alanine (A), serine (S) and tyrosine (Y) between position 87 and 88 is shown as "Z087. 01A-Z087.02S-Z087.03Y." Thus, combining all the mutations above plus a deletion at position 100 is: "G087S-Z087. 01A-Z087.02S-Z087.03Y-A090Y-A100Z." When describing modifications, a position followed by amino acids listed in parentheses indicates a list of substitutions at that position by any of the listed amino acids. For example, 6(L,I) means position 6 can be substituted with a leucine or isoleucine.

[0106] A "prosequence" or "propetide sequence" refers to an amino acid sequence between the signal peptide sequence and mature protease sequence that is necessary for the proper folding and secretion of the protease; they are sometimes referred to as intramolecular chaperones. Cleavage of the prosequence or propeptide sequence results in a mature active protease. Bacterial metalloproteases are often expressed as pro-enzymes.

[0107] The term "signal sequence" or "signal peptide" refers to a sequence of amino acid residues that may participate in the secretion or direct transport of the mature or precursor form of a protein. The signal sequence is typically located N-terminal to the precursor or mature protein sequence. The signal sequence may be endogenous or exogenous. A signal sequence is normally absent from the mature protein. A signal sequence is typically cleaved from the protein by a signal peptidase after the protein is transported.

[0108] The term "mature" form of a protein, polypeptide, or peptide refers to the functional form of the protein, polypeptide, or peptide without the signal peptide sequence and propeptide sequence.

[0109] The term "precursor" form of a protein or peptide refers to a mature form of the protein having a prosequence operably linked to the amino or carbonyl terminus of the protein. The precursor may also have a "signal" sequence operably linked to the amino terminus of the prosequence. The precursor may also have additional polypeptides that are involved in post-translational activity (e.g., polypeptides cleaved therefrom to leave the mature form of a protein or peptide).

[0110] The term "wild-type" in reference to an amino acid sequence or nucleic acid sequence indicates that the amino acid sequence or nucleic acid sequence is native or naturally occurring sequence. As used herein, the term "naturally-occurring" refers to anything (e.g., proteins, amino acids, or nucleic acid sequences) that are found in nature.

[0111] As used herein, the term "non-naturally occurring" refers to anything that is not found in nature (e.g., recombinant nucleic acids and protein sequences produced in the laboratory), as modification of the wild-type sequence.

[0112] As used herein with regard to amino acid residue positions, "corresponding to" or "corresponds to" or "corresponds" refers to an amino acid residue at the enumerated position in a protein or peptide, or an amino acid residue that is analogous, homologous, or equivalent to an enumerated residue in a protein or peptide. As used herein, "corresponding region" generally refers to an analogous position in a related proteins or a reference protein.

[0113] The terms "derived from" and "obtained from" refer to not only a protein produced or producible by a strain of the organism in question, but also a protein encoded by a DNA sequence isolated from such strain and produced in a host organism containing such DNA sequence. Additionally, the term refers to a protein which is encoded by a DNA sequence of synthetic and/or cDNA origin and which has the identifying characteristics of the protein in question. To exemplify, "proteases derived from *Bacillus*" refers to those enzymes having proteolytic activity which are naturally produced by *Bacillus*, as well as to serine proteases like those produced by *Bacillus* sources but which through the use of genetic engineering techniques are produced by non-*Bacillus* organisms transformed with a nucleic acid encoding the serine pro-teases.

[0114] The term "identical" in the context of two nucleic acids or polypeptidesequences refers to the residues in the two sequences that are the same when aligned for maximum correspondence, as measured using one of the following sequence comparison or analysis algorithms.

[0115] As used herein, "homologous genes" refers to a pair of genes from different, but usually related species, which correspond to each other and which are identical or very similar to each other. The term encompasses genes that are separated by speciation (i.e., the development of new species) (e.g., orthologous genes), as well as genes that have been separated by genetic duplication (e.g., paralogous genes).

[0116] As used herein, "% identity or percent identity" refers to sequence similarity. Percent identity may be determined using standard techniques known in the art (See e.g., Smith and Waterman, Adv. Appl. Math. 2:482 [1981]; Needleman and Wunsch, J. Mol. Biol. 48:443 [1970]; Pearson and Lipman, Proc. Natl. Acad. Sci. USA 85:2444 [1988]; software programs such as GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package (Genetics Computer Group, Madison, Wis.); and Devereux et al., Nucl. Acid Res. 12:387-395 [1984]). One example of a useful algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pair-wise alignments. It can also plot a tree showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng and Doolittle (See, Feng and Doolittle, J. Mol. Evol. 35:351-360 [1987]). The method is similar to that described by Higgins and Sharp (See, Higgins and Sharp, CABIOS 5:151-153 [1989]). Useful PILEUP parameters include a default gap weight of 3.00, a default gap length weight of 0.10, and weighted end gaps. Other useful algorithm is the BLAST algorithms described by Altschul et al., (See, Altschul et al., J. Mol. Biol. 215:403-410 [1990]; and Karlin and Altschul, Proc. Natl. Acad. Sci. USA 90:5873-5787 [1993]). The BLAST program uses several search parameters, most of which are set to the default values.

[0117] The NCBI BLAST algorithm finds the most relevant sequences in terms of biological similarity but is not recommended for query sequences of less than 20 residues (Altschul, S F et al. (1997) Nucleic Acids Res. 25:3389-3402 and Schaffer, AA et al. (2001) Nucleic Acids Res. 29:2994-3005). Example default BLAST parameters for a nucleic acid sequence searches are:

- [0118] Neighboring words threshold: 11
- [0119] E-value cutoff: 10
- [0120] Scoring Matrix: NUC.3.1 (match=1, mismatch=-3)
- [0121] Gap Opening: 5
- [0122] Gap Extension: 2

and the following parameters for amino acid sequence searches:

- [0123] Word size: 3
- [0124] E-value cutoff: 10
- [0125] Scoring Matrix: BLOSUM62
- [0126] Gap Opening: 11
- [0127] Gap extension: 1

[0128] A percent (%) amino acid sequence identity value is determined by the number of matching identical residues divided by the total number of residues of the "reference"

sequence including any gaps created by the program for optimal/maximum alignment. If a sequence is 90% identical to SEQ ID NO: A, SEQ ID NO: A is is the "reference" sequence. BLAST algorithms refer the "reference" sequence as "query" sequence.

[0129] The CLUSTAL W algorithm is another example of a sequence alignment algorithm. See Thompson et al. (1994) *Nucleic Acids Res.* 22:4673-4680. Default parameters for the CLUSTAL W algorithm are:

- [0130] Gap opening penalty: 10.0
- [0131] Gap extension penalty: 0.05
- [0132] Protein weight matrix: BLOSUM series
- [0133] DNA weight matrix: IUB
- [0134] Delay divergent sequences %: 40
- [0135] Gap separation distance: 8
- [0136] DNA transitions weight: 0.50
- [0137] List hydrophilic residues: GPSNDQEKR
- [0138] Use negative matrix: OFF
- [0139] Toggle Residue specific penalties: ON
- [0140] Toggle hydrophilic penalties: ON
- [0141] Toggle end gap separation penalty OFF.

[0142] In CLUSTAL algorithms, deletions occurring at either terminus are included. For example, a variant with five amino acid deletion at either terminus (or within the polypeptide) of a polypeptide of 500 amino acids would have a percent sequence identity of 99% (495/500 identical residues×100) relative to the "reference" polypeptide. Such a variant would be encompassed by a variant having "at least 99% sequence identity" to the polypeptide.

[0143] A polypeptide of interest may be said to be "substantially identical" to a reference polypeptide if the polypeptide of interest comprises an amino acid sequence having at least about 60%, least about 65%, least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 99.5% sequence identity to the amino acid sequence of the reference polypeptide. The percent identity between two such polypeptides can be determined manually by inspection of the two optimally aligned polypeptide sequences or by using software programs or algorithms (e.g., BLAST, ALIGN, CLUSTAL) using standard parameters. One indication that two polypeptides are substantially identical is that the first polypeptide is immunologically cross-reactive with the second polypeptide. Typically, polypeptides that differ by conservative amino acid substitutions are immunologically cross-reactive. Thus, a polypeptide is substantially identical to a second polypeptide, for example, where the two peptides differ only by a conservative amino acid substitution or one or more conservative amino acid substitutions.

[0144] A nucleic acid of interest may be said to be "substantially identical" to a reference nucleic acid if the nucleic acid of interest comprises a nucleotide sequence having least about 60%, least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 99.5% sequence identity to the nucleotide sequence of the reference nucleic acid. The percent identity between two such nucleic acids can be determined manually by inspection of the two optimally aligned nucleic acid sequences or by using software programs or algorithms (e.g., BLAST, ALIGN, CLUSTAL) using standard parameters. One indication that two nucleic acid sequences are substantially identical is that the two nucleic acid molecules hybridize to each other under stringent conditions (e.g., within a range of medium to high stringency).

[0145] A nucleic acid or polynucleotide is "isolated" when it is at least partially or completely separated from other components, including but not limited to for example, other proteins, nucleic acids, cells, etc. Similarly, a polypeptide, protein or peptide is "isolated" when it is at least partially or completely separated from other components, including but not limited to for example, other proteins, nucleic acids, cells, etc. On a molar basis, an isolated species is more abundant than are other species in a composition. For example, an isolated species may comprise at least about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or about 100% (on a molar basis) of all macromolecular species present. Preferably, the species of interest is purified to essential homogeneity (i.e., contaminant species cannot be detected in the composition by conventional detection methods). Purity and homogeneity can be determined using a number of techniques well known in the art, such as agarose or polyacrylamide gel electrophoresis of a nucleic acid or a protein sample, respectively, followed by visualization upon staining. If desired, a high-resolution technique, such as high performance liquid chromatography (HPLC) or a similar means can be utilized for purification of the material.

[0146] "Hybridization" refers to the process by which one strand of nucleic acid forms a duplex with, i.e., base pairs with, a complementary strand. A nucleic acid sequence is considered to be "selectively hybridizable" to a reference nucleic acid sequence if the two sequences specifically hybridize to one another under moderate to high stringency hybridization and wash conditions. Hybridization conditions are based on the melting temperature (Tm) of the nucleic acid binding complex or probe. For example, "maximum stringency" typically occurs at about Tm-5° C. (5° below the Tm of the probe); "high stringency" at about 5-10° C. below the Tm; "intermediate stringency" at about 10-20° C. below the Tm of the probe; and "low stringency" at about 20-25° C. below the Tm. Functionally, maximum stringency conditions can be used to identify sequences having strict identity or near-strict identity with the hybridization probe; while intermediate or low stringency hybridization can be used to identify or detect polynucleotide sequence homologs.

[0147] Moderate and high stringency hybridization conditions are well known in the art. Stringent hybridization conditions are exemplified by hybridization under the following conditions: 65° C. and $0.1 \times SSC$ (where $1 \times SSC=0.15$ M NaCl, 0.015 M Na₃ citrate, pH 7.0). Hybridized, duplex nucleic acids are characterized by a melting temperature (T_m) , where one half of the hybridized nucleic acids are unpaired with the complementary strand. Mismatched nucleic acids within the duplex lower the T_m . Very stringent hybridization conditions involve 68° C. and $0.1 \times SSC$. A nucleic acid encoding a variant metalloprotease can have a T_m reduced by 1° C.-3° C. or more compared to a duplex formed between the nucleic acid and its identical complement.

[0148] Another example of high stringency conditions includes hybridization at about 42° C. in 50% formamide, 5×SSC, 5×Denhardt's solution, 0.5% SDS and 100 µg/ml

denatured carrier DNA followed by washing two times in $2\times$ SSC and 0.5% SDS at room temperature and two additional times in 0.1×SSC and 0.5% SDS at 42° C. An example of moderate stringent conditions include an overnight incubation at 37° C. in a solution comprising 20% formamide, 5×SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5×Denhardt's solution, 10% dextran sulfate and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1×SSC at about 37-50° C. Those of skill in the art know how to adjust the temperature, ionic strength, etc. to accommodate factors such as probe length and the like.

[0149] The term "purified" as applied to nucleic acids or polypeptides generally denotes a nucleic acid or polypeptide that is essentially free from other components as determined by analytical techniques well known in the art (e.g., a purified polypeptide or polynucleotide forms a discrete band in an electrophoretic gel, chromatographic eluate, and/or a media subjected to density gradient centrifugation). For example, a nucleic acid or polypeptide that gives rise to essentially one band in an electrophoretic gel is "purified." A purified nucleic acid or polypeptide is at least about 50% pure, usually at least about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5%, about 99.6%, about 99.7%, about 99.8% or more pure (e.g., percent by weight on a molar basis). In a related sense, the invention provides methods of enriching compositions for one or more molecules of the invention, such as one or more polypeptides or polynucleotides of the invention. A composition is enriched for a molecule when there is a substantial increase in the concentration of the molecule after application of a purification or enrichment technique. A substantially pure polypeptide or polynucleotide of the invention (e.g., substantially pure metalloprotease polypeptide or polynucleotide encoding a metalloprotease polypeptide of the invention, respectively) will typically comprise at least about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98, about 99%, about 99.5% or more by weight (on a molar basis) of all macromolecular species in a particular composition.

[0150] The term "enriched" refers to a compound, polypeptide, cell, nucleic acid, amino acid, or other specified material or component that is present in a composition at a relative or absolute concentration that is higher than a starting composition.

[0151] In a related sense, the invention provides methods of enriching compositions for one or more molecules of the invention, such as one or more polypeptides of the invention (e.g., one or more metalloprotease polypeptides of the invention) or one or more nucleic acids of the invention (e.g., one or more nucleic acids encoding one or more metalloprotease polypeptides of the invention). A composition is enriched for a molecule when there is a substantial increase in the concentration of the molecule after application of a purification or enrichment technique. A substantially pure polypeptide or polynucleotide will typically comprise at least about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98, about 99%, about 99.5% or more by weight (on a molar basis) of all macromolecular species in a particular composition.

[0152] As used herein, the term "functional assay" refers to an assay that provides an indication of a protein's activity. In some embodiments, the term refers to assay systems in which a protein is analyzed for its ability to function in its usual capacity. For example, in the case of a protease, a functional assay involves determining the effectiveness of the protease to hydrolyze a proteinaceous substrate.

[0153] The terms "modified nucleic acid sequence" and "modified gene" are used interchangeably herein to refer to a nucleic acid sequence that includes a deletion, insertion or interruption of naturally occurring (i.e., wild-type) nucleic acid sequence. In some embodiments, the expression product of the modified nucleic acid sequence is a truncated protein (e.g., if the modification is a deletion or interruption of the sequence). In some embodiments, the truncated protein retains biological activity. In alternative embodiments, the expression product of the modified nucleic acid sequence is an elongated protein (e.g., modifications comprising an insertion into the nucleic acid sequence). In some embodiments, a nucleotide insertion in the nucleic acid sequence leads to a truncated protein (e.g., when the insertion results in the formation of a stop codon). Thus, an insertion may result in either a truncated protein or an elongated protein as an expression product.

[0154] A "mutant" nucleic acid sequence typically refers to a nucleic acid sequence that has an alteration in at least one codon occurring in a host cell's wild-type sequence such that the expression product of the mutant nucleic acid sequence is a protein with an altered amino acid sequence relative to the wild-type protein. The expression product may have an altered functional capacity (e.g., enhanced enzymatic activity).

[0155] As used herein, the phrase "alteration in substrate specificity" refers to changes in the substrate specificity of an enzyme. In some embodiments, a change in substrate specificity is defined as a change in k_{cat} and/or K_m for a particular substrate, resulting from mutations of the enzyme or alteration of reaction conditions. The substrate specificity of an enzyme is determined by comparing the catalytic efficiencies it exhibits with different substrates. These determinations find particular use in assessing the efficiency of mutant enzymes, as it is generally desired to produce variant enzymes that exhibit greater ratios of k_{cat}/K_m for substrates of interest. However, it is not intended that the present invention be limited to any particular substrate composition or substrate specificity.

[0156] As used herein, "surface property" is used in reference to electrostatic charge, as well as properties such as the hydrophobicity and hydrophilicity exhibited by the surface of a protein. As used herein, the term "net charge" is defined as the sum of all charges present in a molecule. "Net charge changes" are made to a parent protein molecule to provide a variant that has a net charge that differs from that of the parent molecule (i.e., the variant has a net charge that is not the same as that of the parent molecule). For example, substitution of a neutral amino acid with a negatively charged amino acid or a positively charged amino acid with a neutral amino acid results in net charge of -1 with respect to the parent molecule. Substitution of a positively charged amino acid with a negatively charged amino acid results in a net charge of -2 with respect to the parent. Substitution of a neutral amino acid with a positively charged amino acid or a negatively charged amino acid with a neutral amino acid results in net charge of +1 with respect to the parent. Substitution of a negatively charged amino acid with a positively charged amino acid results in a net charge of +2 with respect to the parent. The net charge of a parent protein can also be altered by deletion and/or insertion of charged amino acids. A net change change applies to changes in charge of a variant versus a parent when measured at the same pH conditions.

[0157] The terms "thermally stable" and "thermostable" and "thermostability" refer to proteases that retain a specified amount of enzymatic activity after exposure to identified temperatures over a given period of time under conditions prevailing during the proteolytic, hydrolyzing, cleaning or other process of the invention, while being exposed to altered temperatures. "Altered temperatures" encompass increased or decreased temperatures. In some embodiments, the proteases retain at least about 50%, about 60%, about 70%, about 75%, about 80%, about 95%, about 90%, about 92%, about 95%, about 96%, about 97%, about 98%, or about 99% proteolytic activity after exposure to altered temperatures over a given time period, for example, at least about 240 minutes, about 300 minutes, etc.

[0158] The term "enhanced stability" in the context of an oxidation, chelator, thermal, chemical, autolytic and/or pH stable protease refers to a higher retained proteolytic activity over time as compared to other proteases (e.g., thermolysin proteases) and/or wild-type enzymes.

[0159] The term "diminished stability" in the context of an oxidation, chelator, thermal and/or pH stable protease refers to a lower retained proteolytic activity over time as compared to other proteases (e.g., thermolysin proteases) and/or wild-type enzymes.

[0160] The term "cleaning activity" refers to a cleaning performance achieved by a metalloprotease polypeptide or reference protease under conditions prevailing during the proteolytic, hydrolyzing, cleaning, or other process of the invention. In some embodiments, cleaning performance of a metalloprotease polypeptide or reference protease may be determined by using various assays for cleaning one or more various enzyme sensitive stains on an item or surface (e.g., a stain resulting from food, grass, blood, ink, milk, oil, and/or egg protein). Cleaning performance of a variant or reference protease can be determined by subjecting the stain on the item or surface to standard wash condition(s) and assessing the degree to which the stain is removed by using various chromatographic, spectrophotometric, or other quantitative methodologies. Exemplary cleaning assays and methods are known in the art and include, but are not limited to those described in WO 99/34011 and U.S. Pat. No. 6,605,458, both of which are herein incorporated by reference, as well as those cleaning assays and methods included in the Examples provided below.

[0161] The term "cleaning effective amount" of a metalloprotease polypeptide or reference protease refers to the amount of protease that achieves a desired level of enzymatic activity in a specific cleaning composition. Such effective amounts are readily ascertained by one of ordinary skill in the art and are based on many factors, such as the particular protease used, the cleaning application, the specific composition of the cleaning composition, and whether a liquid or dry (e.g., granular, tablet, bar) composition is required, etc.

[0162] The term "cleaning adjunct material" refers to any liquid, solid, or gaseous material included in cleaning composition other than a metalloprotease polypeptide of the invention. In some embodiments, the cleaning compositions

of the present invention include one or more cleaning adjunct materials. Each cleaning adjunct material is typically selected depending on the particular type and form of cleaning composition (e.g., liquid, granule, powder, bar, paste, spray, tablet, gel, foam, or other composition). Preferably, each cleaning adjunct material is compatible with the protease enzyme used in the composition.

[0163] The term "enhanced performance" in the context of cleaning activity refers to an increased or greater cleaning activity by an enzyme with respect to a parent or reference protein as measured on certain enzyme sensitive stains such as egg, milk, grass, ink, oil, and/or blood, as determined by usual evaluation after a standard wash cycle and/or multiple wash cycles.

[0164] The term "diminished performance" in the context of cleaning activity refers to a decreased or lesser cleaning activity by an enzyme on certain enzyme sensitive stains such as egg, milk, grass or blood, as determined by usual evaluation after a standard wash cycle and/or multiple wash cycles.

[0165] Cleaning compositions and cleaning formulations include any composition that is suited for cleaning, bleaching, disinfecting, and/or sterilizing any object, item, and/or surface. Such compositions and formulations include, but are not limited to for example, liquid and/or solid compositions, including cleaning or detergent compositions (e.g., liquid, tablet, gel, bar, granule, and/or solid laundry cleaning or detergent compositions and fine fabric detergent compositions; hard surface cleaning compositions and formulations, such as for glass, wood, ceramic and metal counter tops and windows; carpet cleaners; oven cleaners; fabric fresheners; fabric softeners; and textile, laundry booster cleaning or detergent compositions, laundry additive cleaning compositions, and laundry pre-spotter cleaning compositions; dishwashing compositions, including hand or manual dishwash compositions (e.g., "hand" or "manual" dishwashing detergents) and automatic dishwashing compositions (e.g., "automatic dishwashing detergents").

[0166] Cleaning composition or cleaning formulations, as used herein, include, unless otherwise indicated, granular or powder-form all-purpose or heavy-duty washing agents, especially cleaning detergents; liquid, granular, gel, solid, tablet, or paste-form all-purpose washing agents, especially the so-called heavy-duty liquid (HDL) detergent or heavyduty powder detergent (HDD) types; liquid fine-fabric detergents; hand or manual dishwashing agents, including those of the high-foaming type; hand or manual dishwashing, automatic dishwashing, or dishware or tableware washing agents, including the various tablet, powder, solid, granular, liquid, gel, and rinse-aid types for household and institutional use; liquid cleaning and disinfecting agents, including antibacterial hand-wash types, cleaning bars, mouthwashes, denture cleaners, car shampoos, carpet shampoos, bathroom cleaners; hair shampoos and/or hair-rinses for humans and other animals; shower gels and foam baths and metal cleaners; as well as cleaning auxiliaries, such as bleach additives and "stainstick" or pre-treat types. In some embodiments, granular compositions are in "compact" form; in some embodiments, liquid compositions are in a "concentrated" form.

[0167] As used herein, "fabric cleaning compositions" include hand and machine laundry detergent compositions including laundry additive compositions and compositions suitable for use in the soaking and/or pretreatment of stained fabrics (e.g., clothes, linens, and other textile materials).

[0168] As used herein, "non-fabric cleaning compositions" include non-textile (i.e., non-fabric) surface cleaning compositions, including, but not limited to for example, hand or manual or automatic dishwashing detergent compositions, oral cleaning compositions, denture cleaning compositions, and personal cleansing compositions.

[0169] As used herein, the term "fabric and/or hard surface cleaning and/or treatment composition" is a subset of cleaning and treatment compositions that includes, unless otherwise indicated, granular or powder-form all-purpose or "heavy-duty" washing agents, especially cleaning detergents; liquid, gel or paste-form all-purpose washing agents, especially the so-called heavy-duty liquid types; liquid fine-fabric detergents; hand dishwashing agents or light duty dishwashing agents, especially those of the high-foaming type; machine dishwashing agents, including the various tablet, granular, liquid and rinse-aid types for household and institutional use; liquid cleaning and disinfecting agents, car or carpet shampoos, bathroom cleaners including toilet bowl cleaners; fabric conditioning products including softening and/or freshening that may be in liquid, solid and/or dryer sheet form; as well as cleaning auxiliaries such as bleach additives and "stain-stick" or pre-treat types, substrate-laden products such as dryer added sheets. All of such products which are applicable may be in standard, concentrated or even highly concentrated form even to the extent that such products may in certain aspect be non-aqueous.

[0170] As used herein, the term "detergent composition" or "detergent formulation" is used in reference to a composition intended for use in a wash medium for the cleaning of soiled or dirty objects, including particular fabric and/or non-fabric objects or items. Such compositions of the present invention are not limited to any particular detergent composition or formulation. Indeed, in some embodiments, the detergents of the invention comprise at least one metalloprotease polypeptide of the invention and, in addition, one or more surfactants, transferase(s), hydrolytic enzymes, oxido reductases, builders (e.g., a builder salt), bleaching agents, bleach activators, bluing agents, fluorescent dyes, caking inhibitors, masking agents, enzyme activators, antioxidants, and/or solubilizers. In some instances, a builder salt is a mixture of a silicate salt and a phosphate salt, preferably with more silicate (e.g., sodium metasilicate) than phosphate (e.g., sodium tripolyphosphate). Some compositions of the invention, such as, but not limited to, cleaning compositions or detergent compositions, do not contain any phosphate (e.g., phosphate salt or phosphate builder).

[0171] As used herein, the term "bleaching" refers to the treatment of a material (e.g., fabric, laundry, pulp, etc.) or surface for a sufficient length of time and/or under appropriate pH and/or temperature conditions to effect a brightening (i.e., whitening) and/or cleaning of the material. Examples of chemicals suitable for bleaching include, but are not limited to, for example, ClO_2 , H_2O_2 , peracids, NO_2 , etc.

[0172] As used herein, "wash performance" of a protease (e.g., a metalloprotease polypeptide of the invention) refers to the contribution of a metalloprotease polypeptide to washing that provides additional cleaning performance to the detergent as compared to the detergent without the addition of the metalloprotease polypeptide to the composition. Wash performance is compared under relevant washing conditions. In some test systems, other relevant factors, such as detergent composition, sud concentration, water hardness, washing mechanics, time, pH, and/or temperature, can be controlled in

such a way that condition(s) typical for household application in a certain market segment (e g, hand or manual dishwashing, automatic dishwashing, dishware cleaning, tableware cleaning, fabric cleaning, etc.) are imitated.

[0173] The term "relevant washing conditions" is used herein to indicate the conditions, particularly washing temperature, time, washing mechanics, sud concentration, type of detergent and water hardness, actually used in households in a hand dishwashing, automatic dishwashing, or laundry detergent market segment.

[0174] The term "improved wash performance" is used to indicate that a better end result is obtained in stain removal under relevant washing conditions, or that less metalloprotease polypeptide, on weight basis, is needed to obtain the same end result relative to the corresponding wild-type or starting parent protease.

[0175] As used herein, the term "disinfecting" refers to the removal of contaminants from the surfaces, as well as the inhibition or killing of microbes on the surfaces of items. It is not intended that the present invention be limited to any particular surface, item, or contaminant(s) or microbes to be removed.

[0176] The "compact" form of the cleaning compositions herein is best reflected by density and, in terms of composition, by the amount of inorganic filler salt. Inorganic filler salts are conventional ingredients of detergent compositions in powder form. In conventional detergent compositions, the filler salts are present in substantial amounts, typically about 17 to about 35% by weight of the total composition. In contrast, in compact compositions, the filler salt is present in amounts not exceeding about 15% of the total composition. In some embodiments, the filler salt is present in amounts that do not exceed about 10%, or more preferably, about 5%, by weight of the composition. In some embodiments, the inorganic filler salts are selected from the alkali and alkaline-earth-metal salts of sulfates and chlorides. In some embodiments, the filler salt is sodium sulfate.

[0177] As used herein in connection with a numerical value, the term "about" refers to a range of +/-0.5 of the numerical value, unless the term is otherwise specifically defined in context. For instance, the phrase a "pH value of about 6" refers to pH values of from 5.5 to 6.5, unless the pH value is specifically defined otherwise.

[0178] The position of an amino acid residue in a given amino acid sequence is typically numbered herein using the numbering of the position of the corresponding amino acid residue of the wild type Paenibacillus metalloprotease amino acid sequences shown in SEQ ID NOs: 3, 8, 13, 18, 23, 28, 33 or 38. The Paenibacillus sp. metalloprotease amino acid sequences, thus serves as a reference parent sequence. A given amino acid sequence, such as a metalloprotease enzyme amino acid sequence and variants thereof described herein, can be aligned with the wild type metalloprotease sequence (e.g., SEQ ID NO: 3) using an alignment algorithm as described herein, and an amino acid residue in the given amino acid sequence that aligns (preferably optimally aligns) with an amino acid residue in the wild type sequence can be conveniently numbered by reference to the corresponding amino acid residue in the metalloprotease sequence.

[0179] Oligonucleotide synthesis and purification steps are typically performed according to specifications. Techniques and procedures are generally performed according to conventional methods well known in the art and various general references that are provided throughout this document. Pro-

cedures therein are believed to be well known to those of ordinary skill in the art and are provided for the convenience of the reader.

Metalloprotease Polypeptides of the Present Invention

[0180] The present invention provides novel metalloprotease enzyme polypeptides, which may be collectively referred to as "enzymes of the invention" or "polypeptides of the invention." Polypeptides of the invention include isolated, recombinant, substantially pure, or non-naturally occurring polypeptides. In some embodiments, polypeptides of the invention are useful in cleaning applications and can be incorporated into cleaning compositions that are useful in methods of cleaning an item or a surface in need of cleaning.

[0181] In some embodiments, the enzyme of the present invention has 50, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to SEQ ID NOs: 3, 8, 13, 18, 23, 28, 33 or 38. In various embodiments, the enzyme of the present invention has 50, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a metalloprotease enzyme from any genus in Tables 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2 or 8.2.

[0182] In some embodiments, the enzyme of the present invention, including all embodiments supra, can be derived from a member of the order Bacillales or family Bacillaceae, Paenibacillaceae, Alicyclobacillaceae, or Lactobacillaceae. In some embodiments, the enzyme of the present invention, including all embodiments supra, can be derived from a Bacillus, Alicyclobacillus, Geobacillus, Exiguobacterium, Lactobacillus, or Paenibacillus species. In some embodiments, the enzyme of the present invention, including all embodiments supra, can be derived from a member of the Pseudococcidae family. In some embodiments, the enzyme of the present invention, including all embodiments supra, can be derived from a Planococcus species. Various enzyme metalloproteases have been found that have a high identity to each other and to the Paenibacillus enzymes as shown in SEQ ID NOs: 3, 8, 13, 18, 23, 28, 33 or 38.

[0183] In a particular embodiment, the invention is an enzyme derived from the genus *Paenibacillus*. In a particular embodiment, the invention is an enzyme derived from the genus *Paenibacillus* and from the species *Paenibacillus* sp., *Paenibacillus ehimensis*, *Paenibacillus hunanensis*, *Paenibacillus barcinonensis*, *Paenibacillus amylolyticus*, *Paenibacillus humicus* and *Paenibacillus polymyxa*.

[0184] Described are compositions and methods relating to enzymes cloned from *Paenibacillus*. The compositions and methods are based, in part, on the observation that cloned and expressed enzymes of the present invention have proteolytic activity in the presence of a detergent composition. Enzymes of the present invention also demonstrate excellent stability in detergent compositions. These features makes enzymes of the present invention well suited for use in a variety of cleaning applications, where the enzyme can hydrolyze proteins in the presence of surfactants and other components found in detergent compositions.

[0185] In some embodiments, the invention includes an isolated, recombinant, substantially pure, or non-naturally occurring enzyme having protease activity, which polypeptide comprises a polypeptide sequence having at least about 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to a parent enzyme as provided herein.

[0186] In some embodiments, the polypeptide of the present invention, is a polypeptide having a specified degree of amino acid sequence homology to the exemplified polypeptides, e.g., at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or even at least 99% sequence homology to the amino acid sequences of SEQ ID NOs: 3, 8, 13, 18, 23, 28, 33 or 38. Homology can be determined by amino acid sequence alignment, e.g., using a program such as BLAST, ALIGN, or CLUSTAL, as described herein.

[0187] Also provided are polypeptide enzymes of the present invention, having protease activity, said enzymes comprising an amino acid sequence which differs from the amino acid sequence of SEQ ID NOS: 3, 8, 13, 18, 23, 28, 33 or 38 by no more than 50, no more than 40, no more than 30, no more than 35, no more than 25, no more than 20, no more than 19, no more than 18, no more than 17, no more than 16, no more than 15, no more than 14, no more than 13, no more than 9, no more than 7, no more than 5, no more than 3, no more than 5, no more than 3, no more than 10, no more than 5, no more than 3, no more than 5, no more than 3, no more than 5, no more than 4, no more than 3, no more than 5, no more than 4, no more than 3, no more than 2, or no more than 1 amino acid residue(s), when aligned using any of the previously described alignment methods.

[0188] As noted above, the variant enzyme polypeptides of the invention have enzymatic activities (e.g., protease activities) and thus are useful in cleaning applications, including but not limited to, methods for cleaning dishware items, tableware items, fabrics, and items having hard surfaces (e.g., the hard surface of a table, table top, wall, furniture item, floor, ceiling, etc.). Exemplary cleaning compositions comprising one or more variant metalloprotease enzyme polypeptides of the invention are described infra. The enzymatic activity (e.g., protease enzyme activity) of an enzyme polypeptide of the invention can be determined readily using procedures well known to those of ordinary skill in the art. The Examples presented infra describe methods for evaluating the enzymatic activity and cleaning performance. The performance of polypeptide enzymes of the invention in removing stains (e.g., a protein stain such as blood/milk/ink or egg yolk), cleaning hard surfaces, or cleaning laundry, dishware or tableware item(s) can be readily determined using procedures well known in the art and/or by using procedures set forth in the Examples.

[0189] The metalloprotease polypeptides of the invention have protease activity such that they are useful in casein hydrolysis, collagen hydrolysis, elastin hydrolysis, keratin hydrolysis, soy protein hydrolysis or corn meal protein hydrolysis. Thus, the polypeptides of the invention find use in other applications such as pretreatments for food, feed, or protein degradation.

[0190] The polypeptides of the invention are also useful in pretreatment of animal feed products, such as soy protein, corn meal, and other protein rich components. Pretreatment of these animal feed products with a polypeptide of the invention may help in the breakdown of complex proteins into their hydrolysates which are easily digestible by animals.

[0191] In yet other embodiments, the disclosed metalloprotease polypeptides find use in hydrolysis of corn soy protein. The disclosed metalloprotease polypeptides may be used alone or in combination with other proteases, amylases or lipases to produce peptides and free amino acids from the corn or soy protein. In some embodiments, the recovered proteins, peptides or amino acids can be subsequently used in animal feed or human food products.

[0192] The polypeptides of the invention are also useful in treatment of wounds, particularly in wound debridement. Wound debridement is the removal of dead, damaged or infected tissue to improve the healing potential of the remaining healthy tissue. Debridement is an important part of the healing process for burns and other serious wounds. The wounds or burns may be treated with a composition comprising a polypeptide of the invention which would result in removal of unwanted damaged tissue and improving the healthy tissue.

The metalloprotease polypeptides of the present invention can have protease activity over a broad range of pH conditions. In some embodiments, the metalloprotease polypeptides have protease activity on azo-casein as a substrate, as demonstrated in Examples 3.1 to 3.8. In some embodiments, the metalloprotease polypeptides have protease activity at a pH of from about 3.0 to about 12.0. In some embodiments, the metalloprotease polypeptides have protease activity at a pH of from about 4.0 to about 10.5. In some embodiments, the metalloprotease polypeptides have at least 70% of maximal protease activity at a pH of from about 5.5 to about 9.0. In some embodiments, the metalloprotease polypeptides have at least 80% of maximal protease activity at a pH of from about 6.0 to about 8.5. In some embodiments, the metalloprotease polypeptides have maximal protease activity at a pH of about 7.5.

[0193] In some embodiments, the metalloprotease polypeptides of the present invention have protease activity at a temperature range of from about 10° C. to about 100° C. In some embodiments, the metalloprotease polypeptides of the present invention have protease activity at a temperature range of from about 20° C. to about 90° C. In some embodiments, the metalloprotease polypeptides have at least 70% of maximal protease activity at a temperature of from about 45° C. to about 60° C. In some embodiments, the metalloprotease polypeptides have at least 70% of maximal protease activity at a temperature of from about 45° C. to about 60° C. In some embodiments, the metalloprotease polypeptides have maximal protease activity at a temperature of 50° C.

[0194] In some embodiments, the metalloprotease polypeptides of the present invention demonstrate cleaning performance in a cleaning composition. Cleaning compositions often include ingredients harmful to the stability and performance of enzymes, making cleaning compositions a harsh environment for enzymes, e.g. metalloproteases, to retain function. Thus, it is not trivial for an enzyme to be put in a cleaning composition and expect enzymatic function (e.g. metalloprotease activity, such as demonstrated by cleaning performance). In some embodiments, the metalloprotease polypeptides of the present invention demonstrate cleaning performance in automatic dishwashing (ADW) detergent compositions. In some embodiments, the cleaning performance in automatic dishwashing (ADW) detergent compositions includes cleaning of egg yolk stains. In some embodiments, the metalloprotease polypeptides of the present invention demonstrate cleaning performance in laundry detergent compositions. In some embodiments, the cleaning performance in laundry detergent compositions includes cleaning of blood/milk/ink stains. In each of the cleaning compositions, the metalloprotease polypeptides of the present invention demonstrate cleaning performance with or without a bleach component.

[0195] The metalloprotease polypeptides of the invention have protease activity such that they are useful in casein

hydrolysis, collagen hydrolysis, elastin hydrolysis, keratin hydrolysis, soy protein hydrolysis or corn meal protein hydrolysis. Thus, the polypeptides of the invention find use in other applications such as pretreatments for food, feed, or protein degradation.

[0196] A polypeptide of the invention can be subject to various changes, such as one or more amino acid insertions, deletions, and/or substitutions, either conservative or nonconservative, including where such changes do not substantially alter the enzymatic activity of the polypeptide. Similarly, a nucleic acid of the invention can also be subject to various changes, such as one or more substitutions of one or more nucleotides in one or more codons such that a particular codon encodes the same or a different amino acid, resulting in either a silent variation (e.g., when the encoded amino acid is not altered by the nucleotide mutation) or non-silent variation, one or more deletions of one or more nucleic acids (or codons) in the sequence, one or more additions or insertions of one or more nucleic acids (or codons) in the sequence, and/or cleavage of or one or more truncations of one or more nucleic acids (or codons) in the sequence. Many such changes in the nucleic acid sequence may not substantially alter the enzymatic activity of the resulting encoded polypeptide enzyme compared to the polypeptide enzyme encoded by the original nucleic acid sequence. A nucleic acid sequence of the invention can also be modified to include one or more codons that provide for optimum expression in an expression system (e.g., bacterial expression system), while, if desired, said one or more codons still encode the same amino acid(s).

[0197] In some embodiments, the present invention provides a genus of enzyme polypeptides having the desired enzymatic activity (e.g., protease enzyme activity or cleaning performance activity) which comprise sequences having the amino acid substitutions described herein and also which comprise one or more additional amino acid substitutions, such as conservative and non-conservative substitutions, wherein the polypeptide exhibits, maintains, or approximately maintains the desired enzymatic activity (e.g., proteolytic activity, as reflected in the cleaning activity or performance of the polypeptide enzymes of SEQ ID NOs: 3, 8, 13, 18, 23, 28, 33 and 38). Amino acid substitutions in accordance with the invention may include, but are not limited to, one or more non-conservative substitutions and/or one or more conservative amino acid substitutions. A conservative amino acid residue substitution typically involves exchanging a member within one functional class of amino acid residues for a residue that belongs to the same functional class (conservative amino acid residues are considered functionally homologous or conserved in calculating percent functional homology). A conservative amino acid substitution typically involves the substitution of an amino acid in an amino acid sequence with a functionally similar amino acid. For example, alanine, glycine, serine, and threonine are functionally similar and thus may serve as conservative amino acid substitutions for one another. Aspartic acid and glutamic acid may serve as conservative substitutions for one another. Asparagine and glutamine may serve as conservative substitutions for one another. Arginine, lysine, and histidine may serve as conservative substitutions for one another. Isoleucine, leucine, methionine, and valine may serve as conservative substitutions for one another. Phenylalanine, tyrosine, and tryptophan may serve as conservative substitutions for one another.

[0198] Other conservative amino acid substitution groups can be envisioned. For example, amino acids can be grouped by similar function or chemical structure or composition (e.g., acidic, basic, aliphatic, aromatic, sulfur-containing). For instance, an aliphatic grouping may comprise: Glycine (G), Alanine (A), Valine (V), Leucine (L), Isoleucine (I). Other groups containing amino acids that are considered conservative substitutions for one another include: aromatic: Phenylalanine (F), Tyrosine (Y), Tryptophan (W); sulfurcontaining: Methionine (M), Cysteine (C); Basic: Arginine (R), Lysine (K), Histidine (H); Acidic: Aspartic acid (D), Glutamic acid (E); non-polar uncharged residues, Cysteine (C), Methionine (M), and Proline (P); hydrophilic uncharged residues: Serine (S), Threonine (T), Asparagine (N), and Glutamine (Q). Additional groupings of amino acids are wellknown to those of skill in the art and described in various standard textbooks. Listing of a polypeptide sequence herein, in conjunction with the above substitution groups, provides an express listing of all conservatively substituted polypeptide sequences.

[0199] More conservative substitutions exist within the amino acid residue classes described above, which also or alternatively can be suitable. Conservation groups for substitutions that are more conservative include: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, and asparagine-glutamine.

[0200] Conservatively substituted variations of a polypeptide sequence of the invention (e.g., variant metalloproteases of the invention) include substitutions of a small percentage, sometimes less than 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, or 6% of the amino acids of the polypeptide sequence, or less than 5%, 4%, 3%, 2%, or 1%, or less than 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid substitution of the amino acids of the polypeptide sequence, with a conservatively selected amino acid of the same conservative substitution group.

[0201] As described elsewhere herein in greater detail and in the Examples provided herein, polypeptides of the invention may have cleaning abilities that may be compared to known proteases, including known metalloproteases.

Nucleic Acids of the Invention

[0202] The invention provides isolated, non-naturally occurring, or recombinant nucleic acids which may be collectively referred to as "nucleic acids of the invention" or "polynucleotides of the invention", which encode polypeptides of the invention. Nucleic acids of the invention, including all described below, are useful in recombinant production (e.g., expression) of polypeptides of the invention, typically through expression of a plasmid expression vector comprising a sequence encoding the polypeptide of interest or fragment thereof. As discussed above, polypeptides include metalloprotease polypeptides having enzymatic activity (e.g., proteolytic activity) which are useful in cleaning applications and cleaning compositions for cleaning an item or a surface (e.g., surface of an item) in need of cleaning.

[0203] In some embodiments, the invention provides an isolated, recombinant, substantially pure, or non-naturally occurring nucleic acid comprising a nucleotide sequence encoding any polypeptide (including any fusion protein, etc.) of the invention described above in the section entitled "Polypeptides of the Invention" and elsewhere herein. The invention also provides an isolated, recombinant, substantially pure, or non-naturally-occurring nucleic acid compris-

ing a nucleotide sequence encoding a combination of two or more of any polypeptides of the invention described above and elsewhere herein. In some embodiments, the nucleic acids of the present invention has 50, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to SEQ ID NO: 4, 9, 14, 19, 24, 29, 34 and 39.

[0204] The present invention provides nucleic acids encoding a metalloprotease polypeptide of the present invention, wherein the metalloprotease polypeptide is a mature form having proteolytic activity, wherein the amino acid positions of the variant are numbered by correspondence with the amino acid sequence of *Paenibacillus* metalloprotease polypeptides set forth as SEQ ID NOs: 3, 8, 13, 18, 23, 28, 33 or 38.

[0205] Nucleic acids of the invention can be generated by using any suitable synthesis, manipulation, and/or isolation techniques, or combinations thereof. For example, a polynucleotide of the invention may be produced using standard nucleic acid synthesis techniques, such as solid-phase synthesis techniques that are well-known to those skilled in the art. In such techniques, fragments of up to 50 or more nucleotide bases are typically synthesized, then joined (e.g., by enzymatic or chemical ligation methods) to form essentially any desired continuous nucleic acid sequence. The synthesis of the nucleic acids of the invention can be also facilitated by any suitable method known in the art, including but not limited to chemical synthesis using the classical phosphoramidite method (See e.g., Beaucage et al. Tetrahedron Letters 22:1859-69 [1981]); or the method described by Matthes et al. (See, Matthes et al., EMBO J. 3:801-805 [1984], as is typically practiced in automated synthetic methods. Nucleic acids of the invention also can be produced by using an automatic DNA synthesizer. Customized nucleic acids can be ordered from a variety of commercial sources (e.g., The Midland Certified Reagent Company, the Great American Gene Company, Operon Technologies Inc., and DNA2.0). Other techniques for synthesizing nucleic acids and related principles are known in the art (See e.g., Itakura et al., Ann Rev. Biochem. 53:323 [1984]; and Itakura et al., Science 198:1056 [1984]).

[0206] As indicated above, recombinant DNA techniques useful in modification of nucleic acids are well known in the art. For example, techniques such as restriction endonuclease digestion, ligation, reverse transcription and cDNA production, and polymerase chain reaction (e.g., PCR) are known and readily employed by those of skill in the art. Nucleotides of the invention may also be obtained by screening cDNA libraries using one or more oligonucleotide probes that can hybridize to or PCR-amplify polynucleotides which encode a metalloprotease polypeptide polypeptide(s) of the invention. Procedures for screening and isolating cDNA clones and PCR amplification procedures are well known to those of skill in the art and described in standard references known to those skilled in the art. Some nucleic acids of the invention can be obtained by altering a naturally occurring polynucleotide backbone (e.g., that encodes an enzyme or parent protease) by, for example, a known mutagenesis procedure (e.g., sitedirected mutagenesis, site saturation mutagenesis, and in vitro recombination).

Methods for Making Modified Metalloprotease polypeptides of the Invention

[0207] A variety of methods are known in the art that are suitable for generating modified polynucleotides of the invention that encode metalloprotease polypeptides of the inven-

tion, including, but not limited to, for example, site-saturation mutagenesis, scanning mutagenesis, insertional mutagenesis, deletion mutagenesis, random mutagenesis, site-directed mutagenesis, and directed-evolution, as well as various other recombinatorial approaches. Methods for making modified polynucleotides and proteins (e.g., metalloprotease polypeptides) include DNA shuffling methodologies, methods based on non-homologous recombination of genes, such as ITCHY (See, Ostermeier et al., 7:2139-44 [1999]), SCRACHY (See, Lutz et al. 98:11248-53 [2001]), SHIPREC (See, Sieber et al., 19:456-60 [2001]), and NRR (See, Bittker et al., 20:1024-9 [2001]; Bittker et al., 101:7011-6 [2004]), and methods that rely on the use of oligonucleotides to insert random and targeted mutations, deletions and/or insertions (See, Ness et al., 20:1251-5 [2002]; Coco et al., 20:1246-50 [2002]; Zha et al., 4:34-9 [2003]; Glaser et al., 149:3903-13 [1992]).

Vectors, Cells, and Methods for Producing Metalloprotease Polypeptides of the Invention

[0208] The present invention provides vectors comprising at least one metalloprotease polynucleotide of the invention described herein (e.g., a polynucleotide encoding a metalloprotease polypeptide of the invention described herein), expression vectors or expression cassettes comprising at least one nucleic acid or polynucleotide of the invention, isolated, substantially pure, or recombinant DNA constructs comprising at least one nucleic acid or polynucleotide of the invention, isolated or recombinant cells comprising at least one polynucleotide of the invention, and compositions comprising one or more such vectors, nucleic acids, expression vectors, expression cassettes, DNA constructs, cells, cell cultures, or any combination or mixtures thereof.

[0209] In some embodiments, the invention provides recombinant cells comprising at least one vector (e.g., expression vector or DNA construct) of the invention which comprises at least one nucleic acid or polynucleotide of the invention. Some such recombinant cells are transformed or transfected with such at least one vector. Such cells are typically referred to as host cells. Some such cells comprise bacterial cells, including, but are not limited to *Bacillus* sp. cells, such as *B. subtilis* cells. The invention also provides recombinant cells (e.g., recombinant host cells) comprising at least one metalloprotease polypeptide of the invention.

[0210] In some embodiments, the invention provides a vector comprising a nucleic acid or polynucleotide of the invention. In some embodiments, the vector is an expression vector or expression cassette in which a polynucleotide sequence of the invention which encodes a metalloprotease polypeptide of the invention is operably linked to one or additional nucleic acid segments required for efficient gene expression (e.g., a promoter operably linked to the polynucleotide of the invention). A vector may include a transcription terminator and/or a selection gene, such as an antibiotic resistance gene, that enables continuous cultural maintenance of plasmid-infected host cells by growth in antimicrobial-containing media.

[0211] An expression vector may be derived from plasmid or viral DNA, or in alternative embodiments, contains elements of both. Exemplary vectors include, but are not limited to pC194, pJH101, pE194, pHP13 (See, Harwood and Cutting [eds.], Chapter 3, Molecular Biological Methods for *Bacillus*, John Wiley & Sons [1990]; suitable replicating plasmids for *B. subtilis* include those listed on p. 92) See also, Perego, Integrational Vectors for Genetic Manipulations in *Bacillus subtilis*, in Sonenshein et al., [eds.] *Bacillus subtilis* and Other Gram-Positive Bacteria: Biochemistry, Physiology and Molecular Genetics, American Society for Microbiology, Washington, D.C. [1993], pp. 615-624), and p2JM103BBI.

[0212] For expression and production of a protein of interest (e.g., metalloprotease polypeptide) in a cell, at least one expression vector comprising at least one copy of a polynucleotide encoding the metalloprotease polypeptide, and in some instances comprising multiple copies, is transformed into the cell under conditions suitable for expression of the metalloprotease. In some embodiments of the present invention, a polynucleotide sequence encoding the metalloprotease polypeptide (as well as other sequences included in the vector) is integrated into the genome of the host cell, while in other embodiments, a plasmid vector comprising a polynucleotide sequence encoding the metalloprotease polypeptide remains as autonomous extra-chromosomal element within the cell. The invention provides both extrachromosomal nucleic acid elements as well as incoming nucleotide sequences that are integrated into the host cell genome. The vectors described herein are useful for production of the metalloprotease polypeptides of the invention. In some embodiments, a polynucleotide construct encoding the metalloprotease polypeptide is present on an integrating vector that enables the integration and optionally the amplification of the polynucleotide encoding the metalloprotease polypeptide into the host chromosome. Examples of sites for integration are well known to those skilled in the art. In some embodiments, transcription of a polynucleotide encoding a metalloprotease polypeptide of the invention is effectuated by a promoter that is the wild-type promoter for the selected precursor protease. In some other embodiments, the promoter is heterologous to the precursor protease, but is functional in the host cell. Specifically, examples of suitable promoters for use in bacterial host cells include, but are not limited to, for example, the amyE, amyQ, amyL, pstS, sacB, pSPAC, pAprE, pVeg, pHpaII promoters, the promoter of the B. stearothermophilus maltogenic amylase gene, the B. amvloliquefaciens (BAN) amylase gene, the B. subtilis alkaline protease gene, the B. clausii alkaline protease gene the B. pumilis xylosidase gene, the B. thuringiensis cryIIIA, and the B. licheniformis alpha-amylase gene. Additional promoters include, but are not limited to the A4 promoter, as well as phage Lambda PR or PL promoters, and the E. coli lac, trp or tac promoters.

[0213] Metalloprotease polypeptides of the present invention can be produced in host cells of any suitable microorganism, including bacteria and fungi. In some embodiments, metalloprotease polypeptides of the present invention can be produced in Gram-positive bacteria. In some embodiments, the host cells are Bacillus spp., Streptomyces spp., Escherichia spp., Aspergillus spp., Trichoderma spp., Pseudomonas spp., Corynebacterium spp., Saccharomyces spp., or Pichia spp. In some embodiments, the metalloprotease polypeptides are produced by Bacillus sp. host cells. Examples of Bacillus sp. host cells that find use in the production of the metalloprotease polypeptides of the invention include, but are not limited to B. licheniformis, B. lentus, B. subtilis, B. amyloliquefaciens, B. lentus, B. brevis, B. stearothermophilus, B. alkalophilus, B. coagulans, B. circulans, B. pumilis, B. thuringiensis, B. clausii, and B. megaterium, as well as other organisms within the genus Bacillus. In some embodiments, B. subtilis host cells are used for production of metalloprotease polypeptides. U.S. Pat. Nos. 5,264,366 and 4,760,025 (RE 34,606) describe various *Bacillus* host strains that can be used for producing metalloprotease polypeptide of the invention, although other suitable strains can be used.

[0214] Several bacterial strains that can be used to produce metalloprotease polypeptides of the invention include nonrecombinant (i.e., wild-type) Bacillus sp. strains, as well as variants of naturally-occurring strains and/or recombinant strains. In some embodiments, the host strain is a recombinant strain, wherein a polynucleotide encoding a polypeptide of interest has been introduced into the host. In some embodiments, the host strain is a B. subtilis host strain and particularly a recombinant Bacillus subtilis host strain. Numerous B. subtilis strains are known, including, but not limited to for example, 1A6 (ATCC 39085), 168 (1A01), SB19, W23, Ts85, B637, PB1753 through PB1758, PB3360, JH642, 1A243 (ATCC 39,087), ATCC 21332, ATCC 6051, MI113, DE100 (ATCC 39,094), GX4931, PBT 110, and PEP 211strain (See e.g., Hoch et al., Genetics 73:215-228 [1973]; See also, U.S. Pat. Nos. 4,450,235 and 4,302,544, and EP 0134048, each of which is incorporated by reference in its entirety). The use of B. subtilis as an expression host cells is well known in the art (See e.g., Palva et al., Gene 19:81-87 [1982]; Fahnestock and Fischer, J. Bacteriol., 165:796-804 [1986]; and Wang et al., Gene 69:39-47 [1988]).

[0215] In some embodiments, the *Bacillus* host cell is a Bacillus sp. that includes a mutation or deletion in at least one of the following genes, degU, degS, degR and degQ. In some embodiments, the mutation is in a degU gene, and in some embodiments the mutation is degU(Hy)32 (See e.g., Msadek et al., J. Bacteriol. 172:824-834 [1990]; and Olmos et al., Mol. Gen. Genet. 253:562-567 [1997]). In some embodiments, the Bacillus host comprises a mutation or deletion in scoC4 (See e.g., Caldwell et al., J. Bacteriol. 183:7329-7340 [2001]); spoIIE (See e.g., Arigoni et al., Mol. Microbiol. 31:1407-1415 [1999]); and/or oppA or other genes of the opp operon (See e.g., Perego et al., Mol. Microbiol. 5:173-185 [1991]). Indeed, it is contemplated that any mutation in the opp operon that causes the same phenotype as a mutation in the oppA gene will find use in some embodiments of the altered Bacillus strain of the invention. In some embodiments, these mutations occur alone, while in other embodiments, combinations of mutations are present. In some embodiments, an altered Bacillus host cell strain that can be used to produce a metalloprotease polypeptide of the invention is a Bacillus host strain that already includes a mutation in one or more of the above-mentioned genes. In addition, Bacillus sp. host cells that comprise mutation(s) and/or deletions of endogenous protease genes find use. In some embodiments, the Bacillus host cell comprises a deletion of the aprE and the nprE genes. In other embodiments, the Bacillus sp. host cell comprises a deletion of 5 protease genes, while in other embodiments, the Bacillus sp. host cell comprises a deletion of 9 protease genes (See e.g., U.S. Pat. Appln. Pub. No. 2005/0202535, incorporated herein by reference).

[0216] Host cells are transformed with at least one nucleic acid encoding at least one metalloprotease polypeptide of the invention using any suitable method known in the art. Methods for introducing a nucleic acid (e.g., DNA) into *Bacillus* cells or *E. coli* cells utilizing plasmid DNA constructs or vectors and transforming such plasmid DNA constructs or vectors into such cells are well known. In some embodiments, the plasmids are subsequently isolated from *E. coli* cells and transformed into *Bacillus* cells. However, it is not essential to

use intervening microorganisms such as *E. coli*, and in some embodiments, a DNA construct or vector is directly introduced into a *Bacillus* host.

[0217] Those of skill in the art are well aware of suitable methods for introducing nucleic acid sequences of the invention into Bacillus cells (See e.g., Ferrari et al., "Genetics," in Harwood et al. [eds.], Bacillus, Plenum Publishing Corp. [1989], pp. 57-72; Saunders et al., J. Bacteriol. 157:718-726 [1984]; Hoch et al., J. Bacteriol. 93:1925-1937 [1967]; Mann et al., Current Microbiol. 13:131-135 [1986]; Holubova, Folia Microbiol. 30:97 [1985]; Chang et al., Mol. Gen. Genet. 168:11-115 [1979]; Vorobjeva et al., FEMS Microbiol. Lett. 7:261-263 [1980]; Smith et al., Appl. Env. Microbiol. 51:634 [1986]; Fisher et al., Arch. Microbiol. 139:213-217 [1981]; and McDonald, J. Gen. Microbiol. 130:203 [1984]). Indeed, such methods as transformation, including protoplast transformation and transfection, transduction, and protoplast fusion are well known and suited for use in the present invention. Methods known in the art to transform Bacillus cells include such methods as plasmid marker rescue transformation, which involves the uptake of a donor plasmid by competent cells carrying a partially homologous resident plasmid (See, Contente et al., Plasmid 2:555-571 [1979]; Haima et al., Mol. Gen. Genet. 223:185-191 [1990]; Weinrauch et al., J. Bacteriol. 154:1077-1087 [1983]; and Weinrauch et al., J. Bacteriol. 169:1205-1211 [1987]). In this method, the incoming donor plasmid recombines with the homologous region of the resident "helper" plasmid in a process that mimics chromosomal transformation.

[0218] In addition to commonly used methods, in some embodiments, host cells are directly transformed with a DNA construct or vector comprising a nucleic acid encoding a metalloprotease polypeptide of the invention (i.e., an intermediate cell is not used to amplify, or otherwise process, the DNA construct or vector prior to introduction into the host cell). Introduction of the DNA construct or vector of the invention into the host cell includes those physical and chemical methods known in the art to introduce a nucleic acid sequence (e.g., DNA sequence) into a host cell without insertion into the host genome. Such methods include, but are not limited to calcium chloride precipitation, electroporation, naked DNA, liposomes and the like. In additional embodiments, DNA constructs or vector are co-transformed with a plasmid, without being inserted into the plasmid. In further embodiments, a selective marker is deleted from the altered Bacillus strain by methods known in the art (See, Stahl et al., J. Bacteriol. 158:411-418 [1984]; and Palmeros et al., Gene 247:255-264 [2000]).

[0219] In some embodiments, the transformed cells of the present invention are cultured in conventional nutrient media. The suitable specific culture conditions, such as temperature, pH and the like are known to those skilled in the art and are well described in the scientific literature. In some embodiments, the invention provides a culture (e.g., cell culture) comprising at least one metalloprotease polypeptide or at least one nucleic acid of the invention.

[0220] In some embodiments, host cells transformed with at least one polynucleotide sequence encoding at least one metalloprotease polypeptide of the invention are cultured in a suitable nutrient medium under conditions permitting the expression of the present protease, after which the resulting protease is recovered from the culture. In some embodiments, the protease produced by the cells is recovered from the culture medium by conventional procedures, including, but

not limited to for example, separating the host cells from the medium by centrifugation or filtration, precipitating the proteinaceous components of the supernatant or filtrate by means of a salt (e.g., ammonium sulfate), chromatographic purification (e.g., ion exchange, gel filtration, affinity, etc.).

[0221] In some embodiments, a metalloprotease polypeptide produced by a recombinant host cell is secreted into the culture medium. A nucleic acid sequence that encodes a purification facilitating domain may be used to facilitate purification of proteins. A vector or DNA construct comprising a polynucleotide sequence encoding a metalloprotease polypeptide may further comprise a nucleic acid sequence encoding a purification facilitating domain to facilitate purification of the metalloprotease polypeptide (See e.g., Kroll et al., DNA Cell Biol. 12:441-53 [1993]). Such purification facilitating domains include, but are not limited to, for example, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals (See, Porath, Protein Expr. Purif. 3:263-281 [1992]), protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system. The inclusion of a cleavable linker sequence such as Factor XA or enterokinase (e.g., sequences available from Invitrogen, San Diego, Calif.) between the purification domain and the heterologous protein also find use to facilitate purification.

[0222] Assays for detecting and measuring the enzymatic activity of an enzyme, such as a metalloprotease polypeptide of the invention, are well known. Various assays for detecting and measuring activity of proteases (e.g., metalloprotease polypeptides of the invention), are also known to those of ordinary skill in the art. In particular, assays are available for measuring protease activity that are based on the release of acid-soluble peptides from casein or hemoglobin, measured as absorbance at 280 nm or colorimetrically using the Folin method. Other exemplary assays involve the solubilization of chromogenic substrates (See e.g., Ward, "Proteinases," in Fogarty (ed.)., Microbial Enzymes and Biotechnology, Applied Science, London, [1983], pp. 251-317). Other exemplary assays include, but are not limited to succinyl-Ala-Ala-Pro-Phe-para nitroanilide assay (suc-AAPF-pNA)(SEQ ID NO: 43) and the 2,4,6-trinitrobenzene sulfonate sodium salt assay (TNBS assay). Numerous additional references known to those in the art provide suitable methods (See e.g., Wells et al., Nucleic Acids Res. 11:7911-7925 [1983]; Christianson et al., Anal. Biochem. 223:119-129 [1994]; and Hsia et al., Anal Biochem. 242:221-227 [1999]).

[0223] A variety of methods can be used to determine the level of production of a mature protease (e.g., mature metalloprotease polypeptides of the present invention) in a host cell. Such methods include, but are not limited to, for example, methods that utilize either polyclonal or monoclonal antibodies specific for the protease. Exemplary methods include, but are not limited to enzyme-linked immunosorbent assays (ELISA), radioimmunoassays (RIA), fluorescent immunoassays (FIA), and fluorescent activated cell sorting (FACS). These and other assays are well known in the art (See e.g., Maddox et al., J. Exp. Med. 158:1211 [1983]).

[0224] In some other embodiments, the invention provides methods for making or producing a mature metalloprotease polypeptide of the invention. A mature metalloprotease polypeptide does not include a signal peptide or a propeptide sequence. Some methods comprise making or producing a metalloprotease polypeptide of the invention in a recombi-

nant bacterial host cell, such as for example, a *Bacillus* sp. cell (e.g., a *B. subtilis* cell). In some embodiments, the invention provides a method of producing a metalloprotease polypeptide of the invention, the method comprising cultivating a recombinant host cell comprising a recombinant expression vector comprising a nucleic acid encoding a metalloprotease polypeptide of the invention under conditions conducive to the production of the metalloprotease polypeptide. Some such methods further comprise recovering the metalloprotease polypeptide from the culture.

[0225] In some embodiments the invention provides methods of producing a metalloprotease polypeptide of the invention, the methods comprising: (a) introducing a recombinant expression vector comprising a nucleic acid encoding a metalloprotease polypeptide of the invention into a population of cells (e.g., bacterial cells, such as *B. subtilis* cells); and (b) culturing the cells in a culture medium under conditions conducive to produce the metalloprotease polypeptide encoded by the expression vector. Some such methods further comprise: (c) isolating the metalloprotease polypeptide from the cells or from the culture medium.

Fabric and Home Care Products

[0226] In some embodiments, the metalloprotease polypeptides of the present invention can be used in compositions comprising an adjunct material and a metalloprotease polypeptide, wherein the composition is a fabric and home care product.

[0227] In some embodiments, the fabric and home care product compositions comprising at least one metalloprotease polypeptide comprise one or more of the following ingredients (based on total composition weight): from about $0.0005 \mbox{ wt }\%$ to about 0.1 wt %, from about 0.001 wt % to about 0.05 wt %, or even from about 0.002 wt % to about 0.03 wt % of said metalloprotease polypeptide; and one or more of the following: from about 0.00003 wt % to about 0.1 wt % fabric hueing agent; from about 0.001 wt % to about 5 wt %, perfume capsules; from about 0.001 wt % to about 1 wt %, cold-water soluble brighteners; from about 0.00003 wt % to about 0.1 wt % bleach catalysts; from about 0.00003 wt % to about 0.1 wt % first wash lipases; from about 0.00003 wt % to about 0.1 wt % bacterial cleaning cellulases; and/or from about 0.05 wt % to about 20 wt % Guerbet nonionic surfactants.

[0228] In some embodiments, the fabric and home care product composition is a liquid laundry detergent or a dishwashing detergent, such as an automatic dishwashing (ADW) detergent or hand dishwashing detergent.

[0229] It is intended that the fabric and home care product is provided in any suitable form, including a fluid or solid, or granular, powder, solid, bar, liquid, tablet, gel, or paste form. The fabric and home care product may be in the form of a unit dose pouch, especially when in the form of a liquid, and typically the fabric and home care product is at least partially, or even completely, enclosed by a water-soluble pouch. In addition, in some embodiments of the fabric and home care products comprising at least one metalloprotease polypeptide, the fabric and home care product may have any combination of parameters and/or characteristics detailed above.

Compositions Having the Metalloprotease Polypeptide of the Present Invention

[0230] Unless otherwise noted, all component or composition levels provided herein are made in reference to the active

level of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources. Enzyme components weights are based on total active protein. All percentages and ratios are calculated by weight unless otherwise indicated. All percentages and ratios are calculated based on the total composition unless otherwise indicated. Compositions of the invention include cleaning compositions, such as detergent compositions. In the exemplified detergent compositions, the enzymes levels are expressed by pure enzyme by weight of the total composition and unless otherwise specified, the detergent ingredients are expressed by weight of the total compositions.

[0231] As indicated herein, in some embodiments, the cleaning compositions of the present invention further comprise adjunct materials including, but not limited to, surfactants, builders, bleaches, bleach activators, bleach catalysts, other enzymes, enzyme stabilizing systems, chelants, optical brighteners, soil release polymers, dye transfer agents, dispersants, suds suppressors, dyes, perfumes, colorants, filler salts, hydrotropes, photoactivators, fluorescers, fabric conditioners, hydrolyzable surfactants, preservatives, anti-oxidants, anti-shrinkage agents, anti-wrinkle agents, germicides, fungicides, color speckles, silvercare, anti-tarnish and/or anti-corrosion agents, alkalinity sources, solubilizing agents, carriers, processing aids, pigments, and pH control agents (See e.g., U.S. Pat. Nos. 6,610,642, 6,605,458, 5,705,464, 5,710,115, 5,698,504, 5,695,679, 5,686,014 and 5,646,101, all of which are incorporated herein by reference). Embodiments of specific cleaning composition materials are exemplified in detail below. In embodiments in which the cleaning adjunct materials are not compatible with the metalloprotease polypeptides of the present invention in the cleaning compositions, then suitable methods of keeping the cleaning adjunct materials and the protease(s) separated (i.e., not in contact with each other) until combination of the two components is appropriate are used. Such separation methods include any suitable method known in the art (e.g., gelcaps, encapsulation, tablets, physical separation, etc.).

[0232] The cleaning compositions of the present invention are advantageously employed for example, in laundry applications, hard surface cleaning, dishwashing applications, including automatic dishwashing and hand dishwashing, as well as cosmetic applications such as dentures, teeth, hair and skin. In addition, due to the unique advantages of increased effectiveness in lower temperature solutions, the enzymes of the present invention are ideally suited for laundry applications. Furthermore, the enzymes of the present invention find use in granular and liquid compositions.

[0233] The metalloprotease polypeptides of the present invention also find use in cleaning additive products. In some embodiments, low temperature solution cleaning applications find use. In some embodiments, the present invention provides cleaning additive products including at least one enzyme of the present invention is ideally suited for inclusion in a wash process when additional bleaching effectiveness is desired. Such instances include, but are not limited to low temperature solution cleaning applications. In some embodiments, the additive product is in its simplest form, one or more proteases. In some embodiments, the additive is packaged in dosage form for addition to a cleaning process. In some embodiments, the additive is packaged in dosage form for addition to a cleaning process where a source of peroxygen is employed and increased bleaching effectiveness is desired.

Any suitable single dosage unit form finds use with the present invention, including but not limited to pills, tablets, gelcaps, or other single dosage units such as pre-measured powders or liquids. In some embodiments, filler(s) or carrier material(s) are included to increase the volume of such compositions. Suitable filler or carrier materials include, but are not limited to, various salts of sulfate, carbonate and silicate as well as talc, clay and the like. Suitable filler or carrier materials for liquid compositions include, but are not limited to water or low molecular weight primary and secondary alcohols including polyols and diols. Examples of such alcohols include, but are not limited to, methanol, ethanol, propanol and isopropanol. In some embodiments, the compositions contain from about 5% to about 90% of such materials. Acidic fillers find use to reduce pH. Alternatively, in some embodiments, the cleaning additive includes adjunct ingredients, as more fully described below.

[0234] The present cleaning compositions and cleaning additives require an effective amount of at least one of the metalloprotease polypeptides provided herein, alone or in combination with other proteases and/or additional enzymes. The required level of enzyme is achieved by the addition of one or more metalloprotease polypeptides of the present invention. Typically the present cleaning compositions comprise at least about 0.0001 weight percent, from about 0.0001 to about 10, from about 0.001 to about 1, or from about 0.01 to about 0.1 weight percent of at least one of the metalloprotease polypeptides of the present enterthe metalloprotease polypeptides of the metalloprotease polypeptides of the metalloprotease polypeptides of the metalloprotease polypeptides of the present invention.

[0235] The cleaning compositions herein are typically formulated such that, during use in aqueous cleaning operations, the wash water will have a pH of from about 4.0 to about 11.5, or even from about 5.0 to about 11.5, or even from about 5.0 to about 7.5 to about 10.5. Liquid product formulations are typically formulated to have a pH from about 3.0 to about 9.0 or even from about 3 to about 5. Granular laundry products are typically formulated to have a pH from about 9 to about 11. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.

[0236] Suitable "low pH cleaning compositions" typically have a pH of from about 3 to about 5, and are typically free of surfactants that hydrolyze in such a pH environment. Such surfactants include sodium alkyl sulfate surfactants that comprise at least one ethylene oxide moiety or even from about 1 to about 16 moles of ethylene oxide. Such cleaning compositions typically comprise a sufficient amount of a pH modifier, such as sodium hydroxide, monoethanolamine or hydrochloric acid, to provide such cleaning composition with a pH of from about 3 to about 5. Such compositions typically comprise at least one acid stable enzyme. In some embodiments, the compositions are liquids, while in other embodiments, they are solids. The pH of such liquid compositions is typically measured as a neat pH. The pH of such solid compositions is measured as a 10% solids solution of said composition wherein the solvent is distilled water. In these embodiments, all pH measurements are taken at 20° C., unless otherwise indicated.

[0237] In some embodiments, when the metalloprotease polypeptide (s) is/are employed in a granular composition or liquid, it is desirable for the metalloprotease polypeptide to be in the form of an encapsulated particle to protect the metalloprotease polypeptide from other components of the granular composition during storage. In addition, encapsulation is also a means of controlling the availability of the metallopro-

tease polypeptide during the cleaning process. In some embodiments, encapsulation enhances the performance of the metalloprotease polypeptide (s) and/or additional enzymes. In this regard, the metalloprotease polypeptides of the present invention are encapsulated with any suitable encapsulating material known in the art. In some embodiments, the encapsulating material typically encapsulates at least part of the metalloprotease polypeptide (s) of the present invention. Typically, the encapsulating material is watersoluble and/or water-dispersible. In some embodiments, the encapsulating material has a glass transition temperature (Tg) of 0° C. or higher. Glass transition temperature is described in more detail in WO 97/11151. The encapsulating material is typically selected from consisting of carbohydrates, natural or synthetic gums, chitin, chitosan, cellulose and cellulose derivatives, silicates, phosphates, borates, polyvinyl alcohol, polyethylene glycol, paraffin waxes, and combinations thereof. When the encapsulating material is a carbohydrate, it is typically selected from monosaccharides, oligosaccharides, polysaccharides, and combinations thereof. In some typical embodiments, the encapsulating material is a starch (See e.g., EP 0 922 499; U.S. Pat. No. 4,977,252; U.S. Pat. No. 5,354,559, and U.S. Pat. No. 5,935,826). In some embodiments, the encapsulating material is a microsphere made from plastic such as thermoplastics, acrylonitrile, methacrylonitrile, polyacrylonitrile, polymethacrylonitrile and mixtures thereof; commercially available microspheres that find use include, but are not limited to those supplied by EXPANCEL® (Stockviksverken, Sweden), and PM 6545, PM 6550, PM 7220, PM 7228, EXTENDOSPHERES®, LUXSIL®, Q-CEL®, and SPHERICEL® (PQ Corp., Valley Forge, Pa.).

[0238] As described herein, the metalloprotease polypeptides of the present invention find particular use in the cleaning industry, including, but not limited to laundry and dish detergents. These applications place enzymes under various environmental stresses. The metalloprotease polypeptides of the present invention provide advantages over many currently used enzymes, due to their stability under various conditions. [0239] Indeed, there are a variety of wash conditions including varying detergent formulations, wash water volumes, wash water temperatures, and lengths of wash time, to which proteases involved in washing are exposed. In addition, detergent formulations used in different geographical areas have different concentrations of their relevant components present in the wash water. For example, European detergents typically have about 4500-5000 ppm of detergent components in the wash water, while Japanese detergents typically have approximately 667 ppm of detergent components in the wash water. In North America, particularly the United States, detergents typically have about 975 ppm of detergent components present in the wash water.

[0240] A low detergent concentration system includes detergents where less than about 800 ppm of the detergent components are present in the wash water. Japanese detergents are typically considered low detergent concentration system as they have approximately 667 ppm of detergent components present in the wash water.

[0241] A medium detergent concentration includes detergents where between about 800 ppm and about 2000 ppm of the detergent components are present in the wash water. North American detergents are generally considered to be medium detergent concentration systems as they have approximately 975 ppm of detergent components present in the wash water.

Brazil typically has approximately 1500 ppm of detergent components present in the wash water.

[0242] A high detergent concentration system includes detergents where greater than about 2000 ppm of the detergent components are present in the wash water. European detergents are generally considered to be high detergent concentration systems as they have approximately 4500-5000 ppm of detergent components in the wash water.

[0243] Latin American detergents are generally high suds phosphate builder detergents and the range of detergents used in Latin America can fall in both the medium and high detergent concentrations as they range from 1500 ppm to 6000 ppm of detergent components in the wash water. As mentioned above, Brazil typically has approximately 1500 ppm of detergent components present in the wash water. However, other high suds phosphate builder detergent geographies, not limited to other Latin American countries, may have high detergent concentration systems up to about 6000 ppm of detergent components present in the wash water.

[0244] In light of the foregoing, it is evident that concentrations of detergent compositions in typical wash solutions throughout the world varies from less than about 800 ppm of detergent to about 6000 ppm in high suds phosphate builder geographies.

[0245] The concentrations of the typical wash solutions are determined empirically. For example, in the U.S., a typical washing machine holds a volume of about 64.4 L of wash solution. Accordingly, in order to obtain a concentration of about 975 ppm of detergent within the wash solution about 62.79 g of detergent composition must be added to the 64.4 L of wash solution. This amount is the typical amount measured into the wash water by the consumer using the measuring cup provided with the detergent.

[0246] As a further example, different geographies use different wash temperatures. The temperature of the wash water in Japan is typically less than that used in Europe. For example, the temperature of the wash water in North America and Japan is typically between about 10 and about 40° C. (e.g., about 20° C.), whereas the temperature of wash water in Europe is typically between about 30 and about 60° C. (e.g., about 40° C.). However, in the interest of saving energy, many consumers are switching to using cold water washing. In addition, in some further regions, cold water is typically used for laundry, as well as dish washing applications. In some embodiments, the "cold water washing" of the present invention utilizes "cold water detergent" suitable for washing at temperatures from about 10° C. to about 40° C., or from about 20° C. to about 30° C., or from about 15° C. to about 25° C., as well as all other combinations within the range of about 15° C. to about 35° C., and all ranges within 10° C. to 40° C.

[0247] As a further example, different geographies typically have different water hardness. Water hardness is usually described in terms of the grains per gallon mixed Ca^{2+}/Mg^{2+} . Hardness is a measure of the amount of calcium (Ca^{2+}) and magnesium (Mg^{2+}) in the water. Most water in the United States is hard, but the degree of hardness varies. Moderately hard (60-120 ppm) to hard (121-181 ppm) water has 60 to 181 parts per million (parts per million converted to grains per U.S. gallon is ppm # divided by 17.1 equals grains per gallon) of hardness minerals.

Water	Grains per gallon	Parts per million
Soft	less than 1.0	less than 17
Slightly hard	1.0 to 3.5	17 to 60
Moderately hard	3.5 to 7.0	60 to 120
Hard	7.0 to 10.5	120 to 180
Very hard	greater than 10.5	greater than 180

[0248] European water hardness is typically greater than about 10.5 (for example about 10.5 to about 20.0) grains per gallon mixed Ca^{2+}/Mg^{2+} (e.g., about 15 grains per gallon mixed Ca^{2+}/Mg^{2+}). North American water hardness is typically greater than Japanese water hardness, but less than European water hardness. For example, North American water hardness can be between about 3 to about 10 grains, about 3 to about 8 grains or about 6 grains. Japanese water hardness is typically lower than North American water hardness, usually less than about 4, for example about 3 grains per gallon mixed Ca^{2+}/Mg^{2+} .

[0249] Accordingly, in some embodiments, the present invention provides metalloprotease polypeptides that show surprising wash performance in at least one set of wash conditions (e.g., water temperature, water hardness, and/or detergent concentration). In some embodiments, the metalloprotease polypeptides of the present invention are comparable in wash performance to other metalloprotease polypeptide proteases. In some embodiments of the present invention, the metalloprotease polypeptides provided herein exhibit enhanced oxidative stability, enhanced thermal stability, enhanced cleaning capabilities under various conditions, and/or enhanced chelator stability. In addition, the metalloprotease polypeptides of the present invention find use in cleaning compositions that do not include detergents, again either alone or in combination with builders and stabilizers.

[0250] In some embodiments of the present invention, the cleaning compositions comprise at least one metalloprotease polypeptide of the present invention at a level from about 0.00001% to about 10% by weight of the composition and the balance (e.g., about 99.999% to about 90.0%) comprising cleaning adjunct materials by weight of composition. In some other embodiments of the present invention, the cleaning compositions of the present invention comprises at least one metalloprotease polypeptide at a level of about 0.0001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, about 0.005% to about 0.5% by weight of the composition and the balance of the cleaning composition (e.g., about 99.9999% to about 99.099% to about 99.5% by weight) comprising cleaning adjunct materials.

[0251] In some embodiments, the cleaning compositions of the present invention comprise one or more additional detergent enzymes, which provide cleaning performance and/or fabric care and/or dishwashing benefits. Examples of suitable enzymes include, but are not limited to, acyl transferases, alpha-amylases, beta-amylases, alpha-galactosidases, arabinosidases, aryl esterases, beta-galactosidases, carrageenases, catalases, cellobiohydrolases, cellulases, chondroitinases, cutinases, endo-beta-1, 4-glucanases, endo-beta-mannanases, esterases, exo-mannanases, galactanases, glucoamylases, hemicellulases, hyaluronidases, keratinases, laccases, lactases, ligninases, lipases, lipoxygenases, mannanases, oxidases, pectate lyases, pectin acetyl esterases, pectinases, pentosanases, peroxidases, phenoloxidases, phosphatases, phospholipases, phytases, polygalacturonases, proteases.

pullulanases, reductases, rhamnogalacturonases, beta-glucanases, tannases, transglutaminases, xylan acetyl-esterases, xylanases, xyloglucanases, and xylosidases, or any combinations or mixtures thereof. In some embodiments, a combination of enzymes is used (i.e., a "cocktail") comprising conventional applicable enzymes like protease, lipase, cutinase and/or cellulase in conjunction with amylase is used.

[0252] In addition to the metalloprotease polypeptides provided herein, any other suitable protease finds use in the compositions of the present invention. Suitable proteases include those of animal, vegetable or microbial origin. In some embodiments, microbial proteases are used. In some embodiments, chemically or genetically modified mutants are included. In some embodiments, the protease is a serine protease, preferably an alkaline microbial protease or a trypsin-like protease. Examples of alkaline proteases include subtilisins, especially those derived from Bacillus (e.g., subtilisin, lentus, amyloliquefaciens, subtilisin Carlsberg, subtilisin 309, subtilisin 147 and subtilisin 168). Additional examples include those mutant proteases described in U.S. Pat. Nos. RE 34,606, 5,955,340, 5,700,676, 6,312,936, and 6,482,628, all of which are incorporated herein by reference. Additional protease examples include, but are not limited to trypsin (e.g., of porcine or bovine origin), and the Fusarium protease described in WO 89/06270. In some embodiments, commercially available protease enzymes that find use in the present invention include, but are not limited to MAX-ATASE®, MAXACAL™, MAXAPEM™, OPTICLEAN®, PROPERASE®, OPTIMASE®, PURAFECT®, PURAFECT® OXP, PURAMAX™, EXCELLASE™, and PURAFAST™ (Genencor); ALCALASE®, SAVINASE®, DURAZYM™, POLARZYME®, PRIMASE®, KANNASE®, LIQUANASE®, NEU-OVOZYME®, TRASE®, RELASE® and ESPERASE® (Novozymes); BLAPTM and BLAPTM variants (Henkel Kommanditgesellschaft auf Aktien, Duesseldorf, Germany), and KAP (B. alkalophilus subtilisin; Kao Corp., Tokyo, Japan). Various proteases are described in WO95/23221, WO 92/21760, WO 09/149200, WO 09/149144, WO 09/149145, WO 11/072099, WO 10/056640, WO 10/056653, WO 11/140364, WO 12/151534, U.S. Pat. Publ. No. 2008/0090747, and U.S. Pat. Nos. 5,801,039, 5,340,735, 5,500,364, 5,855,625, US RE 34,606, 5,955,340, 5,700,676, 6,312,936, and 6,482,628, and various other patents. In some further embodiments, metalloproteases find use in the present invention, including but not limited to the neutral metalloprotease described in WO 07/044993.

[0253] In addition, any suitable lipase finds use in the present invention. Suitable lipases include, but are not limited to those of bacterial or fungal origin. Chemically or genetically modified mutants are encompassed by the present invention. Examples of useful lipases include Humicola lanuginosa lipase (See e.g., EP 258 068, and EP 305 216), Rhizomucor miehei lipase (See e.g., EP 238 023), Candida lipase, such as C. antarctica lipase (e.g., the C. antarctica lipase A or B; See e.g., EP 214 761), Pseudomonas lipases such as P. alcaligenes lipase and P. pseudoalcaligenes lipase (See e.g., EP 218 272), P. cepacia lipase (See e.g., EP 331 376), P. stutzeri lipase (See e.g., GB 1,372,034), P. fluorescens lipase, Bacillus lipase (e.g., B. subtilis lipase [Dartois et al., Biochem. Biophys. Acta 1131:253-260 [1993]); B. stearothermophilus lipase [See e.g., JP 64/744992]; and B. pumilus lipase [See e.g., WO 91/16422]).

[0254] Furthermore, a number of cloned lipases find use in some embodiments of the present invention, including but not limited to *Penicillium camembertii* lipase (See, Yamaguchi et al., Gene 103:61-67 [1991]), *Geotricum candidum* lipase (See, Schimada et al., J. Biochem., 106:383-388 [1989]), and various *Rhizopus* lipases such as *R. delemar* lipase (See, Hass et al., Gene 109:117-113 [1991]), a *R. niveus* lipase (Kugimiya et al., Biosci. Biotech. Biochem. 56:716-719 [1992]) and *R. oryzae* lipase.

[0255] Other types of lipase polypeptide enzymes such as cutinases also find use in some embodiments of the present invention, including but not limited to the cutinase derived from *Pseudomonas mendocina* (See, WO 88/09367), and the cutinase derived from *Fusarium solani pisi* (See, WO 90/09446).

[0256] Additional suitable lipases include commercially available lipases such as M1 LIPASETM, LUMA FASTTM, and LIPOMAXTM (Genencor); LIPEX[®], LIPOLASE[®] and LIPOLASE[®] ULTRA (Novozymes); and LIPASE PTM "Amano" (Amano Pharmaceutical Co. Ltd., Japan).

[0257] In some embodiments of the present invention, the cleaning compositions of the present invention further comprise lipases at a level from about 0.00001% to about 10% of additional lipase by weight of the composition and the balance of cleaning adjunct materials by weight of composition. In some other embodiments of the present invention, the cleaning compositions of the present invention also comprise lipases at a level of about 0.0001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, about 0.005% to about 0.5% lipase by weight of the composition.

[0258] In some embodiments of the present invention, any suitable amylase finds use in the present invention. In some embodiments, any amylase (e.g., alpha and/or beta) suitable for use in alkaline solutions also find use. Suitable amylases include, but are not limited to those of bacterial or fungal origin. Chemically or genetically modified mutants are included in some embodiments. Amylases that find use in the present invention, include, but are not limited to α -amylases obtained from B. licheniformis (See e.g., GB 1,296,839). Additional suitable amylases include those found in WO9510603, WO9526397, WO9623874, WO9623873, WO9741213, WO9919467, WO0060060, WO0029560, WO9923211, WO9946399, WO0060058, WO0060059, WO9942567, WO0114532, WO02092797, WO0166712, WO0188107, WO0196537, WO0210355, WO9402597, WO0231124, WO9943793, WO9943794, WO2004113551, WO2005001064, WO2005003311, WO0164852, WO2006063594. WO2006066594. WO2006066596. WO2006012899, WO2008092919, WO2008000825, WO2005018336, WO2005066338, WO2009140504, WO2010088447, WO2005019443, WO2010091221, WO0134784, WO2006012902, WO2006031554, WO2006136161, WO2008101894, WO2010059413, WO2011098531. WO2011080352, WO2011080353, WO2011080354, WO2011082425, WO2011082429, WO2011076123, WO2011087836, WO2011076897, WO94183314, WO9535382, WO9909183, WO9826078, WO9902702, WO9743424, WO9929876, WO9100353, WO9605295, WO9630481, WO9710342, WO2008088493, WO2009061381, WO2009149419, WO2009100102, WO2010104675, WO2010117511, and WO2010115021. Commercially available amylases that find use in the present invention include, but are not limited to DURAMYL®, TER-MAMYL®, FUNGAMYL®, STAINZYME®, STAIN-

ZYME PLUS®, STAINZYME ULTRA®, and BANTM (Novozymes), as well as POWERASETM, RAPIDASE® and MAXAMYL® P (Genencor).

[0259] In some embodiments of the present invention, the cleaning compositions of the present invention further comprise amylases at a level from about 0.00001% to about 10% of additional amylase by weight of the composition and the balance of cleaning adjunct materials by weight of composition. In some other embodiments of the present invention, the cleaning compositions of the present invention also comprise amylases at a level of about 0.0001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, about 0.005% to about 0.5% amylase by weight of the composition. [0260] In some further embodiments, any suitable cellulase finds used in the cleaning compositions of the present invention. Suitable cellulases include, but are not limited to those of bacterial or fungal origin. Chemically or genetically modified mutants are included in some embodiments. Suitable cellulases include, but are not limited to Humicola insolens cellulases (See e.g., U.S. Pat. No. 4,435,307). Especially suitable cellulases are the cellulases having color care benefits (See e.g., EP 0 495 257). Commercially available cellulases that find use in the present include, but are not limited to CEL-LUZYME, CELLUCLEAN, CAREZYME (Novozymes), PURADEX AND REVITALENZ (Danisco US Inc.), and KAC-500(B) (Kao Corporation). In some embodiments, cellulases are incorporated as portions or fragments of mature wild-type or variant cellulases, wherein a portion of the N-terminus is deleted (See e.g., U.S. Pat. No. 5,874,276). Additional suitable cellulases include those found in WO2005054475, WO2005056787, U.S. Pat. Nos. 7,449,318, and 7,833,773. In some embodiments, the cleaning compositions of the present invention further comprise cellulases at a level from about 0.00001% to about 10% of additional cellulase by weight of the composition and the balance of cleaning adjunct materials by weight of composition. In some other embodiments of the present invention, the cleaning compositions of the present invention also comprise cellulases at a level of about 0.0001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, about 0.005% to about 0.5% cellulase by weight of the composition.

[0261] Any mannanase suitable for use in detergent compositions also finds use in the present invention. Suitable mannanases include, but are not limited to those of bacterial or fungal origin. Chemically or genetically modified mutants are included in some embodiments. Various mannanases are known which find use in the present invention (See e.g., U.S. Pat. Nos. 6,566,114; 6,602,842; 5,476,775 and 6,440,991, and U.S. Prov. App. Ser. No. 61/739,267; all of which are incorporated herein by reference). Commercially available mannanases that find use in the present invention include, but are not limited to MANNASTAR, PURABRITE, and MAN-NAWAY. In some embodiments, the cleaning compositions of the present invention further comprise mannanases at a level from about 0.00001% to about 10% of additional mannanase by weight of the composition and the balance of cleaning adjunct materials by weight of composition. In some embodiments of the present invention, the cleaning compositions of the present invention also comprise mannanases at a level of about 0.0001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, about 0.005% to about 0.5% mannanase by weight of the composition.

[0262] In some embodiments, peroxidases are used in combination with hydrogen peroxide or a source thereof (e.g., a

percarbonate, perborate or persulfate) in the compositions of the present invention. In some alternative embodiments, oxidases are used in combination with oxygen. Both types of enzymes are used for "solution bleaching" (i.e., to prevent transfer of a textile dye from a dyed fabric to another fabric when the fabrics are washed together in a wash liquor), preferably together with an enhancing agent (See e.g., WO 94/12621 and WO 95/01426). Suitable peroxidases/oxidases include, but are not limited to those of plant, bacterial or fungal origin. Chemically or genetically modified mutants are included in some embodiments. In some embodiments, the cleaning compositions of the present invention further comprise peroxidase and/or oxidase enzymes at a level from about 0.00001% to about 10% of additional peroxidase and/ or oxidase by weight of the composition and the balance of cleaning adjunct materials by weight of composition. In some other embodiments of the present invention, the cleaning compositions of the present invention also comprise, peroxidase and/or oxidase enzymes at a level of about 0.0001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, about 0.005% to about 0.5% peroxidase and/or oxidase enzymes by weight of the composition.

[0263] In some embodiments, additional enzymes find use, including but not limited to perhydrolases (See e.g., WO 05/056782). In addition, in some embodiments, mixtures of the above mentioned enzymes are encompassed herein, in particular one or more additional protease, amylase, lipase, mannanase, and/or at least one cellulase. Indeed, it is contemplated that various mixtures of these enzymes will find use in the present invention. It is also contemplated that the varying levels of the metalloprotease polypeptide (s) and one or more additional enzymes may both independently range to about 10%, the balance of the cleaning composition being cleaning adjunct materials. The specific selection of cleaning adjunct materials are readily made by considering the surface, item, or fabric to be cleaned, and the desired form of the composition for the cleaning conditions during use (e.g., through the wash detergent use).

[0264] Examples of suitable cleaning adjunct materials include, but are not limited to, surfactants, builders, bleaches, bleach activators, bleach catalysts, other enzymes, enzyme stabilizing systems, chelants, optical brighteners, soil release polymers, dye transfer agents, dye transfer inhibiting agents, catalytic materials, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, clay soil removal agents, structure elasticizing agents, dispersants, suds suppressors, dyes, perfumes, colorants, filler salts, hydrotropes, photoactivators, fluorescers, fabric conditioners, fabric softeners, carriers, hydrotropes, processing aids, solvents, pigments, hydrolyzable surfactants, preservatives, anti-oxidants, anti-shrinkage agents, anti-wrinkle agents, germicides, fungicides, color speckles, silvercare, anti-tarnish and/or anti-corrosion agents, alkalinity sources, solubilizing agents, carriers, processing aids, pigments, and pH control agents (See e.g., U.S. Pat. Nos. 6,610,642; 6,605, 458; 5,705,464; 5,710,115; 5,698,504; 5,695,679; 5,686,014 and 5,646,101, all of which are incorporated herein by reference). Embodiments of specific cleaning composition materials are exemplified in detail below. In embodiments in which the cleaning adjunct materials are not compatible with the metalloprotease polypeptides of the present invention in the cleaning compositions, then suitable methods of keeping the cleaning adjunct materials and the protease(s) separated (i.e., not in contact with each other) until combination of the two components is appropriate are used. Such separation methods include any suitable method known in the art (e.g., gelcaps, encapsulation, tablets, physical separation, etc.).

[0265] In some embodiments, an effective amount of one or more metalloprotease polypeptide (s) provided herein is included in compositions useful for cleaning a variety of surfaces in need of proteinaceous stain removal. Such cleaning compositions include cleaning compositions for such applications as cleaning hard surfaces, fabrics, and dishes. Indeed, in some embodiments, the present invention provides fabric cleaning compositions, while in other embodiments, the present invention provides non-fabric cleaning compositions. Notably, the present invention also provides cleaning compositions suitable for personal care, including oral care (including dentrifices, toothpastes, mouthwashes, etc., as well as denture cleaning compositions), skin, and hair cleaning compositions. It is intended that the present invention encompass detergent compositions in any form (i.e., liquid, granular, bar, semi-solid, gels, emulsions, tablets, capsules, etc.).

[0266] By way of example, several cleaning compositions wherein the metalloprotease polypeptides of the present invention find use are described in greater detail below. In some embodiments in which the cleaning compositions of the present invention are formulated as compositions suitable for use in laundry machine washing method(s), the compositions of the present invention preferably contain at least one surfactant and at least one builder compound, as well as one or more cleaning adjunct materials preferably selected from organic polymeric compounds, bleaching agents, additional enzymes, suds suppressors, dispersants, lime-soap dispersants, soil suspension and anti-redeposition agents and corrosion inhibitors. In some embodiments, laundry compositions also contain softening agents (i.e., as additional cleaning adjunct materials). The compositions of the present invention also find use in detergent additive products in solid or liquid form. Such additive products are intended to supplement and/or boost the performance of conventional detergent compositions and can be added at any stage of the cleaning process. In some embodiments, the density of the laundry detergent compositions herein ranges from about 400 to about 1200 g/liter, while in other embodiments, it ranges from about 500 to about 950 g/liter of composition measured at 20° C.

[0267] In embodiments formulated as compositions for use in manual dishwashing methods, the compositions of the invention preferably contain at least one surfactant and preferably at least one additional cleaning adjunct material selected from organic polymeric compounds, suds enhancing agents, group II metal ions, solvents, hydrotropes and additional enzymes.

[0268] In some embodiments, various cleaning compositions such as those provided in U.S. Pat. No. 6,605,458, find use with the metalloprotease polypeptides of the present invention. Thus, in some embodiments, the compositions comprising at least one metalloprotease polypeptide of the present invention is a compact granular fabric cleaning composition, while in other embodiments, the composition is a granular fabric cleaning composition useful in the laundering of colored fabrics, in further embodiments, the composition is a granular fabric cleaning composition which provides softening through the wash capacity, in additional embodiments, the composition. In some embodiments, the compositions comprising at least one metalloprotease polypeptide of the present in the additional embodiments.

invention are fabric cleaning compositions such as those described in U.S. Pat. Nos. 6,610,642 and 6,376,450. In addition, the metalloprotease polypeptides of the present invention find use in granular laundry detergent compositions of particular utility under European or Japanese washing conditions (See e.g., U.S. Pat. No. 6,610,642).

[0269] In some alternative embodiments, the present invention provides hard surface cleaning compositions comprising at least one metalloprotease polypeptide provided herein. Thus, in some embodiments, the compositions comprising at least one metalloprotease polypeptide of the present invention is a hard surface cleaning composition such as those described in U.S. Pat. Nos. 6,610,642; 6,376,450, and 6,376, 450.

[0270] In yet further embodiments, the present invention provides dishwashing compositions comprising at least one metalloprotease polypeptide provided herein. Thus, in some embodiments, the compositions comprising at least one metalloprotease polypeptide of the present invention is a hard surface cleaning composition such as those in U.S. Pat. Nos. 6,610,642 and 6,376,450. In some still further embodiments, the present invention provides dishwashing compositions comprising at least one metalloprotease polypeptide provided herein. In some further embodiments, the compositions comprising at least one metalloprotease polypeptide of the present invention comprise oral care compositions such as those in U.S. Pat. Nos. 6,376,450, and 6,376,450. The formulations and descriptions of the compounds and cleaning adjunct materials contained in the aforementioned U.S. Pat. Nos. 6,376,450; 6,605,458; 6,605,458, and 6,610,642, find use with the metalloprotease polypeptides provided herein.

[0271] The cleaning compositions of the present invention are formulated into any suitable form and prepared by any process chosen by the formulator, non-limiting examples of which are described in U.S. Pat. Nos. 5,879,584; 5,691,297; 5,574,005; 5,569,645; 5,565,422; 5,516,448; 5,489,392, and 5,486,303, all of which are incorporated herein by reference. When a low pH cleaning composition is desired, the pH of such composition is adjusted via the addition of a material such as monoethanolamine or an acidic material such as HCl. [0272] In some embodiments, the cleaning compositions of the present invention can be formulated to have an alkaline pH under wash conditions, such as a pH of from about 8.0 to about 12.0, or from about 8.5 to about 11.0, or from about 9.0 to about 11.0. In some embodiments, the cleaning compositions of the present invention can be formulated to have a neutral pH under wash conditions, such as a pH of from about 5.0 to about 8.0, or from about 5.5 to about 8.0, or from about 6.0 to about 8.0, or from about 6.0 to about 7.5. In some embodiments, the neutral pH conditions can be measured when the cleaning composition is dissolved 1:100 (wt:wt) in de-ionised water at 20° C., measured using a conventional pH meter.

[0273] While not essential for the purposes of the present invention, the non-limiting list of adjuncts illustrated hereinafter are suitable for use in the instant cleaning compositions. In some embodiments, these adjuncts are incorporated for example, to assist or enhance cleaning performance, for treatment of the substrate to be cleaned, or to modify the aesthetics of the cleaning composition as is the case with perfumes, colorants, dyes or the like. It is understood that such adjuncts are in addition to the metalloprotease polypeptides of the present invention. The precise nature of these additional components, and levels of incorporation thereof, will depend on

the physical form of the composition and the nature of the cleaning operation for which it is to be used. Suitable adjunct materials include, but are not limited to, surfactants, builders, chelating agents, dye transfer inhibiting agents, deposition aids, dispersants, additional enzymes, and enzyme stabilizers, catalytic materials, bleach activators, bleach boosters, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, clay soil removal/antiredeposition agents, brighteners, suds suppressors, dyes, perfumes, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids and/or pigments. In addition to the disclosure below, suitable examples of such other adjuncts and levels of use are found in U.S. Pat. Nos. 5,576, 282, 6,306,812, and 6,326,348, incorporated by reference. The aforementioned adjunct ingredients may constitute the balance of the cleaning compositions of the present invention.

[0274] In some embodiments, the cleaning compositions according to the present invention comprise an acidifying particle or an amino carboxylic builder. Examples of an amino carboxylic builder include aminocarboxylic acids, salts and derivatives thereof. In some embodiment, the amino carboxylic builder is an aminopolycarboxylic builder, such as glycine-N,N-diacetic acid or derivative of general formula MOOC-CHR-N(CH₂COOM)₂ where R is C₁₋₁₂ alkyl and M is alkali metal. In some embodiments, the amino carboxylic builder can be methylglycine diacetic acid (MGDA), GLDA (glutamic-N,N-diacetic acid), iminodisuccinic acid (IDS), carboxymethyl inulin and salts and derivatives thereof, aspartic acid-N-monoacetic acid (ASMA), aspartic acid-N, N-diacetic acid (ASDA), aspartic acid-N-monopropionic acid (ASMP), iminodisuccinic acid (IDA), N-(2-sulfomethyl)aspartic acid (SMAS), N-(2-sulfoethyl)aspartic acid (SEAS), N-(2-sulfomethyl)glutamic acid (SMGL), N-(2-sulfoethyl)glutamic acid (SEGL), IDS (iminodiacetic acid) and salts and derivatives thereof such as N-methyliminodiacetic acid (MIDA), alpha-alanine-N,N-diacetic acid (alpha-ALDA), serine-N,N-diacetic acid (SEDA), isoserine-N,Ndiacetic acid (ISDA), phenylalanine-N,N-diacetic acid (PHDA), anthranilic acid-N,N-diacetic acid (ANDA), sulfanilic acid-N,N-diacetic acid (SLDA), taurine-N,N-diacetic acid (TUDA) and sulfomethyl-N,N-diacetic acid (SMDA) and alkali metal salts and derivative thereof. In some embodiments, the acidifying particle has a weight geometric mean particle size of from about 400µ to about 1200µ and a bulk density of at least 550 g/L. In some embodiments, the acidifying particle comprises at least about 5% of the builder.

[0275] In some embodiments, the acidifying particle can comprise any acid, including organic acids and mineral acids. Organic acids can have one or two carboxyls and in some instances up to 15 carbons, especially up to 10 carbons, such as formic, acetic, propionic, capric, oxalic, succinic, adipic, maleic, fumaric, sebacic, malic, lactic, glycolic, tartaric and glyoxylic acids. In some embodiments, the acid is citric acid. Mineral acids include hydrochloric and sulphuric acid. In some instances, the acidifying particle of the invention is a highly active particle comprising a high level of amino carboxylic builder. Sulphuric acid has been found to further contribute to the stability of the final particle.

[0276] In some embodiments, the cleaning compositions according to the present invention comprise at least one surfactant and/or a surfactant system wherein the surfactant is selected from nonionic surfactants, anionic surfactants, cationic surfactants, ampholytic surfactants, zwitterionic surfactants, semi-polar nonionic surfactants and mixtures thereof.

In some low pH cleaning composition embodiments (e.g., compositions having a neat pH of from about 3 to about 5), the composition typically does not contain alkyl ethoxylated sulfate, as it is believed that such surfactant may be hydrolyzed by such compositions the acidic contents. In some embodiments, the surfactant is present at a level of from about 0.1% to about 60%, while in alternative embodiments the level is from about 1% to about 50%, while in still further embodiments the level is from about 5% to about 40%, by weight of the cleaning composition.

[0277] In some embodiments, the cleaning compositions of the present invention comprise one or more detergent builders or builder systems. In some embodiments incorporating at least one builder, the cleaning compositions comprise at least about 1%, from about 3% to about 60% or even from about 5% to about 40% builder by weight of the cleaning composition. Builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates, alkali metal silicates, alkaline earth and alkali metal carbonates, aluminosilicates, polycarboxylate compounds, ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1,3,5-trihydroxy benzene-2,4,6-trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, citric acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof. Indeed, it is contemplated that any suitable builder will find use in various embodiments of the present invention.

[0278] In some embodiments, the builders form watersoluble hardness ion complexes (e.g., sequestering builders), such as citrates and polyphosphates (e.g., sodium tripolyphosphate and sodium tripolyphospate hexahydrate, potassium tripolyphosphate, and mixed sodium and potassium tripolyphosphate, etc.). It is contemplated that any suitable builder will find use in the present invention, including those known in the art (See e.g., EP 2 100 949).

[0279] In some embodiments, builders for use herein include phosphate builders and non-phosphate builders. In some embodiments, the builder is a phosphate builder. In some embodiments, the builder is a non-phosphate builder. If present, builders are used in a level of from 0.1% to 80%, or from 5 to 60%, or from 10 to 50% by weight of the composition. In some embodiments the product comprises a mixture of phosphate and non-phosphate builders. Suitable phosphate builders include mono-phosphates, di-phosphates, tri-polyphosphates or oligomeric-poylphosphates, including the alkali metal salts of these compounds, including the sodium salts. In some embodiments, a builder can be sodium tripolyphosphate (STPP). Additionally, the composition can comprise carbonate and/or citrate, preferably citrate that helps to achieve a neutral pH composition of the invention. Other suitable non-phosphate builders include homopolymers and copolymers of polycarboxylic acids and their partially or completely neutralized salts, monomeric polycarboxylic acids and hydroxycarboxylic acids and their salts. In some embodiments, salts of the above mentioned compounds include the ammonium and/or alkali metal salts, i.e. the lithium, sodium, and potassium salts, including sodium salts. Suitable polycarboxylic acids include acyclic, alicyclic, hetero-cyclic and aromatic carboxylic acids, wherein in some embodiments, they can contain at least two carboxyl groups which are in each case separated from one another by, in some instances, no more than two carbon atoms.

[0280] In some embodiments, the cleaning compositions of the present invention contain at least one chelating agent. Suitable chelating agents include, but are not limited to copper, iron and/or manganese chelating agents and mixtures thereof. In embodiments in which at least one chelating agent is used, the cleaning compositions of the present invention comprise from about 0.1% to about 15% or even from about 3.0% to about 10% chelating agent by weight of the subject cleaning composition.

[0281] In some still further embodiments, the cleaning compositions provided herein contain at least one deposition aid. Suitable deposition aids include, but are not limited to, polyethylene glycol, polypropylene glycol, polycarboxylate, soil release polymers such as polytelephthalic acid, clays such as kaolinite, montmorillonite, atapulgite, illite, bentonite, halloysite, and mixtures thereof.

[0282] As indicated herein, in some embodiments, antiredeposition agents find use in some embodiments of the present invention. In some embodiments, non-ionic surfactants find use. For example, in automatic dishwashing embodiments, non-ionic surfactants find use for surface modification purposes, in particular for sheeting, to avoid filming and spotting and to improve shine. These non-ionic surfactants also find use in preventing the re-deposition of soils. In some embodiments, the anti-redeposition agent is a non-ionic surfactant as known in the art (See e.g., EP 2 100 949). In some embodiments, the non-ionic surfactant can be ethoxylated nonionic surfactants, epoxy-capped poly(oxyalkylated) alcohols and amine oxides surfactants.

[0283] In some embodiments, the cleaning compositions of the present invention include one or more dye transfer inhibiting agents. Suitable polymeric dye transfer inhibiting agents include, but are not limited to, polyvinylpyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof. In embodiments in which at least one dye transfer inhibiting agent is used, the cleaning compositions of the present invention comprise from about 0.0001% to about 10%, from about 0.01% to about 5%, or even from about 0.1% to about 3% by weight of the cleaning composition.

[0284] In some embodiments, silicates are included within the compositions of the present invention. In some such embodiments, sodium silicates (e.g., sodium disilicate, sodium metasilicate, and crystalline phyllosilicates) find use. In some embodiments, silicates are present at a level of from about 1% to about 20%. In some embodiments, silicates are present at a level of from about 5% to about 15% by weight of the composition.

[0285] In some still additional embodiments, the cleaning compositions of the present invention also contain dispersants. Suitable water-soluble organic materials include, but are not limited to the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.

[0286] In some further embodiments, the enzymes used in the cleaning compositions are stabilized by any suitable technique. In some embodiments, the enzymes employed herein are stabilized by the presence of water-soluble sources of calcium and/or magnesium ions in the finished compositions

that provide such ions to the enzymes. In some embodiments, the enzyme stabilizers include oligosaccharides, polysaccharides, and inorganic divalent metal salts, including alkaline earth metals, such as calcium salts, such as calcium formate. It is contemplated that various techniques for enzyme stabilization will find use in the present invention. For example, in some embodiments, the enzymes employed herein are stabilized by the presence of water-soluble sources of zinc (II), calcium (II) and/or magnesium (II) ions in the finished compositions that provide such ions to the enzymes, as well as other metal ions (e.g., barium (II), scandium (II), iron (II), manganese (II), aluminum (III), Tin (II), cobalt (II), copper (II), nickel (II), and oxovanadium (IV). Chlorides and sulfates also find use in some embodiments of the present invention. Examples of suitable oligosaccharides and polysaccharides (e.g., dextrins) are known in the art (See e.g., WO 07/145964). In some embodiments, reversible protease inhibitors also find use, such as boron-containing compounds (e.g., borate, 4-formyl phenyl boronic acid) and/or a tripeptide aldehyde find use to further improve stability, as desired.

[0287] In some embodiments, bleaches, bleach activators and/or bleach catalysts are present in the compositions of the present invention. In some embodiments, the cleaning compositions of the present invention comprise inorganic and/or organic bleaching compound(s). Inorganic bleaches include, but are not limited to perhydrate salts (e.g., perborate, percarbonate, perphosphate, persulfate, and persilicate salts). In some embodiments, inorganic perhydrate salts are alkali metal salts. In some embodiments, inorganic perhydrate salts are alkali metal salts. In some embodiments, inorganic perhydrate salts are included as the crystalline solid, without additional protection, although in some other embodiments, the salt is coated. Any suitable salt known in the art finds use in the present invention (See e.g., EP 2 100 949).

[0288] In some embodiments, bleach activators are used in the compositions of the present invention. Bleach activators are typically organic peracid precursors that enhance the bleaching action in the course of cleaning at temperatures of 60° C. and below. Bleach activators suitable for use herein include compounds which, under perhydrolysis conditions, give aliphatic peroxoycarboxylic acids having preferably from about 1 to about 10 carbon atoms, in particular from about 2 to about 4 carbon atoms, and/or optionally substituted perbenzoic acid. Additional bleach activators are known in the art and find use in the present invention (See e.g., EP 2 100 949).

[0289] In addition, in some embodiments and as further described herein, the cleaning compositions of the present invention further comprise at least one bleach catalyst. In some embodiments, the manganese triazacyclononane and related complexes find use, as well as cobalt, copper, manganese, and iron complexes. Additional bleach catalysts find use in the present invention (See e.g., U.S. Pat. Nos. 4,246,612, 5,227,084, 4,810410, WO 99/06521, and EP 2 100 949).

[0290] In some embodiments, the cleaning compositions of the present invention contain one or more catalytic metal complexes. In some embodiments, a metal-containing bleach catalyst finds use. In some embodiments, the metal bleach catalyst comprises a catalyst system comprising a transition metal cation of defined bleach catalytic activity, (e.g., copper, iron, titanium, ruthenium, tungsten, molybdenum, or manganese cations), an auxiliary metal cation having little or no bleach catalytic activity (e.g., zinc or aluminum cations), and a sequestrate having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenedi-

aminetetraacetic acid, ethylenediaminetetra (methylenephosphonic acid) and water-soluble salts thereof are used (See e.g., U.S. Pat. No. 4,430,243). In some embodiments, the cleaning compositions of the present invention are catalyzed by means of a manganese compound. Such compounds and levels of use are well known in the art (See e.g., U.S. Pat. No. 5,576,282). In additional embodiments, cobalt bleach catalysts find use in the cleaning compositions of the present invention. Various cobalt bleach catalysts are known in the art (See e.g., U.S. Pat. Nos. 5,597,936 and 5,595,967) and are readily prepared by known procedures.

[0291] In some additional embodiments, the cleaning compositions of the present invention include a transition metal complex of a macropolycyclic rigid ligand (MRL). As a practical matter, and not by way of limitation, in some embodiments, the compositions and cleaning processes provided by the present invention are adjusted to provide on the order of at least one part per hundred million of the active MRL species in the aqueous washing medium, and in some embodiments, provide from about 0.005 ppm to about 25 ppm, more preferably from about 0.01 ppm to about 5 ppm, of the MRL in the wash liquor.

[0292] In some embodiments, transition-metals in the instant transition-metal bleach catalyst include, but are not limited to manganese, iron and chromium. MRLs also include, but are not limited to special ultra-rigid ligands that are cross-bridged (e.g., 5,12-diethyl-1,5,8,12-tetraazabicyclo [6.6.2]hexadecane). Suitable transition metal MRLs are readily prepared by known procedures (See e.g., WO 2000/ 32601, and U.S. Pat. No. 6,225,464).

[0293] In some embodiments, the cleaning compositions of the present invention comprise metal care agents. Metal care agents find use in preventing and/or reducing the tarnishing, corrosion, and/or oxidation of metals, including aluminum, stainless steel, and non-ferrous metals (e.g., silver and copper). Suitable metal care agents include those described in EP 2 100 949, WO 9426860 and WO 94/26859). In some embodiments, the metal care agent is a zinc salt. In some further embodiments, the cleaning compositions of the present invention comprise from about 0.1% to about 5% by weight of one or more metal care agent.

[0294] In some embodiments, the cleaning composition is a high density liquid (HDL) composition having a variant metalloprotease polypeptide protease. The HDL liquid laundry detergent can comprise a detersive surfactant (10%-40%) comprising anionic detersive surfactant (selected from a group of linear or branched or random chain, substituted or unsubstituted alkyl sulphates, alkyl sulphonates, alkyl alkoxylated sulphate, alkyl phosphates, alkyl phosphonates, alkyl carboxylates, and/or mixtures thereof); and optionally non-ionic surfactant (selected from a group of linear or branched or random chain, substituted or unsubstituted alkyl alkoxylated alcohol, for example a C_8 - C_{18} alkyl ethoxylated alcohol and/or C6-C12 alkyl phenol alkoxylates), optionally wherein the weight ratio of anionic detersive surfactant (with a hydrophilic index (HIc) of from 6.0 to 9) to non-ionic detersive surfactant is greater than 1:1.

[0295] The composition can comprise optionally, a surfactancy boosting polymer consisting of amphiphilic alkoxylated grease cleaning polymers (selected from a group of alkoxylated polymers having branched hydrophilic and hydrophobic properties, such as alkoxylated polyalkylenimines in the range of 0.05 wt %-10 wt %) and/or random graft polymers (typically comprising of hydrophilic backbone comprising monomers selected from the group consisting of: unsaturated C_1 - C_6 carboxylic acids, ethers, alcohols, aldehydes, ketones, esters, sugar units, alkoxy units, maleic anhydride, saturated polyalcohols such as glycerol, and mixtures thereof; and hydrophobic side chain(s) selected from the group consisting of: C_4 - C_{25} alkyl group, polypropylene, polybutylene, vinyl ester of a saturated C— C_6 mono-carboxylic acid, C_1 - C_6 alkyl ester of acrylic or methacrylic acid, and mixtures thereof.

[0296] The composition can comprise additional polymers such as soil release polymers (include anionically end-capped polyesters, for example SRP1, polymers comprising at least one monomer unit selected from saccharide, dicarboxylic acid, polyol and combinations thereof, in random or block configuration, ethylene terephthalate-based polymers and copolymers thereof in random or block configuration, for example Repel-o-tex SF, SF-2 and SRP6, Texcare SRA100, SRA300, SRN100, SRN170, SRN240, SRN300 and SRN325, Marloquest SL), anti-redeposition polymers (0.1 wt % to 10 wt %, include carboxylate polymers, such as polymers comprising at least one monomer selected from acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid, methylenemalonic acid, and any mixture thereof, vinylpyrrolidone homopolymer, and/or polyethylene glycol, molecular weight in the range of from 500 to 100,000 Da); cellulosic polymer (including those selected from alkyl cellulose, alkyl alkoxyalkyl cellulose, carboxyalkyl cellulose, alkyl carboxyalkyl cellulose examples of which include carboxymethyl cellulose, methyl cellulose, methyl hydroxyethyl cellulose, methyl carboxymethyl cellulose, and mixtures thereof) and polymeric carboxylate (such as maleate/acrylate random copolymer or polyacrylate homopolymer).

[0297] The composition can further comprise saturated or unsaturated fatty acid, preferably saturated or unsaturated C_{12} - C_{24} fatty acid (0 wt % to 10 wt %); deposition aids (examples for which include polysaccharides, preferably cellulosic polymers, poly diallyl dimethyl ammonium halides (DADMAC), and co-polymers of DAD MAC with vinyl pyrrolidone, acrylamides, imidazoles, imidazolinium halides, and mixtures thereof, in random or block configuration, cationic guar gum, cationic cellulose such as cationic hydoxy-ethyl cellulose, cationic starch, cationic polyacylamides, and mixtures thereof.

[0298] The composition can further comprise dye transfer inhibiting agents examples of which include manganese phthalocyanine, peroxidases, polyvinylpyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyloxazolidones and polyvinylimidazoles and/or mixtures thereof; chelating agents examples of which include ethylene-diamine-tetraacetic acid (EDTA); diethylene triamine penta methylene phosphonic acid (DTPMP); hydroxy-ethane diphosphonic acid (HEDP); ethylenediamine N,N'-disuccinic acid (EDDS); methyl glycine diacetic acid (MGDA); diethylene triamine penta acetic acid (DTPA); propylene diamine tetracetic acid (PDTA); 2-hydroxypyridine-N-oxide (HPNO); or methyl glycine diacetic acid (MGDA); glutamic acid N,N-diacetic acid (N,N-dicarboxymethyl glutamic acid tetrasodium salt (GLDA); nitrilotriacetic acid (NTA); 4,5dihydroxy-m-benzenedisulfonic acid; citric acid and any salts thereof; N-hydroxyethylethylenediaminetri-acetic acid (HEDTA), triethylenetetraaminehexaacetic acid (TTHA), N-hydroxyethyliminodiacetic acid (HEIDA), dihydroxyethylglycine (DHEG), ethylenediaminetetrapropionic acid (EDTP) and derivatives thereof.

[0299] The composition can further comprise enzymes (0.01 wt % active enzyme to 0.03 wt % active enzyme) selected from a group of acyl transferases, alpha-amylases, beta-amylases, alpha-galactosidases, arabinosidases, aryl esterases, beta-galactosidases, carrageenases, catalases, cellobiohydrolases, cellulases, chondroitinases, cutinases, endo-beta-1, 4-glucanases, endo-beta-mannanases, esterases, exo-mannanases, galactanases, glucoamylases, hemicellulases, hyaluronidases, keratinases, laccases, lactases, ligninases, lipases, lipoxygenases, mannanases, oxidases, pectate lyases, pectin acetyl esterases, pectinases, pentosanases, peroxidases, phenoloxidases, phosphatases, phospholipases, phytases, polygalacturonases, proteases, pullulanases, reductases, rhamnogalacturonases, beta-glucanases, tannases, transglutaminases, xylan acetyl-esterases, xylanases, xyloglucanases, and xylosidases, and any mixture thereof. The composition may comprise an enzyme stabilizer (examples of which include polyols such as propylene glycol or glycerol, sugar or sugar alcohol, lactic acid, reversible protease inhibitor, boric acid, a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, peptides or formate).

[0300] The composition can further comprise silicone or fatty-acid based suds suppressors; heuing dyes, calcium and magnesium cations, visual signaling ingredients, anti-foam (0.001 wt % to about 4.0 wt %), and/or structurant/thickener (0.01 wt % to 5 wt %, selected from the group consisting of diglycerides and triglycerides, ethylene glycol distearate, microcrystalline cellulose, cellulose based materials, microfiber cellulose, biopolymers, xanthan gum, gellan gum, and mixtures thereof).

[0301] Suitable detersive surfactants also include cationic detersive surfactants (selected from a group of alkyl pyridinium compounds, alkyl quarternary ammonium compounds, alkyl quarternary phosphonium compounds, alkyl ternary sulphonium compounds, and/or mixtures thereof); zwitterionic and/or amphoteric detersive surfactants (selected from a group of alkanolamine sulpho-betaines); ampholytic surfactants; semi-polar non-ionic surfactants and mixtures thereof.

[0302] The composition can be any liquid form, for example a liquid or gel form, or any combination thereof. The composition may be in any unit dose form, for example a pouch.

[0303] In some embodiments, the cleaning composition is a high density powder (HDD) composition having a variant metalloprotease polypeptide protease. The HDD powder laundry detergent can comprise a detersive surfactant including anionic detersive surfactants (selected from a group of linear or branched or random chain, substituted or unsubstituted alkyl sulphates, alkyl sulphonates, alkyl alkoxylated sulphate, alkyl phosphates, alkyl phosphonates, alkyl carboxylates and/or mixtures thereof), non-ionic detersive surfactant (selected from a group of linear or branched or random chain, substituted or unsubstituted $\mathrm{C}_{8}\text{-}\mathrm{C}_{18}$ alkyl ethoxylates, and/or C_6 - C_{12} alkyl phenol alkoxylates), cationic detersive surfactants (selected from a group of alkyl pyridinium compounds, alkyl quaternary ammonium compounds, alkyl quaternary phosphonium compounds, alkyl ternary sulphonium compounds, and mixtures thereof), zwitterionic and/or amphoteric detersive surfactants (selected from a group of alkanolamine sulpho-betaines); ampholytic surfactants; semi-polar non-ionic surfactants and mixtures thereof; builders (phosphate free builders [for example zeolite builders examples of which include zeolite A, zeolite X, zeolite P and zeolite MAP in the range of 0 wt % to less than 10 wt %]; phosphate builders [examples of which include sodium tripolyphosphate in the range of 0 wt % to less than 10 wt %]; citric acid, citrate salts and nitrilotriacetic acid or salt thereof in the range of less than 15 wt %); silicate salt (sodium or potassium silicate or sodium meta-silicate in the range of 0 wt % to less than 10 wt %, or layered silicate (SKS-6)); carbonate salt (sodium carbonate and/or sodium bicarbonate in the range of 0 wt % to less than 10 wt %); and bleaching agents (photobleaches, examples of which include sulfonated zinc phthalocyanines, sulfonated aluminum phthalocyanines, xanthenes dyes, and mixtures thereof; hydrophobic or hydrophilic bleach activators (examples of which include dodecanoyl oxybenzene sulfonate, decanoyl oxybenzene sulfonate, decanoyl oxybenzoic acid or salts thereof, 3,5,5trimethy hexanoyl oxybenzene sulfonate, tetraacetyl ethylene diamine-TAED, and nonanoyloxybenzene sulfonate-NOBS, nitrile quats, and mixtures thereof; hydrogen peroxide; sources of hydrogen peroxide (inorganic perhydrate salts examples of which include mono or tetra hydrate sodium salt of perborate, percarbonate, persulfate, perphosphate, or persilicate); preformed hydrophilic and/or hydrophobic peracids (selected from a group consisting of percarboxylic acids and salts, percarbonic acids and salts, perimidic acids and salts, peroxymonosulfuric acids and salts) & mixtures thereof and/or bleach catalyst (such as imine bleach boosters examples of which include iminium cations and polyions; iminium zwitterions; modified amines; modified amine oxides; N-sulphonyl imines; N-phosphonyl imines; N-acyl imines; thiadiazole dioxides; perfluoroimines; cyclic sugar ketones and mixtures thereof; metal-containing bleach catalyst for example copper, iron, titanium, ruthenium, tungsten, molybdenum, or manganese cations along with an auxiliary metal cations such as zinc or aluminum and a sequestrate such as ethylenediaminetetraacetic acid. ethylenediaminetetra(methylenephos-phonic acid) and water-soluble salts thereof).

[0304] The composition can further comprise enzymes selected from a group of acyl transferases, alpha-amylases, beta-amylases, alpha-galactosidases, arabinosidases, aryl esterases, beta-galactosidases, carrageenases, catalases, cellobiohydrolases, cellulases, chondroitinases, cutinases, endo-beta-1, 4-glucanases, endo-beta-mannanases, esterases, exo-mannanases, galactanases, glucoamylases, hemicellulases, hyaluronidases, keratinases, laccases, lactases, ligninases, lipases, lipoxygenases, mannanases, oxidases, pectate lyases, pectin acetyl esterases, pectinases, pentosanases, peroxidases, phenoloxidases, phosphatases, phospholipases, phytases, polygalacturonases, proteases, pullulanases, reductases, rhamnogalacturonases, beta-glucanases, tannases, transglutaminases, xylan acetyl-esterases, xylanases, xyloglucanases, and xylosidases and any mixture thereof.

[0305] The composition can further comprise additional detergent ingredients including perfume microcapsules, starch encapsulated perfume accord, hueing agents, additional polymers including fabric integrity and cationic polymers, dye lock ingredients, fabric-softening agents, brighteners (for example C.I. Fluorescent brighteners), flocculating

agents, chelating agents, alkoxylated polyamines, fabric deposition aids, and/or cyclodextrin.

[0306] In some embodiments, the cleaning composition is an automatic dishwashing (ADW) detergent composition having a metalloprotease of the present invention. The ADW detergent composition can comprise two or more non-ionic surfactants selected from a group of ethoxylated non-ionic surfactants, alcohol alkoxylated surfactants, epoxy-capped poly(oxyalkylated) alcohols, or amine oxide surfactants present in amounts from 0 to 10% by weight; builders in the range of 5-60% comprising either phosphate (mono-phosphates, di-phosphates, tri-polyphosphates or oligomericpoylphosphates, preferred sodium tripolyphosphate-STPP or phosphate-free builders [amino acid based compounds, examples of which include MGDA (methyl-glycine-diacetic acid), and salts and derivatives thereof, GLDA (glutamic-N, Ndiacetic acid) and salts and derivatives thereof. IDS (iminodisuccinic acid) and salts and derivatives thereof, carboxy methyl inulin and salts and derivatives thereof and mixtures thereof, nitrilotriacetic acid (NTA), diethylene triamine penta acetic acid (DTPA), B-alaninediacetic acid (B-ADA) and their salts], homopolymers and copolymers of poly-carboxylic acids and their partially or completely neutralized salts, monomeric polycarboxylic acids and hydroxycarboxylic acids and their salts in the range of 0.5% to 50% by weight; sulfonated/carboxylated polymers (provide dimensional stability to the product) in the range of about 0.1% to about 50% by weight; drying aids in the range of about 0.1% to about 10% by weight (selected from polyesters, especially anionic polyesters optionally together with further monomers with 3 to 6 functionalities which are conducive to polycondensation, specifically acid, alcohol or ester functionalities, polycarbonate-, polyurethane- and/or polyurea-polyorganosiloxane compounds or precursor compounds thereof of the reactive cyclic carbonate and urea type); silicates in the range from about 1% to about 20% by weight (sodium or potassium silicates for example sodium disilicate, sodium meta-silicate and crystalline phyllosilicates); bleach-inorganic (for example perhydrate salts such as perborate, percarbonate, perphosphate, persulfate and persilicate salts) and organic (for example organic peroxyacids including diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid, and diperoxyhexadecanedioc acid): bleach activators-organic peracid precursors in the range from about 0.1% to about 10% by weight; bleach catalysts (selected from manganese triazacyclononane and related complexes, Co, Cu, Mn and Fe bispyridylamine and related complexes, and pentamine acetate cobalt(III) and related complexes); metal care agents in the range from about 0.1% to 5% by weight (selected from benzatriazoles, metal salts and complexes, and/or silicates); enzymes in the range from about 0.01 to 5.0 mg of active enzyme per gram of automatic dishwashing detergent composition (acyl transferases, alpha-amylases, beta-amylases, alpha-galactosidases, arabinosidases, aryl esterases, beta-galactosidases, carrageenases, catalases, cellobiohydrolases, cellulases, chondroitinases, cutinases, endo-beta-1, 4-glucanases, endobeta-mannanases, esterases, exo-mannanases, galactanases, glucoamylases, hemicellulases, hyaluronidases, keratinases, laccases, lactases, ligninases, lipases, lipoxygenases, mannanases, oxidases, pectate lyases, pectin acetyl esterases, pectinases, pentosanases, peroxidases, phenoloxidases, phosphatases, phospholipases, phytases, polygalacturonases, proteases, pullulanases, reductases, rhamnogalacturonases, beta-glucanases, tannases, transglutaminases, xylan acetylesterases, xylanases, xyloglucanases, and xylosidases, and any mixture thereof); and enzyme stabilizer components (selected from oligosaccharides, polysaccharides and inorganic divalent metal salts).

[0307] The metalloproteases are normally incorporated into the detergent composition at a level of from 0.000001% to 5% of enzyme protein by weight of the composition, or from 0.00001% to 2%, or from 0.0001% to 1%, or from 0.001% to 0.75% of enzyme protein by weight of the composition.

Metalloprotease Polypeptides of the Present Invention for Use in Animal Feed

[0308] In a further aspect of the invention, the metalloprotease polypeptides of the present invention can be used as a component of an animal feed composition, animal feed additive and/or pet food comprising a metalloprotease and variants thereof. The present invention further relates to a method for preparing such an animal feed composition, animal feed additive composition and/or pet food comprising mixing the metalloprotease polypeptide with one or more animal feed ingredients and/or animal feed additive ingredients and/or pet food ingredients. Furthermore, the present invention relates to the use of the metalloprotease polypeptide in the preparation of an animal feed composition and/or animal feed additive composition and/or pet food.

[0309] The term "animal" includes all non-ruminant and ruminant animals. In a particular embodiment, the animal is a non-ruminant animal, such as a horse and a mono-gastric animal. Examples of mono-gastric animals include, but are not limited to, pigs and swine, such as piglets, growing pigs, sows; poultry such as turkeys, ducks, chicken, broiler chicks, layers; fish such as salmon, trout, tilapia, catfish and carps; and crustaceans such as shrimps and prawns. In a further embodiment the animal is a ruminant animal including, but not limited to, cattle, young calves, goats, sheep, giraffes, bison, moose, elk, yaks, water buffalo, deer, camels, alpacas, llamas, antelope, pronghorn and nilgai.

[0310] In the present context, it is intended that the term "pet food" is understood to mean a food for a household animal such as, but not limited to, dogs, cats, gerbils, hamsters, chinchillas, fancy rats, guinea pigs; avian pets, such as canaries, parakeets, and parrots; reptile pets, such as turtles, lizards and snakes; and aquatic pets, such as tropical fish and frogs.

[0311] The terms "animal feed composition," "feedstuff" and "fodder" are used interchangeably and can comprise one or more feed materials selected from the group comprising a) cereals, such as small grains (e.g., wheat, barley, rye, oats and combinations thereof) and/or large grains such as maize or sorghum; b) by products from cereals, such as corn gluten meal, Distillers Dried Grain Solubles (DDGS) (particularly corn based Distillers Dried Grain Solubles (cDDGS), wheat bran, wheat middlings, wheat shorts, rice bran, rice hulls, oat hulls, palm kernel, and citrus pulp; c) protein obtained from sources such as soya, sunflower, peanut, lupin, peas, fava beans, cotton, canola, fish meal, dried plasma protein, meat and bone meal, potato protein, whey, copra, sesame; d) oils and fats obtained from vegetable and animal sources; e) minerals and vitamins.

Metalloprotease Polypeptides of the Present Invention for Use in Textile Desizing

[0312] Also contemplated are compositions and methods of treating fabrics (e.g., to desize a textile) using a metalloprotease polypeptide of the present invention. Fabric-treating methods are well known in the art (see, e.g., U.S. Pat. No. 6,077,316). For example, the feel and appearance of a fabric can be improved by a method comprising contacting the fabric with a metalloprotease in a solution. The fabric can be treated with the solution under pressure.

[0313] A metalloprotease of the present invention can be applied during or after the weaving of a textile, or during the desizing stage, or one or more additional fabric processing steps. During the weaving of textiles, the threads are exposed to considerable mechanical strain. Prior to weaving on mechanical looms, warp yarns are often coated with sizing starch or starch derivatives to increase their tensile strength and to prevent breaking. A metalloprotease of the present invention can be applied during or after the weaving to remove these sizing starch or starch derivatives. After weaving, the metalloprotease can be used to remove the size coating before further processing the fabric to ensure a homogeneous and wash-proof result.

[0314] A metalloprotease of the present invention can be used alone or with other desizing chemical reagents and/or desizing enzymes to desize fabrics, including cotton-containing fabrics, as detergent additives, e.g., in aqueous compositions. An amylase also can be used in compositions and methods for producing a stonewashed look on indigo-dyed denim fabric and garments. For the manufacture of clothes, the fabric can be cut and sewn into clothes or garments, which are afterwards finished. In particular, for the manufacture of denim jeans, different enzymatic finishing methods have been developed. The finishing of denim garment normally is initiated with an enzymatic desizing step, during which garments are subjected to the action of proteolytic enzymes to provide softness to the fabric and make the cotton more accessible to the subsequent enzymatic finishing steps. The metalloprotease can be used in methods of finishing denim garments (e.g., a "bio-stoning process"), enzymatic desizing and providing softness to fabrics, and/or finishing process.

Metalloprotease Polypeptides of the Present Invention for Use in Paper Pulp Bleaching

[0315] The metalloprotease polypeptides described herein find further use in the enzyme aided bleaching of paper pulps such as chemical pulps, semi-chemical pulps, kraft pulps, mechanical pulps or pulps prepared by the sulfite method. In general terms, paper pulps are incubated with a metalloprotease polypeptide of the present invention under conditions suitable for bleaching the paper pulp.

[0316] In some embodiments, the pulps are chlorine free pulps bleached with oxygen, ozone, peroxide or peroxyacids. In some embodiments, the metalloprotease polypeptides are used in enzyme aided bleaching of pulps produced by modified or continuous pulping methods that exhibit low lignin contents. In some other embodiments, the metalloprotease polypeptides are applied alone or preferably in combination with xylanase and/or endoglucanase and/or alpha-galactosidase and/or cellobiohydrolase enzymes.

Metalloprotease Polypeptides of the Present Invention for Use in Protein Degradation

[0317] The metalloprotease polypeptides described herein find further use in the enzyme aided removal of proteins from animals and their subsequent degradation or disposal, such as feathers, skin, hair, hide, and the like. In some instances, immersion of the animal carcass in a solution comprising a metalloprotease polypeptide of the present invention can act to protect the skin from damage in comparison to the traditional immersion in scalding water or the defeathering process. In one embodiment, feathers can be sprayed with an isolated metalloprotase polypeptide of the present invention under conditions suitable for digesting or initiating degradation of the plumage. In some embodiments, a metalloprotease of the present invention can be used, as above, in combination with an oxidizing agent.

[0318] In some embodiments, removal of the oil or fat associated with raw feathers is assisted by using a metalloprotease polypeptide of the present invention. In some embodiments, the metalloprotease polypeptides are used in compositions for cleaning the feathers as well as to sanitize and partially dehydrate the fibers. In some other embodiments, the metalloprotease polypeptides are applied in a wash solution in combination with 95% ethanol or other polar organic solvent with or without a surfactant at about 0.5% (v/v).

[0319] In yet other embodiments, the disclosed metalloprotease polypeptides find use in recovering protein from plumage. The disclosed metalloprotease polypeptides may be used alone or in combination in suitable feather processing and proteolytic methods, such as those disclosed in PCT/EP2013/ 065362, PCT/EP2013/065363, and PCT/EP2013/065364, which are hereby incorporated by reference. In some embodiments, the recovered protein can be subsequently used in animal or fish feed.

EXPERIMENTAL

[0320] The claimed invention is described in further detail in the following examples which are not in any way intended to limit the scope of the invention as claimed.

Example 1.1

Cloning of *Paenibacillus* sp. Metalloprotease PspPro3

[0321] A strain of Paenibacillus sp. was selected as a potential source for enzymes which may be useful for various industrial applications. Genomic DNA for sequencing was obtained by first growing the strain on Heart Infusion agar plates (Difco) at 37° C. for 24 hours. Cell material was scraped from the plates and used to prepare genomic DNA with the ZF Fungal/Bacterial DNA miniprep kit from Zymo (Cat No. D6005). The genomic DNA was used for genome sequencing. The entire genome of the Paenibacillus sp. strain was sequenced by BaseClear (Leiden, The Netherlands) using the Illumina's next generation sequencing technology. After assembly of the data, contigs were annotated by BioXpr (Namur, Belgium). One of the genes identified after annotation in Paenibacillus sp. encodes a metalloprotease and the sequence of this gene, called PspPro3, is provided in SEQ ID NO: 1. The corresponding protein encoded by the PspPro3 gene is shown in SEQ ID NO: 2. At the N-terminus, the protein has a signal peptide with a length of 26 amino acids as

predicted by SignalP version 4.0 (Nordahl Petersen et al. (2011) Nature Methods, 8:785-786). The presence of a signal sequence suggests that PspPro3 is a secreted enzyme. The propeptide region was predicted based on protein sequence alignment with the *Paenibacillus polymyxa* Npr protein (Takekawa et al. (1991) Journal of Bacteriology, 173 (21): 6820-6825). The predicted mature region of PspPro3 protein is shown on SEQ ID NO: 3.

[0322] The nucleotide sequence of the PspPro3 gene isolated from *Paenibacillus* sp. is set forth as SEQ ID NO: 1. The sequence encoding the predicted native signal peptide is shown in italics:

ATGTTAATGAAAAAAGTATGGGTTTCGCTTCTTGGAGGAGCGATGTTATT AGGGTCTGTAGCGTCTGGTGCATCAGCAGCGGAGAGTTCCGTTTCGGGGC CGGCTCAGCTTACGCCAACCTTCCATGCCGAACAATGGAAAGCACCTTCA TCGGTATCGGGTGATGACATCGTATGGAGCTATTTAAATCGGCAAAAGAA AACGTTGCTGGGTACGGACAGCACCAGTGTCCGTGATCAATTCCGTATCG TAGATCGCACAAGCGACAAATCCGGCGTGAGCCATTATCGGCTGAAGCAA TATGTAAACGGAATTCCCGTATATGGAGCTGAACAGACCATTCATGTGGG CAAATCCGGTGAAGTGACCTCTTATCTGGGAGCCGTGATTACTGAGGATC AGCAAGAAGAAGCTACGCAAGGTACAACTCCGAAAATCAGCGCTTCTGAA GCGGTCCATACCGCATATCAGGAGGCAGCTACACGGGTTCAAGCCCTCCC TACCTCCGATGATACGATTTCTAAAGATGCGGAGGAGCCAAGCAGTGTAA GCAAAGACACTTACTCCGAAGCAGCTAACAACGGAAAAACGAGTTCTGTT GAAAAGGACAAGCTCAGCCTTGAGAAAGCGGCTGACCTGAAAGATAGCAA AATTGAAGCGGTGGAGGCAGAGCCAAACTCCATTGCCAAAATCGCCAACC TGCAGCCTGAGGTAGATCCTAAAGCCGAACTATATTTCTATGCGAAGGGC GATGCATTGCAGCTGGTTTATGTGACTGAGGTTAATATTTTGCAGCCTGC GCCGCTGCGTACACGCTACATCATTGACGCCAATGATGGCAAAATCGTAT CCCAGTATGACATCATTAATGAAGCGACAGGCACAGGCAAAAGGTGTACTC GGTGATACCAAAACATTCAACACTACTGCTTCCGGCAGCAGCTACCAGTT AAGAGATACGACTCGCGGGAATGGAATCGTGACTTACACGGCCTCCAACC GTCAAAGCATCCCAGGTACGATCCTGACCGATGCCGATAACGTATGGAAT GATCCAGCCGGCGTGGATGCCCACGCTTATGCAGCCAAAACCTATGATTA TTATAAGGAAAAGTTCAATCGCAACAGCATTGACGGACGAGGCCTGCAGC ${\tt TCCGTTCGACAGTTCATTACGGCAATCGTTACAACAACGCCTTCTGGAAC$ GGCTCCCAAATGACTTATGGAGACGGAGACGGCACCACATTTATCGCTTT TAGCGGTGATCCGGATGTAGTTGGTCATGAACTCACACGGTGTTACGG AGTATACTTCCAATTTGGAATATTACGGAGAATCCGGTGCGTTGAACGAG GCCTTCTCGGACATCATCGGCAATGACATCCAGCGTAAAAACTGGCTTGT AGGCGATGATATTTACACGCCACGCATTGCGGGTGATGCACTTCGTTCTA TGTCCAATCCTACGCTGTACGATCAACCGGATCACTATTCGAACTTGTAC AGAGGCAGCTCCGATAACGGCGGCGTTCATACGAACAGCGGTATTATAAA -continued

TAAAGCCTATTATCTGTTGGCÄCÄÄÄGÖCGGCÄCCTTCCATGGTGTAACTG TCAATGGGATTGGCCGCGATGCAGCGGTTCAAATTTACTACAGCGCCTTT ACGAACTACCTGACTTCTTCTTCTGACTTCTCCAATGCACGTGATGCCGT TGTACAAGCGGCAAAAGATCTCTACGGCGCGAGCTCGGCACAAGCTACCG CAGCAGCCAAATCTTTTGATGCTGTAGGCGTTAAC

[0323] The amino acid sequence of the PspPro3 precursor protein is set forth as SEQ ID NO: 2. The predicted signal peptide is shown in italics, and the predicted pro-peptide is shown in underlined text:

MLMKKVWVSLLGGAMLLGSVASGASAAESSVSGPAQLTPTFHAEQWKAPS SVSGDDIVWSYLNRQKKTLLGTDSTSVRDQFRIVDRTSDKSGVSHYRLKQ YVNGIPVYGAEQTIHVGKSGEVTSYLGAVITEDQQEEATQGTTPKISASE AVHTAYQEAATRVQALPTSDDTISKDAEEPSSVSKDTYSEAANNGKTSSV EKDKLSLEKAADLKDSKIEAVEAEPNSIAKIANLQPEVDPKAELYFYAKG DALQLVYVTEVNILQPAPLRTRYIIDANDGKIVSQYDIINEATGTGKGVL GDTKTFNTTASGSSYQLRDTTRGNGIVTYTASNRQSIPGTILTDADNVWN DPAGVDAHAYAAKTYDYYKEKFNRNSIDGRGLQLRSTVHYGNRYNNAFWN GSQMTYGDGDGTTFIAFSGDPDVVGHELTHGVTEYTSNLEYYGESGALNE AFSDIIGNDIQRKNWLVGDDIYTPRIAGDALRSMSNPTLYDQPDHYSNLY RGSSDNGGVHTNSGIINKAYYLLAQGGTFHGVTVNGIGRDAAVQIYYSAF

[0324] The amino acid sequence of the predicted mature form of PspPro3 is set forth as SEQ ID NO: 3:

ATGTGKGVLGDTKTFNTTASGSSYQLRDTTRGNGIVTYTASNRQSIPGTI LTDADNVWNDPAGVDAHAYAAKTYDYYKEKFNRNSIDGRGLQLRSTVHYG NRYNNAFWNGSQMTYGDGDGTTFIAFSGDPDVVGHELTHGVTEYTSNLEY YGESGALNEAFSDIIGNDIQRKNWLVGDDIYTPRIAGDALRSMSNPTLYD QPDHYSNLYRGSSDNGGVHTNSGIINKAYYLLAQGGTFHGVTVNGIGRDA AVQIYYSAFTNYLTSSSDFSNARDAVVQAAKDLYGASSAQATAAAKSFDA VGVN

Example 1.2

Expression of *Paenibacillus* sp. Metalloprotease PspPro3

[0325] The DNA sequence of the propeptide-mature form of PspPro3 was synthesized and inserted into the *Bacillus subtilis* expression vector p2JM103BBI (Vogtentanz, Protein Expr Purif, 55:40-52, 2007) by Generay (Shanghai, China), resulting in plasmid pGX085 (AprE-PspPro3) (FIG. 1.1). Ligation of the gene encoding the PspPro3 protein into the digested vector resulted in the addition of three codons (Ala-Gly-Lys) between the 3' end of the *Bacillus subtilis* AprE signal sequence and the 5' end of the predicted PspPro3 native propeptide. The gene has an alternative start codon (GTG). As shown in FIG. 1.1, pGX085(AprE-PspPro3) contains an AprE promoter, an AprE signal sequence used to direct target protein secretion in B. subtilis, and the synthetic nucleotide sequence encoding the predicted propeptide and mature region of PspPro3 (SEQ ID NO: 4). The translation product of the synthetic AprE-PspPro3 gene is shown in SEQ ID NO: 5. [0326] B. subtilis cells (degU^{Hy}32, Δ scoC) were transformed with the pGX085(AprE-PspPro3) plasmid and the transformed cells were spread on Luria Agar plates supplemented with 5 ppm Chloramphenicol and 1.2% skim milk (Cat#232100, Difco). Colonies with the largest clear halos on the plates were selected and subjected to fermentation in a 250 ml shake flask with MBD medium (a MOPS based defined medium, supplemented with additional 5 mM CaCl₂). The broth from the shake flasks was concentrated and buffer-exchanged into the loading buffer containing 20 mM Tris-HCl (pH 8.5), 1 mM CaCl₂ and 10% propylene glycol using a VivaFlow 200 ultra filtration device (Sartorius Stedim). After filtering, this sample was applied to a 150 mL Q Sepharose High Performance column pre-equilibrated with the loading buffer above and PspPro3 was then eluted from the column via the loading buffer supplemented with a linear NaCl gradient from 0 to 0.7 M. The corresponding active purified protein fractions were further pooled and concentrated via 10K Amicon Ultra for further analyses.

[0327] The nucleotide sequence of the synthesized Psp-Pro3 gene in plasmid pGX085(AprE-PspPro3) is depicted in SEQ ID NO: 4. The sequence encoding the predicted native signal peptide is shown in italics and the region encoding the three residue addition (AGK) is shown in bold:

GTGAGAAGCAAAAAATTGTGGATCAGCTTGTTGTTTGCGTTAACGTTAAT CTTTACGATGGCGTTCAGCAACATGAGCGCGCAGGCTGCTGGAAAAGCAG AATCATCAGTGTCAGGACCGGCTCAGCTTACGCCGACGTTTCATGCAGAG CAGTGGAAAGCACCGAGCAGCGTTAGCGGAGATGACATCGTGTGGAGCTA CCTGAACAGACAGAAGAAAACGCTTCTTGGCACGGACAGCACGAGCGTCA GAGACCAGTTCAGAATCGTGGATAGAACAAGCGACAAAAGCGGCGTCAGC CATTATAGACTGAAGCAGTATGTGAACGGAATCCCGGTTTATGGCGCAGA ACAAACAATCCATGTCGGAAAGAGCGGCGAAGTTACGAGCTATCTGGGCG CGGTTATTACAGAGGACCAGCAAGAGGAGGCTACACAAGGCACGACACCG AAAATTTCAGCATCAGAGGCAGTTCATACGGCCTACCAAGAAGCTGCAAC GAGAGTTCAAGCCCTGCCTACGTCAGATGATACAATCAGCAAAGACGCTG AGGAACCTAGCTCAGTTAGCAAGGACACGTATAGCGAAGCCGCGAACAAT GGCAAGACGTCAAGCGTGGAAAAAGACAAGCTTTCACTGGAGAAGGCCGC TGATCTGAAAGACTCAAAGATCGAGGCTGTGGAAGCGGAACCGAATAGCA TTGCAAAGATTGCCAACCTGCAACCGGAGGTGGACCCGAAGGCGGAGCTG TATTTCTACGCTAAAGGCGATGCACTGCAACTGGTTTACGTCACGGAGGT TAACATCCTGCAGCCGGCACCGCTTAGAACGAGATACATCATTGACGCGA ACGACGGCAAGATCGTGAGCCAGTACGACATTATCAACGAGGCCACGGGA ACGGGCAAGGGAGTCCTTGGCGACACGAAGACATTCAATACAACGGCCTC AGGCTCATCATACCAGCTGAGAGACACGACGAGAGGCAACGGAATCGTCA

-continued

CGTACACGGCTAGCAATAGACAGAGCATTCCGGGCACAATCCTTACGGAC GCAGACAATGTGTGGAATGACCCGGCAGGCGTGGACGCACATGCCTACGC AGCGAAGACGTACGACTACTACAAGGAGAAGTTCAACAGAAACAGCATCG ACGGAAGAGGACTGCAACTTAGAAGCACGGTGCATTACGGCAACAGATAC AACAACGCTTTCTGGAACGGCAGCCAAATGACGTATGGAGACGGCGATGG AACAACGTTTATCGCATTCTCAGGCGACCCTGACGTTGTGGGACATGAAC TGACGCATGGAGTCACAGAATACACGAGCAATCTGGAGTATTACGGAGAA TCAGGCGCACTTAATGAGGCCTTCAGCGACATCATCGGAAACGACATCCA GAGAAAGAACTGGCTGGTTGGCGATGATATCTACACGCCGAGAATTGCGG GCGACGCGCTGAGATCAATGAGCAACCCTACGCTGTACGATCAGCCGGAT CATTACAGCAACCTGTATAGAGGCTCAAGCGATAATGGCGGCGTGCATAC AAACAGCGGCATCATCAACAAAGCCTATTATCTGCTGGCGCAAGGCGGCA CATTCCATGGCGTTACAGTTAATGGCATTGGCAGAGACGCAGCCGTGCAG ATCTACTACAGCGCATTCACGAATTACCTGACATCAAGCAGCGACTTTTC AAATGCAAGAGATGCAGTGGTGCAGGCGGCTAAAGACCTTTATGGAGCTT CAAGCGCTCAGGCCACAGCTGCGGCAAAAAGCTTCGACGCGGTTGGAGTG AAT

[0328] The amino acid sequence of the PspPro3 precursor protein expressed from plasmid pGX085(AprE-PspPro3) is depicted in SEQ ID NO: 5. The predicted signal sequence is shown in italics, the three residue addition (AGK) shown in bold and the predicted pro-peptide is shown in underlined text.:

MRSKKLWISLLFALTLIFTMAFSNMSAQAAGKAESSVSGPAQLTPTFHAE QWKAPSSVSGDDIVWSYLNRQKKTLLGTDSTSVRDQFRIVDRTSDKSGVS HYRLKQYVNGIPVYGAEQTIHVGKSGEVTSYLGAVITEDQQEEATQGTTP KISASEAVHTAYQEAATRVQALPTSDDTISKDAEEPSSVSKDTYSEAANN GKTSSVEKDKLSLEKAADLKDSKIEAVEAEPNSIAKIANLQPEVDPKAEL YFYAKGDALQLVYVTEVNILQPAPLRTRYIIDANDGKIVSQYDIINEATG TGKGVLGDTKTFNTTASGSSYQLRDTTRGNGIVTYTASNRQSIPGTILTD ADNVWNDPAGVDAHAYAAKTYDYYKEKFNRNSIDGRGLQLRSTVHYGNRY NNAFWNGSQMTYGDGDGTTFIAFSGDPDVVGHELTHGVTEYTSNLEYYGE SGALNEAFSDIIGNDIQRKNWLVGDDIYTPRIAGDALRSMSNPTLYDQPD HYSNLYRGSSDNGGVHTNSGIINKAYYLLAQGGTFHGVTVNGIGRDAAVQ IYYSAFTNYLTSSSDFSNARDAVVQAAKDLYGASSAQATAAAKSFDAV GVN

[0329] The amino acid sequence of the PspPro3 recombinant protein isolated from *Bacillus subtilis* culture was determined by tandem mass spectrometry, and shown below. It is the same as predicted and depicted in SEQ ID NO: 3. ATGTGKGVLGDTKTFNTTASGSSYQLRDTTRGNGIVTYTASNRQSIPGTI LTDADNVWNDPAGVDAHAYAAKTYDYYKEKFNRNSIDGRGLQLRSTVHYG NRYNNAFWNGSQMTYGDGDGTTFIAFSGDPDVVGHELTHGVTEYTSNLEY YGESGALNEAFSDIIGNDIQRKNWLVGDDIYTPRIAGDALRSMSNPTLYD QPDHYSNLYRGSSDNGGVHTNSGIINKAYYLLAQGGTFHGVTVNGIGRDA AVQIYYSAFTNYLTSSSDFSNARDAVVQAAKDLYGASSAQATAAAKSFDA VGVN

Example 1.3

Proteolytic Activity of Metalloprotease PspPro3

[0330] The proteolytic activity of purified PspPro3 was measured in 50 mM Tris (pH 7), using azo-casein (Cat#74H7165, Megazyme) as a substrate. Prior to the reaction, the enzyme was diluted with Milli-Q water (Millipore) to specific concentrations. The azo-casein was dissolved in 100 mM Tris buffer (pH 7) to a final concentration of 1.5% (w/v). To initiate the reaction, 50 µL of the diluted enzyme (or Milli-O H2O alone as the blank control) was added to the non-binding 96-well microtiter Plate (96-MTP) (Corning Life Sciences, #3641) placed on ice, followed by the addition of 50 µL of 1.5% azo-casein. After sealing the 96-MTP, the reaction was carried out in a Thermomixer (Eppendorf) at 40° C. and 650 rpm for 10 min. The reaction was terminated by adding 100 µL of 5% Trichloroacetic Acid (TCA). Following equilibration (5 mM at the room temperature) and subsequent centrifugation (2000 g for 10 mM at 4° C.), 120 µL supernatant was transferred to a new 96-MTP, and absorbance of the supernatant was measured at 440 nm (A440) using a Spectra-Max 190. Net A_{440} was calculated by subtracting the A_{440} of the blank control from that of enzyme, and then plotted against different protein concentrations (from 1.25 ppm to 40 ppm). Each value was the mean of duplicate assays, and the value varies no more than 5%. The proteolytic activity is shown as Net $\mathrm{A}_{440}.$ The proteolytic assay with azo-casein as the substrate (FIG. 1.2) indicates that PspPro3 is an active protease.

Example 1.4

pH Profile of Metalloprotease PspPro3

[0331] With azo-casein as the substrate, the pH profile of PspPro3 was studied in 12.5 mM acetate/Bis-Tris/HEPES/ CHES buffer with different pH values (ranging from pH 4 to 11). To initiate the assay, 50 μ L of 25 mM acetate/Bis-Tris/ HEPES/CHES buffer with a specific pH was first mixed with 2 μ L diluted enzyme (250 ppm in Milli-Q H₂O) in a 96-MTP placed on ice, followed by the addition of 48 μ L of 1.5% (w/v) azo-casein prepared in H₂O. The reaction was performed and analyzed as described in Example 1.3. Enzyme activity at the optimal pH was set to be 100%. The pH values tested were 4, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 10 and 11. Each value was the mean of triplicate assays. As shown in FIG. **1.3**, the optimal pH of PspPro3 is 7.5, with greater than 70% of maximal activity retained between pH 5.5 and 9.

Example 1.5

Temperature Profile of Metalloprotease PspPro3

[0332] The temperature profiles of PspPro3 were analyzed in 50 mM Tris buffer (pH 7) using the azo-casein assay. The enzyme sample and azo-casein substrate were prepared as in Example 3. Prior to the reaction, 50 µL of 1.5% azo-casein and 45 µl Milli-Q H₂O were mixed in a 200 µL PCR tube, which was then subsequently incubated in a Peltier Thermal Cycler (BioRad) at desired temperatures (i.e. 20~90° C.) for 5 min. After the incubation, 5 µL of diluted PspPro3 (100 ppm) or H₂O (the blank control) was added to the substrate mixture, and the reaction was carried out in the Peltier Thermal Cycle for 10 min at different temperatures. To terminate the reaction, each assay mixture was transferred to a 96-MTP containing 100 µL of 5% TCA per well. Subsequent centrifugation and absorbance measurement were performed as described in Example 1.3. The activity was reported as relative activity where the activity at the optimal temperature was set to be 100%. The tested temperatures were 20, 30, 40, 50, 60, 70, 80, and 90° C. Each value was the mean of triplicate assays. The data in FIG. 1.4 suggest that PspPro3 showed an optimal temperature at 50° C., and retained greater than 70% of its maximal activity between 45'C and 60° C.

Example 1.6

Cleaning Performance of Metalloprotease PspPro3 in Automatic Dishwashing (ADW) Conditions

[0333] The cleaning performance of PspPro3 in automatic dishwashing (ADW) conditions was tested using PA-S-38 (egg yolk, with pigment, aged by heating) microswatches (CFT-Vlaardingen, The Netherlands) at pH 6 or 8 using a model automatic dishwashing (ADW) detergent. Prior to the reaction, purified PspPro3 were diluted with a dilution solution containing 10 mM NaCl, 0.1 mM CaCl₂, 0.005% TWEEN® 80 and 10% propylene glycol to the desired concentrations. The reactions were performed in AT detergent (composition shown in Table 1.1) with 100 ppm water hardness (Ca²⁺:Mg²⁺=3:1), in the absence or presence of a bleach component (Peracid N,N-phthaloylaminoperoxycaproic acid-PAP). To initiate the reaction, 180 µL of AT detergent buffered at pH 6 or 8 was added to a 96-MTP placed with PA-S-38 microswatches, followed by the addition of 20 uL of diluted enzymes (or the dilution solution as the blank control). The 96-MTP was sealed and incubated in an incubator/ shaker for 30 min at 50° C. and 1150 rpm. After incubation, 100 µL of wash liquid from each well was transferred to a new 96-MTP, and its absorbance was measured at 405 nm (A_{405}) (referred here as the "Initial performance") using a spectrophotometer. The remaining wash liquid in the 96-MTP was discarded and the microswatches were rinsed once with 200 µL water. Following the addition of 180 µL of 0.1 M CAPS buffer (pH 10), the second incubation was carried out in the incubator/shaker at 50° C. and 1150 rpm for 10 min. One hundred microliter of the resulting wash liquid was transferred to a new 96-MTP, and its absorbance measured at 405 nm (referred here as "Wash-off"). The sum of two absorbance measurements ("Initial performance" plus "Wash-off") gives the "Total performance", which measures the protease activity on the model stain. Dose response in cleaning the PA-S-38 microswatches at pH 6 and pH 8 for PspPro3 in AT detergent, in the absence or presence of bleach, is shown in FIGS. 5A and 5B, respectively.

TABLE 1.1

Composition of AT dish detergent formula with bleach

Ingredient	Concentration (mg/ml)
MGDA (methylglycinediacetic acid)	0.143
Sodium citrate	1.86
Citric acid*	varies
PAP (peracid N,N-phthaloylaminoperoxycaproic acid)	0.057
Plurafac ® LF 18B (a non-ionic surfactant)	0.029
Bismuthcitrate	0.006
Bayhibit ® S (Phosphonobutantricarboxylic acid sodium salt)	0.006
Acusol [™] 587 (a calcium polyphosphate inhibitor)	0.029
PEG 6000	0.043
PEG 1500	0.1

*The pH of the AT detergent is adjusted to the desired value (pH 6 or 8) by the addition of 0.9M citric acid.

Example 1.7

Cleaning Performance of Metalloprotease PspPro3 in Laundry Conditions

[0334] The cleaning performance of PspPro3 protein in liquid laundry detergent was tested using EMPA-116 (cotton soiled with blood/milk/ink) microswatches (obtained from CFT Vlaardingen, The Netherlands) at pH 8.2 using a commercial detergent. Prior to the reaction, purified PspPro3 protein samples were diluted with a dilution solution (10 mM NaCl, 0.1 mM CaCl₂, 0.005% TWEEN® 80 and 10% propylene glycol) to the desired concentrations; and the commercial detergent (Tide®, Clean Breeze®, Proctor & Gamble, USA, purchased September 2011) was incubated at 95° C. for 1 hour to inactivate the enzymes present in the detergent. Proteolytic assays were subsequently performed to confirm the inactivation of proteases in the commercial detergent. The heat treated detergent was further diluted with 5 mM HEPES (pH 8.2) to a final concentration of 0.788 g/L. Meanwhile, the water hardness of the buffered liquid detergent was adjusted to 103 ppm (Ca²⁺:Mg²⁺=3:1). The specific conductivity of the buffered detergent was adjusted to either 0.62 mS/cm (low conductivity) or 3.5 mS/cm (high conductivity) by adjusting the NaCl concentration in the buffered detergent. To initiate the reaction, 190 µl of either the high or low conductivity buffered detergent was added to a 96-MTP containing the EMPA-116 microswatches, followed by the addition of 10 µl of diluted enzyme (or the dilution solution as blank control). The 96-MTP was sealed and incubated in an incubator/shaker for 20 min at 32° C. and 1150 rpm. After incubation, 150 µl of wash liquid from each well was transferred to a new 96-MTP, and its absorbance was measured at 600 nm using a spectrophotometer, which indicates the protease activity on the model stain; and Net A_{600} was subsequently calculated by subtracting the $A_{\rm 600}$ of the blank control from that of the enzyme. Dose response for the cleaning of EMPA-116 microswatches in liquid laundry detergent at high or low conductivity is shown in FIG. 1.6.

Example 1.8

Comparison of PspPro3 to Other Metalloproteases

[0335] A. Identification of Homologous Proteases [0336] Homologs were identified by a BLAST search (Altschul et al., Nucleic Acids Res, 25:3389-402, 1997) against the NCBI non-redundant protein database and the Genome Quest Patent database with search parameters set to default values. The mature protein amino acid sequence for PspPro3 (SEQ ID NO: 3) was used as the query sequence. Percent identity (PID) for both search sets is defined as the number of identical residues divided by the number of aligned residues in the pairwise alignment. Tables 1.2A and 1.2B provide a list of sequences with the percent identity to Psp-Pro3. The length in Table 1.2 refers to the entire sequence length of the homologous proteases.

TABLE 1.2A

List of sequences with percent identity to PspPro3 protein identified from	
the NCBI non-redundant protein database	

Accession #	PID to PspPro3	Organism	Length
ZP_10321515.1	55	Bacillus macauensis ZFHKF-1	552
AAC43402.1	57	Alicyclobacillus acidocaldarius	546
P00800	57	Bacillus thermoproteolyticus	548
AAA22621.1	58	Geobacillus stearothermophilus	548
ZP_01862236.1	59	Bacillus sp. SG-1	560
YP_002884504.1	59	Exiguobacterium sp. AT1b	509
AEI46285.1	60	Paenibacillus mucilaginosus KNP414	525
ZP_08093424	60	Planococcus donghaensis MPA1U2	553
ZP_10324092.1	61	Bacillus macauensis ZFHKF-1	533
YP_006792441.1	61	Exiguobacterium antarcticum B7	498
AAK69076.1	63	Bacillus thuringiensis serovar finitimus	566
NP_976992.1	64	Bacillus cereus ATCC 10987	566
ZP_04321694	64	Bacillus cereus	566
BAA06144	64	Lactobacillus sp.	566
ZP_10241029.1	78	Paenibacillus peoriae KCTC 3763	599
YP_005073223	93	Paenibacillus terrae HPL-003	591
YP_003872179	94	Paenibacillus polymyxa E681	592
ZP_09775364	100	Paenibacillus sp. Aloe-11	593

TABLE 1.2B

List of sequences with percent identify to PspPro3 protein identified from the Genome Quest Patent database

Patent #	PID to PspPro3	Organism	Length
US20120107907-0184	57.88	Bacillus caldoyticus	319
US20120107907-0177	57.88	Bacillus caldolyticus	544
WO2012110563-0002	58.2	Bacillus caldolyticus	319
EP2390321-0176	58.52	Bacillus stearothermophilis	548
US6518054-0002	59.22	Bacillus sp.	316
WO2004011619-0044	60.6	Empty	507
WO2004011619-0047	62.14	Empty	532
WO2004011619-0046	62.26	Empty	536
WO2012110563-0004	63.02	Bacillus megaterium	320
JP2002272453-0003	63.67	Empty	562
US8114656-0186	64.24	Bacillus brevis	304
WO2012110562-0005	64.52	Bacillus cereus	320
WO2007044993-0178	64.74	Bacillus thuringiensis	566
EP2178896-0184	65.38	Bacillus anthracis	566
WO2012110563-0005	65.48	Bacillus cereus	320
JP1995184649-0001	65.71	Lactobacillus sp.	566
US5962264-0004	65.81	Empty	566
US20120107907-0185	66.13	Bacillus cereus	317
US8114656-0187	93.36	Bacillus polymyxa	302
JP2005229807-0019	93.38	Paenibacillus polymyxa	566

[0337] B. Alignment of Homologous Protease Sequences

[0338] The amino acid sequence for mature PspPro3 (SEQ ID NO: 3) was aligned with thermolysin (P00800, *Bacillus*

thermoproteolyticus) and protease from *Paenibacillus* sp. Aloe-11 (ZP_09775364) using CLUSTALW software (Thompson et al., Nucleic Acids Research, 22:4673-4680, 1994) with the default parameters. FIG. **1.7** shows the alignment of PspPro3 with these protease sequences.

[0339] C. Phylogenetic Tree

[0340] A phylogenetic tree for full length sequence of Psp-Pro3 (SEQ ID NO: 2) was built using sequences of representative homologs from Tables 2A and the Neighbor Joining method (NJ) (Saitou, N.; and Nei, M. (1987). The neighborjoining method: a new method for reconstructing Guide Trees. MolBiol. Evol. 4, 406-425). The NJ method works on a matrix of distances between all pairs of sequences to be analyzed. These distances are related to the degree of divergence between the sequences. The phylodendron-phylogenetic tree printer software (http://iubio.bio.indiana.edu/treeapp/treeprint-form.html) was used to display the phylogenetic tree shown in FIG. **1.8**.

Example 1.9

Terg-o-Tometer Performance Evaluation of PspPro3

[0341] The wash performance of PspPro3 was tested in a laundry detergent application using a Terg-o-Tometer (Instrument Marketing Services, Inc, Fairfield, N.J.). The performance evaluation was conducted at 32° C. and 16° C. The soil load consisted of two of each of the following stain swatches: EMPA116 Blood, Milk, Ink on cotton (Test materials AG, St. Gallen, Switzerland), EMPA117 Blood, Milk, Ink on polycotton (Test materials AG, St. Gallen, Switzerland), EMPA112 Cocoa on cotton (Test materials AG, St. Gallen, Switzerland), and CFT C-10 Pigment, Oil, and Milk content

on cotton (Center for Testmaterials BV, Vlaardingen, Netherlands), plus extra white interlock knit fabric to bring the total fabric load to 40 g per beaker of the Terg-o-Tometer, which was filled with 1 L of deionized water. The water hardness was adjusted to 6 grains per gallon, and the pH in the beaker was buffered with 5 mM HEPES, pH 8.2. Heat inactivated Tide Regular HDL (Procter & Gamble), a commercial liquid detergent purchased in a local US supermarket, was used at 0.8 g/L. The detergent was inactivated before use by treatment at 92° C. in a water bath for 2-3 hours followed by cooling to room temperature. Heat inactivation of commercial detergents serves to destroy the activity of enzymatic components while retaining the properties of the non-enzymatic components. Enzyme activity in the heat inactivated detergent was measured using the Suc-AAPF-pNA assay for measuring protease activity. The Purafect® Prime HA, (Genencor Int'l) and PspPro3 proteases were each added to final concentrations of 0, 0.2, 0.5, 1, and 1.5 ppm. The wash time was 12 minutes. After the wash treatment, all swatches were rinsed for 3 minutes and machine-dried at low heat.

[0342] Four of each types of swatch were measured before and after treatment by optical reflectance using a Tristimulus Minolta Meter CR-400. The difference in the L, a, b values was converted to total color difference (dE), as defined by the CIE-LAB color space. Cleaning of the stains is expressed as percent stain removal index (% SRI) by taking a ratio between the color difference before and after washing, and comparing it to the difference of unwashed soils (before wash) to unsoiled fabric, and averaging the eight values obtained by reading two different regions of each washed swatch and is reported in Tables 1.9A and 1.9B as Average % SRI (dE) \pm 95CI. Table 1.9A summarizes the cleaning performance of PspPro3 at 32° C. and Table 1.9B at 16° C.

TABLE 1.9A

		Clear	ning perfor	mance of	PspPro3 at 1	32° C.		
ppm enzyme	Average % SRI (dE)	95CI [% SRI (dE)]						
		EMP	A-116			EMPA	-117	
	Purafec H		Pspl	Pro3	Purafect H/		Sprl	Pro3
0 0.2 0.5	0.19 0.27 0.28	0.01 0.02 0.03	0.19 0.27 0.31	0.01 0.02 0.01	0.17 0.25 0.30	0.01 0.03 0.03	0.17 0.30 0.31	0.01 0.02 0.02
0.5 1 1.5	0.28 0.30 0.31	0.03 0.01 0.02	0.31 0.32 0.31	0.01 0.02 0.01	0.35 0.37	0.03 0.02 0.01	0.31 0.34 0.37	0.02 0.03 0.03
		EMP.	A-112			CFT (C-10	
	Purafec H		Pspl	Pro3	Purafect H/		Pspl	Pro3
0 0.2 0.5 1 1.5	0.11 0.11 0.13 0.18 0.19	0.03 0.05 0.04 0.03 0.03	0.11 0.18 0.17 0.19 0.18	0.03 0.04 0.03 0.04 0.04	0.07 0.12 0.15 0.17 0.18	0.01 0.01 0.01 0.01 0.01	0.07 0.11 0.16 0.21 0.23	0.01 0.01 0.01 0.01 0.01

		Clear	ning perfor	mance of	PspPro3 a	t 16° C.		
	Purafec H		PspI	Pro3	Purafec H		Psp	Pro3
ppm enzyme	Average % SRI (dE)	95CI [% SRI (dE)]						
		EMP	A-116			EM	PA-117	
0	0.15	0.02	0.15	0.02	0.13	0.01	0.13	0.01
0.2 0.5	0.19 0.20	$0.02 \\ 0.02$	0.20 0.19	0.03 0.02	0.15 0.21	$0.02 \\ 0.02$	0.15 0.20	0.02 0.02
1 1.5	0.24 0.19	0.04 0.02	0.21 0.25	0.02 0.04	0.22	0.02	0.20 0.20	0.01 0.01
1.5	0.19			0.04	0.23			0.01
		EMP	A-112			CF	T C-10	
0	0.08	0.03	0.08	0.03	0.04	0.08	0.04	0.08
0.2 0.5	0.12 0.08	0.02 0.02	0.09 0.11	$0.01 \\ 0.02$	$0.06 \\ 0.08$	$0.12 \\ 0.08$	0.06 0.08	0.09 0.11
1	0.11	0.02	0.10	0.03	0.08	0.11	0.09	0.10
1.5	0.13	0.02	0.11	0.03	0.11	0.13	0.10	0.11

TABLE 1.9B

Example 2.1

Cloning of Metalloprotease PspPro2 from Paenibacillus sp.

[0343] A strain of Paenibacillus sp. was selected as a potential source for enzymes which may be useful for various industrial applications. Genomic DNA for sequencing was obtained by first growing the strain on Heart Infusion agar plates (Difco) at 37° C. for 24 hr. Cell material was scraped from the plates and used to prepare genomic DNA with the ZF Fungal/Bacterial DNA miniprep kit from Zymo (Cat No. D6005). The genomic DNA was used for genome sequencing. The entire genome of the Paenibacillus sp. strain was sequenced by BaseClear (Leiden, The Netherlands) using the Illumina's next generation sequencing technology. After assembly of the data, contigs were annotated by BioXpr (Namur, Belgium). One of the genes identified after annotation in Paenibacillus sp. encodes a metalloprotease and the sequence of this gene, called PspPro2, is provided in SEQ ID NO: 6. The corresponding protein encoded by the PspPro2 gene is shown in SEQ ID NO: 7. At the N-terminus, the protein has a signal peptide with a length of 24 amino acids as predicted by SignalP version 4.0 (Nordahl Petersen et al. (2011) Nature Methods, 8:785-786). The presence of a signal sequence suggests that PspPro2 is a secreted enzyme. The propeptide region of PspPro2 was predicted based on protein sequence alignment with the Paenibacillus polymyxa Npr protein (Takekawa et al. (1991) Journal of Bacteriology, 173 (21): 6820-6825). The predicted mature region of PspPro2 is shown in SEQ ID NO: 8.

[0344] The nucleotide sequence of the PspPro2 gene isolated from *Paenibacillus* sp. is set forth as SEQ ID NO: 6. The sequence encoding the predicted native signal peptide is shown in italics:

ATGAAAAAGTATGGGTTTCACTTCTTGGAGGAGCGATGTTATTAGGGGC

TGTAGCACCAGGTGCATCAGCAGCAGGAGCATTCTGTTCCTGATCCTACTC

-continued

AGCTAACACCGACCTTTCACGCCGAGCAATGGAAGGCTCCTTCCACGGTA ACCGGCGACAATATTGTATGGAGCTATTTGAATCGACAAAAGAAAACCTT ATTGAATACAGACAGCACCAGTGTGCGTGATCAGTTCCGCATCATTGATC GTACAAGCGACAAATCCGGTGCAAGCCATTATCGGCTCAAGCAATATGTA AACGGGATCCCCGTATATGGGGCTGAACAGACCATTCATGTGAACAACGC CGGTAAAGTAACCTCTTATTTGGGTGCTGTCATTTCAGAGGATCAGCAGC AAGACGCGACCGAAGATACCACTCCAAAAATCAGCGCGACTGAAGCCGTT TATACCGCATATGCAGAAGCCGCTGCCCGGATTCAATCCTTCCCTTCCAT CAATGATAGTCTTTCTGAGGCTAGTGAGGAACAAGGGAGTGAGAATCAAG TACGCAGAGGCGCATAACAACGTACTTTTAACCCCCGTTGACCAAGCAGA GCAAAGTTACATTGCCAAAATTGCTAATCTGGAGCCAAGTGTAGAGCCCA AAGCAGAATTATACATCTATCCAGATGGTGAGACTACACGACTGGTTTAT GTAACAGAGGTTAATATTCTTGAACCTGCGCCTCTGCGCACACGCTACTT ${\tt CATTGATGCGAAAAACCGGCAAAATCGTATTCCAGTATGACATCCTCAACC}$ ACGCAACAGGCACCGGCCGCGGCGTGGATGGCAAAACAAAATCATTTACG ACTACAGCTTCAGGCAACCGGTATCAGTTGAAAGACACGACTCGCAGCAA TGGAATCGTGACTTACACCGCTGGCAATCGCCAGACGACGCCAGGTACGA TTTTGACCGATACAGATAATGTATGGGAGGACCCTGCGGCTGTTGATGCC CATGCCTACGCCATTAAAAACCTATGACTATTATAAGAATAAATTCGGTCG CGACAGTATTGATGGACGTGGCATGCAAATTCGTTCGACAGTCCATTACG GCAAAAAATATAACAATGCCTTCTGGAACGGCTCGCAAATGACCTACGGA GACGGAGACGGGTCCACATTTACCTTCTTCAGCGGCGATCCCGATGTCGT GGGGCATGAGCTCACCCACGGCGTCACCGAGTTCACCTCCAATTTGGAGT

-continued

ATTATGGTGAGTCCGGTGCATTGAACGAAGCCTTCTCGGATATTATCGGT AATGATATAGATGGCACCAGTTGGCTTCTTGGCGACGGCATTTATACGCC TAATATTCCAGGCGACGCTCTGCGTTCCCTGTCCGATCCTACACGATTCG GCCAGCCGGATCACTACTCCAATTTCTATCCGGACCCCAACAATGATGAT GAAGGCGGAGTCCATACGAACAGCGGTATTATCAACAAAGCCTATTATTT GCTGGCACAAGGCGGTACGTCCCATGGTGTAACGGGTAACTGGTATCGGAC GCGAAGCGGCTGTATTCATTTACTACAATGCCTTTACCAACTATTTGACC TCTACCTCCAACTTCTCTAACGCACGCGCTGCTGTTATACAGGCAGCCAA GGATTTTTATGGTGCTGATTCGCTGGCAGTAACCAGTGCTATTCAATCCT TTGATGCGGTAGGAATCAAA

[0345] The amino acid sequence of the PspPro2 precursor protein is set forth as SEQ ID NO: 7. The predicted signal peptide is shown in italics, and the predicted pro-peptide is shown in underlined text:

MKKVWVSLLGGAMLLGAVAPGASAAEHSVPDPTQLTPTFHAEQWKAPSTV TGDNIVWSYLNRQKKTLLNTDSTSVRDQFRIIDRTSDKSGASHYRLKQYV NGIPVYGAEQTIHVNNAGKVTSYLGAVISEDQQQDATEDTTPKISATEAV YTAYAEAAARIQSFPSINDSLSEASEEQGSENQGNEIQNIGIKSSVSNDT YAEAHNNVLLTPVDQAEQSYIAKIANLEPSVEPKAELYIYPDGETTRLVY VTEVNILEPAPLRTRYFIDAKTGKIVFQYDILNHATGTGRGVDGKTKSFT TTASGNRYQLKDTRSNGIVTYTAGNRQTTPGTILTDTDNVWEDPAAVDA HAYAIKTYDYYKNKFGRDSIDGRGMQIRSTVHYGKKYNNAFWNGSQMTYG DGDGSTFTFFSGDPDVVGHELTHGVTEFTSNLEYYGESGALNEAFSDIIG NDIDGTSWLLGDGIYTPNIPGDALRSLSDPTRFQQPDHYSNFYPDPNNDD EGGVHTNSGIINKAYYLLAQGGTSHGVTVTGIGREAAVFIYYNAFTNYLT STSNFSNARAAVIQAAKDFYGADSLAVTSAIQSFDAVGIK

[0346] The amino acid sequence of the predicted mature form of PspPro2 is set forth as SEQ ID NO: 8.

ATGTGRGVDGKTKSFTTTASGNRYQLKDTTRSNGIVTYTAGNRQTTPGTI LTDTDNVWEDPAAVDAHAYAIKTYDYYKNKFGRDSIDGRGMQIRSTVHYG KKYNNAFWNGSQMTYGDGDGSTFTFFSGDPDVVGHELTHGVTEFTSNLEY YGESGALNEAFSDIIGNDIDGTSWLLGDGIYTPNIPGDALRSLSDPTRFG QPDHYSNFYPDPNNDDEGGVHTNSGIINKAYYLLAQGGTSHGVTVTGIGR EAAVFIYYNAFTNYLTSTSNFSNARAAVIQAAKDFYGADSLAVTSAIQSF DAVGIK

Example 2.2

Expression of *Paenibacillus* sp. Metalloprotease PspPro2

[0347] The DNA sequence of the propeptide-mature form of PspPro2 was synthesized and inserted into the *Bacillus*

subtilis expression vector p2JM103BBI (Vogtentanz, Protein Expr Purif, 55:40-52, 2007) by Generay (Shanghai, China), resulting in plasmid pGX084 (AprE-PspPro2) (FIG. 2.1). Ligation of this gene encoding the PspPro2 protein into the digested vector resulted in the addition of three codons (Ala-Gly-Lys) between the 3' end of the *Bacillus subtilis* AprE signal sequence and the 5' end of the predicted PspPro2 native propeptide. The gene has an alternative start codon (GTG). As shown in FIG. 2.1, pGX084(AprE-PspPro2) contains an AprE promoter, an AprE signal sequence used to direct target protein secretion in *B. subtilis*, and the synthetic nucleotide sequence encoding the predicted propeptide and mature regions of PspPro2, (SEQ ID NO: 9). The translation product of the synthetic AprE-PspPro2 gene is shown in SEQ ID NO: 10.

[0348] The pGX084(AprE-PspPro2) plasmid was transformed into *B. subtilis* cells (degU^{*Hy*}32, Δ scoC) and the transformed cells were spread on Luria Agar plates supplemented with 5 ppm chloramphenicol and 1.2% skim milk (Cat#232100, Difco). Colonies with the largest clear halos on the plates were selected and subjected to fermentation in a 250 ml shake flask with MBD medium (a MOPS based defined medium, supplemented with additional 5 mM CaCl₂).

[0349] The broth from the shake flasks was concentrated and buffer-exchanged into the loading buffer containing 20 mM Tris-HCl (pH 8.5) and 1 mM CaCl₂ using a VivaFlow 200 ultra filtration device (Sartorius Stedim). After filtering, this sample was applied to a 150 ml Q Sepharose High Performance column pre-equilibrated with the loading buffer above, PspPro2 was eluted from the column with a linear salt gradient from 0 to 0.5 M NaCl in the loading buffer. The corresponding active fractions were collected, concentrated and buffer-exchanged again into the loading buffer described above. The sample was loaded onto a 20 ml DEAE Fast Flow column pre-equilibrated with the same loading buffer. Psp-Pro2 was eluted from the column with a linear salt gradient from 0 to 0.3 M NaCl in the loading buffer. The corresponding active purified protein fractions were further pooled and concentrated via 10K Amicon Ultra for further analyses. The nucleotide sequence of the synthesized PspPro2 gene in plasmid pGX084 (AprE-PspPro2) is depicted in SEQ ID NO: 9. The sequence encoding the predicted native signal peptide is shown in italics and the oligo-nucleotide encoding the three residue addition (AGK) is shown in bold:

GTGAGAAGCAAAAAATTGTGGATCAGCTTGTTGTTTGCGTTAACGTTAAT CTTTACGATGGCGTTCAGCAACATGAGCGCGCAGGCTGCTGGAAAAGCAG AGCATTCAGTTCCTGACCCGACGACGACATTTCATGCTGAG CAGTGGAAGGCACCGAGCACGGTCACGGGCGACAACATCGTGTGGAGGCTA CCTGAACAGACCAGAAAAAGACGCTGCTGAACACGGACTCAACGAGCGTGA GAGACCAGTTCAGAATCATCGACAGAACGAGCGACAAGTCAGGCGCGTCA CATTATAGACTGAAGCAGTACGTGAACGGCATCCCGGTCTACGGAGCCGA GCAAACGATCCATGTGAATAATGCGGGCAAAGTTACATCATACCTGGGCG CCGTCATCTCAGAAGACCAGCAGCAGATGCAACGGAGGATACAACACCG AAGATCAGCGCCACAGAAGCGGTCTATACGGCTTACGGCGGCTGC continued

AAGAATCCAGAGCTTCCCGTCAATTAATGACAGCCTGAGCGAAGCATCAG AGGAACAAGGCAGCGAGAACCAGGGCAATGAAATCCAAAACATCGGCATC AAGAGCAGCGTGTCAAACGACACGTATGCGGAGGCTCATAACAACGTTCT GCTGACACCGGTCGATCAGGCCGAACAGAGCTATATTGCAAAGATCGCGA GGCGAGACGACGAGACTGGTGTACGTTACGGAGGTCAACATCCTTGAGCC TGCGCCGCTGAGAACAAGATACTTTATCGACGCCAAGACGGGCAAGATCG TGTTTCAGTACGATATCCTGAACCATGCGACGGGAACAGGCAGAGGCGTG GACGGCAAAACAAAATCATTCACGACAACGGCAAGCGGCAACAGATACCA GCTGAAGGACACAACAAGATCAAATGGCATCGTCACATACACGGCCGGAA ATAGACAGACGACGCCGGGAACGATTCTGACGGATACAGATAACGTGTGG GAAGATCCGGCAGCAGTTGATGCACATGCATACGCGATCAAGACGTACGA CTACTACAAGAACAAATTCGGAAGAGATTCAATCGATGGAAGAGGCATGC AAATCAGATCAACGGTTCATTATGGCAAAAAGTACAACAATGCCTTCTGG AACGGCAGCCAAATGACATACGGCGATGGAGACGGCTCAACGTTTACATT CTTTTCAGGCGACCCGGACGTCGTCGGCCATGAACTGACGCATGGCGTTA CAGAGTTCACGAGCAACCTGGAGTATTACGGCGAATCAGGCGCACTGAAT GAGGCTTTCAGCGACATCATTGGCAACGACATTGATGGCACATCATGGCT GCTTGGCGACGGCATTTACACACCTAACATTCCGGGCGATGCACTGAGAA GCCTGTCAGACCCTACGAGATTCGGCCAACCTGACCATTACAGCAACTTC TACCCGGATCCTAATAACGATGATGAGGGCGGAGTGCATACGAACAGCGG CATTATCAACAAAGCGTACTATCTGCTGGCACAAGGCGGAACGTCACATG GAGTGACGGTGACAGGAATCGGCAGAGAGGCGGCAGTGTTTATCTACTAC AACGCCTTCACAAACTACCTGACGAGCACGTCAAATTTCAGCAACGCTAG AGCGGCCGTCATCCAGGCAGCAAAGGACTTTTATGGAGCAGACTCACTGG CAGTTACGTCAGCAATTCAGTCATTCGACGCAGTTGGAATTAAG

[0350] The amino acid sequence of the PspPro2 precursor protein expressed from plasmid pGX084(AprE-PspPro2) is depicted in SEQ ID NO: 10. The predicted signal sequence is shown in italics, the three residue addition (AGK) is shown in bold, and the predicted pro-peptide is shown in underlined text:

MRSKKLWISLLFALTLIFTMAFSNMSAQAAGKAEHSVPDPTQLTPTFHAE QWKAPSTVTGDNIVWSYLNRQKKTLLNTDSTSVRDQFRIIDRTSDKSGAS HYRLKQYVNGIPVYGAEQTIHVNNAGKVTSYLGAVISEDQQQDATEDTTP KISATEAVYTAYAEAAARIQSFPSINDSLSEASEEQGSENQGNEIQNIGI KSSVSNDTYAEAHNNVLLTPVDQAEQSYIAKIANLEPSVEPKAELYIYPD GETTRLVYVTEVNILEPAPLRTRYFIDAKTGKIVFQYDILNHATGTGRGV DGKTKSFTTTASGNRYQLKDTTRSNGIVTYTAGNRQTTPGTILTDTDNVW EDPAAVDAHAYAIKTYDYYKNKFGRDSIDGRGMQIRSTVHYGKKYNNAFW -continued

NGSQMTYGDGDGSTFTFFFSGDPDVVGHELTHGVTEFTSNLEYYGESGALN EAFSDIIGNDIDGTSWLLGDGIYTPNIPGDALRSLSDPTRFGQPDHYSNF YPDPNNDDEGGVHTNSGIINKAYYLLAQGGTSHGVTVTGIGREAAVFIYY NAFTNYLTSTSNFSNARAAVIQAAKDFYGADSLAVTSAIQSFDAVGIK

[0351] The amino acid sequence of the recombinant Psp-Pro2 protein isolated from *Bacillus subtilis* culture was determined by tandem mass spectrometry, and shown below. It is the same as predicted and depicted in SEQ ID NO: 8.

ATGTGRGVDGKTKSFTTTASGNRYQLKDTTRSNGIVTYTAGNRQTTPGTI LTDTDNVWEDPAAVDAHAYAIKTYDYYKNKFGRDSIDGRGMQIRSTVHYG KKYNNAFWNGSQMTYGDGDGSTFTFFSGDPDVVGHELTHGVTEFTSNLEY YGESGALNEAFSDIIGNDIDGTSWLLGDGIYTPNIPGDALRSLSDPTRFG QPDHYSNFYPDPNNDDEGGVHTNSGIINKAYYLLAQGGTSHGVTVTGIGR EAAVFIYYNAFTNYLTSTSNFSNARAAVIQAAKDFYGADSLAVTSAIQSF DAVGIK

Example 2.3

Proteolytic Activity of Metalloprotease PspPro2

[0352] The proteolytic activity of purified PspPro2 was measured in 50 mM Tris (pH 7), using azo-casein (Cat#74H7165, Megazyme) as a substrate. Prior to the reaction, the enzyme was diluted with Milli-Q water (Millipore) to specific concentrations. The azo-casein was dissolved in 100 mM Tris buffer (pH 7) to a final concentration of 1.5% (w/v). To initiate the reaction, $50 \,\mu$ l of the diluted enzyme (or Milli-Q H₂O alone as the blank control) was added to the non-binding 96-well Microtiter Plate (96-MTP) (Corning Life Sciences, #3641) placed on ice, followed by the addition of 50 µl of 1.5% azo-casein. After sealing the 96-MTP, the reaction was carried out in a Thermomixer (Eppendorf) at 40° C. and 650 rpm for 10 min. The reaction was terminated by adding 100 µl of 5% Trichloroacetic Acid (TCA). Following equilibration (5 min at the room temperature) and subsequent centrifugation (2000 g for 10 min at 4° C.), 120 µl supernatant was transferred to a new 96-MTP, and absorbance of the supernatant was measured at 440 nm (A440) using a Spectra-Max 190. Net A_{440} was calculated by subtracting the A_{440} of the blank control from that of enzyme, and then plotted against different protein concentrations (from 1.25 ppm to 40 ppm). Each value was the mean of duplicate assays, and the value varies no more than 5%. The proteolytic activity is shown as Net A_{440} . The proteolytic assays with azo-casein as the substrate (FIG. 2.2) indicate that PspPro2 is an active protease.

Example 2.4

pH Profile of Metalloprotease PspPro2

[0353] With azo-casein as the substrate, the pH profile of PspPro2 was studied in 12.5 mM acetate/Bis-Tris/HEPES/CHES buffer with different pH values (ranging from pH 4 to 11). To initiate the assay, 50 μ l of 25 mM acetate/Bis-Tris/HEPES/CHES buffer with a specific pH was first mixed with

2 µl diluted enzyme (500 ppm in Milli-Q H_2O) in a 96-MTP placed on ice, followed by the addition of 48 µl of 1.5% (w/v) azo-casein prepared in H_2O . The reaction was performed and analyzed as described in Example 2.3. Enzyme activity at each pH was reported as the relative activity, where the activity at the optimal pH was set to be 100%. The pH values tested were 4, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 10 and 11. Each result was the mean of triplicate assays. As shown in FIG. **2.3**, the optimal pH of PspPro2 is 7.5 with greater than 70% of its maximal activity retained between pH 5.5 and 9.5.

Example 2.5

Temperature Profile of Metalloprotease PspPro2

[0354] The temperature profile of PspPro2 was analyzed in 50 mM Tris buffer (pH 7) using the azo-casein assay. The enzyme sample and azo-casein substrate were prepared as in Example 2.3. Prior to the reaction, 50 µl of 1.5% azo-casein and 45 µl Milli-Q H₂O were mixed in a 200 µl PCR tube, which was then subsequently incubated in a Peltier Thermal Cycler (BioRad) at desired temperatures (i.e. 20~90° C.) for 5 min. After the incubation, 5 µl of diluted PspPro2 (200 ppm) or H₂O (the blank control) was added to the substrate mixture, and the reaction was carried out in the Peltier Thermal Cycle for 10 min at different temperatures. To terminate the reaction, each assay mixture was transferred to a 96-MTP containing 100 µl of 5% TCA per well. Subsequent centrifugation and absorbance measurement were performed as described in Example 3. The activity was reported as the relative activity, where the activity at the optimal temperature was set to be 100%. The tested temperatures are 20, 30, 40, 50, 60, 70, 80 and 90° C. Each result was the mean of triplicate assays. The data in FIG. 2.4 suggest that PspPro2 showed an optimal temperature at 50° C., and retained greater than 70% of its maximal activity between 40 and 65° C.

Example 2.6

Cleaning Performance of Metalloprotease PspPro2 in Automatic Dishwashing (ADW) Conditions

[0355] The cleaning performance of PspPro2 protein in automatic dishwashing (ADW) conditions was tested using PA-S-38 (egg yolk, with pigment, aged by heating) microswatches (CFT-Vlaardingen, The Netherlands) at pH 6 and 8 using a model automatic dishwashing (ADW) detergent. Prior to the reaction, purified PspPro2 protein samples were diluted with the dilution solution containing 10 mM NaCl, 0.1 mM CaCl₂, 0.005% TWEEN® 80 and 10% propylene glycol to the desired concentrations. The reactions were performed in AT detergent with 100 ppm water hardness ($Ca^{2+}:Mg^{2+}=3:$ 1), in the presence of a bleach component (Peracid N,Nphthaloylaminoperoxycaproic acid-PAP) (AT detergent composition shown in Table 1). To initiate the reaction, 180 µl of the AT detergent solution at pH 6 or pH 8 was added to a 96-MTP placed with PA-S-38 microswatches, followed by the addition of 20 µl of diluted enzymes (or the dilution solution as the blank control). The 96-MTP was sealed and incubated in an incubator/shaker for 30 min at 50° C. and 1150 rpm. After incubation, 100 µl of wash liquid from each well was transferred to a new 96-MTP, and its absorbance was measured at 405 nm (referred here as the "Initial performance") using a spectrophotometer. The remaining wash liquid in the 96-MTP was discarded and the microswatches were rinsed once with 200 µl water. Following the addition of 180 μ l of 0.1 M CAPS buffer (pH 10), the second incubation was carried out in the incubator/shaker at 50° C. and 1150 rpm for 10 min. One hundred microliters of the resulting wash liquid was transferred to a new 96-MTP, and its absorbance was measured at 405 nm (referred here as "Wash-off"). The sum of two absorbance measurements ("Initial performance" plus "Wash-off") gives the "Total performance", which measures the protease activity on the model stain. Dose response for cleaning of PA-S-38 microswatches at pH 6 and pH 8 for PspPro2 in AT detergent in the presence of bleach, is shown in FIGS. **2.5**A and **2.5**B, respectively.

TABLE 2.1

Composition of AT dish detergent with bleach					
Ingredient	Concentration (mg/ml)				
MGDA (methlyglycinediacetic acid)	0.143				
Sodium citrate	1.86				
Citric acid*	varies				
PAP (peracid N,N-phthaloylaminoperoxycaproic acid)	0.057				
Plurafac ® LF 18B (a non-ionic surfactant)	0.029				
Bismuthcitrate	0.006				
Bayhibit ® S (Phosphonobutantricarboxylic acid sodium salt)	0.006				
Acusol TM 587 (a calcium polyphosphate inhibitor)	0.029				
PEG 6000	0.043				
PEG 1500	0.1				

*The pH of the AT formula detergent is adjusted to the desired pH value (pH 6 or 8) by the addition of 0.9M citric acid.

Example 2.7

Cleaning Performance of Metalloprotease PspPro2 in Laundry Conditions

A. Cleaning Performance in Liquid Laundry Detergent

[0356] The cleaning performance of PspPro2 protein in liquid laundry detergent was tested using EMPA-116 (cotton soiled with blood/milk/ink) microswatches (obtained from CFT Vlaardingen, The Netherlands) at pH 8.2 using a commercial detergent. Prior to the reaction, purified PspPro2 protein samples were diluted with a dilution solution (10 mM NaCl, 0.1 mM CaCl₂, 0.005% TWEEN® 80 and 10% propylene glycol) to the desired concentrations; and the commercial detergent (Tide®, Clean Breeze®, Proctor & Gamble, USA, purchased September 2011) was incubated at 95° C. for 1 hour to inactivate the enzymes present in the detergent. Proteolytic assays were subsequently performed to confirm the inactivation of proteases in the commercial detergent. The heat treated detergent was further diluted with 5 mM HEPES (pH 8.2) to a final concentration of 0.788 g/L. Meanwhile, the water hardness of the buffered liquid detergent was adjusted to 103 ppm ($Ca^{2+}:Mg^{2+}=3:1$). The specific conductivity of the buffered detergent was adjusted to either 0.62 mS/cm (low conductivity) or 3.5 mS/cm (high conductivity) by adjusting the NaCl concentration in the buffered detergent. To initiate the reaction, 190 µl of either the high or low conductivity buffered detergent was added to a 96-MTP containing the EMPA-116 microswatches, followed by the addition of 10 µl of diluted enzyme (or the dilution solution as blank control). The 96-MTP was sealed and incubated in an incubator/shaker for 20 min at 32° C. and 1150 rpm. After incubation, 150 µl of wash liquid from each well was transferred to a new 96-MTP, and its absorbance was measured at 600 nm using a spectrophotometer, which indicates the protease activity on the model stain; and Net A_{600} was subsequently calculated by subtracting the A_{600} of the blank control from that of the enzyme. Dose response for the cleaning of EMPA-116 microswatches in liquid laundry detergent at high or low conductivity is shown in FIG. **2.6**A.

B. Cleaning Performance in Powder Laundry Detergent

[0357] The cleaning performance of PspPro2 protein in powder laundry detergent was tested using PA-S-38 (egg yolk, with pigment, aged by heating) microswatches (CFT-Vlaardingen, The Netherlands) using a commercial detergent. Prior to the reaction, purified PspPro2 protein samples were diluted with a dilution solution (10 mM NaCl, 0.1 mM CaCl₂, 0.005% TWEEN® 80 and 10% propylene glycol) to the desired concentrations. The powder laundry detergent (Tide®, Bleach Free, Proctor & Gamble, China, purchased in December 2011) was dissolved in water with 103 ppm water hardness (Ca²⁺:Mg²⁺=3:1) to a final concentration of 2 g/L (with conductivity of 2.3 mS/cm-low conductivity) or 5 g/L (with conductivity of 5.5 mS/cm-high conductivity). The detergents of different conductivities were subsequently heated in a microwave to near boiling in order to inactivate the enzymes present in the detergent. Proteolytic activity was measured following treatment to ensure that proteases in the commercial detergent had been inactivated. To initiate the reaction, 190 µl of either the high or low conductivity heattreated detergent was added to a 96-MTP containing the PA-S-38 microswatches, followed by the addition of 10 µl of diluted enzyme (or the dilution solution as blank control). The 96-MTP was sealed and incubated in an incubator/shaker for 15 minutes at 32° C. and 1150 rpm. After incubation, 150 μ l of wash liquid from each well was transferred to a new 96-MTP, and its absorbance was measured at 405 nm using a spectrophotometer, which indicates the protease activity on the model stain; and Net A₄₀₅ was subsequently calculated by subtracting the A₄₀₅ of the blank control from that of the enzyme. Dose response for the cleaning of PA-S-38 micros-watches in powder laundry detergent at high or low conductivity is shown in FIG. **2.6**B.

Example 2.8

Comparison of PspPro2 to Other Metalloproteases

Identification of Homologous Proteases

[0358] Homologs were identified by a BLAST search (Altschul et al., Nucleic Acids Res, 25:3389-402, 1997) against the NCBI non-redundant protein database and the Genome Quest Patent database with search parameters set to default values. The mature protein amino acid sequence for PspPro2 (SEQ ID NO: 8) is used as query sequence. Percent identity (PID) for both search sets is defined as the number of identical residues divided by the number of aligned residues in the pairwise alignment. Tables 2.2A and 2.2B provide a list of sequences with the percent identity to PspPro2. The length in Table 2.2 refers to the entire sequence length of the homologous proteases.

TABLE 2.2A

List of sequences with percent identity to PspPro2 protein identified from
the NCBI non-redundant protein database

Accession #	PID to PspPro2	9 Organism	Length
AAB02774.1	55	Geobacillus stearothermophilus	552
AAA22623.1	56	Bacillus caldolyticus	544
P00800	56	Bacillus thermoproteolyticus	548
YP_003670279.1	57	Geobacillus sp. C56-T3	546
BAD60997.1	57	Bacillus megaterium	562
ZP_02326503.1	58	Paenibacillus larvae subsp. larvae BRL-230010	520
ZP_08640523.1	58	Brevibacillus laterosporus LMG 15441	564
YP_003597483.1	58	Bacillus megaterium DSM 319	562
ZP_09069025.1	59	Paenibacillus larvae subsp. larvae B-3650	520
YP_001373863.1	59	Bacillus cytotoxicus NVH 391-98	565
ZP_04149724.1	59	Bacillus pseudomycoides DSM 12442	566
CAA43589.1	60	Brevibacillus brevis	527
ZP_10738945.1	60	Brevibacillus sp. CF112	528
ZP_04216147.1	60	Bacillus cereus Rock3-44	566
ZP_10575942.1	61	Brevibacillus sp. BC25	528
YP_002770810.1	62	Brevibacillus brevis NBRC 100599	528
ZP_08511445.1	63	Paenibacillus sp. HGF7	525
ZP_09077634.1	64	Paenibacillus elgii B69	524
ZP_09071078.1	67	Paenibacillus larvae subsp. larvae B-3650	529
YP_003872180.1	73	Paenibacillus polymyxa E681	587
YP_005073223.1	78	Paenibacillus terrae HPL-003	591
ZP_09775364.1	78	Paenibacillus sp. Aloe-11	593
YP_003948511.1	80	Paenibacillus polymyxa SC2	592
YP_005073224.1	94	Paenibacillus terrae HPL-003	595
ZP_10241029.1	96	Paenibacillus peoriae KCTC 3763	599
ZP_09775365.1	100	Paenibacillus sp. Aloe-11	580

TABLE 2.2B

List of sequences with percent identity to PspPro2 protein identified from the Genome Ouest database			
Patent #	PID to PspPro2	Organism	Length
JP2002272453-0002	57.01	Bacillus megaterium	562
US6518054-0001	57.19	Bacillus sp.	319
EP2390321-0177	57.19	Bacillus caldolyticus	544
US20120107907-0176	57.19	Bacillus stearothermophilis	548
WO9520663-0003	57.51	empty	319
WO2012110562-0003	57.51	Geobacillus	319
		stearothermophilus	
WO2012110563-0002	57.51	Bacillus caldolyticus	319
WO2004011619-0056	57.51	empty	546
WO2004011619-0003	57.51	empty	546
JP2002272453-0003	57.64	empty	562
US6518054-0002	57.88	Bacillus sp.	316
EP2178896-0184	58.15	Bacillus anthracis	566
WO2012110563-0004	58.28	Bacillus megaterium	320
JP1995184649-0001	58.79	Lactobacillus sp.	566
JP1994014788-0003	58.84	empty	317
US8114656-0178	59.42	Bacillus thuringiensis	566
WO2012110562-0005	59.49	Bacillus cereus	320
US5962264-0004	59.81	empty	566
US20120107907-0185	59.81	Bacillus cereus	317
US20120107907-0179	59.81	Bacillus cereus	566
WO2012110563-0005	60.13	Bacillus cereus	320
EP2390321-0186	60.33	Bacillus brevis	304
JP2005229807-0018	78.62	Paenibacillus polymyxa	566
EP2390321-0187	79.21	Bacillus polymyxa	302

B. Alignment of Homologous Protease Sequences

[0359] The amino acid sequence of mature PspPro2 (SEQ ID NO: 8) was aligned with thermolysin (P00800, *Bacillus thermoproteolyticus*) and protease from *Paenibacillus* sp. Aloe-11 (ZP_09775365.1) sequences using CLUSTALW software (Thompson et al., Nucleic Acids Research, 22:4673-4680, 1994) with the default parameters. FIG. **2.7** shows the alignment of PspPro2 with these protease sequences.

C. Phylogenetic Tree

[0360] A phylogenetic tree for precursor PspPro2 protein sequence (SEQ ID NO: 7) was built using sequences of representative homologs from Table 2A and the Neighbor Joining method (NJ) (Saitou, N.; and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing Guide Trees. Mol Biol. Evol. 4, 406-425). The NJ method works on a matrix of distances between all pairs of sequences to be analyzed. These distances are related to the degree of divergence between the sequences. The phylodendron-phylogenetic tree printer software (http://iubio.bio.indiana.edu/tree-app/treeprint-form.html) was used to display the phylogenetic tree shown in FIG. **2.8**.

Example 3.1

Cloning of *Paenibacillus Humicus* Metalloprotease PhuPro2

[0361] A strain (DSM18784) of *Paenibacillus humicus* was selected as a potential source of enzymes which may be useful in various industrial applications. Genomic DNA for sequencing was obtained by first growing the strain on Heart Infusion agar plates (Difco) at 37° C. for 24 hr. Cell material was scraped from the plates and used to prepare genomic DNA with the ZF Fungal/Bacterial DNA miniprep kit from

Zymo (Cat No. D6005). The genomic DNA was used for genome sequencing. The entire genome of the Paenibacillus humicus strain was sequenced by BaseClear (Leiden, The Netherlands) using the Illumina's next generation sequencing technology. After assembly of the data, contigs were annotated by BioXpr (Namur, Belgium). One of the genes identified after annotation in Paenibacillus humicus encodes a metalloprotease and the sequence of this gene, called PhuPro2, is provided in SEQ ID NO: 11. The corresponding protein encoded by the PhuPro2 gene is shown in SEQ ID NO: 12. At the N-terminus, the protein has a signal peptide with a length of 23 amino acids as predicted by SignalP version 4.0 (Nordahl Petersen et al. (2011) Nature Methods, 8:785-786). The presence of a signal sequence suggests that PhuPro2 is a secreted enzyme. The propeptide region was predicted based on its protein sequence alignment with the Paenibacillus polymyxa Npr protein (Takekawa et al. (1991) Journal of Bacteriology, 173 (21): 6820-6825). The predicted mature region of PhuPro2 protein in shown in SEQ ID NO: 13. The nucleotide sequence of the PhuPro2 gene isolated from Paenibacillus humicus is set forth as SEQ ID NO: 11. The sequence encoding the predicted native signal peptide is shown in italics:

ATGAAAAAATGATTCCTACTCTGCTCGGTACCGTATTGCTGCTTTCTTC CGCTTCCGCTGTCGCTGCTGAATCGCCAAGCCTCGGAGCGGCCGGAACTC CCGGGGTCAGCGTCGTGAACAATCAGCTCGTGACTCAATTCATCGAGGCT TCCAAGGATGCCAAGATTGTCCCGGGCTCTTCCGAGGATAAAATCTGGGC TTTCCTTGAAGGCCAGCAAGCAAAGCTGGGTGTATCCGCAGCGGATGTAA AAACCTCGTTCCTGATCCAGAAGAAGGAAGTCGATCCGACTTCGGGCGTC GAGCATTTCCGCCTGCAGCAATATGTGAATGGCATCCCGGTATATGGCGG GAGCTGTTCTGCCGGCTCAAAATCAAATCACGGCAAAATCCAGCGTACCA CCGCATCGGCGAGCTGGGAGCACAGGAGAAGACTCCGTCGGCTCAGCTGT ACGTATATCCGGAAGGCAACGGGTCGCGTCTCGTCTACCAGACGGAAGTG AATGTGCTTGAGCCGCAGCCTCTGCGCACCCGCTATCTTATCGATGCGGC CGACGGCCATATCGTGCAGCAGTACGATCTGATCGAGACGGCGACCGGTT CGGGCACGGGCGTGCTGGGCGACAATAAGACGTTCCAGACGACTCTTTCC GGCAGCACGTACCAGCTGAAAGACACCACTCGCGGCAACGGCATCTACAC CCGACAACGTATGGACGGATGGAGCCGCCGTCGATGCCCATACTTATGCC GGAAAAGTATATGATTTCTACAAAACGAAGTTCGGACGCAACAGCCTCGA CGGCAACGGCCTGCTGATCCGTTCCTCGGTCCACTACAGCAGCAGGTACA ACAATGCCTTCTGGAACGGCACCCAGATTGTATTCGGCGACGGCGACGGC TCGACGTTCATTCCGCTGTCGGGCGATCTCGACGTGGTCGGCCATGAGCT GTCCCACGGAGTCATCGAGTACACGTCCAACCTTCAATACCTCAATGAAT CCGGCGCGCTGAACGAGTCCTATGCCGACGTCCTCGGCAACTCGATCCAG

May 5, 2016

[0362] The amino acid sequence of the PhuPro2 precursor protein is set forth as SEQ ID NO: 12. The predicted signal sequence is shown in italics, and the predicted propeptide is shown in underlined text:

MKKMIPTLLGTVLLLSSASAVAAESPSLGAAGTPGVSVVNNQLVTQFIEA SKDAKIVPGSSEDKIWAFLEGQQAKLGVSAADVKTSFLIQKKEVDPTSGV EHFRLQQYVNGIPVYGGDQTIHIDKAGQVTSFVGAVLPAQNQITAKSSVP AISASDALAIAAKEASSRIGELGAQEKTPSAQLYVYPEGNGSRLVYQTEV NVLEPQPLRTRYLIDAADGHIVQQYDLIETATGSGTGVLGDNKTFQTTLS GSTYQLKDTTRGNGIYTYTASNRTTIPGTLLTDADNVWTDGAAVDAHTYA GKVYDFYKTKFGRNSLDGNGLLIRSSVHYSSRYNNAFWNGTQIVFGDGDG STFIPLSGDLDVVGHELSHGVIEYTSNLQYLNESGALNESYADVLGNSIQ AKNWLIGDDVYTPGISGDALRSMSNPTLYGQPDNYANRYTGSSDNGGVHT NSGITNKAFYLLAQGGTQNGVTVAGIGRDAAVNIFYNTVAYYLTSTSNFA AAKNASIQAAKDLYGTGSSYVTSVTNAFRAVGL

[0363] The amino acid sequence of the predicted mature form of PhuPro2 is set forth as SEQ ID NO: 13:

ATGSGTGVLGDNKTFQTTLSGSTYQLKDTTRGNGIYTYTASNRTTIPGTL LTDADNVWTDGAAVDAHTYAGKVYDFYKTKFGRNSLDGNGLLIRSSVHYS SRYNNAFWNGTQIVFGDGDGSTFIPLSGDLDVVGHELSHGVIEYTSNLQY LNESGALNESYADVLGNSIQAKNWLIGDDVYTPGISGDALRSMSNPTLYG QPDNYANRYTGSSDNGGVHTNSGITNKAFYLLAQGGTQNGVTVAGIGRDA AVNIFYNTVAYYLTSTSNFAAAKNASIQAAKDLYGTGSSYVTSVTNAFRA VGL

Example 3.2

Expression of *Paenibacillus humicus* s Metalloprotease PhuPro2

[0364] The DNA sequence of the propeptide-mature form of PhuPro2 was synthesized and inserted into the *Bacillus subtilis* expression vector p2JM103BBI (Vogtentanz, Protein Expr Purif, 55:40-52, 2007) by Generay (Shanghai, China), resulting in plasmid pGX150(AprE-PhuPro2) (FIG. 1). Ligation of this gene encoding the PhuPro2 protein into the digested vector resulted in the addition of three codons (Ala-

Gly-Lys) between the 3' end of the *B. subtilis* AprE signal sequence and the 5' end of the predicted PhuPro2 native propeptide. The gene has an alternative start codon (GTG). The resulting plasmid shown in FIG. **1** was labeled pGX150 (AprE-PhuPro2). As shown in FIG. **3.1**, pGX150(AprE-PhuPro2) contains an AprE promoter, an AprE signal sequence used to direct target protein secretion in *B. subtilis*, and the synthetic nucleotide sequence encoding the predicted propeptide and mature regions of PhuPro2 (SEQ ID NO: 14). The translation product of the synthetic AprE-PhuPro2 gene is shown in SEQ ID NO: 15.

[0365] The pGX150 (AprE-PhuPro2) plasmid was then transformed into *B. subtilis* cells (degU^{Hy}32, Δ scoC) and the transformed cells were spread on Luria Agar plates supplemented with 5 ppm Chloramphenicol and 1.2% skim milk (Cat#232100, Difco). Colonies with the largest clear halos on the plates were selected and subjected to fermentation in a 250 ml shake flask with MBD medium (a MOPS based defined medium, supplemented with additional 5 mM CaCl₂).

[0366] The broth from the shake flasks was concentrated and buffer-exchanged into the loading buffer containing 20 mM Tris-HCl (pH 8.5), 1 mM CaCl2 and 10% propylene glycol using a VivaFlow 200 ultra filtration device (Sartorius Stedim). After filtering, this sample was applied to an 80 ml Q Sepharose High Performance column pre-equilibrated with the loading buffer above; and the active flow-through fractions were collected and concentrated. The sample was loaded onto a 320 ml Superdex 75 gel filtration column preequilibrated with the loading buffer described above containing 0.15 M NaCl. The corresponding active purified protein fractions were further pooled and concentrated via 10K Amicon Ultra for further analyses.

[0367] The nucleotide sequence of the synthesized Phu-Pro2 gene in plasmid pGX150(AprE-PhuPro2) is depicted in SEQ ID NO: 14. The sequence encoding the three residue addition (AGK) is shown in bold:

 -continued

CACGACGAGAGGCAATGGCATTTACACGTACACGGCCTCAAACAGAACGA GCAGCAGTTGACGCACACACGTACGCCGGCAAGGTGTACGACTTTTACAA GACGAAGTTCGGCAGAAACAGCCTTGATGGAAATGGACTGCTGATCAGAA GCAGCGTCCACTACAGCAGCAGATACAATAACGCCTTCTGGAACGGCACA CAAATCGTCTTTGGCGATGGAGACGGATCAACATTCATCCCGCTGTCAGG CGACCTGGACGTTGTGGGCCACGAGCTGAGCCACGGCGTCATCGAGTACA CGAGCAACCTGCAGTACCTGAATGAAAGCGGCGCACTGAACGAGTCATAT GCTGATGTGCTTGGCAATAGCATCCAGGCCAAGAACTGGCTTATCGGAGA CGACGTCTACACACCTGGCATCAGCGGCGATGCTCTGAGAAGCATGAGCA ATCCTACACTTTACGGCCAACCGGACAACTACGCGAATAGATATACGGGC AGCAGCGACAATGGCGGCGTTCATACAAACTCAGGCATCACGAACAAGGC GTTCTACCTGCTGGCACAGGGAGGCACGCAAAACGGCGTTACAGTTGCGG GCATTGGCAGAGATGCGGCCGTCAACATCTTCTACAACACAGTCGCCTAC TACCTGACGAGCACGTCAAACTTCGCAGCGGCAAAGAACGCATCAATTCA AGCAGCAAAGGATCTGTACGGAACAGGCAGCTCATATGTCACGTCAGTTA CGAATGCGTTTAGAGCCGTCGGCCTTTAA

[0368] The amino acid sequence of the PhuPro2 precursor protein expressed from plasmid pGX150(AprE-PhuPro2) is depicted in SEQ ID NO: 15. The predicted signal sequence is shown in italics, the three residue addition (AGK) is shown in bold, and the predicted propeptide is shown in underlined text.

(SEO ID NO: 15)

MRSKKLWISLLFALTLIFTMAFSNMSAQAAGKESPSLGAAGTPGVSVVNN QLVTQFIEASKDAKIVPGSSEDKIWAFLEGQQAKLGVSAADVKTSFLIQK KEVDPTSGVEHFRLQQVVNGIPVYGGDQTIHIDKAGQVTSFVGAVLPAQN QITAKSSVPAISASDALAIAAKEASSRIGELGAQEKTPSAQLYVYPEGNG SRLVYQTEVNVLEPQPLRTRYLIDAADGHIVQQYDLIETATGSGTGVLGD NKTFQTTLSGSTYQLKDTTRGNGIYTYTASNRTTIPGTLLTDADNVWTDG AAVDAHTYAGKVYDFYKTKFGRNSLDGNGLLIRSSVHYSSRYNNAFWNGT QIVFGDGDGSTFIPLSGDLDVVGHELSHGVIEYTSNLQYLNESGALNESY ADVLGNSIQAKNWLIGDDVYTPGISGDALRSMSNPTLYGQPDNYANRYTG SSDNGGVHTNSGITNKAFYLLAQGGTQNGVTVAGIGRDAAVNIFYNTVAY YLTSTSNFAAAKNASIQAAKDLYGTGSSYVTSVTNAFRAVGL.

Example 3.3

Proteolytic Activity of Metalloprotease PhuPro2

[0369] The proteolytic activity of purified metalloprotease PhuPro2 was measured in 50 mM Tris (pH 7), using azocasein (Cat#74H7165, Megazyme) as a substrate. Prior to the reaction, the enzyme was diluted with Milli-Q water (Millipore) to specific concentrations. The azo-casein was dissolved in 100 mM Tris buffer (pH 7) to a final concentration of 1.5% (w/v). To initiate the reaction, 50 µl of the diluted enzyme (or Milli-Q H₂O alone as the blank control) was added to the non-binding 96-well Microtiter Plate (96-MTP) (Corning Life Sciences, #3641) placed on ice, followed by the addition of 50 µl of 1.5% azo-casein. After sealing the 96-MTP, the reaction was carried out in a Thermomixer (Eppendorf) at 40° C. and 650 rpm for 10 min. The reaction was terminated by adding 100 µl of 5% Trichloroacetic Acid (TCA). Following equilibration (5 min at the room temperature) and subsequent centrifugation (2000 g for 10 min at 4° C.), 120 µl supernatant was transferred to a new 96-MTP, and absorbance of the supernatant was measured at $440 \text{ nm}(A_{440})$ using a SpectraMax 190. Net $A_{\rm 440}$ was calculated by subtracting the A440 of the blank control from that of enzyme, and then plotted against different protein concentrations (from 1.25 ppm to 40 ppm). Each value was the mean of triplicate assavs.

[0370] The proteolytic activity is shown as Net A_{440} . The proteolytic assay with azo-casein as the substrate (shown in FIG. 3.2) indicates that PhuPro2 is an active protease.

Example 3.4

pH Profile of Metalloprotease PhuPro2

[0371] With azo-casein as the substrate, the pH profile of metalloprotease PhuPro2 was studied in 12.5 mM acetate/ Bis-Tris/HEPES/CHES buffer with different pH values (ranging from pH 4 to 11). To initiate the assay, 50 μ l of 25 mM acetate/Bis-Tris/HEPES/CHES buffer with a specific pH was first mixed with 2 ml Milli-Q H₂O diluted enzyme (125 ppm) in a 96-MTP placed on ice, followed by the addition of 48 μ l of 1.5% (w/v) azo-casein prepared in H₂O. The reaction was performed and analyzed as described in Example 3.3. Enzyme activity at each pH was reported as the relative activity, where the activity at the optimal pH was set to be 100%. The pH values tested were 4, 5, 6, 7, 8, 9, 10 and 11. Each value was the mean of triplicate assays. As shown in FIG. **3.3**, the optimal pH of PhuPro2 is 6, with greater than 70% of maximal activity retained between 5.5 and 8.5.

Example 3.5

Temperature Profile of Metalloprotease PhuPro2

[0372] The temperature profile of metalloprotease PhuPro2 was analyzed in 50 mM Tris buffer (pH 7) using the azocasein assays. The enzyme sample and azo-casein substrate were prepared as in Example 3.3. Prior to the reaction, 50 µl of 1.5% azo-casein and 45 µl Milli-Q H₂O were mixed in a 200 µl PCR tube, which was then subsequently incubated in a Peltier Thermal Cycler (BioRad) at desired temperatures (i.e. 20~90° C.) for 5 min. After the incubation, 5 µl of diluted enzyme (50 ppm) or H₂O (the blank control) was added to the substrate mixture, and the reaction was carried out in the Peltier Thermal Cycle for 10 min at different temperatures. To terminate the reaction, each assay mixture was transferred to a 96-MTP containing 100 µl of 5% TCA per well. Subsequent centrifugation and absorbance measurement were performed as described in Example 3.3. The activity was reported as the relative activity, where the activity at the optimal temperature was set to be 100%. The tested temperatures are 20, 30, 40, 50, 60, 70, 80, and 90° C. Each value was the mean of duplicate assays (the value varies no more than 5%). The data

in FIG. **3.4** suggests that PhuPro2 showed an optimal temperature at 50° C., and retained greater than 70% of its maximum activity between 45 and 65° C.

Example 3.6

Cleaning Performance of Metalloprotease PhuPro2

[0373] The cleaning performance of PhuPro2 was tested using PA-S-38 (egg yolk, with pigment, aged by heating) microswatches (CFT-Vlaardingen, The Netherlands) at pH 6 and 8 using a model automatic dishwashing (ADW) detergent. Prior to the reaction, purified protease samples were diluted with a dilution solution containing 10 mM NaCl, 0.1 mM CaCl₂, 0.005% TWEEN® 80 and 10% propylene glycol to the desired concentrations. The reactions were performed in AT detergent with 100 ppm water hardness ($Ca^{2+}:Mg^{2+}=3:$ 1) (detergent composition shown in Table 3.1). To initiate the reaction, 180 µl of the AT detergent buffered at pH 6 or pH 8 was added to a 96-MTP placed with PA-S-38 microswatches, followed by the addition of 20 µl of diluted enzymes (or the dilution solution as the blank control). The 96-MTP was sealed and incubated in an incubator/shaker for 30 min at 50° C. and 1150 rpm. After incubation, 100 µl of wash liquid from each well was transferred to a new 96-MTP, and its absorbance was measured at 405 nm (referred here as the "Initial performance") using a spectrophotometer. The remaining wash liquid in the 96-MTP was discarded and the microswatches were rinsed once with 200 µl water. Following the addition of 180 µl of 0.1 M CAPS buffer (pH 10), the second incubation was carried out in the incubator/shaker at 50° C. and 1150 rpm for 10 min. One hundred microliters of the resulting wash liquid was transferred to a new 96-MTP, and its absorbance measured at 405 nm (referred here as the "Wash-off"). The sum of two absorbance measurements ("Initial performance" plus "Wash-off") gives the "Total performance", which measures the protease activity on the model stain; and Net A_{405} was subsequently calculated by subtracting the A_{405} of the "Total performance" of the blank control from that of the enzyme. Dose response in cleaning the PA-S-38 microswatches at pH 6 and pH 8 in AT dish detergent for PhuPro2 is shown in FIGS. 3.5A and 3.5B.

TABLE 3.1

Composition of AT dish detergent	
Ingredient	Concentration (mg/ml)
MGDA (methylglycinediacetic acid)	0.143
Sodium citrate	1.86
Citric acid*	varies
Plurafac ® LF 18B (a non-ionic surfactant)	0.029
Bismuthcitrate	0.006
Bayhibit ® S (Phosphonobutantricarboxylic acid sodium salt)	0.006
Acusol TM 587 (a calcium polyphosphate inhibitor)	0.029
PEG 6000	0.043
PEG 1500	0.1

*The pH of the AT formula detergent is adjusted to the desired value (pH 6 or 8) by the addition of 0.9M citric acid.

Example 3.7

Comparison of PhuPro2 to Other Proteases

A. Identification of Homologous Proteases

[0374] Homologs were identified by a BLAST search (Altschul et al., Nucleic Acids Res, 25:3389-402, 1997)

against the NCBI non-redundant protein database and the Genome Quest Patent database with search parameters set to default values. The predicted mature protein amino acid sequence for PhuPro2 (SEQ ID NO: 13) is used as the query sequences. Percent identity (PID) for both search sets is defined as the number of identical residues divided by the number of aligned residues in the pairwise alignment. Tables 3.2A and 3.2B provide a list of sequences with the percent identity to PhuPro2. The length in Table 3.2 refers to the entire sequence length of the homologous proteases.

TABLE 3.2A

List of sequences with percent identity to PhuPro2 protein identified from
the NCBI non-redundant protein database

Accession #	PID to PhuPro2	Organism	Length
P00800	59	Bacillus thermoproteolyticus	548
YP_003872180.1	59	Paenibacillus polymyxa E681	587
ZP 10575942.1	59	Brevibacillus sp. BC25	528
ZP_02326602.1	60	Paenibacillus larvae subsp. larvae BRL-230010	520
ADM87306.1	61	Bacillus megaterium	562
ZP_09069025.1	61	Paenibacillus larvae subsp. larvae B-3650	520
ZP_09069194.1	62	Paenibacillus larvae subsp. Larvae B-3650	502
ZP_10738945.1	63	Brevibacillus sp. CF112	528
ZP_08511445.1	64	Paenibacillus sp. HGF7	525
ZP_09077634.1	65	Paenibacillus elgii B69	524
ZP_09775365.1	65	Paenibacillus sp. Aloe-11	580
ZP_09775364.1	70	Paenibacillus sp. Aloe-11	593
P29148	71	Paenibacillus polymyxa	590
ZP_10241030.1	71	Paenibacillus peoriae KCTC 3763	593
ZP_09071078.1	71	Paenibacillus larvae subsp. larvae B-3650	529
YP_003872179.1	72	Paenibacillus polymyxa E681	592
YP_005073223.1	72	Paenibacillus terrae HPL-003	591

TABLE 3.2B

List of sequences with percent identify to PhuPro2 protein identified from the Genome Quest Patent database

Patent ID #	PID to PhuPro2	Organism	Length
US20090208474- 0030	59.22	Bacillus thermoproteolyticus	316
JP2002272453-0002	59.42	Bacillus megaterium	562
JP2006124323-0003	59.55	Bacillus thermoproteolyticus	316
US8114656-0183	59.87	Bacillus stearothermophilis	316
JP1989027475-0001	59.87	Bacillus subtilis	316
US20120009651-	59.87	Geobacillus	548
0002		caldoproteolyticus	
JP2002272453-0003	60.45	empty	562
WO2012110563- 0004	60.77	Bacillus megaterium	320
EP2390321-0186	62.25	Bacillus brevis	304
JP2005229807-0018	71.85	Paenibacillus polymyxa	566
US8114656-0187	72.09	Bacillus polymyxa	302

B. Alignment of Homologous Protease Sequences

[0375] The amino acid sequence of predicted mature Phu-Pro2 (SEQ ID NO: 13) protein was aligned with thermolysin (P00800, *Bacillus thermoproteolyticus*), and protease from *Paenibacillus terrae* HPL-003 (YP_005073223.1) sequences using CLUSTALW software (Thompson et al., Nucleic Acids Research, 22:4673-4680, 1994) with the default parameters. FIG. **3.6** shows the alignment of PhuPro2 with these protease sequences.

C. Phylogenetic Tree

[0376] A phylogenetic tree for full length sequence of Phu-Pro2 (SEQ ID NO: 12) was built using sequences of representative homologs from Table 2A and the Neighbor Joining method (NJ) (Saitou, N.; and Nei, M. (1987). The neighborjoining method: a new method for reconstructing Guide Trees. Mol Biol. Evol. 4, 406-425). The NJ method works on a matrix of distances between all pairs of sequences to be analyzed. These distances are related to the degree of divergence between the sequences. The phylodendron-phylogenetic tree printer software (http://iubio.bio.indiana.edu/treeapp/treeprint-form.html) was used to display the phylogenetic tree shown in FIG. **3.7**.

Example 4.1

Cloning of *Paenibacillus ehimensis* Metalloprotease PehPro1

[0377] A strain (DSM11029) of Paenibacillus ehimensis was selected as a potential source of enzymes which may be useful in various industrial applications. Genomic DNA for sequencing was obtained by first growing the strain on Heart Infusion agar plates (Difco) at 37° C. for 24 hr. Cell material was scraped from the plates and used to prepare genomic DNA with the ZF Fungal/Bacterial DNA miniprep kit from Zymo (Cat No. D6005). The genomic DNA was used for genome sequencing. The entire genome of the Paenibacillus ehimensis strain was sequenced by BaseClear (Leiden, The Netherlands) using the Illumina's next generation sequencing technology. After assembly of the data, contigs were annotated by BioXpr (Namur, Belgium). One of the genes identified after annotation in Paenibacillus ehimensis encodes a metalloprotease and the sequence of this gene, called Peh-Pro1, is provided in SEQ ID NO: 16. The corresponding protein encoded by the PehPro1 gene is shown in SEQ ID NO: 17. At the N-terminus, the protein has a signal peptide with a length of 23 amino acids as predicted by SignalP version 4.0 (Nordahl Petersen et al. (2011) Nature Methods, 8:785-786). The presence of a signal sequence suggests that PehPro1 is a secreted enzyme. The propeptide region was predicted based on protein sequence alignment with the Paenibacillus polymyxa Npr protein (Takekawa et al. (1991) Journal of Bacteriology, 173 (21): 6820-6825). The predicted mature region of PehPro1 protein is shown in SEQ ID NO: 18. [0378] The nucleotide sequence of the PehPro1 gene isolated from Paenibacillus ehimensis is set forth as SEQ ID NO: 16. The sequence encoding the predicted native signal peptide is shown in italics:

ATGTTAAAAGTATGGGCATCGATTATTACAGGAGCATTTTTGCTCGGGAG CGTGCAAGGGGTGCAAGCTGCTCCACAAGATCAAGCTGCTCCCTTCGGAG GATTCACCCCTCAATTGATTACCGGGGAAAGCTGGAGTGCGCCGCAAGGA GTATCGGGAGAGAAAAAATCTGGAAGTATCTCGAATCCAAGCAGGAAAAG CTTCCAAATCGGCCAAACCGTTGATCTGAAAAAGCAATTGAAAATTATCG GCCAAACGACCGACGAGAAAACGGGAACCACGCATTACCGTCTACAGCAG

-continued

TATGTGGGAGGCGTCCCCGTATACGGCGGCGTACAAACGATCCATGTCAA CAAAGAAGGACAAGTTACCTCGCTGATCGGCAGCCTGCTTCCCGACCAGC AGCAGCAAGTTTCGAAAAGCTTGAATTCGCAAATCAGCGAAGCGCAAGCC ATCGCCGTGGCCCAGAAAGATACCGAGGCCGCCGTCGGCAAGCTGGGTGA AACCGGTCCTCGCTTATGTGACCGAGGTTAACGTTCTCGAACCGGAGGCA ATCCGGACGCGCTACTTCATCAGCGCCGAAGACGGCAGCATTTTATTCAA GTACGACATCCTCGCTCACGCTACAGGTACCGGAAAAGGCGTGCTCGGAG ATACGAAATCGTTCACGACCACGCAATCCGGCTCCACTTATCAATTGAAG GATACGACGCGCGGGCAAGGTATCGTCACTTACAGCGCTGGCAACCGGTC CTCTCTGCCGGGAACGCTGCTCACCAGCTCCAGCAATATTTGGAACGACG GCGCGGCGGTCGATGCGCATGCCTATACCGCCAAAGTGTACGATTACTAT AAAAACAAATTTGGCCGCAACAGCATTGACGGCAACGGCTTCCAGCTTAA ATCGACCGTGCACTATTCCTCCAGATACAACAACGCCTTCTGGAACGGTG TGCAAATGGTGTACGGCGACGGCGACGGCGTAACCTTCATTCCGTTCTCC GCCGATCCGGACGTCATCGGCCACGAATTGACCCACGGCGTTACGGAACA TACGGCCGGCCTGGAATACTACGGCGAATCCGGAGCGCTGAACGAATCGA TCTCCGATATTATCGGCAACGCGATCGACGGCAAAAACTGGCTGATCGGC GACTTGATTTATACGCCGAATACTCCCGGGGACGCCCTCCGCTCTATGGA GAACCCCAAGCTGTATAACCAACCCGACCGCTATCAAGACCGCTATACGG GACCTTCCGATAACGGCGGCGTGCATATTAACAGCGGTATCAACAACAAA GCCTTCTACCTGATCGCCCAAGGCGGCACGCACTATGGCGTCACCGTGAA CGGGATCGGACGCGATGCGGCTGTGCAAATTTTCTATGACGCCCTCATCA ATTACCTGACTCCAACTTCGAACTTCTCGGCGATGCGCGCAGCAGCCATT CAAGCGGCAACCGACCTGTACGGAGCGAATTCTTCTCAAGTAAACGCTGT CAAAAAAGCGTATACTGCCGTCGGCGTGAAC

[0379] The amino acid sequence of the PehPro1 precursor protein is set forth as SEQ ID NO: 17. The predicted signal sequence is shown in italics, and the predicted propeptide is shown in underlined text:

MLKVWASIITGAFLLGSVQGVQAAPQDQAAPFGGFTPQLITGESWSAPQG SGEEKIWKYLESKQESFQIGQTVDLKKQLKIIGQTTDEKTGTTHYRLQQ YVGGVPVYGGVQTIHVNKEGQVTSLIGSLLPDQQQQVSKSLNSQISEAQA IAVAQKDTEAAVGKLGEPQKTPEADLYVYLHNGQPVLAYVTEVNVLEPEA IRTRYFISAEDGSILFKYDILAHATGTGKGVLGDTKSFTTTQSGSTYQLK DTTRQQGIVTYSAGNRSSLPGTLLTSSSNIWNDGAAVDAHAYTAKVYDYY KNKFGRNSIDGNGFQLKSTVHYSSRYNNAFWNGVQMVYGDGDGVTFIPFS ADPDVIGHELTHGVTEHTAGLEYYGESGALNESISDIIGNAIDGKNWLIG DLIYTPNTPGDALRSMENPKLYNQPDRYQDRYTGPSDNGGVHINSGINNK

-continued

AFYLIAQGGTHYGVTVNGIGRDAAVQIFYDALINYLTPTSNFSAMRAAAI

QAATDLYGANSSQVNAVKKAYTAVGVN

[0380] The amino acid sequence of the predicted mature form of PehPro1 is set forth as SEQ ID NO: 18:

ATGTGKGVLGDTKSFTTTQSGSTYQLKDTTRGQGIVTYSAGNRSSLPGTL LTSSSNIWNDGAAVDAHAYTAKVYDYYKNKFGRNSIDGNGFQLKSTVHYS SRYNNAFWNGVQMVYGDGDGVTFIPFSADPDVIGHELTHGVTEHTAGLEY YGESGALNESISDIIGNAIDGKNWLIGDLIYTPNTPGDALRSMENPKLYN QPDRYQDRYTGPSDNGGVHINSGINNKAFYLIAQGGTHYGVTVNGIGRDA AVQIFYDALINYLTPTSNFSAMRAAAIQAATDLYGANSSQVNAVKKAYTA VGVN

Example 4.2

Expression of *Paenibacillus ehimensis* Metalloprotease PehPro1

[0381] The DNA sequence of the propeptide-mature form of PehPro1 was synthesized and inserted into the Bacillus subtilis expression vector p2JM103BBI (Vogtentanz, Protein Expr Purif, 55:40-52, 2007) by Generay (Shanghai, China), resulting in plasmid pGX148(AprE-PehPro1) (FIG. 4.1). Ligation of this gene encoding the PehPro1 protein into the digested vector resulted in the addition of three codons (Ala-Gly-Lys) between the 3' end of the B. subtilis AprE signal sequence and the 5' end of the predicted PehPro1 native propeptide. The gene has an alternative start codon (GTG). The resulting plasmid shown in FIG. 1 was labeled pGX148 (AprE-PehPro1). As shown in FIG. 1, pGX148(AprE-Peh-Pro1) contains an AprE promoter, an AprE signal sequence used to direct target protein secretion in B. subtilis, and the synthetic nucleotide sequence encoding the predicted propeptide and mature regions of PehPro1 (SEQ ID NO: 19). The translation product of the synthetic AprE-PehPro1 gene is shown in SEQ ID NO: 20.

[0382] The pGX148(AprE-PehPro1) plasmid was then transformed into *B. subtilis* cells (degU^{Hy}32, Δ scoC) and the transformed cells were spread on Luria Agar plates supplemented with 5 ppm Chloramphenicol and 1.2% skim milk (Cat#232100, Difco). Colonies with the largest clear halos on the plates were selected and subjected to fermentation in a 250 ml shake flask with MBD medium (a MOPS based defined medium, supplemented with additional 5 mM CaCl₂).

[0383] The broth from the shake flasks was concentrated and buffer-exchanged into the loading buffer containing 20 mM Tris-HCl (pH 8.5), 1 mM CaCl₂ and 10% propylene glycol using a VivaFlow 200 ultra filtration device (Sartorius Stedim). After filtering, this sample was applied to an 80 ml Q Sepharose High Performance column pre-equilibrated with the loading buffer above, PehPro1 was eluted from the column with a linear salt gradient from 0 to 0.3 M NaCl in the loading buffer. The corresponding active fractions were collected, concentrated and buffer-exchanged again into the loading buffer described above. The sample was loaded onto a 40 ml DEAE Fast Flow column pre-equilibrated with the same loading buffer. PehPro1 was eluted from the column with a linear salt gradient from 0 to 0.15 M NaCl in the loading buffer. The corresponding active purified protein fractions were further pooled and concentrated via 10K Amicon Ultra for further analyses.

[0384] The nucleotide sequence of the synthesized Peh-Pro1 gene in plasmid pGX148(AprE-PehPro1) is depicted in SEQ ID NO: 19. The sequence encoding the three residue addition (AGK) is shown in bold:

GTGAGAAGCAAAAAATTGTGGATCAGCTTGTTGTTTGCGTTAACGTTAAT ${\tt CTTTACGATGGCGTTCAGCAACATGAGCGCGCAGGCT{\tt GCTGGAAAA}{\tt GCAC}$ CTCAAGATCAGGCAGCACCTTTTGGAGGCTTTACACCGCAACTTATCACA GGCGAATCATGGTCAGCACCGCAGGGCGTTTCAGGCGAGGAAAAGATCTG GAAGTACCTTGAGAGCAAGCAGGAGTCATTTCAAATCGGCCAGACAGTCG ACCTGAAAAAGCAACTGAAGATCATCGGCCAAACAACGGACGAAAAGACG GGCACGACGCATTATAGACTGCAACAATATGTTGGCGGCGTGCCGGTTTA TGGAGGCGTGCAAACAATCCACGTGAACAAGGAAGGACAGGTCACGTCAC TGATCGGCAGCCTGCTGCCGGATCAGCAGCAACAAGTCTCAAAGAGCCTG AACTCACAAATTAGCGAGGCACAAGCGATTGCAGTTGCACAAAAGGACAC GGAAGCAGCTGTCGGCAAGCTGGGCGAACCGCAAAAAACACCTGAGGCTG ACCTTTACGTCTACCTGCATAACGGCCAGCCGGTCCTTGCGTACGTTACG GAAGTTAACGTGCTGGAGCCGGAGGCCATCAGAACGAGATACTTCATTAG CGCGGAGGATGGAAGCATTCTGTTTAAGTACGATATTCTTGCTCACGCGA CAGGCACAGGCAAGGGCGTCCTTGGCGACACAAAAGCTTCACGACAACG CAGAGCGGATCAACGTACCAGCTGAAAGATACAACAAGAGGACAAGGCAT CGTTACGTATTCAGCGGGCAATAGATCAAGCCTGCCGGGCACACTGCTGA CATCAAGCTCAAACATTTGGAATGACGGCGCAGCAGTTGATGCCCATGCG TACACAGCCAAGGTGTACGACTACTATAAGAACAAGTTTGGCAGAAATAG CATCGACGGAAATGGATTTCAACTTAAATCAACGGTGCACTACTCATCAA GATATAACAATGCGTTTTGGAACGGAGTGCAGATGGTCTACGGAGACGGC GACGGCGTGACATTTATTCCGTTTAGCGCCGACCCGGACGTGATTGGACA TGAACTGACACATGGAGTGACAGAGCATACGGCGGGACTGGAATATTACG GCGAAAGCGGCGCACTGAACGAAAGCATCTCAGACATTATTGGAAACGCA ATCGATGGCAAAAACTGGCTGATTGGCGATCTGATTTATACGCCGAATAC CGGACAGATACCAAGATAGATACACAGGACCGTCAGACAACGGCGGAGTC CATATCAACAGCGGAATCAATAACAAAGCCTTTTACCTGATCGCCCAAGG CGGAACGCACTATGGCGTTACAGTCAATGGCATCGGAAGAGATGCCGCAG TTCAGATTTTCTATGACGCGCTGATCAACTATCTGACGCCTACAAGCAAT TTCTCAGCAATGAGAGCCGCAGCAATCCAAGCAGCCACGGATCTGTATGG AGCCAATTCATCACAAGTTAATGCTGTTAAGAAGGCTTATACGGCAGTGG GAGTTAACTAA

[0385] The amino acid sequence of the PehPro1 precursor protein expressed from plasmid pGX148(AprE-PehPro1) is depicted in SEQ ID NO: 20. The predicted signal sequence is shown in italics, the three residue addition (AGK) is shown in bold, and the predicted pro-peptide is shown in underlined text.

MRSKKLWISLLFALTLIFTMAFSNMSAQAAGKAPQDQAAPFGGFTPQLIT GESWSAPQGVSGEEKIWKYLESKQESFQIGQTVDLKKQLKIIGQTTDEKT GTTHYRLQQYVGGVPVYGGVQTIHVNKEGQVTSLIGSLLPDQQQQVSKSL NSQISEAQAIAVAQKDTEAAVGKLGEPQKTPEADLYVYLHNGQPVLAYVT EVNVLEPEAIRTRYFISAEDGSILFKYDILAHATGTGKGVLGDTKSFTTT QSGSTYQLKDTTRGQGIVTYSAGNRSSLPGTLLTSSSNIWNDGAAVDAHA YTAKVYDYYKNKFGRNSIDGNGFQLKSTVHYSSRYNNAFWNGVQMVYGDG DGVTFIPFSADPDVIGHELTHGVTEHTAGLEYYGESGALNESISDIIGNA IDGKNWLIGDLIYTPNTPGDALRSMENPKLYNQPDRYQDRYTGPSDNGGV HINSGINNKAFYLIAQGGTHYGVTVNGIGRDAAVQIFYDALINYLTPTSN FSAMRAAAIOAATDLYGANSSOVNAVKKAYTAVGVN.

Example 4.3

Proteolytic Activity of Metalloprotease PehPro1

[0386] The proteolytic activity of purified metalloprotease PehPro1 was measured in 50 mM Tris (pH 7), using azocasein (Cat#74H7165, Megazyme) as a substrate. Prior to the reaction, the enzyme was diluted with Milli-Q water (Millipore) to specific concentrations. The azo-casein was dissolved in 100 mM Tris buffer (pH 7) to a final concentration of 1.5% (w/v). To initiate the reaction, 50 μ l of the diluted enzyme (or Milli-Q H₂O alone as the blank control) was added to the non-binding 96-well Microtiter Plate (96-MTP) (Corning Life Sciences, #3641) placed on ice, followed by the addition of 50 µl of 1.5% azo-casein. After sealing the 96-MTP, the reaction was carried out in a Thermomixer (Eppendorf) at 40° C. and 650 rpm for 10 min. The reaction was terminated by adding 100 µl of 5% Trichloroacetic Acid (TCA). Following equilibration (5 min at the room temperature) and subsequent centrifugation (2000 g for 10 min at 4° C.), 120 µl supernatant was transferred to a new 96-MTP, and absorbance of the supernatant was measured at $440 \text{ nm} (A_{440})$ using a SpectraMax 190. Net A440 was calculated by subtracting the A_{440} of the blank control from that of enzyme, and then plotted against different protein concentrations (from 1.25 ppm to 40 ppm). Each value was the mean of triplicate assays. The proteolytic activity is shown as Net A440. The proteolytic assay with azo-casein as the substrate (shown in FIG. 4.2) indicates that PehPro1 is an active protease.

Example 4.4

pH Profile of Metalloprotease PehPro1

[0387] With azo-casein as the substrate, the pH profile of metalloprotease PehPro1 was studied in 12.5 mM acetate/ Bis-Tris/HEPES/CHES buffer with different pH values (ranging from pH 4 to 11). To initiate the assay, 50 μ l of 25 mM acetate/Bis-Tris/HEPES/CHES buffer with a specific pH was first mixed with 2 μ l Milli-Q H₂O diluted enzyme (250 ppm) in a 96-MTP placed on ice, followed by the addition of 48 μ l of 1.5% (w/v) azo-casein prepared in H₂O. The reaction was performed and analyzed as described in Example 4.3. Enzyme activity at each pH was reported as the relative activity, where the activity at the optimal pH was set to be 100%. The pH values tested were 4, 5, 6, 7, 8, 9, 10 and 11. Each value was the mean of triplicate assays. As shown in FIG. 4.3, the optimal pH of PehPro1 is 7, with greater than 70% of maximal activity retained between 5.5 and 9.5.

Example 4.5

Temperature Profile of Metalloprotease PehPro1

[0388] The temperature profile of metalloprotease PehPro1 was analyzed in 50 mM Tris buffer (pH 7) using the azocasein assays. The enzyme sample and azo-casein substrate were prepared as in Example 4.3. Prior to the reaction, 50 µl of 1.5% azo-casein and 45 µl Milli-Q H₂O were mixed in a 200 µl PCR tube, which was then subsequently incubated in a Peltier Thermal Cycler (BioRad) at desired temperatures (i.e. 20~90° C.) for 5 min. After the incubation, 5 µl of diluted enzyme (100 ppm) or H₂O (the blank control) was added to the substrate mixture, and the reaction was carried out in the Peltier Thermal Cycle for 10 min at different temperatures. To terminate the reaction, each assay mixture was transferred to a 96-MTP containing 100 µl of 5% TCA per well. Subsequent centrifugation and absorbance measurement were performed as described in Example 4.3. The activity was reported as the relative activity, where the activity at the optimal temperature was set to be 100%. The tested temperatures are 20, 30, 40, 50, 60, 70, 80, and 90° C. Each value was the mean of duplicate assays (the value varies no more than 5%). The data in FIG. 4.4 suggest that PehPro1 showed an optimal temperature at 70° C., and retained greater than 70% of its maximum activity between 60 and 75° C.

Example 4.6

Cleaning Performance of Metalloprotease PehPro1

[0389] The cleaning performance of PehPro1 was tested using PA-S-38 (egg yolk, with pigment, aged by heating) microswatches (CFT-Vlaardingen, The Netherlands) at pH 6 and 8 using a model automatic dishwashing (ADW) detergent. Prior to the reaction, purified protease samples were diluted with a dilution solution containing 10 mM NaCl, 0.1 mM CaCl₂, 0.005% TWEEN® 80 and 10% propylene glycol to the desired concentrations. The reactions were performed in AT detergent with 100 ppm water hardness ($Ca^{2+}:Mg^{2+}=3:$ 1) (detergent composition shown in Table 4.1). To initiate the reaction, 180 µl of the AT detergent buffered at pH 6 or pH 8 was added to a 96-MTP placed with PA-S-38 microswatches, followed by the addition of 20 µl of diluted enzymes (or the dilution solution as the blank control). The 96-MTP was sealed and incubated in an incubator/shaker for 30 min at 50° C. and 1150 rpm. After incubation, 100 µl of wash liquid from each well was transferred to a new 96-MTP, and its absorbance was measured at 405 nm (referred here as the "Initial performance") using a spectrophotometer. The remaining wash liquid in the 96-MTP was discarded and the microswatches were rinsed once with 200 µl water. Following the addition of 180 µl of 0.1 M CAPS buffer (pH 10), the second incubation was carried out in the incubator/shaker at 50° C. and 1150 rpm for 10 min. One hundred microliters of the

resulting wash liquid was transferred to a new 96-MTP, and its absorbance measured at 405 nm (referred here as the "Wash-off"). The sum of two absorbance measurements ("Initial performance" plus "Wash-off") gives the "Total performance", which measures the protease activity on the model stain; and Net A_{405} was subsequently calculated by subtracting the A_{405} of the "Total performance" of the blank control from that of the enzyme. Dose response in cleaning the PA-S-38 microswatches at pH 6 and pH 8 for PehPro1 in AT detergent is shown in FIGS. 4.5A and 4.5B.

TABLE 4.1

Ingredient	Concentration (mg/ml)
MGDA (methylglycinediacetic acid)	0.143
Sodium citrate	1.86
Citric acid*	varies
Plurafac ® LF 18B (a non-ionic surfactant)	0.029
Bismuthcitrate	0.006
Bayhibit ® S (Phosphonobutantricarboxylic acid sodium salt)	0.006
Acusol TM 587 (a calcium polyphosphate inhibitor)	0.029
PEG 6000	0.043
PEG 1500	0.1

*The pH of the AT formula detergent is adjusted to the desired value (pH 6 or 8) by the on of 0.9M eitric acid

Example 4.7

Comparison of PehPro1 to Other Proteases

A. Identification of Homologous Proteases

[0390] Homologs were identified by a BLAST search (Altschul et al., Nucleic Acids Res, 25:3389-402, 1997) against the NCBI non-redundant protein database and the Genome Quest Patent database with search parameters set to default values. The mature protein amino acid sequence for PehPro1 (SEQ ID NO: 18) was used as the query sequence. Percent identity (PID) for both search sets is defined as the number of identical residues divided by the number of aligned residues in the pairwise alignment. Tables 4.2A and 4.2B provide a list of sequences with the percent identity to Peh-Pro1. The length in Table 4.2 refers to the entire sequence length of the homologous proteases.

TABLE 4.2A

	PID to		
Accession #	PehPro1	Organism	Length
ZP_09077634.1	88	Paenibacillus elgii B69	524
ZP_09071078.1	74	Paenibacillus larvae subsp. larvae B-3650	529
YP_003872179.1	74	Paenibacillus polymyxa E681	592
P29148	73	Paenibacillus polymyxa	590
P43263	68	Brevibacillus brevis	527
ZP_09775365.1	68	Paenibacillus sp. Aloe-11	580
ZP_10241029.1	67	Paenibacillus peoriae KCTC 3763	599
ZP_10575942.1	66	Brevibacillus sp. BC25	528
YP_002770810.1	67	Brevibacillus brevis NBRC 100599	528

TABLE 4.2A-continued

List of sequences with percent identity to PehPro1 protein identified from the NCBI non-redundant protein database				
Accession #	PID to PehPro1	Organism	Length	
ZP_08640523.1	64	Brevibacillus laterosporus LMG 15441	564	
YP_004646155.1	63	Paenibacillus mucilaginosus KNP414	525	
ZP_08093424.1	60	Planococcus donghaensis MPA1U2	553	
YP_003670279.1 P00800	59 59	Geobacillus sp. C56-T3 Bacillus thermoproteolyticus	546 548	

TABLE 4.2B

List of sequences with percent identity to PehPro1 protein identified from the Genome Quest Patent database				
Patent ID #	PID to PehPro1	Organism	Length	
JP2005229807-0019	74.5	Paenibacillus polymyxa	566	
US20120107907-0187	74.09	Bacillus polymyxa	302	
US8114656-0186	68.21	Bacillus brevis	304	
WO2004011619-0044	63.25	empty	507	
EP2390321-0185	62.9	Bacillus cereus	317	
WO2012110563-0004	62.7	Bacillus megaterium	320	
WO2012110563-0005	62.58	Bacillus cereus	320	
JP1995184649-0001	62.5	Lactobacillus sp.	566	
JP2005333991-0002	62.38	empty	562	
EP2178896-0184	62.18	Bacillus anthracis	566	
JP1994014788-0003	61.94	empty	317	
EP2390321-0178	61.86	Bacillus thuringiensis	566	
US6518054-0002	60.84	Bacillus sp.	316	
US8114656-0176	60.13	Bacillus stearothermophilus	548	
US6103512-0003	59.81	empty	319	
US20120107907-0184	59.49	Bacillus caldoyticus	319	

B. Alignment of Homologous Protease Sequences

[0391] The amino acid sequence of predicted mature Peh-Pro1 (SEQ ID NO: 18) was aligned with thermolysin (P00800, Bacillus thermoproteolyticus) and protease from Paenibacillus elgii B69 (ZP_09077634.1) using CLUST-ALW software (Thompson et al., Nucleic Acids Research, 22:4673-4680, 1994) with the default parameters. FIG. 4.6 shows the alignment of PehPro1 with these protease sequences.

C. Phylogenetic Tree

[0392] A phylogenetic tree for precursor protein PehPro1 (SEQ ID NO: 17) was built using sequences of representative homologs from Table 2A and the Neighbor Joining method (NJ) (Saitou, N.; and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing Guide Trees. Mol Biol. Evol. 4, 406-425). The NJ method works on a matrix of distances between all pairs of sequences to be analyzed. These distances are related to the degree of divergence between the sequences. The phylodendron-phylogenetic tree printer software (http://iubio.bio.indiana.edu/treeapp/treeprint-form.html) was used to display the phylogenetic tree shown in FIG. 4.7.

Example 5.1

Cloning of Paenibacillus barcinonensis Metalloprotease PbaPro1

[0393] A strain (DSM15478) of Paenibacillus barcinonensis was selected as a potential source of enzymes which may be useful in various industrial applications. Genomic DNA for sequencing was obtained by first growing the strain on Heart Infusion agar plates (Difco) at 37° C. for 24 hr. Cell material was scraped from the plates and used to prepare genomic DNA with the ZF Fungal/Bacterial DNA miniprep kit from Zymo (Cat No. D6005). The genomic DNA was used for genome sequencing. The entire genome of the Paenibacillus barcinonensis strain was sequenced by BaseClear (Leiden, The Netherlands) using the Illumina's next generation sequencing technology. After assembly of the data, contigs were annotated by BioXpr (Namur, Belgium). One of the genes identified after annotation in Paenibacillus barcinonensis encodes a metalloprotease and the sequence of this gene, called PbaPro1, is provided in SEQ ID NO: 21. The corresponding protein encoded by the PbaPro1 gene is shown in SEQ ID NO: 22. At the N-terminus, the protein has a signal peptide with a length of 25 amino acids as predicted by SignalP version 4.0 (Nordahl Petersen et al. (2011) Nature Methods, 8:785-786). The presence of a signal sequence suggests that PbaPro1 is a secreted enzyme. The propeptide region was predicted based on protein sequence alignment with the Paenibacillus polymyxa Npr protein (Takekawa et al. (1991) Journal of Bacteriology, 173 (21): 6820-6825). The predicted mature region of PbaPro1 protein is shown in SEQ ID NO: 23.

[0394] The nucleotide sequence of the PbaPro1 gene isolated from *Paenibacillus barcinonensis* is set forth as SEQ ID NO: 21. The sequence encoding the predicted native signal peptide is shown in italics:

ATGAAATTGACCAAAATTATGCCAACAATTCTTGCAGGAGCTCTTTTGCT CACATCCCTGTCCTCTGCAGCAGCAATGCCGTTATCTGACTCATCCATTC CATTTGAGGGCCCCTACACCTCCGAGGAGAGTATTCTGTTGAACAACAAC CCGGACGAAATGATTTATAATTTTCTTGCACAACAAGAGCAATTTCTGAA TGCCGACGTCAAAGGACAGCTCAAAATCATTAAACGCAACACAGACACTT CCGGCATCAGACACTTTCGTCTGAAGCAATACATCAAAGGTGTTCCGGTT TACGGCGCAGAACAAACGATCCATCTGGACAAGAACGGAGCTGTAACTTC CGCACTCGGCGATCTTCCGCCAATTGAAGAACAGGCTGTTCCGAATGATG GCGTTCCCGCAATCAGTGCAGACGATGCCATCCGTGCCGCCGAGAATGAA GCCACCTCCCGTCTTGGAGAGCTTGGCGCACCAGAGCTTGAGCCAAAGGC ACATTACGGAAGTTAACGTGCTTGAGCCTTCCCCGCTACGGACCAAATAT TTTATTAACGCCCTTGATGGAAGCATCGTATCTCAATACGATATTATCAA CTTTGCCACAGGCACCGGTACAGGCGTGCATGGTGATACCAAAACACTGA CGACAACTCAATCCGGCAGCACCTATCAGCTGAAAGATACAACTCGTGGA AAAGGCATTCAAACCTATACTGCGAACAATCGCTCCTCGCTTCCAGGCAG CTTGTCTACCAGTTCCAATAACGTATGGACAGACCGTGCAGCTGTAGATG CGCACGCCTATGCTGCCGCCACATATGACTTCTACAAAAACAAATTCAAT CGCAACGGCATTGACGGAAACGGGCTGTTGATTCGCTCTACAGTGCATTA TGGCTCCAACTATAAAAACGCCTTCTGGAACGGAGCACAGATTGTCTATG

-continued

GAGATGGCGATGGCATCGAGTTCGGTCCCTTCTCCCGGTGATCTCGATGTT GTCGGACATGAATTGACACACGGGGTGATTGAATATACAGCCAATCTCGA ATATCGCAATGAGCCGGGGTGCTTTAAACGAAGCTTTTGCCGACATTATGG GGAACACCATCGAAAGCAAAAACTGGCTGCTTGGCGACGGAATCTATACT CCAAACATTCCAGGTGATGCCCTGCGCTCGTTATCCGACCCTACGCTGTA TAACCAGCCTGACAAATACAGTGATCGCTACACTGGCTCTCAGGATAATG GCGGTGTGCATATCAACAGCGGGATCATTAACAAAGCATATTATCTTGCA GCCCAAGGCGGTACTCATAACGGGGTAACCGTTAGCGGCATCGGCCGGGA TAAAGCAGTACGTATTTTCTATAGCACGCTGGTGAACTACCTGACGCCGAA CCTCCAAATTTGCAGCAGCCAAAACAGCGACAATTCAGGCAGCCAAGGAC CTGTACGGTGCCAATTCCGCTGAAGCTACGGCAATCACCAAAGCTTATCA AGCGGTAGGTTTG

[0395] The amino acid sequence of the PbaPro1 precursor protein is set forth as SEQ ID NO: 22. The predicted signal sequence is shown in italics, and the predicted pro-peptide is shown in underlined text:

MKLTKIMPTILAGALLLTSLSSAAAMPLSDSSIPFEGPYTSEESILLNNN PDEMIYNFLAQQEQFLNADVKGQLKIIKRNTDTSGIRHFRLKQYIKGVPV YGAEQTIHLDKNGAVTSALGDLPPIEEQAVPNDGVPAISADDAIRAAENE ATSRLGELGAPELEPKAELNIYHHEDDGQTYLVYITEVNVLEPSPLRTKY FINALDGSIVSQYDIINFATGTGTGVHGDTKTLTTTQSGSTYQLKDTRG KGIQTYTANNRSSLPGSLSTSSNNVWTDRAAVDAHAYAAATYDFYKNKFN RNGIDGNGLLIRSTVHYGSNYKNAFWNGAQIVYGDGDGIEFGPFSGDLDV VGHELTHGVIEYTANLEYRNEPGALNEAFADIMGNTIESKNWLLGDGIYT PNIPGDALRSLSDPTLYNQPDKYSDRYTGSQDNGGVHINSGIINKAYYLA AQGGTHNGVTVSGIGRDKAVRIFYSTLVNYLTPTSKFAAAKTATIQAAKD LYGANSAEATAITKAYQAVGL

[0396] The amino acid sequence of the predicted mature form of PbaPro1 is set forth as SEQ ID NO: 23:

ATGTGTGVHGDTKTLTTTQSGSTYQLKDTTRGKGIQTYTANNRSSLPGSL STSSNNVWTDRAAVDAHAYAAATYDFYKNKFNRNGIDGNGLLIRSTVHYG SNYKNAFWNGAQIVYGDGDGIEFGPFSGDLDVVGHELTHGVIEYTANLEY RNEPGALNEAFADIMGNTIESKNWLLGDGIYTPNIPGDALRSLSDPTLYN QPDKYSDRYTGSQDNGGVHINSGIINKAYYLAAQGGTHNGVTVSGIGRDK AVRIFYSTLVNYLTPTSKFAAAKTATIQAAKDLYGANSAEATAITKAYQA VGL

Example 5.2

Expression of *Paenibacillus barcinonensis* Metalloprotease PbaPro1

[0397] The DNA sequence of the propeptide-mature form of PbaPro1 was synthesized and inserted into the *Bacillus*

subtilis expression vector p2JM103BBI (Vogtentanz, Protein Expr Purif, 55:40-52, 2007) by Generay (Shanghai, China), resulting in plasmid pGX147(AprE-PbaPro1) (FIG. 5.1). Ligation of this gene encoding the PbaPro1 protein into the digested vector resulted in the addition of three codons (Ala-Gly-Lys) between the 3' end of the B. subtilis AprE signal sequence and the 5' end of the predicted PbaPro1 native propeptide. The gene has an alternative start codon (GTG). The resulting plasmid shown in FIG. 1 was labeled pGX147 (AprE-PbaPro1). As shown in FIG. 5.1, pGX147(AprE-PbaPro1) contains an AprE promoter, an AprE signal sequence used to direct target protein secretion in B. subtilis, and the synthetic nucleotide sequence encoding the predicted propeptide and mature regions of PbaPro1 (SEQ ID NO: 24). The translation product of the synthetic AprE-PbaPro1 gene is shown in SEQ ID NO: 25.

[0398] The pGX147(AprE-PbaPro1) plasmid was then transformed into *B. subtilis* cells (degU^{Hy}32, Δ scoC) and the transformed cells were spread on Luria Agar plates supplemented with 5 ppm Chloramphenicol and 1.2% skim milk (Cat#232100, Difco). Colonies with the largest clear halos on the plates were selected and subjected to fermentation in a 250 ml shake flask with MBD medium (a MOPS based defined medium, supplemented with additional 5 mM CaCl₂).

[0399] The broth from the shake flasks was concentrated and buffer-exchanged into the loading buffer containing 20 mM Tris-HCl (pH 8.5), 1 mM CaCl₂ and 10% propylene glycol using a VivaFlow 200 ultra filtration device (Sartorius Stedim). After filtering, this sample was applied to an 80 ml Q Sepharose High Performance column pre-equilibrated with the loading buffer above; and the active flow-through fractions were collected and concentrated. The sample was loaded onto a 320 ml Superdex 75 gel filtration column preequilibrated with the loading buffer described above containing 0.15 M NaCl. The corresponding active purified protein fractions were further pooled and concentrated via 10K Amicon Ultra for further analyses.

[0400] The nucleotide sequence of the synthesized PbaPro1 gene in plasmid pGX147(AprE-PbaPro1) is depicted in SEQ ID NO: 24. The sequence encoding the three residue addition (AGK) is shown in bold:

 -continued

TCACCGCTGAGAACAAAATACTTCATCAATGCGCTGGATGGCAGCATCGT TAGCCAATACGACATCATTAACTTCGCCACAGGCACGGGCACAGGCGTTC ATGGCGACACAAAAACGCTTACGACAACACAGTCAGGCTCAACGTACCAG CTGAAAGACACAACAAGAGGCAAGGGCATCCAGACGTATACAGCCAATAA CAGAAGCTCACTTCCGGGCTCACTGTCAACAAGCAGCAATAATGTCTGGA CGGACAGAGCTGCAGTGGACGCGCACGCGTATGCTGCGGCCACGTACGAC TTCTACAAGAACAAGTTCAACAGAAACGGCATTGATGGCAACGGCCTGCT TATTAGAAGCACGGTCCACTACGGCTCAAACTACAAGAATGCGTTTTGGA ACGGCGCCCAAATTGTTTATGGCGATGGAGACGGCATCGAGTTCGGACCT TTTAGCGGCGACCTGGATGTGGTCGGACATGAACTGACGCACGGCGTTAT CGAGTATACGGCGAATCTGGAATACAGAAATGAACCGGGCGCTCTGAATG AGGCCTTCGCGGATATCATGGGCAACACAATTGAGAGCAAAAACTGGCTT CTGGGCGACGGAATCTACACGCCGAACATTCCGGGAGATGCACTGAGATC ACTGAGCGACCCTACGCTGTACAACCAGCCGGACAAATACAGCGACAGAT ACACGGGATCACAGGACAATGGCGGCGTCCATATTAACTCAGGCATCATC AACAAAGCGTATTATCTGGCAGCTCAAGGCGGCACGCATAATGGCGTCAC AGTTAGCGGAATCGGCAGAGACAAGGCCGTCAGAATTTTCTACTCAACGC TGGTGAACTACCTGACACCGACAAGCAAGTTTGCAGCCGCCAAAACAGCC ACGATTCAGGCAGCAAAGGACCTGTACGGAGCGAACTCAGCAGAGGCCAC AGCGATTACGAAGGCTTATCAAGCCGTGGGACTGTAA

[0401] The amino acid sequence of the PbaPro1 precursor protein expressed from plasmid pGX147(AprE-PbaPro1) is depicted in SEQ ID NO: 25. The predicted signal sequence is shown in italics, the three residue addition (AGK) is shown in bold, and the predicted pro-peptide is shown in underlined text.

MRSKKLWISLLFALTLIFTMAFSNMSÄQAAGKMPLSDSSIPFEGPYTSEE SILLNNNPDEMIYNFLAQQEQFLNADVKGQLKIIKRNTDTSGIRHFRLKQ YIKGVPVYGAEQTIHLDKNGAVTSALGDLPPIEEQAVPNDGVPAISADDA IRAAENEATSRLGELGAPELEPKAELNIYHHEDDGQTYLVYITEVNVLEP SPLRTKYFINALDGSIVSQYDIINFATGTGTGVHGDTKTLTTTQSGSTYQ LKDTTRGKGIQTYTANNRSSLPGSLSTSSNNVWTDRAAVDAHAYAAATYD FYKNKFNRNGIDGNGLLIRSTVHYGSNYKNAFWNGAQIVYGDGDGIEFGP FSGDLDVVGHELTHGVIEYTANLEYRNEPGALNEAFADIMGNTIESKNWL LGDGIYTPNIPGDALRSLSDPTLYNQPDKYSDRYTGSQDNGGVHINSGII NKAYYLAAQGGTHNGVTVSGIGRDKAVRIFYSTLVNYLTPTSKFAAAKTA TIQAAKDLYGANSAEATAITKAYQAVGL

Example 5.3

Proteolytic Activity of Metalloprotease PbaPro1

[0402] The proteolytic activity of purified metalloprotease PbaPro1 was measured in 50 mM Tris (pH 7), using azo-

casein (Cat#74H7165, Megazyme) as a substrate. Prior to the reaction, the enzyme was diluted with Milli-Q water (Millipore) to specific concentrations. The azo-casein was dissolved in 100 mM Tris buffer (pH 7) to a final concentration of 1.5% (w/v). To initiate the reaction, 50 μ l of the diluted enzyme (or Milli-Q H₂O alone as the blank control) was added to the non-binding 96-well Microtiter Plate (96-MTP) (Corning Life Sciences, #3641) placed on ice, followed by the addition of 50 µl of 1.5% azo-casein. After sealing the 96-MTP, the reaction was carried out in a Thermomixer (Eppendorf) at 40° C. and 650 rpm for 10 min. The reaction was terminated by adding 100 µl of 5% Trichloroacetic Acid (TCA). Following equilibration (5 min at the room temperature) and subsequent centrifugation (2000 g for 10 min at 4° C.), 120 µl supernatant was transferred to a new 96-MTP, and absorbance of the supernatant was measured at $440 \text{ nm} (A_{440})$ using a SpectraMax 190. Net A440 was calculated by subtracting the A_{440} of the blank control from that of enzyme, and then plotted against different protein concentrations (from 1.25 ppm to 40 ppm). Each value was the mean of triplicate assavs.

[0403] The proteolytic activities are shown as Net A_{440} . The proteolytic assay with azo-casein as the substrate (shown in FIG. **5.2**) indicates that PbaPro1 is an active protease.

Example 5.4

pH Profile of Metalloprotease PbaPro1

[0404] With azo-casein as the substrate, the pH profile of metalloprotease PbaPro1 was studied in 12.5 mM acetate/ Bis-Tris/HEPES/CHES buffer with different pH values (ranging from pH 5 to 11). To initiate the assay, 50 μ l of 25 mM acetate/Bis-Tris/HEPES/CHES buffer with a specific pH was first mixed with 2 μ l Milli-Q H₂O diluted enzyme (125 ppm) in a 96-MTP placed on ice, followed by the addition of 48 μ l of 1.5% (w/v) azo-casein prepared in H₂O. The reaction was performed and analyzed as described in Example 5.3. Enzyme activity at each pH was reported as the relative activity, where the activity at the optimal pH was set to be 100%. The pH values tested were 5, 6, 7, 8, 9, 10 and 11. Each value was the mean of triplicate assays. As shown in FIG. **5.3**, the optimal pH of PbaPro1 is 8, with greater than 70% of maximal activity retained between 7 and 9.

Example 5.5

Temperature Profile of Metalloprotease PbaPro1

[0405] The temperature profiles of metalloprotease PbaPro1 was analyzed in 50 mM Tris buffer (pH 7) using the azo-casein assays. The enzyme sample and azo-casein substrate were prepared as in Example 5.3. Prior to the reaction, 50 μ l of 1.5% azo-casein and 45 μ l Milli-Q H₂O were mixed in a 200 µl PCR tube, which was then subsequently incubated in a Peltier Thermal Cycler (BioRad) at desired temperatures (i.e. 20~90° C.) for 5 min After the incubation, 5 µl of diluted enzyme (50 ppm) or H₂O (the blank control) was added to the substrate mixture, and the reaction was carried out in the Peltier Thermal Cycle for 10 min at different temperatures. To terminate the reaction, each assay mixture was transferred to a 96-MTP containing 100 µl of 5% TCA per well. Subsequent centrifugation and absorbance measurement were performed as described in Example 5.3. The activity was reported as the relative activity, where the activity at the optimal temperature was set to be 100%. The tested temperatures are 20, 30, 40,

50, 60, 70, 80, and 90° C. Each value was the mean of duplicate assays (the value varies no more than 5%). The data in FIG. **5.4** suggest that PbaPro1 showed an optimal temperature at 50° C., and retained greater than 70% of its maximum activity between 45 and 55° C.

Example 5.6

Cleaning Performance of Metalloprotease PbaPro1

[0406] The cleaning performance of PbaPro1 was tested using PA-S-38 (egg yolk, with pigment, aged by heating) microswatches (CFT-Vlaardingen, The Netherlands) at pH 6 and 8 using a model automatic dishwashing (ADW) detergent. Prior to the reaction, purified protease samples were diluted with a dilution solution containing 10 mM NaCl, 0.1 mM CaCl₂, 0.005% TWEEN® 80 and 10% propylene glycol to the desired concentrations. The reactions were performed in AT detergent with 100 ppm water hardness ($Ca^{2+}:Mg^{2+}=3:$ 1) (detergent composition shown in Table 5.1). To initiate the reaction, 180 µl of the AT detergent buffered at pH 6 or pH 8 was added to a 96-MTP placed with PA-S-38 microswatches, followed by the addition of 20 µl of diluted enzymes (or the dilution solution as the blank control). The 96-MTP was sealed and incubated in an incubator/shaker for 30 min at 50° C. and 1150 rpm. After incubation, 100 µl of wash liquid from each well was transferred to a new 96-MTP, and its absorbance was measured at 405 nm (referred here as the "Initial performance") using a spectrophotometer. The remaining wash liquid in the 96-MTP was discarded and the microswatches were rinsed once with 200 µl water. Following the addition of 180 µl of 0.1 M CAPS buffer (pH 10), the second incubation was carried out in the incubator/shaker at 50° C. and 1150 rpm for 10 min. One hundred microliters of the resulting wash liquid was transferred to a new 96-MTP, and its absorbance measured at 405 nm (referred here as the "Wash-off"). The sum of two absorbance measurements ("Initial performance" plus "Wash-off") gives the "Total performance", which measures the protease activity on the model stain; and Net $\rm A_{405}$ was subsequently calculated by subtracting the $\rm A_{405}$ of the "Total performance" of the blank control from that of the enzyme. Dose response in cleaning the PA-S-38 microswatches at pH 6 and pH 8 in AT detergent for PbaPro1 is shown in FIGS. 5.5A and 5.5B.

TABLE 5.1

Ingredient	Concentration (mg/ml)
MGDA (methylglycinediacetic acid)	0.143
Sodium citrate	1.86
Citric acid*	varies
PAP (peracid N,N-phthaloylaminoperoxycaproic acid)	0.057
Plurafac ® LF 18B (a non-ionic surfactant)	0.029
Bismuthcitrate	0.006
Bayhibit ® S (Phosphonobutantricarboxylic acid sodium salt)	0.006
Acusol [™] 587 (a calcium polyphosphate inhibitor)	0.029
PEG 6000	0.043
PEG 1500	0.1

*The pH of the AT formula detergent is adjusted to the desired value (pH 6 or 8) by the addition of 0.9M citric acid.

Example 5.7

Comparison of PbaPro1 to Other Proteases

[0407] A. Identification of Homologous Proteases

[0408] Homologs were identified by a BLAST search (Altschul et al., Nucleic Acids Res, 25:3389-402, 1997) against the NCBI non-redundant protein database and the Genome Quest Patent database with search parameters set to default values. The predicted mature protein amino acid sequence for PbaPro1 (SEQ ID NO: 23) was used as the query sequence. Percent identity (PID) for both search sets is defined as the number of identical residues divided by the number of aligned residues in the pairwise alignment. Tables 5.2A and 5.2B provide a list of sequences with the percent identity to PbaPro1. The length in Table 5.2 refers to the entire sequence length of the homologous proteases.

TABLE 5.2A

List	f sequences with percent identity to PbaPro1 protein	
iden	fied from the NCBI non-redundant protein database	

Accession #	PID to PbaPro1	Organism	Length
AAB02774.1	56	Geobacillus stearothermophilus	552
P00800	56	Bacillus stermoproteolyticus	548
AAA22623.1	57	Bacillus caldolyticus	544
YP_003670279.1	57	Geobacillus sp. C56-T3	546
AAC43402.1	57	Alicyclobacillus acidocaldarius	546
YP_003597483.1	57	Bacillus megaterium DSM 319	562
ZP_08093424.1	57	Planococcus donghaensis MPA1U2	553
ZP_08640523.1	59	Brevibacillus laterosporus LMG 15441	564
ZP_04216147.1	59	Bacillus cereus Rock3-44	566
YP_001373863.1	60	Bacillus cytotoxicus NVH 391-98	565
YP_004646155.1	60	Paenibacillus mucilaginosus KNP414	525
ZP_10738945.1	61	Brevibacillus sp. CF112	528
CAA43589.1	63	Brevibacillus brevis	527
ZP_02326602.1	64	Paenibacillus larvae subsp. larvae BRL-230010	520
ZP_02326503.1	65	Paenibacillus larvae subsp. larvae B-3650	520
ZP_09077634.1	66	Paenibacillus elgii B69	524
ZP_08511445.1	68	[Paenibacillus sp. HGF7	525
ZP_09775364.1	70	Paenibacillus sp. Aloe-11	593
YP_005073223.1	70	Paenibacillus terrae HPL-003	591
ZP_10241030.1	70	Paenibacillus peoriae KCTC 3763	593
YP_003948511.1	71	Paenibacillus polymyxa SC2	592

TABLE 5.2B

List of sequences with percent identity to PbaPro1 protein identified from the Genome Quest Patent database	
PID to	

Patent #	PbaPro1	Organism	Length
JP2005333991-0002	56.91		562
WO2012110562-0007	56.96	Bacillus cereus	320
WO2012110562-0006	57.23	Bacillus megaterium	320
EP2390321-0178	57.23	Bacillus thuringiensis	566
EP2390321-0184	57.56	Bacillus caldoyticus	319
WO2007044993-0184	57.56	Bacillus sp.	319
US20120107907-0177	57.56	Bacillus caldolyticus	544
CN102168095-0002	57.88	-	319
WO2012110562-0004	57.88	Bacillus caldolvticus	319

TABLE 5.2B-continued

List of sequences with percent identity to PbaPro1 protein identified from the Genome Quest Patent database					
Patent #	PID to PbaProl	Organism	Length		
WO2012110562-0003	57.88	Geobacillus stearothermophilus	319		
WO2004011619-0056	57.88	-	546		
JP1995184649-0001	57.88	Lactobacillus sp.	566		
JP2010535248-0240	57.88	Bacillus anthracis	566		
US6518054-0001	58.2	Bacillus sp.	319		
US6103512-0003	58.2	•	319		
WO2011163237-0001	58.2	Geobacillus stearothermophilus	548		
JP1994014788-0003	58.25	-	317		
US8114656-0185	58.9	Bacillus cereus	317		
US20120107907-0179	58.9	Bacillus cereus	566		
WO2012110563-0005	59.22	Bacillus cereus	320		
WO2004011619-0044	59.6		507		
US20120107907-0186	63.25	Bacillus brevis	304		
JP2005229807-0018	70.86	Paenibacillus polymyxa	566		
EP2390321-0187	71.1	Bacillus polymyxa	302		
JP2009511072-0203	71.1	Paenibacillus polymyxa	302		

B. Alignment of Homologous Protease Sequences

[0409] The amino acid sequence of the predicted mature PbaPro1 (SEQ ID NO: 23) was aligned with Thermolysin (P00800, *Bacillus thermoproteolyticus*), and protease from *Paenibacillus polymyxa* SC2 (YP_003948511.1) using CLUSTALW software (Thompson et al., Nucleic Acids Research, 22:4673-4680, 1994) with the default parameters. FIG. **5.6** shows the alignment of PbaPro1 with these protease sequences.

C. Phylogenetic Tree

[0410] A phylogenetic tree for full length sequence of PbaPro1 (SEQ ID NO: 22) was built using sequences of representative homologs from Table 2A and the Neighbor Joining method (NJ) (Saitou, N.; and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing Guide Trees. Mol Biol. Evol. 4, 406-425). The NJ method works on a matrix of distances between all pairs of sequences to be analyzed. These distances are related to the degree of divergence between the sequences. The phylodendron-phylogenetic tree printer software (http://iubio.bio.indiana.edu/treeapp/treeprint-form.html) was used to display the phylogenetic tree shown in FIG. **5.7**.

Example 6.1

Cloning of *Paenibacillus polymyxa* SC2 Metalloprotease PpoPro1

[0411] The nucleic acid sequence for the PpoPro1 gene was identified in the NCBI database (NCBI Reference Sequence: NC_014622.1 from 4536397-4538175) and is provided in SEQ ID NO: 26. The corresponding protein encoded by the PpoPro1 gene is shown in SEQ ID NO: 27. At the N-terminus, the protein has a signal peptide with a length of 24 amino acids as predicted by SignalP version 4.0 (Nordahl Petersen et al. (2011) Nature Methods, 8:785-786). The presence of a signal sequence suggests that PpoPro1 is a secreted enzyme. The propeptide region was predicted based on protein sequence alignment with the *Paenibacillus polymyxa* Npr protein (Takekawa et al. (1991) Journal of Bacteriology, 173

[0412] The nucleotide sequence of the PpoPro1 gene identified from NCBI database is set forth as SEQ ID NO: 26. The sequence encoding the predicted native signal peptide is shown in italics:

ATGAAAAAAGTATGGGTTTCGCTTCTTGGAGGAGCTATGTTATTAGGGTC TGTCGCGTCTGGTGCATCTGCGGAGAGTTCCGTTTCGGGGCCAGCTCAGC GGGGATGACATTGTATGGAGCTATTTAAATCGACAAAAGAAATCGTTGCT GGGTGTGGATAGCTCCAGTGTACGTGAACAATTCCGAATCGTTGATCGCA CAAGCGACAAATCCGGTGTAAGCCATTATCGACTGAAGCAGTATGTAAAC GGAATTCCCGTGTATGGAGCTGAACAAACTATTCATGTGGGCAAATCTGG AAGCTACGCAAGGTACAACTCCAAAAATCAGCGCTTCTGAAGCGGTCTAC CTTACGCCGAAGCAGCTAACAACGAAAAAACGCTTTCTGTTGATAAGGAC GAGCTGAGTCTTGATCAGGCATCTGTCCTGAAAGATAGCAAAATTGAAGC AGTGGAACCAGAAAAAAGTTCCATTGCCAAAATCGCTAATCTGCAGCCTG AAGTAGATCCTAAAGCAGAACTCTACTACTACCCTAAGGGGGGATGACCTG CTGCTGGTTTATGTAACAGAAGTTAATGTTTTAGAACCTGCCCCACTGCG TACCCGCTACATTATTGATGCCAATGACGGCAGCATCGTATTCCAGTATG ACATCATTAATGAAGCGACAGGCACAGGTAAAGGTGTGCTTGGTGATTCC AAATCGTTCACTACCGCCTTCCGGCAGTAGCTACCAGTTAAAAGATAC AACACGCGGTAACGGAATCGTGACTTACACGGCCTCCAACCGTCAAAGCA TCCCAGGTACCATTTTGACAGATGCCGATAATGTATGGAATGATCCAGCT GGTGTGGACGCCCATGCGTATGCTGCTAAAACCTATGATTACTATAAAGC CGGTCCATTACGGTAGTCGCTACAACAATGCCTTCTGGAACGGCTCCCAA ATGACTTATGGAGATGGAGATGGTAGCACATTTATCGCCTTCAGCGGGGA CCCCGATGTAGTAGGACATGAACTTACGCATGGTGTCACAGAGTATACTT GACGTTATCGGGAATGACATTCAGCGCAAAAACTGGCTTGTAGGCGATGA TATTTACACGCCAAACATTGCAGGCGATGCCCTTCGCTCAATGTCCAATC CAACCCTGTACGATCAACCAGATCACTATTCCAACCTGTACAGAGGCAGC TCCGATAACGGCGGTGTTCACACCAACAGCGGTATTATCAATAAAGCTTA CTACTTGTTAGCACAAGGTGGTAATTTCCATGGCGTAACTGTAAATGGAA ${\tt TTGGCCGTGATGCAGCGGTGCAAATTTACTACAGTGCCTTTACGAACTAC$ CTGACTTCTTCCCGACTTCTCCCAACGCACGTGCTGCTGTGATCCAAGC

-continued

CGCAAAAGATCTGTACGGGGCGAACTCAGCAGAAGCAACTGCAGCTGCCA

AGTCTTTTGACGCTGTAGGCGTAAACTAA

[0413] The amino acid sequence of the PpoPro1 precursor protein is set forth as SEQ ID NO: 27. The predicted signal sequence is shown in italics, and the predicted propeptide is shown in underlined text:

MKKVWVSLLGGAMLLGSVASGASAESSVSGPAQLTPTFHAEQWKAPTSVS GDDIVWSYLNRQKKSLLGVDSSSVREQFRIVDRTSDKSGVSHYRLKQYVN GIPVYGAEQTIHVGKSGEVTSYLGAVVNEDQQAEATQGTTPKISASEAVY TAYKEAAARIEALPTSDDTISKDAEEPSSVSKDTYAEAANNEKTLSVDKD ELSLDQASVLKDSKIEAVEPEKSSIAKIANLQPEVDPKAELYYYPKGDDL LLVYVTEVNVLEPAPLRTRYIIDANDGSIVFQYDIINEATGTGKGVLGDS KSFTTTASGSSYQLKDTTRGNGIVTYTASNRQSIPGTILTDADNVWNDPA GVDAHAYAAKTYDYYKAKFGRNSIDGRGLQLRSTVHYGSRYNNAFWNGSQ MTYGDGDGSTFIAFSGDPDVVGHELTHGVTEYTSNLEYYGESGALNEAFS DVIGNDIQRKNWLVGDDIYTPNIAGDALRSMSNPTLYDQPDHYSNLYRGS SDNGGVHTNSGIINKAYYLLAQGGNFHGVTVNGIGRDAAVQIYYSAFTNY LTSSSDFSNARAAVIQAAKDLYGANSAEATAAAKSFDAVGVN

[0414] The amino acid sequence of the predicted mature form of PpoPro1 is set forth as SEQ ID NO: 28:

ATGTGKGVLGDSKSFTTTASGSSYQLKDTTRGNGIVTYTASNRQSIPGTI LTDADNVWNDPAGVDAHAYAAKTYDYYKAKFGRNSIDGRGLQLRSTVHYG SRYNNAFWNGSQMTYGDGDGSTFIAFSGDPDVVGHELTHGVTEYTSNLEY YGESGALNEAFSDVIGNDIQRKNWLVGDDIYTPNIAGDALRSMSNPTLYD QPDHYSNLYRGSSDNGGVHTNSGIINKAYYLLAQGGNFHGVTVNGIGRDA AVQIYYSAFTNYLTSSSDFSNARAAVIQAAKDLYGANSAEATAAAKSFDA VGVN

Example 6.2

Expression of *Paenibacillus polymyxa* SC2 Metalloprotease PpoPro1

[0415] The DNA sequence of the propeptide-mature form of PpoPro1 was synthesized and inserted into the *Bacillus subtilis* expression vector p2JM103BBI (Vogtentanz, *Protein Expr Purif*, 55:40-52, 2007) by Generay (Shanghai, China), resulting in plasmid pGX138(AprE-PpoPro1) (FIG. 1). Ligation of this gene encoding the PpoPro1 protein into the digested vector resulted in the addition of three codons (Ala-Gly-Lys) between the 3' end of the *B. subtilis* AprE signal sequence and the 5' end of the predicted PpoPro1 native propeptide. The gene has an alternative start codon (GTG). The resulting plasmid shown in FIG. **6.1**, labeled pGX138 (AprE-PpoPro1 contains an AprE promoter, an AprE signal sequence used to direct target protein secretion in *B. subtilis*, and the synthetic nucleotide sequence encoding the predicted **[0416]** The pGX138(AprE-PpoPro1) plasmid was then transformed into *B. subtilis* cells (degU^{Hy}32, Δ scoC) and the transformed cells were spread on Luria Agar plates supplemented with 5 ppm Chloramphenicol and 1.2% skim milk (Cat#232100, Difco). Colonies with the largest clear halos on the plates were selected and subjected to fermentation in a 250 ml shake flask with MBD medium (a MOPS based defined medium, supplemented with additional 5 mM CaCl₂).

[0417] The broth from the shake flasks was concentrated and buffer-exchanged into the loading buffer containing 20 mM Tris-HCl (pH 8.5), 1 mM CaCl₂ and 10% propylene glycol using a VivaFlow 200 ultra filtration device (Sartorius Stedim). After filtering, this sample was applied to an 80 ml Q Sepharose High Performance column pre-equilibrated with the loading buffer above, PpoPro1 was eluted from the column with a linear salt gradient from 0 to 0.25 M NaCl in the loading buffer. The corresponding active fractions were collected and concentrated. The sample was loaded onto a 320 ml Superdex 75 gel filtration column pre-equilibrated with the loading buffer described above containing 0.15 M NaCl. The corresponding active purified protein fractions were further pooled and concentrated via 10K Amicon Ultra for further analyses.

[0418] The nucleotide sequence of the synthesized Ppo-Pro1 gene in plasmid pGX138(AprE-PpoPro1) is depicted in SEQ ID NO: 29. The sequence encoding the three residue addition (AGK) is shown in bold:

GTGAGAAGCAAAAAATTGTGGATCAGCTTGTTGTTTGCGTTAACGTTAAT CTTTACGATGGCGTTCAGCAACATGAGCGCGCAGGCTGCTGGAAAAGAAT CATCAGTGTCAGGACCGGCTCAGCTTACACCGACATTTCACGCAGAACAA TGGAAGGCTCCGACGTCAGTTTCAGGAGACGACATCGTGTGGAGCTACCT GAATAGACAGAAGAAAAGCCTGCTGGGAGTGGATAGCAGCAGCGTCAGAG AGCAGTTCAGAATCGTTGACAGAACGAGCGACAAAAGCGGAGTCAGCCAT TATAGACTGAAGCAGTACGTGAATGGCATCCCGGTTTATGGCGCAGAGCA ${\tt GACAATTCATGTTGGCAAGAGCGGAGAAGTCACAAGCTATCTGGGCGCTG}$ TGGTCAATGAAGATCAACAAGCCGAGGCTACACAGGGAACAACGCCGAAA ATTAGCGCCTCAGAGGCAGTCTACACGGCGTACAAAGAAGCGGCTGCAAG AATCGAAGCCCTGCCGACATCAGACGATACAATTTCAAAAGATGCGGAGG AGCCGAGCTCAGTTAGCAAGGATACATACGCGGAAGCCGCAAACAATGAG AAAACACTGAGCGTGGACAAGGACGAGCTGTCACTTGATCAGGCTAGCGT CCTTAAAGACAGCAAGATCGAGGCCGTTGAGCCTGAAAAGTCATCAATTG CGAAAATCGCCAATCTGCAACCTGAAGTCGACCCGAAGGCGGAACTGTAC TACTACCCGAAAGGCGATGACCTGCTTCTGGTGTACGTCACGGAAGTGAA CGTCCTGGAACCGGCACCGCTGAGAACAAGATACATCATCGACGCGAACG ACGGAAGCATCGTCTTCCAGTATGACATTATCAACGAAGCAACGGGAACG GGCAAAGGCGTTCTTGGAGACTCAAAGAGCTTCACGACAACGGCTTCAGG

-continued

AAGCAGCTACCAGCTGAAAGACACGACGAGAGGAAACGGAATCGTCACAT ATACGGCGTCAAACAGACAAAGCATCCCTGGCACAATCCTGACGGATGCT GACAACGTTTGGAATGATCCGGCTGGCGTGGATGCCCATGCTTATGCGGC AAAAACGTATGACTATTACAAGGCGAAGTTCGGCAGAAATTCAATCGATG GCAGAGGACTGCAGCTTAGAAGCACGGTGCACTACGGATCAAGATATAAC AATGCCTTCTGGAACGGCAGCCAGATGACATACGGAGACGGAGATGGAAG CACATTTATTGCATTCAGCGGCGACCCTGATGTGGTTGGCCATGAGCTGA CGCATGGCGTTACAGAATATACGAGCAATCTTGAATACTACGGCGAGTCA GGCGCTCTGAACGAGGCATTTAGCGATGTTATCGGCAATGACATCCAGAG AAAAAACTGGCTGGTGGGCGACGATATTTACACGCCTAATATCGCTGGCG ATGCCCTTAGATCAATGTCAAACCCGACGCTGTATGATCAGCCTGACCAC TACTCAAACCTGTATAGAGGCTCATCAGATAACGGAGGCGTCCATACGAA TAGCGGCATCATTAACAAGGCATATTATCTTCTGGCCCAGGGCGGCAATT TTCATGGAGTGACGGTTAATGGAATTGGAAGAGACGCAGCCGTCCAAATC TACTACAGCGCTTTCACGAACTACCTTACATCAAGCTCAGACTTTAGCAA TGCCAGAGCTGCTGTTATCCAGGCAGCGAAGGATCTTTACGGCGCCAACT CAGCCGAAGCTACGGCCGCAGCTAAATCATTTGATGCAGTGGGCGTTAAT

[0419] The amino acid sequence of the PpoPro1 precursor protein expressed from plasmid pGX138(AprE-PpoPro1) is depicted in SEQ ID NO: 30. The predicted signal sequence is shown in italics, the three residue addition (AGK) is shown in bold, and the predicted pro-peptide is shown in underlined text.

MRSKKLWISLLFALTLIFTMAFSNMSAQAAGKESSVSGPAQLTPTFHAEQ WKAPTSVSGDDIVWSYLNRQKKSLLGVDSSSVREQFRIVDRTSDKSGVSH YRLKQYVNGIPVYGAEQTIHVGKSGEVTSYLGAVVNEDQQAEATQGTTPK ISASEAVYTAYKEAAARIEALPTSDDTISKDAEEPSSVSKDTYAEAANNE KTLSVDKDELSLDQASVLKDSKIEAVEPEKSSIAKIANLQPEVDPKAELY YYPKGDDLLLVYVTEVNVLEPAPLRTRYIIDANDGSIVFQYDIINEATGT GKGVLGDSKSFTTTASGSSYQLKDTTRGNGIVTYTASNRQSIPGTILTDA DNVWNDPAGVDAHAYAAKTYDYYKAKFGRNSIDGRGLQLRSTVHYGSRYN NAFWNGSQMTYGDGDGSTFIAFSGDPDVVGHELTHGVTEYTSNLEYYGES GALNEAFSDVIGNDIQRKNWLVGDDIYTPNIAGDALRSMSNPTLYDQPDH YSNLYRGSSDNGGVHTNSGIINKAYYLLAQGGNFHGVTVNGIGRDAAVQI YYSAFTNYLTSSSDFSNARAAVIQAAKDLYGANSAEATAAAKSFDAVGVN

Example 6.3

Proteolytic Activity of Metalloprotease PpoPro1

[0420] The proteolytic activity of purified PpoPro1 was measured in 50 mM Tris (pH 7), using azo-casein (Cat#74H7165, Megazyme) as a substrate. Prior to the reaction, the enzyme was diluted with Milli-Q water (Millipore) to specific concentrations. The azo-casein was dissolved in

100 mM Tris buffer (pH 7) to a final concentration of 1.5% (w/v). To initiate the reaction, 50 μ L of the diluted enzyme (or Milli-Q H₂O alone as the blank control) was added to the non-binding 96-well microtiter Plate (96-MTP) (Corning Life Sciences, #3641) placed on ice, followed by the addition of 50 µL of 1.5% azo-casein. After sealing the 96-MTP, the reaction was carried out in a Thermomixer (Eppendorf) at 40° C. and 650 rpm for 10 min. The reaction was terminated by adding 100 µL of 5% Trichloroacetic Acid (TCA). Following equilibration (5 min at the room temperature) and subsequent centrifugation (2000 g for 10 min at 4° C.), 120 µL supernatant was transferred to a new 96-MTP, and absorbance of the supernatant was measured at 440 nm (A₄₄₀) using a Spectra-Max 190. Net A_{440} was calculated by subtracting the A_{440} of the blank control from that of enzyme, and then plotted against different protein concentrations (from 1.25 ppm to 40 ppm). Each value was the mean of duplicate assays, and the value varies no more than 5%. The proteolytic activity is shown as Net A_{440} . The proteolytic assay with azo-casein as the substrate (FIG. 6.2) indicates PpoPro1 is an active protease.

Example 4

pH Profile of Metalloprotease PpoPro1

[0421] With azo-casein as the substrate, the pH profile of PpoPro1 was studied in 12.5 mM acetate/Bis-Tris/HEPES/ CHES buffer with different pH values (ranging from pH 4 to 11). To initiate the assay, 50 μ L of 25 mM acetate/Bis-Tris/ HEPES/CHES buffer with a specific pH was first mixed with 2 μ L diluted enzyme (250 ppm in Milli-Q H₂O) in a 96-MTP placed on ice, followed by the addition of 48 μ L of 1.5% (w/v) azo-casein prepared in H₂O. The reaction was performed and analyzed as described in Example 6.3. Enzyme activity at each pH was reported as relative activity where the activity at the optimal pH was set to be 100%. The pH values tested were 4, 5, 6, 7, 8, 9, 10 and 11. Each value was the mean of triplicate assays. As shown in FIG. **6.3**, the optimal pH of PpoPro1 is about 7, with greater than 70% of maximal activity retained between 5.5 and 8.5.

Example 6.5

Temperature Profile of Metalloprotease PpoPro1

[0422] The temperature profile of PpoPro1 was analyzed in 50 mM Tris buffer (pH 7) using the azo-casein assay. The enzyme sample and azo-casein substrate were prepared as in Example 6.3. Prior to the reaction, 50 µL of 1.5% azo-casein and 45 µl Milli-Q H₂O were mixed in a 200 µL PCR tube, which was then subsequently incubated in a Peltier Thermal Cycler (BioRad) at desired temperatures (i.e. 20~90° C.) for 5 min. After the incubation, 5 µL of diluted PpoPro1 (100 ppm) or H₂O (the blank control) was added to the substrate mixture, and the reaction was carried out in the Peltier Thermal Cycle for 10 min at different temperatures. To terminate the reaction, each assay mixture was transferred to a 96-MTP containing 100 µL of 5% TCA per well. Subsequent centrifugation and absorbance measurement were performed as described in Example 6.3. The activity was reported as relative activity where the activity at the optimal temperature was set to be 100%. The tested temperatures were 20, 30, 40, 50, 60, 70, 80, and 90° C. Each value was the mean of duplicate assays (the value varies no more than 5%). The data in FIG.

6.4 suggests that PpoPro1 showed an optimal temperature at 50° C., and retained greater than 70% of its maximum activity between 40 and 55° C.

Example 6.6

Cleaning Performance of Metalloprotease PpoPro1

[0423] The cleaning performance of PpoPro1 was tested using PA-S-38 (egg yolk, with pigment, aged by heating) microswatches (CFT-Vlaardingen, The Netherlands) at pH 6 or 8 using a model automatic dishwashing (ADW) detergent (AT detergent). Prior to the reaction, purified PpoPro1 was diluted with a dilution solution containing 10 mM NaCl, 0.1 mM CaCl₂, 0.005% TWEEN® 80 and 10% propylene glycol to the desired concentrations. The reactions were performed in AT detergent (composition shown in Table 6.1) with 100 ppm water hardness (Ca²⁺:Mg²⁺=3:1), in the presence of a bleach component ((Peracid N,N-phthaloylaminoperoxycaproic acid-PAP). To initiate the reaction, 180 uL of AT detergent buffered at pH 6 or 8 was added to a 96-MTP placed with PA-S-38 microswatches, followed by the addition of 20 µL of diluted enzymes (or the dilution solution as the blank control). The 96-MTP was sealed and incubated in an incubator/ shaker for 30 min at 50° C. and 1150 rpm. After incubation, 100 µL of wash liquid from each well was transferred to a new 96-MTP, and its absorbance was measured at 405 nm (referred here as the "Initial performance") using a spectrophotometer. The remaining wash liquid in the 96-MTP was discarded and the microswatches were rinsed once with 200 µL water. Following the addition of 180 µL of 0.1 M CAPS buffer (pH 10), the second incubation was carried out in the incubator/shaker at 50° C. and 1150 rpm for 10 min. One hundred microliter of the resulting wash liquid was transferred to a new 96-MTP, and its absorbance measured at 405 nm (referred here as "Wash-off"). The sum of two absorbance measurements ("Initial performance" plus "Wash-off") gives the "Total performance", which measures the protease activity on the model stain; and Net $A_{\rm 405}$ was subsequently calculated by subtracting the $A_{\rm 405}$ of the "Total performance" of the blank control from that of the enzyme. Dose response in cleaning the PA-S-38 microswatches at pH 6 and pH 8 for PpoPro1 in AT dish detergent, in the presence of bleach, is shown in FIGS. 6.5A and 6.5B.

TABLE 6.1

Ingredient	Concentration (mg/ml)
MGDA (methylglycinediacetic acid)	0.143
Sodium citrate	1.86
Citric acid*	varies
PAP (peracid N,N-phthaloylaminoperoxycaproic acid)	0.057
Plurafac ® LF 18B (a non-ionic surfactant)	0.029
Bismuthcitrate	0.006
Bayhibit ® S (Phosphonobutantricarboxylic acid sodium salt)	0.006
Acusol [™] 587 (a calcium polyphosphate inhibitor)	0.029
PEG 6000	0.043
PEG 1500	0.1

*The pH of the AT formula detergent is adjusted to the desired value (pH 6 or 8) by the addition of 0.9M citric acid.

Example 6.7

Comparison of PpoPro1 to Other Metalloproteases

[0424] Identification of Homologous Proteases

[0425] Homologs were identified by a BLAST search (Altschul et al., Nucleic Acids Res, 25:3389-402, 1997) against the NCBI non-redundant protein database and the Genome Quest Patent database with search parameters set to default values. The predicted mature protein amino acid sequence for PpoPro1 (SEQ ID NO: 28) was used as the query sequence. Percent identity (PID) for both search sets is defined as the number of identical residues divided by the number of aligned residues in the pairwise alignment. Tables 6.2A and 6.2B provide a list of sequences with the percent identity to PpoPro1. The length in Table 6.2 refers to the entire sequence length of the homologous proteases.

TABLE 6.2A

Accession #	PID to PpoPro1	Organism	Length
	1	6	0
P00800	56	Bacillus thermoproteolyticus	548
ZP_08640523.1	57	Brevibacillus laterosporus LMG 15441	564
AAA22623.1	57	Bacillus caldolyticus	544
ZP_08093424.1	59	Planococcus donghaensis MPA1U2	553
ZP_10738945.1	60	Brevibacillus sp. CF112	528
CAA43589.1	62	Brevibacillus brevis	527
ZP_02326503.1	62	Paenibacillus larvae subsp. larvae BRL-230010	520
YP_005495105.1	63	Bacillus megaterium WSH-002	562
YP_001373863.1	64	Bacillus cytotoxicus NVH 391-98	565
ZP_04310163.1	64	Bacillus cereus BGSC 6E1	581
BAA06144.1	64	Lactobacillus sp.]	566
ZP_08511445.1	65	Paenibacillus sp. HGF7	525
ZP_04216147.1	65	Bacillus cereus Rock3-44	566
ZP_09071078.1	68	Paenibacillus larvae subsp. larvae B-3650	
ZP_09077634.1	69	Paenibacillus elgii B69	524
YP_005073224.1	79	Paenibacillus terrae HPL-003	595
ZP_10241029.1	80	Paenibacillus peoriae KCTC 3763	599
YP 005073223.1	93	Paenibacillus terrae HPL-003	591
ZP_10241030.1	95	Paenibacillus peoriae KCTC 3763	593
ZP_09775364.1	95	Paenibacillus sp. Aloe-11	593
YP_003872179.1	97	Paenibacillus polymyxa E681	592
YP_003948511.1	100	Paenibacillus polymyxa SC2	592

TABLE 6.2B

1	1	cent identity to PpoPro1 pro nome Quest Patent database	
Patent #	PID to PpoPro1	Organism	Length
US20120107907-0187	97.34	Bacillus polymyxa	302
US5962264-0004	65.48	empty	566
WO2012110563-0005	65.16	Bacillus cereus	320
JP1994070791-0002	64.52	empty	317
WO2012110562-0005	64.19	Bacillus cereus	320
WO2012110563-0004	63.34	Bacillus megaterium	320
JP2002272453-0002	61.98	Bacillus megaterium	562

empty

Bacillus brevis

532

304

61.49

62.58

WO2004011619-0047

EP2390321-0186

TABLE 6.2B-continued

identified from the Genome Quest Patent database				
Patent #	PID to PpoPro1	Organism	Length	
US6518054-0002	59.22	Bacillus sp.	316	
US6518054-0001	58.52	Bacillus sp.	319	
US20120107907-0176	58.52	Bacillus stearothermophilis	548	
JP2005229807-0019	93.05	Paenibacillus polymyxa	566	
WO2012110562-0003	58.2	Geobacillus stearothermophilus	319	
WO2004011619-0044	59.27	empty	507	
EP2390321-0185	66.13	Bacillus cereus	317	
JP1995184649-0001	65.71	Lactobacillus sp.	566	
EP2178896-0184	65.38	Bacillus anthracis	566	

[0426] Alignment of Homologous Protease Sequences

[0427] The amino acid sequence of predicted mature Ppo-Pro1 (SEQ ID NO: 28) was aligned with thermolysin (P00800, *Bacillus thermoproteolyticus*) and protease from *Paenibacillus polymyxa* SC2 (YP_003948511.1) using CLUSTALW software (Thompson et al., Nucleic Acids Research, 22:4673-4680, 1994) with the default parameters. FIG. **6.6** shows the alignment of PpoPro1 with these protease sequences.

[0428] Phylogenetic Tree

[0429] A phylogenetic tree for precursor PpoPro1 (SEQ ID NO: 27) was built using sequences of representative homologs from Tables 6.2A and the Neighbor Joining method (NJ) (Saitou, N.; and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing Guide Trees. Mol Biol. Evol. 4, 406-425). The NJ method works on a matrix of distances between all pairs of sequences to be analyzed. These distances are related to the degree of divergence between the sequences. The phylodendron-phylogenetic tree printer software (http://iubio.bio.indiana.edu/treeapp/treeprint-form.html) was used to display the phylogenetic tree shown in FIG. **6.7**.

Example 7.1

Cloning of *Paenibacillus* Hunanensis Metalloprotease PhuPro1

[0430] A strain (DSM22170) of Paenibacillus hunanensis was selected as a potential source of enzymes which may be useful in various industrial applications. Genomic DNA for sequencing was obtained by first growing the strain on Heart Infusion agar plates (Difco) at 37° C. for 24 hr. Cell material was scraped from the plates and used to prepare genomic DNA with the ZF Fungal/Bacterial DNA miniprep kit from Zymo (Cat No. D6005). The genomic DNA was used for genome sequencing. The entire genome of the Paenibacillus hunanensis strain was sequenced by BaseClear (Leiden, The Netherlands) using the Illumina's next generation sequencing technology. After assembly of the data, contigs were annotated by BioXpr (Namur, Belgium). One of the genes identified after annotation in Paenibacillus hunanensis encodes a metalloprotease and the sequence of this gene, called Phu-Pro1, is provided in SEQ ID NO: 31. This gene has an alternative start codon (TTG). The corresponding protein encoded by the PhuPro1 gene is shown in SEQ ID NO: 32. At the N-terminus, the protein has a signal peptide with a length of 23 amino acids as predicted by SignalP version 4.0 (Nordahl Petersen et al. (2011) Nature Methods, 8:785-786). The presence of a signal sequence suggests that PhuPro1 is a secreted enzyme. The propeptide region was predicted based on protein sequence alignment with the *Paenibacillus polymyxa* Npr protein (Takekawa et al. (1991) Journal of Bacteriology, 173 (21): 6820-6825). The predicted mature region of Phu-Pro1 protein is shown in SEQ ID NO: 33.

[0431] The nucleotide sequence of the PhuPro1 gene isolated from *Paenibacillus hunanensis* is set forth as SEQ ID NO: 31. The sequence encoding the predicted native signal peptide is shown in italics:

TTGAAAAAAACAGTTGGTCTTTTACTTGCAGGTAGCTTGCTCGTTGGTGCTACAACGTCCGCTTTCGCAGCAGAAGCAAATGATCTGGCACCACTCGGTG ATTACACGCCAAAATTGATTACGCAAGCAACAGGCATCACTGGCGCTAGT GGCGATGCTAAAGTATGGAAGTTCCTGGAGAAGCAAAAACGTACCATCGT AACCGATGATGCAGCTTCTGCTGATGTGAAGGAATTGTTTGAGATCACAA AACGTCAATCCGATTCTCAAACCGGTACAGAGCACTATCGCCTGAACCAA ACCTTTAAAGGCATCCCAGTCTATGGCGCAGAGCAAACACTGCACTTTGA CAAATCCGGCAATGTATCTCTGTACATGGGTCAGGTTGTTGAGGATGTGT CCGCTAAACTGGAAGCTTCCGATTCCAAAAAAGGCGTAACTGAGGATGTA TACGCTTCGGATACGAAAAATGATCTGGTAACACCAGAAATCAGCGCTTC TCAAGCCATCTCGATTGCTGAAAAGGATGCAGCTTCCAAAATCGGCTCCC TCGGCGAAGCACAAAAAACGCCAGAAGCGAAGCTGTATATCTACGCTCCT GAGGATCAAGCAGCACGTCTGGCTTATGTGACAGAAGTAAACGTACTGGA GCCATCTCCGCTGCGTACTCGCTATTTTGTAGATGCAAAAACAGGTTCGA TCCTGTTCCAATATGATCTGATTGAGCATGCAACAGGTACAGGTAAAGGG GTACTGGGTGATACCAAGTCCTTCACTGTAGGTACTTCCGGTTCTTCCTA TGTGATGACTGATAGCACGCGTGGAAAAGGTATCCAAACCTACACGGCGT CTAACCGCACATCACTGCCAGGTAGCACTGTAACGAGCAGCAGCAGCAGCACA TTTAACGATCCAGCATCTGTCGATGCCCATGCGTATGCACAAAAAGTATA TGATTTCTACAAATCCAACTTTAACCGCAACAGCATCGACGGTAATGGTC ${\tt TGGCTATCCGCTCCACTACGCACTATTCCACACGTTATAACAATGCGTTC$ TGGAATGGTTCCCAAATGGTATACGGTGATGGCGATGGTTCGCAATTCAT CGCATTCTCCGGCGACCTTGACGTAGTAGGTCACGAGCTGACACACGGTG TAACCGAGTACACAGCGAACCTGGAATACTATGGTCAATCCGGTGCACTG AACGAATCCATTTCGGATATCTTTGGTAACACAATCGAAGGTAAAAACTG GATGGTAGGCGATGCGATCTACACACCAGGCGTATCCGGCGATGCTCTTC GCTACATGGATGATCCAACAAAAGGTGGACAACCAGCGCGTATGGCAGAT TACAACAACAACAAGCGCTGATAATGGCGGTGTACACAAAACAGTGGTAT CCCGAATAAAGCATACTACTTGCTGGCACAGGGTGGCACATTTGGCGGTG ${\tt TAAATGTAACAGGTATCGGTCGCTCGCAAGCGATCCAGATCGTTTACCGT$ GCACTAACATACTACCTGACATCCACATCTAACTTCTCGAACTACCGTTC

-continued

TGCAATGGTGCAAGCATCTACAGACCTGTACGGTGCAAACTCTACACAAA

CAACAGCGGTGAAAAACTCGCTGAGCGCAGTAGGCATTAAC

[0432] The amino acid sequence of the PhuPro1 precursor protein is set forth as SEQ ID NO: 32. The predicted signal sequence is shown in italics, and the predicted pro-peptide is shown in underlined text:

MKKTVGLLLAGSLLVGATTSAFAAEANDLAPLGDYTPKLITQATGITGAS GDAKVWKFLEKQKRTIVTDDAASADVKELFEITKRQSDSQTGTEHYRLNQ TFKGIPVYGAEQTLHFDKSGNVSLYMGQVVEDVSAKLEASDSKKGVTEDV YASDTKNDLVTPEISASQAISIAEKDAASKIGSLGEAQKTPEAKLYIYAP EDQAARLAYVTEVNVLEPSPLRTRYFVDAKTGSILFQYDLIEHATGTGKG VLGDTKSFTVGTSGSSYVMTDSTRGKGIQTYTASNRTSLPGSTVTSSSST FNDPASVDAHAYAQKVYDFYKSNFNRNSIDGNGLAIRSTTHYSTRYNNAF WNGSQMVYGDGDGSQFIAFSGDLDVVGHELTHGVTEYTANLEYYGQSGAL NESISDIFGNTIEGKNWMVGDAIYTPGVSGDALRYMDDPTKGGQPARMAD YNNTSADNGGVHTNSGIPNKAYYLLAQGGTFGGVNVTGIGRSQAIQIVYR ALTYYLTSTSNFSNYRSAMVQASTDLYGANSTQTTAVKNSLSAVGIN [0433] The amino acid sequence of the predicted mature form of PhuPro1 is set forth as SEQ ID NO: 33:

ATGTGKGVLGDTKSFTVGTSGSSYVMTDSTRGKGIQTYTASNRTSLPGST VTSSSSTFNDPASVDAHAYAQKVYDFYKSNFNRNSIDGNGLAIRSTTHYS TRYNNAFWNGSQMVYGDGDGSQFIAFSGDLDVVGHELTHGVTEYTANLEY YGQSGALNESISDIFGNTIEGKNWMVGDAIYTPGVSGDALRYMDDPTKGG QPARMADYNNTSADNGGVHTNSGIPNKAYYLLAQGGTFGGVNVTGIGRSQ AIQIVYRALTYYLTSTSNFSNYRSAMVQASTDLYGANSTQTTAVKNSLSA VGIN

Example 7.2

Expression of *Paenibacillus hunanensis* Metalloprotease PhuPro1

[0434] The DNA sequence of the propeptide-mature form of PhuPro1 was synthesized and inserted into the Bacillus subtilis expression vector p2JM103BBI (Vogtentanz, Protein Expr Purif, 55:40-52, 2007) by Generay (Shanghai, China), resulting in plasmid pGX149(AprE-PhuPro1) (FIG. 7.1). Ligation of this gene encoding the PhuPro1 protein into the digested vector resulted in the addition of three codons (Ala-Gly-Lys) between the 3' end of the *B. subtilis* AprE signal sequence and the 5' end of the predicted PhuPro1 native propeptide. The gene has an alternative start codon (GTG). The resulting plasmid shown in FIG. 1, labeled pGX149 (AprE-PhuPro1) contains an AprE promoter, an AprE signal sequence used to direct target protein secretion in B. subtilis, and the synthetic nucleotide sequence encoding the predicted propeptide and mature regions of PhuPro1 (SEQ ID NO: 34). The translation product of the synthetic AprE-PhuPro1 gene is shown in SEQ ID NO: 35.

[0435] The pGX149(AprE-PhuPro1) plasmid was then transformed into *B. subtilis* cells (degU^{Hy}32, Δ scoC) and the transformed cells were spread on Luria Agar plates supplemented with 5 ppm Chloramphenicol and 1.2% skim milk (Cat#232100, Difco). Colonies with the largest clear halos on the plates were selected and subjected to fermentation in a 250 ml shake flask with MBD medium (a MOPS based defined medium, supplemented with additional 5 mM CaCl₂).

[0436] The broth from the shake flasks was concentrated and buffer-exchanged into the loading buffer containing 20 mM Tris-HCl (pH 8.5), 1 mM CaCl₂ and 10% propylene glycol using a VivaFlow 200 ultra filtration device (Sartorius Stedim). After filtering, this sample was applied to a 80 ml Q Sepharose High Performance column pre-equilibrated with the loading buffer above; and the active flow-through fractions were collected and concentrated via 10K Amicon Ultra for further analyses.

[0437] The nucleotide sequence of the synthesized Phu-Pro1 gene in plasmid pGX149(AprE-PhuPro1) is depicted in SEQ ID NO: 34. The sequence encoding the three residue addition (AGK) is shown in bold:

GTGAGAAGCAAAAAATTGTGGATCAGCTTGTTGTTTGCGTTAACGTTAAT CTTTACGATGGCGTTCAGCAACATGAGCGCGCAGGCT GCTGGAAAA GCAGAAGCTAATGATCTTGCCCCGCTTGGCGATTATACACCGAAGCTTATTACA CAGGCAACGGGAATTACAGGCGCATCAGGCGATGCGAAGGTGTGGAAGTT CCTGGAGAAGCAGAAGAAGAACGATTGTCACGGACGACGCCGCAAGCGCGG ATGTCAAGGAGCTGTTCGAGATCACGAAGAGACAGAGCGATAGCCAGACG GGAACGGAGCATTACAGACTGAACCAGACGTTCAAGGGCATTCCGGTCTA CGGAGCTGAACAAACGCTGCATTTTGATAAAAGCGGCAACGTCTCACTGT ACATGGGCCAAGTCGTTGAGGACGTTAGCGCCAAACTTGAGGCTAGCGAC AGCAAGAAAGGCGTCACAGAAGATGTCTACGCGTCAGACACGAAAAACGA CCTGGTTACACCGGAAATCTCAGCTTCACAGGCCATCTCAATTGCAGAGA AAGACGCAGCGTCAAAAATCGGCTCACTGGGCGAGGCTCAGAAAACGCCG GAGGCGAAACTTTACATCTACGCCCCTGAGGACCAGGCTGCGAGACTGGC TTACGTGACAGAAGTTAATGTGCTGGAGCCGTCACCGCTTAGAACGAGAT ATTTCGTGGACGCAAAGACGGGCAGCATTCTGTTTCAGTACGATCTTATC GAACACGCGACAGGCACAGGAAAGGGAGTTCTGGGAGACACAAAAAGCTT GCAAGGGCATTCAAACGTATACAGCGAGCAACAGAACAAGCCTGCCGGGA AGCACAGTCACGAGCTCATCATCAACGTTTAATGACCCCGGCCTCAGTGGA TGCTCACGCATACGCGCAGAAAGTGTACGACTTCTACAAAAGCAACTTCA ATAGAAACAGCATCGACGGAAACGGCCTTGCGATCAGAAGCACGACGCAC TACAGCACAAGATACAACAACGCCTTCTGGAACGGCAGCCAAATGGTTTA CGGCGATGGCGACGGATCACAGTTTATCGCATTTAGCGGAGACCTGGACG TCGTTGGCCATGAGCTGACACATGGCGTTACGGAGTACACAGCAAACCTG GAATACTATGGCCAGTCAGGCGCCCTTAACGAGAGCATCAGCGACATTTT

-continued

TGGCAATACGATCGAAGGAAAGAACTGGATGGTCGGCGACGCAATCTACA CACCGGGCGTTTCAGGCGATGCACTGAGATATATGGACGACCCGACAAAG GGCGGACAGCCGGCCAGAATGGCGGATTACAATAATACGTCAGCAGAATAA CGGCGGCGTGCATACAAATAGCGGCATCCCTAACAAAGCATATTACCTGC TTGCGCAAGGAGGAACATTTGGCGGCGTGAATGTTACGGGCATTGGCAGA TCACAAGCGATTCAGATCGTTTACAGAGCGCTGACGTACTACCTTACGAG CACGAGCAATTTTAGCAACTACAGAAGCGCCAATGGTGCAGGCAAGCACGG ATCTGTATGGCGCAATTCAACACAAACGACGGCGGTCAAGAATAGCCTT TCAGCAGTGGGCATTAACTAA

[0438] The amino acid sequence of the PhuPro1 precursor protein expressed from plasmid pGX149(AprE-PhuPro1) is depicted in SEQ ID NO: 35. The predicted signal sequence is shown in italics, the three residue addition (AGK) is shown in bold, and the predicted pro-peptide is shown in underlined text.

MRSKKLWISLLFALTLIFTMAFSNMSAQAAGKAEANDLAPLGDYTPKLIT QATGITGASGDAKVWKFLEKQKRTIVTDDAASADVKELFEITKRQSDSQT GTEHYRLNQTFKGIPVYGAEQTLHFDKSGNVSLYMGQVVEDVSAKLEASD SKKGVTEDVYASDTKNDLVTPEISASQAISIAEKDAASKIGSLGEAQKTP EAKLYIYAPEDQAARLAYVTEVNVLEPSPLRTRYFVDAKTGSILFQYDLI EHATGTGKGVLGDTKSFTVGTSGSSYVMTDSTRGKGIQTYTASNRTSLPG STVTSSSSTFNDPASVDAHAYAQKVYDFYKSNFNRNSIDGNGLAIRSTTH YSTRYNNAFWNGSQMVYGDGDGSQFIAFSGDLDVVGHELTHGVTEYTANL EYYGQSGALNESISDIFGNTIEGKNWMVGDAIYTPGVSGDALRYMDDPTK GGQPARMADYNNTSADNGGVHTNSGIPNKAYYLLAQGGTFGGVNVTGIGR SQAIQIVYRALTYYLTSTSNFSNYRSAMVQASTDLYGANSTQTTAVKNSL SAVGIN

Example 7.3

Proteolytic Activity of Metalloprotease PhuPro1

[0439] The proteolytic activity of purified metalloprotease PhuPro1 was measured in 50 mM Tris (pH 7), using azocasein (Cat#74H7165, Megazyme) as a substrate. Prior to the reaction, the enzyme was diluted with Milli-Q water (Millipore) to specific concentrations. The azo-casein was dissolved in 100 mM Tris buffer (pH 7) to a final concentration of 1.5% (w/v). To initiate the reaction, 50 µl of the diluted enzyme (or Milli-Q H₂O alone as the blank control) was added to the non-binding 96-well Microtiter Plate (96-MTP) (Corning Life Sciences, #3641) placed on ice, followed by the addition of 50 µl of 1.5% azo-casein. After sealing the 96-MTP, the reaction was carried out in a Thermomixer (Eppendorf) at $40^{\circ}\,\mathrm{C}.$ and 650 rpm for 10 min. The reaction was terminated by adding 100 µl of 5% Trichloroacetic Acid (TCA). Following equilibration (5 min at the room temperature) and subsequent centrifugation (2000 g for 10 min at 4° C.), 120 µl supernatant was transferred to a new 96-MTP, and absorbance of the supernatant was measured at 440 nm (A_{440}) using a SpectraMax 190. Net A_{440} was calculated by subtracting the A_{440} of the blank control from that of enzyme, and then plotted against different protein concentrations (from 1.25 ppm to 40 ppm). Each value was the mean of triplicate assays. The proteolytic activity is shown as Net A_{440} . The proteolytic assay with azo-casein as the substrate (shown in FIG. 7.2) indicates that PhuPro1 is an active protease.

Example 7.4

pH Profile of Metalloprotease PhuPro1

[0440] With azo-casein as the substrate, the pH profile of metalloprotease PhuPro1 was studied in 12.5 mM acetate/ Bis-Tris/HEPES/CHES buffer with different pH values (ranging from pH 4 to 11). To initiate the assay, 50 μ l of 25 mM acetate/Bis-Tris/HEPES/CHES buffer with a specific pH was first mixed with 2 μ l Milli-Q H₂O diluted enzyme (125 ppm) in a 96-MTP placed on ice, followed by the addition of 48 μ l of 1.5% (w/v) azo-casein prepared in H₂O. The reaction was performed and analyzed as described in Example 3. Enzyme activity at each pH was reported as the relative activity, where the activity at the optimal pH was set to be 100%. The pH values tested were 4, 5, 6, 7, 8, 9, 10 and 11. Each value was the mean of triplicate assays. As shown in FIG. **7.3**, the optimal pH of PhuPro1 is about 6, with greater than 70% of maximal activity retained between 5 and 8.

Example 7.5

Temperature Profile of Metalloprotease PhuPro1

[0441] The temperature profile of metalloprotease PhuPro1 was analyzed in 50 mM Tris buffer (pH 7) using the azocasein assays. The enzyme sample and azo-casein substrate were prepared as in Example 7.3. Prior to the reaction, 50 μl of 1.5% azo-casein and 45 µl Milli-Q H₂O were mixed in a 200 µl PCR tube, which was then subsequently incubated in a Peltier Thermal Cycler (BioRad) at desired temperatures (i.e. 20~90° C.) for 5 min. After the incubation, 5 μ l of diluted enzyme (50 ppm) or H₂O (the blank control) was added to the substrate mixture, and the reaction was carried out in the Peltier Thermal Cycle for 10 min at different temperatures. To terminate the reaction, each assay mixture was transferred to a 96-MTP containing 100 µl of 5% TCA per well. Subsequent centrifugation and absorbance measurement were performed as described in Example 7.3. The activity was reported as the relative activity, where the activity at the optimal temperature was set to be 100%. The tested temperatures are 20, 30, 40, 50, 60, 70, 80, and 90° C. Each value was the mean of duplicate assays (the value varies no more than 5%). The data in FIG. 7.4 suggests that PhuPro1 showed an optimal temperature at 60° C., and retained greater than 70% of its maximum activity between 45 and 65° C.

Example 7.6

Cleaning Performance of Metalloprotease PhuPro1

[0442] The cleaning performance of PhuPro1 was tested using PA-S-38 (egg yolk, with pigment, aged by heating) microswatches (CFT-Vlaardingen, The Netherlands) at pH 6 and 8 using a model automatic dishwashing (ADW) detergent. Prior to the reaction, purified protease samples were diluted with a dilution solution containing 10 mM NaCl, 0.1

mM CaCl₂, 0.005% TWEEN® 80 and 10% propylene glycol to the desired concentrations. The reactions were performed in AT detergent with 100 ppm water hardness ($Ca^{2+}:Mg^{2+}=3:$ 1) (detergent composition shown in Table 7.1). To initiate the reaction, 180 µl of the AT detergent buffered at pH 6 or pH 8 was added to a 96-MTP placed with PA-S-38 microswatches, followed by the addition of 20 µl of diluted enzymes (or the dilution solution as the blank control). The 96-MTP was sealed and incubated in an incubator/shaker for 30 min at 50° C. and 1150 rpm. After incubation, 100 µl of wash liquid from each well was transferred to a new 96-MTP, and its absorbance was measured at 405 nm (referred here as the "Initial performance") using a spectrophotometer. The remaining wash liquid in the 96-MTP was discarded and the microswatches were rinsed once with 200 µl water. Following the addition of 180 µl of 0.1 M CAPS buffer (pH 10), the second incubation was carried out in the incubator/shaker at 50° C. and 1150 rpm for 10 min. One hundred microliters of the resulting wash liquid was transferred to a new 96-MTP, and its absorbance measured at 405 nm (referred here as the "Wash-off"). The sum of two absorbance measurements ("Initial performance" plus "Wash-off") gives the "Total performance", which measures the protease activity on the model stain; and Net $\rm A_{405}$ was subsequently calculated by subtracting the $\rm A_{405}$ of the "Total performance" of the blank control from that of the enzyme. Dose response in cleaning the PA-S-38 microswatches at pH 6 and pH 8 in AT detergent for PhuPro1 is shown in FIGS. 7.5A and 7.5B.

TABLE 7.1

Composition of AT detergent	Concentration (mg/ml)
MGDA (methylglycinediacetic acid)	0.143
Sodium citrate	1.86
Citric acid*	varies
Plurafac ® LF 18B (a non-ionic surfactant)	0.029
Bismuthcitrate	0.006
Bayhibit ® S (Phosphonobutantricarboxylic acid sodium salt)	0.006
Acusol [™] 587 (a calcium polyphosphate inhibitor)	0.029
PEG 6000	0.043
PEG 1500	0.1

*The pH of the AT formula detergent is adjusted to the desired value (pH 6 or 8) by the addition of 0.9M citric acid.

Example 7.7

Comparison of PhuPro1 to Other Proteases

[0443] A. Identification of Homologous Proteases

[0444] Homologs were identified by a BLAST search (Altschul et al., Nucleic Acids Res, 25:3389-402, 1997) against the NCBI non-redundant protein database and the Genome Quest Patent database with search parameters set to default values. The predicted mature protein amino acid sequence for PhuPro1 (SEQ ID NO: 33) was used as the query sequence. Percent identity (PID) for both search sets is defined as the number of identical residues divided by the number of aligned residues in the pairwise alignment. Tables 7.2A and 7.2B provide a list of sequences with the percent identity to PhuPro1. The length in Table 7.2 refers to the entire sequence length of the homologous proteases.

TABLE 7.2A

List of sequences with percent identity to PhuPro1 protein identified from the NCBI non-redundant protein database					
Accession #	PID to PhuPro1	Organism	Length		
P00800	55	Bacillus thermoproteolyticus	548		
AAB02774.1	55	Geobacillus stearothermophilus	552		
EJS73098.1	56	Bacillus cereus BAG2X1-3	566		
BAD60997.1	56	Bacillus megaterium	562		
ZP_04216147.1	57	Bacillus cereus Rock3-44	566		
YP_893436.1	56	<i>Bacillus thuringiensis</i> str. Al Hakam	566		
ZP_08640523.1	58	Brevibacillus laterosporus	564		
ZP_09069194.1	59	Paenibacillus larvae subsp. larvae B-3650	502		
YP_002770810.1	60	Brevibacillus brevis	528		
ZP_08511445.1	61	Paenibacillus sp. HGF7	525		
P43263	61	Brevibacillus brevis	527		
ZP_09775365.1	62	Paenibacillus sp. Aloe-11	580		
ZP_09077634.1	66	Paenibacillus elgii B69	524		
P29148	68	NPRE_PAEPO	590		
ZP_09775364.1	69	Paenibacillus sp. Aloe-11	593		
ZP_10241030.1	69	Paenibacillus peoriae KCTC 3763	593		
YP_005073223.1	69	Paenibacillus terrae HPL-003	591		

TABLE 7.2B

List of sequences with percent identity to PhuPro1 protein identified from the Genome Quest Patent database

Patent ID #	PID to PhuPro1	Organism	Length
WO2012110562-0003	56.23	Geobacillus stearothermophilus	319
US6518054-0001	56.55	Bacillus sp.	319
JP2002272453-0002	56.69	Bacillus megaterium	562
US20090123467-0184	56.73	Bacillus anthracis	566
US6103512-0003	56.87		319
EP0867512-0002	56.96		316
WO2012110562-0005	57.1	Bacillus cereus	320
WO2012110563-0005	58.06	Bacillus cereus	320
US20120107907-0187	68.44	Bacillus polymyxa	302

[0445] B. Alignment of Homologous Protease Sequences

[0446] The amino acid sequence of predicted mature Phu-Pro1 (SEQ ID NO: 33) protein was aligned with Proteinase T (P00800, *Bacillus thermoproteolyticus*), and protease from *Paenibacillus terrae* HPL-003 (YP_005073223.1) using CLUSTALW software (Thompson et al., Nucleic Acids Research, 22:4673-4680, 1994) with the default parameters. FIG. **7.6** shows the alignment of PhuPro1 with these protease sequences.

[0447] C. Phylogenetic Tree

[0448] A phylogenetic tree for full length sequence of Phu-Pro1 (SEQ ID NO: 2) was built using sequences of representative homologs from Table 2A and the Neighbor Joining method (NJ) (Saitou, N.; and Nei, M. (1987). The neighborjoining method: a new method for reconstructing Guide Trees. Mol Biol. Evol. 4, 406-425). The NJ method works on a matrix of distances between all pairs of sequences to be analyzed. These distances are related to the degree of divergence between the sequences. The phylodendron-phylogenetic tree printer software (http://iubio.bio.indiana.edu/treeapp/treeprint-form.html) was used to display the phylogenetic tree shown in FIG. **7.7**.

Example 7.8

Terg-o-Tometer Performance Evaluation of PhuPro1

[0449] The wash performance of PhuPro1 was tested in a laundry detergent application using a Terg-o-Tometer (Instrument Marketing Services, Inc, Fairfield, N.J.). The performance evaluation was conducted at 32° C. and 16° C. The soil load consisted of two of each of the following stain swatches: EMPA116 Blood, Milk, Ink on cotton (Test materials AG, St. Gallen, Switzerland), EMPA117 Blood, Milk, Ink on polycotton (Test materials AG, St. Gallen, Switzerland), EMPA112 Cocoa on cotton (Test materials AG, St. Gallen, Switzerland), and CFT C-10 Pigment, Oil, and Milk content on cotton (Center for Testmaterials BV, Vlaardingen, Netherlands), plus extra white interlock knit fabric to bring the total fabric load to 40 g per beaker of the Terg-o-Tometer, which was filled with 1 L of deionized water. The water hardness was adjusted to 6 grains per gallon, and the pH in the beaker was buffered with 5 mM HEPES, pH 8.2. Heat inactivated Tide Regular HDL (Proctor & Gamble), a commercial liquid detergent purchased in a local US supermarket, was used at 0.8 g/L. The detergent was inactivated before use by treatment at 92° C. in a water bath for 2-3 hours followed by cooling to room temperature. Heat inactivation of commercial detergents serves to destroy the activity of enzymatic components while retaining the properties of the non-enzymatic components. Enzyme activity in the heat inactivated detergent was measured using the Suc-AAPF-pNA assay for measuring protease activity. The Purafect® Prime HA, (Genencor Int'l) and PhuPro1 proteases were each added to final concentrations of 1 ppm. A control sample with no enzyme was included. The wash time was 12 minutes. After the wash treatment, all swatches were rinsed for 3 minutes and machine-dried at low heat.

[0450] Four of each type of swatch were measured before and after treatment by optical reflectance using a Tristimulus Minolta Meter CR-400. The difference in the L, a, b values was converted to total color difference (dE), as defined by the CIE-LAB color space. Cleaning of the stains is expressed as percent stain removal index (% SRI) by taking a ratio between the color difference before and after washing, and comparing it to the difference of unwashed soils (before wash) to unsoiled fabric, and averaging the eight values obtained by reading two different regions of each washed swatch. Cleaning performances of PhuPro1 and Purafect® Prime HA proteases at 32° C. are shown in Tables 7.8A and FIG. **7.8**B.

TABLE 7.8A

Cleaning performance of PhuPro1 at 32° C.								
	Purafect Prime HA PhuPro1		Purafect Prime HA		PhuPro1			
ppm enzyme	Average % SRI (dE)	95CI [% SRI (dE)]	Average % SRI (dE)	95CI [% SRI (dE)]	Average % SRI (dE)	95CI [% SRI (dE)]	Average % SRI (dE)	95CI [% SRI (dE)]
EMPA-116					EMPA-117			
0 0.2 0.5 1 1.5	0.25 0.31 0.34 0.35 0.36	0.02 0.02 0.02 0.03 0.02	0.25 0.31 0.33 0.36 0.37	0.02 0.01 0.03 0.02 0.03	0.19 0.31 0.34 0.38 0.35	0.02 0.03 0.02 0.03 0.03	0.19 0.32 0.37 0.42 0.43	0.02 0.04 0.02 0.03 0.03
EMPA-112					CF	T C-10		
0 0.2 0.5 1 1.5	0.15 0.17 0.19 0.20 0.24	0.03 0.04 0.02 0.03 0.03	0.15 0.14 0.19 0.22 0.25	0.03 0.02 0.04 0.03 0.04	0.07 0.11 0.13 0.17 0.17	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \end{array}$	0.07 0.15 0.16 0.17 0.20	0.01 0.01 0.03 0.01 0.02

TABLE 7.8B

Cleaning performance of PhuPro1 at 16° C.								
	Purafect Prime HA PhuPro1		Purafect Prime HA		PhuPro1			
ppm enzyme	Average % SRI (dE)	95CI [% SRI (dE)]						
EMPA-116						EM	PA-117	
0 0.2	0.14 0.19	0.02	0.14 0.17	0.02	0.12	0.01	0.12	0.01
0.5 1 1.5	0.22 0.24 0.23	0.03 0.02 0.03	0.28 0.26 0.26	0.04 0.02 0.03	0.20 0.20 0.23	$0.03 \\ 0.01 \\ 0.02$	0.22 0.24 0.25	0.01 0.04 0.02
EMPA-112					CF	T C-10		
0 0.2 0.5 1 1.5	0.09 0.07 0.11 0.11 0.13	0.03 0.01 0.02 0.02 0.03	0.09 0.09 0.12 0.12 0.19	0.03 0.02 0.03 0.02 0.03	0.07 0.08 0.10 0.13 0.13	0.01 0.02 0.01 0.01 0.01	0.07 0.06 0.09 0.15 0.11	0.01 0.01 0.01 0.01 0.01

Example 8.1

Cloning of *Paenibacillus amylolyticus* Metalloprotease PamPro1

[0451] A strain (DSM11747) of *Paenibacillus amylolyticus* was selected as a potential source of enzymes which may be useful in various industrial applications. Genomic DNA for sequencing was obtained by first growing the strain on Heart Infusion agar plates (Difco) at 37° C. for 24 hr. Cell material was scraped from the plates and used to prepare genomic DNA with the ZF Fungal/Bacterial DNA miniprep kit from Zymo (Cat No. D6005). The genomic DNA was used for genome sequencing. The entire genome of the *Paenibacillus amylolyticus* strain was sequenced by BaseClear (Leiden, The Netherlands) using the Illumina's next generation sequencing technology. After assembly of the data, contigs were annotated by BioXpr (Namur, Belgium). One of the

genes identified after annotation in *Paenibacillus amylolyticus* encodes a metalloprotease and the sequence of this gene, called PamPro1, is provided in SEQ ID NO: 36. The corresponding protein encoded by the PamPro1 gene is shown in SEQ ID NO: 37. At the N-terminus, the protein has a signal peptide with a length of 25 amino acids as predicted by SignalP version 4.0 (Nordahl Petersen et al. (2011) Nature Methods, 8:785-786). The presence of a signal sequence suggests that PamPro1 is a secreted enzyme. The propeptide region was predicted based on protein sequence alignment with the *Paenibacillus polymyxa* Npr protein (Takekawa et al. (1991) Journal of Bacteriology, 173 (21): 6820-6825). The predicted mature region of PamPro1 protein is shown in SEQ ID NO: 3.

[0452] The nucleotide sequence of the PamPro1 gene isolated from *Paenibacillus amylolyticus* is set forth as SEQ ID NO: 36. The sequence encoding the predicted native signal peptide is shown in italics:

ATGAAATTCGCCAAAGTTATGCCAACAATTCTTGGAGGAGCTCTTTTGCT CGCTTCCGTATCCTCTGCTACTGCAGCTCCAGTGTCTGATCAATCCATTC CACTTCAGGCCCCTTATGCCTCTGAGGGGGGGTATTCCATTGAACAGTGGA ACAGATGACACTATCTTTAATTATCTTGGACAGCAGGAACAATTTCTGAA TTCCGATGTGAAATCCCAGCTCAAAATTGTCAAAAGAAACACAGATACAT CTGGCGTAAGACACTTCCGCCTGAAACAGTATATTAAAGGTATCCCGGTT TATGGTGCAGAACAGACGGTCCACCTGGACAAAACCGGAGCCGTGAGCTC CGCACTTGGCGATCTTCCACCGATTGAAGAGCAGGCCATTCCGAATGATG GTGTAGCCGAGATCAGCGGAGAAGACGCGATCCAGATTGCAACCGAAGAA GCAACCTCCCGGATTGGAGAGCTTGGTGCCGCGGAAATCACGCCTCAAGC TGAATTGAACATCTATCATCATGAAGAAGATGGTCAGACATATCTGGTTT ACATTACGGAAGTAAACGTACTGGAACCTGCCCCTCTACGGACCAAATAT TTCATTAACGCAGTGGATGGCAGTATCGTATCCCAGTTTGACCTCATTAA CTTCGCTACTGGAACAGGTACAGGTGTACTCGGTGATACCAAAACCCTGA CAACCACCCAATCCGGCAGCACCTTCCAACTGAAAGACACCACTCGTGGC AATGGCATCCAAACGTATACGGCAAACAATGGCTCCTCACTGCCTGGTAG CTTGCTTACAGATTCGGATAATGTATGGACCGATCGTGCAGGTGTAGATG CTCATGCTCATGCCGCTGCTACGTATGATTTCTACAAAAACAAATTCAAC CGGCTCCAATTACAATAACGCCTTCTGGAACGGGGCACAGATTGTCTTTG GTGACGGAGATGGAACGATGTTCCGATCCCTGTCTGGTGATCTGGATGTT GTGGGTCATGAATTGACGCATGGTGTTATTGAATATACAGCCAATCTGGA ATATCGCAATGAACCAGGTGCACTCAATGAAGCCTTTGCCGATATTTTCG GTAATACGATCCAAAGCAAAAACTGGCTGCTCGGTGATGATATCTACACA CCTAACACTCCAGGAGATGCGCTGCGCTCCCTCTCCAACCCTACATTGTA TGGTCAACCTGACAAATACAGCGATCGCTACACAGGCTCACAGGACAACG GCGGTGTCCATATCAACAGTGGTATCATCAATAAAGCCTATTTCCTTGCT GCTCAAGGCGGAACACATAATGGTGTGACTGTTACCGGAATCGGCCGGGA TAAAGCGATCCAGATTTTCTACAGCACACTGGTGAACTACCTGACACCAA CGTCCAAATTTGCCGCTGCCAAAACAGCTACCATTCAAGCAGCCAAAGAT CTGTACGGAGCAACTTCCGCTGAAGCTACTGCTATTACCAAAGCATATCA AGCTGTAGGCCTG

[0453] The amino acid sequence of the PamPro1 precursor protein is set forth as SEQ ID NO: 37. The predicted signal sequence is shown in italics, and the predicted propeptide is shown in underlined text:

MKFAKVMPTILGGALLLASVSSATAAPVSDQSIPLQAPYASEGGIPLNSG TDDTIFNYLGQQEQFLNSDVKSQLKIVKRNTDTSGVRHFRLKQYIKGIPV YGAEQTVHLDKTGAVSSALGDLPPIEEQAIPNDGVAEISGEDAIQIATEE ATSRIGELGAAEITPQAELNIYHHEEDGQTYLVYITEVNVLEPAPLRTKY FINAVDGSIVSQFDLINFATGTGTGVLGDTKTLTTTQSGSTFQLKDTTRG NGIQTYTANNGSSLPGSLLTDSDNVWTDRAGVDAHAHAAATYDFYKNKFN RNGINGNGLLIRSTVHYGSNYNNAFWNGAQIVFGDGDGTMFRSLSGDLDV VGHELTHGVIEYTANLEYRNEPGALNEAFADIFGNTIQSKNWLLGDDIYT PNTPGDALRSLSNPTLYGQPDKYSDRYTGSQDNGGVHINSGIINKAYFLA AQGGTHNGVTVTGIGRDKAIQIFYSTLVNYLTPTSKFAAAKTATIQAAKD LYGATSAEATAITKAYQAVGL

[0454] The amino acid sequence of the predicted mature form of PamPro1 is set forth as SEQ ID NO: 38:

ATGTGTGVLGDTKTLTTTQSGSTFQLKDTTRGNGIQTYTANNGSSLPGSL LTDSDNVWTDRAGVDAHAHAAATYDFYKNKFNRNGINGNGLLIRSTVHYG SNYNNAFWNGAQIVFGDGDGGTMFRSLSGDLDVVGHELTHGVIEYTANLEY RNEPGALNEAFADIFGNTIQSKNWLLGDDIYTPNTPGDALRSLSNPTLYG QPDKYSDRYTGSQDNGGVHINSGIINKAYFLAAQGGTHNGVTVTGIGRDK AIQIFYSTLVNYLTPTSKFAAAKTATIQAAKDLYGATSAEATAITKAYQA VGL

Example 8.2

Expression of *Paenibacillus amylolyticus* Metalloprotease PamPro1

[0455] The DNA sequence of the propeptide-mature form of PamPro1 was synthesized and inserted into the Bacillus subtilis expression vector p2JM103BBI (Vogtentanz, Protein Expr Purif, 55:40-52, 2007) by Generay (Shanghai, China), resulting in plasmid pGX146(AprE-PamPro1) (FIG. 1). Ligation of this gene encoding the PamPro1 protein into the digested vector resulted in the addition of three codons (Ala-Gly-Lys) between the 3' end of the *B. subtilis* AprE signal sequence and the 5' end of the predicted PamPro1 native propeptide. The gene has an alternative start codon (GTG). The resulting plasmid shown in FIG. 8.1, labeled pGX146 (AprE-PamPro1) contains an AprE promoter, an AprE signal sequence used to direct target protein secretion in B. subtilis, and the synthetic nucleotide sequence encoding the predicted propeptide and mature regions of PamPro1 (SEQ ID NO: 39). The translation product of the synthetic AprE-PamPro1 gene is shown in SEQ ID NO: 40.

[0456] The pGX146(AprE-PamPro1) plasmid was then transformed into *B. subtilis* cells (degU^{Hy}32, Δ scoC) and the transformed cells were spread on Luria Agar plates supplemented with 5 ppm Chloramphenicol and 1.2% skim milk (Cat#232100, Difco). Colonies with the largest clear halos on the plates were selected and subjected to fermentation in a 250 ml shake flask with MBD medium (a MOPS based defined medium, supplemented with additional 5 mM CaCl₂).

[0457] The broth from the shake flasks was concentrated and buffer-exchanged into the loading buffer containing 20 mM Tris-HCl (pH 8.5), 1 mM CaCl₂ and 10% propylene glycol using a VivaFlow 200 ultra filtration device (Sartorius

Stedim). After filtering, this sample was applied to an 80 ml Q Sepharose High Performance column pre-equilibrated with the loading buffer above; and the active flow-through fractions were collected and concentrated. The sample was loaded onto a 320 ml Superdex 75 gel filtration column preequilibrated with the loading buffer described above containing 0.15 M NaCl. The corresponding active purified protein fractions were further pooled and concentrated via 10K Amicon Ultra for further analyses.

[0458] The nucleotide sequence of the synthesized Pam-Pro1 gene in plasmid pGX146(AprE-PamPro1) is depicted in SEQ ID NO: 39. The sequence encoding the three residue addition (AGK) is shown in bold:

GTGAGAAGCAAAAAATTGTGGATCAGCTTGTTGTTTGCGTTAACGTTAAT ${\tt CTTTACGATGGCGTTCAGCAACATGAGCGCGCAGGCT{\tt GCTGGAAAA}{\tt GCTC}$ CGGTTAGCGACCAGTCAATCCCTCTTCAAGCACCGTATGCCAGCGAAGGA GGCATTCCGCTTAACAGCGGCACGGACGACACGATTTTCAATTACCTGGG CCAACAGGAGCAGTTCCTGAACAGCGACGTCAAGAGCCAGCTGAAGATCG TCAAAAGAAACACAGACACATCAGGCGTGAGACACTTCAGACTGAAGCAA TACATCAAGGGCATCCCGGTTTATGGCGCTGAACAAACGGTTCACCTGGA CAAAACAGGCGCAGTTTCATCAGCACTGGGAGATCTGCCGCCGATTGAAG AGCAAGCAATCCCGAATGATGGAGTTGCGGAAATTAGCGGCGAGGATGCA ATCCAAATCGCGACGGAGGAGGGCTACATCAAGAATTGGAGAACTTGGCGC AGCGGAGATTACACCGCAGGCTGAACTGAACATCTATCACCATGAGGAAG ACGGCCAGACGTACCTGGTTTACATTACGGAAGTGAACGTGCTGGAACCG GCACCTCTGAGAACAAAGTACTTTATCAACGCGGTTGACGGCAGCATCGT CTCACAGTTCGACCTGATTAACTTCGCCACGGGAACAGGAACGGGCGTTC TTGGAGACACAAAGACGCTGACGACGACGCAGTCAGGCAGCACATTCCAG CTGAAGGACACAACAAGAGGCAACGGCATCCAAACGTACACGGCGAACAA TGGATCATCACTGCCGGGCTCACTGCTGACGGATTCAGATAACGTGTGGA CGGATAGAGCTGGCGTTGACGCGCATGCTCACGCTGCTGCGACGTACGAC TTCTACAAGAACAAGTTCAACAGAAACGGCATTAACGGAAATGGCCTGCT GATCAGAAGCACGGTGCATTATGGCTCAAACTACAACAACGCTTTTTGGA ACGGCGCACAGATCGTGTTTGGCGACGGCGATGGCACAATGTTTAGAAGC CTGTCAGGAGACCTGGATGTGGTGGGCCACGAACTGACGCACGGCGTGAT CGAGTATACGGCGAACCTTGAATATAGAAACGAGCCGGGAGCACTGAATG AGGCGTTCGCGGACATTTTCGGCAACACAATCCAGAGCAAAAACTGGCTG CTGGGCGACGATATCTATACACCGAACACCCGGGCGATGCACTGAGATC ATACGGGCAGCCAAGACAATGGCGGCGTTCACATCAACTCAGGCATCATC AACAAGGCTTACTTCCTTGCGGCCCAAGGAGGAACACATAACGGCGTTAC AGTTACAGGCATTGGCAGAGACAAGGCGATCCAGATCTTTTACAGCACGC TGGTGAACTACCTGACACCTACGTCAAAGTTTGCCGCAGCGAAAACAGCA -continued ACAATTCAGGCGGCTAAAGACCTGTACGGAGGCGACATCAGCCGAGGCCAC

AGCAATTACAAAAGCATATCAAGCAGTTGGCCTTTAA

[0459] The amino acid sequence of the PamPro1 precursor protein expressed from plasmid pGX146(AprE-PamPro1) is depicted in SEQ ID NO: 40. The predicted signal sequence is shown in italics, the three residue addition (AGK) is shown in bold, and the predicted pro-peptide is shown in underlined text.

MRSKKLWISLLFALTLIFTMAFSNMSAQAAGKAPVSDQSIPLQAPYASEG GIPLNSGTDDTIFNYLGQQEQFLNSDVKSQLKIVKRNTDTSGVRHFRLKQ YIKGIPVYGAEQTVHLDKTGAVSSALGDLPPIEEQAIPNDGVAEISGEDA IQIATEEATSRIGELGAAEITPQAELNIYHHEEDGQTYLVYITEVNVLEP APLRTKYFINAVDGSIVSQFDLINFATGTGTGVLGDTKTLTTTQSGSTFQ LKDTTRGNGIQTYTANNGSSLPGSLLTDSDNVWTDRAGVDAHAHAAATYD FYKNKFNRNGINGNGLLIRSTVHYGSNYNNAFWNGAQIVFGDGDGTMFRS LSGDLDVVGHELTHGVIEYTANLEYRNEPGALNEAFADIFGNTIQSKNWL LGDDIYTPNTPGDALRSLSNPTLYGQPDKYSDRYTGSQDNGGVHINSGII NKAYFLAAQGGTHNGVTVTGIGRDKAIQIFYSTLVNYLTPTSKFAAAKTA TIQAAKDLYGATSAEATAITKAYQAVGL

Example 8.3

Proteolytic Activity of Metalloprotease PamPro1

[0460] The proteolytic activity of purified metalloprotease PamPro1 was measured in 50 mM Tris (pH 7), using azocasein (Cat#74H7165, Megazyme) as a substrate. Prior to the reaction, the enzyme was diluted with Milli-Q water (Millipore) to specific concentrations. The azo-casein was dissolved in 100 mM Tris buffer (pH 7) to a final concentration of 1.5% (w/v). To initiate the reaction, 50 µl of the diluted enzyme (or Milli-Q H₂O alone as the blank control) was added to the non-binding 96-well Microtiter Plate (96-MTP) (Corning Life Sciences, #3641) placed on ice, followed by the addition of 50 µl of 1.5% azo-casein. After sealing the 96-MTP, the reaction was carried out in a Thermomixer (Eppendorf) at 40° C. and 650 rpm for 10 min. The reaction was terminated by adding 100 µl of 5% Trichloroacetic Acid (TCA). Following equilibration (5 min at the room temperature) and subsequent centrifugation (2000 g for 10 min at 4° C.), 120 µl supernatant was transferred to a new 96-MTP, and absorbance of the supernatant was measured at $440 \text{ nm}(A_{440})$ using a SpectraMax 190. Net A_{440} was calculated by subtracting the A_{440} of the blank control from that of enzyme, and then plotted against different protein concentrations (from 1.25 ppm to 40 ppm). Each value was the mean of triplicate assays. The proteolytic activity is shown as Net A_{440} . The proteolytic assay with azo-casein as the substrate (shown in FIG. 8.2) indicates that PamPro1 is an active protease.

Example 8.4

pH Profiles of Metalloprotease PamPro1

[0461] With azo-casein as the substrate, the pH profiles of metalloprotease PamPro1 were studied in 12.5 mM acetate/

Bis-Tris/HEPES/CHES buffer with different pH values (ranging from pH 4 to 11). To initiate the assay, 50 μ l of 25 mM acetate/Bis-Tris/HEPES/CHES buffer with a specific pH was first mixed with 2 μ l Milli-Q H₂O diluted enzyme (125 ppm) in a 96-MTP placed on ice, followed by the addition of 48 μ l of 1.5% (w/v) azo-casein prepared in H₂O. The reaction was performed and analyzed as described in Example 8.3. Enzyme activity at each pH was reported as the relative activity, where the activity at the optimal pH was set to be 100%. The pH values tested were 4, 5, 6, 7, 8, 9, 10 and 11. Each value was the mean of triplicate assays. As shown in FIG. **8.3**, the optimal pH of PamPro1 is about 8, with greater than 70% of maximal activity retained between 7 and 9.5.

Example 8.5

Temperature Profile of Metalloprotease PamPro1

[0462] The temperature profile of metalloprotease Pam-Pro1 was analyzed in 50 mM Tris buffer (pH 7) using the azo-casein assays. The enzyme sample and azo-casein substrate were prepared as in Example 8.3. Prior to the reaction, 50 µl of 1.5% azo-casein and 45 µl Milli-Q H₂O were mixed in a 200 µl PCR tube, which was then subsequently incubated in a Peltier Thermal Cycler (BioRad) at desired temperatures (i.e. 20~90° C.) for 5 min. After the incubation, 5 µl of diluted enzyme (50 ppm) or H₂O (the blank control) was added to the substrate mixture, and the reaction was carried out in the Peltier Thermal Cycle for 10 min at different temperatures. To terminate the reaction, each assay mixture was transferred to a 96-MTP containing 100 ul of 5% TCA per well. Subsequent centrifugation and absorbance measurement were performed as described in Example 8.3. The activity was reported as the relative activity, where the activity at the optimal temperature was set to be 100%. The tested temperatures are 20, 30, 40, 50, 60, 70, 80, and 90° C. Each value was the mean of duplicate assays (the value varies no more than 5%). The data in FIG. 8.4 suggest that PamPro1 showed an optimal temperature at about 50° C., and retained greater than 70% of its maximum activity between 45 and 55° C.

Example 8.6

Cleaning Performance of Metalloprotease PamPro1

[0463] The cleaning performance of PamPro1 was tested using PA-S-38 (egg yolk, with pigment, aged by heating) microswatches (CFT-Vlaardingen, The Netherlands) at pH 6 and 8 using a model automatic dishwashing (ADW) detergent. Prior to the reaction, purified protease samples were diluted with a dilution solution containing 10 mM NaCl, 0.1 mM CaCl₂, 0.005% TWEEN® 80 and 10% propylene glycol to the desired concentrations. The reactions were performed in AT detergent with 100 ppm water hardness ($Ca^{2+}:Mg^{2+}=3:$ 1) (detergent composition shown in Table 8.1). To initiate the reaction, 180 µl of the AT detergent buffered at pH 6 or pH 8 was added to a 96-MTP placed with PA-S-38 microswatches, followed by the addition of 20 µl of diluted enzymes (or the dilution solution as the blank control). The 96-MTP was sealed and incubated in an incubator/shaker for 30 min at 50° C. and 1150 rpm. After incubation, 100 µl of wash liquid from each well was transferred to a new 96-MTP, and its absorbance was measured at 405 nm (referred here as the "Initial performance") using a spectrophotometer. The remaining wash liquid in the 96-MTP was discarded and the microswatches were rinsed once with 200 µl water. Following the addition of 180 µl of 0.1 M CAPS buffer (pH 10), the second incubation was carried out in the incubator/shaker at 50° C. and 1150 rpm for 10 min. One hundred microliters of the resulting wash liquid was transferred to a new 96-MTP, and its absorbance measured at 405 nm (referred here as the "Wash-off"). The sum of two absorbance measurements ("Initial performance" plus "Wash-off") gives the "Total performance", which measures the protease activity on the model stain; and Net A_{405} was subsequently calculated by subtracting the A_{405} of the "Total performance" of the blank control from that of the enzyme. Dose response in cleaning the PA-S-38 microswatches at pH 6 and pH 8 in AT dish detergent for PamPro1 is shown in FIGS. **5**A and **5**B.

TABLE 8.1

Composition of AT dish detergent formula with bleach					
Ingredient	Concentration (mg/ml)				
MGDA (methylglycinediacetic acid)	0.143				
Sodium citrate	1.86				
Citric acid*	varies				
PAP (peracid N,N-phthaloylaminoperoxycaproic acid)	0.057				
Plurafac ® LF 18B (a non-ionic surfactant)	0.029				
Bismuthcitrate	0.006				
Bayhibit ® S (Phosphonobutantricarboxylic acid sodium salt)	0.006				
Acusol TM 587 (a calcium polyphosphate inhibitor)	0.029				
PEG 6000	0.043				
PEG 1500	0.1				

*The pH of the AT formula detergent is adjusted to the desired value (pH 6 or 8) by the addition of 0.9M citric acid.

Example 8.7

Comparison of PamPro1 to Other Proteases

A. Identification of Homologous Proteases

[0464] Homologs were identified by a BLAST search (Altschul et al., Nucleic Acids Res, 25:3389-402, 1997) against the NCBI non-redundant protein database and the Genome Quest Patent database with search parameters set to default values. The predicted mature protein amino acid sequence for PamPro1 (SEQ ID NO: 38) was used as the query sequence. Percent identity (PID) for both search sets is defined as the number of identical residues divided by the number of aligned residues in the pairwise alignment. Tables 8.2A and 8.2B provide a list of sequences with the percent identity to PamPro1. The length in Table 8.2 refers to the entire sequence length of the homologous proteases.

TABLE 8.2A

identified from the NCBI non-redundant protein database					
Accession #	PID to PamPro1	Organism	Length		
P23384	56	Bacillus caldolyticus	544		
P00800	56	Bacillus thermoproteolyticus	548		
ZP_08640523.1	57	Brevibacillus laterosporus LMG 15441	564		
BAA06144.1	57	Lactobacillus sp.	566		
YP_003872180.1	58	Paenibacillus polymyxa E681	587		
ZP_04149724.1	59	Bacillus pseudomycoides DSM 12442	566		

List of sequences with percent identity to PamPro1 protein identified from the NCBI non-redundant protein database					
Accession #	PID to PamPro1	Organism	Length		
EJR46541.1	60	Bacillus cereus VD107	566		
YP_001373863.1	60	<i>Bacillus cytotoxicus</i> NVH 391-98	565		
ZP_10738945.1	61	Brevibacillus sp. CF112	528		
YP_004646155.1	61	Paenibacillus mucilaginosus KNP414	525		
ZP_02326602.1	62	Paenibacillus larvae subsp. larvae BRL-230010	520		
P43263	63	Brevibacillus brevis	527		
ZP_09775365.1	64	Paenibacillus sp. Aloe-11	580		
ZP_09077634.1	65	Paenibacillus elgii B69	529		
ZP_09071078.1	68	Paenibacillus larvae subsp. larvae B-3650	529		
ZP_08511445.1	69	Paenibacillus sp. HGF7	525		
YP_005073223.1	70	Paenibacillus terrae HPL-003	591		
YP_003948511.1	71	Paenibacillus polymyxa SC2	592		
ZP_10241030.1	71	Paenibacillus peoriae KCTC 3763	593		

TABLE 8.2B

List of sequences with percent identity to PamPro1 protein identified from the Genome Quest Patent database						
Patent #	PID to PamPro1	Organism	Length			
US7335504-0030	56.63	Bacillus	316			
		thermoproteolyticus				
US20120107907-0184	56.91	Bacillus caldoyticus	319			
JP2006124323-0003	56.96	Bacillus	316			
		thermoproteolyticus				
JP1993199872-0001	56.96	Bacillus sp.	316			
JP1997000255-0001	56.96	empty	548			
US6518054-0001	57.23	Bacillus sp.	319			
US20120107907-0176	57.23	Bacillus stearothermophilis	548			
US8114656-0183	57.28	Bacillus stearothermophilis	316			
US20120009651-0002	57.28	Geobacillus	548			
		caldoproteolyticus				
JP2011103791-0020	57.28	Geobacillus	552			
		stearothermophilus				
WO2012110562-0006	57.88	Bacillus megaterium	320			
EP2390321-0178	57.88	Bacillus thuringiensis	566			
US6518054-0002	57.93	Bacillus sp.	316			
WO2012110562-0007	58.25	Bacillus cereus	320			
JP1995184649-0001	58.52	Lactobacillus sp.	566			
EP2178896-0184	58.52	Bacillus anthracis	566			
EP2390321-0195	59.55	Bacillus cereus	317			
WO2012110563-0005	59.87	Bacillus cereus	320			
US20080293610-0186	63.25	Bacillus brevis	304			
JP2005229807-0018	71.19	Paenibacillus polymyxa	566			
US8114656-0187	71.43	Bacillus polymyxa	302			

B. Alignment of Homologous Protease Sequences

[0465] The amino acid sequence of the predicted mature PamPro1 (SEQ ID NO: 38) was aligned with thermolysin (P00800, *Bacillus thermoproteolyticus*), and protease from *Paenibacillus peoriae* KCTC 3763 (YP_005073223.1) using CLUSTALW software (Thompson et al., Nucleic Acids

Research, 22:4673-4680, 1994) with the default parameters. FIG. **8.6** shows the alignment of PamPro1 with these protease sequences.

C. Phylogenetic Tree

[0466] A phylogenetic tree for full length sequences of PamPro1 (SEQ ID NO: 37) was built using sequences of representative homologs from Table 8.2A and the Neighbor Joining method (NJ) (Saitou, N.; and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing Guide Trees. Mol Biol. Evol. 4, 406-425). The NJ method works on a matrix of distances between all pairs of sequences to be analyzed. These distances are related to the degree of divergence between the sequences. The phylodendron-phylogenetic tree printer software (http://iubio.bio.indiana.edu/treeapp/treeprint-form.html) was used to display the phylogenetic tree shown in FIG. **8.7**.

Example 9

Comparison of the Various Paenibacillus Metalloproteases with Other Bacterial Metalloprotease Homologs

A. Alignment of Homologous Protease Sequences

[0467] The amino acid sequence of the predicted mature sequences for the *Paenibacillus* proteases described in Examples 1.1 to 8.7 were aligned with related bacterial metalloproteases using CLUSTALW software (Thompson et al., Nucleic Acids Research, 22:4673-4680, 1994) with the default parameters. FIG. **9.1** shows the alignment of the various *Paenibacillus* metalloproteases with other bacterial metalloprotease homologs.

B. Phylogenetic Tree

[0468] A phylogenetic tree for full length sequences of the metalloproteases aligned in FIG. **9.1** was created using the Neighbor Joining method (NJ) (Saitou, N.; and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing Guide Trees. Mol Biol. Evol. **4**, 406-425). The NJ method works on a matrix of distances between all pairs of sequences to be analyzed. These distances are related to the degree of divergence between the sequences. The phyloden-dron-phylogenetic tree printer software (http://iubio.bio.indiana.edu/treeapp/treeprint-form.html) was used to display the phylogenetic tree shown in FIG. **9.2**, where one can observe the clustering of the sequences from *Paenibacillus* genus.

[0469] While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein can be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

<160> NUMBER OF SEQ ID NOS: 68

SEQUENCE LISTING

<210> SEQ ID NO 1 <211> LENGTH: 1785 <212> TYPE: DNA <213> ORGANISM: Paenibacillus sp. <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(1785) <223> OTHER INFORMATION: nucleotide sequence of the PspPro3 gene isolated from Paenibacillus sp. <400> SEQUENCE: 1 atgttaatga aaaaagtatg ggtttcgctt cttggaggag cgatgttatt agggtctgta 60 gcgtctggtg catcagcagc ggagagttcc gtttcggggc cggctcagct tacgccaacc 120 ttccatgccg aacaatggaa agcaccttca tcggtatcgg gtgatgacat cgtatggagc 180 tatttaaatc ggcaaaagaa aacgttgctg ggtacggaca gcaccagtgt ccgtgatcaa 240 ttccgtatcg tagatcgcac aagcgacaaa tccggcgtga gccattatcg gctgaagcaa 300 tatgtaaacg gaatteeegt atatggaget gaacagaeea tteatgtggg caaateeggt 360 gaagtgacct cttatctggg agccgtgatt actgaggatc agcaagaaga agctacgcaa 420 ggtacaactc cgaaaatcag cgcttctgaa gcggtccata ccgcatatca ggaggcagct 480 acacgggttc aagccctccc tacctccgat gatacgattt ctaaagatgc ggaggagcca 540 agcagtgtaa gcaaagacac ttactccgaa gcagctaaca acggaaaaac gagttctgtt 600 gaaaaggaca agctcagcct tgagaaagcg gctgacctga aagatagcaa aattgaagcg 660 gtggaggcag agccaaactc cattgccaaa atcgccaacc tgcagcctga ggtagatcct 720 aaageegaae tatattteta tgegaaggge gatgeattge agetggttta tgtgaetgag 780 gttaatattt tgcageetge geegetgegt acaegetaea teattgaege caatgatgge 840 aaaatcgtat cccagtatga catcattaat gaagcgacag gcacaggcaa aggtgtactc 900 ggtgatacca aaacattcaa cactactgct tccggcagca gctaccagtt aagagatacg 960 actogoggga atggaatogt gaottacaog gootcoaaco gtoaaagoat occaggtaog 1020 atcctgaccg atgccgataa cgtatggaat gatccagccg gcgtggatgc ccacgcttat 1080 gcagccaaaa cctatgatta ttataaggaa aagttcaatc gcaacagcat tgacggacga 1140 1200 ggcctgcagc tccgttcgac agttcattac ggcaatcgtt acaacaacgc cttctggaac qqctcccaaa tqacttatqq aqacqqaqac qqcaccacat ttatcqcttt taqcqqtqat 1260 1320 ccqqatqtaq ttqqtcatqa actcacacac qqtqttacqq aqtatacttc caatttqqaa tattacggag aatccggtgc gttgaacgag gccttctcgg acatcatcgg caatgacatc 1380 cagegtaaaa actggettgt aggegatgat atttacaege caegeattge gggtgatgea 1440 cttcgttcta tgtccaatcc tacgctgtac gatcaaccgg atcactattc gaacttgtac 1500 1560 agaggcaget cegataaegg eggegtteat aegaaeageg gtattataaa taaageetat tatctgttgg cacaaggcgg caccttccat ggtgtaactg tcaatgggat tggccgcgat 1620 gcagcggttc aaatttacta cagcgccttt acgaactacc tgacttcttc ttctgacttc 1680 tccaatgcac gtgatgccgt tgtacaagcg gcaaaagatc tctacggcgc gagctcggca 1740 caagctaccg cagcagccaa atcttttgat gctgtaggcg ttaac 1785

64

-continued

<210> SEQ ID NO 2 <211> LENGTH: 595 <212> TYPE: PRT <213> ORGANISM: Paenibacillus sp. <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(595) <223> OTHER INFORMATION: amino acid sequence of the PspPro3 precursor protein <400> SEQUENCE: 2 Met Leu Met Lys Lys Val Trp Val Ser Leu Leu Gly Gly Ala Met Leu Leu Gly Ser Val Ala Ser Gly Ala Ser Ala Ala Glu Ser Ser Val Ser Gly Pro Ala Gln Leu Thr Pro Thr Phe His Ala Glu Gln Trp Lys Ala Pro Ser Ser Val Ser Gly Asp Asp Ile Val Trp Ser Tyr Leu Asn Arg 50 55 60 Gln Lys Lys Thr Leu Leu Gly Thr Asp Ser Thr Ser Val Arg Asp Gln Phe Arg Ile Val Asp Arg Thr Ser Asp Lys Ser Gly Val Ser His Tyr Arg Leu Lys Gln Tyr Val Asn Gly Ile Pro Val Tyr Gly Ala Glu Gln Thr Ile His Val Gly Lys Ser Gly Glu Val Thr Ser Tyr Leu Gly Ala Val Ile Thr Glu Asp Gln Gln Glu Glu Ala Thr Gln Gly Thr Thr Pro Lys Ile Ser Ala Ser Glu Ala Val His Thr Ala Tyr Gln Glu Ala Ala Thr Arg Val Gln Ala Leu Pro Thr Ser Asp Asp Thr Ile Ser Lys Asp Ala Glu Glu Pro Ser Ser Val Ser Lys Asp Thr Tyr Ser Glu Ala Ala Asn Asn Gly Lys Thr Ser Ser Val Glu Lys Asp Lys Leu Ser Leu Glu Lys Ala Ala Asp Leu Lys Asp Ser Lys Ile Glu Ala Val Glu Ala Glu Pro Asn Ser Ile Ala Lys Ile Ala Asn Leu Gln Pro Glu Val Asp Pro Lys Ala Glu Leu Tyr Phe Tyr Ala Lys Gly Asp Ala Leu Gln Leu Val Tyr Val Thr Glu Val Asn Ile Leu Gln Pro Ala Pro Leu Arg Thr Arg Tyr Ile Ile Asp Ala Asn Asp Gly Lys Ile Val Ser Gln Tyr Asp Ile Ile Asn Glu Ala Thr Gly Thr Gly Lys Gly Val Leu Gly Asp Thr Lys Thr Phe Asn Thr Thr Ala Ser Gly Ser Ser Tyr Gln Leu Arg Asp Thr Thr Arg Gly Asn Gly Ile Val Thr Tyr Thr Ala Ser Asn Arg Gln Ser Ile Pro Gly Thr Ile Leu Thr Asp Ala Asp Asn Val Trp Asn Asp Pro

-	cont	in	ued

340		345		350
Ala Gly Val Asp 355	Ala His Ala	Tyr Ala Al 360	a Lys Thr Tyr 365	Asp Tyr Tyr
Lys Glu Lys Phe 370	Asn Arg Asn 375		p Gly Arg Gly 380	Leu Gln Leu
Arg Ser Thr Val 385	His Tyr Gly 390	Asn Arg Ty:	r Asn Asn Ala 395	Phe Trp Asn 400
Gly Ser Gln Met	Thr Tyr Gly 405	Asp Gly Asp 41		Phe Ile Ala 415
Phe Ser Gly Asp 420	-	Val Gly Hi 425	s Glu Leu Thr	His Gly Val 430
Thr Glu Tyr Thr 435	Ser Asn Leu	Glu Tyr Ty: 440	r Gly Glu Ser 445	Gly Ala Leu
Asn Glu Ala Phe 450	Ser Asp Ile 455		n Asp Ile Gln 460	Arg Lys Asn
Trp Leu Val Gly 465	Asp Asp Ile 470	Tyr Thr Pro	Arg Ile Ala 475	Gly Asp Ala 480
Leu Arg Ser Met	Ser Asn Pro 485	Thr Leu Ty: 49		Asp His Tyr 495
Ser Asn Leu Tyr 500	~ .	Ser Asp As 505	n Gly Gly Val	His Thr Asn 510
Ser Gly Ile Ile 515	Asn Lys Ala	Tyr Tyr Le [.] 520	ı Leu Ala Gln 525	Gly Gly Thr
Phe His Gly Val 530	Thr Val Asn 535	Gly Ile Gly	y Arg Asp Ala 540	Ala Val Gln
Ile Tyr Tyr Ser 545	Ala Phe Thr 550	Asn Tyr Le	ı Thr Ser Ser 555	Ser Asp Phe 560
Ser Asn Ala Arg	Asp Ala Val 565	Val Gln Al. 57		Leu Tyr Gly 575
Ala Ser Ser Ala 580		Ala Ala Al. 585	a Lys Ser Phe	Asp Ala Val 590
Gly Val Asn 595				
<210> SEQ ID NO <211> LENGTH: 3 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION: <223> OTHER INF form of P	04 Paenibacill misc_feature (1)(304) ORMATION: am	e	quence of the	predicted mature
<400> SEQUENCE:	3			
Ala Thr Gly Thr 1	Gly Lys Gly 5	Val Leu Gly 10	y Asp Thr Lys	Thr Phe Asn 15
Thr Thr Ala Ser 20	Gly Ser Ser	Tyr Gln Le [.] 25	ı Arg Asp Thr	Thr Arg Gly 30
Asn Gly Ile Val 35	Thr Tyr Thr	Ala Ser As 40	n Arg Gln Ser 45	Ile Pro Gly
Thr Ile Leu Thr 50	Asp Ala Asp 55	Asn Val Trj	p Asn Asp Pro 60	Ala Gly Val
Asp Ala His Ala	Tyr Ala Ala	Lys Thr Ty:	r Asp Tyr Tyr	Lys Glu Lys

65	70	75	80
Phe Asn Arg Asn Ser 85	Ile Asp Gly Arg Gly 90	Leu Gln Leu Arg Ser 95	Thr
Val His Tyr Gly Asn 100	Arg Tyr Asn Asn Ala 105	Phe Trp Asn Gly Ser 110	Gln
Met Thr Tyr Gly Asp 115	Gly Asp Gly Thr Thr 120	Phe Ile Ala Phe Ser 125	Gly
Asp Pro Asp Val Val 130	Gly His Glu Leu Thr 135	His Gly Val Thr Glu 140	Tyr
	Tyr Tyr Gly Glu Ser 150	Gly Ala Leu Asn Glu 155	Ala 160
Phe Ser Asp Ile Ile 165	Gly Asn Asp Ile Gln 170	Arg Lys Asn Trp Leu 175	Val
Gly Asp Asp Ile Tyr 180	Thr Pro Arg Ile Ala 185	Gly Asp Ala Leu Arg 190	Ser
Met Ser Asn Pro Thr 195			Leu
		His Thr Asn Ser Gly 220	Ile
Ile Asn Lys Ala Tyr	Tyr Leu Leu Ala Gln	Gly Gly Thr Phe His	-
Val Thr Val Asn Gly		-	240 Tyr
245 Ser Ala Phe Thr Asn	250 Tyr Leu Thr Ser Ser	255 Ser Asp Phe Ser Asn	Ala
260	265	270	
Arg Asp Ala Val Val 275	Gln Ala Ala Lys Asp 280	Leu Tyr Gly Ala Ser 285	Ser
Ala Gln Ala Thr Ala 290	Ala Ala Lys Ser Phe 295	Asp Ala Val Gly Val 300	Asn
	ION: Synthetic: nucl	leotide sequence of t id pGX085(AprE- PspPr	
<400> SEQUENCE: 4			
gtgagaagca aaaaattgt	g gatcagettg ttgttte	gogt taaogttaat ottta	acgatg 60
gcgttcagca acatgagcg	c gcaggctgct ggaaaaq	gcag aatcatcagt gtcag	gaccg 120
getcagetta egeegaegt	t tcatgcagag cagtgga	aaag caccgagcag cgtta	agogga 180
gatgacatcg tgtggagct	a cctgaacaga cagaaga	aaaa cgcttcttgg cacgo	Jacage 240
acgagcgtca gagaccagt	t cagaatcgtg gatagaa	acaa gcgacaaaag cggcg	jtcagc 300
cattatagac tgaagcagt	a tgtgaacgga atcccg	yttt atggcgcaga acaaa	acaatc 360
catgtcggaa agagcggcg	a agttacgagc tatctg	ggcg cggttattac agago	Jaccag 420
caagaggagg ctacacaag	g cacgacaccg aaaattt	cag catcagaggc agtto	atacg 480
gcctaccaag aagctgcaa	c gagagttcaa gccctgo	ecta egteagatga tacaa	tcagc 540
aaagacgctg aggaaccta	g ctcagttagc aaggaca	acgt atagcgaagc cgcga	acaat 600
ggcaagacgt caagcgtgg	a aaaagacaag ctttcad	ctgg agaaggeege tgate	tgaaa 660

caaccqqaqq				ttgcaaagat tgccaacct	
				ctaaaggcga tgcactgca	
ctggtttacg	tcacggaggt	taacatccto	ı cageeggeae	cgcttagaac gagatacat	
attgacgcga	acgacggcaa	gatcgtgago	cagtacgaca	ttatcaacga ggccacggg	ga 900
acgggcaagg	gagtccttgg	cgacacgaac	g acattcaata	caacggcctc aggctcato	ca 960
taccagctga	gagacacgac	gagaggcaad	ggaatcgtca	cgtacacggc tagcaatag	ga 1020
cagagcattc	cgggcacaat	ccttacggad	gcagacaatg	tgtggaatga ceeggeage	gc 1080
gtggacgcac	atgcctacgc	agcgaagaco	g tacgactact	acaaggagaa gttcaacag	ga 1140
aacagcatcg	acggaagagg	actgcaactt	agaagcacgg	tgcattacgg caacagata	ac 1200
aacaacgctt	tctggaacgg	cagccaaato	y acgtatggag	acggcgatgg aacaacgtt	t 1260
atcgcattct	caggcgaccc	tgacgttgtg	ggacatgaac	tgacgcatgg agtcacaga	aa 1320
tacacgagca	atctggagta	ttacggagaa	tcaggcgcac	ttaatgaggc cttcagcga	ac 1380
atcatcggaa	acgacatcca	gagaaagaad	tggctggttg	gcgatgatat ctacacgco	cg 1440
agaattgcgg	gcgacgcgct	gagatcaate	agcaacccta	cgctgtacga tcagccgga	at 1500
cattacagca	acctgtatag	aggetcaage	gataatggcg	gcgtgcatac aaacagcgg	gc 1560
atcatcaaca	aagcctatta	tctgctggcg	ı caaggcggca	cattccatgg cgttacagt	t 1620
aatggcattg	gcagagacgc	agccgtgcag	g atctactaca	gcgcattcac gaattacct	g 1680
acatcaagca	gcgacttttc	aaatgcaaga	a gatgcagtgg	tgcaggcggc taaagacct	t 1740
tatggagctt	caagcgctca	ggccacagct	: gcggcaaaaa	gcttcgacgc ggttggagt	g 1800
aat					1803
<210> SEQ I					
<211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHER	H: 601 PRT ISM: Artif RE: INFORMATI	ON: Synthet	ic: amino a	cid sequence of the H mid pGX085(AprE- PspH	
<211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHER	H: 601 PRT ISM: Artif RE: INFORMATI rsor prote	ON: Synthet	ic: amino a		
<211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHER precu <400> SEQUE	H: 601 PRT ISM: Artif RE: INFORMATI rsor prote NCE: 5	ON: Synthet in expresse	ic: amino a d from plas		
<211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHER precu <400> SEQUE Met Arg Ser 1	H: 601 PRT ISM: Artif RE: INFORMATI rsor prote NCE: 5 Lys Lys L 5	ON: Synthet in expresse eu Trp Ile	ic: amino a d from plasm Ser Leu Leu 10	nid pGX085(AprE- PspI Phe Ala Leu Thr Leu	
<211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHER precu <400> SEQUE Met Arg Ser 1 Ile Phe Thr	H: 601 PRT ISM: Artif RE: INFORMATI rsor prote NCE: 5 Lys Lys L 5 Met Ala P 20	ON: Synthet in expresse eu Trp Ile he Ser Asn	ic: amino a d from plasm Ser Leu Leu 10 Met Ser Ala 25	nid pGX085(AprE- PspI Phe Ala Leu Thr Leu 15 Gln Ala Ala Gly Lys	
<211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHER precu <400> SEQUE Met Arg Ser 1 Ile Phe Thr Ala Glu Ser 35	H: 601 PRT ISM: Artif RE: INFORMATI rsor prote NCE: 5 Lys Lys L 5 Met Ala P 20 Ser Val S	ON: Synthet in expresse eu Trp Ile he Ser Asn er Gly Pro 40	ic: amino a d from plass Ser Leu Leu 10 Met Ser Ala 25 Ala Gln Leu	mid pGX085(AprE- PspI Phe Ala Leu Thr Leu 15 Gln Ala Ala Gly Lys 30 Thr Pro Thr Phe His	
<211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHER precu <400> SEQUE Met Arg Ser 1 Ile Phe Thr Ala Glu Ser 35 Ala Glu Gln 50	H: 601 PRT ISM: Artif RE: IMFORMATI rsor prote NCE: 5 Lys Lys L 5 Met Ala P 20 Ser Val S Trp Lys A	ON: Synthet in expresse eu Trp Ile he Ser Asn er Gly Pro 40 la Pro Ser 55 rg Gln Lys	ic: amino ad d from plasm Ser Leu Leu 10 Met Ser Ala 25 Ala Gln Leu Ser Val Ser	mid pGX085(AprE- PspI Phe Ala Leu Thr Leu 15 Gln Ala Ala Gly Lys 30 Thr Pro Thr Phe His 45 Gly Asp Asp Ile Val	
<pre><211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHER precu <400> SEQUE Met Arg Ser 1 Ile Phe Thr Ala Glu Ser 35 Ala Glu Gln 50 Trp Ser Tyr 65</pre>	H: 601 PRT ISM: Artif RE: INFORMATI rsor prote NCE: 5 Lys Lys L 5 Met Ala P 20 Ser Val S Trp Lys A Leu Asn A 7	ON: Synthet in expresse eu Trp Ile he Ser Asn er Gly Pro 40 la Pro Ser 55 rg Gln Lys 0	ic: amino a d from plass Ser Leu Leu 10 Met Ser Ala 25 Ala Gln Leu Ser Val Ser Lys Thr Leu 75	mid pGX085(AprE- PspI Phe Ala Leu Thr Leu 15 Gln Ala Ala Gly Lys 30 Thr Pro Thr Phe His 45 Gly Asp Asp Ile Val 60 Leu Gly Thr Asp Ser	
<211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHER precu <400> SEQUE Met Arg Ser 1 Ile Phe Thr Ala Glu Ser 35 Ala Glu Gln 50 Trp Ser Tyr 65 Thr Ser Val	H: 601 PRT ISM: Artif RE: IMFORMATI rsor prote NCE: 5 Lys Lys L 5 Met Ala P 20 Ser Val S Trp Lys A Leu Asn A 7 Arg Asp G 85	ON: Synthet in expresse eu Trp Ile he Ser Asn er Gly Pro 40 la Pro Ser 55 rg Gln Lys 0 ln Phe Arg	ic: amino a d from plass Ser Leu Leu 10 Met Ser Ala 25 Ala Gln Leu Ser Val Ser Lys Thr Leu 75 Ile Val Asp 90	mid pGX085(AprE- PspH Phe Ala Leu Thr Leu 15 Gln Ala Ala Gly Lys 30 Thr Pro Thr Phe His 45 Gly Asp Asp Ile Val 60 Leu Gly Thr Asp Ser 80 Arg Thr Ser Asp Lys	

	ued

											-	con	tin	ued	
	Ser 130	Tyr	Leu	Gly	Ala	Val 135	Ile	Thr	Glu	Asp	Gln 140	Gln	Glu	Glu	Ala
Thr 145	Gln	Gly	Thr	Thr	Pro 150	-	Ile	Ser	Ala	Ser 155		Ala	Val	His	Thr 160
Ala	Tyr	Gln	Glu	Ala 165		Thr	Arg	Val	Gln 170	Ala	Leu	Pro	Thr	Ser 175	Asp
Asp	Thr	Ile	Ser 180	-	Asp	Ala	Glu	Glu 185	Pro	Ser	Ser	Val	Ser 190	Lys	Asp
Thr	Tyr	Ser 195	Glu	Ala	Ala	Asn	Asn 200	Gly	Lys	Thr	Ser	Ser 205	Val	Glu	Lys
	Lys 210	Leu	Ser	Leu	Glu	Lys 215	Ala	Ala	Asp	Leu	Lys 220	Asp	Ser	Lys	Ile
Glu 225	Ala	Val	Glu	Ala	Glu 230		Asn	Ser	Ile	Ala 235	-	Ile	Ala	Asn	Leu 240
Gln	Pro	Glu	Val	Asp 245		Lys	Ala	Glu	Leu 250	Tyr	Phe	Tyr	Ala	Lys 255	Gly
Asp	Ala	Leu	Gln 260		Val	Tyr	Val	Thr 265	Glu	Val	Asn	Ile	Leu 270	Gln	Pro
Ala	Pro	Leu 275	Arg	Thr	Arg	Tyr	Ile 280	Ile	Asp	Ala	Asn	Asp 285	Gly	Lys	Ile
	Ser 290	Gln	Tyr	Asp	Ile	Ile 295	Asn	Glu	Ala	Thr	Gly 300	Thr	Gly	Lys	Gly
Val 305	Leu	Gly	Asp	Thr	Lys 310		Phe	Asn	Thr	Thr 315		Ser	Gly	Ser	Ser 320
Tyr	Gln	Leu	Arg	Asp 325		Thr	Arg	Gly	Asn 330	Gly	Ile	Val	Thr	Tyr 335	Thr
Ala	Ser	Asn	Arg 340	Gln		Ile	Pro	Gly 345	Thr	Ile	Leu	Thr	Asp 350		Asp
Asn	Val	Trp 355			Pro	Ala	Gly 360	Val	Asp	Ala	His	Ala 365			Ala
	Thr 370		Asp	Tyr	Tyr	Lys 375	Glu	Lys	Phe	Asn	Arg 380		Ser	Ile	Aap
		Gly	Leu	Gln	Leu 390	Arg		Thr	Val	His 395	Tyr	Gly	Asn	Arg	Tyr 400
	Asn	Ala	Phe		Asn		Ser	Gln				Gly	Asp		
Gly	Thr	Thr		405 Ile		Phe	Ser	Gly	410 Asp	Pro	Asp	Val		415 Gly	His
Glu	Leu		420 His	Gly	Val	Thr		425 Tyr	Thr	Ser	Asn		430 Glu	Tyr	Tyr
Gly	Glu	435 Ser	Gly	Ala	Leu		440 Glu	Ala	Phe	Ser	Asp	445 Ile	Ile	Gly	Asn
	450 Ile	Gln	Arg	Lys	Asn	455 Trp	Leu	Val	Gly	Asp	460 Asp	Ile	Tyr	Thr	Pro
465			-	-	470	-		Ser	-	475	-		-		480
5			-	485					490					495	-
Asb	GIN	Pro	Asp 500	HIS	туr	Ser	Asn	Leu 505	ıyr	Arg	сту	ser	Ser 510	Asp	Asn
Gly	Gly	Val 515	His	Thr	Asn	Ser	Gly 520	Ile	Ile	Asn	Lys	Ala 525	Tyr	Tyr	Leu
Leu	Ala	Gln	Gly	Gly	Thr	Phe	His	Gly	Val	Thr	Val	Asn	Gly	Ile	Gly

530 535 540 Arg Asp Ala Ala Val Gln Ile Tyr Tyr Ser Ala Phe Thr Asn Tyr Leu 545 550 555 560 Thr Ser Ser Ser Asp Phe Ser Asn Ala Arg Asp Ala Val Val Gln Ala 565 570 575 Ala Lys Asp Leu Tyr Gly Ala Ser Ser Ala Gln Ala Thr Ala Ala Ala 580 585 590 Lys Ser Phe Asp Ala Val Gly Val Asn 595 600 <210> SEQ ID NO 6 <211> LENGTH: 1770 <212> TYPE: DNA <213> ORGANISM: Paenibacillus sp. <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(1770) <223> OTHER INFORMATION: nucleotide sequence of the PspPro2 gene isolated from Paenibacillus sp. <400> SEQUENCE: 6 atgaaaaaag tatgggtttc acttcttgga ggagcgatgt tattaggggc tgtagcacca 60 ggtgcatcag cagcagagca ttctgttcct gatcctactc agctaacacc gacctttcac 120 gccgagcaat ggaaggctcc ttccacggta accggcgaca atattgtatg gagctatttg 180 aatcgacaaa agaaaacctt attgaataca gacagcacca gtgtgcgtga tcagttccgc 240 atcattgatc gtacaagcga caaatccggt gcaagccatt atcggctcaa gcaatatgta 300 aacgggatcc ccgtatatgg ggctgaacag accattcatg tgaacaacgc cggtaaagta 360 acctettatt tgggtgetgt cattteagag gateageage aagaegegae egaagataee 420 actocaaaaa toagogogao tgaagoogtt tatacogoat atgoagaago ogotgooogg 480 attcaatcct tcccttccat caatgatagt ctttctgagg ctagtgagga acaagggagt 540 gagaatcaag gcaatgagat tcaaaacatt gggattaaaa gcagtgtaag taatgacact 600 tacgcagagg cgcataacaa cgtactttta acccccgttg accaagcaga gcaaagttac 660 attgccaaaa ttgctaatct ggagccaagt gtagagccca aagcagaatt atacatctat 720 ccagatggtg agactacacg actggtttat gtaacagagg ttaatattct tgaacctgcg 780 cctctgcgca cacgctactt cattgatgcg aaaaccggca aaatcgtatt ccagtatgac 840 atcctcaacc acgcaacagg caccggccgc ggcgtggatg gcaaaacaaa atcatttacg 900 actacagett caggeaaceg gtateagttg aaagacaega etegeageaa tggaategtg 960 acttacaccg ctggcaatcg ccagacgacg ccaggtacga ttttgaccga tacagataat 1020 1080 gtatgggagg accetgegge tgttgatgee catgeetacg ceattaaaaac etatgaetat tataagaata aatteggteg egacagtatt gatggaegtg geatgeaaat tegttegaea 1140 gtccattacg gcaaaaaata taacaatgcc ttctggaacg gctcgcaaat gacctacgga 1200 gacggagacg ggtccacatt taccttcttc agcggcgatc ccgatgtcgt ggggcatgag 1260 ctcacccacg gcgtcaccga gttcacctcc aatttggagt attatggtga gtccggtgca 1320 ttgaacgaag ccttctcgga tattatcggt aatgatatag atggcaccag ttggcttctt 1380 ggcgacggca tttatacgcc taatattcca ggcgacgctc tgcgttccct gtccgatcct 1440 acacgatteg gecageegga teactaetee aatteetate eggaeeeeaa eaatgatgat 1500

71

aaggcg	gag 1	tcca	tacg	aa ca	agcg	gtati	t ato	caaca	aaag	cct	atta	ttt	gctg	gcacaa	1560			
gcggta	cgt (cccai	tggt	gt a	acgg [.]	taaci	t ggt	tatc	ggac	gcg	aagc	ggc t	gtai	tcatt	1620			
actaca	atg (cctt	tacca	aa ci	tatt	tgac	c tot	cacci	tcca	act	tctc	taa	cgca	cgcgct	1680			
ctgtta	tac a	aggc	agcca	aa g	gatt	tttai	t ggt	gct	gatt	cgc	tggca	agt a	aacca	agtgct	1740			
ttcaat	cct i	ttga	tgcg	gt ag	ggaa	tcaa	a								1770			
	ENGTI YPE: RGAN EATU AME/I OCAT	H: 5 PRT ISM: RE: KEY: ION: INF(90 Paen miso (1)	c_fea (5	ature 90)	9		sequ	lence	e of	the	Papl	Pro2	precurs	or			
400> S	EQUE	NCE:	7															
et Lys	Lys	Val	Trp 5	Val	Ser	Leu	Leu	Gly 10	Gly	Ala	Met	Leu	Leu 15	Gly				
la Val	Ala	Pro 20	Gly	Ala	Ser	Ala	Ala 25	Glu	His	Ser	Val	Pro 30	Asp	Pro				
hr Gln	Leu 35	Thr	Pro	Thr	Phe	His 40	Ala	Glu	Gln	Trp	Lys 45	Ala	Pro	Ser				
hr Val 50		Gly	Asp	Asn	Ile 55		Trp	Ser	Tyr	Leu 60		Arg	Gln	Lys				
ys Thr	Leu	Leu	Asn	Thr 70		Ser	Thr	Ser	Val 75		Asp	Gln	Phe	Arg 80				
le Ile	Asp	Arg			Asp	Lys	Ser	-		Ser	His	Tyr	-					
ys Gln	Tyr		85 Asn	Gly	Ile	Pro		90 Tyr	Gly	Ala	Glu		95 Thr	Ile				
	_	100			_		105		_	_		110						
is Val	Asn 115	Asn	Ala	Gly	Lys	Val 120	Thr	Ser	Tyr	Leu	Gly 125	Ala	Val	Ile				
er Glu 130	-	Gln	Gln	Gln	Asp 135	Ala	Thr	Glu	Asp	Thr 140	Thr	Pro	Гуз	Ile				
er Ala 45	Thr	Glu	Ala	Val 150	Tyr	Thr	Ala	Tyr	Ala 155	Glu	Ala	Ala	Ala	Arg 160				
le Gln	Ser	Phe	Pro 165	Ser	Ile	Asn	Asp	Ser 170	Leu	Ser	Glu	Ala	Ser 175	Glu				
lu Gln	Gly	Ser 180	Glu	Asn	Gln	Gly	Asn 185	Glu	Ile	Gln	Asn	Ile 190	Gly	Ile				
ys Ser	Ser 195	Val	Ser	Asn	Asp	Thr 200	Tyr	Ala	Glu	Ala	His 205	Asn	Asn	Val				
eu Leu 210		Pro	Val	Asp	Gln 215	Ala	Glu	Gln	Ser	Tyr 220	Ile	Ala	Lys	Ile				
la Asn		Glu	Pro	Ser 230		Glu	Pro	Гла	Ala 235		Leu	Tyr	Ile	-				
25 ro Asp	Gly	Glu			Arg	Leu	Val			Thr	Glu	Val		240 Ile				
eu Glu	Pro	Ala	245 Pro	Leu	Arg	Thr	Arg	250 Tyr	Phe	Ile	Asp	Ala	255 Lys	Thr				
		260					265	-			_	270	-					
ly Lys	тте	vai	гnе	GTU	ıyr	чар	тте	ьeu	ASN	ніз	нта	ınr	σту	THE				

-con	tinu	led

_												-	con	tin	ued	
-			275					280					285			
C	ly	Arg 290	Gly	Val	Asp	Gly	Lys 295		Lys	Ser	Phe	Thr 300	Thr	Thr	Ala	Ser
	31y 805	Asn	Arg	Tyr	Gln	Leu 310		Asp	Thr	Thr	Arg 315		Asn	Gly	Ile	Val 320
1	hr	Tyr	Thr	Ala	Gly 325		Arg	Gln	Thr	Thr 330	Pro	Gly	Thr	Ile	Leu 335	Thr
I	/ab	Thr	Asp	Asn 340	Val	Trp	Glu	Asp	Pro 345	Ala	Ala	Val	Asp	Ala 350	His	Ala
1	'yr	Ala	Ile 355		Thr	Tyr	Asp	Tyr 360		Lys	Asn	Lys	Phe 365	Gly	Arg	Asp
ŝ	Ser	Ile 370	Asp	Gly	Arg	Gly	Met 375		Ile	Arg	Ser	Thr 380	Val	His	Tyr	Gly
	уа 885	Lys	Tyr	Asn	Asn	Ala 390		Trp	Asn	Gly	Ser 395	Gln	Met	Thr	Tyr	Gly 400
Į	/ab	Gly	Asp	Gly	Ser 405		Phe	Thr	Phe	Phe 410	Ser	Gly	Asp	Pro	Asp 415	Val
7	/al	Gly	His	Glu 420	Leu	Thr	His	Gly	Val 425	Thr	Glu	Phe	Thr	Ser 430	Asn	Leu
C	Ju	Tyr	Tyr 435		Glu	Ser	Gly	Ala 440	Leu	Asn	Glu	Ala	Phe 445	Ser	Asp	Ile
]	le	Gly 450	Asn	Asp	Ile	Asp	Gly 455		Ser	Trp	Leu	Leu 460	Gly	Asp	Gly	Ile
	'yr 165	Thr	Pro	Asn	Ile	Pro 470		Asp	Ala	Leu	Arg 475		Leu	Ser	Asp	Pro 480
1	hr	Arg	Phe	Gly	Gln 485	Pro	Asp	His	Tyr	Ser 490	Asn	Phe	Tyr	Pro	Asp 495	Pro
I	lsn	Asn	Asp	Asp 500	Glu	Gly	Gly	Val	His 505	Thr	Asn	Ser	Gly	Ile 510	Ile	Asn
I	ys	Ala	Tyr 515		Leu	Leu	Ala	Gln 520		Gly	Thr	Ser	His 525	Gly	Val	Thr
7	Val	Thr 530	Gly	Ile	Gly	Arg	Glu 535		Ala	Val	Phe	Ile 540	Tyr	Tyr	Asn	Ala
	he 545		Asn	Tyr	Leu	Thr 550	Ser		Ser	Asn	Phe 555		Asn	Ala	Arg	Ala 560
		Val	Ile	Gln	Ala 565	Ala		Asp	Phe	Tyr 570		Ala	Asp	Ser	Leu 575	Ala
7	Val	Thr	Ser	Ala 580			Ser	Phe	Asp 585		Val	Gly	Ile	Lys 590	575	
~ ~ ~ ~ ?	211 212 2213 2220 221 2221 2223 2223 222	0> FI 1> NA 2> L(3> 0 fo D> SI	ENGTI IPE : RGAN: EATUI AME / I DCAT: DCAT: FHER DTM C EQUEI	D NO H: 3 PRT ISM: RE: KEY: ION: INF Df P NCE:	06 Pae: (1) ORMA spPro 8 Gly	c_fea (3 TION 02	: am	e ino .	p. acid	Gly				-	Phe	ed mature Thr
1		Th∼	21~	Cor	5	Acr	2~~~	ጥ፣ም	<i>c</i> 1∽	10	Iare	D cm	Tb∼	Th∽	15 Arg	Sar
1	nr	Inr	АТА	ser	σту	Asn	Arg	ıyr	GIN	ьeu	гЛа	чаb	Thr	Thr	Arg	Ser

-	С	0	n	t	i	n	u	е	d

			20					25					30			
Asn	Gly	Ile 35	Val	Thr	Tyr	Thr	Ala 40	Gly	Asn	Arg	Gln	Thr 45	Thr	Pro	Gly	
Thr	Ile 50	Leu	Thr	Asp	Thr	Asp 55	Asn	Val	Trp	Glu	Asp 60	Pro	Ala	Ala	Val	
Asp 65	Ala	His	Ala	Tyr	Ala 70	Ile	Lys	Thr	Tyr	Asp 75	Tyr	Tyr	Lys	Asn	Lys 80	
Phe	Gly	Arg	Asp	Ser 85	Ile	Asp	Gly	Arg	Gly 90	Met	Gln	Ile	Arg	Ser 95	Thr	
Val	His	Tyr	Gly 100	Lys	Гла	Tyr	Asn	Asn 105	Ala	Phe	Trp	Asn	Gly 110	Ser	Gln	
Met	Thr	Tyr 115	Gly	Asp	Gly	Asp	Gly 120	Ser	Thr	Phe	Thr	Phe 125	Phe	Ser	Gly	
Asp	Pro 130	Asp	Val	Val	Gly	His 135	Glu	Leu	Thr	His	Gly 140	Val	Thr	Glu	Phe	
Thr 145	Ser	Asn	Leu	Glu	Tyr 150	Tyr	Gly	Glu	Ser	Gly 155	Ala	Leu	Asn	Glu	Ala 160	
Phe	Ser	Asp	Ile	Ile 165	Gly	Asn	Asp	Ile	Asp 170	Gly	Thr	Ser	Trp	Leu 175	Leu	
Gly	Asp	Gly	Ile 180	Tyr	Thr	Pro	Asn	Ile 185	Pro	Gly	Asp	Ala	Leu 190	Arg	Ser	
Leu	Ser	Asp 195	Pro	Thr	Arg	Phe	Gly 200	Gln	Pro	Asp	His	Tyr 205	Ser	Asn	Phe	
Tyr	Pro 210	Asp	Pro	Asn	Asn	Asp 215	Asp	Glu	Gly	Gly	Val 220	His	Thr	Asn	Ser	
Gly 225	Ile	Ile	Asn	Lys	Ala 230	Tyr	Tyr	Leu	Leu	Ala 235	Gln	Gly	Gly	Thr	Ser 240	
His	Gly	Val	Thr	Val 245	Thr	Gly	Ile	Gly	Arg 250	Glu	Ala	Ala	Val	Phe 255	Ile	
Tyr	Tyr	Asn	Ala 260	Phe	Thr	Asn	Tyr	Leu 265	Thr	Ser	Thr	Ser	Asn 270	Phe	Ser	
Asn	Ala	Arg 275	Ala	Ala	Val	Ile	Gln 280	Ala	Ala	Lys	Asp	Phe 285	Tyr	Gly	Ala	
Asp	Ser 290	Leu	Ala	Val	Thr	Ser 295	Ala	Ile	Gln	Ser	Phe 300	Asp	Ala	Val	Gly	
Ile 305	Lys															
<21: <21: <21: <22: <22:	0 > 51 1 > 11 2 > T 3 > 01 3 > 0 3 > 0 3 > 0 3 > 0 3 > 0 5 3 > 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ENGTI YPE : RGANI EATUI THER YNTH	H: 1 DNA ISM: RE: INF esiz	794 Art: ORMA' ed P:		: Syı	- nthet	cic:								
		-			tg ga	atca	gette	g tt	gttt	gcgt	taa	cgtta	aat (cttt	acgatg	60
gcgi	ttcaç	gca a	acat	gage	gc g	cagg	ctgct	c gga	aaaaq	gcag	agca	atte	agt 1	tcct	gacccg	120
acg	caact	ta	cacc	gaca	tt t	catg	ctga	g ca	gtgga	aagg	cac	cgag	cac g	ggtca	acgggc	180
gaca	aacat	ccg 1	tgtg	gaget	ta co	ctga	acaga	a ca	gaaaa	aaga	cgc	tgct	gaa (cacg	gactca	240
acga	agcgt	ga g	gaga	ccag	tt ca	agaat	tcato	c ga	cagaa	acga	gcg	acaa	gtc a	aggc	gcgtca	300

Cattatagac tgaagcaga cgtgaacgg atcccggtct acggacgag gcaaacggt data catgtgaata atgcgggaa agttacata tacctgggeg cgtcatct agaagaccag cagcaagatg caccggagg tacaacaccg agatcacg cgtcatct agaagaccag gctacgcg agcggcg aggaccag gggacac agggcatg aaatccaaa catcggcat 600 agagcatcag agggaccag cactatcg gaggctat acaacgtt gtgacaccg 600 gtggatcag cgaacaga cactatcg gggagaca cggacatgg gtagttag 170 ccgaaggeg agtgtat ctatcgga gggagaca cggacatgg gtagttag 170 gaggtcaac tcctgage tgccacag gggagaca cggaacag gagaggg 900 gacggcaaa caaatcat cacgacacg ggcagacag cggaacag cgaagggg 900 gacgacaaa tactggac tgccacac gcagcggga acag acag															
cagcangatg caacgangga tacaacaccg aagatcagcg cacagangg ggtchatacg ggtacgccg aaggggctg aagaatcag agettecegt caathaatga cagcetgaag aagaccag aggaacaag cagcagaac cagggcaatg aaatcaaaa categgcate gaggatcag eggaacagg catattgca aagategeg atetgagaceg tecagtegag cegaacggce gedeataat etategga eggagacga tactgagaeg gtacgtaeg gaggtcaaca tecttgagee tecatatge aagategeg eggaacagg tacegtaeg ggcaagateg tettaatge eggaacaga etattateg acaetage ggcaagateg tettaate eggacega acagataeca gedagaegg gaeggcaaa caaatege eggaacaeg acagataeca gedagaegg acagatea eaaatege eggaacaeg aagategeg ateggaacag eggagaeg acaacaagat caaatgee egaacagg caagatege eggaacagg eggaacagg efga acaacaagat caaatege eggaacag gaagaegg aagaegeg eggaacag eggageg acagateg eggataed egtaacate aeggeegga atagaeaga eggeegga acagaateg eggataed egtaacaet egg eggaacag egeegegga loo acagaateg aaateaga eggeetaa aeggeegga atageageg egg acagatea gaegtaega etataaegtgg gaagateeg eageatege eg acagateg aaateaga eacagteg gaagateeg eageateet ategaaga laeegeage aaateaga acaeggeega eggeetta aategatega loo aaeggeage daateag acaaggeega eggeeta egaataea teegegega loo gaacegaag eggaateag eeggeata egaegeta egaacaega loo gaacegaag ecateatgge gedaetag aggeetta eagaatee teeggega loo aaeggaag eegaateag egeateag egaegeta egaataeat teeggeega loo gaacagaa geegetaga eetaegge gageetae egaacaetee gaegaacaet lao geacagaag eetateage egaateag ategeae egaataeat eeggeega loo taceeggaa geegetge agaateaa teggeega egaataea teeggeega loo aaageetae tatetgetge aaaggeegga aegteaae daaaatee teeggaegaa loo gaecaagag eggaagtet tatetaea aegeetae caaaaatee gaegagaea loo pgeagaagag eggeagtet tatetaea aegeetae egaacage eatateae loo sectoeggae egaateaga teggeegga aegeetae egaagaet thategaea loo loo seegaage egaaedaeg ageegeega egaaeage eaaagaeet thategaega loo gaecaeagga egaaedae ag aegeetae agaegaed tateeggeega loo gaecaeagga egaaegeega aegeetaeae tegeageaea loo loo seegaaegeegaaegeegaaegeegaaeaeaeaeeegaeaeaeaeeee egaaeaeaeeeeeeee	cattatagac	tgaa	gcagt	a co	gtgaa	cggc	atco	cggt	ct a	acgga	agee	ga (gcaaa	acgatc	360
gottacgccg aagoggotge aagaatecag agettecegt caattatga cagectgage 540 gaagaeteag aggaacaagg cageagaae cagggeetag aaatecaaaa categgeete 660 gtegateagg cgaacagg etatattgea aagategeg acteggagete gtegateeg 720 cegaaggeeg agetgtat etateeggae ggegagaeg eggagaeeg gtegateeg 780 ggaagateg tgtteaga egateetag agaacaagat actttatega egeagaeg 900 gaaggeegaae caaatege egaacaag eggaacagg egagaegg 900 gaaggeegaae caaatege egateeteg egaacaaga eggeegagae 900 gaeggeeaaa ecaaatege egateeteg egaacaaga eggeegagae 900 acaacagat caaatggeat egteacaaeg egaegegea acagataeeg egaggeegg 900 acaacagat caaatggeat egteacaaeg egaegegea acagataeeg gaegeegga 1020 acaacagat caaatggeat egteacaaeg egaegegea acagateeg gaegeegga 1020 acaacagat caaatggeat egteacaaeg egaegegea acagateeg gaegeegga 1200 aacgaedee agaegtaega eaceagteg agaegeteg aagaeggae 1200 aacgaege aatecag egaegaga egaegeteaa egtteacaeaa teeteggae 1200 aacggeegaag egeatege egaegae egaegegae 1200 aacggeeg aatecag egaegaegae gaegeteaa egaeaegae gaegeegae 1200 aacggeegaage egaeatege egaegaegae egaegeegae 1200 gaacgaae actegee tagaetegee egaegeegae 1200 gaegeetaeae 1202 <td>catgtgaata</td> <td>atge</td> <td>gggca</td> <td>a ag</td> <td>gttac</td> <td>atca</td> <td>tacc</td> <td>tggg</td> <td>cg d</td> <td>ccgt</td> <td>catc</td> <td>tc.</td> <td>agaaq</td> <td>gaccag</td> <td>420</td>	catgtgaata	atge	gggca	a ag	gttac	atca	tacc	tggg	cg d	ccgt	catc	tc.	agaaq	gaccag	420
gaagcatcag aggaaccagg cacgagaac cagggcatg aatccaaa catcggcatc 600 aagagcagcg tgtcaacga cacgatgcg gaggccata acaacgttct gctgacccg 660 gtcgatcagg ccgaacgag ctatattgca aagatcgcg atctggggc gtcagtgag 720 ccgaaggccg agctgtat ctatccgga ggcgagag cgaggacga cgagacgg gtcaggagg 900 gaggtcaaca tccttgggcc tgcgcctg agaacaagat actttacga cgccaagacg 840 ggcaggcaaa caaatcatt cacgacaacg gcaggcga caggacag cagaggcgg aggcgggg 900 acacaagat caaatggcat cgtcaatac acggccgga acagatacca gctgaaggac 960 acacaagat caaatggcat cgtcacata cacgaccgg cagagagatg acagatacg gagcgcggg 1020 acgattctg cggatacaga tacgttgg gaagatccg cagacgatga tgcacatga 1080 tacgcgatca agacgtacga ctatacaa ag acaaattcg gaagagatt atcatcgatga 1140 agaggcatg aatcagg ctactacaag acaaattcg gaagatcat atcgatgag 120 acacaagat caatggcat cgtcacata caggcggaa cagtataca tgctacatga 1200 acaggcagc caatgacag cctacaag acaaattcg gaagacacag 1200 acaggcagc tgcggcg cgcatgag agcgctcaa cgttacat ttttacag 1200 acaggcaga tacagat cacgatag ggcggtga acggactaca tggcacact 1200 gagtattacg gcgaatcag cctacgag catgg agcgctaca cgtacatat tggcaacacg 130 attgatggca catcatgg cgcatgat gaggcttca accatacat tccggcagat 120 gagtattacg gcgactga cctacaga gacgccaacag accacacag	cagcaagatg	caac	ggagg	a t <i>a</i>	acaac	accg	aaga	tcago	cg d	ccaca	agaa	gc	ggtct	tatacg	480
aagagcagcg tgtcaacaga cacgtatgog gaggtcata acaacgttt gctgacaccg 660 gtcgatcagg ccgaacagag ctatattgca aagatcgcga atctgaggcc gtcagtacgg 720 ccgaaggccg agctgtata ctatcoggac ggcgagaga ccgagacggt gtacgtacg 780 gaggtcaaca tccttgagcc tgcgccgg agaacaagat actttatcga cgccaagacg 840 ggcaagatcg tgtttcagta cgatatcctg aaccatgcga cgggaacagg cagaggcgt 900 gacggcaaca caaatcatt cacgacaacg gcaagcggca acagatacca gctgaaggac 960 acaacaagat caaatggcat cgtcacata acggccggaa atagacaga gacgccggga 1020 acgattctga cggatacaga tacgtgg gaagatccgg cagcagttga tgcacatgca 1080 tacgcgatca agacgtacga ctactacaag aacaattcg gaagagatt aatcgatgga 1140 agaggcagc aaatagata acggtgag acagagtca cgttacat atcgatgga 1140 agaggcatg aatcagat aacgtgtgg gaaggtcaa ggtacaacaa tgccttegg 1200 accggacc aaagagtacga ctactacaag aacaattcg gaagagatt aatcgatgga 1140 agaggcagc caatgaca cggcatgag agaggtcaa cgttacat cttttcagc 1260 gacceggacg tcgteggca tgaactgacg catggegtta cagagttca gagcaaccg 1320 gagtattacg gcgaatcagg cgcatgat gaggttta agagcatca tggcaatcat 1260 gacceggac tcgteggca tgaactgacg catggegtta cagagtcac gagcaact 1320 gagtattacg gcgaatcag cgcatgag ttcggcaac ctgaccatt gagcaactg 1320 gagtattacg gcgaatcag cgcatgag ttcggcaac ctgaccatt tggcaagga 1440 gcactgagaa gcctgtcaga cctacgag ttcggcaac tgaccata tgcgacagca 1560 tacceggat ctaatacga tgatgagg gagtgcaac cgaacagcg cattacaa 1560 aaagegtact atctgctgg acaaggegg acgtcacatg gagtgacgg tgacagaat 1620 ggcagagagg cgcagtgtt tatctacta acgcccata gaagagcgg gacaggaat 1620 ggcagagagg cgcagtgtt tatctacta acgccata gaagagacg 1680 tcaaatttca gcaacgtag agcggcggt atccaacg cagtggaat taag 1744 gactcactgg cagttacgt agcagtaga tacagacg cagtggaat taag 1740 gactcactgg cagttacgt agcagtgeg tactagac cagatgag cagaaca 1740 gactacatgg cagttacgt agcagtgeg tactaga cagatgacg cagaagacg 1680 tcaaatttca gcaacgtag agcggcggt atccaacg cagtggaat taag 1740 c210> TPF PRT c210> SEQ ID NO 10 c211> TPF PRT c210> SEQ ID NO 10 c211> TPF PRT c210> SEQ ID NO 10 c211> TPF PRT c210> CSEQ ID NO 10 c211> TPF PRT c210> CSEQ ID NO 10 c211> TPF PRT c210> CSEQ ID NO 10 c211> TPF PRT c2	gcttacgccg	aagc	ggctg	c aa	agaat	ccag	agct	tcccç	gt d	caat	taat	ga	cagco	ctgagc	540
gtcgatcagg ccgaacagag ctatattgca aagatcgcg atctgagcc gtcagtcgg720ccgaaggcog agctgtata ctatccggac ggcgagacag cgggactggt gtacgttacg780gaggtcaaca tccttgagcc tgcgccgtg agaacaagat actttatcga cgccaagacg840ggcaagatcg tgtttcagta cgatatcctg accatgcga cgggaacagg cagaggcgg900gacggcaaaa caaatatt cacgacaacg gcaagcgga acagatacca gctgaaggac960acaacaagat caaatggca cgtcacatac acggccgga atagacaga gacgccgga1020acagatctga cggatacaga taacgtgtg gaagatccg cacagttga tgcacatgca1000tacgcgatca agacgtacg ctactacaag acaaattcg gaaggagtt atacgatgga1140agaggcatg caaatcagat cacggtgag agcggctaa cgatacaca tgcttcgg1200aacaggagcg caaatgaca tacggtgga gacggctaa cgatacaca tgctctcg1200aacaggacg caaatgaca cacgggag gacggctaa cgatacat ggcgagac1200aacggcagc caaatggca tggcggtg ggggggg ggcgcaa cggtacacat ggccggga1200aacggcagc caaatggca tggcggtg ggggggg ggcgcaa cggacacaa tgccttagg1200aacggcaga cgcagcag cggatgga gacggctaa cgacacat tggcaacaga1320gagtattacg gcgatcag cgcactgaat gagcgtta cgacactat tggcaacaga1380attgatggca catcatggct gcttggcga ggatgcaa cgacacag gacaggaatc1500tacccggagagg cggcagtgt tatcacaca tgcgagacac1680taccactgg cggatggt gacggcgga acgtcacat gacaggaat1620ggcagagag cggcagtgt agcaggcg acaaggact tatagacgac1740gactacattca gcacactag agcggcgga acgtcacatg gacgagaat1740gactacatgg cggcagtgt agcaggcg caaaggact ttatggagca1740gactacatgg cagtacgt agcagcgacg acaaggacgt caaaggact that gaagca1740gactacatgg cggtacgt agcagctag tactacag cagtggacgacgacgacgacgacgacgacg	gaagcatcag	agga	acaag	g ca	agcga	gaac	cagg	gcaat	cg a	aaato	ccaa	aa	catco	ggcatc	600
ccgaaggccg accgtatat ctatccggac ggcggagacg cggactgg gactgt gtacgttacg 780 gaggtcaaca tccttgagcc tgcgccgcg agacaagat actttatcga cgccaagacg 840 ggcaagatcg tgttcagt cgatatcctg accatgcg cgggaacagg cagaggcgtg 900 gacggcaaa caaatcat cacgacacg gcaagcggc acagatacca gctgaaggac 960 acaacaagat cacatggac cgtcacatac acgccggaa atagacaga cacagagcggga 1020 acggtcaac agactgac cgtcacatac acggccggaa atagacagac gacgccggga 1020 acggatcag cggatacaga taacgtgtg gaagatccg cacagtga tgcacatgca 1080 tacgcgatca agacgtacga ctactacaag acaaattcg gaaggagtt atacgatgga 140 agaggcatg caaatcagat accgtgtat tatggcaaa agtacaacaa tgccttcgg 1200 aacggcgac aaatgacat cggcgatgg gacggctcaa cgtttacat tattcggc 1200 aacggcagc caaatgacat acggcgatgg gacggctcaa cgttacatt cttttcagc 1200 aacggcagc caaatgacat acggcgatgg gacggctaa cgagatcat tggcacatcg 1220 gagtattacg gcgatcgg gcactgaat gagcgtta cagggtacat 1220 gagtattacg gcgatcgg gcactgaat gagcgtta caggatcata tggcacatcat 1320 gagtatagg cgcagtgc gcactgaat gagcgtcaa cgacactat tggcacatcat 1500 tacccggaa gccgtcaga ccctacagga ggcgg gaat cgacagcgg cattatcaa 1500 tacccggaagg gcgcgcggc gacggggg gacggcaa ccgacagcgg gacggacg	aagagcagcg	tgtc	aaacg	a ca	acgta	tgcg	gagg	ctcat	ca a	acaa	cgtt	et (gctga	acaccg	660
<pre>gaggtcaaca tccttgagcc tgcgccgcg gagacaagat actttatcga cgccaagacg \$40 ggcaagatcg tgtttcagta cgatatcctg aaccatgcga cgggaacagg cagaggcgtg 900 gacggcaaaa caaatcatt cacgacaacg gcaagcgga acagatacca gctgaaggac 960 accaacaagat caaatggcat cgtcacatac acggccggaa atagacagac gacgccggga 1020 acgattctga cggatacaga taacgtgtgg gaagatccgg cagcagttga tgcacatgca 1080 tacgcggatca agacgtacga ctactacaag aacaaattcg gaagagatt atacgatgga 1140 agaggcatgc aaatcagatc aacggtcat tatggcaaaa agtacaacaa tgccttctgg 1200 aacggcagca caaatgacat cggcgatgg gacggctcaa cgtttacatt cttttcagg 1260 gacccggacg tcgtcggcca tgaactgacg catggcgtta cagagttca tgcacatgga 1320 gagtattacg gcgaatcagg cgcactgaat gaggcttca gcgacatcat tggcaacag 1320 gagtattacg gcgaatcagg cgcactgaat gaggcttca gcgacatcat tggcaacaga 1380 attgatggca catcatggct gctggcgac ggcatttaca cacctaacat tccgggcgat 1440 gcactgagaa gcctgtcaga ccctacgaga ttcggccaac ctgacaatt cggcaactac 1550 tacccggatc atatcggt gctggcgga ggggtgcaa cgacagcgg catatcaac 1560 aaagcgtact atctgctggc acaaggcgga acgtcacatg gagtgacgg gaaggaact 1620 ggcagagagg cggcagtgtt tatctactac aacgcctca caaacacct gacgagcacg 1680 tcaaatttca gcaacgctag agcggcggt atccaggcg caatggaat 1620 ggcagagagg cggcagtgtt tatctactac acgcctac caaacacct gacgagcacg 1680 tcaaatttca gcaacgctag agcggcggt atccaggc gagtggaat taag 1794 <210> SEQ ID NO 10 <211> LENGTH: 598 <212> TPE: PET <220> FENTURE: <220> FENTURE:</pre>	gtcgatcagg	ccga	acaga	g ct	atat	tgca	aaga	tcgc	ga a	atct	ggag	cc (gtcag	gtcgag	720
ggcaagatcg tgtttcagta cgatacctg aaccatgcga cgggaacagg cagaggcgg 900 gacggcaaaa caaatggcat cgtcacatac acggccggaa atagacagac gacgccggga 1020 acgattctga cggatacaga taacgtgtgg gaagatccgg cagcagttga tgcacatgca 1080 tacgcgatca agacgtacga ctactacaag aacaaattcg gaaggattc aatcgatgga 1140 agaggcatgc aaatcagatc aacggtcat tatggcaaa agtacaacaa tgccttcgg 1200 aacggcagca caatgacata cggcgatgga gacggctcaa cgtttacatt cttttcaggc 1260 gacccggacg tegteggcca tgaactgacg catggcgtt caggagtaca gagcaacctg 1320 gagtattacg gcgaatcagg cgcactgaat gaggcttca gcgaatcac gagcaacctg 1320 gagtattacg gcgaatcagg cgcactgaat gaggcttca gcgaatcac gagcaacctg 1320 gagtattacg gcgaatcagg cgcactgaat gaggcttca gcgacatcat tgcgaacgac 1380 attgatggca catcatggct gcttggcgac ggcattaca cacctaacat tccgggcgat 1440 gcactgagaa gcctgtcaga ccctacgaga ttcggccaac ctgaccatt a cagcaactc 1500 tacccggatc ctaataacga tgatgagggc ggagtgcaa cgaacagcgg cattacaac 1560 aaagcgtact atctgctggc acaaggcgg aacgtcacat gagtgacgg gacggacc 1620 ggcaagagag cggcagtgtt tatctactac aacgcctta caaacatcc gacgagcac 1680 tcaaattca gcaacgctag agcggcggtc atccaggcag caaaggact 1620 ggcaagagag cggcagtgtt tatctactac aacgcctca caaatacct gacgaccg 1680 tcaaattca gcaacgctag agcggcggtc atccaggcag caaaggact tatggaca 1794 <210 > SEQ ID NO 10 <211 > LENGTH: 598 <222 > FERTWE: $<222 > OFLER INFORMATION: Synthetic: amino acid sequence of the PerpFro2precursor protein expressed from plasmid pGX084(AprE-PerpPro2)<400 > SEQUENCE: 10Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu1 5 10 15Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Ala Gly Lys20 25 30Ala Glu His Ser Val Pro Asp Pro Thr Gln Leu Thr Pro Thr Phe His35 40 45$	ccgaaggccg	aget	gtata	t ct	atcc	ggac	ggcg	agaco	ga d	cgaga	actg	gt (gtaco	gttacg	780
gacggcaaaa caaatcatt cacgacaacg gcaagggca acagatacca gctgaaggac 960 acaacaagat caaatggcat cgtcacatac acggccggaa atagacagac gacgccggga 1020 acgattetga eggatacaga taacgtgtgg gaagateegg cacgattga tgcacatgca 1080 tacgegatca agacgtacga etaetacaag aacaaatteg gaaggatte aategatgga 1140 agaggcatge aaateagate aacggtteat tatggcaaaa agtacaacaa tgcettetgg 1200 aacggcagca caatgacata eggcgatgga gacggeteaa egtatacatt ettteagge 1260 gacceggaeg tegteggeea tgaaetgaeg eatggegtte eggeateae gageaectg 1320 gagtattaeg gegateagg egeaetgaat gaggettea gegaetaet ggeaaectg 1320 gagtattaeg gegateagg egeaetgaat gaggettea eggaetaet tggcaaegae 1380 attgatggca cateatgget gettggegae ggeattaea cacetaacat teegggegat 1440 gcaetgagaa geetgteaga eeetagag teeggeeae etgaeeae teeggae 1440 gcaetgagaa geetgteaga eeetagag teeggeeae etgaeeae teeggae 1440 gcaetgagaa geetgteaga eeetagag ggagtgeata eggaeaeetg 1500 taceeggate etaetaget gettggegae ggagtgeat eggaeagge eattateae 1560 aaagegtaet atetgetgge acaaggegg gagtgeat eggaeaggeg gaaggaate 1620 ggcagagagg eggeagtgtt tatetaetae aacgeette eagaacaee gaeggaeae 1620 ggeagagagg eggeagtgtt tatetaetae aacgeette eagaacaee gaegageae 1620 ggeagagagg eggeagtgtt tatetaetae aacgeette eagaeaee 1740 gaeteaetgg eagttaegte ageaatteag teateggeg eaaaggaett tatggaea 1740 gaeteaetgg eagttaegte ageaatteag teategge gaaggaett tatggaea 1740 seeteeteeteeteeteeteeteeteeteeteeteeteet	gaggtcaaca	teet	tgagc	c tç	gegee	gctg	agaa	caaga	at a	actt	tatc	ga	cgcca	aagacg	840
acaacaagat caaatggcat cgtccacatac acggccggaa atagacagac gacgccggga 1020 acgattctga cggatacaga taacgtgtgg gaagatccgg cagcagttga tgcacatgca 1080 tacgcgatca agacgtacga ctactacaag aacaaattcg gaagagattc aatcgatgga 1140 agaggcatgc aaatcagatc aacggttcat tatggcaaaa agtacaacaa tgccttctgg 1200 aacggcagca aaatgacata cggcgatgga gacggctcaa cgtttacatt cttttcaggc 1260 gacccggacg tcgtcggcca tgaactgacg catggcgtt cagagttcac gagcaacctg 1320 gagtattacg gcgaatcagg cgcactgaat gaggctttca gcgacatcat tggcaacgac 1380 attgatggca catcatggct gcttggcgac ggcatttaca cacctaacat tccgggcgat 1440 gcactgagaa gcctgtcaga ccctacgaga ttcggccaac ctgaccatt cagcaacttc 1500 tacccggatc tactgctggc acaaggcgga acgtccacat gagtgacgg cattatcaac 1560 aaagcgtact atctgctggc acaaggcgga acgtcacatg gagtgacggt gacaggatc 1620 ggcagagagg cggcagtgtt tatctactac aacgcctca caaactact gacgagcacg 1680 tcaaattca gcaacgctag agcggcggtc atccaggcag caaaggact ttatggagca 1740 gactcactgg cagttacgt agcagtagt gcatggcag caaaggact ttatggagca 1740 gactcactgg cagttacgt agcagtatcag tcatggacg cagtggaat taag 1794 <210> SEQ ID NO 10 <211> LENGTH: 598 <222> FEATURE: <223> OTHER INFORMATION: Synthetic: amino acid sequence of the PepPro2 precursor protein expressed from plasmid pGX084(AprE-PepPro2) <<400> SEQUENCE: 10 Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu 1 5 10 15 Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Ala Gly Lys 20 Ala Glu His Ser Val Pro Asp Pro Thr Gln Leu Thr Phe His 35 40 45 Ala Glu Gln Trp Lys Ala Pro Ser Thr Val Thr Gly Asp Asn Ile Val 50 5 60 Trp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser	ggcaagatcg	tgtt	tcagt	a co	gatat	cctg	aacc	atgc	ga d	caaa	aaca	aa .	cagaç	ggcgtg	900
acgattctga cggatacaga taacgtgtgg gaagatccgg cagcagttga tgcacatgca 1080 tacgcgatca agacgtacga ctactacaag aacaaattcg gaagagattc aatcgatgga 1140 agaggcatgc aaatcagatc aacggttcat tatggcaaaa agtacaacaa tgccttctgg 1200 aacggcagcc aaatgaccaa cggcgatgga gacggctcaa cgttacatt ctttcaggc 1260 gacccggacg tcgtcggcca tgaactgacg catggcgtta cagagttcac gagcaacctg 1320 gagtattacg gcgaatcagg cgcactgaat gaggcttca gcgacatcat tggcaacgac 1380 attgatggca catcatggct gcttggcgac ggcatttaca cacctaacat tccgggcgat 1440 gcactgagaa gcctgtcaga ccctacgaga ttcggccaac ctgaccatta cagcaacttc 1500 tacccggatc ctaataacga tgatgagggc ggagtgcata cgaacagcgg cattacaac 1560 gacggagagg cggcagtgtt tatctactac aacgcctta cagcaagtg 1620 ggcagagagg cggcagtgtt tatctacta aacgcctta cgaacaggg cattatcaac 1560 tacccggatc atactgctgc acaaggcgga acgtcacatg gagtgacggt gacaggaatc 1620 ggcagagagg cggcagtgtt tatctacta aacgccttca caaactacct gacgagcag 1680 tcaaattca gcaacgctag agcggcggt atccaggcag caaaggact 1440 gactcactgg cagtacgtc agcaattcag tcattcgacg cagtggaat taag 1794 <210> SEQ ID NO 10 <211> LENOTH: 598 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: amino acid sequence of the PepPro2 precursor protein expressed from plasmid pGX084(AprE-PepPro2) <<400> SEQUENCE: 10 Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu 1 5 10 15 Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Ala Gly Lys 20 25 30 Ala Glu His Ser Val Pro Asp Pro Thr Gln Leu Thr Pro Thr Phe His 35 40 45 Ala Glu Gln Trp Lys Ala Pro Ser Thr Val Thr Gly Asp Asn Ile Val 50 7xp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser	gacggcaaaa	caaa	atcat	t ca	acgac	aacg	gcaa	gcgg	ca a	acaga	atac	ca	gctga	aaggac	960
tacgcgatca agacgtacga ctactacaag aacaaattcg gaagagatt aatcgatga 1140 agaggcatgc aaatcagatc aacggttcat tatggcaaaa agtacaacaa tgccttctgg 1200 aacggcagcc aaatgacata cggcgatgga gacggctcaa cgttacatt ctttcaggc 1260 gacccggacg tcgtcggcca tgaactgacg catggcgtta cagagttcac gagcaacctg 1320 gagtattacg gcgaatcagg cgcactgaat gaggctttca gcgacatcat tggcaacgac 1380 attgatggca catcatggct gettggcgac ggcatttaca cacctaacat tccgggcgat 1440 gcactgagaa gcctgtcaga ccctacgaga ttcggccaac ctgaccatt a cagcaactc 1500 tacccggatc ctaataacga tgatgagggc ggagtgcata cgaacagcgg cattacaac 1560 aaagcgtact atctgctggc acaaggcgga acgtcacatg gagtgacggt gacaggaact 1620 ggcagagagg cggcagtgt tatctactac aacgccttca caaactacct gacgagcacg 1680 tcaaatttca gcaacgctag agcggcggt atccaggcag caaggact 1440 gactcactgg cagtatgct agcagtatcag tcattcagc cagtggaat taag 1740 gactcactgg cagtatgtc agcaattcag tcattcgacg cagtggaat taag 1794 <210> SEQ ID NO 10 <211> LENGTH: 598 <212> TYPE: PT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: amino acid sequence of the PepPro2 precursor protein expressed from plasmid pGX084(AprE-PepPro2) certors protein expressed from plasmid pGX084(AprE-PepPro2) so 25 30 Ala Glu His Ser Val Pro Asp Pro Thr Gln Leu Thr Pro Thr Phe His 35 40 45 Ala Glu Gln Trp Lys Ala Pro Ser Thr Val Thr Gly Asp Asn Ile Val 50 Trp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser	acaacaagat	caaa	tggca	t cg	gtcac	atac	acgg	ccgga	aa a	ataga	acag	ac	gacgo	ccggga	1020
agaggcatgc aaatcagatc aacggttcat tatggcaaaa agtacaacaa tgccttctgg 1200 aacggcagcc aaatgacata cggcgatgga gacggctcaa cgtttacatt cttttcaggc 1260 gacccggacg tcgtcggcca tgaactgacg catggcgtta cagagttcac gagcaacctg 1320 gagtattacg gcgaatcagg cgcactgaat gaggcttca gcgacatcat tggcaacgac 1380 attgatggca catcatggct gcttggcgac ggcatttaca cacctaacat tccgggcgat 1440 gcactgagaa gcctgtcaga ccctacgaga ttcggccaac ctgaccatta cagcaacttc 1500 tacccggatc ctaataacga tgatgagggc ggagtgcata cgaacagcg cattacaac 1560 aaagcgtact atctgctggc acaaggcgga acgtcacatg gagtgacgg gacaggaac 1620 ggcagagagg cggcagtgtt tatctactac aacgccttca caacatacct gacgagcacg 1680 tcaaatttca gcaacgctag agcggcggtc atccaggcag caaaggact ttatggagca 1740 gactcactgg cagttacgtc agcaattcag tcattcgacg cagtggaat taag 1794 <210> SEQ ID NO 10 <211> LENGTH: 598 <212> TYPE: PTT <213> ORGMIISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: amino acid sequence of the PepPro2 precursor protein expressed from plasmid pGX084 (AprE-PepPro2) <<400> SEQUENCE: 10 Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu 1 5 10 15 Ile Phe Thr Met Ala Phe Ser Asm Met Ser Ala Gln Ala Ala Gly Lys 20 25 30 Ala Glu His Ser Val Pro Asp Pro Thr Gln Leu Thr Pro Thr Phe His 35 40 45 Ala Glu Gln Trp Lys Ala Pro Ser Thr Val Thr Gly Asp Asn Ile Val 50 55 60 Trp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser	acgattctga	cgga	tacag	a ta	acgt	gtgg	gaag	atcc	gg d	cage	agtt	ga	tgcad	catgca	1080
aacggcagcc aaatgacata cggcgatgga gacggctcaa cgtttacatt cttttcaggc 1260 gacccggacg tcgtcggcca tgaactgacg catggcgtta cagagttcac gagcaacctg 1320 gagtattacg gcgaatcagg cgcactgaat gaggcttca gcgacatcat tggcaacgac 1380 attgatggca catcatggct gcttggcgac ggcatttaca cacctaacat tccgggcgat 1440 gcactgagaa gcctgtcaga ccctacgaga ttcggccaac ctgaccatt acgacactc 1500 tacccggatc ctaataacga tgatgagggc ggagtgcata cgacagcgg cattatcaac 1560 aaagcgtact atctgctggc acaaggcgga acgtcacatg gagtgacgg gacaggaatc 1620 ggcagagagg cggcagtgtt tatctactac aacgccttca caaactacct gacgagcacg 1680 tcaaatttca gcaacgctag agcggcggtc atccaggcag caaaggactt ttatggagca 1740 gactcactgg cagttacgtc agcaattcag tcattcgacg cagtggaat taag 1794 <210> SEQ ID NO 10 10 <211> LENGTH: 598 1794 <212> TYPE: PRT 1794 <213> ORGANISM: Artificial Sequence 1794 <220> FEATORE: 10 <221> OTHER INFORMATION: Synthetic: amino acid sequence of the PepPro2 precursor protein expressed from plasmid pGX084 (AprE-PepPro2) <400> SEQUENCE: 10 15 Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu 1 5 30 Ala Glu His Ser Val Pro Asp Pro Thr Gln Leu Thr P	tacgcgatca	agac	gtacg	a ct	acta	caag	aaca	aatto	g g	gaaga	agat	tc .	aatco	gatgga	1140
<pre>gaccqgacg tcgtcggcca tgaactgacg catggcgtta cagagttcac gagcaacctg 1320 gagtattacg gcgaatcagg cgcactgaat gaggctttca gcgaactat tggcaacgac 1380 attgatggca catcatggct gcttggcgac ggcatttaca cacctaacat tccgggcgat 1440 gcactgagaa gcctgtcaga ccctacgaga ttcggccaac ctgaccatta cagcaacttc 1500 tacccggatc ctaataacga tgatgagggc ggagtgcata cgaacagcgg cattatcaac 1560 aaagcgtact atctgctggc acaaggcgga acgtcactag gagtgacggt gacaggaatc 1620 ggcagagagg cggcagtgtt tatctactac aacgccttca caactacct gacgagcacg 1680 tcaaatttca gcaacgctag agcggcggtc atccaggcag caaaggact ttatggagca 1740 gactcactgg cagttacgtc agcaattcag tcattcgacg cagtggaat taag 1794 </pre>	agaggcatgc	aaat	cagat	c aa	acggt	tcat	tatg	gcaaa	aa a	agta	caac	aa	tgcct	tctgg	1200
<pre>gagtattacg gcgaatcagg cgcactgaat gaggctttca gcgacatcat tggcaacgac 1380 attgatggca catcatggct gcttggcgac ggcatttaca cacctaacat tccgggcgat 1440 gcactgagaa gcctgtcaga ccctacgaga ttcggccaac ctgaccatta cagcaacttc 1500 tacccggatc ctaataacga tgatgagggc ggagtgcata cgaacagcgg cattatcaac 1560 aaagcgtact atctgctggc acaaggcgga acgtcacatg gagtgacggt gacaggaatc 1620 ggcagagagg cggcagtgtt tatctactac aacgccttca caaactacct gacgagcacg 1680 tcaaatttca gcaacgctag agcggcggtc atccaggcag caaaggactt ttatggagca 1740 gactcactgg cagttacgtc agcaattcag tcattcgacg caaaggactt ttatggagca 1740 gactcactgg cagttacgtc agcaattcag tcattcgacg cagtggaat taag 1794 <210> SEQ ID N0 10 <211> LENGTH: 598 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <<223> OTHER INFORMATION: Synthetic: amino acid sequence of the PspPro2 precursor protein expressed from plasmid pGX084(AprE-PspPro2) <<400> SEQUENCE: 10 Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu 1 5 10 15 Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Ala Gly Lys 20 25 30 Ala Glu His Ser Val Pro Asp Pro Thr Gln Leu Thr Pro Thr Phe His 35 40 45 Ala Glu Gln Trp Lys Ala Pro Ser Thr Val Thr Gly Asp Asn Ile Val 50 55 60 Trp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser</pre>	aacggcagcc	aaat	gacat	a co	ıgcga	tgga	gacg	gctca	aa d	gtti	taca	tt -	cttt	caggc	1260
attgatggca catcatggct gcttggcgac ggcatttaca cacctaacat tccgggcgat 1440 gcactgagaa gcctgtcaga ccctacgaga ttcggccaac ctgaccatta cagcaacttc 1500 tacccggatc ctaataacga tgatgagggc ggagtgcata cgaacagcgg cattatcaac 1560 aaagcgtact atctgctggc acaaggcgga acgtcacatg gagtgacggt gacaggaatc 1620 ggcagagaggg cggcagtgtt tatctactac aacgccttca caaactacct gacgagcacg 1680 tcaaatttca gcaacgctag agcggcggtc atccaggcag caaaggactt ttatggagca 1740 gactcactgg cagttacgtc agcaattcag tcattcgacg cagtggaat taag 1740 gactcactgg cagttacgtc agcaattcag tcattcgacg cagtggaat taag 1794 <210> SEQ ID NO 10 <211> LENGTH: 598 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: amino acid sequence of the PspPro2 precursor protein expressed from plasmid pGX084(AprE-PspPro2) <400> SEQUENCE: 10 Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu 1 5 10 15 Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Ala Gly Lys 20 25 30 Ala Glu His Ser Val Pro Asp Pro Thr Gln Leu Thr Pro Thr Phe His 35 40 45 Ala Glu Gln Trp Lys Ala Pro Ser Thr Val Thr Gly Asp Asn Ile Val 50 55 60 Trp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser	gacccggacg	tcgt	cggcc	a to	gaact	gacg	catg	gcgti	ca d	caga	gttc	ac	gagca	aacctg	1320
gcactgagaa gcctgtcaga ccctacgaga ttcggccaac ctgaccatta cagcaacttc 1500 tacccggatc ctaataacga tgatgagggc ggagtgcata cgaacagcgg cattatcaac 1560 aaagcgtact atctgctggc acaaggcgga acgtcacatg gagtgacggt gacaggaatc 1620 ggcagagaggg cggcagtgtt tatctactac aacgccttca caaactacct gacgagcacg 1680 tcaaatttca gcaacgctag agcggcggtc atccaggcag caaaggactt ttatggagca 1740 gactcactgg cagttacgtc agcaattcag tcattcgacg caaggactt ttatggagca 1740 <210> SEQ ID No 10 <211> LENGTH: 598 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: amino acid sequence of the PspPro2 precursor protein expressed from plasmid pGX084(AprE-PspPro2) <400> SEQUENCE: 10 Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu 1 5 10 15 Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Ala Gly Lys $_{20}$ 25 30 Ala Glu His Ser Val Pro Asp Pro Thr Gln Leu Thr Pro Thr Phe His $_{35}$ 40 45 Ala Glu Gln Trp Lys Ala Pro Ser Thr Val Thr Gly Asp Asn Ile Val $_{50}$ 55 60 Trp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser	gagtattacg	gcga	atcag	g cg	gcact	gaat	gagg	cttt	ca ç	gcga	catc	at '	tggca	aacgac	1380
tacccggatc ctaataacga tgatgagggc ggagtgcata cgaacagcgg cattatcaac 1560 aaagcgtact atctgctggc acaaggcgga acgtcacatg gagtgacggt gacaggaatc 1620 ggcagagagg cggcagtgtt tatctactac aacgccttca caaactacct gacgagcacg 1680 tcaaatttca gcaacgctag agcggcggtc atccaggcag caaaggactt ttatggagca 1740 gactcactgg cagttacgtc agcaattcag tcattcgacg cagtggaat taag 1794 <210> SEQ ID NO 10 <211> LENGTH: 598 <212> TYPE: PRT 213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: amino acid sequence of the PspPro2 precursor protein expressed from plasmid pGX084 (AprE-PspPro2) <400> SEQUENCE: 10 Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu 1 5 10 15 Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Ala Gly Lys 20 25 30 Ala Glu His Ser Val Pro Asp Pro Thr Gln Leu Thr Pro Thr Phe His 35 40 45 Ala Glu Gln Trp Lys Ala Pro Ser Thr Val Thr Gly Asp Asn Ile Val 50 55 66 Trp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser	attgatggca	catc	atggc	t go	cttgg	cgac	ggca	ttta	ca d	cacci	taac	at	tccg	ggcgat	1440
<pre>aaagcgtact atctgctggc acaaggcgga acgtcacatg gagtgacggt gacaggaatc 1620 ggcagagagg cggcagtgtt tatctactac aacgccttca caaactacct gacgagcacg 1680 tcaaatttca gcaacgctag agcggcggtc atccaggcag caaaggactt ttatggagca 1740 gactcactgg cagttacgtc agcaattcag tcattcgacg cagttggaat taag 1794 <210> SEQ ID NO 10 <211> LENGTH: 598 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: amino acid sequence of the PspPro2 precursor protein expressed from plasmid pGX084(AprE-PspPro2) <400> SEQUENCE: 10 Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu 1 5 10 15 Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Ala Gly Lys 20 25 30 Ala Glu His Ser Val Pro Asp Pro Thr Gln Leu Thr Pro Thr Phe His 35 40 45 Ala Glu Gln Trp Lys Ala Pro Ser Thr Val Thr Gly Asp Asn Ile Val 50 55 60 Trp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser</pre>	gcactgagaa	gcct	gtcag	a co	cctac	gaga	ttcg	gccaa	ac c	ctga	ccat	ta	cagca	aacttc	1500
ggcagagagg cggcagtgtt tatctactac aacgccttca caaactacct gacgagcagggcagagagg cggcagtgtt tatctactac aacgccttca caaactacct gacgagcacgfalltcaaatttca gcaacgctag agcggcggtc atccaggcag caaaggactt ttatggagcagactcactgg cagttacgtc agcaattcag tcattcgacg cagttggaat taag(210> SEQ ID NO 10(211> LENGTH: 598(212> TYPE: PRT(213> ORGANISM: Artificial Sequence(220> FEATURE:(220> FEATURE:(223> OTHER INFORMATION: Synthetic: amino acid sequence of the PspPro2 precursor protein expressed from plasmid pGX084(AprE-PspPro2)(400> SEQUENCE: 10Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu 1151015Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Ala Gly Lys 20202530Ala Glu His Ser Val Pro Asp Pro Thr Gln Leu Thr Pro Thr Phe His 354045Ala Glu Gln Trp Lys Ala Pro Ser Thr Val Thr Gly Asp Asn Ile Val 50505560Trp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser	tacccggatc	ctaa	taacg	a to	gatga	gggc	ggag	tgcat	ca d	cgaa	cage	aa .	catta	atcaac	1560
<pre>tcaaatttca gcaacgctag agcggcggtc atccaggcag caaaggactt ttatggagca gactcactgg cagttacgtc agcaattcag tcattcgacg cagttggaat taag</pre> <pre>(210> SEQ ID NO 10 (211> LENGTH: 598 (212> TYPE: PRT (213> ORGANISM: Artificial Sequence (220> FEATURE: (220> FEATURE: (220> OTHER INFORMATION: Synthetic: amino acid sequence of the PspPro2) precursor protein expressed from plasmid pGX084 (AprE-PspPro2) (400> SEQUENCE: 10 Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu 1 5 10 15 Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Ala Gly Lys 20 25 30 Ala Glu His Ser Val Pro Asp Pro Thr Gln Leu Thr Pro Thr Phe His 35 40 45</pre> Ala Glu Gln Trp Lys Ala Pro Ser Thr Val Thr Gly Asp Asn Ile Val 50 55 60 Trp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser	aaagcgtact	atct	gctgg	c ac	caagg	cgga	acgt	cacat	cg g	gagt	gacg	gt (gacaç	ggaatc	1620
<pre>gactcactgg cagttacgtc agcaattcag tcattcgacg cagttggaat taag 1794 <210> SEQ ID NO 10 <211> LENGTH: 598 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: amino acid sequence of the PspPro2 precursor protein expressed from plasmid pGX084(AprE-PspPro2) <400> SEQUENCE: 10 Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu 1 5 10 15 Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Ala Gly Lys 20 25 30 Ala Glu His Ser Val Pro Asp Pro Thr Gln Leu Thr Pro Thr Phe His 35 40 45 Ala Glu Gln Trp Lys Ala Pro Ser Thr Val Thr Gly Asp Asn Ile Val 50 55 60 Trp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser</pre>	ggcagagagg	cggc	agtgt	t ta	atcta	ctac	aacg	cctto	ca c	caaa	ctac	st (gacga	agcacg	1680
<pre><pre><pre><pre><210> SEQ ID NO 10 <211> LENGTH: 598 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: amino acid sequence of the PspPro2 precursor protein expressed from plasmid pGX084 (AprE-PspPro2) <400> SEQUENCE: 10 Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu 1 5 10 15 Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Ala Gly Lys 20 25 30 Ala Glu His Ser Val Pro Asp Pro Thr Gln Leu Thr Pro Thr Phe His 35 40 45 Ala Glu Gln Trp Lys Ala Pro Ser Thr Val Thr Gly Asp Asn Ile Val 50 55 60</pre></pre></pre></pre>	tcaaatttca	gcaa	cgcta	g ag	lcddc	ggtc	atco	aggea	ag o	caaa	ggac	tt	ttato	ggagca	1740
<pre><211> LENGTH: 598 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: amino acid sequence of the PspPro2 precursor protein expressed from plasmid pGX084(AprE-PspPro2) <400> SEQUENCE: 10 Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu 1 5 10 15 Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Ala Gly Lys 20 25 30 Ala Glu His Ser Val Pro Asp Pro Thr Gln Leu Thr Pro Thr Phe His 35 40 45 Ala Glu Gln Trp Lys Ala Pro Ser Thr Val Thr Gly Asp Asn Ile Val 50 55 60 Trp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser</pre>	gactcactgg	cagt	tacgt	c ag	gcaat	tcag	tcat	tcgad	cg d	cagti	tgga	at	taag		1794
Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu 1 1 1 1 1 1 1 1 1 1 1 1 1	<211> LENG <212> TYPE <213> ORGAN <220> FEATU <223> OTHEN	TH: 5 : PRT NISM: URE: R INF(98 Arti ORMAT	ION :	Syn	thet	ic: a				-			-	
1 5 10 15 Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Gly Lys 30 30 Ala Glu His Ser Val Pro Asp Pro Thr Gln Leu Thr Pro Thr Phe His 35 Ala Glu Gln Trp Lys Ala Pro Ser Thr Val Thr Gly Asp Asn Ile Val 50 Trp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser	<400> SEQUI	ENCE :	10												
20 25 30 Ala Glu His Ser Val Pro Asp 40 Pro Gln Leu Thr Pro Thr Phe His 45 Ala Glu Gln Trp Lys Ala Pro 55 Ser Thr Val Thr Gly Asp Asn Ile Val 60 Trp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser	-	r Lys	-	Leu	Trp	Ile :			∋u I	Phe i	Ala i	Leu		Leu	
35 40 45 Ala Glu Gln Trp Lys Ala Pro Ser Thr Val Thr Gly Asp Asn Ile Val 50 55 60 Trp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser	Ile Phe Th		Ala	Phe	Ser			er A	la (Gln <i>i</i>			Gly	LYa	
50 55 60 Trp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser		s Ser	Val	Pro	-		Thr G	ln Le	eu 1			Γhr	Phe	His	
Trp Ser Tyr Leu Asn Arg Gln Lys Lys Thr Leu Leu Asn Thr Asp Ser		n Trp	ГЛа	Ala		Ser '	Thr V	al Tł			Asp 3	Asn	Ile	Val	
		r Leu	Asn	Arq	Gln	Lys 1	Lys I	hr Le	eu I	Leu i	Asn '	「hr	Asp	Ser	
				-			<u> </u>						F		

Thr Ser Val Arg Asp Gln Phe Arg Ile Ile Asp Arg Thr Ser Asp Lys Ser Gly Ala Ser His Tyr Arg Leu Lys Gln Tyr Val Asn Gly Ile Pro Val Tyr Gly Ala Glu Gln Thr Ile His Val Asn Asn Ala Gly Lys Val Thr Ser Tyr Leu Gly Ala Val Ile Ser Glu Asp Gln Gln Gln Asp Ala Thr Glu Asp Thr Thr Pro Lys Ile Ser Ala Thr Glu Ala Val Tyr Thr Ala Tyr Ala Glu Ala Ala Arg Ile Gln Ser Phe Pro Ser Ile Asn Asp Ser Leu Ser Glu Ala Ser Glu Glu Gln Gly Ser Glu Asn Gln Gly Asn Glu Ile Gln Asn Ile Gly Ile Lys Ser Ser Val Ser Asn Asp Thr Tyr Ala Glu Ala His Asn Asn Val Leu Leu Thr Pro Val Asp Gln Ala Glu Gln Ser Tyr Ile Ala Lys Ile Ala Asn Leu Glu Pro Ser Val Glu Pro Lys Ala Glu Leu Tyr Ile Tyr Pro Asp Gly Glu Thr Thr Arg Leu Val Tyr Val Thr Glu Val Asn Ile Leu Glu Pro Ala Pro Leu Arg Thr Arg Tyr Phe Ile Asp Ala Lys Thr Gly Lys Ile Val Phe Gln Tyr Asp Ile Leu Asn His Ala Thr Gly Thr Gly Arg Gly Val Asp Gly Lys Thr Lys Ser Phe Thr Thr Thr Ala Ser Gly Asn Arg Tyr Gln Leu Lys Asp Thr Thr Arg Ser Asn Gly Ile Val Thr Tyr Thr Ala Gly Asn Arg Gln Thr Thr Pro Gly Thr Ile Leu Thr Asp Thr Asp Asn Val Trp Glu Asp Pro Ala Ala Val Asp Ala His Ala Tyr Ala Ile Lys Thr Tyr Asp Tyr Tyr Lys Asn Lys Phe Gly Arg Asp Ser Ile Asp Gly Arg Gly Met Gln Ile Arg Ser Thr Val His Tyr Gly Lys Lys Tyr Asn Asn Ala Phe Trp Asn Gly Ser Gln Met Thr Tyr Gly Asp Gly Asp Gly Ser Thr Phe Thr Phe Phe Ser Gly Asp Pro Asp Val Val Gly His Glu Leu Thr His Gly Val Thr Glu Phe Thr Ser Asn Leu Glu Tyr Tyr Gly Glu Ser Gly Ala Leu Asn Glu Ala Phe Ser Asp Ile Ile Gly Asn Asp Ile Asp Gly Thr Ser \mbox{Trp} Leu Leu Gly Asp \mbox{Gly} Ile \mbox{Tyr} \mbox{Thr} Pro Asn Ile Pro Gly Asp

-continued

-continued
Ala Leu Arg Ser Leu Ser Asp Pro Thr Arg Phe Gly Gln Pro Asp His 485 490 495
Tyr Ser Asn Phe Tyr Pro Asp Pro Asn Asn Asp Asp Glu Gly Gly Val 500 505 510
His Thr Asn Ser Gly Ile Ile Asn Lys Ala Tyr Tyr Leu Leu Ala Gln 515 520 525
Gly Gly Thr Ser His Gly Val Thr Val Thr Gly Ile Gly Arg Glu Ala 530 535 540
Ala Val Phe Ile Tyr Tyr Asn Ala Phe Thr Asn Tyr Leu Thr Ser Thr 545 550 555 560
Ser Asn Phe Ser Asn Ala Arg Ala Ala Val Ile Gln Ala Ala Lys Asp 565 570 575
Phe Tyr Gly Ala Asp Ser Leu Ala Val Thr Ser Ala Ile Gln Ser Phe 580 585 590
Asp Ala Val Gly Ile Lys 595
<pre><210> SEQ ID NO 11 <211> LENGTH: 1599 <212> TYPE: DNA <213> ORGANISM: Paenibacillus humicus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(1599) <223> OTHER INFORMATION: nucleotide sequence of the PhuPro2 gene</pre>
isolated from Paenibacillus humicus
<400> SEQUENCE: 11
atgaaaaaaa tgatteetae tetgeteggt acegtattge tgetttette egetteeget 60
gtcgctgctg aatcgccaag cctcggagcg gccggaacte ccggggtcag cgtcgtgaac 120
aatcageteg tgaeteaatt eategagget teeaaggatg eeaagattgt eeegggetet 180
teegaggata aaatetggge ttteettgaa ggeeageaag caaagetggg tgtateegea 240
geggatgtaa aaacetegtt eetgateeag aagaaggaag tegateegae ttegggegte 300
gagcatttee geetgeagea atatgtgaat ggeateeegg tatatggegg tgaceaaace 360
attcacatog acaaggoogg coaggttacg togttogtag gagotgttot googgotcaa 420
aatcaaatca cggcaaaatc cagcgtacca gccataagcg catccgacgc tctggctatc 480
gotggodagg aagooagtoo cogaateggo gagoogggag cacaggaagaa gacoogtog 540
aatgtgcttg ageegeagee tetgegeace egetatetta tegatgegge egaeggeeat 660
atcgtgcagc agtacgatct gatcgagacg gcgaccggtt cgggcacggg cgtgctgggc 720
gacaataaga cgttccagac gactetttee ggeageacgt accagetgaa agacaecaet 780
cgcggcaacg gcatctacac ctacacagcc agcaatcgga ccacgattcc gggcacgctg 840
ctgacggacg ccgacaacgt atggacggat ggagccgccg tcgatgccca tacttatgcc 900
ggaaaagtat atgattteta caaaaegaag tteggaegea acageetega eggeaaegge 960
ctgctgatcc gttcctcggt ccactacagc agcaggtaca acaatgcctt ctggaacggc 1020
acceagattg tatteggega eggegaegge tegaegttea tteegetgte gggegatete 1080
gacgtggtcg gccatgagct gtcccacgga gtcatcgagt acacgtccaa ccttcaatac 1140
ctcaatgaat coggogogot gaacgagtee tatgeegaeg teeteggeaa etegateeag 1200
J

gcgaaaaact ggcttatcgg cgacgatgtc tatacgcctg gcatctccgg agatgctctc cgttccatgt ccaacccgac gctttacggg cagccggaca actatgccaa ccgctatacg ggatetteeg acaaeggegg egtteataeg aaeageggea teaegaaeaa agegttetae ctgctcgccc aaggcggcac ccagaacggc gttaccgtcg ccggcatcgg gcgcgacgca gccgtgaaca ttttctacaa cacagtggcc tattacctta cttccacttc caacttcgcc gcggcgaaga acgcctcgat ccaggcagcc aaagacctgt acggaacggg ctcctcttat gtcacctcgg tgaccaatgc attcagagcc gtaggcctg <210> SEQ ID NO 12 <211> LENGTH: 533 <212> TYPE: PRT <213> ORGANISM: Paenibacillus humicus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(533) <223> OTHER INFORMATION: amino acid sequence of the PhuPro2 precursor protein <400> SEOUENCE: 12 Met Lys Lys Met Ile Pro Thr Leu Leu Gly Thr Val Leu Leu Leu Ser Ser Ala Ser Ala Val Ala Ala Glu Ser Pro Ser Leu Gly Ala Ala Gly Thr Pro Gly Val Ser Val Val Asn Asn Gln Leu Val Thr Gln Phe Ile Glu Ala Ser Lys Asp Ala Lys Ile Val Pro Gly Ser Ser Glu Asp Lys Ile Trp Ala Phe Leu Glu Gly Gln Gln Ala Lys Leu Gly Val Ser Ala Ala Asp Val Lys Thr Ser Phe Leu Ile Gln Lys Lys Glu Val Asp Pro Thr Ser Gly Val Glu His Phe Arg Leu Gln Gln Tyr Val Asn Gly Ile Pro Val Tyr Gly Gly Asp Gln Thr Ile His Ile Asp Lys Ala Gly Gln Val Thr Ser Phe Val Gly Ala Val Leu Pro Ala Gln Asn Gln Ile Thr Ala Lys Ser Ser Val Pro Ala Ile Ser Ala Ser Asp Ala Leu Ala Ile Ala Ala Lys Glu Ala Ser Ser Arg Ile Gly Glu Leu Gly Ala Gln Glu Lys Thr Pro Ser Ala Gln Leu Tyr Val Tyr Pro Glu Gly Asn Gly Ser Arg Leu Val Tyr Gln Thr Glu Val Asn Val Leu Glu Pro Gln Pro Leu Arg Thr Arg Tyr Leu Ile Asp Ala Ala Asp Gly His Ile Val Gln Gln Tyr Asp Leu Ile Glu Thr Ala Thr Gly Ser Gly Thr Gly Val Leu Gly Asp Asn Lys Thr Phe Gln Thr Thr Leu Ser Gly Ser Thr Tyr Gln Leu

-continued

												0011		acu	
Lys	Asp	Thr	Thr 260	Arg	Gly	Asn	Gly	Ile 265	Tyr	Thr	Tyr	Thr	Ala 270	Ser	Asn
Arg	Thr	Thr 275	Ile	Pro	Gly	Thr	Leu 280	Leu	Thr	Asp	Ala	Asp 285	Asn	Val	Trp
Thr	Asp 290	Gly	Ala	Ala	Val	Asp 295	Ala	His	Thr	Tyr	Ala 300	Gly	Lys	Val	Tyr
Asp 305	Phe	Tyr	Lys	Thr	Lys 310	Phe	Gly	Arg	Asn	Ser 315	Leu	Asp	Gly	Asn	Gly 320
Leu	Leu	Ile	Arg	Ser 325	Ser	Val	His	Tyr	Ser 330	Ser	Arg	Tyr	Asn	Asn 335	Ala
Phe	Trp	Asn	Gly 340	Thr	Gln	Ile	Val	Phe 345	Gly	Asp	Gly	Asp	Gly 350	Ser	Thr
Phe	Ile	Pro 355	Leu	Ser	Gly	Asp	Leu 360	Aab	Val	Val	Gly	His 365	Glu	Leu	Ser
His	Gly 370	Val	Ile	Glu	Tyr	Thr 375	Ser	Asn	Leu	Gln	Tyr 380	Leu	Asn	Glu	Ser
Gly 385	Ala	Leu	Asn	Glu	Ser 390	Tyr	Ala	Asp	Val	Leu 395	Gly	Asn	Ser	Ile	Gln 400
Ala	Lys	Asn	Trp	Leu 405	Ile	Gly	Asp	Aab	Val 410	Tyr	Thr	Pro	Gly	Ile 415	Ser
Gly	Asp	Ala	Leu 420	Arg	Ser	Met	Ser	Asn 425	Pro	Thr	Leu	Tyr	Gly 430	Gln	Pro
Asp	Asn	Tyr 435	Ala	Asn	Arg	Tyr	Thr 440	Gly	Ser	Ser	Asp	Asn 445	Gly	Gly	Val
His	Thr 450	Asn	Ser	Gly	Ile	Thr 455	Asn	Lys	Ala	Phe	Tyr 460	Leu	Leu	Ala	Gln
Gly 465	Gly	Thr	Gln	Asn	Gly 470	Val	Thr	Val	Ala	Gly 475	Ile	Gly	Arg	Asp	Ala 480
Ala	Val	Asn	Ile	Phe 485	Tyr	Asn	Thr	Val	Ala 490	Tyr	Tyr	Leu	Thr	Ser 495	Thr
Ser	Asn	Phe	Ala 500	Ala	Ala	Lys	Asn	Ala 505	Ser	Ile	Gln	Ala	Ala 510	Lys	Азр
Leu	Tyr	Gly 515	Thr	Gly	Ser	Ser	Tyr 520	Val	Thr	Ser	Val	Thr 525	Asn	Ala	Phe
Arg	Ala 530	Val	Gly	Leu											
<211 <212 <213 <220 <221 <222	L> LH 2> TY 3> OH 0> FH L> NH 2> LO 3> OT	ENGTH YPE: RGANI EATUH AME/H DCATI THER	ISM: RE: KEY: ION: INF(D3 Paen miso (1)	c_fea (30 FION	ture 3)	2	umicu acid		ience	e of	the	pred	licte	ed mature
<400)> SI	equei	NCE:	13											
Ala 1	Thr	Gly	Ser	Gly 5	Thr	Gly	Val	Leu	Gly 10	Aap	Asn	Lys	Thr	Phe 15	Gln
Thr	Thr	Leu	Ser 20	Gly	Ser	Thr	Tyr	Gln 25	Leu	Lys	Asp	Thr	Thr 30	Arg	Gly
Asn	Gly	Ile 35	Tyr	Thr	Tyr	Thr	Ala 40	Ser	Asn	Arg	Thr	Thr 45	Ile	Pro	Gly

-	cor	ıtı	.n	ue	a

-concinded	
Thr Leu Leu Thr Asp Ala Asp Asn Val Trp Thr Asp Gly Ala Ala Val 50 55 60	
Asp Ala His Thr Tyr Ala Gly Lys Val Tyr Asp Phe Tyr Lys Thr Lys 65 70 75 80	
Phe Gly Arg Asn Ser Leu Asp Gly Asn Gly Leu Leu Ile Arg Ser Ser 85 90 95	
Val His Tyr Ser Ser Arg Tyr Asn Asn Ala Phe Trp Asn Gly Thr Gln 100 105 110	
Ile Val Phe Gly Asp Gly Asp Gly Ser Thr Phe Ile Pro Leu Ser Gly 115 120 125	
Asp Leu Asp Val Val Gly His Glu Leu Ser His Gly Val Ile Glu Tyr 130 135 140	
Thr Ser Asn Leu Gln Tyr Leu Asn Glu Ser Gly Ala Leu Asn Glu Ser 145 150 155 160	
Tyr Ala Asp Val Leu Gly Asn Ser Ile Gln Ala Lys Asn Trp Leu Ile 165 170 175	
Gly Asp Asp Val Tyr Thr Pro Gly Ile Ser Gly Asp Ala Leu Arg Ser 180 185 190	
Met Ser Asn Pro Thr Leu Tyr Gly Gln Pro Asp Asn Tyr Ala Asn Arg 195 200 205	
Tyr Thr Gly Ser Ser Asp Asn Gly Gly Val His Thr Asn Ser Gly Ile 210 215 220	
Thr Asn Lys Ala Phe Tyr Leu Leu Ala Gln Gly Gly Thr Gln Asn Gly225230235240	
Val Thr Val Ala Gly Ile Gly Arg Asp Ala Ala Val Asn Ile Phe Tyr 245 250 255	
Asn Thr Val Ala Tyr Tyr Leu Thr Ser Thr Ser Asn Phe Ala Ala Ala 260 265 270	
Lys Asn Ala Ser Ile Gln Ala Ala Lys Asp Leu Tyr Gly Thr Gly Ser 275 280 285	
Ser Tyr Val Thr Ser Val Thr Asn Ala Phe Arg Ala Val Gly Leu 290 295 300	
<210> SEQ ID NO 14 <211> LENGTH: 1629 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: nucleotide sequence of the synthesized PhuPro2 gene in plasmid pGX150(AprE- PhuPro2) <400> SEQUENCE: 14	
gtgagaagca aaaaattgtg gatcagcttg ttgtttgcgt taacgttaat ctttacgatg	60
gcgttcagca acatgagcgc gcaggctgct ggaaaagaat caccgagcct tggcgctgca	120
ggaacaccgg gcgttagcgt tgtgaataac caactggtca cgcagttcat cgaagcatca	180
	240
	300
aaggaggttg acccgacatc aggcgttgag cactttagac tgcaacagta cgtcaacggc	360
	120
ttcgtcggag ctgtcctgcc ggctcagaac caaattacag caaaatcatc agttccggca	180
atttcageet cagaegetet ggeaateget geeaaggagg caageteaag aattggegaa	540

	aaagac accg	agcgcc caa	actttatg 1	tctatccgga	gggcaacgga	600
agcagactgg tgtad	ccagac agag	gtcaat gtt	cetggage (cgcaaccgct	gagaacgaga	660
taccttatcg atgct	gegga tgge	cacatt gtt	cagcaat a	acgacctgat	tgagacagca	720
acaggaagcg gaaco	gggegt getg	ggcgac aad	caagacgt 1	ttcagacaac	acttagegge	780
agcacgtacc aact	aagga cacg	acgaga ggo	caatggca 1	tttacacgta	cacggcctca	840
aacagaacga caato	cccagg caca	ctgctg acq	ggatgcag a	acaatgtttg	gacggacggc	900
gcagcagttg acgca	acacac gtac	gccggc aag	ggtgtacg a	acttttacaa	gacgaagttc	960
ggcagaaaca gcctt	tgatgg aaat	ggactg cto	gatcagaa 🤉	gcagcgtcca	ctacagcagc	1020
agatacaata acgco	cttctg gaac	ggcaca caa	aatcgtct 1	ttggcgatgg	agacggatca	1080
acattcatcc cgcto	gtcagg cgac	ctggac gtt	gtgggcc a	acgagctgag	ccacggcgtc	1140
atcgagtaca cgago	caacct gcag	tacctg aat	gaaagcg g	gcgcactgaa	cgagtcatat	1200
gctgatgtgc ttggd	caatag catc	caggcc aag	gaactggc 1	ttatcggaga	cgacgtctac	1260
acacctggca tcago	eggega tget	ctgaga ago	catgagca a	atcctacact	ttacggccaa	1320
ccggacaact acgco	gaatag atat	асдддс адо	cagcgaca a	atggcggcgt	tcatacaaac	1380
tcaggcatca cgaad	caaggc gttc	tacctg cto	ggcacagg g	gaggcacgca	aaacggcgtt	1440
acagttgcgg gcatt	tggcag agat	geggee gto	caacatct 1	tctacaacac	agtcgcctac	1500
tacctgacga gcaco	gtcaaa ctto	gcagcg gca	aaagaacg (catcaattca	agcagcaaag	1560
gatctgtacg gaaca	aggcag ctca	tatgtc aco	gtcagtta 🤇	cgaatgcgtt	tagagccgtc	1620
ggcctttaa						1629
<pre><210> SEQ ID NO <211> LENGTH: 54 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <223> OTHER INFO precursor</pre>	42 Artificial DRMATION: S	ynthetic:		-	of the Phu prE- PhuPro	
<pre><211> LENGTH: 54 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <223> OTHER INFO</pre>	42 Artificial DRMATION: S protein ex	ynthetic:		-		
<211> LENGTH: 54 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <223> OTHER INFO precursor	12 Artificial DRMATION: S protein ex 15	ynthetic: pressed fi	rom plasm:	id pGX150(A	prE- PhuPrc	
<pre><211> LENGTH: 54 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <223> OTHER INFO precursor <400> SEQUENCE: Met Arg Ser Lys</pre>	Artificial ORMATION: S protein ex 15 Lys Leu Tr 5	ynthetic: pressed fr p Ile Ser	rom plasm: Leu Leu 1 10	id pGX150(A Phe Ala Leu	prE- PhuPro Thr Leu 15	
<pre><211> LENGTH: 54 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <223> OTHER INFO precursor <400> SEQUENCE: Met Arg Ser Lys 1 Ile Phe Thr Met</pre>	Artificial DRMATION: S protein ex 15 Lys Leu Tr 5 Ala Phe Se	ynthetic: pressed fn p Ile Ser r Asn Met 25	rom plasm: Leu Leu 1 10 Ser Ala (id pGX150(A Phe Ala Leu Gln Ala Ala 30	prE- PhuPrc . Thr Leu 15 . Gly Lys	
<11> LENGTH: 54 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <223> OTHER INFC precursor <400> SEQUENCE: Met Arg Ser Lys 1 Ile Phe Thr Met 20 Glu Ser Pro Ser	Artificial ORMATION: S protein ex 15 Lys Leu Tr 5 Ala Phe Se Leu Gly Al	ynthetic: pressed fr p Ile Ser r Asn Met 25 a Ala Gly 40 n Phe Ile	rom plasm: Leu Leu I 10 Ser Ala (Thr Pro (Glu Ala :	id pGX150(A Phe Ala Leu Gln Ala Ala 30 Gly Val Ser 45	prE- PhuPrc Thr Leu 15 Gly Lys Val Val	
<pre><211> LENGTH: 54 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <223> OTHER INFO precursor <400> SEQUENCE: Met Arg Ser Lys 1 Ile Phe Thr Met 20 Glu Ser Pro Ser 35 Asn Asn Gln Leu</pre>	Artificial ORMATION: S protein ex 15 Lys Leu Tr 5 Ala Phe Se Leu Gly Al Val Thr Gl 55	ynthetic: pressed fr p Ile Ser r Asn Met 25 a Ala Gly 40 n Phe Ile	rom plasm: Leu Leu 1 10 Ser Ala (Thr Pro (Glu Ala (id pGX150(A Phe Ala Leu Gln Ala Ala 30 Gly Val Ser 45 Ser Lys Asp 60	prE- PhuPrc . Thr Leu 15 . Gly Lys . Val Val . Ala Lys	
<pre><211> LENGTH: 54 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <223> OTHER INF(</pre>	Artificial DRMATION: S protein ex 15 Lys Leu Tr 5 Ala Phe Se Leu Gly Al Val Thr Gl 55 Ser Ser Gl 70	ynthetic: pressed fr p Ile Ser r Asn Met 25 a Ala Gly 40 n Phe Ile u Asp Lys	rom plasm: Leu Leu I 10 Ser Ala (Thr Pro (Glu Ala (75	id pGX150(A Phe Ala Leu Gln Ala Ala 30 Gly Val Ser 45 Ser Lys Asp 60 Ala Phe Leu	prE- PhuPro Thr Leu 15 Gly Lys Val Val Ala Lys Glu Gly 80	
<211> LENGTH: 54 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <223> OTHER INFO precursor <400> SEQUENCE: Met Arg Ser Lys 1 Ile Phe Thr Met 20 Glu Ser Pro Ser 35 Asn Asn Gln Leu 50 Ile Val Pro Gly 65	Artificial ORMATION: S protein ex 15 Lys Leu Tr 5 Ala Phe Se Leu Gly Al Val Thr Gl 55 Ser Ser Gl 70 Leu Gly Va 85	ynthetic: pressed fr p Ile Ser r Asn Met 25 a Ala Gly 40 n Phe Ile u Asp Lys l Ser Ala	Leu Leu I 10 Ser Ala (Thr Pro (Glu Ala (75 Ala Asp (90	id pGX150(A Phe Ala Leu Gln Ala Ala 30 Gly Val Ser 45 Ser Lys Asp 60 Ala Phe Leu Val Lys Thr	prE- PhuPro Thr Leu 15 Gly Lys Val Val Ala Lys Glu Gly 80 Ser Phe 95 His Phe	
<211> LENGTH: 54 <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <223> OTHER INFO precursor <400> SEQUENCE: Met Arg Ser Lys 1 Ile Phe Thr Met 20 Glu Ser Pro Ser 35 Asn Asn Gln Leu 50 Ile Val Pro Gly 65 Gln Gln Ala Lys Leu Ile Gln Lys	Artificial PRMATION: S protein ex 15 Lys Leu Tr 5 Ala Phe Se Leu Gly Al Val Thr Gl Ser Ser Gl 70 Leu Gly Va 85 Lys Glu Va	ynthetic: pressed fr p Ile Ser r Asn Met 25 a Ala Gly 40 n Phe Ile u Asp Lys l Ser Ala l Asp Pro 105	rom plasm: Leu Leu I 10 Ser Ala (Glu Ala (75 Ala Asp 7 90 Thr Ser (id pGX150(A Phe Ala Leu Gln Ala Ala 30 Gly Val Ser 45 Ser Lys Asp 60 Ala Phe Leu Val Lys Thr Gly Val Glu 110	prE- PhuPro Thr Leu 15 Gly Lys Val Val Ala Lys Glu Gly 80 Ser Phe 95 His Phe	

			n		

Val Leu Pro Ala Gln Asn Gln Ile Thr Ala Lys Ser Ser Val Pro Ala Ile Ser Ala Ser Asp Ala Leu Ala Ile Ala Ala Lys Glu Ala Ser Ser Arg Ile Gly Glu Leu Gly Ala Gln Glu Lys Thr Pro Ser Ala Gln Leu Tyr Val Tyr Pro Glu Gly Asn Gly Ser Arg Leu Val Tyr Gln Thr Glu Val Asn Val Leu Glu Pro Gln Pro Leu Arg Thr Arg Tyr Leu Ile Asp Ala Ala Asp Gly His Ile Val Gln Gln Tyr Asp Leu Ile Glu Thr Ala Thr Gly Ser Gly Thr Gly Val Leu Gly Asp Asn Lys Thr Phe Gln Thr Thr Leu Ser Gly Ser Thr Tyr Gln Leu Lys Asp Thr Thr Arg Gly Asn Gly Ile Tyr Thr Tyr Thr Ala Ser Asn Arg Thr Thr Ile Pro Gly Thr Leu Leu Thr Asp Ala Asp As
n Val Tr
p Thr Asp Gly Ala Ala Val Asp Ala His Thr Tyr Ala Gly Lys Val Tyr Asp Phe Tyr Lys Thr Lys Phe Gly Arg Asn Ser Leu Asp Gly Asn Gly Leu Leu Ile Arg Ser Ser Val His Tyr Ser Ser Arg Tyr Asn Asn Ala Phe Trp Asn Gly Thr Gln Ile Val Phe Gly Asp Gly Asp Gly Ser Thr Phe Ile Pro Leu Ser Gly Asp Leu Asp Val Val Gly His Glu Leu Ser His Gly Val Ile Glu Tyr Thr Ser Asn Leu Gln Tyr Leu Asn Glu Ser Gly Ala Leu Asn Glu Ser Tyr Ala Asp Val Leu Gly Asn Ser Ile Gln Ala Lys Asn Trp Leu Ile Gly Asp Asp Val Tyr Thr Pro Gly Ile Ser Gly Asp Ala Leu Arg Ser Met Ser Asn Pro Thr Leu Tyr Gly Gln Pro Asp Asn Tyr Ala Asn Arg Tyr Thr Gly Ser Ser Asp Asn Gly Gly Val His Thr Asn Ser Gly Ile Thr Asn Lys Ala Phe Tyr Leu Leu Ala Gln Gly Gly Thr Gln Asn Gly Val Thr Val Ala Gly Ile Gly Arg Asp Ala Ala Val Asn Ile Phe Tyr Asn Thr Val Ala Tyr Tyr Leu Thr Ser Thr Ser Asn Phe Ala Ala Ala Lys Asn Ala Ser Ile Gln Ala Ala Lys Asp Leu Tyr Gly Thr Gly Ser Ser Tyr Val Thr Ser Val Thr Asn Ala Phe Arg Ala Val Gly Leu

<210> SEQ ID NO 16 <211> LENGTH: 1581 <212> TYPE: DNA <213> ORGANISM: Paenibacillus ehimensis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(1581) <223> OTHER INFORMATION: nucleotide sequence of the PehPro1 gene isolated from Paenibacillus ehimensis <400> SEQUENCE: 16 atgttaaaag tatgggcatc gattattaca ggagcatttt tgctcgggag cgtgcaaggg 60 gtgcaagetg etceacaaga teaagetget eeetteggag gatteaceee teaattgatt 120 accggggaaa gctggagtgc gccgcaagga gtatcgggag aggaaaaaat ctggaagtat 180 ctcqaatcca aqcaqqaaaq cttccaaatc qqccaaaccq ttqatctqaa aaaqcaattq 240 aaaattatcg gccaaacgac cgacgagaaa acgggaacca cgcattaccg tctacagcag 300 tatgtgggag gcgtccccgt atacggcggc gtacaaacga tccatgtcaa caaagaagga 360 420 caagttacct cgctgatcgg cagcctgctt cccgaccagc agcagcaagt ttcgaaaagc ttgaattcgc aaatcagcga agcgcaagcc atcgccgtgg cccagaaaga taccgaggcc 480 gccgtcggca agctgggtga accgcaaaag acaccggaag cggatctgta cgtttattta 540 cacaacggac aaccggtcct cgcttatgtg accgaggtta acgttctcga accggaggca 600 660 atccggacgc gctacttcat cagcgccgaa gacggcagca ttttattcaa gtacgacatc ctcgctcacg ctacaggtac cggaaaaggc gtgctcggag atacgaaatc gttcacgacc 720 acgcaatccg gctccactta tcaattgaag gatacgacgc gcgggcaagg tatcgtcact 780 tacagegetg geaaceggte etetetgeeg ggaaegetge teaceagete eageaatatt 840 tggaacgacg gcgcggcggt cgatgcgcat gcctataccg ccaaagtgta cgattactat 900 aaaaacaaat ttggccgcaa cagcattgac ggcaacggct tccagcttaa atcgaccgtg 960 cactatteet ceagatacaa caacgeette tggaacggtg tgeaaatggt gtacggegae 1020 ggcgacggcg taaccttcat tccgttctcc gccgatccgg acgtcatcgg ccacgaattg 1080 acccacggcg ttacggaaca tacggccggc ctggaatact acggcgaatc cggagcgctg 1140 aacgaatcga tetecgatat tateggeaac gegategaeg geaaaaaetg getgategge 1200 gacttgattt atacgccgaa tactcccggg gacgccctcc gctctatgga gaaccccaag 1260 ctgtataacc aacccgaccg ctatcaagac cgctatacgg gacctteega taacggegge 1320 gtgcatatta acagcggtat caacaacaaa gccttctacc tgatcgccca aggcggcacg 1380 cactatggcg tcaccgtgaa cgggatcgga cgcgatgcgg ctgtgcaaat tttctatgac 1440 geocteatea attacctgae tecaactteg aacttetegg egatgegege ageageeatt 1500 caageggcaa eegacetgta eggagegaat tetteteaag taaaegetgt caaaaaageg 1560 1581 tatactgccg tcggcgtgaa c

<210> SEQ ID NO 17
<211> LENGTH: 527
<212> TYPE: PRT
<211> ORGANISM: Paenibacillus ehimensis
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(527)
<223> OTHER INFORMATION: amino acid sequence of the PehPro1 precursor

-	C	0	n	t	1	n	u	e	d

	p	rote:	in												
<400)> SI	EQUEI	ICE :	17											
Met 1	Leu	Lys	Val	Trp 5	Ala	Ser	Ile	Ile	Thr 10	Gly	Ala	Phe	Leu	Leu 15	Gly
Ser	Val	Gln	Gly 20	Val	Gln	Ala	Ala	Pro 25	Gln	Asp	Gln	Ala	Ala 30	Pro	Phe
Gly	Gly	Phe 35	Thr	Pro	Gln	Leu	Ile 40	Thr	Gly	Glu	Ser	Trp 45	Ser	Ala	Pro
Gln	Gly 50	Val	Ser	Gly	Glu	Glu 55	ГЛа	Ile	Trp	Lys	Tyr 60	Leu	Glu	Ser	Lys
Gln 65	Glu	Ser	Phe	Gln	Ile 70	Gly	Gln	Thr	Val	Asp 75	Leu	Lys	Lys	Gln	Leu 80
ГЛа	Ile	Ile	Gly	Gln 85	Thr	Thr	Asp	Glu	Lys 90	Thr	Gly	Thr	Thr	His 95	Tyr
Arg	Leu	Gln	Gln 100	Tyr	Val	Gly	Gly	Val 105	Pro	Val	Tyr	Gly	Gly 110	Val	Gln
Thr	Ile	His 115	Val	Asn	Lys	Glu	Gly 120	Gln	Val	Thr	Ser	Leu 125	Ile	Gly	Ser
Leu	Leu 130	Pro	Asp	Gln	Gln	Gln 135	Gln	Val	Ser	ГÀа	Ser 140	Leu	Asn	Ser	Gln
Ile 145	Ser	Glu	Ala	Gln	Ala 150	Ile	Ala	Val	Ala	Gln 155	LÀa	Asp	Thr	Glu	Ala 160
Ala	Val	Gly	ГЛЗ	Leu 165	Gly	Glu	Pro	Gln	Lys 170	Thr	Pro	Glu	Ala	Asp 175	Leu
Tyr	Val	Tyr	Leu 180	His	Asn	Gly	Gln	Pro 185	Val	Leu	Ala	Tyr	Val 190	Thr	Glu
Val	Asn	Val 195	Leu	Glu	Pro	Glu	Ala 200	Ile	Arg	Thr	Arg	Tyr 205	Phe	Ile	Ser
Ala	Glu 210	Asp	Gly	Ser	Ile	Leu 215	Phe	Lys	Tyr	Asp	Ile 220	Leu	Ala	His	Ala
Thr 225	Gly	Thr	Gly	Lys	Gly 230	Val	Leu	Gly	Asp	Thr 235	Lys	Ser	Phe	Thr	Thr 240
Thr	Gln	Ser	Gly	Ser 245	Thr	Tyr	Gln	Leu	Lys 250	Asp	Thr	Thr	Arg	Gly 255	Gln
Gly	Ile	Val	Thr 260	Tyr	Ser	Ala	Gly	Asn 265	Arg	Ser	Ser	Leu	Pro 270	Gly	Thr
Leu	Leu	Thr 275	Ser	Ser	Ser	Asn	Ile 280	Trp	Asn	Asp	Gly	Ala 285	Ala	Val	Aab
Ala	His 290	Ala	Tyr	Thr	Ala	Lys 295	Val	Tyr	Aab	Tyr	Tyr 300	Lys	Asn	Lys	Phe
Gly 305	Arg	Asn	Ser	Ile	Asp 310	Gly	Asn	Gly	Phe	Gln 315	Leu	Lys	Ser	Thr	Val 320
His	Tyr	Ser	Ser	Arg 325	Tyr	Asn	Asn	Ala	Phe 330	Trp	Asn	Gly	Val	Gln 335	Met
Val	Tyr	Gly	Asp 340	Gly	Asp	Gly	Val	Thr 345	Phe	Ile	Pro	Phe	Ser 350	Ala	Asp
Pro	Asp	Val 355	Ile	Gly	His	Glu	Leu 360	Thr	His	Gly	Val	Thr 365	Glu	His	Thr
Ala	Gly 370	Leu	Glu	Tyr	Tyr	Gly 375	Glu	Ser	Gly	Ala	Leu 380	Asn	Glu	Ser	Ile

	n			

Ser 2 385 Asp 1 Glu 2 Thr (Asn 1	Leu				390	Ala	Ile	Asp	Gly	Lys 395	Asn	Trp	Leu	Ile	
Glu A Thr (Asn 1		Ile	Tyr	Thr	Pro										400
Thr (Asn 1	Asn			405	110	Asn	Thr	Pro	Gly 410	Asp	Ala	Leu	Arg	Ser 415	Met
Asn l		Pro	Lys 420	Leu	Tyr	Asn	Gln	Pro 425	Asp	Arg	Tyr	Gln	Asp 430	Arg	Tyr
	Gly	Pro 435	Ser	Asp	Asn	Gly	Gly 440	Val	His	Ile	Asn	Ser 445	Gly	Ile	Asn
	Lys 450	Ala	Phe	Tyr	Leu	Ile 455	Ala	Gln	Gly	Gly	Thr 460	His	Tyr	Gly	Val
Thr \ 465	Val	Asn	Gly	Ile	Gly 470	Arg	Asp	Ala	Ala	Val 475	Gln	Ile	Phe	Tyr	Asp 480
Ala 1	Leu	Ile	Asn	Tyr 485	Leu	Thr	Pro	Thr	Ser 490	Asn	Phe	Ser	Ala	Met 495	Arg
Ala i	Ala	Ala	Ile 500	Gln	Ala	Ala	Thr	Asp 505	Leu	Tyr	Gly	Ala	Asn 510	Ser	Ser
Gln V	Val	Asn 515	Ala	Val	Гла	Lys	Ala 520	Tyr	Thr	Ala	Val	Gly 525	Val	Asn	
<400: Ala ' 1					Lys	Gly	Val	Leu	Gly 10	Asp	Thr	Lys	Ser	Phe 15	Thr
Ala '				Gly	Lys	Gly	Val	Leu		Asp	Thr	Lys	Ser		Thr
Thr ?	Thr	Gln	Ser 20	Gly	Ser	Thr	Tyr	Gln 25	Leu	Lys	Asp	Thr	Thr 30	Arg	Gly
Gln (Gly	Ile 35	Val	Thr	Tyr	Ser	Ala 40	Gly	Asn	Arg	Ser	Ser 45	Leu	Pro	Gly
Thr 1	Leu 50	Leu	Thr	Ser	Ser	Ser 55	Asn	Ile	Trp	Asn	Asp 60	Gly	Ala	Ala	Val
Asp i 65	Ala	His	Ala	Tyr	Thr 70	Ala	Lys	Val	Tyr	Asp 75	Tyr	Tyr	Lys	Asn	Lуз 80
Phe (Gly	Arg	Asn	Ser 85	Ile	Asp	Gly	Asn	Gly 90	Phe	Gln	Leu	Lys	Ser 95	Thr
Val H	His	Tyr	Ser 100	Ser	Arg	Tyr	Asn	Asn 105	Ala	Phe	Trp	Asn	Gly 110	Val	Gln
Met V	Val	Tyr 115	Gly	Asp	Gly	Asp	Gly 120	Val	Thr	Phe	Ile	Pro 125	Phe	Ser	Ala
Asp 1	Pro 130	Asp	Val	Ile	Gly	His 135	Glu	Leu	Thr	His	Gly 140	Val	Thr	Glu	His
Thr <i>i</i> 145	Ala	Gly	Leu	Glu	Tyr 150	Tyr	Gly	Glu	Ser	Gly 155	Ala	Leu	Asn	Glu	Ser 160
Ile :	Ser	Asp	Ile	Ile 165	Gly	Asn	Ala	Ile	Asp 170	Gly	Lys	Asn	Trp	Leu 175	Ile
			T 1 -	m			_	Thr	Dece	a1	7				0

-cont	inued
-conc	LIIUEU

-continued	
Met Glu Asn Pro Lys Leu Tyr Asn Gln Pro Asp Arg Tyr Gln Asp Arg 195 200 205	
TyrThr Gly Pro Ser Asp Asn Gly Gly Val HisIle Asn Ser Gly Ile210215220	
Asn Asn Lys Ala Phe Tyr Leu Ile Ala Gln Gly Gly Thr His Tyr Gly 225 230 235 240	
Val Thr Val Asn Gly Ile Gly Arg Asp Ala Ala Val Gln Ile Phe Tyr 245 250 255	
Asp Ala Leu Ile Asn Tyr Leu Thr Pro Thr Ser Asn Phe Ser Ala Met 260 265 270	
Arg Ala Ala Ile Gln Ala Ala Thr Asp Leu Tyr Gly Ala Asn Ser 275 280 285	
Ser Gln Val Asn Ala Val Lys Lys Ala Tyr Thr Ala Val Gly Val Asn 290 295 300	
<pre><210> SEQ ID NO 19 <211> LENGTH: 1611 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> FEATURE: <223> OTHER INFORMATION: Synthetic: nucleotide sequence of the synthesized PehProl gene in plasmid pGX148(AprE- PehProl) <400> SEQUENCE: 19 gtgagaagca aaaaattgtg gatcagcttg ttgtttgcgt taacgttaat ctttacgatg</pre>	60
gcgttcagca acatgagcgc gcaggctgct ggaaaagcac ctcaagatca ggcagcacct	120
tttggagget ttacacegea acttateaca ggegaateat ggteageace geagggegtt	180
tcaggcgagg aaaagatctg gaagtacctt gagagcaagc aggagtcatt tcaaatcggc	240
cagacagtcg acctgaaaaa gcaactgaag atcatcggcc aaacaacgga cgaaaagacg	300
ggcacgacgc attatagact gcaacaatat gttggcggcg tgccggttta tggaggcgtg	360
caaacaatcc acgtgaacaa ggaaggacag gtcacgtcac	420
gatcagcagc aacaagtctc aaagagcctg aactcacaaa ttagcgaggc acaagcgatt	480
gcagttgcac aaaaggacac ggaagcagct gtcggcaagc tgggcgaacc gcaaaaaaca	540
cctgaggctg acctttacgt ctacctgcat aacggccagc cggtccttgc gtacgttacg	600
gaagttaacg tgctggagcc ggaggccatc agaacgagat acttcattag cgcggaggat	660
ggaagcattc tgtttaagta cgatattctt gctcacgcga caggcacagg caagggcgtc	720
cttggcgaca caaaaagctt cacgacaacg cagagcggat caacgtacca gctgaaagat	780
acaacaagag gacaaggcat cgttacgtat teagegggea atagateaag eetgeeggge	840
acactgctga catcaagete aaacatttgg aatgaeggeg cageagttga tgeeeatgeg	900
tacacagoca aggtgtacga ctactataag aacaagtttg gcagaaatag catogacgga	960
aatggattte aacttaaate aaeggtgeae taeteateaa gatataaeaa tgegttttgg	1020
aacggagtgc agatggtcta cggagacggc gacggcgtga catttattcc gtttagcgcc	1080
gacceggaeg tgattggaea tgaaetgaea catggagtga cagageatae ggegggaetg	1140
gaatattacg gcgaaagcgg cgcactgaac gaaagcatct cagacattat tggaaacgca	1200
atcgatggca aaaactggct gattggcgat ctgatttata cgccgaatac accgggcgat	1260
gcactgagat caatggagaa tccgaagctg tacaaccaac cggacagata ccaagataga	1320

										con	tin	ued					
tacacagga	c cgtc	agaca	aa co	ggcgg	gagto	c cat	tatca	aaca	gcg	gaat	caa 1	caaca	aaagcc	1380			
ttttacctg	a tcgc	ccaa	gg cá	ggaad	cgcad	c tat	ggc	gtta	cag	tcaa	tgg (cate	ggaaga	1440			
gatgccgca	g ttca	gatti	tt ci	tatga	acgco	g cto	gatca	aact	atc	tgac	gec t	caca	agcaat	1500			
ttctcagca	a tgag	ageeq	gc aq	gcaat	tccaa	a gca	ageea	acgg	atci	tgta	tgg a	agee	aattca	1560			
tcacaagtta	a atgc	tgtta	aa ga	aaggo	cttat	aco	ggcaq	gtgg	gagt	ttaa	cta a	a		1611			
<210> SEQ <211> LEN <212> TYP <213> ORG <220> FEA <223> OTH pres	GTH: 5 E: PRT ANISM: TURE: ER INF	36 Art: ORMA	FION	: Syr	nthet	cic:							che PehP PehProl				
<400> SEQ	UENCE :	20															
Met Arg So 1	er Lys	Lys 5	Leu	Trp	Ile	Ser	Leu 10	Leu	Phe	Ala	Leu	Thr 15	Leu				
Ile Phe Tl	hr Met 20		Phe	Ser	Asn	Met 25	Ser	Ala	Gln	Ala	Ala 30	Gly	Lys				
Ala Pro G 3!		Gln	Ala	Ala	Pro 40	Phe	Gly	Gly	Phe	Thr 45	Pro	Gln	Leu				
Ile Thr G 50	ly Glu	Ser	Trp	Ser 55	Ala	Pro	Gln	Gly	Val 60	Ser	Gly	Glu	Glu				
Lys Ile T: 65	rp Lys	Tyr	Leu 70	Glu	Ser	Lys	Gln	Glu 75	Ser	Phe	Gln	Ile	Gly 80				
Gln Thr Va	al Asp	Leu 85	Lys	Lys	Gln	Leu	Lys 90	Ile	Ile	Gly	Gln	Thr 95	Thr				
Asp Glu L	ys Thr 100		Thr	Thr	His	Tyr 105	Arg	Leu	Gln	Gln	Tyr 110	Val	Gly				
Gly Val P: 1:	ro Val 15	Tyr	Gly	Gly	Val 120	Gln	Thr	Ile	His	Val 125	Asn	Lys	Glu				
Gly Gln Va 130	al Thr	Ser	Leu	Ile 135	Gly	Ser	Leu	Leu	Pro 140	Asp	Gln	Gln	Gln				
Gln Val So 145	er Lys	Ser	Leu 150	Asn	Ser	Gln	Ile	Ser 155	Glu	Ala	Gln	Ala	Ile 160				
Ala Val A	la Gln	Lys 165	Asp	Thr	Glu	Ala	Ala 170	Val	Gly	ГЛа	Leu	Gly 175	Glu				
Pro Gln Ly	180					185					190						
	95				200					205							
Ala Ile A: 210	rg Thr	Arg	Tyr	Phe 215	Ile	Ser	Ala	Glu	Asp 220	Gly	Ser	Ile	Leu				
Phe Lys T 225	yr Asp	Ile	Leu 230	Ala	His	Ala	Thr	Gly 235	Thr	Gly	Lys	Gly	Val 240				
Leu Gly A	sp Thr	Lys 245	Ser	Phe	Thr	Thr	Thr 250	Gln	Ser	Gly	Ser	Thr 255	Tyr				
Gln Leu Ly	ys Asp 260		Thr	Arg	Gly	Gln 265	Gly	Ile	Val	Thr	Tyr 270	Ser	Ala				
Gly Asn A: 2	rg Ser 75	Ser	Leu	Pro	Gly 280	Thr	Leu	Leu	Thr	Ser 285	Ser	Ser	Asn				
Ile Trp A	sn Asp	Gly	Ala	Ala	Val	Asp	Ala	His	Ala	Tyr	Thr	Ala	Lys				

inuec	

290 295 300	
Val Tyr Asp Tyr Tyr Lys Asn Lys Phe Gly Arg Asn Ser Ile Asp Gly305310315320	
Asn Gly Phe Gln Leu Lys Ser Thr Val His Tyr Ser Ser Arg Tyr Asn 325 330 335	
Asn Ala Phe Trp Asn Gly Val Gln Met Val Tyr Gly Asp Gly Asp Gly 340 345 350	
Val Thr Phe Ile Pro Phe Ser Ala Asp Pro Asp Val Ile Gly His Glu 355 360 365	
Leu Thr His Gly Val Thr Glu His Thr Ala Gly Leu Glu Tyr Tyr Gly 370 375 380	
Glu Ser Gly Ala Leu Asn Glu Ser Ile Ser Asp Ile Ile Gly Asn Ala385390395400	
Ile Asp Gly Lys Asn Trp Leu Ile Gly Asp Leu Ile Tyr Thr Pro Asn 405 410 415	
Thr Pro Gly Asp Ala Leu Arg Ser Met Glu Asn Pro Lys Leu Tyr Asn 420 425 430	
Gln Pro Asp Arg Tyr Gln Asp Arg Tyr Thr Gly Pro Ser Asp Asn Gly 435 440 445	
Gly Val His Ile Asn Ser Gly Ile Asn Asn Lys Ala Phe Tyr Leu Ile 450 455 460	
Ala Gln Gly Gly Thr His Tyr Gly Val Thr Val Asn Gly Ile Gly Arg465470475480	
Asp Ala Ala Val Gln Ile Phe Tyr Asp Ala Leu Ile Asn Tyr Leu Thr 485 490 495	
Pro Thr Ser Asn Phe Ser Ala Met Arg Ala Ala Ala Ile Gln Ala Ala 500 505 510	
Thr Asp Leu Tyr Gly Ala Asn Ser Ser Gln Val Asn Ala Val Lys Lys 515 520 525	
Ala Tyr Thr Ala Val Gly Val Asn 530 535	
<210> SEQ ID NO 21 <211> LENGTH: 1563 <212> TYPE: DNA <213> ORGANISM: Paenibacillus barcinonensis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(1563) <223> OTHER INFORMATION: nucleotide sequence of the PbaProl gene isolated from Paenibacillus barcinonensis <400> SEQUENCE: 21	
atgaaattga ccaaaattat gccaacaatt cttgcaggag ctcttttgct cacatccctg	60
teetetgeag cageaatgee gttatetgae teateeatte catttgaggg eeeetaeace	120
teegaggaga gtattetgtt gaacaacaac eeggaegaaa tgatttataa ttttettgea	180
caacaagagc aatttetgaa tgeegaegte aaaggaeage teaaaateat taaaegeaae	240
acagacactt coggcatcag acactttogt otgaagcaat acatcaaagg tgttooggtt	300
tacggcgcag aacaaacgat ccatctggac aagaacggag ctgtaacttc cgcactcggc	360
gatetteege caattgaaga acaggetgtt eegaatgatg gegtteeege aateagtgea	420
gacgatgcca teegtgeege egagaatgaa geeaceteee gtettggaga gettggegea	480

- con	F 1	nu	ed

-continued	
	540
tacctcgttt acattacgga agttaacgtg cttgagcctt ccccgctacg gaccaaatat	600
tttattaacg coottgatgg aagcatogta totoaataog atattatoaa otttgooaca	660
ggcaccggta caggcgtgca tggtgatacc aaaacactga cgacaactca atccggcagc	720
acctatcage tgaaagatac aactegtgga aaaggeatte aaaeetatae tgegaacaat	780
cgctcctcgc ttccaggcag cttgtctacc agttccaata acgtatggac agaccgtgca	840
gctgtagatg cgcacgccta tgctgccgcc acatatgact tctacaaaaa caaattcaat	900
cgcaacggca ttgacggaaa cgggctgttg attcgctcta cagtgcatta tggctccaac	960
tataaaaacg ccttctggaa cggagcacag attgtctatg gagatggcga tggcatcgag	1020
tteggteeet teteeggtga tetegatgtt gteggacatg aattgacaca eggggtgatt	1080
gaatatacag ccaatctcga atatcgcaat gagccgggtg ctttaaacga agcttttgcc	1140
gacattatgg ggaacaccat cgaaagcaaa aactggctgc ttggcgacgg aatctatact	1200
ccaaacattc caggtgatgc cctgcgctcg ttatccgacc ctacgctgta taaccagcct	1260
gacaaataca gtgatcgcta cactggctct caggataatg gcggtgtgca tatcaacagc	1320
gggatcatta acaaagcata ttatcttgca gcccaaggcg gtactcataa cggggtaacc	1380
gttageggea teggeeggga taaageagta egtatttet atageaeget ggtgaaetae	1440
ctgacgccaa cctccaaatt tgcagcagcc aaaacagcga caattcaggc agccaaggac	1500
ctgtacggtg ccaattccgc tgaagctacg gcaatcacca aagcttatca agcggtaggt	1560
ttg	1563
<pre><212> TYPE: PRT <2113> ORGANISM: Paenibacillus barcinonensis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(521) <223> OTHER INFORMATION: amino acid sequence of the PbaPro1 precur protein</pre>	rsor
<400> SEQUENCE: 22	
Met Lys Leu Thr Lys Ile Met Pro Thr Ile Leu Ala Gly Ala Leu Leu 1 5 10 15	
Leu Thr Ser Leu Ser Ser Ala Ala Ala Met Pro Leu Ser Asp Ser Ser	
20 25 30	
Ile Pro Phe Glu Gly Pro Tyr Thr Ser Glu Glu Ser Ile Leu Leu Asn 35 40 45	
Asn Asn Pro Asp Glu Met Ile Tyr Asn Phe Leu Ala Gln Gln Glu Gln 50 55 60	
Phe Leu Asn Ala Asp Val Lys Gly Gln Leu Lys Ile Ile Lys Arq Asn	
65 70 75 80	
65 70 75 80 Thr Asp Thr Ser Gly Ile Arg His Phe Arg Leu Lys Gln Tyr Ile Lys	
65 70 75 80 Thr Asp Thr Ser Gly Ile Arg His Phe Arg Leu Lys Gln Tyr Ile Lys 90 85 90 95 Gly Val Pro Val Tyr Gly Ala Glu Gln Thr Ile His Leu Asp Lys Asn 100 105 Gly Ala Val Thr Ser Ala Leu Gly Asp Leu Pro Pro Ile Glu Glu Gln Gln Show	
55 70 75 80 Thr Asp Thr Ser Gly Ile Arg His Phe Arg Leu Lys Gln Tyr Ile Lys 85 90 95 Gly Val Pro Val Tyr Gly Ala Glu Gln Thr Ile His Leu Asp Lys Asn 100 105 110	

-cont	inued
00110	

	130					135					140				
Arg 145	Ala	Ala	Glu	Asn	Glu 150	Ala	Thr	Ser	Arg	Leu 155	Gly	Glu	Leu	Gly	Ala 160
Pro	Glu	Leu	Glu	Pro 165	Lys	Ala	Glu	Leu	Asn 170	Ile	Tyr	His	His	Glu 175	Asp
Asp	Gly	Gln	Thr 180	Tyr	Leu	Val	Tyr	Ile 185	Thr	Glu	Val	Asn	Val 190	Leu	Glu
Pro	Ser	Pro 195	Leu	Arg	Thr	Lys	Tyr 200	Phe	Ile	Asn	Ala	Leu 205	Asp	Gly	Ser
Ile	Val 210	Ser	Gln	Tyr	Asp	Ile 215	Ile	Asn	Phe	Ala	Thr 220	Gly	Thr	Gly	Thr
Gly 225	Val	His	Gly	Asp	Thr 230	Гла	Thr	Leu	Thr	Thr 235	Thr	Gln	Ser	Gly	Ser 240
Thr	Tyr	Gln	Leu	Lys 245	Asp	Thr	Thr	Arg	Gly 250	Lys	Gly	Ile	Gln	Thr 255	Tyr
Thr	Ala	Asn	Asn 260	Arg	Ser	Ser	Leu	Pro 265	Gly	Ser	Leu	Ser	Thr 270	Ser	Ser
Asn	Asn	Val 275	Trp	Thr	Asp	Arg	Ala 280	Ala	Val	Asp	Ala	His 285	Ala	Tyr	Ala
Ala	Ala 290	Thr	Tyr	Asp	Phe	Tyr 295	Lys	Asn	Lys	Phe	Asn 300	Arg	Asn	Gly	Ile
Asp 305	Gly	Asn	Gly	Leu	Leu 310	Ile	Arg	Ser	Thr	Val 315	His	Tyr	Gly	Ser	Asn 320
Tyr	Lys	Asn	Ala	Phe 325	Trp	Asn	Gly	Ala	Gln 330	Ile	Val	Tyr	Gly	Asp 335	Gly
Asp	Gly	Ile	Glu 340	Phe	Gly	Pro	Phe	Ser 345	Gly	Asp	Leu	Asp	Val 350	Val	Gly
His	Glu	Leu 355	Thr	His	Gly	Val	Ile 360	Glu	Tyr	Thr	Ala	Asn 365	Leu	Glu	Tyr
Arg	Asn 370	Glu	Pro	Gly	Ala	Leu 375	Asn	Glu	Ala	Phe	Ala 380	Asp	Ile	Met	Gly
Asn 385	Thr	Ile	Glu	Ser	Lys 390	Asn	Trp	Leu	Leu	Gly 395	Asp	Gly	Ile	Tyr	Thr 400
Pro	Asn	Ile	Pro	Gly 405	Asp	Ala	Leu	Arg	Ser 410	Leu	Ser	Asp	Pro	Thr 415	Leu
Tyr	Asn	Gln	Pro 420	Asp	ГЛа	Tyr	Ser	Asp 425	Arg	Tyr	Thr	Gly	Ser 430	Gln	Asp
Asn	Gly	Gly 435	Val	His	Ile	Asn	Ser 440	Gly	Ile	Ile	Asn	Lys 445	Ala	Tyr	Tyr
Leu	Ala 450	Ala	Gln	Gly	Gly	Thr 455	His	Asn	Gly	Val	Thr 460	Val	Ser	Gly	Ile
Gly 465	Arg	Asp	Lys	Ala	Val 470	Arg	Ile	Phe	Tyr	Ser 475	Thr	Leu	Val	Asn	Tyr 480
Leu	Thr	Pro	Thr	Ser 485	Гла	Phe	Ala	Ala	Ala 490	Lys	Thr	Ala	Thr	Ile 495	Gln
Ala	Ala	Lys	Asp 500	Leu	Tyr	Gly	Ala	Asn 505	Ser	Ala	Glu	Ala	Thr 510	Ala	Ile
Thr	Lys	Ala 515	Tyr	Gln	Ala	Val	Gly 520	Leu							

-continued

<211> LENGTH: 303 <212> TYPE: PRT <213> ORGANISM: Paenibacillus barcinonensis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(303) <223> OTHER INFORMATION: amino acid sequence of the predicted mature form of PbaProl <400> SEQUENCE: 23 Ala Thr Gly Thr Gly Thr Gly Val His Gly Asp Thr Lys Thr Leu Thr Thr Thr Gln Ser Gly Ser Thr Tyr Gln Leu Lys Asp Thr Thr Arg Gly Lys Gly Ile Gln Thr Tyr Thr Ala As
n Asn Arg Ser Ser Leu $\mbox{Pro Gly}$ Ser Leu Ser Thr Ser Ser Asn Asn Val Trp Thr Asp Arg Ala Ala Val Asp Ala His Ala Tyr Ala Ala Ala Thr Tyr Asp Phe Tyr Lys Asn Lys Phe Asn Arg Asn Gly Ile Asp Gly Asn Gly Leu Leu Ile Arg Ser Thr Val His Tyr Gly Ser Asn Tyr Lys Asn Ala Phe Trp Asn Gly Ala Gln Ile Val Tyr Gly Asp Gly Asp Gly Ile Glu Phe Gly Pro Phe Ser Gly Asp Leu Asp Val Val Gly His Glu Leu Thr His Gly Val Ile Glu Tyr Thr Ala Asn Leu Glu Tyr Arg Asn Glu Pro Gly Ala Leu Asn Glu Ala Phe Ala Asp Ile Met Gly Asn Thr Ile Glu Ser Lys Asn Trp Leu Leu Gly Asp Gly Ile Tyr Thr Pro Asn Ile Pro Gly Asp Ala Leu Arg Ser Leu Ser Asp Pro Thr Leu Tyr Asn Gln Pro Asp Lys Tyr Ser Asp Arg Tyr Thr Gly Ser Gln Asp Asn Gly Gly Val His Ile Asn Ser Gly Ile Ile Asn Lys Ala Tyr Tyr Leu Ala Ala Gln Gly Gly Thr His Asn Gly Val Thr Val Ser Gly Ile Gly Arg Asp Lys Ala Val Arg Ile Phe Tyr Ser Thr Leu Val Asn Tyr Leu Thr Pro Thr Ser Lys Phe Ala Ala Ala Lys Thr Ala Thr Ile Gln Ala Ala Lys Asp Leu Tyr Gly Ala Asn Ser Ala Glu Ala Thr Ala Ile Thr Lys Ala Tyr Gln Ala Val Gly Leu <210> SEQ ID NO 24 <211> LENGTH: 1587

<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

<223> OTHER INFORMATION: Synthetic: nucleotide sequence of the synthesized PbaPro1 gene in plasmid pGX147(AprE- PbaPro1)

<400> SEQUENCE: 24	
gtgagaagca aaaaattgtg gatcagcttg ttgtttgcgt taacgttaat ctttacgatg	60
gcgttcagca acatgagcgc gcaggctgct ggaaaaatgc ctctgtcaga cagcagcatt	120
ccgtttgagg gcccgtacac atcagaagaa agcatcctgc tgaacaacaa cccggacgag	180
atgatctaca atttcctggc acagcaggag cagttcctga acgcagacgt gaagggccag	240
ctgaaaatca tcaaaagaaa cacagacacg agcggcatca gacacttcag actgaagcag	300
tacatcaagg gcgtcccggt ttacggcgct gagcagacaa tccacctgga caaaaatggc	360
gcagtgacga gcgcacttgg agatctgccg ccgattgaag agcaagcagt cccgaacgat	420
ggcgttccgg cgattagcgc tgatgacgct atcagagccg cggaaaacga agcgacgtca	480
agactgggag aacttggcgc accggaactt gaaccgaagg cggaactgaa catctatcac	540
cacgaagacg atggacagac gtacctggtg tacatcacgg aggtgaatgt gctggagccg	600
tcaccgctga gaacaaaata cttcatcaat gcgctggatg gcagcatcgt tagccaatac	660
gacatcatta acttcgccac aggcacgggc acaggcgttc atggcgacac aaaaacgctt	720
acgacaacac agtcaggctc aacgtaccag ctgaaagaca caacaagagg caagggcatc	780
cagacgtata cagccaataa cagaagctca cttccgggct cactgtcaac aagcagcaat	840
aatgtotgga oggacagago tgoagtggao gogoaogogt atgotgoggo caogtaogao	900
ttctacaaga acaagttcaa cagaaacggc attgatggca acggcctgct tattagaagc	960
acggtccact acggctcaaa ctacaagaat gcgttttgga acggcgccca aattgtttat	1020
ggcgatggag acggcatcga gttcggacct tttagcggcg acctggatgt ggtcggacat	1080
gaactgacgc acggcgttat cgagtatacg gcgaatctgg aatacagaaa tgaaccgggc	1140
gctctgaatg aggccttcgc ggatatcatg ggcaacacaa ttgagagcaa aaactggctt	1200
ctgggcgacg gaatctacac gccgaacatt ccgggagatg cactgagatc actgagcgac	1260
cctacgctgt acaaccagcc ggacaaatac agcgacagat acacgggatc acaggacaat	1320
ggcggcgtcc atattaactc aggcatcatc aacaaagcgt attatctggc agctcaaggc	1380
ggcacgcata atggcgtcac agttagcgga atcggcagag acaaggccgt cagaattttc	1440
tactcaacgc tggtgaacta cctgacaccg acaagcaagt ttgcagccgc caaaacagcc	1500
acgattcagg cagcaaagga cctgtacgga gcgaactcag cagaggccac agcgattacg	1560
aaggettate aageegtggg aetgtaa	1587
<210> SEQ ID NO 25 <211> LENGTH: 528 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: amino acid sequence of the PbaE precursor protein expressed from plasmid pGX147(AprE-PbaProl)	
<400> SEQUENCE: 25	
Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu 1 5 10 15	
Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Ala Gly Lys 20 25 30	
Met Pro Leu Ser Asp Ser Ser Ile Pro Phe Glu Gly Pro Tyr Thr Ser 35 40 45	

Glu Glu Ser Ile Leu Leu Asn Asn Asn Pro Asp Glu Met Ile Tyr Asn Phe Leu Ala Gln Gln Glu Gln Phe Leu Asn Ala Asp Val Lys Gly Gln Leu Lys Ile Ile Lys Arg Asn Thr Asp Thr Ser Gly Ile Arg His Phe Arg Leu Lys Gln Tyr Ile Lys Gly Val Pro Val Tyr Gly Ala Glu Gln Thr Ile His Leu Asp Lys Asn Gly Ala Val Thr Ser Ala Leu Gly Asp Leu Pro Pro Ile Glu Glu Gln Ala Val Pro Asn Asp Gly Val Pro Ala Ile Ser Ala Asp Asp Ala Ile Arg Ala Ala Glu Asn Glu Ala Thr Ser Arg Leu Gly Glu Leu Gly Ala Pro Glu Leu Glu Pro Lys Ala Glu Leu Asn Ile Tyr His His Glu Asp Asp Gly Gln Thr Tyr Leu Val Tyr Ile Thr Glu Val Asn Val Leu Glu Pro Ser Pro Leu Arg Thr Lys Tyr Phe Ile Asn Ala Leu Asp Gly Ser Ile Val Ser Gln Tyr Asp Ile Ile Asn Phe Ala Thr Gly Thr Gly Thr Gly Val His Gly Asp Thr Lys Thr Leu Thr Thr Gln Ser Gly Ser Thr Tyr Gln Leu Lys Asp Thr Thr Arg Gly Lys Gly Ile Gln Thr Tyr Thr Ala Asn Asn Arg Ser Ser Leu Pro Gly Ser Leu Ser Thr Ser Ser Asn Asn Val Trp Thr Asp Arg Ala Ala Val Asp Ala His Ala Tyr Ala Ala Ala Thr Tyr Asp Phe Tyr Lys Asn Lys Phe Asn Arg Asn Gly Ile Asp Gly Asn Gly Leu Leu Ile Arg Ser Thr Val His Tyr Gly Ser Asn Tyr Lys Asn Ala Phe Trp Asn Gly Ala Gln Ile Val Tyr Gly Asp Gly Asp Gly Ile Glu Phe Gly Pro Phe Ser Gly Asp Leu Asp Val Val Gly His Glu Leu Thr His Gly Val Ile Glu Tyr Thr Ala Asn Leu Glu Tyr Arg Asn Glu Pro Gly Ala Leu Asn Glu Ala Phe Ala Asp Ile Met Gly Asn Thr Ile Glu Ser Lys Asn Trp Leu Leu Gly Asp Gly Ile Tyr Thr Pro Asn Ile Pro Gly Asp Ala Leu Arg Ser Leu Ser Asp Pro Thr Leu Tyr Asn Gln Pro Asp Lys Tyr Ser Asp Arg Tyr Thr Gly Ser Gln Asp Asn Gly Gly Val His Ile Asn Ser Gly

-contin	ued

Ile Ile Asn Lys Ala Tyr Tyr Leu Ala Ala Gln Gly Gly Thr His Asn 450 455 460 Gly Val Thr Val Ser Gly Ile Gly Arg Asp Lys Ala Val Arg Ile Phe 465 470 475 480 Tyr Ser Thr Leu Val Asn Tyr Leu Thr Pro Thr Ser Lys Phe Ala Ala 485 490 495 Ala Lys Thr Ala Thr Ile Gln Ala Ala Lys Asp Leu Tyr Gly Ala Asn 500 505 Ser Ala Glu Ala Thr Ala Ile Thr Lys Ala Tyr Gln Ala Val Gly Leu 515 520 525 <210> SEQ ID NO 26 <211> LENGTH: 1779 <212> TYPE: DNA <213> ORGANISM: Paenibacillus polymyxa SC2 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(1779) <223> OTHER INFORMATION: nucleotide sequence of the PpoPro1 gene identified from NCBI database <400> SEOUENCE: 26 atgaaaaaag tatgggtttc gcttcttgga ggagctatgt tattagggtc tgtcgcgtct 60 120 qqtqcatctq cqqaqaqttc cqtttcqqqq ccaqctcaqc ttacaccqac cttccacqcc gagcaatgga aagcacctac ctcggtatcg ggggatgaca ttgtatggag ctatttaaat 180 cgacaaaaga aatcgttgct gggtgtggat agctccagtg tacgtgaaca attccgaatc 240 gttgatcgca caagcgacaa atccggtgta agccattatc gactgaagca gtatgtaaac 300 ggaattcccg tgtatggagc tgaacaaact attcatgtgg gcaaatctgg tgaggtcacc 360 tettaettag gageggtggt taatgaggat cageaggeag aagetaegea aggtaeaaet 420 ccaaaaatca gcgcttctga agcggtctac accgcatata aagaagcagc tgcacggatt 480 gaageeetee etaceteega egataetatt tetaaagaeg etgaggagee aageagtgta 540 agtaaagata cttacgccga agcagctaac aacgaaaaaa cgctttctgt tgataaggac 600 gagetgagte ttgateagge atetgteetg aaagatagea aaattgaage agtggaacea 660 gaaaaaagtt ccattgccaa aatcgctaat ctgcagcctg aagtagatcc taaagcagaa 720 ctctactact accctaaggg ggatgacctg ctgctggttt atgtaacaga agttaatgtt 780 ttagaacctg ccccactgcg tacccgctac attattgatg ccaatgacgg cagcatcgta 840 ttccagtatg acatcattaa tgaagcgaca ggcacaggta aaggtgtgct tggtgattcc 900 960 aaatcqttca ctactaccqc ttccqqcaqt aqctaccaqt taaaaqatac aacacqcqqt aacqqaatcq tqacttacac qqcctccaac cqtcaaaqca tcccaqqtac cattttqaca 1020 gatgccgata atgtatggaa tgatccagct ggtgtggacg cccatgcgta tgctgctaaa 1080 acctatgatt actataaagc caaatttgga cgcaacagca ttgacggacg cggtctgcaa 1140 cttcgttcga cggtccatta cggtagtcgc tacaacaatg ccttctggaa cggctcccaa 1200 atgacttatg gagatggaga tggtagcaca tttatcgcct tcagcgggga ccccgatgta 1260 gtaggacatg aacttacgca tggtgtcaca gagtatactt cgaatttgga atattacgga 1320 gagtccggcg cattgaatga agetttetea gaegttateg ggaatgaeat teagegeaaa 1380 aactggcttg taggcgatga tatttacacg ccaaacattg caggcgatgc ccttcgctca 1440

-continued

atgtccaatc caaccctgta cgatcaacca gatcactatt ccaacctgta cagaggcagc 1500													
teegataaeg geggtgttea caccaaeage ggtattatea ataaagetta etaettgtta 1560													
gcacaaggtg gtaattteea tggegtaaet gtaaatggaa ttggeegtga tgeageggtg 1620													
caaatttact acagtgeett taegaactae etgaettett etteegaett eteeaaegea 1680													
cgtgctgctg tgatccaagc cgcaaaagat ctgtacgggg cgaactcagc agaagcaact 1740													
gcagctgcca agtcttttga cgctgtaggc gtaaactaa 1779													
<pre><210> SEQ ID NO 27 <211> LENGTH: 592 <212> TYPE: PRT <213> ORGANISM: Paenibacillus polymyxa SC2 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(592) <223> OTHER INFORMATION: amino acid sequence of the PpoProl precursor protein <400> SEQUENCE: 27</pre>													
<400> SEQUENCE: 27													
Met Lys Lys Val Trp Val Ser Leu Leu Gly Gly Ala Met Leu Leu Gly 1 5 10 15													
Ser Val Ala Ser Gly Ala Ser Ala Glu Ser Ser Val Ser Gly Pro Ala 20 25 30													
Gln Leu Thr Pro Thr Phe His Ala Glu Gln Trp Lys Ala Pro Thr Ser													
35 40 45													
Val Ser Gly Asp Asp Ile Val Trp Ser Tyr Leu Asn Arg Gln Lys Lys 50 55 60													
Ser Leu Leu Gly Val Asp Ser Ser Val Arg Glu Gln Phe Arg Ile 65 70 75 80													
Val Asp Arg Thr Ser Asp Lys Ser Gly Val Ser His Tyr Arg Leu Lys 85 90 95													
Gln Tyr Val Asn Gly Ile Pro Val Tyr Gly Ala Glu Gln Thr Ile His 100 105 110													
Val Gly Lys Ser Gly Glu Val Thr Ser Tyr Leu Gly Ala Val Val Asn 115 120 125													
Glu Asp Gln Gln Ala Glu Ala Thr Gln Gly Thr Thr Pro Lys Ile Ser 130 135 140													
Ala Ser Glu Ala Val Tyr Thr Ala Tyr Lys Glu Ala Ala Ala Arg Ile 145 150 150 155 160													
Glu Ala Leu Pro Thr Ser Asp Asp Thr Ile Ser Lys Asp Ala Glu Glu													
165 170 175 Pro Ser Ser Val Ser Lys Asp Thr Tyr Ala Glu Ala Asn Asn Glu													
180 185 190 Lys Thr Leu Ser Val Asp Lys Asp Glu Leu Ser Leu Asp Gln Ala Ser													
195 200 205													
Val Leu Lys Asp Ser Lys Ile Glu Ala Val Glu Pro Glu Lys Ser Ser 210 215 220													
Ile Ala Lys Ile Ala Asn Leu Gln Pro Glu Val Asp Pro Lys Ala Glu 225 230 235 240													
Leu Tyr Tyr Tyr Pro Lys Gly Asp Asp Leu Leu Val Tyr Val Thr 245 250 255													
Glu Val Asn Val Leu Glu Pro Ala Pro Leu Arg Thr Arg Tyr Ile Ile													
260 265 270													

											-	con	tin	ued	
Asp	Ala	Asn 275	Asp	Gly	Ser	Ile	Val 280	Phe	Gln	Tyr	Asp	Ile 285	Ile	Asn	Glu
Ala	Thr 290	Gly	Thr	Gly	Lys	Gly 295	Val	Leu	Gly	Asp	Ser 300	Lys	Ser	Phe	Thr
Thr 305	Thr	Ala	Ser	Gly	Ser 310	Ser	Tyr	Gln	Leu	Lys 315	Asp	Thr	Thr	Arg	Gly 320
Asn	Gly	Ile	Val	Thr 325	Tyr	Thr	Ala	Ser	Asn 330	Arg	Gln	Ser	Ile	Pro 335	Gly
Thr	Ile	Leu	Thr 340	Asp	Ala	Asp	Asn	Val 345	Trp	Asn	Asp	Pro	Ala 350	Gly	Val
Asp	Ala	His 355	Ala	Tyr	Ala	Ala	Lys 360	Thr	Tyr	Asp	Tyr	Tyr 365	Lys	Ala	Гла
Phe	Gly 370	Arg	Asn	Ser	Ile	Asp 375	Gly	Arg	Gly	Leu	Gln 380	Leu	Arg	Ser	Thr
Val 385	His	Tyr	Gly	Ser	Arg 390		Asn	Asn	Ala	Phe 395	Trp	Asn	Gly	Ser	Gln 400
Met	Thr	Tyr	Gly	Asp 405	Gly	Asp	Gly	Ser	Thr 410	Phe	Ile	Ala	Phe	Ser 415	Gly
Aab	Pro	Asp	Val 420	Val	Gly	His	Glu	Leu 425	Thr	His	Gly	Val	Thr 430	Glu	Tyr
Thr	Ser	Asn 435	Leu	Glu	Tyr	Tyr	Gly 440	Glu	Ser	Gly	Ala	Leu 445	Asn	Glu	Ala
Phe	Ser 450	Asp	Val	Ile	Gly	Asn 455	Asp	Ile	Gln	Arg	Lys 460	Asn	Trp	Leu	Val
Gly 465	Asp	Asp	Ile	Tyr	Thr 470	Pro	Asn	Ile	Ala	Gly 475	Asp	Ala	Leu	Arg	Ser 480
Met	Ser	Asn	Pro	Thr 485	Leu	Tyr	Asp	Gln	Pro 490	Asp	His	Tyr	Ser	Asn 495	Leu
Tyr	Arg	Gly	Ser 500	Ser	Asp	Asn	Gly	Gly 505	Val	His	Thr	Asn	Ser 510	Gly	Ile
Ile	Asn	Lys 515	Ala	Tyr	Tyr	Leu	Leu 520	Ala	Gln	Gly	Gly	Asn 525	Phe	His	Gly
Val	Thr 530	Val	Asn	Gly	Ile	Gly 535	Arg	Asp	Ala	Ala	Val 540	Gln	Ile	Tyr	Tyr
Ser 545	Ala	Phe	Thr	Asn	Tyr 550	Leu	Thr	Ser	Ser	Ser 555	Asp	Phe	Ser	Asn	Ala 560
Arg	Ala	Ala	Val	Ile 565	Gln	Ala	Ala	Lys	Asp 570	Leu	Tyr	Gly	Ala	Asn 575	Ser
Ala	Glu	Ala	Thr 580		Ala	Ala	Lys	Ser 585	Phe	Asp	Ala	Val	Gly 590	Val	Asn
<211 <212 <213 <220 <221 <222 <222 <223	L> LI 2> T 3> OF 0> FI L> NZ 2> L(3> O fo	EQ II ENGTH YPE: RGANI EATUH AME/I DCATI FHER DTM C	D NO H: 30 PRT ISM: RE: KEY: ION: INFO Df P	D4 Paen miso (1) DRMA' poPro	c_fea (3) FION	ature 04)	2	olymy			e of	the		licte	ed mature
Ala 1	Thr	Gly	Thr	Gly 5	Гла	Gly	Val	Leu	Gly 10	Asp	Ser	ГЛЗ	Ser	Phe 15	Thr

											-	con	tin	uea						
Thr	Thr	Ala	Ser 20	Gly	Ser	Ser	Tyr	Gln 25	Leu	Lys	Asp	Thr	Thr 30	Arg	Gly					
Asn	Gly	Ile 35	Val	Thr	Tyr	Thr	Ala 40	Ser	Asn	Arg	Gln	Ser 45	Ile	Pro	Gly					
Thr	Ile 50	Leu	Thr	Asp	Ala	Asp 55	Asn	Val	Trp	Asn	Asp 60	Pro	Ala	Gly	Val					
Asp 65	Ala	His	Ala	Tyr	Ala 70	Ala	ГЛа	Thr	Tyr	Asp 75	Tyr	Tyr	ГЛа	Ala	Lys 80					
Phe	Gly	Arg	Asn	Ser 85	Ile	Asp	Gly	Arg	Gly 90	Leu	Gln	Leu	Arg	Ser 95	Thr					
Val	His	Tyr	Gly 100	Ser	Arg	Tyr	Asn	Asn 105	Ala	Phe	Trp	Asn	Gly 110	Ser	Gln					
Met	Thr	Tyr 115	Gly	Asp	Gly	Asp	Gly 120	Ser	Thr	Phe	Ile	Ala 125	Phe	Ser	Gly					
Asp	Pro 130	Asp	Val	Val	Gly	His 135	Glu	Leu	Thr	His	Gly 140	Val	Thr	Glu	Tyr					
Thr 145	Ser	Asn	Leu	Glu	Tyr 150	Tyr	Gly	Glu	Ser	Gly 155	Ala	Leu	Asn	Glu	Ala 160					
Phe	Ser	Asp	Val	Ile 165	Gly	Asn	Asp	Ile	Gln 170	Arg	Lys	Asn	Trp	Leu 175	Val					
Gly	Asb	Asp	Ile 180	Tyr	Thr	Pro	Asn	Ile 185	Ala	Gly	Aap	Ala	Leu 190	Arg	Ser					
Met	Ser	Asn 195	Pro	Thr	Leu	Tyr	Asp 200	Gln	Pro	Asp	His	Tyr 205	Ser	Asn	Leu					
Tyr	Arg 210	Gly	Ser	Ser	Asp	Asn 215	Gly	Gly	Val	His	Thr 220	Asn	Ser	Gly	Ile					
Ile 225	Asn	Lys	Ala	Tyr	Tyr 230	Leu	Leu	Ala	Gln	Gly 235	Gly	Asn	Phe	His	Gly 240					
Val	Thr	Val	Asn	Gly 245	Ile	Gly	Arg	Asp	Ala 250	Ala	Val	Gln	Ile	Tyr 255	Tyr					
Ser	Ala	Phe	Thr 260	Asn	Tyr	Leu	Thr	Ser 265	Ser	Ser	Asp	Phe	Ser 270	Asn	Ala					
Arg	Ala	Ala 275	Val	Ile	Gln	Ala	Ala 280	Lys	Asp	Leu	Tyr	Gly 285	Ala	Asn	Ser					
Ala	Glu 290	Ala	Thr	Ala	Ala	Ala 295	Lys	Ser	Phe	Asp	Ala 300	Val	Gly	Val	Asn					
<210> SEQ ID NO 29 <211> LENGTH: 1800 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: nucleotide sequence of the synthesized PpoProl gene in plasmid pGX138(AprE-PpoProl)																				
)> SI				ta a	atos	actt	4 ++/	++++	reat	tas	catt	aat /	~+++	casta	60	1			
															cgatg	120				
cago	cttad	cac (cgac	attt	ca c	gcag.	aaca	a tgo	gaag	gctc	cga	cgtca	agt 1	tca	Igagac	180)			
gaca	atcgt	tgt g	ggag	ctac	ct ga	aata	gaca	g aaq	gaaa	agcc	tgc	tggga	agt q	ggata	igcagc	240)			
agco	gtcaç	gag a	agca	gttc	ag a	atcg	ttga	c aga	aacga	agcg	aca	aaago	cgg a	agte	igccat	300)			
															attcat	360)			
					-					-	-									

-continued

gttggcaaga	gcgg	agaag	gt c	acaaç	gctat	ctç	gggcg	gctg	tggt	ccaat	:ga	agato	caaca	a	420
gccgaggcta	caca	gggaa	ac a	acgco	gaaa	att	ageg	gcct	caga	aggca	igt (ctaca	acggc	g	480
tacaaagaag	cggc	tgcaa	ng a	atcga	agcc	ctç	geega	acat	caga	acgat	ac	aattt	ccaaa	a	540
gatgcggagg	agec	gaget	c a	gttag	gcaag	gat	cacat	cacg	cgga	aagco	gc	aaaca	aatga	g	600
aaaacactga	gcgt	ggaca	aa g	gacga	igctg	tca	actto	gatc	aggo	ctago	gt	cctta	aaaga	C	660
agcaagatcg	aggc	cgttg	ja g	leetga	aaag	tca	atcaa	attg	cgaa	aaato	gc	caato	ctgca	a	720
cctgaagtcg	accc	gaago	jc g	gaact	gtac	tad	ctaco	ccga	aago	gcgat	ga	cctgo	cttct	g	780
gtgtacgtca	cgga	agtga	aa c	gtcct	ggaa	ccé	ggcad	ccgc	tgag	gaaca	ag	ataca	atcat	с	840
gacgcgaacg	acgg	aagca	at c	gtctt	ccag	tat	gaca	atta	tcaa	acgaa	age .	aacgo	ggaac	g	900
ggcaaaggcg	tteti	tggag	ja c	tcaaa	agagc	tto	cacga	acaa	cggo	cttca	agg -	aagca	agcta	c	960
cagctgaaag	acac	gacga	ag a	ggaaa	acgga	ato	cgtca	acat	atad	cggcg	gtc .	aaaca	agaca	a	1020
agcatccctg	gcac	aatco	st g	acgga	atgct	gad	caaco	gttt	ggaa	atgat	cc	ggcto	ggcgt	g	1080
gatgcccatg	cttai	tgcgg	jc a	aaaad	gtat	gad	ctatt	taca	aggo	cgaaq	gtt -	cggca	agaaa	t	1140
tcaatcgatg	gcag	aggac	et g	caget	taga	ago	cacgo	gtgc	acta	acgga	atc.	aagat	tataa	c	1200
aatgccttct	ggaa	cggca	ag c	cagat	gaca	tad	ggag	gacg	gaga	atgga	ag	cacat	ttat	t	1260
gcattcagcg	gcga	ccct	ja t	gtggt	tggc	cat	gago	ctga	cgca	atggo	gt	tacaç	gaata	t	1320
acgagcaatc	ttga	atact	a c	ggcga	igtca	ggo	gcto	ctga	acga	aggca	att	tagco	gatgt	t	1380
atcggcaatg	acat	ccaga	ag a	aaaaa	actgg	ctç	ggtgg	ggcg	acga	atatt	ta	cacgo	cctaa	t	1440
atcgctggcg	atgc	cctta	ag a	tcaat	gtca	aad	cccga	acgc	tgta	atgat	ca	gcctç	gacca	c	1500
tactcaaacc	tgta	tagag	gg c	tcato	agat	aad	ggag	ggcg	tcca	ataco	jaa	tagco	ggcat	с	1560
attaacaagg	cata	ttato	t t	ctggo	ccag	ggo	cggca	aatt	ttca	atgga	igt (gacgo	gttaa	t	1620
ggaattggaa	gaga	cgcag	ge e	gtcca	aatc	tad	ctaca	agcg	cttt	ccace	jaa	ctaco	cttac	a	1680
tcaagctcag	actt	tagca	a t	gccaç	gaget	gct	gtta	atcc	aggo	cageo	jaa (ggato	cttta	C	1740
ggcgccaact	cage	cgaac	jc t	acggo	cgca	gct	aaat	cat	ttga	atgca	igt (gggcg	gttaa	t	1800
<210> SEQ <211> LENG <212> TYPE <213> ORGA <220> FEAT <223> OTHE prec	TH: 6 : PRT NISM: URE:	00 Arti ORMAI	TION	i: Syr	nthet	ic:									01
<400> SEQU	ENCE :	30													
Met Arg Se 1	r Lys	Lys 5	Leu	Trp	Ile	Ser	Leu 10	Leu	Phe	Ala	Leu	Thr 15	Leu		
Ile Phe Th	r Met 20	Ala	Phe	ser		Met 25	Ser	Ala	Gln	Ala	Ala 30	Gly	Гла		
Glu Ser Se 35		Ser	Gly	Pro	Ala 40	Gln	Leu	Thr	Pro	Thr 45	Phe	His	Ala		
Glu Gln Tr; 50	р Гла	Ala	Pro	Thr 55	Ser	Val	Ser	Gly	Asp 60	Asp	Ile	Val	Trp		
Ser Tyr Le 65	u Asn	Arg	Gln 70	. Lys	Lys	Ser	Leu	Leu 75	Gly	Val	Asp	Ser	Ser 80		
Ser Val Ar	g Glu	Gln	Phe	Arg	Ile	Val	Asp	Arg	Thr	Ser	Asp	Lys	Ser		

-continued

				85					90					95	
Gly	Val	Ser	His 100	Tyr	Arg	Leu	Lys	Gln 105	Tyr	Val	Asn	Gly	Ile 110	Pro	Val
Tyr	Gly	Ala 115	Glu	Gln	Thr	Ile	His 120	Val	Gly	Lys	Ser	Gly 125	Glu	Val	Thr
Ser	Tyr 130	Leu	Gly	Ala	Val	Val 135	Asn	Glu	Asp	Gln	Gln 140	Ala	Glu	Ala	Thr
Gln 145	Gly	Thr	Thr	Pro	Lys 150	Ile	Ser	Ala	Ser	Glu 155	Ala	Val	Tyr	Thr	Ala 160
Tyr	Lys	Glu	Ala	Ala 165	Ala	Arg	Ile	Glu	Ala 170	Leu	Pro	Thr	Ser	Asp 175	Asp
Thr	Ile	Ser	Lys 180	Asp	Ala	Glu	Glu	Pro 185	Ser	Ser	Val	Ser	Lys 190	Asp	Thr
Tyr	Ala	Glu 195	Ala	Ala	Asn	Asn	Glu 200	Lys	Thr	Leu	Ser	Val 205	Asp	ГЛа	Asp
Glu	Leu 210	Ser	Leu	Asp	Gln	Ala 215	Ser	Val	Leu	ГЛа	Asp 220	Ser	Гла	Ile	Glu
Ala 225	Val	Glu	Pro	Glu	Lys 230	Ser	Ser	Ile	Ala	Lys 235	Ile	Ala	Asn	Leu	Gln 240
Pro	Glu	Val	Asp	Pro 245	Гла	Ala	Glu	Leu	Tyr 250	Tyr	Tyr	Pro	Lys	Gly 255	Asp
Asp	Leu	Leu	Leu 260	Val	Tyr	Val	Thr	Glu 265	Val	Asn	Val	Leu	Glu 270	Pro	Ala
Pro	Leu	Arg 275	Thr	Arg	Tyr	Ile	Ile 280	Asp	Ala	Asn	Asp	Gly 285	Ser	Ile	Val
Phe	Gln 290	Tyr	Asp	Ile	Ile	Asn 295	Glu	Ala	Thr	Gly	Thr 300	Gly	ГÀЗ	Gly	Val
Leu 305	Gly	Asp	Ser	ГЛЗ	Ser 310	Phe	Thr	Thr	Thr	Ala 315	Ser	Gly	Ser	Ser	Tyr 320
Gln	Leu	Lys	Asp	Thr 325	Thr	Arg	Gly	Asn	Gly 330	Ile	Val	Thr	Tyr	Thr 335	Ala
Ser	Asn	Arg	Gln 340	Ser	Ile	Pro	Gly	Thr 345	Ile	Leu	Thr	Asp	Ala 350	Asp	Asn
Val	Trp	Asn 355	Asp	Pro	Ala	Gly	Val 360	Asp	Ala	His	Ala	Tyr 365	Ala	Ala	Lys
Thr	Tyr 370	Asp	Tyr	Tyr	Lys	Ala 375	Lys	Phe	Gly	Arg	Asn 380	Ser	Ile	Asp	Gly
Arg 385	Gly	Leu	Gln	Leu	Arg 390	Ser	Thr	Val	His	Tyr 395	Gly	Ser	Arg	Tyr	Asn 400
Asn	Ala	Phe	Trp	Asn 405	Gly	Ser	Gln	Met	Thr 410	Tyr	Gly	Asp	Gly	Asp 415	Gly
Ser	Thr	Phe	Ile 420	Ala	Phe	Ser	Gly	Asp 425	Pro	Asp	Val	Val	Gly 430	His	Glu
Leu	Thr	His 435	Gly	Val	Thr	Glu	Tyr 440	Thr	Ser	Asn	Leu	Glu 445	Tyr	Tyr	Gly
Glu	Ser 450	Gly	Ala	Leu	Asn	Glu 455	Ala	Phe	Ser	Asp	Val 460	Ile	Gly	Asn	Asp
Ile 465	Gln	Arg	Lys	Asn	Trp 470	Leu	Val	Gly	Asp	Asp 475	Ile	Tyr	Thr	Pro	Asn 480
Ile	Ala	Gly	Asp	Ala 485	Leu	Arg	Ser	Met	Ser 490	Asn	Pro	Thr	Leu	Tyr 495	Asp

-continued

60

420

480

540

600

660

720

780

960

Gln Pro Asp His Tyr Ser Asn Leu Tyr Arg Gly Ser Ser Asp Asn Gly 505 500 510 Gly Val His Thr Asn Ser Gly Ile Ile Asn Lys Ala Tyr Tyr Leu Leu 515 520 525 Ala Gln Gly Gly Asn Phe His Gly Val Thr Val Asn Gly Ile Gly Arg 530 535 540 Asp Ala Ala Val Gln Ile Tyr Tyr Ser Ala Phe Thr Asn Tyr Leu Thr 545 550 555 560 Ser Ser Ser Asp Phe Ser Asn Ala Arg Ala Ala Val Ile Gln Ala Ala Lys Asp Leu Tyr Gly Ala Asn Ser Ala Glu Ala Thr Ala Ala Ala Lys 580 585 590 Ser Phe Asp Ala Val Gly Val Asn 595 600 <210> SEQ ID NO 31 <211> LENGTH: 1641 <212> TYPE: DNA <213> ORGANISM: Paenibacillus hunanensis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(1641) <223> OTHER INFORMATION: nucleotide sequence of the PhuPro1 gene isolated from Paenibacillus hunanensis <400> SEQUENCE: 31 ttgaaaaaaa cagttggtct tttacttgca ggtagcttgc tcgttggtgc tacaacgtcc gctttcgcag cagaagcaaa tgatctggca ccactcggtg attacacgcc aaaattgatt 120 acgcaagcaa caggcatcac tggcgctagt ggcgatgcta aagtatggaa gttcctggag 180 aagcaaaaac gtaccatcgt aaccgatgat gcagcttctg ctgatgtgaa ggaattgttt 240 gagatcacaa aacgtcaatc cgattctcaa accggtacag agcactatcg cctgaaccaa 300 acctttaaag gcatcccagt ctatggcgca gagcaaacac tgcactttga caaatccggc 360 aatgtatete tgtacatggg teaggttgtt gaggatgtgt eegetaaaet ggaagettee gattccaaaa aaggcgtaac tgaggatgta tacgcttcgg atacgaaaaa tgatctggta acaccagaaa tcagcgcttc tcaagccatc tcgattgctg aaaaggatgc agcttccaaa atcggctccc tcggcgaagc acaaaaaacg ccagaagcga agctgtatat ctacgctcct gaggatcaag cagcacgtet ggettatgtg acagaagtaa acgtaetgga geeateteeg ctgcgtactc gctattttgt agatgcaaaa acaggttcga tcctgttcca atatgatctg attgagcatg caacaggtac aggtaaaggg gtactgggtg ataccaagtc cttcactgta 840 gqtacttccg gttcttccta tgtgatgact gatagcacgc gtggaaaagg tatccaaacc tacacggcgt ctaaccgcac atcactgcca ggtagcactg taacgagcag cagcagcaca 900 tttaacgatc cagcatctgt cgatgcccat gcgtatgcac aaaaagtata tgatttctac aaatccaact ttaaccgcaa cagcatcgac ggtaatggtc tggctatccg ctccactacg 1020 cactattcca cacgttataa caatgcgttc tggaatggtt cccaaatggt atacggtgat 1080 qqcqatqqtt cqcaattcat cqcattctcc qqcqaccttq acqtaqtaqq tcacqaqctq 1140 acacacggtg taaccgagta cacagcgaac ctggaatact atggtcaatc cggtgcactg 1200 aacgaatcca tttcggatat ctttggtaac acaatcgaag gtaaaaactg gatggtaggc 1260

-continued

gatgcgatct acacaccagg cgtatccggc gatgctcttc gctacatgga tgatccaaca aaaggtggac aaccagcgcg tatggcagat tacaacaaca caagcgctga taatggcggt gtacacacaa acagtggtat cccgaataaa gcatactact tgctggcaca gggtggcaca tttggcggtg taaatgtaac aggtatcggt cgctcgcaag cgatccagat cgtttaccgt gcactaacat actacctgac atccacatct aacttctcga actaccgttc tgcaatggtg caagcatcta cagacctgta cggtgcaaac tctacacaaa caacagcggt gaaaaactcg ctgagcgcag taggcattaa c <210> SEQ ID NO 32 <211> LENGTH: 547 <212> TYPE: PRT <213> ORGANISM: Paenibacillus hunanensis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(547) <223> OTHER INFORMATION: amino acid sequence of the PhuPro1 precursor protein <400> SEOUENCE: 32 Met Lys Lys Thr Val Gly Leu Leu Leu Ala Gly Ser Leu Leu Val Gly Ala Thr Thr Ser Ala Phe Ala Ala Glu Ala Asn Asp Leu Ala Pro Leu Gly Asp Tyr Thr Pro Lys Leu Ile Thr Gl
n Ala Thr Gly Ile Thr Gly Ala Ser Gly Asp Ala Lys Val Trp Lys Phe Leu Glu Lys Gln Lys Arg Thr Ile Val Thr Asp Asp Ala Ala Ser Ala Asp Val Lys Glu Leu Phe Glu Ile Thr Lys Arg Gln Ser Asp Ser Gln Thr Gly Thr Glu His Tyr Arg Leu Asn Gln Thr Phe Lys Gly Ile Pro Val Tyr Gly Ala Glu Gln Thr Leu His Phe Asp Lys Ser Gly Asn Val Ser Leu Tyr Met Gly Gln Val Val Glu Asp Val Ser Ala Lys Leu Glu Ala Ser Asp Ser Lys Lys Gly Val Thr Glu Asp Val Tyr Ala Ser Asp Thr Lys Asn Asp Leu Val Thr Pro Glu Ile Ser Ala Ser Gln Ala Ile Ser Ile Ala Glu Lys Asp Ala Ala Ser Lys Ile Gly Ser Leu Gly Glu Ala Gln Lys Thr Pro Glu Ala Lys Leu Tyr Ile Tyr Ala Pro Glu Asp Gln Ala Ala Arg Leu Ala Tyr Val Thr Glu Val Asn Val Leu Glu Pro Ser Pro Leu Arg Thr Arg Tyr Phe Val Asp Ala Lys Thr Gly Ser Ile Leu Phe Gln Tyr Asp Leu Ile Glu His Ala Thr Gly Thr Gly Lys Gly Val Leu Gly Asp Thr Lys

-continued

-concinued
Ser Phe Thr Val Gly Thr Ser Gly Ser Ser Tyr Val Met Thr Asp Ser 260 265 270
Thr Arg Gly Lys Gly Ile Gln Thr Tyr Thr Ala Ser Asn Arg Thr Ser 275 280 285
Leu Pro Gly Ser Thr Val Thr Ser Ser Ser Thr Phe Asn Asp Pro 290 295 300
Ala Ser Val Asp Ala His Ala Tyr Ala Gln Lys Val Tyr Asp Phe Tyr 305 310 315 320
Lys Ser Asn Phe Asn Arg Asn Ser Ile Asp Gly Asn Gly Leu Ala Ile 325 330 335
Arg Ser Thr Thr His Tyr Ser Thr Arg Tyr Asn Asn Ala Phe Trp Asn 340 345 350
Gly Ser Gln Met Val Tyr Gly Asp Gly Asp Gly Ser Gln Phe Ile Ala 355 360 365
Phe Ser Gly Asp Leu Asp Val Val Gly His Glu Leu Thr His Gly Val 370 375 380
Thr Glu Tyr Thr Ala Asn Leu Glu Tyr Tyr Gly Gln Ser Gly Ala Leu 385 390 395 400
Asn Glu Ser Ile Ser Asp Ile Phe Gly Asn Thr Ile Glu Gly Lys Asn 405 410 415
Trp Met Val Gly Asp Ala Ile Tyr Thr Pro Gly Val Ser Gly Asp Ala 420 425 430
Leu Arg Tyr Met Asp Asp Pro Thr Lys Gly Gly Gln Pro Ala Arg Met 435 440 445
Ala Asp Tyr Asn Asn Thr Ser Ala Asp Asn Gly Gly Val His Thr Asn 450 455 460
Ser Gly Ile Pro Asn Lys Ala Tyr Tyr Leu Leu Ala Gln Gly Gly Thr 465 470 475 480
Phe Gly Gly Val Asn Val Thr Gly Ile Gly Arg Ser Gln Ala Ile Gln 485 490 495
Ile Val Tyr Arg Ala Leu Thr Tyr Tyr Leu Thr Ser Thr Ser Asn Phe 500 505 510
Ser Asn Tyr Arg Ser Ala Met Val Gln Ala Ser Thr Asp Leu Tyr Gly
Ala Asn Ser Thr Gln Thr Thr Ala Val Lys Asn Ser Leu Ser Ala Val
530 535 540 Gly Ile Asn
545
<pre><210> SEQ ID NO 33 <211> LENGTH: 304 <212> TYPE: PRT <213> ORGANISM: Paenibacillus hunanensis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(304) <223> OTHER INFORMATION: amino acid sequence of the predicted mature form of PhuPro1</pre>
<400> SEQUENCE: 33
Ala Thr Gly Thr Gly Lys Gly Val Leu Gly Asp Thr Lys Ser Phe Thr 1 5 10 15
Val Gly Thr Ser Gly Ser Ser Tyr Val Met Thr Asp Ser Thr Arg Gly 20 25 30

-	-cont	in	ue	d
	COILC		uc	u

-continued											
Lys Gly Ile Gln Thr Tyr Thr Ala Ser Asn Arg Thr Ser Leu Pro Gly 35 40 45											
Ser Thr Val Thr Ser Ser Ser Thr Phe Asn Asp Pro Ala Ser Val 50 55 60											
Asp Ala His Ala Tyr Ala Gln Lys Val Tyr Asp Phe Tyr Lys Ser Asn 65 70 75 80											
Phe Asn Arg Asn Ser Ile Asp Gly Asn Gly Leu Ala Ile Arg Ser Thr 85 90 95											
Thr His Tyr Ser Thr Arg Tyr Asn Asn Ala Phe Trp Asn Gly Ser Gln 100 105 110											
Met Val Tyr Gly Asp Gly Asp Gly Ser Gln Phe Ile Ala Phe Ser Gly 115 120 125											
Asp Leu Asp Val Val Gly His Glu Leu Thr His Gly Val Thr Glu Tyr 130 135 140											
Thr Ala Asn Leu Glu Tyr Tyr Gly Gln Ser Gly Ala Leu Asn Glu Ser 145 150 155 160											
Ile Ser Asp Ile Phe Gly Asn Thr Ile Glu Gly Lys Asn Trp Met Val 165 170 175											
Gly Asp Ala Ile Tyr Thr Pro Gly Val Ser Gly Asp Ala Leu Arg Tyr 180 185 190											
Met Asp Asp Pro Thr Lys Gly Gln Gln Pro Ala Arg Met Ala Asp Tyr 195 200 205											
Asn Asn Thr Ser Ala Asp Asn Gly Gly Val His Thr Asn Ser Gly Ile 210 215 220											
Pro Asn Lys Ala Tyr Tyr Leu Leu Ala Gln Gly Gly Thr Phe Gly Gly 225 230 235 240											
Val Asn Val Thr Gly Ile Gly Arg Ser Gln Ala Ile Gln Ile Val Tyr 245 250 255											
Arg Ala Leu Thr Tyr Tyr Leu Thr Ser Thr Ser Asn Phe Ser Asn Tyr 260 265 270											
Arg Ser Ala Met Val Gln Ala Ser Thr Asp Leu Tyr Gly Ala Asn Ser 275 280 285											
Thr Gln Thr Thr Ala Val Lys Asn Ser Leu Ser Ala Val Gly Ile Asn 290 295 300											
<pre><210> SEQ ID NO 34 <211> LENGTH: 1671 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: nucleotide sequence of the synthesized PhuProl gene in plasmid pGX149(AprE- PhuProl) <400> SEQUENCE: 34</pre>											
gtgagaagca aaaaattgtg gatcagcttg ttgtttgcgt taacgttaat ctttacgatg 60											
gcgttcagca acatgagcgc gcaggctgct ggaaaagcag aagctaatga tcttgccccg 120 cttggcgatt atacaccgaa gcttattaca caggcaacgg gaattacagg cgcatcaggc 180											
gatgcgaagg tgtggaagtt cctggagaag cagaagagaa cgattgtcac ggacgacgcc 240											
gcaagcgcgg atgtcaagga gctgttcgag atcacgaaga gacagagcga tagccagacg 300											
ggaacggagc attacagact gaaccagacg ttcaagggca ttccggtcta cggagctgaa 360											
caaacgetge attttgataa aageggeaae gteteaetgt acatgggeea agtegttgag 420											

\sim	\sim	nt		n	11	\frown	\sim
C	U.	LLV	_ 1	- 1 1	u	c	u

-continued	
gacgttagcg ccaaacttga ggctagcgac agcaagaaag gcgtcacaga agatgtcta	c 480
gogtcagaca cgaaaaacga cctggttaca ccggaaatct cagcttcaca ggccatctca	a 540
attgcagaga aagacgcagc gtcaaaaatc ggctcactgg gcgaggctca gaaaacgccg	g 600
gaggegaaac tttacateta egeceetgag gaecaggetg egagaetgge ttaegtgaea	a 660
gaagttaatg tgctggagcc gtcaccgctt agaacgagat atttcgtgga cgcaaagacg	g 720
ggcagcattc tgtttcagta cgatcttatc gaacacgcga caggcacagg aaagggagtt	t 780
ctgggagaca caaaaagctt cacggttggc acgtcaggca gcagctacgt gatgacagac	c 840
agcacgagag gcaagggcat tcaaacgtat acagcgagca acagaacaag cctgccggga	a 900
agcacagtca cgagetcate ateaaegttt aatgaeeegg eeteagtgga tgeteaegea	a 960
tacgcgcaga aagtgtacga cttctacaaa agcaacttca atagaaacag catcgacgga	a 1020
aacggcottg ogatcagaag caogaogoac tacagoacaa gatacaacaa ogoottotgo	g 1080
aacggcagcc aaatggttta cggcgatggc gacggatcac agtttatcgc atttagcgga	a 1140
gacetggaeg tegttggeea tgagetgaea catggegtta eggagtaeae ageaaaeete	g 1200
gaatactatg gccagtcagg cgcccttaac gagagcatca gcgacatttt tggcaatac	g 1260
atcgaaggaa agaactggat ggtcggcgac gcaatctaca caccgggcgt ttcaggcgat	t 1320
gcactgagat atatggacga cccgacaaag ggcggacagc cggccagaat ggcggatta	c 1380
aataatacgt cagcagataa cggcggcgtg catacaaata gcggcatccc taacaaagca	a 1440
tattacctgc ttgcgcaagg aggaacattt ggcggcgtga atgttacggg cattggcaga	a 1500
tcacaagoga ttcagatogt ttacagagog otgaogtact acottaogag caogagoaat	t 1560
tttagcaact acagaagcgc aatggtgcag gcaagcacgg atctgtatgg cgcaaattca	a 1620
acacaaacga cggcggtcaa gaatagcctt tcagcagtgg gcattaacta a	1671
<210> SEQ ID NO 35 <211> LENGTH: 556 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: amino acid sequence of the Pr precursor protein expressed from plasmid pGX149(AprE- PhuPr <400> SEOUENCE: 35	
Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu	
1 5 10 15	
Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Ala Gly Lys202530	
Ala Glu Ala Asn Asp Leu Ala Pro Leu Gly Asp Tyr Thr Pro Lys Leu 35 40 45	
Ile Thr Gln Ala Thr Gly Ile Thr Gly Ala Ser Gly Asp Ala Lys Val 50 55 60	
Trp Lys Phe Leu Glu Lys Gln Lys Arg Thr Ile Val Thr Asp Asp Ala 65 70 75 80	
Ala Ser Ala Asp Val Lys Glu Leu Phe Glu Ile Thr Lys Arg Gln Ser 85 90 95	
Asp Ser Gln Thr Gly Thr Glu His Tyr Arg Leu Asn Gln Thr Phe Lys 100 105 110	
Gly Ile Pro Val Tyr Gly Ala Glu Gln Thr Leu His Phe Asp Lys Ser 115 120 125	

-cont	inued

Gly	Asn 130	Val	Ser	Leu	Tyr	Met 135	Gly	Gln	Val	Val	Glu 140	Asp	Val	Ser	Ala
Lys 145	Leu	Glu	Ala	Ser	Asp 150	Ser	Lys	Lys	Gly	Val 155	Thr	Glu	Asp	Val	Tyr 160
Ala	Ser	Asb	Thr	Lys 165	Asn	Asp	Leu	Val	Thr 170	Pro	Glu	Ile	Ser	Ala 175	Ser
Gln	Ala	Ile	Ser 180	Ile	Ala	Glu	Lys	Asp 185	Ala	Ala	Ser	Lys	Ile 190	Gly	Ser
Leu	Gly	Glu 195	Ala	Gln	Lys	Thr	Pro 200	Glu	Ala	Lys	Leu	Tyr 205	Ile	Tyr	Ala
Pro	Glu 210	Asp	Gln	Ala	Ala	Arg 215	Leu	Ala	Tyr	Val	Thr 220	Glu	Val	Asn	Val
Leu 225	Glu	Pro	Ser	Pro	Leu 230	Arg	Thr	Arg	Tyr	Phe 235	Val	Asp	Ala	Lys	Thr 240
Gly	Ser	Ile	Leu	Phe 245	Gln	Tyr	Asp	Leu	Ile 250	Glu	His	Ala	Thr	Gly 255	Thr
Gly	Lys	Gly	Val 260	Leu	Gly	Asp	Thr	Lys 265	Ser	Phe	Thr	Val	Gly 270	Thr	Ser
Gly	Ser	Ser 275	Tyr	Val	Met	Thr	Asp 280	Ser	Thr	Arg	Gly	Lys 285	Gly	Ile	Gln
Thr	Tyr 290	Thr	Ala	Ser	Asn	Arg 295	Thr	Ser	Leu	Pro	Gly 300	Ser	Thr	Val	Thr
Ser 305	Ser	Ser	Ser	Thr	Phe 310	Asn	Asp	Pro	Ala	Ser 315	Val	Asp	Ala	His	Ala 320
Tyr	Ala	Gln	Lys	Val 325	Tyr	Asp	Phe	Tyr	Lys 330	Ser	Asn	Phe	Asn	Arg 335	Asn
Ser	Ile	Asp	Gly 340	Asn	Gly	Leu	Ala	Ile 345	Arg	Ser	Thr	Thr	His 350	Tyr	Ser
Thr	Arg	Tyr 355	Asn	Asn	Ala	Phe	Trp 360	Asn	Gly	Ser	Gln	Met 365	Val	Tyr	Gly
Asp	Gly 370	Aab	Gly	Ser	Gln	Phe 375	Ile	Ala	Phe	Ser	Gly 380	Asp	Leu	Aab	Val
Val 385	Gly	His	Glu	Leu	Thr 390	His	Gly	Val	Thr	Glu 395	Tyr	Thr	Ala	Asn	Leu 400
Glu	Tyr	Tyr	Gly	Gln 405	Ser	Gly	Ala	Leu	Asn 410	Glu	Ser	Ile	Ser	Asp 415	Ile
Phe	Gly	Asn	Thr 420	Ile	Glu	Gly	Lys	Asn 425	Trp	Met	Val	Gly	Asp 430	Ala	Ile
Tyr	Thr	Pro 435	Gly	Val	Ser	Gly	Asp 440	Ala	Leu	Arg	Tyr	Met 445	Asp	Asp	Pro
Thr	Lys 450	Gly	Gly	Gln	Pro	Ala 455	Arg	Met	Ala	Asp	Tyr 460	Asn	Asn	Thr	Ser
Ala 465	Aab	Asn	Gly	Gly	Val 470	His	Thr	Asn	Ser	Gly 475	Ile	Pro	Asn	Lys	Ala 480
Tyr	Tyr	Leu	Leu	Ala 485	Gln	Gly	Gly	Thr	Phe 490	Gly	Gly	Val	Asn	Val 495	Thr
Gly	Ile	Gly	Arg 500	Ser	Gln	Ala	Ile	Gln 505	Ile	Val	Tyr	Arg	Ala 510	Leu	Thr
Tyr	Tyr	Leu 515	Thr	Ser	Thr	Ser	Asn 520	Phe	Ser	Asn	Tyr	Arg 525	Ser	Ala	Met

	n			

Val Gln Ala Ser Thr Asp Leu Tyr Gly Ala Asn Ser Thr Gln Thr Thr 530 535 540	
Ala Val Lys Asn Ser Leu Ser Ala Val Gly Ile Asn 545 550 555	
<210> SEQ ID NO 36 <211> LENGTH: 1563 <212> TYPE: DNA <213> ORGANISM: Paenibacillus amylolyticus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(1563) <223> OTHER INFORMATION: nucleotide sequence of the PamPro1 gene isolated from Paenibacillus amylolyticus	
<400> SEQUENCE: 36	
atgaaattcg ccaaagttat gccaacaatt cttggaggag ctcttttgct cgcttccgta	60
teetetgeta etgeagetee agtgtetgat caateeatte caetteagge eeettatgee	120
tetgaggggg gtatteeatt gaacagtgga acagatgaca etatetttaa ttatettgga	180
cagcaggaac aatttetgaa tteegatgtg aaateeeage teaaaattgt caaaagaaac	240
acagatacat ctggcgtaag acacttccgc ctgaaacagt atattaaagg tatcccggtt	300
tatggtgcag aacagacggt ccacctggac aaaaccggag ccgtgagctc cgcacttggc	360
gatetteeac egattgaaga geaggeeatt eegaatgatg gtgtageega gateagegga	420
gaagacgcga tecagattge aacegaagaa geaaceteee ggattggaga gettggtgee	480
gcggaaatca cgcctcaagc tgaattgaac atctatcatc atgaagaaga tggtcagaca	540
tatetggttt acattaegga agtaaaegta etggaaeetg eeeetaeg gaeeaaatat	600
ttcattaacg cagtggatgg cagtatcgta tcccagtttg acctcattaa cttcgctact	660
ggaacaggta caggtgtact cggtgatacc aaaaccctga caaccaccca atccggcagc	720
accttccaac tgaaagacac cactcgtggc aatggcatcc aaacgtatac ggcaaacaat	780
ggeteeteac tgeetggtag ettgettaca gatteggata atgtatggae egategtgea	840
ggtgtagatg ctcatgctca tgccgctgct acgtatgatt tctacaaaaa caaattcaac	900
cgtaacggta ttaatggtaa cggattgttg atcagatcaa ccgtgcacta cggctccaat	960
tacaataacg cettetggaa eggggeacag attgtetttg gtgaeggaga tggaaegatg	1020
tteegateee tgtetggtga tetggatgtt gtgggteatg aattgaegea tggtgttatt	1080
gaatatacag ccaatctgga atatcgcaat gaaccaggtg cactcaatga ageetttgee	1140
gatattttcg gtaatacgat ccaaagcaaa aactggctgc tcggtgatga tatctacaca	1200
cctaacactc caggagatgc gctgcgctcc ctctccaacc ctacattgta tggtcaacct	1260
gacaaataca gcgatcgcta cacaggctca caggacaacg gcggtgtcca tatcaacagt	1320
ggtatcatca ataaagoota tttoottgot gotcaaggog gaacacataa tggtgtgact	1380
gttaccggaa tcggccggga taaagcgatc cagattttct acagcacact ggtgaactac	1440
ctgacaccaa cgtccaaatt tgccgctgcc aaaacagcta ccattcaagc agccaaagat	1500
ctgtacggag caacttccgc tgaagctact gctattacca aagcatatca agctgtaggc	1560
ctg	1563

<210> SEQ ID NO 37 <211> LENGTH: 521

<212> TYPE: PRT <213> ORGANISM: Paenibacillus amylolyticus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(521) <223> OTHER INFORMATION: amino acid sequence of the PamPro1 precursor protein <400> SEQUENCE: 37 Met Lys Phe Ala Lys Val Met Pro Thr Ile Leu Gly Gly Ala Leu Leu Leu Ala Ser Val Ser Ser Ala Thr Ala Ala Pro Val Ser Asp Gln Ser Ile Pro Leu Gln Ala Pro Tyr Ala Ser Glu Gly Gly Ile Pro Leu Asn Ser Gly Thr Asp Asp Thr Ile Phe Asn Tyr Leu Gly Gln Gln Glu Gln
 Phe
 Leu
 Asn
 Ser
 Asp
 Val
 Lys
 Ser
 Gl
 Lys
 Lys
 Lys
 Asn
 Asn Thr Asp Thr Ser Gly Val Arg His Phe Arg Leu Lys Gln Tyr Ile Lys Gly Ile Pro Val Tyr Gly Ala Glu Gln Thr Val His Leu Asp Lys Thr Gly Ala Val Ser Ser Ala Leu Gly Asp Leu Pro Pro Ile Glu Glu Gln Ala Ile Pro Asn Asp Gly Val Ala Glu Ile Ser Gly Glu Asp Ala Ile Gln Ile Ala Thr Glu Glu Ala Thr Ser Arg Ile Gly Glu Leu Gly Ala Ala Glu Ile Thr Pro Gln Ala Glu Leu Asn Ile Tyr His His Glu Glu Asp Gly Gln Thr Tyr Leu Val Tyr Ile Thr Glu Val Asn Val Leu Glu Pro Ala Pro Leu Arg Thr Lys Tyr Phe Ile Asn Ala Val Asp Gly Ser Ile Val Ser Gln Phe Asp Leu Ile Asn Phe Ala Thr Gly Thr Gly Thr Gly Val Leu Gly Asp Thr Lys Thr Leu Thr Thr Thr Gln Ser Gly Ser Thr Phe Gln Leu Lys Asp Thr Thr Arg Gly Asn Gly Ile Gln Thr Tyr Thr Ala Asn Asn Gly Ser Ser Leu Pro Gly Ser Leu Leu Thr Asp Ser Asp Asn Val Trp Thr Asp Arg Ala Gly Val Asp Ala His Ala His Ala Ala Ala Thr Tyr Asp Phe Tyr Lys Asn Lys Phe Asn Arg Asn Gly Ile Asn Gly Asn Gly Leu Leu Ile Arg Ser Thr Val His Tyr Gly Ser Asn Tyr Asn Asn Ala Phe Trp Asn Gly Ala Gln Ile Val Phe Gly Asp Gly Asp Gly Thr Met Phe Arg Ser Leu Ser Gly Asp Leu Asp Val Val Gly

His	Glu	Leu 355	Thr	His	Gly	Val	Ile 360	Glu	Tyr	Thr	Ala	Asn 365	Leu	Glu	Tyr
Arg	Asn 370	Glu	Pro	Gly	Ala	Leu 375	Asn	Glu	Ala	Phe	Ala 380	Asp	Ile	Phe	Gly
Asn 385	Thr	Ile	Gln	Ser	Lys 390	Asn	Trp	Leu	Leu	Gly 395	Asp	Asp	Ile	Tyr	Thr 400
Pro	Asn	Thr	Pro	Gly 405	Asp	Ala	Leu	Arg	Ser 410	Leu	Ser	Asn	Pro	Thr 415	Leu
Tyr	Gly	Gln	Pro 420	Asp	Lys	Tyr	Ser	Asp 425	Arg	Tyr	Thr	Gly	Ser 430	Gln	Asp
Asn	Gly	Gly 435	Val	His	Ile	Asn	Ser 440	Gly	Ile	Ile	Asn	Lys 445	Ala	Tyr	Phe
Leu	Ala 450	Ala	Gln	Gly	Gly	Thr 455	His	Asn	Gly	Val	Thr 460	Val	Thr	Gly	Ile
Gly 465	Arg	Asp	Lys	Ala	Ile 470	Gln	Ile	Phe	Tyr	Ser 475	Thr	Leu	Val	Asn	Tyr 480
Leu	Thr	Pro	Thr	Ser 485	Lys	Phe	Ala	Ala	Ala 490	Lys	Thr	Ala	Thr	Ile 495	Gln
Ala	Ala	Lys	Asp 500	Leu	Tyr	Gly	Ala	Thr 505	Ser	Ala	Glu	Ala	Thr 510	Ala	Ile
Thr	Lys	Ala 515	Tyr	Gln	Ala	Val	Gly 520	Leu							
<222 <223	2> L0 3> 01 fo	CAT: THER	ION: INFO of Pa	(1) ORMA' amPro		03)		acid	seqi	lence	e of	the	pred	licte	ed mature
)> SH Thr				Thr	Gly	Val	Leu	Gly	Asp	Thr	Lys	Thr	Leu	Thr
1 Thr	Thr	Gln	Ser	5 Glv	Ser	Thr	Phe	Gln	10 Leu	Lvs	Asp	Thr	Thr	15 Arq	Glv
			20		Tyr			25					30		
		35					40					45			
	50				Ser	55					60				
65					Ala 70				-	75		-	-		80
Phe	Asn	Arg	Asn	Gly 85	Ile	Asn	Gly	Asn	Gly 90	Leu	Leu	Ile	Arg	Ser 95	Thr
Val	His	Tyr	Gly 100	Ser	Asn	Tyr	Asn	Asn 105	Ala	Phe	Trp	Asn	Gly 110	Ala	Gln
Ile	Val	Phe 115	Gly	Asp	Gly	Asp	Gly 120	Thr	Met	Phe	Arg	Ser 125	Leu	Ser	Gly
Asp	Leu 130	Asp	Val	Val	Gly	His 135	Glu	Leu	Thr	His	-	Val	Ile	Glu	Tyr
	100					132					140				
Thr 145		Asn	Leu	Glu	Tyr 150		Asn	Glu	Pro	Gly 155		Leu	Asn	Glu	Ala 160

-	С	on	t.	1	n	u	е	d

Phe Ala Asp Ile Phe Gly Asn Thr Ile Gln Ser Lys Asn Trp Leu Leu 165 170 175										
Gly Asp Asp Ile Tyr Thr Pro Asn Thr Pro Gly Asp Ala Leu Arg Ser 180 185 190										
Leu Ser Asn Pro Thr Leu Tyr Gly Gln Pro Asp Lys Tyr Ser Asp Arg 195 200 205										
Tyr Thr Gly Ser Gln Asp Asn Gly Gly Val His Ile Asn Ser Gly Ile 210 215 220										
Ile Asn Lys Ala Tyr Phe Leu Ala Ala Gln Gly Gly Thr His Asn Gly 225 230 235 240										
Val Thr Val Thr Gly Ile Gly Arg Asp Lys Ala Ile Gln Ile Phe Tyr 245 250 255										
Ser Thr Leu Val Asn Tyr Leu Thr Pro Thr Ser Lys Phe Ala Ala Ala										
260 265 270 Lys Thr Ala Thr Ile Gln Ala Ala Lys Asp Leu Tyr Gly Ala Thr Ser										
275 280 285 Ala Glu Ala Thr Ala Ile Thr Lys Ala Tyr Gln Ala Val Gly Leu										
290 295 300										
<210> SEQ ID NO 39 <211> LENGTH: 1587 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: nucleotide sequence of the synthesized PamPro1 gene in plasmid pGX146 (AprE- PamPro1)										
<400> SEQUENCE: 39										
gtgagaagca aaaaattgtg gatcagcttg ttgtttgcgt taacgttaat ctttacgatg 60										
gcgttcagca acatgagcgc gcaggctgct ggaaaagctc cggttagcga ccagtcaatc 120										
cctcttcaag caccgtatgc cagcgaagga ggcattccgc ttaacagcgg cacggacgac 180										
acgattttca attacctggg ccaacaggag cagttcctga acagcgacgt caagagccag 240										
ctgaagatcg tcaaaagaaa cacagacaca tcaggcgtga gacacttcag actgaagcaa 300										
tacatcaagg gcatcccggt ttatggcgct gaacaaacgg ttcacctgga caaaacagge 360										
gcagtttcat cagcactggg agatctgccg ccgattgaag agcaagcaat cccgaatgat 420										
ggagttgcgg aaattagcgg cgaggatgca atccaaatcg cgacggagga ggctacatca 480										
agaattggag aacttggcgc ageggagatt acacegeagg etgaaetgaa eatetateae 540										
catgaggaag acggccagac gtacctggtt tacattacgg aagtgaacgt gctggaaccg 600										
gcacctctga gaacaaagta ctttatcaac geggttgaeg geageategt etcaeagtte 660										
gacctgatta acttcgccac gggaacagga acgggcgttc ttggagacac aaagacgctg 720										
acgacgacgc agtcaggcag cacattccag ctgaaggaca caacaagagg caacggcatc 780										
caaacgtaca cggcgaacaa tggatcatca ctgccgggct cactgctgac ggattcagat 840										
aacgtgtgga cggatagagc tggcgttgac gcgcatgctc acgctgctgc gacgtacgac 900										
ttetacaaga acaagtteaa cagaaacgge attaacggaa atggeetget gateagaage 960										
acggtgcatt atggctcaaa ctacaacaac gctttttgga acggcgcaca gatcgtgttt 1020										
ggcgacggcg atggcacaat gtttagaagc ctgtcaggag acctggatgt ggtgggccac 1080										
gaactgacgc acggcgtgat cgagtatacg gcgaaccttg aatatagaaa cgagccggga 1140										

continued

-continued
gcactgaatg aggcgttcgc ggacattttc ggcaacacaa tccagagcaa aaactggctg 1200
ctgggcgacg atatctatac accgaacaca ccgggcgatg cactgagatc actgtcaaat 1260
ccgacgctgt atggccaacc ggataagtac tcagacagat atacgggcag ccaagacaat 1320
ggeggegtte acateaaete aggeateate aacaaggett aetteettge ggeecaagga 1380
ggaacacata acggcgttac agttacaggc attggcagag acaaggcgat ccagatcttt 1440
tacagcacgc tggtgaacta cctgacacct acgtcaaagt ttgccgcagc gaaaacagca 1500
acaattcagg cggctaaaga cctgtacgga gcgacatcag ccgaggccac agcaattaca 1560
aaagcatatc aagcagttgg cctttaa 1587
<210> SEQ ID NO 40 <211> LENGTH: 528 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic: amino acid sequence of the PamPro1 precursor protein expressed from plasmid pGX146(AprE- PamPro1)
<400> SEQUENCE: 40
Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu 1 5 10 15
Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Ala Gly Lys 20 25 30
Ala Pro Val Ser Asp Gln Ser Ile Pro Leu Gln Ala Pro Tyr Ala Ser 35 40 45
Glu Gly Gly Ile Pro Leu Asn Ser Gly Thr Asp Asp Thr Ile Phe Asn 50 55 60
Tyr Leu Gly Gln Gln Glu Gln Phe Leu Asn Ser Asp Val Lys Ser Gln 65 70 75 80
Leu Lys Ile Val Lys Arg Asn Thr Asp Thr Ser Gly Val Arg His Phe 85 90 95
Arg Leu Lys Gln Tyr Ile Lys Gly Ile Pro Val Tyr Gly Ala Glu Gln 100 105 110
Thr Val His Leu Asp Lys Thr Gly Ala Val Ser Ser Ala Leu Gly Asp 115 120 125
Leu Pro Pro Ile Glu Glu Gln Ala Ile Pro Asn Asp Gly Val Ala Glu 130 135 140
Ile Ser Gly Glu Asp Ala Ile Gln Ile Ala Thr Glu Glu Ala Thr Ser 145 150 155 160
Arg Ile Gly Glu Leu Gly Ala Ala Glu Ile Thr Pro Gln Ala Glu Leu 165 170 175
Asn Ile Tyr His His Glu Glu Asp Gly Gln Thr Tyr Leu Val Tyr Ile 180 185 190
Thr Glu Val Asn Val Leu Glu Pro Ala Pro Leu Arg Thr Lys Tyr Phe 195 200 205
Ile Asn Ala Val Asp Gly Ser Ile Val Ser Gln Phe Asp Leu Ile Asn 210 215 220
Phe Ala Thr Gly Thr Gly Val Leu Gly Asp Thr Lys Thr Leu 225 230 235 240
Thr Thr Gln Ser Gly Ser Thr Phe Gln Leu Lys Asp Thr Thr Arg 245 250 255
Gly Asn Gly Ile Gln Thr Tyr Thr Ala Asn Asn Gly Ser Ser Leu Pro

inuec	

	260		265		270							
Gly Ser Leu 275	Leu Thr As	p Ser Asp . 280	Asn Val 1	Trp Thr	Asp Arg 285	Ala	Gly					
Val Asp Ala 290	His Ala Hi	s Ala Ala . 295	Ala Thr 5	Tyr Asp 300	Phe Tyr	Lys	Asn					
Lys Phe Asn 305	Arg Asn Gl 31			Gly Leu 315	Leu Ile	-	Ser 320					
Thr Val His	Tyr Gly Se 325	r Asn Tyr .	Asn Asn A 330	Ala Phe	Trp Asn	Gly 335	Ala					
Gln Ile Val	Phe Gly As 340		Gly Thr 1 345	Met Phe	Arg Ser 350	Leu	Ser					
Gly Asp Leu 355	Asp Val Va	l Gly His 360	Glu Leu '	Thr His	Gly Val 365	Ile	Glu					
Tyr Thr Ala 370	Asn Leu Gl	u Tyr Arg . 375	Asn Glu I	Pro Gly 380	Ala Leu	Asn	Glu					
Ala Phe Ala 385	Asp Ile Ph 39	-		Gln Ser 395	Lys Asn	_	Leu 400					
Leu Gly Asp	Asp Ile Ty 405	r Thr Pro	Asn Thr I 410	Pro Gly	Asp Ala	Leu 415	Arg					
Ser Leu Ser	Asn Pro Th 420	-	Gly Gln I 425	Pro Asp	Lys Tyr 430	Ser	Asp					
Arg Tyr Thr 435	Gly Ser Gl	n Asp Asn 440	Gly Gly V	Val His	Ile Asn 445	Ser	Gly					
Ile Ile Asn 450	Lys Ala Ty	r Phe Leu . 455	Ala Ala (Gln Gly 460	Gly Thr	His	Asn					
Gly Val Thr 465	Val Thr Gl 47			Lys Ala 475	Ile Gln		Phe 480					
Tyr Ser Thr	Leu Val As 485	n Tyr Leu	Thr Pro 5 490	Thr Ser	Lys Phe	Ala 495	Ala					
Ala Lys Thr	Ala Thr Il 500		Ala Lys A 505	Asp Leu	Tyr Gly 510	Ala	Thr					
Ser Ala Glu 515	Ala Thr Al	a Ile Thr 520	Lys Ala '	Tyr Gln	Ala Val 525	Gly	Leu					
<pre><210> SEQ ID NO 41 <211> LENGTH: 5 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (3)(4) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid</pre>												
<400> SEQUE	NCE: 41											
His Glu Xaa 1	Xaa His 5											
<pre><210> SEQ ID NO 42 <211> LENGTH: 5 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <220> FEATURE: <221> NAME/KEY: misc_feature</pre>												

```
-continued
```

<222> LOCATION: (3)..(4) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid <400> SEQUENCE: 42 His Asp Xaa Xaa His 1 5 <210> SEQ ID NO 43 <211> LENGTH: 4 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (1)..(1) <223> OTHER INFORMATION: Succinyl at 5'-end <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (4)..(4) <223> OTHER INFORMATION: Para nitroanilide (pNA) at 3'-end <400> SEQUENCE: 43 Ala Ala Pro Phe 1 <210> SEQ ID NO 44 <211> LENGTH: 306 <212> TYPE: PRT <213> ORGANISM: Paenibacillus sp. <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(306) <223> OTHER INFORMATION: Paenibacillus_sp_Aloe-11 <400> SEQUENCE: 44 Asn Glu Ala Thr Gly Thr Gly Lys Gly Val Leu Gly Asp Thr Lys Thr 15 5 10 1 Phe Asn Thr Thr Ala Ser Gly Ser Ser Tyr Gln Leu Arg Asp Thr Thr 25 20 30 Arg Gly Asn Gly Ile Val Thr Tyr Thr Ala Ser Asn Arg Gln Ser Ile 40 35 45 Pro Gly Thr Ile Leu Thr Asp Ala Asp Asn Val Trp Asn Asp Pro Ala 50 55 Gly Val Asp Ala His Ala Tyr Ala Ala Lys Thr Tyr Asp Tyr Tyr Lys 65 70 75 Glu Lys Phe Asn Arg Asn Ser Ile Asp Gly Arg Gly Leu Gln Leu Arg 85 90 95 Ser Thr Val His Tyr Gly Asn Arg Tyr Asn Asn Ala Phe Trp Asn Gly 100 105 110 Ser Gln Met Thr Tyr Gly Asp
 Gly Asp Gly Thr Thr Phe Ile Ala $\ensuremath{\mathsf{Phe}}$ 115 120 125 Ser Gly Asp Pro Asp Val Val Gly His Glu Leu Thr His Gly Val Thr 130 135 140 Glu Tyr Thr Ser Asn Leu Glu Tyr Tyr Gly Glu Ser Gly Ala Leu Asn 150 155 145 160 Glu Ala Phe Ser Asp Ile Ile Gly Asn Asp Ile Gln Arg Lys Asn Trp 165 170 175 Leu Val Gly Asp Asp Ile Tyr Thr Pro Arg Ile Ala Gly Asp Ala Leu 185 180 190

-	cont	:iı	ıu	ed

Arg Ser Met Ser Asn Pro Thr Leu Tyr Asp Gln Pro Asp His Tyr Ser 2.05 Asn Leu Tyr Arg Gly Ser Ser Asp Asn Gly Gly Val His Thr Asn Ser Gly Ile Ile Asn Lys Ala Tyr Tyr Leu Leu Ala Gln Gly Gly Thr Phe His Gly Val Thr Val Asn Gly Ile Gly Arg Asp Ala Ala Val Gln Ile Tyr Tyr Ser Ala Phe Thr Asn Tyr Leu Thr Ser Ser Ser Asp Phe Ser Asn Ala Arg Asp Ala Val Val Gln Ala Ala Lys Asp Leu Tyr Gly Ala Ser Ser Ala Gln Ala Thr Ala Ala Ala Lys Ser Phe Asp Ala Val Gly Val Asn <210> SEQ ID NO 45 <211> LENGTH: 316 <212> TYPE: PRT <213> ORGANISM: B. thermoproteolyticus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(316) <223> OTHER INFORMATION: B_thermoproteolyticus_P00800 <400> SEQUENCE: 45 Ile Thr Gly Thr Ser Thr Val Gly Val Gly Arg Gly Val Leu Gly Asp Gln Lys Asn Ile Asn Thr Thr Tyr Ser Thr Tyr Tyr Tyr Leu Gln Asp Asn Thr Arg Gly Asn Gly Ile Phe Thr Tyr Asp Ala Lys Tyr Arg Thr Thr Leu Pro Gly Ser Leu Trp Ala Asp Ala Asp Asn Gln Phe Ala Ser Tyr Asp Ala Pro Ala Val Asp Ala His Tyr Tyr Ala Gly Val Thr Tyr Asp Tyr Tyr Lys Asn Val His Asn Arg Leu Ser Tyr Asp Gly Asn Asn Ala Ala Ile Arg Ser Ser Val His Tyr Ser Gln Gly Tyr Asn Asn Ala Phe Trp Asn Gly Ser Gln Met Val Tyr Gly Asp Gly Asp Gly Gln 115 120 125 Thr Phe Ile Pro Leu Ser Gly Gly Ile Asp Val Val Ala His Glu Leu Thr His Ala Val Thr Asp Tyr Thr Ala Gly Leu Ile Tyr Gln Asn Glu Ser Gly Ala Ile Asn Glu Ala Ile Ser Asp Ile Phe Gly Thr Leu Val Glu Phe Tyr Ala Asn Lys Asn Pro Asp Trp Glu Ile Gly Glu Asp Val 180 185 Tyr Thr Pro Gly Ile Ser Gly Asp Ser Leu Arg Ser Met Ser Asp Pro

	on			

Ala Lys Tyr Gly Asp Pro Asp His Tyr Ser Lys Arg Tyr Thr Gly Thr Gln Asp Asn Gly Gly Val His Ile Asn Ser Gly Ile Ile Asn Lys Ala Ala Tyr Leu Ile Ser Gln Gly Gly Thr His Tyr Gly Val Ser Val Val Gly Ile Gly Arg Asp Lys Leu Gly Lys Ile Phe Tyr Arg Ala Leu Thr Gln Tyr Leu Thr Pro Thr Ser Asn Phe Ser Gln Leu Arg Ala Ala Ala Val Gln Ser Ala Thr Asp Leu Tyr Gly Ser Thr Ser Gln Glu Val Ala Ser Val Lys Gln Ala Phe Asp Ala Val Gly Val Lys <210> SEQ ID NO 46 <211> LENGTH: 306 <212> TYPE: PRT <213> ORGANISM: Paenibacillus sp. Aloe-11 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(306) <223> OTHER INFORMATION: ZP_09775365.1_P_sp_Aloe-11 <400> SEOUENCE: 46 Ala Thr Gly Thr Gly Arg Gly Val Asp Gly Lys Thr Lys Ser Phe Thr Thr Thr Ala Ser Gly Asn Arg Tyr Gln Leu Lys Asp Thr Thr Arg Ser Asn Gly Ile Val Thr Tyr Thr Ala Gly Asn Arg Gln Thr Thr Pro Gly Thr Ile Leu Thr Asp Thr Asp Asn Val Trp Glu Asp Pro Ala Ala Val Asp Ala His Ala Tyr Ala Ile Lys Thr Tyr Asp Tyr Tyr Lys Asn Lys Phe Gly Arg Asp Ser Ile Asp Gly Arg Gly Met Gln Ile Arg Ser Thr Val His Tyr Gly Lys Lys Tyr Asn Asn Ala Phe Trp Asn Gly Ser Gln Met Thr Tyr Gly Asp Gly Asp Gly Ser Thr Phe Thr Phe Ser Gly Asp Pro Asp Val Val Gly His Glu Leu Thr His Gly Val Thr Glu Phe Thr Ser Asn Leu Glu Tyr Tyr Gly Glu Ser Gly Ala Leu Asn Glu Ala Phe Ser Asp Ile Ile Gly Asn Asp Ile Asp Gly Thr Ser Trp Leu Leu Gly Asp Gly Ile Tyr Thr Pro Asn Ile Pro Gly Asp Ala Leu Arg Ser Leu Ser Asp Pro Thr Arg Phe Gly Gln Pro Asp His Tyr Ser Asn Phe Tyr Pro Asp Pro Asn Asn Asp Asp Glu Gly Gly Val His Thr Asn Ser Gly Ile Ile Asn Lys Ala Tyr Tyr Leu Leu Ala Gln Gly Gly Thr Ser

-continued

His Gly Val Thr Val Thr Gly Ile Gly Arg Glu Ala Ala Val Phe Ile Tyr Tyr Asn Ala Phe Thr Asn Tyr Leu Thr Ser Thr Ser Asn Phe Ser Asn Ala Arg Ala Ala Val Ile Gln Ala Ala Lys Asp Phe Tyr Gly Ala Asp Ser Leu Ala Val Thr Ser Ala Ile Gln Ser Phe Asp Ala Val Gly Ile Lys <210> SEQ ID NO 47 <211> LENGTH: 304 <212> TYPE: PRT <213> ORGANISM: P. terrae <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(304) <223> OTHER INFORMATION: P_terrae_HPL-003_YP_005073223. <400> SEOUENCE: 47 Ala Thr Gly Thr Gly Lys Gly Val Leu Gly Asp Thr Lys Ser Phe Asn Thr Thr Gln Ser Gly Ser Ser Tyr Gln Leu Lys Asp Thr Thr Arg Gly Asn Gly Ile Val Thr Tyr Thr Ala Ser Asn Arg Gln Thr Ile Pro Gly Thr Leu Leu Thr Asp Ala Asp Asn Val Trp Asn Asp Pro Ala Gly Val Asp Ala His Ala Tyr Ala Ala Lys Thr Tyr Asp Tyr Tyr Lys Asp Lys Phe Gly Arg Asn Ser Ile Asp Gly Arg Gly Leu Gln Leu Arg Ser Thr Val His Tyr Gly Ser Arg Tyr Asn Asn Ala Phe Trp Asn Gly Ser Gln Met Thr Tyr Gly Asp Gly Asp Gly Thr Thr Phe Ile Ala Phe Ser Gly Asp Pro Asp Val Val Gly His Glu Leu Thr His Gly Val Thr Glu Tyr Thr Ser Asn Leu Asp Tyr Tyr Gly Glu Ser Gly Ala Leu Asn Glu Ser Phe Ser Asp Ile Ile Gly Asn Asp Ile Gln Arg Lys Asn Trp Leu Val Gly Asp Asp Ile Tyr Thr Pro Ser Ile Ala Gly Asp Ala Leu Arg Ser Met Ser Asn Pro Thr Leu Tyr Asp Gln Pro Asp His Tyr Ser Asn Leu Tyr Lys Gly Ser Ser Asp Asn Gly Gly Val His Thr Asn Ser Gly Ile Ile Asn Lys Ala Tyr Tyr Leu Leu Ala Gln Gly Gly Thr Phe His Asn Val Thr Val Ser Gly Ile Gly Arg Asp Ala Ala Val Gln Ile Tyr Tyr

Ser Ala Phe Thr Asn Tyr Leu Thr Ser Thr Ser Asn Phe Ser Asn Thr Arg Ala Ala Val Val Gln Ala Ala Lys Asp Leu Tyr Gly Ala Asn Ser Ala Gln Ala Thr Ala Ala Ala Lys Ser Phe Asp Ala Val Gly Val Asn <210> SEQ ID NO 48 <211> LENGTH: 301 <212> TYPE: PRT <213> ORGANISM: Paenibacillus elgii <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(301) <223> OTHER INFORMATION: Paenibacillus_elgii_B69_ZP_090 <400> SEQUENCE: 48 Ala Thr Gly Thr Gly Lys Gly Val Leu Gly Asp Thr Lys Ser Phe Thr Thr Thr Gln Ser Gly Ser Ser Tyr Gln Leu Lys Asp Thr Thr Arg Gly Gln Gly Ile Val Thr Tyr Ser Ala Gly Asn Arg Thr Ser Leu Pro Gly Ser Leu Leu Thr Ser Thr Asn Asn Ile Trp Asn Asp Gly Ser Ala Val Asp Ala His Ala Tyr Thr Gly Lys Val Tyr Asp Tyr Tyr Lys Asn Lys Phe Gly Arg Asn Ser Ile Asp Gly Asn Gly Leu Gln Leu Lys Ser Thr Val His Tyr Ser Thr Arg Tyr Asn Asn Ala Phe Trp Asn Gly Val Gln Met Val Tyr Gly Asp Gly Asp Gly Val Thr Phe Arg Ser Phe Pro Ala Asp Pro Asp Val Ile Gly His Glu Leu Thr His Gly Val Thr Glu Ser Thr Ala Gly Leu Glu Tyr Tyr Gly Glu Ser Gly Ala Leu Asn Glu Ser Ile Ser Asp Ile Phe Gly Asn Ala Ile Glu Gly Lys Asn Trp Leu Ile Gly Asp Leu Ile Thr Leu Asn Ala Gly Ala Leu Arg Ser Met Glu Asn Pro Lys Leu Tyr Arg Gln Pro Asp Arg Tyr Gln Asp Arg Tyr Thr Gly 195 200 205 Pro Ser Asp Asn Gly Gly Val His Thr Asn Ser Gly Ile Asn Asn Lys Ala Phe His Leu Ile Ala Gln Gly Gly Thr His Tyr Gly Val Thr Val Asn Gly Ile Gly Arg Ser Ala Ala Glu Gln Ile Phe Tyr Asp Ala Leu Thr His Tyr Leu Thr Pro Thr Ser Asn Phe Ser Ala Ile Arg Ala Ala Ala Ile Gln Ala Ala Thr Asp Ser Phe Gly Ala Asn Ser Ser Gln Val

cont	

Asp Ala Val Lys Lys Ala Tyr Asn Ala Val Gly Val Asn <210> SEQ ID NO 49 <211> LENGTH: 306 <212> TYPE: PRT <213> ORGANISM: Paenibacillus polymyxa SC2 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(306) <223> OTHER INFORMATION: P_polymyxa_SC2 <400> SEQUENCE: 49 Asn Glu Ala Thr Gly Thr Gly Lys Gly Val Leu Gly Asp Ser Lys Ser Phe Thr Thr Ala Ser Gly Ser Ser Tyr Gln Leu Lys Asp Thr Thr 20 \$25\$ 30 Arg Gly Asn Gly Ile Val Thr Tyr Thr Ala Ser Asn Arg Gln Ser Ile 35 40 45 Pro Gly Thr Ile Leu Thr Asp Ala Asp Asn Val Trp Asn Asp Pro Ala Gly Val Asp Ala His Ala Tyr Ala Ala Lys Thr Tyr Asp Tyr Tyr Lys 65 70 75 80 Ala Lys Phe Gly Arg Asn Ser Ile Asp Gly Arg Gly Leu Gln Leu Arg Ser Thr Val His Tyr Gly Ser Arg Tyr Asn Asn Ala Phe Trp Asn Gly Ser Gln Met Thr Tyr Gly Asp Gly Asp Gly Ser Thr Phe Ile Ala Phe Ser Gly Asp Pro Asp Val Val Gly His Glu Leu Thr His Gly Val Thr Glu Tyr Thr Ser Asn Leu Glu Tyr Tyr Gly Glu Ser Gly Ala Leu Asn Glu Ala Phe Ser Asp Val Ile Gly Asn Asp Ile Gln Arg Lys Asn Trp Leu Val Gly Asp Asp Ile Tyr Thr Pro Asn Ile Ala Gly Asp Ala Leu Arg Ser Met Ser Asn Pro Thr Leu Tyr Asp Gln Pro Asp His Tyr Ser Asn Leu Tyr Arg Gly Ser Ser Asp Asn Gly Gly Val His Thr Asn Ser Gly Ile Ile Asn Lys Ala Tyr Tyr Leu Leu Ala Gln Gly Gly Asn Phe His Gly Val Thr Val Asn Gly Ile Gly Arg Asp Ala Ala Val Gln Ile Tyr Tyr Ser Ala Phe Thr Asn Tyr Leu Thr Ser Ser Ser Asp Phe Ser Asn Ala Arg Ala Ala Val Ile Gln Ala Ala Lys Asp Leu Tyr Gly Ala Asn Ser Ala Glu Ala Thr Ala Ala Ala Lys Ser Phe Asp Ala Val Gly Val Asn

```
-continued
```

<210> SEQ ID NO 50 <211> LENGTH: 306 <212> TYPE: PRT <213> ORGANISM: Paenibacillus polymyxa SC2 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(306) <223> OTHER INFORMATION: P_polymyxa_SC2_YP_003948511.1 <400> SEQUENCE: 50 Asn Glu Ala Thr Gly Thr Gly Lys Gly Val Leu Gly Asp Ser Lys Ser Phe Thr Thr Ala Ser Gly Ser Ser Tyr Gln Leu Lys Asp Thr Thr Arg Gly Asn Gly Ile Val Thr Tyr Thr Ala Ser Asn Arg Gln Ser Ile Pro Gly Thr Ile Leu Thr Asp Ala Asp Asn Val Trp Asn Asp Pro Ala Gly Val Asp Ala His Ala Tyr Ala Ala Lys Thr Tyr Asp Tyr Tyr Lys 65 70 75 80 Ala Lys Phe Gly Arg Asn Ser Ile Asp Gly Arg Gly Leu Gln Leu Arg Ser Thr Val His Tyr Gly Ser Arg Tyr Asn Asn Ala Phe Trp Asn Gly Ser Gln Met Thr Tyr Gly Asp Gly Asp Gly Ser Thr Phe Ile Ala Phe Ser Gly Asp Pro Asp Val Val Gly His Glu Leu Thr His Gly Val Thr Glu Tyr Thr Ser Asn Leu Glu Tyr Tyr Gly Glu Ser Gly Ala Leu Asn Glu Ala Phe Ser Asp Val Ile Gly Asn Asp Ile Gln Arg Lys Asn Trp Leu Val Gly Asp Asp Ile Tyr Thr Pro Asn Ile Ala Gly Asp Ala Leu Arg Ser Met Ser Asn Pro Thr Leu Tyr Asp Gln Pro Asp His Tyr Ser Asn Leu Tyr Arg Gly Ser Ser Asp Asn Gly Gly Val His Thr Asn Ser Gly Ile Ile Asn Lys Ala Tyr Tyr Leu Leu Ala Gln Gly Gly Asn Phe His Gly Val Thr Val Asn Gly Ile Gly Arg Asp Ala Ala Val Gln Ile Tyr Tyr Ser Ala Phe Thr Asn Tyr Leu Thr Ser Ser Ser Asp Phe Ser Asn Ala Arg Ala Ala Val Ile Gln Ala Ala Lys Asp Leu Tyr Gly Ala Asn Ser Ala Glu Ala Thr Ala Ala Ala Lys Ser Phe Asp Ala Val Gly Val Asn

<210> SEQ ID NO 51

<211> LENGTH: 304
<212> TYPE: PRT
<213> ORGANISM: P. terrae

```
-continued
```

<220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(304) <223> OTHER INFORMATION: P_terrae_HPL-003_YP_005073223 <400> SEQUENCE: 51 Ala Thr Gly Thr Gly Lys Gly Val Leu Gly Asp Thr Lys Ser Phe Asn Thr Thr Gln Ser Gly Ser Ser Tyr Gln Leu Lys Asp Thr Thr Arg Gly Asn Gly Ile Val Thr Tyr Thr Ala Ser Asn Arg Gln Thr Ile Pro Gly Thr Leu Leu Thr Asp Ala Asp Asn Val Trp Asn Asp Pro Ala Gly Val Asp Ala His Ala Tyr Ala Ala Lys Thr Tyr Asp Tyr Tyr Lys Asp Lys - 70 Phe Gly Arg Asn Ser Ile Asp Gly Arg Gly Leu Gln Leu Arg Ser Thr Val His Tyr Gly Ser Arg Tyr Asn Asn Ala Phe Trp Asn Gly Ser Gln Met Thr Tyr Gly Asp Gly Asp Gly Thr Thr Phe Ile Ala Phe Ser Gly Asp Pro Asp Val Val Gly His Glu Leu Thr His Gly Val Thr Glu Tyr Thr Ser Asn Leu Asp Tyr Tyr Gly Glu Ser Gly Ala Leu Asn Glu Ser Phe Ser Asp Ile Ile Gly Asn Asp Ile Gln Arg Lys Asn Trp Leu Val Gly Asp Asp Ile Tyr Thr Pro Ser Ile Ala Gly Asp Ala Leu Arg Ser Met Ser Asn Pro Thr Leu Tyr Asp Gln Pro Asp His Tyr Ser Asn Leu Tyr Lys Gly Ser Ser Asp Asn Gly Gly Val His Thr Asn Ser Gly Ile Ile Asn Lys Ala Tyr Tyr Leu Leu Ala Gln Gly Gly Thr Phe His Asn Val Thr Val Ser Gly Ile Gly Arg Asp Ala Ala Val Gln Ile Tyr Tyr Ser Ala Phe Thr Asn Tyr Leu Thr Ser Thr Ser Asn Phe Ser Asn Thr Arg Ala Ala Val Val Gln Ala Ala Lys Asp Leu Tyr Gly Ala Asn Ser Ala Gln Ala Thr Ala Ala Ala Lys Ser Phe Asp Ala Val Gly Val Asn <210> SEQ ID NO 52 <211> LENGTH: 309 <212> TYPE: PRT <213> ORGANISM: P. peoriae <220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (1)..(309) <223> OTHER INFORMATION: P_peoriae_KCTC

<400> SEQUENCE: 52

												<u></u>	ιm	uea	
Asp 1	Ile	Ile	Asn	Glu 5	Ala	Thr	Gly	Thr	Gly 10	Lys	Gly	Val	Leu	Gly 15	Asp
Thr	Lys	Ser	Phe 20	Thr	Thr	Thr	Ala	Ser 25	Gly	Ser	Ser	Tyr	Gln 30	Leu	Arg
Asp	Thr	Thr 35	Arg	Gly	Asn	Gly	Ile 40	Val	Thr	Tyr	Thr	Ala 45	Ser	Asn	Arg
Gln	Ser 50	Ile	Pro	Gly	Thr	Ile 55	Leu	Thr	Asp	Ala	Asp 60	Asn	Val	Trp	Asn
Asp 65	Pro	Ala	Gly	Val	Asp 70	Ala	His	Ala	Tyr	Ala 75	Ala	Lys	Thr	Tyr	Asp 80
Tyr	Tyr	Lys	Glu	Lys 85	Phe	Asn	Arg	Asn	Ser 90	Ile	Asp	Gly	Arg	Gly 95	Leu
Gln	Leu	Arg	Ser 100	Thr	Val	His	Tyr	Gly 105	Asn	Arg	Tyr	Asn	Asn 110	Ala	Phe
Trp	Asn	Gly 115	Ser	Gln	Met	Thr	Tyr 120	Gly	Asp	Gly	Asp	Gly 125	Thr	Thr	Phe
Ile	Ala 130	Phe	Ser	Gly	Asp	Pro 135	Asp	Val	Val	Gly	His 140	Glu	Leu	Thr	His
Gly 145	Val	Thr	Glu	Tyr	Thr 150	Ser	Asn	Leu	Glu	Tyr 155	Tyr	Gly	Glu	Ser	Gly 160
Ala	Leu	Asn	Glu	Ser 165	Phe	Ser	Asp	Ile	Ile 170	Gly	Asn	Asp	Ile	Gln 175	Arg
Lys	Asn	Trp	Leu 180	Val	Gly	Asp	Asp	Ile 185	Tyr	Thr	Pro	Arg	Ile 190	Ala	Gly
Asp	Ala	Leu 195	Arg	Ser	Met	Ser	Asn 200	Pro	Thr	Leu	Tyr	Asp 205	Gln	Pro	Asp
His	Tyr 210	Ser	Asn	Leu	Tyr	Arg 215	Gly	Ser	Ser	Asp	Asn 220	Gly	Gly	Val	His
Thr 225	Asn	Ser	Gly	Ile	Ile 230	Asn	Lys	Ala	Tyr	Tyr 235	Leu	Leu	Ala	Gln	Gly 240
Gly	Thr	Phe	His	Gly 245	Val	Thr	Val	Asn	Gly 250	Ile	Gly	Arg	Asp	Ala 255	Ala
Val	Gln	Ile	Tyr 260	-	Ser	Ala	Phe	Thr 265	Asn	Tyr	Leu	Thr	Ser 270	Ser	Ser
Asp	Phe	Ser 275	Asn	Ala	Arg	Asp	Ala 280	Val	Val	Gln	Ala	Ala 285	Lys	Asp	Leu
Tyr	Gly 290	Ala	Ser	Ser	Ala	Gln 295		Thr	Ala	Ala	Ala 300	Lys	Ala	Phe	Asb
Ala 305	Val	Gly	Val	Asn											
		EQ II ENGTI													
<212	2> T?	YPE:	PRT		411m	a th	ermoi	nrot		- i au					
		EATUI		вас	illu	s un	ermoj	ριοι	зоту	LICU	5				
					c_fea (3:		9								
<223	3 > 0	THER	INF	ORMA	TION	: 1K	EI.A								
<400)> SI	EQUEI	NCE:	53											
Ile 1	Thr	Gly	Thr	Ser 5	Thr	Val	Gly	Val	Gly 10	Arg	Gly	Val	Leu	Gly 15	Asp
Gln	Lys	Asn	Ile	Asn	Thr	Thr	Tyr	Ser	Thr	Tyr	Tyr	Tyr	Leu	Gln	Asp

-	C	on	t.	ir	าน	ec	£

			2.0					25					30		
			20					25					30		
Asn	Thr	Arg 35	Gly	Asn	Gly	Ile	Phe 40	Thr	Tyr	Asp	Ala	Lys 45	Tyr	Arg	Thr
Thr	Leu 50	Pro	Gly	Ser	Leu	Trp 55	Ala	Asp	Ala	Asp	Asn 60	Gln	Phe	Phe	Ala
Ser 65	Tyr	Asp	Ala	Pro	Ala 70	Val	Asp	Ala	His	Tyr 75	Tyr	Ala	Gly	Val	Thr 80
Tyr	Aab	Tyr	Tyr	Lys 85	Asn	Val	His	Asn	Arg 90	Leu	Ser	Tyr	Asp	Gly 95	Asn
Asn	Ala	Ala	Ile 100	Arg	Ser	Ser	Val	His 105	Tyr	Ser	Gln	Gly	Tyr 110	Asn	Asn
Ala	Phe	Trp 115	Asn	Gly	Ser	Gln	Met 120	Val	Tyr	Gly	Asp	Gly 125	Asp	Gly	Gln
Thr	Phe 130	Ile	Pro	Leu	Ser	Gly 135	Gly	Ile	Asp	Val	Val 140	Ala	His	Glu	Leu
Thr 145	His	Ala	Val	Thr	Asp 150	Tyr	Thr	Ala	Gly	Leu 155	Ile	Tyr	Gln	Asn	Glu 160
Ser	Gly	Ala	Ile	Asn 165	Glu	Ala	Ile	Ser	Asp 170	Ile	Phe	Gly	Thr	Leu 175	Val
Glu	Phe	Tyr	Ala 180	Asn	Гла	Asn	Pro	Asp 185	Trp	Glu	Ile	Gly	Glu 190	Asp	Val
Tyr	Thr	Pro 195	Gly	Ile	Ser	Gly	Asp 200	Ser	Leu	Arg	Ser	Met 205	Ser	Asp	Pro
Ala	Lys 210	Tyr	Gly	Asp	Pro	Asp 215	His	Tyr	Ser	Lys	Arg 220	Tyr	Thr	Gly	Thr
Gln 225	Aab	Asn	Gly	Gly	Val 230	His	Ile	Asn	Ser	Gly 235	Ile	Ile	Asn	Lys	Ala 240
Ala	Tyr	Leu	Ile	Ser 245	Gln	Gly	Gly	Thr	His 250	Tyr	Gly	Val	Ser	Val 255	Val
Gly	Ile	Gly	Arg 260	Asp	Lys	Leu	Gly	Lys 265	Ile	Phe	Tyr	Arg	Ala 270	Leu	Thr
Gln	Tyr	Leu 275	Thr	Pro	Thr	Ser	Asn 280	Phe	Ser	Gln	Leu	Arg 285	Ala	Ala	Ala
Val	Gln 290	Ser	Ala	Thr	Asp	Leu 295	Tyr	Gly	Ser	Thr	Ser 300	Gln	Glu	Val	Ala
Ser 305	Val	Lys	Gln	Ala	Phe 310	Asp	Ala	Val	Gly	Val 315	Lys				
<210> SEQ ID NO 54 <211> LENGTH: 316 <212> TYPE: PRT <213> ORGANISM: B. caldolyticus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(316) <223> OTHER INFORMATION: B_caldolyticus_AAA22623.1															
<400	D> SI	EQUEI	NCE :	54											
Thr 1	Ser	Thr	Val	Gly 5	Val	Gly	Arg	Gly	Val 10	Leu	Gly	Asp	Gln	Lys 15	Tyr
Ile	Asn	Thr	Thr 20	Tyr	Ser	Ser	Tyr	Tyr 25	Gly	Tyr	Tyr	Tyr	Leu 30	Gln	Asp
Asn	Thr	Arg 35	Gly	Ser	Gly	Ile	Phe 40	Thr	Tyr	Asp	Gly	Arg 45	Asn	Arg	Thr

Val Leu Pro Gly Ser Leu Trp Ala Asp Gly Asp Asn Gln Phe Ala Ser Tyr Asp Ala Ala Ala Val Asp Ala His Tyr Tyr Ala Gly Val Val Tyr Asp Tyr Tyr Lys Asn Val His Gly Arg Leu Ser Tyr Asp Gly Ser Asn Ala Ala Ile Arg Ser Thr Val His Tyr Gly Arg Gly Tyr Asn Asn 100 105 Ala Phe Trp Asn Gly Ser Gln Met Val Tyr Gly Asp Gly Asp Gly Gln 115 120 125 Thr Phe Leu Pro Phe Ser Gly Gly Ile Asp Val Val Gly His Glu Leu Thr His Ala Val Thr Asp Tyr Thr Ala Gly Leu Val Tyr Gln Asn Glu Ser Gly Ala Ile Asn Glu Ala Met Ser Asp Ile Phe Gly Thr Leu Val Glu Phe Tyr Ala Asn Arg Asn Pro Asp Trp Glu Ile Gly Glu Asp Ile Tyr Thr Pro Gly Val Ala Gly Asp Ala Leu Arg Ser Met Ser Asp Pro Ala Lys Tyr Gly Asp Pro Asp His Tyr Ser Lys Arg Tyr Thr Gly Thr Gln Asp Asn Gly Gly Val His Thr Asn Ser Gly Ile Ile Asn Lys Ala Ala Tyr Leu Leu Ser Gln Gly Gly Val His Tyr Gly Val Ser Val Thr Gly Ile Gly Arg Asp Lys Met Gly Lys Ile Phe Tyr Arg Ala Leu Val Tyr Tyr Leu Thr Pro Thr Ser Asn Phe Ser Gln Leu Arg Ala Ala Cys Val Gln Ala Ala Asp Leu Tyr Gly Ser Thr Ser Gln Glu Val Asn Ser Val Lys Gln Ala Phe Asn Ala Val Gly Val Tyr <210> SEQ ID NO 55 <211> LENGTH: 292 <212> TYPE: PRT <213> ORGANISM: B. anthracis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(292) <223> OTHER INFORMATION: B_anthracis_NP843132.1 <400> SEQUENCE: 55 Val Thr Gly Thr Asn Ala Val Gly Thr Gly Lys Gly Val Leu Gly Asp Thr Lys Ser Leu Asn Thr Thr Leu Ser Ala Ser Ser Tyr Tyr Leu Gln Asp Asn Thr Arg Gly Ala Thr Ile Phe Thr Tyr Asp Ala Lys Asn Arg Ser Thr Leu Pro Gly Thr Leu Trp Val Asp Ala Asp Asn Val Phe Asn

	_											con	tın	ued	
Ala Al 65	a	Tyr	Asp	Ala	Ala 70	Ala	Val	Asp	Ala	His 75	Tyr	Tyr	Ala	Gly	Arg 80
Thr Ty	r.	Asp	Tyr	Tyr 85	Lys	Ala	Thr	Phe	Asn 90	Arg	Asn	Ser	Ile	Asn 95	Asp
Ala Gl	y .	Ala	Pro 100	Leu	Lys	Ser	Thr	Val 105	His	Tyr	Gly	Ser	Arg 110	Tyr	Asn
Asn Al		Phe 115	Trp	Asn	Gly	Ser	Gln 120	Met	Val	Tyr	Gly	Asp 125	Gly	Asp	Gly
Val Th 13		Phe	Thr	Ser	Leu	Ser 135	Gly	Gly	Ile	Asp	Val 140	Ile	Gly	His	Glu
Leu Th 145	ir i	His	Ala	Val	Thr 150	Glu	Tyr	Ser	Ser	Asp 155	Leu	Ile	Tyr	Gln	Asn 160
Glu Se	r	Gly	Ala	Leu 165	Asn	Glu	Ala	Ile	Ser 170	Asp	Val	Phe	Gly	Thr 175	Leu
Val Gl	u	Tyr	Tyr 180	Asp	Asn	Arg	Asn	Pro 185	Asp	Trp	Glu	Ile	Gly 190	Glu	Aab
Ile Ty		Thr 195	Pro	Gly	Lys	Ala	Gly 200	Asp	Ala	Leu	Arg	Ser 205	Met	Ser	Asp
Pro Th 21		Lys	Tyr	Gly	Asp	Pro 215	Asp	His	Tyr	Ser	Lys 220	Arg	Tyr	Thr	Gly
Thr Gl 225	y i	Asp	Asn	Gly	Gly 230	Val	His	Thr	Asn	Ser 235	Gly	Ile	Ile	Asn	Lys 240
Ala Al	a	Tyr	Leu	Leu 245	Ala	Asn	Gly	Gly	Thr 250	His	Tyr	Gly	Val	Thr 255	Val
Asn Gl	Y	Ile	Gly 260	Гла	Asp	Гла	Val	Gly 265	Ala	Ile	Tyr	Tyr	Arg 270	Ala	Asn
Thr Gl		Tyr 275	Phe	Thr	Gln	Ser	Thr 280	Thr	Phe	Ser	Gln	Ala 285	Arg	Ala	Gly
Leu Va 29		Gln	Ala												
<210><211>	LE	NGTH	I: 31												
<212> <213>	OR	GANI	SM:	B. 1	thur	ingi	ensi	s							
<220> <221> <222>	NA	ME/K	CEY:				9								
<223>					TION	: B_t	huri	ingie	ensis	3_YP8	9343	6.1			
<400> Val Th					Ala	Val	Glv	Thr	Glv	Lys	Glv	Val	Leu	Glv	Asp
1		-		5			-		10	-	-			15	-
Thr Ly	s	Ser	Leu 20	Asn	Thr	Thr	Leu	Ser 25	Ala	Ser	Ser	Tyr	Tyr 30	Leu	Gln
Asp As:		Thr 35	Arg	Gly	Ala	Thr	Ile 40	Phe	Thr	Tyr	Asp	Ala 45	Гла	Asn	Arg
Ser Th 50		Leu	Pro	Gly	Thr	Leu 55	Trp	Val	Asp	Ala	Asp 60	Asn	Val	Phe	Asn
Ala Al 65	a	Tyr	Asp	Ala	Ala 70	Ala	Val	Asp	Ala	His 75	Tyr	Tyr	Ala	Gly	Lys 80
Thr Ty	r	Asp	Tyr	Tyr 85	Lys	Ala	Thr	Phe	Asn 90	Arg	Asn	Ser	Ile	Asn 95	Asp
Ala Gl	у	Ala	Pro	Leu	Гла	Ser	Thr	Val	His	Tyr	Gly	Ser	Arg	Tyr	Asn

-continued

100		105	110							
Asn Ala Phe Trp 115	Asn Gly Ser Gln 120		Gly Asp Gly 125	Asp Gly						
Val Thr Phe Thr 130	Ser Leu Ser Gly 135	Gly Ile Asp	Val Ile Gly 140	His Glu						
Leu Thr His Ala 145	Val Thr Glu Tyr 150	Ser Ser Asp 155	Leu Ile Tyr	Gln Asn 160						
Glu Ser Gly Ala	Leu Asn Glu Ala 165	Ile Ser Asp 170	Val Phe Gly	Thr Leu 175						
Val Glu Phe Tyr 180	Asp Asn Arg Asn	Pro Asp Trp 185	Glu Ile Gly 190	Glu Asp						
Ile Tyr Thr Pro 195	Gly Lys Ala Gly 200	-	Arg Ser Met 205	Ser Asp						
Pro Thr Lys Tyr 210	Gly Asp Pro Asp 215	His Tyr Ser	Lys Arg Tyr 220	Thr Gly						
Thr Gly Asp Asn 225	Gly Gly Val His 230	Thr Asn Ser 235	Gly Ile Ile	Asn Lys 240						
Ala Ala Tyr Leu	Leu Ala Asn Gly 245	Gly Thr His 250	Tyr Gly Val	Thr Val 255						
Asn Gly Ile Gly 260	Lys Asp Lys Val	Gly Ala Ile 265	Tyr Tyr Arg 270	Ala Asn						
Thr Gln Tyr Phe 275	Thr Gln Ser Thr 280		Gln Ala Arg 285	Ala Gly						
Leu Val Gln Ala 290	Ala Thr Asp Leu 295	Tyr Gly Ala	Ser Ser Ala 300	Glu Val						
Ala Ala Val Lys 305	Gln Ser Tyr Ser 310	Ala Val Gly 315	Val Asn							
<pre><210> SEQ ID NO 57 <211> LENGTH: 314 <212> TYPE: PRT <213> ORGANISM: B. cereus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(314) <223> OTHER INFORMATION: B_cereus_ZP04310163.1</pre>										
<400> SEQUENCE:	57									
Thr Asn Ala Val 1	Gly Thr Gly Lys 5	Gly Val Leu 10	Gly Asp Thr	Lys Ser 15						
Leu Asn Thr Thr 20	Leu Ser Ala Ser	Ser Tyr Tyr 25	Leu Gln Asp 30	Asn Thr						
Arg Gly Ala Thr 35	Ile Phe Thr Tyr 40	Asp Ala Lys	Asn Arg Ser 45	Thr Leu						
Pro Gly Thr Leu 50	Trp Val Asp Ala 55	Asp Asn Val	Phe Asn Ala 60	Ala Tyr						
Asp Ala Ala Ala 65	Val Asp Ala His 70	Tyr Tyr Ala 75	Gly Lys Thr	Tyr Asp 80						
Tyr Tyr Lys Ala	Thr Phe Asn Arg 85	Asn Ser Ile 90	Asn Asp Ala	Gly Ala 95						
Pro Leu Lys Ser 100	Thr Val His Tyr	Gly Ser Arg 105	Tyr Asn Asn 110	Ala Phe						
Trp Asn Gly Ser 115	Gln Met Val Tyr 120		Asp Gly Val 125	Thr Phe						

-	cont	:iı	ıu	ed

Thr Ser Leu Ser Gly Gly Ile Asp Val Ile Gly His Glu Leu Thr His Ala Val Thr Glu Tyr Ser Ser Asp Leu Ile Tyr Gln Asn Glu Ser Gly Ala Leu Asn Glu Ala Ile Ser Asp Val Phe Gly Thr Leu Val Glu Phe Tyr Asp Asn Arg Asn Pro Asp Trp Glu Ile Gly Glu Asp Ile Tyr Thr Pro Gly Lys Ala Gly Asp Ala Leu Arg Ser Met Ser Asp Pro Thr Lys Tyr Gly Asp Pro Asp His Tyr Ser Lys Arg Tyr Thr Gly Thr Gly Asp Asn Gly Gly Val His Thr Asn Ser Gly Ile Ile Asn Lys Ala Ala Tyr 230 235 Leu Leu Ala Asn Gly Gly Thr His Tyr Gly Val Thr Val Asn Gly Ile Gly Lys Asp Lys Val Gly Ala Ile Tyr Tyr Arg Ala Asn Thr Gln Tyr Phe Thr Gln Ser Thr Thr Phe Ser Gln Ala Arg Ala Gly Leu Val Gln Ala Ala Ala Asp Leu Tyr Gly Ala Ser Ser Ala Glu Val Ala Ala Val Lys Gln Ser Tyr Ser Ala Val Gly Val Asn <210> SEQ ID NO 58 <211> LENGTH: 317 <212> TYPE: PRT <213> ORGANISM: Lactobacillus sp. <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(317) <223> OTHER INFORMATION: Lactobacillus_sp_BAA06144.1 <400> SEQUENCE: 58 Val Thr Gly Thr Asn Ala Val Gly Thr Gly Lys Gly Val Leu Gly Asp Thr Lys Ser Leu Asn Thr Thr Leu Ser Ala Ser Ser Tyr Tyr Leu Gln Asp Asn Thr Arg Gly Ala Thr Ile Phe Thr Tyr Asp Ala Lys Asn Arg Ser Thr Leu Pro Gly Thr Leu Trp Val Asp Ala Asp Asn Val Phe Asn Ala Ala Tyr Asp Ala Ala Ala Val Asp Ala His Tyr Tyr Ala Gly Lys Thr Tyr Asp Tyr Tyr Lys Ala Thr Phe Asn Arg Asn Ser Ile Asn Asp Ala Gly Ala Pro Leu Lys Ser Thr Val His Tyr Gly Ser Lys Tyr Asn Asn Ala Phe Trp Asn Gly Ser Gln Met Val Tyr Gly Asp Gly Asp Gly Val Thr Phe Thr Ser Leu Ser Gly Gly Ile Asp Val Ile Gly His Glu

-cont	inua	7
COILC	TITUC	~

											-	COIL	ιш	uea	
Leu 145	Thr	His	Ala	Val	Thr 150	Glu	Tyr	Ser	Ser	Asp 155	Leu	Ile	Tyr	Gln	Asn 160
Glu	Ser	Gly	Ala	Leu 165	Asn	Glu	Ala	Ile	Ser 170	Asp	Val	Phe	Gly	Thr 175	Leu
Val	Glu	Tyr	Tyr 180	Asp	Asn	Arg	Asn	Pro 185	Asp	Trp	Glu	Ile	Gly 190	Glu	Asp
Ile	Tyr	Thr 195	Pro	Gly	Lys	Ala	Gly 200		Ala	Leu	Arg	Ser 205	Met	Ser	Asp
Pro	Thr 210	Lys	Tyr	Gly	Asp	Pro 215	Asp	His	Tyr	Ser	Lys 220	Arg	Tyr	Thr	Gly
Thr 225	Ser	Asp	Asn	Gly	Gly 230	Val	His	Thr	Asn	Ser 235	Gly	Ile	Ile	Asn	Lys 240
Ala	Ala	Tyr	Leu	Leu 245	Ala	Asn	Gly	Gly	Thr 250	His	Tyr	Gly	Val	Thr 255	Val
Asn	Gly	Ile	Gly 260		Asp	Lys	Val	Gly 265	Ala	Ile	Tyr	Tyr	Arg 270	Ala	Asn
Thr	Gln	Tyr 275	Phe	Thr	Gln	Ser	Thr 280	Thr	Phe	Ser	Gln	Ala 285	Arg	Ala	Gly
Leu	Val 290	Gln	Ala	Ala	Ala	Asp 295	Leu	Tyr	Gly	Ala	Ser 300	Ser	Ala	Glu	Val
Ala 305		Val	Lys	Gln	Ser 310		Ser	Ala	Val	Gly 315		Asn			
<222 <223	2> L(3> 0:	CAT:	ION : INF((1) ORMA	c_fea (3: TION	17)									
Val				Asn	Lys	Val	Gly	Thr	-	Lys	Gly	Val	Leu		Asp
1 Thr	Lys	Ser		5 Asn	Thr	Thr	Leu		10 Gly	Ser	Ser	Tyr		15 Leu	Gln
Asp	Asn		20 Arg	Gly	Ala	Thr	Ile	25 Phe	Thr	Tyr	Asp		70 30	Asn	Arg
Ser		35 Leu	Pro	Gly	Thr		40 Trp	Ala	Asp	Ala		45 Asn	Val	Phe	Asn
	50 Ala	Tyr	Asp	Ala		55 Ala	Val	Asp	Ala		60 Tyr	Tyr	Ala	Gly	-
65 Thr	Tyr	Asp	Tyr		70 Lys	Ala	Thr	Phe		75 Arg	Asn	Ser	Ile		80 Aap
Ala	Gly	Ala		85 Leu	Lys	Ser	Thr		90 His	Tyr	Gly	Ser		95 Tyr	Asn
Asn	Ala	Phe	100 Trp	Asn	Gly	Ser	Gln	105 Met	Val	Tyr	Gly	Asp	110 Gly	Asp	Gly
Val	Thr	115 Phe	Thr	Ser	Leu	Ser	120 Gly	Gly	Ile	Asp	Val	125 Ile	Gly	His	Glu
	130					135	Asn	-		-	140		-		
145					150					155			-		160
Glu	Ser	GТХ	Ala	ьeu	Asn	GIU	Ala	шe	Ser	Asb	цте	Phe	сту	Thr	Leu

-continued

-															
				165					170					175	
Val	Glu	Phe	Tyr 180	Asp	Asn	Arg	Asn	Pro 185	Asp	Trp	Glu	Ile	Gly 190	Glu	Asp
Ile	Tyr	Thr 195	Pro	Gly	Гла	Ala	Gly 200	Asp	Ala	Leu	Arg	Ser 205	Met	Ser	Asp
Pro	Thr 210	Lys	Tyr	Gly	Asp	Pro 215	Asp	His	Tyr	Ser	Lys 220	Arg	Tyr	Thr	Gly
Ser 225	Ser	Asp	Asn	Gly	Gly 230	Val	His	Thr	Asn	Ser 235	Gly	Ile	Ile	Asn	Lys 240
Gln	Ala	Tyr	Leu	Leu 245	Ala	Asn	Gly	Gly	Thr 250	His	Tyr	Gly	Val	Thr 255	Val
Thr	Gly	Ile	Gly 260	Lys	Asp	Гла	Leu	Gly 265	Ala	Ile	Tyr	Tyr	Arg 270	Ala	Asn
Thr	Gln	Tyr 275	Phe	Thr	Gln	Ser	Thr 280	Thr	Phe	Ser	Gln	Ala 285	Arg	Ala	Gly
Ala	Val 290		Ala	Ala	Ala	Asp 295		Tyr	Gly	Ala	Asn 300		Ala	Glu	Val
Ala 305	Ala	Val	Lys	Gln	Ser 310		Ser	Ala	Val	Gly 315		Asn			
<212 <213 <220 <221 <222 <223	L> LH 2> TY 3> OH D> FH L> NM 2> LC 3> OT 0> SH	(PE: RGANJ EATUF AME/F CATJ CATJ THER	PRT SM: E: CEY: ON: INFO	B. (mis((1) DRMA	- c_fea (3)	ature 17)	9	coxic	cus_Y	'P001	.3738	363.1	-		
	Thr				Ala	Val	Gly	Thr	Gly	Thr	Gly	Val	Leu	Gly	Asp
1	Tere	G	T] -	5	m]	m]	T	G	10	Gam	m 1	m	m	15	a 1
ГЛЗ	Lys	Ser	11e 20	Asn	Thr	Thr	Leu	Ser 25	GIY	Ser	Thr	Tyr	Tyr 30	Leu	GIn
Asp	Asn	Thr 35	Arg	Gly	Ala	Gln	Ile 40	Phe	Thr	Tyr	Asp	Ala 45	Lys	Asn	Arg
Ser	Ser 50	Leu	Pro	Gly	Thr	Leu 55	Trp	Ala	Asp	Val	Asp 60	Asn	Ala	Phe	His
Ala 65	Lys	Tyr	Asp	Ala	Ala 70	Ala	Val	Asp	Ala	His 75	Tyr	Tyr	Ala	Gly	Val 80
Thr	Tyr	Asp	Tyr	Tyr 85	Lys	Asn	Thr	Phe	Asn 90	Arg	Asn	Ser	Ile	Asn 95	Asp
Ala	Gly	Ala	Ala 100	Leu	Гла	Ser	Thr	Val 105	His	Tyr	Gly	Ser	Asn 110	Tyr	Asn
Asn	Ala	Phe 115	Trp	Asn	Gly	Ser	Gln 120	Met	Val	Tyr	Gly	Asp 125	Gly	Asp	Gly
Val	Thr 130	Phe	Thr	Ser	Leu	Ser 135	Gly	Gly	Ile	Asp	Val 140	Ile	Gly	His	Glu
Leu 145	Thr	His	Ala	Val	Thr 150	Glu	Tyr	Ser	Ser	Asn 155	Leu	Ile	Tyr	Gln	Tyr 160
Glu	Ser	Gly	Ala	Leu 165	Asn	Glu	Ala	Ile	Ser 170	Asp	Ile	Phe	Gly	Thr 175	Leu
Val	Glu	Tyr	Tyr 180	Asp	Asn	Arg	Asn	Pro 185	Asp	Trp	Glu	Ile	Gly 190	Glu	Asp

-	cont	:iı	าน	ed

Ile Tyr Thr Pro Gly Lys Ala Gly Asp Ala Leu Arg Ser Met Ser Asp 200 195 2.05 Pro Thr Lys Tyr Gly Asp Pro Asp His Tyr Ser Lys Arg Tyr Thr Gly 210 215 220 Ser Gly Asp Asn Gly Gly Val His Thr Asn Ser Gly Ile Ile Asn Lys 225 230 235 240 Ala Ala Tyr Leu Leu Ala Asn Gly Gly Thr His Tyr Gly Val Thr Val 245 250 255 Asn Gly Ile Gly Lys Asp Lys Val Gly Ala Ile Tyr Tyr Arg Ala Asn 260 265 270 Thr Gln Tyr Phe Thr Gln Ser Thr Thr Phe Ser Gln Ala Arg Ala Gly 275 280 285 Leu Val Gln Ala Ala Asp Leu Tyr Gly Ala Asn Ser Ala Glu Val 290 295 300 Thr Ala Val Lys Gln Ser Tyr Asp Ala Val Gly Val Lys 305 310 315 <210> SEQ ID NO 61 <211> LENGTH: 314 <212> TYPE: PRT <213> ORGANISM: B. megaterium <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(314) <223> OTHER INFORMATION: B_megaterium_YP005495105.1 <400> SEQUENCE: 61 Thr Asn Ala Ile Gly Ser Gly Lys Gly Val Leu Gly Asp Thr Lys Ser 1 5 10 Leu Lys Thr Thr Leu Ser Gly Ser Ala Tyr Tyr Leu Gln Asp Asn Thr 20 25 30 Arg Gly Ala Thr Ile Tyr Thr Tyr Asp Ala Lys Asn Arg Thr Ser Leu 45 35 40 Pro Gly Thr Leu Trp Ala Asp Thr Asp Asn Thr Tyr Asn Ala Thr Arg 55 50 Asp Ala Ala Ala Val Asp Ala His Tyr Tyr Ala Gly Val Thr Tyr Asp 70 75 Tyr Tyr Lys Asn Lys Phe Asn Arg Asn Ser Tyr Asp Asn Ala Gly Ala 85 90 95 Pro Leu Lys Ser Thr Val His Tyr Ser Ser Gly Tyr Asn Asn Ala Phe 100 105 110 Trp Asn Gly Ser Gln Met Val Tyr Gly Asp Gly Asp Gly Thr Thr Phe 115 120 125 Val Pro Leu Ser Gly Gly Leu Asp Val Ile Gly His Glu Leu Thr His 130 135 140 Ala Val Thr Glu Arg Ser Ser Asn Leu Ile Tyr Gln Tyr Glu Ser Gly 145 150 155 160 Ala Leu Asn Glu Ala Ile Ser Asp Ile Phe Gly Thr Leu Val Glu Tyr 165 170 175 Tyr Asp Asn Arg Asn Pro Asp Trp Glu Ile Gly Glu Asp Ile Tyr Thr 180 185 190 Pro Gly Thr Ser Gly Asp Ala Leu Arg Ser Met Ser Asn Pro Ala Lys 200 195 205

-continued

Tyr Gly Asp Pro Asp His Tyr Ser Lys Arg Tyr Thr Gly Ser Ser Asp Asn Gly Gly Val His Thr Asn Ser Gly Ile Ile Asn Lys Ala Ala Tyr Leu Leu Ala Asn Gly Gly Thr His Tyr Gly Val Thr Val Thr Gly Ile Gly Gly Asp Lys Leu Gly Lys Ile Tyr Tyr Arg Ala Asn Thr Leu Tyr Phe Thr Gln Ser Thr Thr Phe Ser Gln Ala Arg Ala Gly Leu Val Gln Ala Ala Asp Leu Tyr Gly Ser Gly Ser Gln Glu Val Ile Ser Val Gly Lys Ser Phe Asp Ala Val Gly Val Gln <210> SEQ ID NO 62 <211> LENGTH: 322 <212> TYPE: PRT <213> ORGANISM: Bacillus sp. SG-1 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(322) <223> OTHER INFORMATION: B_sp_SG-1_ZP01858398.1 <400> SEOUENCE: 62 Val Ser Gly Thr Asp Gln Val Gly Thr Gly Lys Gly Val Leu Gly Asp Thr Lys Ser Leu Asn Thr Thr Leu Ser Asn Gly Thr Tyr Tyr Leu Gln Asp Asn Thr Arg Gly Gly Gly Ile Met Thr Tyr Asp Met Lys Asn Arg Thr Phe Phe Pro Gln Phe Tyr Leu Pro Gly Ser Leu Trp Ser Asp Ala Asp Asn Val Tyr Asn Gln Ala Tyr Asp Ala Ala Ala Val Asp Ala His Tyr Phe Ala Gly Ala Thr Phe Asp Tyr Tyr Lys Asp Val Phe Gly Arg Asn Ser Tyr Asp Asn Lys Gly Thr Thr Ile Gln Ser Ser Val His Tyr Ser Lys Asn Tyr Asn Asn Ala Phe Trp Asn Gly Ser Gln Met Val Tyr Gly Asp Gly Asp Gly Thr Thr Phe Ile Pro Leu Ser Gly Gly Leu Asp Val Val Ala His Glu Leu Thr His Ala Val Thr Asp Thr Ser Ser Asp Leu Val Tyr Gln Asn Glu Ser Gly Ala Leu Asn Glu Ala Ile Ser Asp Ile Phe Gly Thr Leu Val Glu Tyr His Glu Asn His Asn Pro Asp Phe Glu Ile Gly Glu Asp Ile Tyr Thr Pro Asn Thr Pro Asn Asp Ala Leu Arg Ser Met Ser Asp Pro Ala Lys Tyr Gly Asp Pro Asp His Tyr Ser Val Arg Tyr Thr Gly Thr Gln Asp Asn Gly Gly Val His Ile Asn Ser

-continued

225					230					235					240
Gly	Ile	Ile	Asn	Lys 245	Gln	Ala	Tyr	Leu	Leu 250	Ser	Glu	Gly	Gly	Thr 255	His
Tyr	Gly	Val	Asn 260	Val	Thr	Gly	Ile	Gly 265	Arg	Glu	Lys	Leu	Gly 270	Glu	Ile
Tyr	Tyr	Arg 275	Met	Asn	Thr	Val	Tyr 280	Leu	Thr	Ala	Ser	Ser 285	Thr	Phe	Ser
Gln	Ala 290	Arg	Ser	Ala	Ala	Val 295	Gln	Ala	Ala	Ser	Aap 300	Leu	Tyr	Gly	Ser
Asn 305	Ser	Pro	Glu	Val	Gln 310	Ser	Val	Asn	Gln	Ser 315	Phe	Asp	Ala	Val	Gly 320
Ile	Asn														
<211 <212 <213 <220 <221 <222	L> LH 2> TY 3> OH 0> FH L> NH 2> LO	EATUR AME/H DCATI	H: 30 PRT ISM: RE: KEY: ION:	06 Pae: mis (1)	niba c_fea (3) TION	ature 06)	9	eori. 1	ae						
<400)> SI	EQUEI	ICE :	63											
Ala 1	Thr	Gly	Thr	Gly 5	Arg	Gly	Val	Aab	Gly 10	Val	Thr	Lys	Ser	Phe 15	Thr
Thr	Thr	Ala	Ser 20	Gly	Asn	Gly	Tyr	Gln 25	Leu	Lys	Asp	Thr	Thr 30	Arg	Ser
Asn	Gly	Ile 35	Val	Thr	Tyr	Thr	Ala 40	Asn	Asn	Arg	Gln	Thr 45	Thr	Pro	Gly
Thr	Ile 50	Met	Thr	Asp	Ala	Asp 55	Asn	Val	Trp	Asn	Asp 60	Pro	Ala	Ala	Val
Asp 65	Ala	His	Ala	Tyr	Ala 70	Ile	Lys	Thr	Tyr	Asp 75	Tyr	Tyr	Lys	Asn	Lys 80
Phe	Gly	Arg	Asp	Ser 85	Ile	Asp	Gly	Arg	Gly 90	Met	Gln	Ile	Arg	Ser 95	Thr
Val	His	Tyr	Gly 100	ГЛа	ГЛа	Tyr	Val	Asn 105	Ala	Phe	Trp	Asn	Gly 110	Ser	Gln
Met	Thr	Tyr 115	Gly	Asp	Gly	Asp	Gly 120	Ser	Thr	Phe	Thr	Phe 125	Phe	Ser	Gly
Asp	Pro 130	Asp	Val	Val	Gly	His 135	Glu	Leu	Thr	His	Gly 140	Val	Thr	Glu	Phe
Thr 145	Ser	Asn	Leu	Glu	Tyr 150	Tyr	Gly	Glu	Ser	Gly 155	Ala	Leu	Asn	Glu	Ala 160
Phe	Ser	Asp	Ile	Ile 165	Gly	Asn	Asp	Ile	Asp 170	Gly	Ala	Asn	Trp	Leu 175	Leu
Gly	Asp	Gly	Ile 180	Tyr	Thr	Pro	Gly	Ile 185	Pro	Gly	Asp	Ala	Leu 190	Arg	Ser
Leu	Ser	Asp 195	Pro	Thr	Arg	Phe	Gly 200	Gln	Pro	Aap	His	Tyr 205	Ser	Asn	Phe
Tyr	Pro 210	Asp	Pro	Asn	Asn	Asp 215	-	Glu	Gly	Gly	Val 220	His	Thr	Asn	Ser
Gly 225	Ile	Ile	Asn	Lys	Ala 230	Tyr	Tyr	Leu	Leu	Ala 235	Gln	Gly	Gly	Thr	Ser 240

-continued

His Gly Val Lys Val Thr Gly Ile Gly Arg Glu Ala Ala Val Phe Ile Tyr Tyr Asn Ala Phe Thr Asn Tyr Leu Thr Ser Thr Ser Asn Phe Ser Asn Ala Arg Ala Ala Val Ile Gln Ala Ala Lys Asp Phe Tyr Gly Ala Asp Ser Leu Ala Val Thr Ser Ala Ile Lys Ser Phe Asp Ala Val Gly Ile Lys <210> SEQ ID NO 64 <211> LENGTH: 304 <212> TYPE: PRT <213> ORGANISM: Paenibacillus polymyxa <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(304) <223> OTHER INFORMATION: PpoPro2 <400> SEQUENCE: 64 Ala Thr Gly Thr Gly Lys Gly Val Leu Gly Asp Thr Lys Ser Phe Thr Thr Thr Ala Ser Gly Ser Ser Tyr Gln Leu Lys Asp Thr Thr Arg Gly Asn Gly Ile Val Thr Tyr Thr Ala Ser Asn Arg Gln Ser Ile Pro Gly Thr Leu Leu Thr Asp Ala Asp Asn Val Trp Asn Asp Pro Ala Gly Val Asp Ala His Ala Tyr Ala Ala Lys Thr Tyr Asp Tyr Tyr Lys Ser Lys Phe Gly Arg Asp Ser Val Asp Gly Arg Gly Leu Gln Leu Arg Ser Thr Val His Tyr Gly Ser Arg Tyr Asn Asn Ala Phe Trp Asn Gly Ser Gln Met Thr Tyr Gly Asp
 Gly Asp Gly Ser Thr Phe Ile Ala Phe Ser Gly $% \left({{\left[{{{\left[{{\left[{{\left[{{\left[{{{\left[{{{}}} \right]}} \right]_{{{\left[{{} \right]}}}}} \right]} } \right]} \right]} \right]} \right]} } \right)} = 1}$ Asp Pro Asp Val Val Gly His Glu Leu Thr His Gly Val Thr Glu Tyr 135 140 Thr Ser Asn Leu Glu Tyr Tyr Gly Glu Ser Gly Ala Leu Asn Glu Ala Phe Ser Asp Val Ile Gly Asn Asp Ile Gln Arg Lys Asn Trp Leu Val Gly Asp Asp Ile Tyr Thr Pro Asn Ile Ala Gly Asp Ala Leu Arg Ser Met Ser Asn Pro Thr Leu Tyr Asp Gln Pro Asp His Tyr Ser Asn Leu Tyr Lys Gly Ser Ser Asp Asn Gly Gly Val His Thr Asn Ser Gly Ile Ile Asn Lys Ala Tyr Tyr Leu Leu Ala Gln Gly Gly Thr Phe His Gly Val Ala Val Asn Gly Ile Gly Arg Asp Ala Ala Val Gln Ile Tyr Tyr Ser Ala Phe Thr Asn Tyr Leu Thr Ser Ser Asp Phe Ser Asn Ala

Arg Ala Ala Val Ile Gln Ala Ala Lys Asp Leu Tyr Gly Ala Asn Ser Ala Glu Ala Thr Ala Ala Ala Lys Ser Phe Asp Ala Val Gly Val Asn <210> SEQ ID NO 65 <211> LENGTH: 303 <212> TYPE: PRT <213> ORGANISM: Paenibacillus terrae <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(303) <223> OTHER INFORMATION: PtePro1 <400> SEQUENCE: 65 Ala Thr Gly Thr Gly Val Gly Val Leu Gly Asp Thr Lys Thr Phe Thr Thr Thr Gln Ser Gly Thr Gln Tyr Val Met Gln Asp Thr Thr Arg Gly Gly Gly Ile Val Thr Tyr Ser Ala Gly Asn Thr Gln Ser Leu Pro Gly Thr Leu Met Arg Asp Thr Asp Asn Val Trp Thr Asp Pro Ala Ala Val Asp Ala His Ala Tyr Ala Ala Val Val Tyr Asp Tyr Phe Lys Asn Asn Phe Asn Arg Asp Ser Leu Asp Gly Arg Gly Met Ala Ile Lys Ser Thr Val His Tyr Gly Ser Arg Tyr Asn Asn Ala Phe Trp Asn Gly Thr Gln Ile Ala Tyr Gly Asp
 Gly Asp Gly Thr $\ensuremath{\mathsf{Thr}}$ Phe Arg Ala Phe Ser Gly Asp Leu Asp Val Ile Gly His Glu Leu Thr His Gly Ile Thr Glu Lys Thr Ala Gly Leu Ile Tyr Gln Gly Glu Ser Gly Ala Leu Asn Glu Ser Ile Ser Asp Val Phe Gly Asn Thr Ile Gln Gly Lys Asn Trp Leu Ile Gly Asp Asp Ile Tyr Thr Pro Ser Ile Pro Gly Asp Ala Leu Arg Ser Met Glu Asn Pro Thr Leu Phe Asn Gln Pro Asp His Tyr Ser Asn Ile 200 205 Tyr Arg Gly Ser Asp Asp Asn Gly Gly Val His Thr Asn Ser Gly Ile Pro Asn Lys Ala Phe Tyr Leu Leu Ala Gln Gly Gly Thr His Arg Gly Val Ser Val Thr Gly Ile Gly Arg Gly Asp Ala Ala Lys Ile Val Tyr Lys Ala Leu Thr Tyr Tyr Leu Thr Ser Thr Ser Asn Phe Ala Ala Met Arg Gln Ala Ala Ile Ser Ser Ala Thr Asp Leu Phe Gly Ala Asn Ser Ala Gln Val Asn Ser Val Lys Ala Ala Tyr Ala Ala Val Gly Ile

<210> SEQ ID NO 66

<211> LENGTH: 304 <212> TYPE: PRT <213> ORGANISM: Brevibacillus brevis <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(304) <223> OTHER INFORMATION: BbrPro1 <400> SEQUENCE: 66 Val Thr Ala Thr Gly Lys Gly Val Leu Gly Asp Thr Lys Gln Phe Glu 1 5 10 15 Thr Thr Lys Gln Gly Ser Thr Tyr Met Leu Lys Asp Thr Thr Arg Gly 25 20 30 Lys Gly Ile Glu Thr Tyr Thr Ala As
n Asn Arg Thr Ser Leu Pro Gly 35 40 45 Thr Leu Met Thr Asp Ser Asp Asn Tyr Trp Thr Asp Gly Ala Ala Val 55 50 60 Asp Ala His Ala His Ala Gln Lys Thr Tyr Asp Tyr Phe Arg Asn Val 65 70 75 80 His Asn Arg Asn Ser Tyr Asp Gly Asn Gly Ala Val Ile Arg Ser Thr 85 90 Val His Tyr Ser Thr Arg Tyr Asn Asn Ala Phe Trp Asn Gly Ser Gln 100 110 105 Met Val Tyr Gly Asp Gly Asp Gly Thr Thr Phe Leu Pro Leu Ser Gly 115 120 125 Gly Leu Asp Val Val Ala His Glu Leu Thr His Ala Val Thr Glu Arg 140 130 135 Thr Ala Gly Leu Val Tyr Gln Asn Glu Ser Gly Ala Leu Asn Glu Ser 150 155 145 160 Met Ser Asp Ile Phe Gly Ala Met Val Asp Asn Asp Asp Trp Leu Met 165 170 175 Gly Glu Asp Ile Tyr Thr Pro Gly Arg Ser Gly Asp Ala Leu Arg Ser 185 180 190 Leu Gln Asp Pro Ala Ala Tyr Gly Asp Pro Asp His Tyr Ser Lys Arg 200 205 Tyr Thr Gly Ser Gln Asp Asn Gly Gly Val His Thr Asn Ser Gly Ile 210 215 220 Asn Asn Lys Ala Ala Tyr Leu Leu Ala Glu Gly Gly Thr His Tyr Gly 225 230 235 Val Arg Val Asn Gly Ile Gly Arg Thr Asp Thr Ala Lys Ile Tyr Tyr 245 250 His Ala Leu Thr His Tyr Leu Thr Pro Tyr Ser Asn Phe Ser Ala Met 270 260 265 Arg Arg Ala Ala Val Leu Ser Ala Thr Asp Leu Phe Gly Ala Asn Ser 275 280 285 Arg Gln Val Gln Ala Val Asn Ala Ala Tyr Asp Ala Val Gly Val Lys 290 295 300 <210> SEQ ID NO 67

<210> SEQ ID NO 67 <211> LENGTH: 300 <212> TYPE: PRT <213> ORGANISM: Bacillus subtilis <220> FEATURE:

<pre><221> NAME/KEY: misc_feature <222> LOCATION: (1)(300) <223> OTHER INFORMATION: NprE</pre>
<400> SEQUENCE: 67
Ala Ala Thr Thr Gly Thr Gly Thr Thr Leu Lys Gly Lys Thr Val Ser 1 5 10 15
Leu Asn Ile Ser Ser Glu Ser Gly Lys Tyr Val Leu Arg Asp Leu Ser 20 25 30
Lys Pro Thr Gly Thr Gln Ile Ile Thr Tyr Asp Leu Gln Asn Arg Glu 35 40 45
Tyr Asn Leu Pro Gly Thr Leu Val Ser Ser Thr Thr Asn Gln Phe Thr 50 55 60
Thr Ser Ser Gln Arg Ala Ala Val Asp Ala His Tyr Asn Leu Gly Lys 65 70 75 80
Val Tyr Asp Tyr Phe Tyr Gln Lys Phe Asn Arg Asn Ser Tyr Asp Asn 85 90 95
Lys Gly Gly Lys Ile Val Ser Ser Val His Tyr Gly Ser Arg Tyr Asn 100 105 110
Asn Ala Ala Trp Ile Gly Asp Gln Met Ile Tyr Gly Asp Gly Asp Gly 115 120 125
Ser Phe Phe Ser Pro Leu Ser Gly Ser Met Asp Val Thr Ala His Glu 130 135 140
Met Thr His Gly Val Thr Gln Glu Thr Ala Asn Leu Asn Tyr Glu Asn 145 150 155 160
Gln Pro Gly Ala Leu Asn Glu Ser Phe Ser Asp Val Phe Gly Tyr Phe 165 170 175
Asn Asp Thr Glu Asp Trp Asp Ile Gly Glu Asp Ile Thr Val Ser Gln 180 185 190
Pro Ala Leu Arg Ser Leu Ser Asn Pro Thr Lys Tyr Gly Gln Pro Asp 195 200 205
Asn Phe Lys Asn Tyr Lys Asn Leu Pro Asn Thr Asp Ala Gly Asp Tyr 210 215 220
Gly Gly Val His Thr Asn Ser Gly Ile Pro Asn Lys Ala Ala Tyr Asn 225 230 235 240
Thr Ile Thr Lys Ile Gly Val Asn Lys Ala Glu Gln Ile Tyr Tyr Arg 245 250 255
Ala Leu Thr Val Tyr Leu Thr Pro Ser Ser Thr Phe Lys Asp Ala Lys 260 265 270
Ala Ala Leu Ile Gln Ser Ala Arg Asp Leu Tyr Gly Ser Gln Asp Ala 275 280 285
Ala Ser Val Glu Ala Ala Trp Asn Ala Val Gly Leu 290 295 300
<210> SEQ ID NO 68 <211> LENGTH: 300
<212> TYPE: PRT <213> ORGANISM: Bacillus subtilis
<220> FEATURE:
<pre><221> NAME/KEY: misc_feature <222> LOCATION: (1)(300)</pre>
<223> OTHER INFORMATION: NprE_variant
<400> SEQUENCE: 68

Ala Ala Thr Thr Gly Thr Gly Thr Thr Leu Lys Gly Lys Thr Val Ser

-	С	0	n	t	1	n	u	е	d

1				5					10					15	
Leu	Asn	Ile	Ser 20	Ser	Glu	Ser	Gly	Lys 25	Tyr	Val	Leu	Arg	Asp 30	Leu	Ser
Lys	Pro	Thr 35	Gly	Thr	Gln	Ile	Ile 40	Thr	Tyr	Asp	Leu	Gln 45	Asn	Arg	Glu
Tyr	Asn 50	Leu	Pro	Gly	Thr	Leu 55	Val	Ser	Ser	Thr	Thr 60	Asn	Gln	Phe	Thr
Thr 65	Ser	Ser	Gln	Arg	Ala 70	Ala	Val	Asp	Ala	His 75	Tyr	Asn	Leu	Gly	Lys 80
Val	Tyr	Asp	Tyr	Phe 85	Tyr	Gln	ГÀа	Phe	Asn 90	Arg	Asn	Ser	Tyr	Asp 95	Asn
Lya	Gly	Gly	Lys 100	Ile	Val	Ser	Ser	Val 105	His	Tyr	Gly	Ser	Arg 110	Tyr	Asn
Asn	Ala	Ala 115	Trp	Ile	Gly	Asp	Gln 120	Met	Ile	Tyr	Gly	Asp 125	Gly	Asp	Gly
Ile	Leu 130	Phe	Ser	Pro	Leu	Ser 135	Gly	Ser	Leu	Asp	Val 140	Thr	Ala	His	Glu
Met 145	Thr	His	Gly	Val	Thr 150	Gln	Glu	Thr	Ala	Asn 155	Leu	Asn	Tyr	Glu	Asn 160
Gln	Pro	Gly	Ala	Leu 165	Asn	Glu	Ser	Phe	Ser 170	Asp	Val	Phe	Gly	Tyr 175	Phe
Asn	Asp	Thr	Glu 180	Asp	Trp	Asp	Ile	Gly 185	Glu	Asp	Ile	Thr	Ile 190	Ser	Gln
Pro	Ala	Leu 195	Arg	Ser	Leu	Ser	Asn 200	Pro	Thr	ГÀа	Tyr	Gly 205	Gln	Pro	Asp
Asn	Phe 210	Lys	Asn	Tyr	ГЛЗ	Asn 215	Leu	Pro	Asn	Thr	Pro 220	Ala	Gly	Asp	Tyr
Gly 225	Gly	Val	His	Thr	Asn 230	Ser	Gly	Ile	Pro	Asn 235	Lys	Ala	Ala	Tyr	Asn 240
Thr	Ile	Thr	ГЛа	Ile 245	Gly	Val	Asn	ГЛа	Ala 250	Glu	Gln	Ile	Tyr	Tyr 255	Arg
Ala	Leu	Thr	Val 260	Tyr	Leu	Thr	Pro	Ser 265	Ser	Thr	Phe	Lys	Asp 270	Ala	Lys
Ala	Ala	Leu 275	Ile	Gln	Ser	Ala	Arg 280	Asp	Leu	Tyr	Gly	Ser 285	Gln	Asp	Ala
Ala	Ser 290	Val	Glu	Ala	Ala	Trp 295	Asn	Ala	Val	Gly	Leu 300				

1. A polypeptide comprising an amino acid sequence having at least 60%, 80%, or 95% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NOs: 3, 8, 13, 18, 23, 28, 33 and 38.

2-4. (canceled)

5. The polypeptide of claim **1**, wherein said polypeptide is derived from a member of the order Bacillales or is derived from a *Planococcus* species.

6. The polypeptide of claim 5, wherein said Bacillales member is a Paenibacillaceae family member or a *Paenibacillus* spp.

7-8. (canceled)

9. The polypeptide of claim 1, wherein said polypeptide has protease activity.

10. The polypeptide of claim **9**, wherein said protease activity comprises casein hydrolysis, collagen hydrolysis, elastin hydrolysis, keratin hydrolysis, soy protein hydrolysis or corn meal protein hydrolysis.

11. The polypeptide of claim 1, wherein said polypeptide retains at least 50% of its maximal activity between pH 4.5 and 10 and/or between 30° C. and 70° C.

12. (canceled)

13. The polypeptide of claim **1**, wherein said polypeptide has cleaning activity in a detergent composition.

14. The polypeptide of claim 13, wherein said detergent composition is selected from an ADW detergent composition, a laundry detergent composition, a liquid laundry detergent composition, and a powder laundry detergent composition.

15-18. (canceled)

19. The polypeptide of claim **1**, wherein said polypeptide is a recombinant polypeptide.

20. A composition comprising the polypeptide of claim 1.

21. The composition of claim 20, wherein said composi-

tion is a cleaning composition or a detergent composition. **22**. (canceled)

23. The composition of claim **21**, wherein said detergent composition is selected from the group consisting of a laundry detergent, a fabric softening detergent, a dishwashing detergent, and a hard-surface cleaning detergent.

24. The composition of any of claim 20, wherein said composition further comprises a surfactant; at least one calcium ion and/or zinc ion; at least one stabilizer; from about 0.001 to about 0.1 weight % of said polypeptide; at least one bleaching agent; at least one adjunct ingredient; and/or one or more additional enzymes or enzyme derivatives selected from the group consisting of acyl transferases, alpha-amylases, beta-amylases, alpha-galactosidases, arabinosidases, aryl esterases, beta-galactosidases, carrageenases, catalases, cellobiohydrolases, cellulases, chondroitinases, cutinases, endo-beta-1,4-glucanases, endo-beta-mannanases, esterases, exo-mannanases, galactanases, glucoamylases, hemicellulases, hyaluronidases, keratinases, laccases, lactases, ligninases, lipases, lipoxygenases, mannanases, oxidases, pectate lyases, pectin acetyl esterases, pectinases, pentosanases, peroxidases, phenoloxidases, phosphatases, phospholipases, phytases, polygalacturonases, proteases, pullulanases, reductases, rhamnogalacturonases, beta-glucanases, tannases, transglutaminases, xylan acetyl-esterases, xylanases, xyloglucanases, and xylosidases, additional metallopotease enzymes and combinations thereof.

25-31. (canceled)

32. The composition of claim **20**, wherein said cleaning composition contains phosphate or is phosphate-free.

33-34. (canceled)

35. The composition of claim **20**, wherein said composition is a granular, powder, solid, bar, liquid, tablet, gel, or paste composition.

36-38. (canceled)

39. A method of cleaning, comprising contacting a surface or an item with a cleaning composition comprising the polypeptide of claim **1**.

40-41. (canceled)

42. The method of claim 39, wherein said item is dishware or fabric.

43-48. (canceled)

49. A method for producing the polypeptide of claim **1** comprising:

- a. stably transforming a host cell with an expression vector comprising a polynucleotide encoding the polypeptide of claim 1;
- b. cultivating said transformed host cell under conditions suitable for said host cell to produce said protease; andc. recovering said protease.
- **50-56**. (canceled)

57. A nucleic acid sequence comprising a nucleic acid sequence:

- (i) having at least 70% identity to a sequence selected from the group consisting of SEQ ID NOs: 4, 9, 14, 19, 24, 29, 34 and 39, or
- (ii) being capable of hybridizing to a probe derived from the polynucleotide sequence selected from the group consisting of SEQ ID NOs: 4, 9, 14, 19, 24, 29, 34 and 39, under conditions of intermediate to high stringency, or
- (iii) being complementary to the polynucleotide sequence selected from the group consisting of SEQ ID NOs: 4, 9, 14, 19, 24, 29, 34 and 39.

58. A vector comprising the nucleic acid sequence of claim **57**.

59. A host cell transformed with the vector of claim **58**. **60-61**. (canceled)

62. A textile processing, animal feed, leather processing, feather processing, or corn soy protein processing composition comprising the polypeptide of claim **1**.

63-67. (canceled)

* * * * *