
USOO7904404B2

(12) United States Patent (10) Patent No.: US 7,904.404 B2
i : e Patoskie 45) Date of Patent *Mar. 8, 2011

(54) MOVEMENT OF ANAGENT THAT UTILIZES 5,778,395 A 7/1998 Whiting et al.
AS-NEEDED CANONICAL RULES 5,812,997 A 9, 1998 Morimoto et al.

5,859,911 A 1/1999 Angelo et al.
5,930,798 A 7/1999 Lawler et al.

(76) Inventor: John P. Patoskie, Allen, TX (US) 5,982,891 A 11/1999 Ginter et al.
- 6,038,500 A 3/2000 Weiss

(*) Notice: Subject to any disclaimer, the term of this 6,055,562 A 4/2000 Devarakonda et al.
patent is extended or adjusted under 35 6,065,040 A 5, 2000 Mima et al.
U.S.C. 154(b) by 0 days. 6,088,689 A 7/2000 Kohnet al.

6,113,650 A 9, 2000 Sakai
This patent is Subject to a terminal dis- 6,134,580 A 10/2000 Tahara et al.
claimer. 6,134,660 A 10/2000 Boneh et al.

6,154,777 A 11/2000 Ebrahim
6,172,986 B1 1/2001 Watanuki et al.

(21) Appl. No.: 12/647,964 6,199,195 B1 3/2001 Goodwin et al.
6,202,060 B1 3/2001 Tran

(22) Filed: Dec. 28, 2009 6,209,124 B1 3/2001 Vermeire et al.
6,230,309 B1 5, 2001 Turner et al.

(65) Prior Publication Data 6,233,601 B1 5/2001 Walsh
6.256,773 B1 7/2001 Bowman-Amuah

US 2010/0223210 A1 Sep. 2, 2010 6,272.478 B1 8/2001 Obata et al.

Related U.S. Application Data (Continued)
FOREIGN PATENT DOCUMENTS

(63) Continuation of application No. 1 1/645,190, filed on
Dec. 22, 2006, now Pat. No. 7,660,780. JP 2005190103 7/2005

(51) Int. Cl OTHER PUBLICATIONS
G06F 5/8 (2006.01) “Advisory Action”, U.S. Appl. No. 1 1/086,120, (May 4, 2010), 3

(52) U.S. Cl. 706/.45; 706/62; 706/10; 706/47 pageS.
(58) Field of Classification Search 706/10, (Continued)

706/45, 47, 62
See application file for complete search history. Primary Examiner — Michael B. Holmes

(56) References Cited Assistant Examiner — Ola Olude-Afolabi

U.S. PATENT DOCUMENTS

4,714.995 A 12/1987 Materna et al.
5,465,111 A 11/1995 Fukushima et al.
5,495,533 A 2f1996 Linehan et al.
5,524,253 A 6, 1996 Pham et al.
5,604,800 A 2f1997 Johnson et al.
5,675,711 A 10/1997 Kephart et al.
5,721,912 A 2/1998 Stepczyk et al.

424 44 422
31

N carscaroricarueSet

418

(57) ABSTRACT

Various embodiments enable an agent that utilizes a first,
as-needed canonical rule set in a first execution environment
to be moved to a second execution environment where the
agent utilizes a second, as-needed canonical rule set.

27 Claims, 25 Drawing Sheets

410
343 1

encodedAgent;Byte

-- 4:receive(encoded Agent)

315

425

AgentManager

3:encodedAgent-encode()

2-discard()

re: Rulengine

comRS:Compiledruleset

428

wn:WorkingMemory

430 432

US 7,904.404 B2
Page 2

U.S. PATENT DOCUMENTS 7,664,721 B1 2/2010 Hauser

6,282,563 B1 8/2001 Yamamoto et al. 29: R 3.338 East
6,282,697 B1 8/2001 Fables et al. 7702603 B1 4/2010 Hauser
3:3: 358 Sukh 7,702,604 B1 4/2010 Hauser
6,343,265 B1 1/2002 Glebov et al. 7,878 R 6588 While 1
6,349,343 B1 2/2002 Foody et al. 7, 858F WE."
6,389,462 B1 5/2002 Cohen et al. 7840.513 B2 1/2010 Hanser
6,438,744 B2 8/2002 Toutonghi et al. 7844,759 B1 1/2010 Cowin
6,442,537 B1 8, 2002 Karch w I 6.452910 B 9/2002 Vietal 2001/0029526 A1 10/2001 Yokoyama et al.
6.477.372 B 11/2002 Ötting 2001/0051515 Al 12/2001 Rygaard
6,496,871 B1 12/2002 Jagannathan et al. 39.85, A. 1339, that
6,600,430 B2 7/2003 Minagawa et al. 2002fOO32783 A1 3, 2002 Tuatini
6,600,975 B2 7/2003 Moriguchi et al. 2002.0035429 A1 3, 2002 B
6,611,516 B1 8/2003 Pirkola et al. 5.85668. A 565 Eletal
6,629.032 B2 9, 2003 Akivama atzis et al. 36s, 556 E. 2002/01 15445 A1 8/2002 Myllymaki

wa-1 2002/01 16454 A1 8/2002 Dyla et al.
3. R 3.298 R al 2002fO1594.79 A1 10, 2002 Watanuki et al.
6,687,761 B1 2/2004 Collins et al. 3988:22 A. 1.583 i et al.
6,701,381 B2 3/2004 Hearne et al. 2003, OOO9539 A1 1/2003 Hattori
6,714,844 B1 3/2004 Dauner et al. 2003/0018950 A1 1/2003 Sparks et al.
6,738,975 B1 5/2004 Yee et al. 2003/0023573 A1 1/2003 Chan et al.
6,744,352 B2 6/2004 Lesesky et al. 2003, OO33437 A1 2/2003 Fischer et al.
3:56 R 3. ER, 1 2003/0046377 A1 3, 2003 Daum et al.
6,768.417 B3 7/2004 R al 2003/0046432 A1 3/2003 Coleman et al.

9. 2003/005.1172 A1 3/2003 Lordemann et al.
5: R 1.58: Mahal al 2003/0055898 A1 3/2003 Yeager et al.

6.8510s B 2/2005 SE et 2003/0070071 A1 4/2003 Riedelet al. ym 2003/0101441 A1 5/2003 Harrison et al.
6,862,443 B2 3/2005 Witte 2003/0177.170 A1 9, 2003 Glass
S; R 3.29. Atta et al. 2003,019 1797 A1 10, 2003 Gurevich et al.

w - ol. 2003,019 1969 A1 10, 2003 Katsikas
6,895,391 B1 5/2005 Kausik 2003,0225789 A1 12/2003 Bussler et al.
6,901.588 B1 5/2005 Krapfet al. 2003/0225935 A1 12/2003 Rivard et al.
6,904,593 B1 6/2005 Fong et al. 2004/0003243 A1 1/2004 Fehr et al.
6.931:455 B1 8/2005 Glass 2004/0015539 A1 1/2004 Alegria et al.
38. R: 838. Entire et al. 2004/003.7315 A1 2/2004 Delautreet al.
6.951.02 B1 9/2005 Swell etal 2004/0044985 A1 3/2004 Kompalli et al.

- - - 2004/0044986 A1 3/2004 Kompalli et al.
6,957,439 B1 1929 Lewallen 2004/0044987 A1 3/2004 Kompalli et al.
g R 1588 t 1 2004/0064503 A1 4/2004 Karakashian et al.
6,985,929 B1 1/2006 WEa 2004/0078423 Al 42004 Satyavolu et al.

- w - 2004/0078.687 A1 4/2004 Partamian et al.

S. R 58. SE Jr. etal 2004/0082350 A1 4/2004 Chen et al.
7043,522 B2 5/2006 E. set al. 2004/0088369 A1 5/2004 Yeager et al.
7047,518 B2 5/2006 Littleet al. 2004/011 1730 A1 6/2004 Apte
7055.153 B2 5/2006 Becket al. 2004/0133.656 Al 72004 Butterworth et al.
7.058,645 B2 6/2006 Setoetal 2004/0148073 A1 7/2004 Hawig et al.
W - w - c. 2004/0153653 A1 8/2004 Abhyankar et al.

7,062,708 B2 6/2006 Mani et al. 2004/0172614 A1 9/2004 Gallagher
29:23, R: 1858. E. et al 2004/O194072 A1 9, 2004 Venter
727,724 B2 0/2006 E" 2004/0203731 A1 10, 2004 Chen et al.

J. 4 2004/0220952 A1 11/2004 Cheenath

7.E. R 3.29. Nels el. 2004/0221292 A1 1 1/2004 Chiang et al.
77.3 B3 2007 of Nial 2005/0004727 A1 1/2005 Remboski et al.

J. 4 2005, OO30202 A1 2/2005 TSuboi
7,174,533 B2 2/2007 Boucher 2005/0090279 A9 4, 2005 Witkowski et al.
7,197,742 B2 3/2007 Arita et al. 2005.0114832 A1 5.2005 Manu
22:43: E: $39, Sial 2005/0141706 A1 6/2005 Regli et al.
7.225,425 B2 5/2007 Kompalli et al. 388-36 A 358 SMea
7,228,141 B2 6, 2007 Sethi
723.403 B1 6, 2007 Howitt etal 2005/01721 23 A1 8/2005 Carpentier et al.

4 - J. 2005/0246302 A1 11/2005 Lorenz et al.

25. R 58. Salt et al 2005/0256614 A1 11/2005 Habermas
7376.959 B2 5/2008 WE cal 2005/0256876 A1 11/2005 Eidson
7475,107 B2 1/2009 Maconietal 2005, O262155 A1 11/2005 Kress et al.
7477,897 B2 1/2009 some a. 2005/0273668 Al 12/2005 Manning
7,496.637 B3 2.2009 Hanet al. 2005/0281363 A1 12/2005 Qi et al.
7.495,990 B1 3/2009 Taietal. 2006,0005177 A1 1/2006 Atkin et al.

7,506,309 B2 3/2009 Schaefer 2006,0040640 A1 2/2006 Thompson et al.
7,519,455 B2 4/2009 Weiss et al. 2006,004.1337 A1 2/2006 Augsburger et al.
7,566,002 B2 7/2009 Love et al. 2006, OO48145 A1 3/2006 Celli et al.
7,643,447 B2 1/2010 Watanuki et al. 2006/0080646 A1 4/2006 Aman
7,660,777 B1 2/2010 Hauser 2006/0090103 A1 4/2006 Armstrong et al.
7,660,780 B1 2/2010 Patoskie 2006/0111089 A1 5.2006 Winter et al.

US 7,904.404 B2
Page 3

2006, O112183 A1
2006, O121916 A1
2006, O123396 A1
2006.0143600 A1
2006, O149746 A1
2006.0167981 A1
2006/0173857 A1
2006, O190931 A1
2006/0200494 A1
2006/0206864 A1
2006, O220900 A1
2006/0221901 A1
2006/02454.06 A1
2006, O256008 A1
2006/0272002 A1
2007,0004432 A1
2007, OO15495 A1
2007/0026871 A1
2007/0103292 A1
2007/O112773 A1
2007/0223432 A1
2007/0243880 A1
2008.OO77667 A1
2010, 0161543 A1
2010/0235459 A1

OTHER PUBLICATIONS

5, 2006 Corson et al.
6, 2006. Aborn
6, 2006 Fox et al.
6, 2006 Cottrell et al.
7/2006 Bansodet al.
7/2006 Bansodet al.
8/2006 Jackson
8, 2006 Scott et al.
9/2006 Sparks
9, 2006 Shenfield et al.

10, 2006 Ceskutti et al.
10/2006 Yaqub et al.
11/2006 Shim
11/2006 Rosenberg
11/2006 Wightman et al.
1/2007 Hwang et al.
1/2007 Winter et al.
2/2007 Wager
5/2007 Burkley et al.
5/2007 Joyce
9, 2007 Badarinath
10/2007 Gits et al.
3/2008 Hwang et al.
6, 2010 Hauser
9, 2010 Wheeler

“Advisory Action”, U.S. Appl. No. 11/086,121. (Sep. 11, 2009), 3
pageS.

“Final Office Action”, U.S. Appl. No. 1 1/495,053, (Mar. 17, 2010),
17 pages.
“Final Office Action”, U.S. Appl. No. 1 1/645,301, (May 12, 2010),
32 pages.
“Non Final Office Action”, U.S. Appl. No. 10/975,827. (Mar. 25,
2010), 19 pages.
“Non Final Office Action”, U.S. Appl. No. 1 1/439,059, (Mar. 26,
2010), 6 pages.
“Non Final Office Action”, U.S. Appl. No. 1 1/645,191, (May 5,
2010), 17 pages.
“Non Final Office Action”, U.S. Appl. No. 1 1/645,192, (May 4,
2010), 14 pages.
“Non Final Office Action”, U.S. Appl. No. 1 1/645,194, (Mar. 26,
2010), 26 pages.
“Non Final Office Action”, U.S. Appl. No. 1 1/645,196, (Apr. 28,
2010), 32 pages.
“Non Final Office Action”, U.S. Appl. No. 1 1/645, 198, (Apr. 12,
2010), 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 1 1/645, 195, (Apr. 15,
2010), 20 pages.
Adnan, Syed et al., “A Survey of Mobile Agent Systems”. CSE221.
Final Project, Jun. 13, 2000. 12 pages.
Baumann, J. et al., “Mole 3.0: A Middleware for Java-Based Mobile
Software Agents', (1998), 18 pages.
Bigus, J.P. et al., “ABLE: A toolkit for building multiagent autonomic
systems”. IBM Systems Journal, vol. 41, No. 3, 2002.(2002), 22
pageS.
Brazier, F.M.T. et al., “Generative Migration of Agents'. Department
of Computer Science, Faculty of Sciences, Vrije Universiteit
Amsterdam; de Boelelaan 1081a, 1081 HV Amsterdam, The Neth
erlands frances, bjo, steen, niek (a.cs.vul.(Aug. 2002), 4 pages.
Bursell, Michael et al., “Comparison of autonomous mobile agent
technologies”. (May 12, 1997), 28 pages.
Christopoulou, Eleni et al., “An ontology-based context management
and reasoning process for UbiComp applications'. Research Aca
demic Computer Technology Institute, Research Unit 3. Design of
Ambient Information Systems Group, N. Kazantzaki str., Rio Cam
pus, 26500. Patras, Greece {hristope, goumop, kameas} (acti.
gr. (Oct. 2005), 6 pages.
Hasegawa, Tetsou et al., “Inoperability for mobile agents by incar
nation agents', AAMAS; Melbourne, Australia.(Jul 14, 2003), 2
pageS.
Jih, Wan-Rong et al., “Context-aware Access Control in Pervasive
Healthcare'. Computer Science and Information Engineering,

National Taiwan University, Taiwan. jihaagents.csie.ntu.edu.tw.
{r93070, yjhsu (acsie.ntu.edu.tw.(2005), 8 pages.
Pauline, Siu Po Lam "Context-Aware State Management for Sup
porting Mobility in a Pervasive Environment'. A thesis submitted to
The University of Hong Kong in fulfillment of the thesis requirement
for the degree of Master of Philosophy.(Aug. 2004), 106 pages.
Qui-Sheng. He et al., “A Lightweight Architecture to Support Con
text-Aware Obiquitous Agent System'. Department of Computer
Science and Engineering, Fudan University, Shanghai 200433, Chain
{hequisheng, situ (afudan.edu.cn.(Aug. 2006), 6 pages.
Sterritt, Roy et al., “From Here to Autonomicity: Self-Managing
Agents and the Biological Metaphors that Inspire Them'. (Jun.
2005), 8 pages.
Yu, Ping et al., “Mobile Agent Enabled Application Mobility for
Pervasive Computing”, Internet and Mobile Computing Lab, Depart
ment of Computing, Hong Kong Polytechnic University, Hung Hom,
Kowloon, Hong Kong {cspyu, csicao, cSwen (a)comp-polyu.edu.hk.
(Aug. 2006), 10 pages.
“Advisory Action”, U.S. Appl. No. 11/086,121. (Sep. 11, 2009), 3
pageS.
“Final Office Action”, U.S. Appl. No. 10/975,827, (Nov. 23, 2009),
17 pages.
“Final Office Action”, U.S. Appl. No. 11/052,680, (Oct. 5, 2009), 16
pageS.
“Final Office Action”, U.S. Appl. No. 11/086,102, (Oct. 20, 2009), 13
pageS.
“Final Office Action”, U.S. Appl. No. 1 1/086,120, (Feb. 23, 2010), 43
pageS.
“Final Office Action”, U.S. Appl. No. 11/086.211. (Sep. 29, 2009), 18
pageS.
“Final Office Action”, U.S. Appl. No. 10/975,146, (Dec. 1, 2009), 11
pageS.
“Final Office Action”, U.S. Appl. No. 11/052,680, (Feb. 13, 2009), 16
pageS.
“Final Office Action”, U.S. Appl. No. 11/086,120, (Apr. 14, 2009),34
pageS.
“Non-Final Office Action”, U.S. Appl. No. 11/052,680, (Feb. 4,
2010), 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 1 1/086, 101. (Sep. 2,
2009), 20 pages.
“Non-Final Office Action”, U.S. Appl. No. 11/086,102, (Mar. 5,
2010), 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 1 1/086,121, (Dec. 30,
2009), 25 pages.
“Non-Final Office Action”, U.S. Appl. No. 11/086.211, (Mar. 4,
2009), 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 1 1/439,059. (Oct. 30,
2009), 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 1 1/495,053, (Jun. 10,
2009), 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 1 1/645,197. (Feb. 24,
2010), 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 1 1/645,301. (Jan. 6,
2010), 25 pages.
“Non-Final Office Action”, U.S. Appl. No. 1 1/645,303, (Feb. 8,
2010), 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 10/975,146, (May 26,
2009), 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 10/975,623, (Nov. 12,
2009), 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 10/975,827. (Apr. 7,
2009), 22 pages.
“Non-Final Office Action”, U.S. Appl. No. 11/052,680, (May 6,
2009), 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 1 1/086,102, (Jun. 2,
2009), 7 pages.
“Non-Final Office Action'. U.S. Appl. No. 1 1/086,120. (Aug. 13,
2009), 35 pages.
“Non-Final Office Action”, U.S. Appl. No. 11/086,121, (Jun. 22,
2009), 26 pages.
“Non-Final Office Action”, U.S. Appl. No. 1 1/645, 190, (Mar. 13,
2009), 12 pages.

US 7,904.404 B2
Page 4

“Non-Final Office Action”, U.S. Appl. No. 1 1/645,193, (Mar. 16,
2009), 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 1 1/645,291, (Mar. 13,
2009), 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 1 1/645,292, (Apr. 17,
2009), 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 1 1/645,300, (May 11,
2009), 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 1 1/645,302, (May 11,
2009), 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 1 1/645,306, (Jun. 4,
2009), 15 pages.
“Notice of Allowance”, U.S. Appl. No. 10/975,623, (Feb. 23, 2010),
9 pages.
“Notice of Allowance”, U.S. Appl. No. 1 1/086,101, (Feb. 25, 2010),
9 pages.
“Notice of Allowance”, U.S. Appl. No. 1 1/645,190, (Sep. 17, 2009),
8 pages.
“Notice of Allowance”, U.S. Appl. No. 1 1/645,193, (Sep. 17, 2009),
8 pages.
“Notice of Allowance”, U.S. Appl. No. 1 1/645,291, (Oct. 1, 2009), 11
pageS.
“Notice of Allowance”, U.S. Appl. No. 1 1/645,292, (Nov. 17, 2009),
9 pages.
“Notice of Allowance”, U.S. Appl. No. 1 1/645,300, (Nov. 18, 2009),
9 pages.
“Notice of Allowance”, U.S. Appl. No. 1 1/645,302, (Nov. 17, 2009),
8 pages.
“Notice of Allowance”, U.S. Appl. No. 1 1/645,306, (Nov. 17, 2009),
8 pages.
“Notice of Allowance”, U.S. Appl. No. 1 1/086, 101, (Mar. 23, 2009),
7 pages.
“Restriction Requirement', U.S. Appl. No. 1 1/645,191. (Jan. 28.
2010), 7 pages.
“Restriction Requirement', U.S. Appl. No. 1 1/645,192, (Jan. 28.
2010), 6 pages.
“Restriction Requirement', U.S. Appl. No. 1 1/645, 198, (Jan. 28.
2010), 6 pages.
“Restriction Requirement', U.S. Appl. No. 1 1/645.200. (Feb. 26.
2010), 8 pages.
“Restriction Requirement', U.S. Appl. No. 10/975,623, (Jun. 9.
2009), 6 pages.
“Restriction Requirement', U.S. Appl. No. 1 1/086,102. (Apr. 6.
2009), 7 pages.
"Stuffit Deluxe', Aladdin Systems,(Jan. 1, 2004), 83 pages.
Ballance, Robert A. et al., “The Pan Language-Based Editing Sys
tem. For Integrated Development Environments'. ACM (Oct. 1990),
pp. 77-93.
Blackwell, John "Ramit Rule-Based Alert Management Informa
tion Tool'. Thesis, Florida State Universit Collese of Arts and Sci
ences, (2004), pp. 1-69.
Bussler, Christoph “The Role of B2B Engines in B2B Integration
Architectures'. ACM, Sigmod Record, vol. 31, No. 1. (Mar. 2002),
pp. 67-72.
Dilts, David M., et al., “An Intelligent Interface to CIMMultiple Data
Bases”. Proceedings of the 1990 ACM SIGBDP Conference on
Trends and Directions in Expert Systems, vol. 3, Issue 1., (Mar. 2004),
pp. 491-509.
Emmerich, Wolfgang et al., “TIGRA. An Architectural Style for
Enterprise Application Integration', IEEE, (Jul. 2001), p. 567-576.
Flanagan, Roxy “Graphic + Internet Related Tutorials. Using
Winzip’. Retrieved from: <http://www.autumnweb.com/Roxys/
2Tutorials/4WinzipTutorial.html> on Feb. 10, 2009, indexed by
www.archive.org.(Oct. 30, 2008), 8 pages.
Forte, “Feature Comparison of Agent and Free Agent”. Retrieved
from: <www.forteinc.com/agent/features.php on Jan. 26, 2010,
(2002), 3 pages.
Gu, Tao et al., “Toward an OSGi-Based Infrastructure for Context
Aware Applications'. Pervasive Computing IEEE, vol. 3, Issue 4.
Digital Object Identifier 10.1109/MPRV2004. 19. (Oct.-Dec. 2004),
9 pages.

Jandl, M. et al., “Enterprise Application Integration by means of a
generic CORBA LDAP Gateway”. Proceedings of the 24th Interna
tional Conference on Sofiware Engineering, (May 2002), p. 711.
Lockemann, Peter C., “Agents and Databases: Friends or Foes?'.
Proceedings of the 9th International Database Engineering & Appli
cation Symposium (IDEAS '05), (2005), 11 pages.
Pantic, M. et al., “Simple Agent Framework: An Educational Tool
Introducing the Basics of Al Programming”, Information Technol
ogy. Research and Education, 2003. Proceedings. ITRE2003. (Aug.
2003), pp. 426-430.
Russell, Stuartet al., “Artificial Intelligence: A Modern Approach”.
Pearson, (2003), pp. 5, 32-56, 449-454.
Singh, V.K. et al., “DYSWIS: An Architecture for Automated Diag
nosis of Networks'. Operations and Management Symposium, 2008.
NOMS 2008. IEEE,(Apr. 7-11, 2008), pp. 851-854.
Stallings, William “ISDN and Broadband ISDN with Framw Relay
and ATM, Prentice-Hall, (1999), p. 516.
Sutherland, et al., “Enterprise Application Integration and Complex
Adaptive Systems'. ACM (Oct. 2002), pp. 59-64.
Van Praet, J. et al., “Processor Modeling and Code Selection for
Retargetable Compilation'. ACM, TODAES vol. 6, Issue 3, (Jul.
2001), pp. 277-307.
“Advisory Action”, U.S. Appl. No. 1 1/495,053, (May 26, 2010), 3
pageS.
“Final Office Action”, U.S. Appl. No. 1 1/086,102, (Jul. 1, 2010), 14
pageS.
“Final Office Action”, U.S. Appl. No. 11/086,121, (Jun. 16, 2010),
pp. 1-30.
“Final Office Action”, U.S. Appl. No. 11/052,680, (May 17, 2010),
12 pages.
“Final Office Action”, U.S. Appl. No. 1 1/645,303, (May 21, 2010),
32 pages.
“Non Final Office Action”, U.S. Appl. No. 1 1/645,200, (May 26,
2010), 34 pages.
“Notice of Allowability”, U.S. Appl. No. 10/975,146, (Jul 13, 2010),
2 pages.
“Notice of Allowance”, U.S. Appl. No. 11/439,059, (Jul 14, 2010),
12 pages.
Bagci, et al., “Communication and Security Extensions for a Ubiq
uitous Mobile Agent System (UbiMAS). In Proceedings of CF
2005, Available at <http://portal.acm.org/ft gateway.
cfm?id=1062302&type=pdf&col=GUIDE&dl=GUIDE
&CFID=91857573&CFTOKEN=53726080>,(May 2005), pp. 246
251.
Brandt, Raimund "Dynamic Adaptation of Mobile Code in
Heterogenous Environments', Der Teschnischen Universitat
Munchen.(Feb. 15, 2001), 76 pages.
Karnik, Neeran M., et al., “Security in the Ajanta Mobile Agent
System”, Softw. Pract. Exper 31, 4 (Apr. 2001), 301-329.(2001), 28
pageS.
Korba, Larry “Towards Secure Agent Distribution and Communica
tion'. In Proceedings of the 32nd Annual Hawaii International Con
ference on System Science vol. 8 (Jan. 5-8, 1999). HICSS. IEEE
Computer Society, Washington, DC, 8059.(1999), 10 pages.
Poggi, Agostino et al., “Security and Trust in Agent-Oriented
Middleware”. OTM Workshops 2003: 989-1003,(2003), 15 pages.
Rosenberg, Jonathan et al., “Programming Internet Telephony Ser
vices', IEEE Network, (May/Jun. 1999), 8 pages.
Walsh, Tom et al., “Security and Reliability in Concordia”. In Mobil
ity: Processes, Computers, and Agents ACM Press/Addison-Wesley
Publishing Co., New York, NY. 524–534...(1999), 10 pages.
“Advisory Action”, U.S. Appl. No. 11/052,680, (Jul. 28, 2010), 3
pageS.
“Advisory Action”, U.S. Appl. No. 1 1/645,303, (Jul. 28, 2010), 3
pageS.
“Final Office Action”, U.S. Appl. No. 10/975,827. (Sep.15, 2010), 22
pageS.
“Final Office Action”, U.S. Appl. No. 1 1/645,192, (Sep.15, 2010), 14
pageS.
“Final Office Action”, U.S. Appl. No. 1 1/645,194, (Sep.15, 2010), 28
pageS.
“Final Office Action”, U.S. Appl. No. 1 1/645,196, (Sep. 22, 2010), 33
pageS.

US 7,904.404 B2
Page 5

“Final Office Action”, U.S. Appl. No. 1 1/645,197. (Jul.19, 2010), 16
pageS.
“Final Office Action”, U.S. Appl. No. 1 1/645,198. (Sep. 16, 2010), 22
pageS.
“Non Final Office Action”, U.S. Appl. No. 1 1/645,301, (Jul 30,
2010), 18 pages.
“Non Final Office Action”, U.S. Appl. No. 1 1/645,303, (Aug. 19,
2010), 20 pages.
“Notice of Allowance”, U.S. Appl. No. 12/714,753, (Sep. 27, 2010),
7 pages.
“Notice of Allowance”, U.S. Appl. No. 1 1/495,053, (Aug. 31, 2010),
7 pages.
“The Sims'. Sims, Electronic Arts, (2000), 57 pages.
“WOW, World of Warcraft”. Wikipedia (online), Retrieved from
Internet in 2010. <URL:http://en.wikipedia.org/wiki/World of
Warcraft, (2010), 28 pages.
Barba, Rick “The Sims Prima's Official Strategy Guide'. Prima
Publishing; ISBN: 7615-2339-1, (2000), 98 pages.
Chang, Yao-Chung et al., “All-IP Convergent Communications over
Open Service Architecture”, 2005 Wireless Telecommunications
Symposium, IEEE, 0-7803-8856, (2005), pp. 202-210.

Erfurth, Christian et al., “Migration Intelligence for Mobile Agents'.
Cited by examiner in U.S. Appl. No. 1 1/645,192 on Sep. 15, 2010,
(2001), 8 pages.
Hinchey, Michael G. et al., “Formal Approaches to Agent-Based
Systems', 2nd International Workshop FAABS, (Oct. 2002), 291
pageS.
Taylor, T.L. "Does WoW Change Everything?". Games and Culture,
vol. 1, No. 4. (Oct. 2006), 20 pages.
“Advisory Action”, U.S. Appl. No. 1 1/645,197, (Oct. 6, 2010), 3
pageS.
“Final Office Action”, U.S. Appl. No. 1 1/645,200, (Oct. 21, 2010), 34
pageS.
“Final Office Action”, U.S. Appl. No. 1 1/645, 191, (Oct. 28, 2010), 19
pageS.
“Non Final Office Action”, U.S. Appl. No. 11/052,680, (Nov. 19,
2010), 17 pages.
“Non Final Office Action”, U.S. Appl. No. 1 1/645,197, (Nov. 29,
2010), 20 pages.
“Notice of Allowance”, U.S. Appl. No. 1 1/086,121. (Oct. 7, 2010), 6
pageS.
“Notice of Allowance”, U.S. Appl. No. 1 1/645, 195, (Oct. 7, 2010), 8
pageS.

I ”SOIH

US 7,904.404 B2

OII

U.S. Patent

ÞIT zII

US 7,904.404 B2 Sheet 2 of 25 Mar. 8, 2011 U.S. Patent

OIZ

Z ºÐIH

ZIZ

US 7,904.404 B2 Sheet 3 of 25 Mar. 8, 2011 U.S. Patent

Z88.0888Z$
918

ZIE

"?INH

US 7,904.404 B2

92;

U.S. Patent

Y

US 7,904.404 B2 U.S. Patent

US 7,904.404 B2 Sheet 6 of 25 Mar. 8, 2011 U.S. Patent

019

9

OZ9

“ç’I||

919

8ZZ9:24172/
US 7,904.404 B2 U.S. Patent

Y

ZZZ

US 7,904.404 B2 Sheet 8 of 25 Mar. 8, 2011 U.S. Patent

8 "OIH

ÞI9

028918

6 "?INH

US 7,904.404 B2

tº I6

026916

016

U.S. Patent

Y

US 7,904.404 B2 U.S. Patent

£I "?INH

US 7,904.404 B2 U.S. Patent

029 I #IET ZIEI

US 7,904.404 B2 U.S. Patent

US 7,904.404 B2 Sheet 15 Of 25 Mar. 8, 2011 U.S. Patent

SI “?IH

OZGI

8ISI ZIGI

US 7,904.404 B2 Sheet 16 of 25 Mar. 8, 2011 U.S. Patent

9 I "OIDH
(squoo)seInWppe:s †

US 7,904.404 B2 Sheet 17 Of 25 Mar. 8, 2011 U.S. Patent

LI "OIH

SYJupp)Mau: 1 <–

ZIZI

6 L "5)I, H.

US 7,904.404 B2 U.S. Patent

ZZ “OICH ?zzzZZZZOZZZ

US 7,904.404 B2

OIZZ

U.S. Patent

z Izz

£Z “OICH

US 7,904.404 B2 U.S. Patent

US 7,904.404 B2 Sheet 24 of 25 Mar. 8, 2011 U.S. Patent

91 #2

US 7,904.404 B2 Sheet 25 Of 25 Mar. 8, 2011 U.S. Patent

ZIGZ

SZ ’DI H

98 GZ

US 7,904,404 B2
1.

MOVEMENT OF ANAGENT THAT UTILIZES
AS-NEEDED CANONICAL RULES

RELATED APPLICATION

This is a continuation of and claims priority to U.S. patent
application Ser. No. 1 1/645,190, entitled “Movement of an
Agent that Utilizes As-Needed Canonical Rules, filed on
Dec. 22, 2006, the disclosure of which is incorporated by
reference herein.

BACKGROUND

Agents
A Software agent is a software abstraction, similar to the

object-oriented programming concept of an object. The con
cept of an agent provides a convenient and powerful way to
describe a complex Software entity that is capable of acting
with a certain degree of autonomy in order to accomplish
tasks on behalf of its user. But unlike objects, which are
defined in terms of methods and attributes, an agent is defined
in terms of its behavior.

Various authors have proposed different definitions of
agents, commonly including concepts such as:

Persistence—code is not executed on demand but runs
continuously and decides for itself when it should perform
Some activity
Autonomy—agents have capabilities of task selection, pri

oritization, goal-directed behavior, decision-making without
human intervention

Social Ability—agents are able to engage other compo
nents through communication and coordination, they may
collaborate on a task

Reactivity—agents perceive the context in which they
operate and react to it appropriately.

Agents may also be mobile. They can move from one
execution environment to another carrying both their code
and their execution state. These execution environments can
exist in a variety of devices in a data network including, but
not limited to, servers, desktops, laptops, embedded devices,
networking equipment and edge devices such as PDAS or cell
phones. The characteristics of these platforms may vary
widely interms of computational capacity, networking capac
ity, display capabilities, etc. An agent must be able to adapt to
these conditions.

Historically, agents have been programmed in a procedural
manner. That is, agents are programmed with a series of steps
that will ultimately result in a goal being achieved. This
approach has limitations though as the logic for each agent
must be compiled into the agent software and is therefore
static. Complex goals can also become intractable for a pro
grammer as the set of rules the agent must follow grows.

Rule-Based Systems
In his tutorial, Introduction to Rule-Based Systems, James

Freeman-Hargis defines a rule-based system to consist of a set
of assertions and a set of rules for how to act on the assertion
set. When a set of data is supplied to the system, it may result
in Zero or more rules firing. Rule based systems are rather
simplistic in nature, consisting of little more than a group of
if-then statements, but form the basis of many “expert sys
tems. In an expert system, the knowledge of an expert is
encoded into the rule-set. When a set of data is supplied to the
system, the system will come to the same conclusion as the
expert. With this approach there is a clear separation between
the domain logic (a rule set) and the execution of the agent. As
mentioned, the procedural agent approach tightly couples the
tWO.

10

15

25

30

35

40

45

50

55

60

65

2
The rule-based system itself uses a simple technique. It

starts with a rule-set, which contains all of the appropriate
knowledge encoded into If-Then rules, and a working
memory, which may or may not initially contain any data,
assertions or initially known information. The system in
operation examines all the rule conditions (IF) and deter
mines a Subset, the conflict set, of the rules whose conditions
are satisfied based on the working memory. Of this conflict
set, one of those rules is triggered (fired). The rule that is
chosen is based on a conflict resolution strategy. When the
rule is fired, any actions specified in its THEN clause are
carried out. These actions can modify the working memory,
the rule-set itself, or do just about anything else the system
programmer decides to include. This loop of firing rules and
performing actions continues until one of two conditions are
met: there are no more rules whose conditions are satisfied or
a rule is fired whose action specifies the rule engine execution
should terminate.

Rule-based systems, as defined above, are adaptable to a
variety of problems. In some problems, working memory
asserted data is provided with the rules and the system follows
them to see where they lead. This approach is known as
forwardchaining. An example of this is a medical diagnosis in
which the problem is to diagnose the underlying disease
based on a set of symptoms (the working memory). A prob
lem of this nature is solved using a forward-chaining, data
driven, System that compares data in the working memory
against the conditions (IF parts) of the rules and determines
which rules to fire.

In other problems, a goal is specified and the system must
find a way to achieve that specified goal. This is known as
backward-chaining. For example, if there is an epidemic of a
certain disease, this system could presume a given individual
had the disease and attempt to determine if its diagnosis is
correct based on available information. A backwardchaining,
goal-driven, system accomplishes this. To do this, the system
looks for the action in the THEN clause of the rules that
matches the specified goal. In other words, it looks for the
rules that can produce this goal. If a rule is found and fired, it
takes each of that rule's conditions as goals and continues
until either the available data satisfies all of the goals or there
are no more rules that match.
The Rete algorithm is an efficient pattern matching algo

rithm for implementing forward-chaining, rule-based sys
tems. The Rete algorithm was designed by Dr. Charles L.
Forgy of Carnegie Mellon University in 1979. Rete has
become the basis for many popular expert Systems, including
JRules, OPS5, CLIPS, JESS, Drools, and LISA.
A naive implementation of a rule-based system might

check each rule against the known facts in the knowledge
base, firing that rule if necessary, then moving on to the next
rule (and looping back to the first rule when finished). For
even moderate sized rules and fact knowledge-bases, this
naive approach performs far too slowly.
The Rete algorithm (usually pronounced either REET or

REE-tee, from the Latin rete for net, or network) provides
the basis for a more efficient implementation of an expert
system. A Rete-based expert system builds a network of
nodes, where each node (except the root) corresponds to a
pattern occurring in the left-hand-side of a rule. The path from
the root node to a leaf node defines a complete rule left
handside. Each node has a memory of facts which satisfy that
pattern.
As new facts are asserted or modified, they propagate along

the network, causing nodes to be annotated when that fact
matches that pattern. When a fact or combination of facts

US 7,904,404 B2
3

causes all of the patterns for a given rule to be satisfied, a leaf
node is reached and the corresponding rule is triggered.
The Rete algorithm is designed to sacrifice memory for

increased speed. In most cases, the speed increase over naive
implementations is several orders of magnitude (because
Rete performance is theoretically independent of the number
of rules in the system). In very large systems, however, the
original Rete algorithm tends to run into memory consump
tion problems which have driven the design of Rete variants.

Therefore, what is needed is an ability to move an agent
that utilizes as-needed rules from a first execution environ
ment to a second execution environment. More specifically
what is needed is movement of an agent that utilizes a Sup
plied set of as-needed canonical rules from a first execution
environment to a second execution environment.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram illustrating an example process of
constructing an agent locally with a set of canonical rules
Supplied during construction in accordance with one or more
embodiments;

FIG. 2 is a diagram illustrating an example process of
constructing an agent remotely with a set of canonical rules
Supplied during construction in accordance with one or more
embodiments;

FIG. 3 is a diagram illustrating an example process of
constructing an agent in a remote execution environment
during which a set of canonical rules is retrieved from outside
the execution environment in accordance with one or more
embodiments:

FIG. 4 is a diagram illustrating an example process of
moving an agent carrying canonical rules from a first execu
tion environment in accordance with one or more embodi
ments;

FIG. 5 is a diagram illustrating an example process of
moving an agent carrying canonical rules to a second execu
tion environment in accordance with one or more embodi
ments;

FIG. 6 process of an agent execution in accordance with
one or more embodiments;

FIG. 7 is a diagram illustrating an example process of
constructing an agent locally with a set of compiled rules
Supplied during construction in accordance with one or more
embodiments;

FIG. 8 is a diagram illustrating an example process of
constructing an agent remotely with a set of compiled rules
Supplied during construction in accordance with one or more
embodiments;

FIG. 9 is a diagram illustrating an example process of
constructing an agent remotely during which a set of com
piled rules that are retrieved from outside the execution envi
ronment in accordance with one or more embodiments;

FIG. 10 is a diagram illustrating an example process of
moving an agent carrying compiled rules from a first execu
tion environment in accordance with one or more embodi
ments;

FIG. 11 is a diagram illustrating an example process of
moving an agent carrying compiled rules to a second execu
tion environment in accordance with one or more embodi
ments;

FIG. 12 is a diagram illustrating an example process of
constructing an agent remotely with a set of canonical rules
carried by the agent and a set of canonical execution environ
ment rules resident in a remote environment in accordance
with one or more embodiments;

10

15

25

30

35

40

45

50

55

60

65

4
FIG. 13 is a diagram illustrating an example process of

constructing an agent remotely with a set of canonical rules
fetched by the agent and a set of canonical execution envi
ronment rules resident in a remote environment in accordance
with one or more embodiments;

FIG. 14 is a diagram illustrating an example process of
moving an agent carrying canonical rules from a first execu
tion environment that includes execution environment rules
in accordance with one or more embodiments;

FIG. 15 is a diagram illustrating an example process of
moving an agent carrying canonical rules to a second execu
tion environment that includes a repository of canonical
execution environment rules in accordance with one or more
embodiments;

FIG. 16 is a diagram illustrating an example process of
constructing an agent at a remote location with an as-needed
set of canonical rules Supplied during construction in accor
dance with one or more embodiments;

FIG. 17 is a diagram illustrating an example process of
constructing an agent at a remote location with an as-needed
set of canonical rules fetched during construction in accor
dance with one or more embodiments;

FIG. 18 is a diagram illustrating an example process of
moving an agent with Supplied as-needed canonical rules
from a first execution environment in accordance with one or
more embodiments;

FIG. 19 is a diagram illustrating an example process of
moving an agent with Supplied as-needed canonical rules to a
second execution environment in accordance with one or
more embodiments;

FIG. 20 is a diagram illustrating an example process of
moving an agent from a first execution environment with a
fetched as-needed set of canonical rules in accordance with
one or more embodiments;

FIG. 21 is a diagram illustrating an example process of
moving an agent to a second execution environment with a
fetched as-needed set of canonical rules in accordance with
one or more embodiments;

FIG. 22 is a diagram illustrating an example process of a
rule-based agent updating rule history when rule processing
is halted in an execution environment in accordance with one
or more embodiments;

FIG. 23 is a diagram illustrating an example process of a
rule-based agent identifying and carrying only needed
canonical rules during as part of movement to another execu
tion environment in accordance with one or more embodi
ments;

FIG. 24 is a diagram illustrating an example process of an
agent using a set of Survival rules to determine its lifespan in
accordance with one or more embodiments; and

FIG. 25 is a diagram illustrating an example process of an
agent using a set of data narrowing rules to determine how
much data should be sent over the networkinaccordance with
one or more embodiments.

DETAILED DESCRIPTION

Construction
Agents which utilize rule based systems may be con

structed locally or remotely. In order to operate, these agents
need an initial set of canonical rules that can be compiled and
loaded into an associated rule engine. These rules can either
be supplied at construction or a rule repository location can be
Supplied so that the rules may be fetched during construction
or at a later time.

Referring now to FIG. 1, a diagram illustrating an example
process of constructing an agent locally with a set of canoni

US 7,904,404 B2
5

cal rules Supplied during construction is shown. An applica
tion 110, in an execution environment 112, requests a set of
rules for an agent from a rule repository 116 based on the
goals of the agent that is being created. The result is a collec
tion of canonical rules, known as a rule set 118. The rule set
118 is passed to the agent 120 during construction. The agent
120 takes the rule set 118 and requests that it be compiled by
the local rule compiler 122. This results in the creation of a
compiled rule set 124. At this point the agent creates the rule
engine 126 that will be used to execute the rule set. Note that
if the execution environment 112 includes a rule engine, then
one may not need to be created. After the rule engine 126 is
created or located, the agent 120 supplies the engine 126 with
the compiled rule set 124. Finally, the agent 120 requests a
new working memory 128 from the rule engine 126. The
working memory will hold all of the data the agent chooses to
assert before and during execution of the rule engine. At this
point, the agent 120 is ready to be moved to another execution
environment or to execute the rule engine. Both of these
processes are described in detail in later sections.

Referring now to FIG. 2, a diagram illustrating an example
process of constructing an agent remotely with a set of
canonical rules Supplied during construction is shown. An
application 218, in execution environment 212, requests a set
of rules for an agent from a rule repository 220 in execution
environment 214 based on the goals of the agent that is being
created. The result is a collection of canonical rules, known as
a rule set 222. The rule set 222 is passed to the agent 224
during construction in execution environment 216. The agent
224 in execution environment 216 takes the rule set 222 and
requests that it be compiled by the local rule compiler 226.
This results in the creation of a compiled rule set 228. At this
point the agent creates the rule engine 230 that will be used to
execute the rule set. Note that if execution environment 216
includes a rule engine, then one may not need to be created.
After the rule engine 230 is created or located, the agent 224
supplies the engine 230 with the compiled rule set 228.
Finally, the agent 224 requests a new working memory 232
from the rule engine 230. The working memory will hold all
of the data the agent chooses to assert before and during
execution of the rule engine. At this point, the agent 224 is
ready to be moved to another execution environment or to
execute the rule engine.

Referring now to FIG. 3, a diagram illustrating an example
process of constructing an agent in a remote execution envi
ronment during which a set of canonical rules is retrieved
from outside the execution environment is shown. An appli
cation 318, in execution environment 312, requests the cre
ation of an agent 324 in execution environment 316. Agent
324 is passed the location of a rule repository 320 during
construction. During construction, the agent 324 requests a
set of rules based on its goals from the rule repository 320 in
execution environment 314. The result is a collection of
canonical rules, known as a rule set 322. The agent 324 in
execution environment 316 takes the rule set 322 and requests
that it be compiled by the local rule compiler326. This results
in the creation of a compiled rule set 328. At this point the
agent creates the rule engine 330 that will be used to execute
the rule set. Note that if execution environment 314 includes
a rule engine, then one may not need to be created. After the
rule engine 330 is created or located, the agent 324 supplies
the engine 330 with the compiled rule set 328. Finally, the
agent 324 requests a new working memory 332 from the rule
engine 330. The working memory will hold all of the data the
agent chooses to assert before and during execution of the rule
engine. At this point, the agent 324 is ready to be moved to
another execution environment or to execute the rule engine.

10

15

25

30

35

40

45

50

55

60

65

6
Movement
An agent may move from one execution environment to

another. This process may be initiated by a variety of means
including but not limited to an application, another agent,
another object, the existing agent itself a human interacting
with the execution environment or a rule executing in the
agent's rule engine.

Referring now to FIGS. 4 and 5, diagrams illustrating an
example process of moving an agent carrying canonical rules
from one execution environment to another are shown. An
application 418 in execution environment 412 requests that
an agent 424 in execution environment 414 move to execution
environment 416. The location of execution environment 416
may be described in the move request by an IP address and
port, Uniform Resource Locator (URL), or any other means
of addressing. The agent 424 discards its rule engine 430
along with the associated compiled rule set 428 and working
memory 432. The agent 424 then encodes itself along with its
canonical rule set 422 into a transferable form 434. Though a
byte array is shown, the encoded agent could take any form
that can be transferred between the two execution environ
ments. Once the agent 424 has created an encoded version of
itself 434 in execution environment 414 it transfers the
encoded version 434 to an agent manager 426 residing in
execution environment 416.

Referring now to FIG. 5, the process continues with the
agent manager 522 receiving the encoded agent 534. Upon
receipt of the encoded agent 534, the agent manager 522
decodes the encoded agent 534 into a new version of the agent
524 and the agent's canonical rule set 526 in execution envi
ronment 516. Once the agent 524 and rule set 526 have been
materialized, the agent manager 522 requests that the agent
524 initialize. This request prompts the agent 524 to go to the
execution environment's rule compiler 520 and request com
pilation of its canonical rule set 526. The result is a compiled
rule set 528. The agent then creates a new rule engine 530 and
subsequently passes the compiled rule set 528 to it. As during
construction, if the execution environment has a rule engine,
then one may not need to be created. Once the engine 530 has
been located/created and the compiled rule set 528 has been
added to it, the agent 524 requests a new working memory
from the rule engine. As before, the working memory will
hold all of the data the agent chooses to assert before and
during execution of the rule engine. At this point, the agent
524 is ready to execute the rule engine. Once the move opera
tion completes, the old version of the agent 518 in execution
environment 514 indicates to the requesting application 518
in execution environment 512 that the move operation has
completed. Once the notification has been made, the old agent
534 is destroyed.

Execution
Once an agent has been initialized in an execution environ

ment through either creation or movement, it can be sent
requests to perform different tasks. These tasks mayor may
not require sending one or more responses. Recall that during
construction an agent is associated with a newly created or
resident rule engine and that a rule set is provided to that
engine.

Referring now to FIG. 6, a diagram illustrating an example
process of an agent utilizing a rule-based system engine for
execution is shown. An application 616 in execution environ
ment 612 sends a request to an agent 618 in execution envi
ronment 614. Upon receiving the request, the agent 618,
collects an initial set of data and asserts it into its working
memory 624 in order to accomplish the task requested. Note
that this data may be collected from the local execution envi
ronment, from an accessible database, from other objects,

US 7,904,404 B2
7

from other agents, from a human via a man machine interface,
from a computer readable medium or any combinations of the
above. With a provided compiled rule set 620, and an initial
set of data in working memory 624, the rule engine 622 is then
started by the agent 618.
When the engine 622 starts, it processes the objects in

working memory against the rule set 620. This may result in
one or more rules being fired by the engine 622. When a rule
is fired it may add, modify or delete objects in working
memory 624. Additionally, the engine 622 can inform the
agent 618 which may result in a number of actions being
taken by the agent 618 including, but not limited to, the
collection and assertion of additional data into the working
memory 624 (shown) and/or sending of a preliminary
response back to the application. This sequence will continue
until the task is completed, there are no more rules available
to fire, or the agent receives an event, Such as move or termi
nate, causing it to halt rule engine processing. Upon comple
tion of the task, the agent 618 may send a response back to the
application 616 that initiated the request (shown).

Pre-Compiled Agent Rule Set Usage
As noted above, the process of adding rules to the rule

engine can be expensive in terms of CPU utilization on the
execution environment in which the operation is performed.
This can be problematic for less powerful hosts such as per
sonal devices (cell phones, PDAs, etc.) and servers with lim
ited available CPU resources. Therefore, another embodi
ment of the invention creates the compiled rule set in the
execution environment of the application that creates an agent
instead of in the environment in which the agent is con
structed or moved.

Referring now to FIG. 7, a diagram illustrating an example
process of constructing an agent locally with a set of compiled
rules Supplied during construction is shown. An application
712, in execution environment 714, requests a set of rules for
an agent from a rule repository 720 based on the goals of the
agent that is being created. The result is a collection of canoni
cal rules, known as a rule set 724. The application 712 takes
the rule set 724 and requests that it be compiled by the local
rule compiler 722. This results in the creation of a compiled
rule set 724. The rule set 724 is passed to the agent 718 during
construction. At this point the agent creates the rule engine
726 that will be used to execute the rule set. Note that if the
execution environment 714 includes a rule engine, then one
may not need to be created. After the rule engine 726 is
created or located, the agent 722 supplies the engine 726 with
the compiled rule set 724. Finally, the agent 110 requests a
new working memory 728 from the rule engine 726. The
working memory will hold all of the data the agent chooses to
assert before and during execution of the rule engine. At this
point, the agent 718 is ready to be moved to another execution
environment or to execute the rule engine.

Referring now to FIG. 8, a diagram illustrating an example
process of constructing an agent remotely with a set of com
piled rules Supplied during construction is shown. An appli
cation 812, in execution environment 814, requests a set of
rules for an agent from a rule server 828 in execution envi
ronment 818 based on the goals of the agent that is being
created. The rule server 828 queries a rule repository 830 for
the rules. The result is a collection of canonical rules, known
as a rule set 832. The rule server 828 in execution environ
ment 202 takes the rule set 832 and requests that it be com
piled by the local rule compiler 834. This results in the cre
ation of a compiled rule set 826. The compiled rule set 826 is
passed to the agent 820 during construction in execution
environment 204. At this point, the agent 820 creates the rule
engine 822 that will be used to execute the rule set. Note that

10

15

25

30

35

40

45

50

55

60

65

8
if execution environment 816 includes a rule engine, then one
may not need to be created. After the rule engine 822 is
created or located, the agent 820 supplies the engine 822 with
the compiled rule set 826. Finally, the agent 820 requests a
new working memory 116 from the rule engine 822. The
working memory will hold all of the data the agent chooses to
assert before and during execution of the rule engine. At this
point, the agent 820 is ready to execute the rule engine.

Referring now to FIG.9, a diagram illustrating an example
process of constructing an agent in a remote execution envi
ronment during which a set of compiled rules is retrieved
from outside the execution environment is shown. An appli
cation 912, in execution environment 914, requests the cre
ation of an agent 920 in execution environment 916. Agent
920 is passed the location of a rule server 928, resident in
execution environment 918, during construction. During con
struction, the agent 920 requests a set of compiled rules based
on its goals from the rule server 928 in execution environment
918. The rule server 928 queries a rule repository 930 for a set
of rules. The result is a collection of canonical rules, known as
a rule set 932. The rule server 928 in execution environment
918 takes the rule set 932 and requests that it be compiled by
the local rule compiler 934. This results in the creation of a
compiled rule set 926. At this point the agent 920 creates a
rule engine 922 that will be used to execute the rule set. Note
that if execution environment 916 includes a rule engine, then
one may not need to be created. After the rule engine 922 is
created or located, the agent 920 supplies the engine 922 with
the compiled rule set 926. Finally, the agent 920 requests a
new working memory 924 from the rule engine 922. The
working memory will hold all of the data the agent chooses to
assert before and during execution of the rule engine. At this
point, the agent 920 is ready to execute the rule engine.

Referring now to FIGS. 10-11, diagrams illustrating an
example process of moving an agent carrying compiled rules
from one execution environment to another are shown. An
application 1018 in execution environment 1012 request that
an agent 1022 in execution environment 1014 move to execu
tion environment 1016. The location of execution environ
ment 1016 may be described in the move request by an IP
address and port, Uniform Resource Locator (URL), or any
other means of addressing. The agent 1022 discards its rule
engine 1030 along with the associated working memory
1032. Subsequently, the agent 1022 discards its canonical
rule set 1020 if it still has a reference to it. The agent 1022 then
encodes itself along with its compiled rule set 1028 into a
transferable form 1024. Though a byte array is shown, the
encoded agent could take any form that can be transferred
between the two execution environments. Once the agent
1022 has created an encoded version of itself 1024 in execu
tion environment 1014 it transfers the encoded version 1024
to an agent manager 1026 residing in execution environment
1016.

Referring now to FIG. 11, the process continues with an
agent manager 1122 receiving an encoded agent 1134. Upon
receipt of the encoded agent 1134, the agent manager 1122
decodes the encoded agent 1134 into a new version of the
agent 1124 and its compiled rule set 1128 in execution envi
ronment 1116. Once the agent 1124 and rule set 1128 have
been decoded, the agent manager 1122 requests that the agent
1124 initialize. This request prompts the agent 1124 to create
a new rule engine 1130 and Subsequently pass the compiled
rule set 1128 to it. As during construction, if the execution
environment has a rule engine, then one may not need to be
created. Once the engine 1130 has been located/created and
the compiled rule set 1128 has been added to it, the agent 1124
requests a new working memory 1132 from the rule engine.

US 7,904,404 B2
9

As before, the working memory will hold all of the data the
agent chooses to assert before and during execution of the rule
engine. At this point, the agent 1124 is ready to execute the
rule engine. Once the move operation completes, the old
version of the agent 1118 in execution environment 1114
indicates to the requesting application 1118 in execution
environment 1112 that the move operation has completed.
Once the notification has been made, the old agent 1118 is
destroyed.

Execution Environment Rule Set Usage
Each execution environment may have access to a local

rule repository which allow for the rules for a particular
domain, domain rules, to be distributed, or partitioned, in any
number of rule repositories. An agent may be configured to
only use rules provided at construction essentially ignoring
rules available from each execution environment's local rule
repository. The more general case is for the agent to make use
of the rules that it carries with itself along with the rules
extracted from the execution environment's local rule reposi
tory. Local rule repositories may contain rules for several
different domains and are usually specific to execution envi
ronment objects that will be asserted to working memory but
may also apply to execution environment concerns such as
security, resource usage, Scheduling, or any other execution
environment attribute.

Referring now to FIG. 12, a diagram illustrating an
example process of constructing an agent remotely with a set
of canonical rules carried by the agent and a set of canonical
rules resident in a remote environment is shown. An applica
tion 1218, in execution environment 1212, requests a set of
rules for an agent from a rule repository 1220 in execution
environment 1214 based on the goals of the agent that is being
created. The result is a collection of canonical rules, known as
a rule set 1230. The rule set 1230 is passed to the agent 1232
during construction in execution environment 1216. During
construction, the agent 1232 requests the set of rules from a
local rule repository 1234 given the agent's domain (not
shown). The result of which, canonical rule set 1236, is then
merged with the construction supplied rule set 1230 to form a
merged rule set 1222. This rule set contains all the domain and
environment specific rules that the agents rule engine will
execute. The agent 1232 then takes the merged rule set 1222
and requests that it be compiled by the local rule compiler
1226. This results in the creation of a compiled rule set 1238.
At this point the agent creates a rule engine 1224 that will be
used to execute the rule set 1238. Note that if execution
environment 1216 includes a rule engine, then one may not
need to be created. After the rule engine 1224 is created or
located, the agent 1232 supplies the engine 1224 with the
compiled rule set 1238. Finally, the agent 1232 requests a new
working memory 1228 from the rule engine 1224. The work
ing memory will hold all of the data the agent chooses to
assert before and during execution of the rule engine.

Referring now to FIG. 13, a diagram illustrating an
example process of constructing an agent remotely with a set
of canonical rules fetched by the agent and a set of canonical
local rules resident in a remote environment is shown. An
application 1318, in execution environment 1312, requests
the creation of an agent 1332 in execution environment 1316.
Agent 1332 is passed the location of a rule repository 1320
during construction. During construction, the agent 1332
requests a set of rules based on its goals from the rule reposi
tory 1320 in execution environment 1314. The result is a
collection of canonical rules, known as a rule set 1330. Dur
ing construction, the agent 1332 requests the set of rules from
a local rule repository 1334 that apply to its domain. The
result of which, canonical rule set 1336, is then merged with

10

15

25

30

35

40

45

50

55

60

65

10
the fetched rule set 104 to form a merged rule set 1322. This
rule set contains all the domain and environment specific
rules that the agents' rule engine will execute. The agent 1332
then takes the merged rule set 1322 and requests that it be
compiled by the local rule compiler 1326. This results in the
creation of a compiled rule set 1338. At this point the agent
creates a rule engine 1324 that will be used to execute the rule
set 1338. Note that if execution environment 1316 includes a
rule engine, then one may not need to be created. After the
rule engine 1324 is created or located, the agent 1332 Supplies
the engine 1324 with the compiled rule set 1338. Finally, the
agent 1332 requests a new working memory 1328 from the
rule engine 1324. The working memory will hold all of the
data the agent chooses to assert before and during execution
of the rule engine.

Referring now to FIGS. 14-15, diagrams illustrating an
example process of moving an agent carrying canonical rules
to an execution environment that includes a local repository
of canonical rules are shown. Referring now to FIG. 14, an
application 1418 in execution environment 1412 requests that
an agent 1422 in execution environment 1414 move to execu
tion environment 1416. The location of execution environ
ment 1416 may be described in the move request by an IP
address and port, Uniform Resource Locator (URL), or any
other means of addressing. The agent 1422 discards its rule
engine 1430 along with the associated compiled rule set 1428
and working memory 1432. The agent 1422 then encodes
itself along with its canonical rule set 1420 into a transferable
form 1424. Though a byte array is shown, the encoded agent
could take any form that can be transferred between the two
execution environments. Once the agent 1422 has created an
encoded version of itself 1424 in execution environment 1414
it transfers the encoded version 1424 to an agent manager
1426 residing in execution environment 1416.

Referring now to FIG. 15, the process continues with the
agent manager 1522 receiving the encoded agent 1534. Upon
receipt of the encoded agent 1534, the agent manager 1522
decodes the encoded agent 1534 into a new agent 1526 and its
canonical rule set 1540 in execution environment 1516. Once
the agent 1526 and rule set 1540 have been decoded, the agent
manager 1522 requests that the agent 1526 initialize. This
request prompts the agent 1526 to request the set of rules
applicable to the agents domain from a local rule repository
1536. The result of which, canonical rule set 1538, is then
merged with the carried rule set 1540 to form a merged rule
set 1534. This rule set contains all the domain and environ
ment specific rules that the agents rule engine will execute.
The agent 1526 then takes the merged rule set 1534 and
requests that it be compiled by the local rule compiler 1524.
The result is a compiled rule set 1528. The agent then creates
a new rule engine 1530 and subsequently passes the compiled
rule set 1528 to it. As during construction, if the execution
environment has a sharable rule engine, then one may not
need to be created. Once the engine 1530 has been located/
created and the compiled rule set 1528 has been added to it,
the agent 1526 requests a new working memory 1532 from
the rule engine. As before, the working memory will hold all
of the data the agent chooses to assert before and during
execution of the rule engine. Once the move operation com
pletes, the old version of the agent 1520 in execution envi
ronment 1514 indicates to the requesting application 1518 in
execution environment 1512 that the move operation has
completed. Once the notification has been made, the old agent
1520 is destroyed.
As-Needed Rules
As there is a cost of carrying around unnecessary rules in

terms of both CPU and memory usage, it is desirable in many

US 7,904,404 B2
11

cases to Supply an agent with a Subset of its total potential rule
set. This can be done in a context-specific manner based on
the goals and execution environment of the agent. For
example, if each device upon which an agent will be execut
ing only contains a small screen, then there is no need to carry
the rules for display on a standard computer monitor. As
another example, an agent who moves progressively further
in a single direction, perhaps among GPS enabled fixed loca
tion devices, need not carry rules that only apply to previous
GPS locations.

Referring now to FIG. 16, a diagram illustrating an
example process of constructing an agent at a remote location
with an as-needed set of canonical rules Supplied during
construction is shown. An application 1618, in execution
environment 1612, requests a set of rules for an agent from a
rule repository 1620 in execution environment 1614 based on
the goals and initial execution environment of the agent that is
being created. When Supplied with a target execution envi
ronment, the rule repository 1620 can filter out rules that do
not apply to that type of environment. The result is a collec
tion of canonical rules, known as a rule set 1622. The rule set
1622 is passed to the agent 1624 during construction in execu
tion environment 1616. The agent 1624 in execution environ
ment 1616 takes the rule set 1622 and requests that it be
compiled by the local rule compiler 1626. This results in the
creation of a compiled rule set 1628. At this point the agent
creates the rule engine 1630 that will be used to execute the
rule set. Note that if execution environment 1616 includes a
rule engine, then one may not need to be created. After the
rule engine 1630 is created or located, the agent 1624 supplies
the engine 1630 with the compiled rule set 1628. Finally, the
agent 1624 requests a new working memory 1632 from the
rule engine 1630. The working memory will hold all of the
data the agent chooses to assert before and during execution
of the rule engine. At this point, the agent 1624 is ready to be
moved to another execution environment or to execute the
rule engine.

Referring now to FIG. 17, a diagram illustrating an
example process of constructing an agent at a remote location
with an as-needed set of canonical rules fetched during con
struction is shown. An application 1718, in execution envi
ronment 1712, requests the creation of an agent 1724 in
execution environment 1716. Agent 1724 is passed the loca
tion of a rule repository 1720 during construction. During
construction, the agent 1724 requests a set of rules based on
its goals and execution environment from the rule repository
1720 in execution environment 1714. When supplied with the
target execution environment, the rule repository 1720 can
filter out rules that do not apply to that type of environment.
The result is a collection of canonical rules, known as a rule
set 1722. The agent 1724 in execution environment 204 takes
the rule set 1722 and requests that it be compiled by the local
rule compiler 1726. This results in the creation of a compiled
rule set 1728. At this point the agent creates the rule engine
1730 that will be used to execute the rule set. Note that if
execution environment 1714 includes a rule engine, then one
may not need to be created. After the rule engine 1730 is
created or located, the agent 1724 supplies the engine 1730
with the compiled rule set 1728. Finally, the agent 1724
requests a new working memory 1732 from the rule engine
1730. The working memory will hold all of the data the agent
chooses to assert before and during execution of the rule
engine. At this point, the agent 1724 is ready to be moved to
another execution environment or to execute the rule engine.

Referring now to FIGS. 18-19, diagrams illustrating an
example process of moving an agent from one execution
environment to another with a Supplied as-needed set of

10

15

25

30

35

40

45

50

55

60

65

12
canonical rules are shown. An application 1818 in execution
environment 1812 requests that an agent 1822 in execution
environment 1814 move to execution environment 1816. The
location of execution environment 1816 may be described in
the move request by an IP address and port, Uniform
Resource Locator (URL), or any other means of addressing.
The move request includes a new as-needed canonical rule set
1834 based on the agent's goals and target execution envi
ronment. The agent 1822 discards its rule engine 1830 along
with the associated compiled rule set 1828 and working
memory 1832. In addition the agent 1822 discards its old
canonical rule set 1820. At this point, the agent 1822 encodes
itself along with its new as-needed canonical rule set 1834
into a transferable form 1824. Though a byte array is shown,
the encoded agent could take any form that can be transferred
between the two execution environments. Once the agent
1822 has created an encoded version of itself 1824 in execu
tion environment 1814 it transfers the encoded version 1824
to an agent manager 1826 residing in execution environment
1816.

Referring now to FIG. 19, the process continues with the
agent manager 1922 receiving an encoded agent 1934. Upon
receipt of the encoded agent 1934, the agent manager 118
decodes the encoded agent 1934 into a new version of the
agent 1924 and its new canonical rule set 1926 in execution
environment 1916. Once the agent 1924 and rule set 1926
have been materialized, the agent manager 1922 requests that
the agent 1922 initialize. This request prompts the agent 1922
to go to the execution environments rule compiler 1920 and
request compilation of its canonical rule set 1926. The result
is a compiled rule set 1928. The agent then creates a new rule
engine 1930 and subsequently passes the compiled rule set
1928 to it. As during construction, if the execution environ
ment has a rule engine, then one may not need to be created.
Once the engine 1928 has been located/created and the com
piled rule set 1926 has been added to it, the agent 1922
requests a new working memory from the rule engine. As
before, the working memory will hold all of the data the agent
chooses to assert before and during execution of the rule
engine. Once the move operation completes, the old version
of the agent 1918 in execution environment 1914 indicates to
the requesting application 1918 in execution environment
1912 that the move operation has completed. Once the noti
fication has been made, the old agent 1934 is destroyed.

Referring now to FIGS. 20-21, diagrams illustrating an
example process of moving an agent from one execution
environment to another with a fetched as-needed set of
canonical rules are shown. An application 2018 in execution
environment 2012 requests that an agent 2022 in execution
environment 2014 move to execution environment 2016. The
location of execution environment 2016 may be described in
the move request by an IP address and port, Uniform
Resource Locator (URL), or any other means of addressing.
The move request includes a reference to a rule repository
2038 from which the agent should fetch a new as-needed rule
set. Upon receiving the move request, the agent 2022 requests
a new as-needed rule set from the Supplied rule repository
2038 based on its goals and target execution environment
2016. After receiving the new canonical rule set 2034, the
agent 2022 discards its rule engine 2030 along with the asso
ciated compiled rule set 2028 and working memory 2032. In
addition the agent 2022 discards its old canonical rule set
2020. At this point, the agent 2022 encodes itself along with
its new as-needed canonical rule set 2034 into a transferable
form 2024. Though a byte array is shown, the encoded agent
could take any form that can be transferred between the two
execution environments. Once the agent 2022 has created an

US 7,904,404 B2
13

encoded version of itself 2024 in execution environment 2014
it transfers the encoded version 2024 to an agent manager
2026 residing in execution environment 2016.

Referring now to FIG. 21, the process continues with the
agent manager 2122 receiving an encoded agent 2134. Upon
receipt of the encoded agent 2134, the agent manager 2122
decodes the encoded agent 2134 into a new version of the
agent 2124 and its new canonical rule set 2126 in execution
environment 204. Once the agent 2124 and rule set 124 have
been materialized, the agent manager 2122 requests that the
agent 2124 initialize. This request prompts the agent 2124 to
go to the execution environment's rule compiler 2120 and
request compilation of its canonical rule set 2126. The result
is a compiled rule set 2128. The agent then creates a new rule
engine 130 and Subsequently passes the compiled rule set
2128 to it. As during construction, if the execution environ
ment has a sharable rule engine, then one may not need to be
created. Once the engine 2130 has been located/created and
the compiled rule set 2126 has been added to it, the agent 2124
requests a new working memory from the rule engine. As
before, the working memory will hold all of the data the agent
chooses to assert before and during execution of the rule
engine. Once the move operation completes, the old version
of the agent 2138 in execution environment 2114 indicates to
the requesting application 2118 in execution environment
2112 that the move operation has completed. Once the noti
fication has been made, the old agent 2138 is destroyed.

Dynamic Determination of Needed Rules
Large rule sets, even with efficient algorithms such as Rete,

are often expensive in computation and bandwidth. The pro
cess of dynamically removing rules considered unlikely to be
useful has a benefit to performance and also, combined with
mobile agents, provides an efficient method for utilizing large
rule sets that can be partitioned across many repositories. This
method also allows an agent to dynamically change the rules
to meet the execution environment processing task.

Each constructed agent has a unique identifier for itself and
this identifier is also known to the agents originator. At the
point of origination, this identifier will be associated with the
agents outcome. An example outcome is Successfully attain
ing an end goal and sending the results back to the applica
tion. Another example outcome is the loss or death of the
agent. An agent that is determined to be lost or dead may
cause a replacement agent to be launched. The replacement
agent will have a unique identifier that differs from the origi
nal agent. In addition to a unique agent identifier, an agent
also carries with it an indicative subset of the set of previously
completed agent outcomes for the given domain. This is a set
of unique identifiers and outcomes for agents that have pre
viously executed in the domain of the current agent.

In each execution environment, the local rule repository
not only stores rules, but is also the location for agents to
record statistics about rule engine activity for the rules in the
rule set given to the rule engine. These instrumented rules
include agent carried rules and rules for the domain that were
retrieved from the local rule repository. Alternately, only the
locally acquired domain rules may be instrumented.

Referring now to FIG. 22, a diagram illustrating an
example process of a rule-based agent updating rule statistics
when rule processing has completed in an execution environ
ment is shown. As before, an agent 2218 starts its associated
rule engine 2222 to process its compiled rule set 2220. During
the course of execution, the rule engine 2222 may success
fully match part of the condition (left hand side) of a rule, may
match the condition of a rule and activate it, or may match and
activate and fire a rule (perform the consequences of the rule).
A rule engine may provide for collection of the statistics for

10

15

25

30

35

40

45

50

55

60

65

14
the phases of rule activity mentioned. Alternately, the agent
may integrate listener code to monitor these phases of rule
execution and collect the statistics as the rule engine executes.
A rule being fired may result in the rule asserting new data
into the working memory 2224 and/or the agent 2218 collect
ing more data and asserting that into the working memory
2224. Once an end goal terminates rule processing, or the
agent receives a move event, a termination event, a timeout or
Some other event, then the rule engine is halted. At this point,
the agent 2218 requests rule statistics from the rule engine
2222 or collects the statistics from the agent's rule engine
listener. These statistics may include, but are not limited to the
number of times a rule was fired, the number of times a rule
was activated, the number of times a goal in the condition of
a rule was matched, the number of times a part of the condi
tion of a rule was matched, or any combination of the above.
The statistics 2226 are then added to aggregate rule history
stored in the local rule repository 2216. These stored statistics
may include statistics for rules that are not available in the
local rule repository since an agent can carry rules with it as
it moves.
When the agent prepares to move to another execution

environment it dynamically determines to remove unneces
sary rules by consulting the rule history associated with some
or all of the rules in its current rule set in conjunction with the
indicative Subset of previously completed agent outcomes
that the agent carries. Referring now to FIG. 23, a diagram
illustrating an example process of a rule-based agent dynami
cally removing unnecessary rules as part of movement to
another execution environment is shown. An application
2318 requests that an agent 2326 in execution environment
2314 move to execution environment 2316. The agent 2326
requests a set of rules from the local rule repository 2322 that
are allowed to be carried to other platforms. The result is a
canonical rule set 2334. This rule set is then merged with the
set of rules 2320 that the agent 2326 carried with it to execu
tion environment 2314. The result is canonical rule set 2336.
At this point the agent consults the local rule repository

2322 to get the rule history 2330 of the rules in set 2336. The
agent 2326 then uses the rule history 2330 with its carried set
of previous agent outcomes to remove rules from rule set 116
that are unlikely to participate in a desired outcome. The
statistics are used in aggregate form. As an example consider
an agent that carries the results of 2318 previously executed
agents and their outcomes, 50 of which were desirable out
comes. The agent examines the metrics for a particular rule
named 'A' which shows that it was neveractivated. The agent
then removes rule 'A' from its agent carried rule set. As
another example consider rule “B” which has been activated
and fired in one-third of previous desirable outcomes but also
has been active and fired in nearly all negative outcomes. Rule
“B” remains in the agent carried rule set. Finally, a rule, “C”.
which never activates for any as yet recorded desired out
comes but has been active in almost all negative outcomes can
be considered a computational burden and removed from the
agent carried rule set. Although activation is a criterion above,
finer grained partial left-hand side matching statistics can be
used as well. Since rule removal requires an aggregate of
previous runs a threshold is provided so that no rule deletion
is permitted until a requisite number of outcomes has been
obtained.
Once the pruned rule set 2332 has been created, the agent

2326 encodes itself along with its pruned rule set 2332 into a
transferable form in execution environment 2314. The agent
2326 then transfers the encoded version of itself in execution
environment 2314 to an agent manager 2346 resident in the

US 7,904,404 B2
15

target execution environment 2316. The remainder of the
move process follows that of FIG. 5.

Survivability Rules
All agents have a lifespan; but that lifespan need not be

pre-determined if a set of rules around survivability of an
agent is put in place. These rules may be agent specific or
execution environment specific. They may be carried with the
agent or resident in a rule repository for the execution envi
ronment. As these rules are like any other declarative rules,
they may be any combination of the above according to the
teachings of this invention. In addition, these rules may be
used in conjunction with more typical Survivability mecha
nisms such as heartbeats between the application and the
agent.

Referring now to FIG. 24, a diagram illustrating an
example process of an agent using a set of Survival rules to
determine its lifespan is shown. Agent Survivability is con
trolled by the rules loaded in the local compiled rule set 2428.
As before, the local rule set may be comprised of rules Sup
plied or fetched from rule repository 2420 during construc
tion, rules carried from other visited execution environments
and/or execution environment specific rules retrieved from
rule repository 2426. Many sources of data that may be
asserted into the working memory and, combined with the
local rule set 2428, affect the agent's 2424 lifespan. Examples
include lifespan update events from application 2418, heart
beat events from application 2418, timer events from the
execution environment's timer system 2434, and even state
change events from the agent 2424 itself. As data is asserted
into the working memory, the rules engine guarantees that
applicable rules are fired. Any number of rules might result in
the agent 2424 taking actions that affect its survivability. This
includes death of the agent 2424 which is shown. When an
agent 104 dies it halts rule engine processing, records any
collected historical statistics for the local rule set and stores
these in the rule repository 2436.

Data Narrowing Rules
Agent may visit many execution environments each with

differing levels of network connectivity or an execution envi
ronment with multiple levels/types of network connectivity.
Given this, it is important that an agent take this into consid
eration when responding to application requests, sending
periodic reports, and determining how much data to carry
with it when moving. As per the teachings of this invention,
execution environment specific rules are an ideal method for
insuring the appropriate agent behavior. If the networking
capabilities of the execution environment are static, then rules
for this may be maintained in the rule repository on the
execution environment running the application that launched
the agent. In many cases though, the capabilities may be more
dynamic in which case the rules regarding network band
width are better kept on the remote execution environment.

Referring now to FIG. 25, a diagram illustrating an
example process of the of an agent using a set of data narrow
ing rules to determine how much data should be sent over the
network is shown. This diagram shows the same agent in three
different scenarios. As before, each agent is communicating
with an application 2532 that in this case is hosted on server
2530 which is connected to a high-speed data network, 2534.
In the first scenario, the agent 2514 has been constructed on or
moved to server execution environment 2512, which is con
nected to the high speed data network directly via a gigabit
ethernet link 2544. The agent 2514 utilized a rule-based sys
tem that is driven by the associated rule engine 2516. This
engine 2516 has been loaded with execution environment
specific rules about the current network bandwidth capabili
ties of the execution environment 2512. In this example the

5

10

15

25

30

35

40

45

50

55

60

65

16
agent 106 completes a task which will ultimately generate a
report back to the application 2532 on execution environment
2530. When that task completes, that event causes a rule to
fire in the engine 2516, which instructs the agent 2514 to send
a detailed report. In this case, a detailed report is appropriate
because a high bandwidth connection is available between the
agent 2514 and the application 2532.

In the second scenario, that same agent now labeled 114
has moved to a home computer 2518 which is connected to
the network via a DSL connection 2546. As before, the engine
2522 is loaded with the execution environment specific rules
regarding bandwidth available to the execution environment.
As the agent 2520 completes its task, the event causes a rule
to fire, which instructs agent 2520 to send a full report, which
contains less data than the detailed report described previ
ously. Note, that the agent 2520 is not compressing the same
data, but sending a different data-set back—a Subset of the
data to fit the bandwidth available.

In the final scenario, the agent, now labeled 2526 has
moved to the mobile device 2524. The mobile device is con
nected to the high speed data network via a relatively low
speed cellular data network 2536. As before, the agent 2526
completes its task which results in the rule engine 2528 firing
a rule. This firing causes the agent 2526 to dispatch a much
smaller summary report to the application 2532 in order to
accommodate the low bandwidth connection.

Methods, computer readable media and systems have been
shown and/or described in the above embodiments for mov
ing an agent that utilizes Supplied rules and rules resident in
an execution environment. Although the above descriptions
set forth embodiments, it will be understood that there is no
intent to limit the invention by such disclosure, but rather, it is
intended to cover all modifications and alternate implemen
tations falling within the spirit and scope of the invention. For
example, the present invention should not be limited to a
single agent, or to a particular programming language for the
execution environment. Furthermore, the association of agent
to execution environments is not limited to the topology
depicted. Lastly, the embodiments are intended to cover capa
bilities and concepts whether they be via a loosely couple set
of components or they be converged into one or more inte
grated components, devices, circuits, and/or Software pro
grams.

What is claimed is:
1. A computer-implemented method, comprising:
receiving an encoded agent in an execution environment,

the encoded agent being received from a different execu
tion environment, the encoded agent including an as
needed canonical rule set;

decoding the encoded agent to create a decoded agent;
compiling the as-needed canonical rule set;
searching to locate a rule engine;
creating a rule engine in response to a failure to locate the

rule engine;
Supplying a created or a found rule engine with a compiled

as-needed canonical rule set; and
requesting a working memory from the rule engine.
2. The computer-implemented method of claim 1, wherein

creating the rule engine comprises creating the rule engine
using the decoded agent.

3. The computer-implemented method of claim 1, wherein
receiving the encoded agent comprises receiving the encoded
agent using an agent manager residing in the execution envi
ronment that receives the encoded agent.

4. An article of manufacture including a computer-readable
medium having instructions stored thereon that, responsive to

US 7,904,404 B2
17

execution by a computing device, cause the computing device
to perform operations comprising:

receiving an encoded agent in an execution environment,
the encoded agent being received from a different execu
tion environment, the encoded agent including an as
needed canonical rule set;

decoding the encoded agent to create a decoded agent;
compiling the as-needed canonical rule set;
searching to locate a rule engine;
creating a rule engine in response to a failure to locate the

rule engine;
Supplying a created or found rule engine with a compiled

as-needed canonical rule set; and
requesting a working memory from the rule engine.
5. The article of manufacture of claim 4, wherein creating

the rule engine comprises creating the rule engine by the
decoded agent.

6. The article of manufacture of claim 4, wherein receiving
the encoded agent comprises receiving the encoded agent by
an agent manager residing in the execution environment that
receives the encoded agent.

7. An article of manufacture including a computer-readable
medium having instructions stored thereon that, responsive to
execution by a computing device, cause the computing device
to perform operations comprising:

moving an agent that utilizes a first as-needed canonical
rule set in a first execution environment embodied on a
first device to a second execution environment embod
ied on a second device, where the agent utilizes a second
as-needed canonical rule set, by at least:
discarding a rule in the first execution environment that

will not be needed in the second execution environ
ment,

retrieving an additional rule that will be needed in the
second execution environment; and

sending the agent including the additional rule from the
first execution environment to the second execution
environment.

8. The article of manufacture of claim 7, wherein a dis
carded rule is specific to a context of the first execution
environment.

9. The article of manufacture of claim 7, wherein a
retrieved additional rule is specific to a context of the second
execution environment.

10. The article of manufacture of claim 7, wherein the
operations further comprise discarding the first as-needed
canonical rule set in the first execution environment.

11. A system comprising:
a tangible computer-readable storage medium;
an agent, embodied on the tangible computer-readable

storage medium and configured to utilize a first
as-needed canonical rule set in a first execution environ
ment embodied on a first device, the agent further being
configured to, responsive to a request by an application
to move the agent to a second execution environment
embodied on a second device, utilize a second as-needed
canonical rule set by at least:
discarding a rule in the first execution environment that

will not be needed in the second execution environ
ment,

retrieving an additional rule that will be needed in the
second execution environment; and

sending the agent including the additional rule from the
first execution environment to the second execution
environment.

10

15

25

30

35

40

45

50

55

60

65

18
12. The system as recited in claim 11, wherein the second

as-needed canonical rule set is Supplied in the request to move
the agent.

13. The system as recited in claim 11, wherein the agent is
further configured to retrieve the second as-needed canonical
rule set from a rule repository based on goals of the agent and
destination execution environment.

14. A computer-implemented method, comprising:
moving an agent that utilizes a first as-needed canonical

rule set in a first execution environment embodied on a
first device to a second execution environment embod
ied on a second device by at least:
requesting a second as-needed canonical rule set based

on a goal and an execution environment of the agent;
requesting movement of the agent from the first execu

tion environment to the second execution environ
ment,

encoding the agent with the second as-needed canonical
rule set; and

sending an encoded agent with the second as-needed
canonical rule set from the first execution environ
ment to the second execution environment, wherein
the sending causes the encoded agent to be decoded in
the second execution environment.

15. The computer-implemented method as recited in claim
14, wherein the requesting the second as-needed canonical
rule set is performed by an application requesting the second
as-needed canonical rule set from a rule repository.

16. A computer-implemented method as recited in claim
15, wherein the rule repository is in a third execution envi
rOhment.

17. The computer-implemented method as recited in claim
14, further comprising Supplying the second as-needed
canonical rule set as part of the request for movement of the
agent.

18. The computer-implemented method as recited in claim
14, wherein the request includes a location of a rule repository
that can Supply the second as-needed canonical rule set.

19. The computer-implemented method as recited in claim
18, wherein the agent is configured to cause the second as
needed canonical rule set to be fetched from the rule reposi
tory when the agent arrives in the second execution environ
ment.

20. An article of manufacture including a computer-read
able medium having instructions stored thereon that, respon
sive to execution by a computing device, cause the computing
device to perform operations comprising:
moving an agent that utilizes a first as-needed canonical

rule set in a first execution environment to a second
execution environment where the agent utilizes a second
as-needed canonical rule set, by at least:
discarding the first as-needed canonical rule set;
retrieving the second as-needed canonical rule set;
encoding the agent including the second as-needed

canonical rule set;
sending an encoded agent with the second as-needed

canonical rule set to the second execution environ
ment; and

destructing an original version of the agent in the first
execution environment.

21. The article of manufacture of claim 20, wherein a
discarded rule is specific to a context of the first execution
environment.

22. The article of manufacture of claim 20, wherein the
second as-needed canonical rule set is retrieved from a move
request.

US 7,904,404 B2
19

23. The article of manufacture of claim 20, further com
prising compiling the second as-needed canonical rule set.

24. A computer-implemented method, comprising:
moving an agent that utilizes a first as-needed canonical

rule set in a first execution environment to a second
execution environment where the agent utilizes a second
as-needed canonical rule set, by at least:
discarding the first as-needed canonical rule set;
retrieving the second as-needed canonical rule set;
encoding the agent including the second as-needed

canonical rule set;
sending an encoded agent with the second as-needed

canonical rule set to the second execution environ
ment; and

10

20
destructing an original version of the agent in the first

execution environment.
25. The computer-implemented method as recited in claim

24, further comprising retrieving the second as-needed
canonical rule set from a rule repository given goals of the
agent and destination execution environment.

26. The computer-implemented method as recited in claim
24, further comprising compiling the second as-needed
canonical rule set and Supplying a compiled as-needed
canonical rule set to a rule engine for execution.

27. The computer-implemented method as recited in claim
24, further comprising Supplying a location of a rule reposi
tory that can Supply the second as-needed canonical rule set as
part of a request for movement of the agent.

k k k k k

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,904,404 B2 Page 1 of 1
APPLICATIONNO. : 12/647964
DATED : March 8, 2011
INVENTOR(S) : Patoskie

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Page 4, item (56), under “Other Publications, in Column 1, Line 50, delete “Universit Collese and
insert -- University College --.

Page 4, item (56), under “Other Publications, in Column 2, Line 16, delete “Framw and
insert -- Frame --.

Page 4, item (56), under “Other Publications, in Column 2, Line 46, delete “Heterogenous and
insert -- Heterogeneous --.

Page 4, item (56), under “Other Publications, in Column 2, Line 46, delete “Teschnischen' and
insert -- Technischen --.

Column 16, line 50, in Claim 1, delete “set; and insert -- set adapted from the different execution
environment for the execution environment. --.

Column 17, line 6, in Claim 4, delete “set; and insert -- set adapted from the different execution
environment for the execution environment. --.

Column 18, line 30, in Claim 16, delete “A” and insert -- The --.

Signed and Sealed this
Ninth Day of August, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

