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point Kalman filter (SPKF) or sequential

Monte Carlo (SMC) algorithm with
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and a plethysmography model to remove
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pulse oximeter sensor output and measure
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TITLE
Processing Physiological Sensor Data Using a Physiological Model Combined with a

Probabilistic Processor

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a PCT of U.S. Application Serial No. 61/171,802, filed 22 April
2009 and U.S. Application Serial No. 12/640,278, filed 17 December 2009.

BACKGROUND

Field of the Invention

The present invention relates generally to apparatus and methods for processing
physiological sensor data and specifically to a pulse oximeter comprising a data
processing system. The data processing system improves the accuracy of blood
oxygen saturation and heart rate measurements made by the pulse oximeter and
can be used to estimate stoke volume, cardiac output, and other cardiovascular and

respiratory parameters.

Description of Related Art

Biomedical monitoring devices such as pulse oximeters, glucose sensors,
electrocardiograms, capnometers, fetal monitors, electromyograms,
electroencephalograms, and ultrasounds are sensitive to noise and artifacts. Typical
sources of noise and artifacts include baseline wander, electrode-motion artifacts,
physiological artifacts, high-frequency noise, and external interference. Some
artifacts can resemble real processes, such as ectopic beats, and cannot be

removed reliably by simple filters.

The influence of multiple sources of contaminating signals often overlaps the
frequency of the signal of interest, making it difficult, if not impossible, to apply
conventional filtering. Severe artifacts such as occasional signal dropouts due to
sensor movement or large periodic artifacts are also difficult to filter in real time.
Biological sensor hardware can be equipped with a computer comprising software for

post-processing data and reducing or rejecting noise and artifacts. Current filtering
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techniques typically use some knowledge of the expected frequencies of interest
where the sought-after physiological information should be found, and do not contain
a mathematical model describing either the physiological processes that are

measured or the physical processes that measure the signal.

Adaptive filtering has been used to attenuate artifacts in pulse oximeter signals
corrupted with overlapping frequency noise bands by estimating the magnitude of
noise caused by patient motion and other artifacts, and canceling its contribution
from pulse oximeter signals during patient movement. Such a time correlation
method relies on a series of assumptions and approximations to the expected signal,
noise, and artifact spectra, which compromises accuracy, reliability and general

applicability.

Biomedical filtering techniques based on Kalman and extended Kalman techniques
offer advantages over conventional methods and work well for filtering linear systems
or systems with small nonlinearities and Gaussian noise. These filters, however, are
not adequate for filtering highly nonlinear systems and non-Gaussian/non-stationary
noise. Therefore, obtaining reliable biomedical signals continue to present problems,
particularly when measurements are made in mobile, ambulatory and physically

active patients.

Existing data processing techniques, including adaptive noise cancellation filters are
unable to extract information that is hidden or embedded in biomedical signals and

may also discard some potentially valuable information.

BRIEF SUMMARY OF THE INVENTION

The present invention fills a need in the art for biomedical monitoring devices
capable of accurately and reliably measuring physiological parameters made in
mobile, ambulatory and physically active patients. The present invention also
provides for the processing of data measured by a biomedical monitoring device to
extract additional information from a biomedical sensor signal to measure additional

physiological paramaters. For instance, pulse oximeters are currently used to
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measure blood oxygen saturation and heart rate. A pulse oximetry signal, however,
carries additional information that is extract using the present invention to estimate
additional physiological parameters including left-ventricular stroke volume, aortic

blood pressure, and systemic blood pressure.

One embodiment described herein is a pulse oximeter system comprising a data
processor configured to perform a method that combines a sigma point Kalman filter
(SPKF) or sequential Monte Carlo (SMC) algorithm with Bayesian statistics and a
mathematical model comprising a cardiovascular model and a plethysmography
model to remove contaminating noise and artifacts from the pulse oximeter sensor
output to measure blood oxygen saturation, heart rate, left-ventricular stroke volume,

aortic blood pressure, systemic blood pressure, and total blood volume.

Another embodiment is an electrocardiograph comprising a data processor
performing a method combining a SPKF or SMC algorithm with Bayesian statistics
and a mathematical model comprising a cardiovascular model including heart
electrodynamics, electronic/contractile wave propagation and a model to remove
contaminating noise and artifacts from electrode leads and sensor output to produce

electrocardiograms.

The computational model includes variable state parameter output data that
corresponds to a physiological parameter being measured to mathematically
represent a current physiological state for a subject. The physiological parameter
being measured is, most preferably, directly represented by a variable state
parameter such that the value for the state parameter at time t is equal to an
estimated value for the physiological parameter at time t. The estimated value of the
physiological parameter being measured (estimated) may also correspond directly to
(i.e. be equal to) the value of the model parameter at time t or the estimated value for
the physiological parameter may be calculated from a state parameter, a model

parameter, or a combination of one or more state and/or model parameters.
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SPKF or SMC is used to generate a reference signal in the form of a first probability
distribution from the model’s current (time = #) physiological state. The reference
signal probability distribution and a probability distribution generated from a
measured signal from a sensor at a subsequent time (time = #+n) are convoluted
using Bayesian statistics to estimate the true value of the measured physiological
parameter at time = t+n. The probability distribution function may be discrete or
continuous, and may identify the probability of each value of an unidentified random
variable (discrete), or the probability of the value falling within a particular interval

(continuous).

BRIEF DESCRIPTION OF THE DRAWINGS:

FIG. 1 is a flow chart showing the path of information flow from a biomedical sensor
to a data a processor and on to an output display according to one embodiment of
the invention.

FIG. 2 is a flow chart showing inputs, outputs, and conceptual division of model parts
for a dynamic state-space model (DSSM).

FIG. 3 is a block diagram showing mathematical representations of inputs, output
and conceptual divisions of the DSSM shown in FIG. 2.

FIG. 4 is a mathematical representation of the process of dual estimation.

FIG. 5 is a schematic diagram showing the process steps involved in a dual
estimation process.

FIG. 6 is a mathematical representation of the process of joint estimation.

FIG. 7 is a schematic diagram showing the process steps involved in a joint
estimation process.

FIG. 8 is a flow chart showing the components of a DSSM used for pulse oximetry
data processing.

FIG. 9 is a flow chart showing examples of parameter inputs and outputs for a DSSM
used for pulse oximetry data processing.

FIG. 10 is a flow chart showing the components of a DSSM used for
electrocardiography data processing.

FIG. 11 is a chart showing input sensor data and processed output data from a data

processor configured to process pulse oximetry data.
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FIG. 12 is a chart showing input sensor data and processed output data from a data
processor configured to process pulse oximetry data under a low blood perfusion
condition.

FIG. 13 is a chart showing noisy non-stationary ECG sensor data input and
processed heart rate and ECG output for a data processor configured to process
ECG sensor data.

FIG. 14 is a chart showing input ECG sensor data and comparing output data from a
data processor according to the present invention with output data generating using

a Savitzky-Golay FIR data processing algorithm.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 shows an example of a top-level schematic for data processing according to
the present invention. A biomedical sensor, usually associated with a biomedical
monitoring device, normally produces a raw analog output signal that is converted to
a raw digital output signal. The analog to digital conversion may also be
accompanied by signal filtering or conditioning. Digital signals are received by a data
processor configured to process the digital data and produce a processed (or clean)
signal comprising an estimated true value for the physiological parameter being
measured. The processed signal is then displayed, for example, in the form of an
electronic, hard copy, audible, visual, and/or tactile output. The output may be used,
for example, by a user to monitor a patient, by a user for self monitoring, or by a user

as biofeedback process.

The data processor shown in FIG. 1 is configured to receive, as input data, digital
signals from one or more biomedical sensors, and enter the data into a dynamic
state-space model (DSSM) integrated with a processor engine. The integrated
DSSM/Processor engine produces transformed output data that corresponds to a
physiological parameter measured by the biomedical sensor(s), in the form of an
estimated true value for the physiological parameter. The processor engine may
operate in a dual estimation mode (a dual estimation engine) or in a joint estimation
mode (a join estimation engine). The output may include additional outputs

corresponding to physiological parameters not measured by the physiological
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sensor(s), diagnostic information, and a confidence interval representing the
probability that the output estimated value(s) for the physiological parameter(s) is
accurate. The data transformation process performed by the data processor may be
used to remove artifacts from the input data to produce output data having higher
accuracy than the input data and/or to extract information from the input data to
generate output data estimating the values for physiological parameters that are not

otherwise measured or reported using data from the sensor(s).

Mathematical and Computational Models

A mathematical model or a computer model, as used herein, involves the use of
dependent state parameters and independent, variable, or constant model
parameters in a mathematical representation of physiological processes that give
rise to a physiological parameter being measured and processes through which

sensor data is detected.

A mathematical model may include model and/or state parameters that correspond
directly to physiological parameters including vital signs such as oxygen saturation of
blood (SpOy), heart rate (HR), respiratory rate (RR), and blood pressure (BP) that
can be directly measured; physiological parameters not directly measured such as
total blood volume (TBV), left-ventricular stroke volume (SV), vasomotor tone (VT),
autonomous nervous system (ANS) tone, and stroke volume (SV); and hemoglobin-
bound complexes, concentrations of metabolic intermediates, and concentrations of

drugs present in one or more tissues or organs.

A mathematical model may also use mathematical representations of physiological
observations that do not correspond directly to any physiological process, such as
mathematical representations of signals obtained from sensor data or empirically

fitting a mathematical equation to data collected from a physiological source.

While the scope of a mathematical model used in the context of the present invention
cannot possibly encompass every single process of human physiology, it should

have the capacity to interpret the measured observable(s). For instance, if the intent
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is to process electrocardiography (ECG) signals, a model describing the generation

and propagation of electrical impulses in the heart should be included.

The fusion of two or more biomedical signals follows the same principle. For
instance, if the intent is to measure blood pressure waves and electrocardiogram
signals simultaneously, the use of a heart model describing both the electrical and
mechanical aspects of the organ should be used. Initially, the model may also
accept manual data input as a complement to data from sensors. Nonlimiting
examples of manually entered data include food consumption over time vital signs,

gender, age, weight, and height.

Non-physiological models may be included in and/or coupled to the DSSM in cases
where non-biomedical signals are measured. For instance, one may use non-
biomedical measurements to enhance or complement biomedical measurements. A
non-limiting example is the use of accelerometer data to enhance motion artifact
rejection in biomedical measurements. In order to accomplish this, the physiological
model is extended to describe both measurements, which may include, in this
example, cardiovascular circulation at rest, at different body postures (standing,

supine, etc), and in motion.

Dynamic State-Space Model

FIG. 2 and FIG. 3 show schematics of a dynamic state-space model (DSSM) used in
the processing of data according to the present invention. The DSSM comprises a
process model F that mathematically represents physiological processes involved in
generating one or more physiological parameters measured by a biomedical sensor
and describes the state of the subject over time in terms of state parameters. This
mathematical model optimally includes mathematical representations accounting for
process noise such as physiologically caused artifacts that may cause the sensor to
produce a digital output that does not produce an accurate measurement for the
physiological parameter being sensed. The DSSM also comprises an observational
model H that mathematically represents processes involved in collecting sensor data

measured by the biomedical sensor. This mathematical model optimally includes
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mathematical representations accounting for observation noise produced by the
sensor apparatus that may cause the sensor to produce a digital output that does not
produce an accurate measurement for a physiological parameter being sensed.

Noise terms in the mathematical models are not required to be additive.

While the process and observational mathematical models may be conceptualized
as separate models, they are normally integrated into a single mathematical model
that describes processes that produce a physiological parameter and processes
involved in sensing the physiological parameter. That model, in turn, is integrated
with a processing engine within an executable program stored in a data processor
that is configured to receive digital data from one or more sensors and to output data

to a display or other output formats.

FIG. 3 provides mathematical descriptions of the inputs and outputs corresponding to
FIG. 2. Initially, values for state parameters, preferably in the form of a state vector
Xy, are received by the DSSM together with input model parameters Wy. Process
noise v, and observation noise n, are also received by the DSSM, which updates the
state parameter vector and model parameter vector and produces an output
observation vector y.. Once the model is initialized, the updated state vector X.r,
updated model parameters Wy, and time-specific sensor data are used as input for

each calculation for subsequent iterations, or time steps.

The DSSM is integrated in a dual estimation processing engine or a joint estimation
processing engine. The most favored embodiment makes use of a DSSM built into a
Sigma point Kalman filter (SPKF) or Sequential Monte Carlo (SMC) processing
engine. Sigma point Kalman filter (SPKF), as used herein, refers to the collective
name used for derivativeless Kalman filters that employ the deterministic sampling
based sigma point approach to calculate approximations of the optimal terms of the
Gaussian approximate linear Bayesian update rule, including unscented, central

difference, square-root unscented, and square-root central difference Kalman filters.
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SMC and SPKF processing engines operate on a general nonlinear DSSM having
the form:
Xk = f (X 1,V 1;W) (1)

Vi = h(Xk ,n. ;W) (2)

A hidden system state, Xk, propagates over time index, k, according to the system
model, f. The process noise is Vk1, and W is the vector of model parameters.
Observations, yk, about the hidden state are given by the observation model h and
ng is the measurement noise. When W is fixed, only state estimation is required and
either SMC or SPKF can be used to estimate the hidden states.

Unsupervised Machine Learning
Unsupervised machine learning, sometimes referred to as system identification or
parameter estimation, involves determining the nonlinear mapping:

Vi = 9(Xk ; W) (3)
where xK is the input, yk is the output, and the nonlinear map g(.) is parameterized
by the model parameter vector W. The nonlinear map, for example, may be a feed-
forward neural network, recurrent neural network, expectation maximization
algorithm, or enhanced Kalman filter algorithm. Learning corresponds to estimating
W in some optimal fashion. In the preferred embodiment, SPKF or SMC is used for
updating parameter estimates. One way to accomplish this is to write a new state-
space representation

Wie1 = W + g (4)

dk = g(Xk ; Wi) + € (5)
where wy correspond to a stationary process with identity state transition matrix,
driven by process noise r.. The desired output dix corresponds to a nonlinear

observation on wy.

Dual Estimation Engine for Estimation of State and Model Parameters
The state and parameter estimation steps may be coupled in an iterative dual-
estimation mode as shown in FIGs. 4 and 5. This formulation for a state estimator

operates on an adaptive DSSM. In the dual estimation process, states xx and
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parameters W are estimated sequentially inside a loop. When used in a data
processor for a pulse oximeter, the current state xx from pulse oximeter sensor input
yk. States xx, and parameters W are estimated sequentially inside a loop.
Parameter estimates are passed from the previous iteration to state estimation for
the current iteration. Several different implementations or variants of the SMC and
SPKF methods exist, including the sigma-point, Gaussian-sum, and square-root

forms. The particular choice may be influenced by the application.

The current estimate of the parameters Wy is used in the state estimator as a given
(known) input, and likewise the current estimate of the state xx is used in the
parameter estimator. This results in a step-wise stochastic optimization within the

combined state-parameter space.

The flow chart shown FIG. 5 provides a summary of the steps involved in dual
estimation process. Initial probability distributions for state and model parameters
are provided to the DSSM to produce an initial probability distribution function (first
PDF or prior PDF) representing the initial state. Data for a time #; from a sensor
(new measurement) and the initial PDF are combined using a Bayesian statistical
process to generate a second, posterior PDF that represents the state at the time of
the measurement for the first sensor data. Expectation values for the second PDF
are calculated, which may represent the most likely true value. Expectation values
may also represent, for instance, the confidence interval or any statistical measure of
uncertainty associated with the value. Based upon the expectation values, usually
but not necessarily the values for state parameters having the highest probability of
being correct, updated state parameters for time t; are combined with sensor data for
time t to update the model parameters for time & in the DSSM by the process shown
in FIG. 4. The expectation values are also fed into the DSSM as the state, in the
form of a vector of state parameters (new PDF) as shown in FIG. 4. Once the state
parameters and model parameters for the DSSM are updated to time t, the process
is repeated with timed data for time t to produce updated parameters for time £ and

so forth. The time interval between time steps is usually constant such that time
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points may be described as t, t+n, 4+2n, etc. If the time interval is not constant, then

the time may be described using two or more time intervals as t, t+n, t+n+m, etc.

Joint Estimation Engine for Estimation of State and Model Parameters

The state and parameter estimation steps may also be performed in a simultaneous

joint-estimation mode as shown in FIGs. 6 and 7. The calculated variables for the

state parameters and model parameters of the physiological model are concatenated

into a single higher-dimensional joint state vector:

_ T LT i

X = [,x&_ W, ] ©)

where X, are the state parameters and wi the model parameters. The joint state

space is used to produce simultaneous estimates of the states and parameters.

The flow chart shown FIG. 7 provides a summary of the steps involved in dual
estimation process. The process is similar to that shown for dual estimation in FIG.
5, with the exception that model and state parameters are not separated into two
separate vectors, but are represented together in a single vector. The process is
initiated by entering a vector representing initial state and model parameter value
distributions into the DSSM and producing an initial first PDF. The first PDF is
combined with sensor data (new measurement) for time t; in a Bayesian statistical
process to generate a second, posterior PDF that represents the state and model
parameters at time t;. Expectation values for the second PDF are calculated, which
may represent the most likely true value. Expectation values may also represent, for
instance, the confidence interval or any statistical measure of uncertainty associated
with the value. Based upon the expectation values, updated state and model
parameters for time # are entered into the DSSM by the process shown in FIG. 6.
Once the state parameters and model parameters for the DSSM are updated to time
t, the process is repeated with timed data for time £ to produce updated parameters

for time & and so forth.

Compared to dual estimation, both state and parameters are concatenated into a

single vector that is transformed by the dynamic state-space model. Hence, no
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machine learning step is necessary in order to update model parameters. Joint
estimation may be performed using a sequential Monte Carlo method or sigma-point
Kalman method. These may take the form of unscented, central difference, square-
root unscented, and square-root central difference forms. The optimal method will

depend on the particular application.

Sequential Monte Carlo Methods

SMC methods estimate the probability distributions of all the model unknowns by
propagating a large number of samples called probability particles in accordance
with the system models (typically nonlinear, non-Gaussian, non-stationary) and the
rules of probability. Artifacts are equivalent to noise with short-lived probability
distributions, also called non-stationary distributions. The number of simulated
particles scales linearly with computational power, with =100 particles being
reasonable for real time processing with presently available processors. The system
model describes pertinent physiology and the processor engine uses the system
model as a “template” from which to calculate, using Bayesian statistics, posterior
probability distribution functions (processed data). From this, the expectation values
(e.g. the mean) and confidence intervals can be estimated FIG. 7. The combination
of SMC with Bayesian Statistics to calculate posterior probability distribution

functions is often referred to as a Particle Filter.

SMC process nonlinear and non-Gaussian problems by discretizing the posterior into
weighted samples, or probability particles, and evolving them using Monte Carlo
simulation. For discretization, Monte Carlo simulation uses weighted particles to

map integrals to discrete sums:
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where the random samples {x(/); i = 1, 2,...,N}, are drawn from p(xly1x) and &(.) is

the Dirac delta function. Expectations of the form
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can be approximated by the estimate:

. (9)
if the distribution has finite support. As N approaches infinity, the estimate

converges to the true expectation.

The optimal Bayesian solution can be outlined by the following recursive algorithm.
Suppose the required PDF p(x,_;ly;..;) at time k-1 is available. In the prediction
stage, the prior PDF at time k is obtained using the DSSM via the Chapman-
Kolmogorov equation:

Py, ) = [ PO, e[y, ), o
The DSSM model describing the state evolution p(x,|x,_;) is defined by the system
equation (1) and the known statistics of v,_;. At time step kK a measurement y,
becomes available, and this may be used to update the prior (updated stage) via

Bayes’ rule:

yl:k71>
yl:k71>

Py, [x)p(x,
P(y,

p(x,|y,,) =

where the normalizing constant

p<yk|y1:k—1> = fp<yk|xk>p<xk|y1:kfl>dxk (12)

depends on the likelihood function p(y.|x,) defined by the measurement model

(equation 2) and the known statistics of n,.

It is not possible to sample directly from the posterior density function so importance
sampling from a known proposal distribution T(xoxly1x) is used. One may use sigma-
point Kalman filters, for example, to generate the proposal.

The known distribution is introduced into Equation 5 to yield:

(13)
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where the variables wi(xo«) are unnormalized importance weights, which are written

as Wk(Xo;k)= Wk

(15)

where

(16)

Importance sampling is made sequential by reiterating the Markov 1% order
assumption, resulting in the assumption that the current state is not dependent on

future observations:

#x } X (18)

. &
Y N 3
X R TR
SRRy (20)
Y
i
o

Xy Y . i
Bl BRI F e

which is called Sequential Importance Sampling (SIS). SIS suffers from degeneracy

so that, over a few iterations, all but one of the importance weights will be zero,

effectively removing a large number of samples. To remedy this, samples with low
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importance weights may be eliminated while high importance samples may be

multiplied. One way to accomplish this is Sampling-Importance Resampling (SIR),

which involves mapping the Dirac random measure

A pseudo-code for a generic SMC (also called bootstrap filter or condensation

i,

: =%
o AT
= Yo, V)

algorithm) can be written as:

1. Importance sampling step. For i=1,...,N, do:

i) sample

ii) evaluate

iil) normalize

2. Importance resampling step

88" to obtain N

i) eliminate or multiply samples @™ according to weights
S
random samples approximately distributed according to :=\§:~?

NS

i) Fori=1,..., N, set i

3. Output

i) any expectation, for instance:

SPKF may be used to approximate probability distributions. Assuming that x has a

mean X ovariance Py, and dimension L, a set of 2L+1 weighted sigma-points,

8 = 5\;;:‘{ }, is chosen according to:

3
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where his a scaling parameter. Each sigma-point is propagated through the DSSM
to yield the posterior sigma-point set, Y;:

Yo BEXN, f= 0020 (24)
From this, the posterior statistics are calculated using a procedure resembling the

linear Kalman filter. For instance, for the unscented Kalman filter case, a SPKF

variant, the time-update equations are:

s ST e X

X3 = fHX] X .1

R A o e v N F &3 B} ¥ X
oy > ey e A

3 (25)

(26)

(31)

(32)
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where x, v and n superscripts denote the state, process noise and measurement

noise dimensions, respectively.

The mathematical structure for sequential Monte Carlo and SPKF represent two
examples of a family of probabilistic inference methods exploiting Monte Carlo
simulation and the sigma point transform, respectively, in conjunction with a

Bayesian statistical process.

SPKF are generally inferior to SMC but are computationally cheaper. Like SMC,
SPKF evolve the state using the full nonlinear DSSM, but represent probability
distributions using a sigma-point set. This is a deterministic step that replaces the
stochastic Monte Carlo step in the SMC. As a result, SPKF lose accuracy when
posterior distributions depart heavily from the Gaussian form, such as with bimodal
or heavily-tailed distributions, or with strong nonstationary distributions such as those
caused by motion artifacts in pulse oximeters. For these cases SMC are more

suitable.

SPKF vyields higher-order accuracy than the extended Kalman filter (EKF) and its
related variants with equal algorithm complexity, O (L?). SPKF returns 2" order
accuracy for nonlinear and non-Gaussian problems, and 3 order for Gaussian

1St

problems. EKF has only 1 order accuracy for nonlinear problems. Both EKF and
SPKF approximate state distributions with Gaussian random variables (GRV).
However, the EKF propagates the GRV using a single measure (usually the mean)
and the 1% order Taylor expansion of the nonlinear system. The SPKF, on the other
hand, decomposes the GRV into distribution moments (sigma points) and
propagates those using the unmodified nonlinear system. SPKF implementation is
simpler than EKF since it is derivativeless. That is, it uses the unmodified DSSM

form, and therefore does not require lengthy Jacobian derivations.
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The data processing method is also capable of prediction because the method can
operate faster than real time measurements. At any given time during data
processing, the measurement PDF, obtained either from SPKF or SMC, embodies all
available statistical information up to that point in time. It is therefore possible to
march the system model forwards in time, for instance, using the same sequential
Monte Carlo method, to obtain deterministic or stochastic simulations of future signal
trajectories. In this way, the future health status (physiological state) of a patient can

be predicted with attached probabilities indicating the confidence of each prediction.

Noise Adaptation

The data processing method may benefit from a noise adaptation method if timed
sensor data contains noise and/or artifact that changes its spectral qualities over
time. That is, has a non-stationary probability distribution function. Here, a known
algorithm such as the Robins-Monro or Annealing methods may be added to the
data processing method in order to adapt the probability distribution functions of
noise terms (stochastic terms) in the DSSM according to changing noise and artifact

present in sensor data.

Output

In general, the output may include estimates of the true measured signals (i.e.
processed data), and estimates of values for one or more physiological parameters
measured by one or more sensors from which data was received, and estimates of
values for one or more physiological parameters not measured by the sensors from
which data was received (data extraction). A state parameter estimate is the
processed data from the physiological sensor. Both noise and artifacts can be
attenuated or rejected even though they may have very distinct probability
distribution functions and may mimic the real signal. A model parameter estimate
may be also used to produce a physiological parameter. For example, an estimate
of total blood volume may be used to diagnose hemorrhage or hypovolemia; an
estimate of tissue oxygen saturation may indicate poor tissue perfusion and/or

hypoxia; estimates of glucose uptake in several tissues may differentiate between
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diabetes mellitus types and severities; and estimates of carotid artery radius may be

indicative of carotid artery stenosis.

EXAMPLES:

Pulse Oximeter with Probabilistic Data Processing

FIG. 8 shows the components of a DSSM suitable for processing data from a pulse
oximeter model, including components required to describe processes occurring in a
subject. FIG. 9 illustrates the DSSM broken down into process and observation
models, and including all input and output variables. Heart rate (HR), stroke volume
(SV) and whole-blood oxygen saturation (SpO,) are estimated from input noisy red
and infrared intensity ratios (R). Radial (Pw) and aortic (Pao) pressures are also

available as state estimates.

In this example, the DSSM comprises the following function to represent cardiac

output:

ey &
TS,

(31)
wherein cardiac output Qco(t), is expressed as a function of heart rate (HR) and
stroke volume (SV) and where Qco = (HR x SV)/60. The cardiac output function
pumps blood into a Windkessel 3-element model of the vascular system including

two state variables: aortic pressure, Pao, and radial (Windkessel) pressure, Pw:

0 — TERE o ™ %N kg b, 58§
8o HR + 8 Q.. -8 &P
A Sy oEy AR 2R we ¥} W

Rp and Zo are the peripheral resistance and characteristic aortic impedance,
respectively. The sum of these two terms is the total peripheral resistance due to
viscous (Poiseuille-like) dissipation:

where p is blood density. The elastic component due to vessel compliance is a

nonlinear function including thoracic aortic cross-sectional area, A:
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where Amax, P, and P; are fitting constants correlated with age and gender:
A == (BA2 1 Kpenderiem® (36)
NS &8 o
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The time-varying Windkessel compliance, Cw, and the aortic compliance per unit

length, Cl, are:

(39)

where /is the aortic effective length. The periphefal resistance is defined as the ratio
of average pressure to average flow. A set-point pressure, Pset, and the

instantaneous flow:

¥
o '?}sc
f%.‘!\ = e RN
F{HR-SVYED (40)

are used to provide compensation autonomic nervous system responses. The value
for Pset is adjusted manually to obtain 120 over 75 mmHg for a healthy individual at
rest. The compliance of blood vessels changes the interactions between light and
tissues with pulse. This is accounted for using a homogenous

photon diffusion theory for a reflectance or transmittance pulse oximeter

configuration. For the reflectance case:

A N A
§§ “““ L i SR s W= w g . ‘{(\ Q&?& ﬁt\ ‘3\\&; A ¥ X
A =T (41)

for each wavelength. In this example, the red and infrared bands are centered at ~
660 nm and ~ 880 nm. | denotes the detected intensities: total reflected (no
subscript), and the pulsating (ac) and background (dc) components. Va is the
arterial blood volume, which changes as the cross-sectional area of illuminated blood

vessels, AA,, changes as:
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where r is the source-detector distance. The tissue scattering coefficient, £s’, is
assumed constant but the arterial absorption coefficient, Za®", depends on blood

oxygen saturation, SpO.:

‘ " (43)
which is the Beer-Lambert absorption coefficient, with hematocrit, H, and red blood
cell volume, vi. The optical absorption cross sections for red blood cells containing

100%

totally oxygenated (HbO,) and totally deoxygenated (Hb) hemoglobin are o, and

0", respectively.

The function K(a,d,r) contains, along with the scattering coefficient, the wavelength,
sensor geometry and oxygen saturation dependencies that alter the

effective optical pathlengths:

(44)

o \§_.\.«' ».§ o G}\‘. (45)
where 2, and Zs are whole-tissue absorption and scattering coefficients, respectively,

which are calculated from Mie Theory.

Red and infrared K values as a function of SpO, may be represented by two linear
fits:

Ko 403 8p0y, ~1.17 (46)

Ko~ 0102800, - 0753 (47)

in mm®. The overbar denotes the linear fit of the original function. The pulsatile

behavior of AAw, which couples optical detection with the cardiovascular system

model, is:
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with Py 0=(1/3)Py and P, 1=(1/3)P; to account for the poorer compliance of arterioles
and capillaries relative to the thoracic aorta. Third and fourth state variables, the red

and infrared reflected intensity ratios, R=lac/ldc, are:

R =cI K INAA +R, 49)

RN

[k

(50)
Here, v are Gaussian-distributed process noises intended to capture the baseline
wander of the two channels. The constant ¢ subsumes all factors common to both
wavelengths and is treated as a calibration constant. The observation model adds

Gaussian-distributed n0|ses n. to R and Ri:
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A calibration constant ¢ was used to match the variance of the real lac/Idc signal with
the variance of the DSSM-generated signal for each wavelength. After calibration,
the age and gender of the patient was entered. Estimates for the means and
covariances of both state and parameter PDFs were entered. FIG. 11 plots estimates
for a 15 s stretch of data. Photoplethysmographic waveforms (A) were used to
extract heart rate (B), left-ventricular stroke volume (C), cardiac output (D), blood
oxygen saturation (E), and aortic and systemic (radial) pressure waveforms (F).
Results of processing pulse oximetry at low blood perfusion are shown in FIG. 12.
Low signal-to-noise photoplethysmographic waveforms (A) were used to extract
heart rate (B), left-ventricular stroke volume (C), blood oxygen saturation (D), and

aortic and systemic (radial) pressure waveforms (E).

Electrocardiograph with Probabilistic Data Processing
FIG. 10 is a schematic of a dynamic state-space model suitable for processing

electrocardiograph data, including components required to describe the processes
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occurring in a subject. The combination of SPKF or SMC in state, joint or dual
estimation modes can be used to filter electrocardiography (ECG) data. Any
physiology model adequately describing the ECG signal can be used, as well as any
model of noise and artifact sources interfering or contaminating the signal. One non-
limiting example of such a model is the ECG signal generator proposed by McSharry
(IEEE Transactions on Biomedical Engineering, 2003. 50(3):289-294). Briefly, this
model uses a sum of Gaussians with amplitude, center and standard deviation,
respectively, for each wave (P, Q, R, S, T-, T+15 ) in an ECG. The observation
model comprises the state plus additive Gaussian noise, but more realistic pink noise

or any other noise distributions can be used.

FIG. 13 shows the results of processing a noisy non-stationary ECG signal. Heart
rate oscillations representative of normal respiratory sinus arrhythmia are present in
the ECG. The processor accomplishes accurate, simultaneous estimation of the true
ECG signal and heart rate that follows closely the true values. The performance of
the processor in a noise and artifact-corrupted signal is shown in FIG. 14. A clean
ECG signal representing one heart beat (truth) was contaminated with additive noise
and an artifact in the form of a plateau at R and S peaks (beginning at time = 10 s).
Estimates by the processor remain close to the true signal despite the noise and

artifact.

While a specific DSSMs and input and output parameters are provided for the
purpose of describing the present method, the present invention is not limited to the
DSSMs, sensors, biological monitoring devices, inputs, outputs, except as defined by

the following claims.
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CLAIMS

1. A method for processing sensor data from a biomedical monitoring device that
measures a physiological parameter of a living subject to obtain an estimated value
for the physiological parameter, said method comprising the steps of:

a) entering state parameters for a time t and model parameters for a time t
into a dynamic state-space model to produce a first probability distribution function
vector comprising state parameters for time t+n;

b) using the first probability distribution function vector and timed data
obtained for time t+n from the sensor in a Bayesian statistical process to produce a
second probability distribution function vector for state parameters for time #+n;

c) calculating probabilistic expectation values for the state parameters for time
t+n from the second probability distribution function;

d) calculating updated model parameters for time t+n+m from the second
probability distribution function vector for state parameters for time t+n and timed
data obtained for time t+n from the sensor in an unsupervised machine learning
operation; and

e) determining an estimated value for the physiological parameter for time t+n
from probabilistic expectation values from the state and/or model parameters;

wherein:

the dynamic state-space model mathematically represents physiological
processes that produce the measured physiological parameter and physical
processes involved in measuring the physiological parameter, to produce a time
dependent state representing a time dependent physiological state of the subject;

the state parameters for a time t entered into the dynamic state-space model
in step a) are in the form of a state parameter probability distribution function
produced from a sampling of the second probability distribution function calculated in
step b) for an immediately preceding time t-n’;

the model parameters for a time t entered into the dynamic state-space model
in step a) are in the form of a model parameter probability distribution function
produced from an unsupervised machine learning operation on data from the sensor

for time t with the second probability distribution function vector for state parameters
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in step b) for an immediately preceding time t-n’; and n, m, and n’ are time intervals

that may be the same of different.

2. The method of claim 1, further comprising the step of reporting the estimated
value for the physiological parameter in a form that is visually, audibly, or tactilely

comprehensible by a user.

3. The method of claim 1, wherein a state parameter or a model parameter of
the dynamic state-space model corresponds directly to the estimated value for the

measured physiological parameter.

4, The method of claim 1, wherein the estimated value for the measured
physiological parameter determined in step (e) is performed by calculating the
estimated value from a state parameter and/or a model parameter of the

dynamic state-space model.

5. The method of claim 1, wherein generating the first probability distribution is

performed using a Sequential Monte Carlo or Sigma Point Kalman Filter method.

6. The method of claim 5, wherein the Sigma Point Kalman Filter method is
selected from the group consisting of unscented Kalman Filter, central difference
Kalman Filter, square-root unscented Kalman Filter, square-root central difference
Kalman Filter, and combinations thereof; and the Sequential Monte Carlo method is
selected from the group consisting of an unscented Monte Carlo, central difference
Monte Carlo, square-root unscented Monte Carlo, square-root central difference
Monte Carlo method, Gaussian Sum Monte Carlo, Bayes Monte Carlo, Gaussian

Mixture Sigma Point Monte Carlo, and combinations thereof.

7. The method of claim 1, wherein the dynamic state-space model comprises a
state parameter or a model parameter corresponding to an additional physiological

parameter not measured by the biomedical monitoring device and the method further
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comprises calculating an estimated value for the additional physiological parameter

not measured by said biomedical monitoring device.

8. The method of claim 7, wherein the biomedical monitoring device is a pulse
oximeter and the additional physiological parameter not measured by the biomedical
monitoring device is selected from left-ventricular stroke volume, heart rate, aortic

pressure, systemic blood pressure, and total blood volume.

9. The method of claim 7, further comprising the step of reporting the estimated
value for the additional physiological parameter in a form that is visually, audibly, or

tactilely comprehensible by a user.

10. The method of claim 1, wherein the biomedical monitoring device is selected
from the group consisting of a co-oximeter, a blood pressure monitor, an

electrocardiograph, and a pulse oximeter.

11. A data processor configured to perform the method of claim 1.

12. A biomedical monitoring device comprising a data processor configured to

perform the method of claim 1.

13. A method for processing sensor data from a biomedical monitoring device that
measures a physiological parameter of a living subject to obtain an estimated value
for the physiological parameter, said method comprising the steps of:

a) entering system and model parameters for a time t into a dynamic state-
space model to produce a first probability distribution function vector comprising
state and model parameters for time t+n;

b) using the first probability distribution function vector and timed data
obtained for time t+n from the sensor in a Bayesian statistical process to produce a
second probability distribution function vector for state and model parameters for

time t+n;
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c) calculating probabilistic expectation values for the state and model
parameters for time t+n from the second probability distribution function; and

d) determining an estimated value for the physiological parameter for time t+n
from probabilistic expectation values for the state and/or model parameters for time
t+n

wherein:

the dynamic state-space model mathematically represents physiological
processes that produce the measured physiological parameter and physical
processes involved in measuring the physiological parameter, to produce a time
dependent state representing a time dependent physiological state of the subject;

the state and model parameters for a time t entered into the dynamic state-
space model in step a) are in the form of a probability distribution function produced
from a sampling of expectation values calculated in step c¢) for an immediately
preceding time t-n’; and

n and n’ are time intervals that may be the same of different.

14.  The method of claim 13, further comprising the step of reporting the estimated
value for the physiological parameter in a form that is visually, audibly, or tactilely

comprehensible by a user.

15.  The method of claim 13, wherein a state parameter or a model parameter of
the dynamic state-space model is equal to the estimated value for the measured

physiological parameter.

16. The method of claim 13, wherein the estimated value for the measured
physiological parameter determined in step (d) is performed by calculating the
estimated value from s state parameter and/or a model parameter of the

dynamic state-space model.

17.  The method of claim 13, wherein generating the first probability distribution is

performed using a Sequential Monte Carlo or Sigma Point Kalman Filter method.
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18. The method of claim 17, wherein the Sigma Point Kalman Filter method is
selected from the group consisting of unscented Kalman Filter, central difference
Kalman Filter, square-root unscented Kalman Filter, square-root central difference
Kalman Filter, and combinations thereof; and the Sequential Monte Carlo method is
selected from the group consisting of an unscented Monte Carlo, central difference
Monte Carlo, square-root unscented Monte Carlo, square-root central difference
Monte Carlo method, Gaussian Sum Monte Carlo, Bayes Monte Carlo, Gaussian

Mixture Sigma Point Monte Carlo, and combinations thereof.

19. The method of claim 13, wherein the model comprises a state parameter
and/or a model parameter corresponding to an additional physiological parameter
not measured by the biomedical monitoring device and the method further comprises
calculating an estimated value for the additional physiological parameter not

measured by said biomedical monitoring device.

20. The method of claim 19, wherein the biomedical monitoring device is a pulse
oximeter and the physiological parameter not measured by the biomedical
monitoring device is selected from left-ventricular stroke volume, heart rate, aortic

pressure, systemic blood pressure, and total blood volume.

21. The method of claim 20, further comprising the step of reporting the estimated
value for the additional physiological parameter in a form that is visually, audibly, or

tactilely comprehensible by a user.

22. The method of claim 13, wherein the biomedical monitoring device is selected
from the group consisting of a co-oximeter, a blood pressure monitor, an
electrocardiograph, and a pulse oximeter.

23. A data processor configured to perform the method of claim 13.

24. A biomedical monitoring device comprising a data processor configured to

perform the method of claim 14.
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25. A method for processing data from a sensor of a biomedical monitoring device
that produces an output value for a first physiological parameter based on an output
of said sensor, said method comprising the steps of:

a) entering state parameters for a time t and model parameters for a time t
into a dynamic state-space model to produce a first probability distribution function
vector comprising state parameters for time t+n;

b) using the first probability distribution function vector and timed data
obtained for time t+n from the sensor in a Bayesian statistical process to produce a
second probability distribution function vector for state parameters for time #+n;

c) calculating probabilistic expectation values for the state parameters for time
t+n from the second probability distribution function;

d) calculating updated model parameters for time t+n+m from the second
probability distribution function vector for state parameters for time t+n and timed
data obtained for time t+n from the sensor in an unsupervised machine learning
operation; and

e) determining an estimated value for a second physiological parameter for
time #n from probabilistic expectation values from the state and/or model
parameters;

wherein:

the biomedical monitoring device does not otherwise produce an output value
for the second physiological parameter based on an output of said sensor

the dynamic state-space model mathematically represents physiological
processes that produce the second physiological parameter and physical processes
involved in measuring the second physiological parameter, to produce a time
dependent state representing a time dependent physiological state of the subject;

the state parameters for a time t entered into the dynamic state-space model
in step a) are in the form of a state parameter probability distribution function
produced from a sampling of the second probability distribution function calculated in
step b) for an immediately preceding time t-n’;

the model parameters for a time t entered into the dynamic state-space model

in step a) are in the form of a model parameter probability distribution function
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produced from an unsupervised machine learning operation on data from the sensor
for time t with the second probability distribution function vector for state parameters
in step b) for an immediately preceding time t-n’; and n, m, and n’ are time intervals

that may be the same of different.

26. The method of claim 25, wherein generating the first probability distribution is

performed using a Sequential Monte Carlo or Sigma Point Kalman Filter method.

27. The method of claim 26, wherein the Sigma Point Kalman Filter method is
selected from the group consisting of unscented Kalman Filter, central difference
Kalman Filter, square-root unscented Kalman Filter, square-root central difference
Kalman Filter, and combinations thereof; and the Sequential Monte Carlo method is
selected from the group consisting of an unscented Monte Carlo, central difference
Monte Carlo, square-root unscented Monte Carlo, square-root central difference
Monte Carlo method, Gaussian Sum Monte Carlo, Bayes Monte Carlo, Gaussian

Mixture Sigma Point Monte Carlo, and combinations thereof.

28. A method for processing data from a sensor of a biomedical monitoring device
that produces an output value for a first physiological parameter based on an output

of said sensor, said method comprising the steps of:

a) entering system and model parameters for a time t into a dynamic state-
space model to produce a first probability distribution function vector comprising
state and model parameters for time t+n;

b) using the first probability distribution function vector and timed data
obtained for time t+n from the sensor in a Bayesian statistical process to produce a
second probability distribution function vector for state and model parameters for
time t+n;

c) calculating probabilistic expectation values for the state and model

parameters for time t+n from the second probability distribution function; and
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d) determining an estimated value for a second physiological parameter for
time t+n from probabilistic expectation values for the state and/or model parameters
for time t+n

wherein:

the biomedical monitoring device does not otherwise produce an output value
for the second physiological parameter based on an output of said sensor

the dynamic state-space model mathematically represents physiological
processes that produce the measured physiological parameter and physical
processes involved in measuring the physiological parameter, to produce a time
dependent state representing a time dependent physiological state of the subject;

the state and model parameters for a time t entered into the dynamic state-
space model in step a) are in the form of a probability distribution function produced
from a sampling of expectation values calculated in step c¢) for an immediately
preceding time t-n’; and

n and n’ are time intervals that may be the same of different.

29. The method of claim 28, wherein generating the first probability distribution is

performed using a Sequential Monte Carlo or Sigma Point Kalman Filter method.

30. The method of claim 29, wherein the Sigma Point Kalman Filter method is
selected from the group consisting of unscented Kalman Filter, central difference
Kalman Filter, square-root unscented Kalman Filter, square-root central difference
Kalman Filter, and combinations thereof; and the Sequential Monte Carlo method is
selected from the group consisting of an unscented Monte Carlo, central difference
Monte Carlo, square-root unscented Monte Carlo, square-root central difference
Monte Carlo method, Gaussian Sum Monte Carlo, Bayes Monte Carlo, Gaussian

Mixture Sigma Point Monte Carlo, and combinations thereof.
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FIG. 10
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