wo 2020/059156 A1 |0 0000 K000 OO 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

19) World Intellectual Propert N
B organisation > A O A 0 0 OO OO
International Bureau (10) International Publication Number
(43) International Publication Date WO 2020/059156 A1l
26 March 2020 (26.03.2020) WIPO I PCT
(51) International Patent Classification: (74) Agent: TANAI, Sumio et al.; 1-9-2, Marunouchi, Chiyo-
GO6F 9/38 (2006.01) GO6F 17/16 (2006.01) da-ku, Tokyo 1006620 (JP).
(21) International Application Number: (81) Designated States (unless otherwise indicated, for every
PCT/JP2018/035246 kind of national protection available). AE, AG, AL, AM,

. . , AO. AT, AU, AZ. BA, BB, BG, BIL, BN, BR, BW, BY, BZ.
(22) International Filing Date: CA. CH. CL. CN. CO. CR. CU. CZ. DE, DJ, DK, DM. DO,

18 September 2018 (18.09.2018) DZ. EC, EE. EG. ES, FI, GB, GD, GE, GH. GM, GT, HN,
(25) Filing Language: English HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR.KW.KZ. LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,

(26) Publication Language: English MG, MK, MN, MW, MX, MY, MZ. NA, NG, NI NO, NZ.
(71) Applicant: NEC CORPORATION [JP/JP]; 7-1, Shiba 5- OM, PA, FE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
chome, Minato-ku, Tokyo 1088001 (JP). SC, 8D, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

X . . TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW,
(72) Inventor: SUN, Heming; c/o NEC Corporation, 7-1, Shiba

5-chome, Minato-ku, Tokyo 1088001 (JP). (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

(54) Title: DATA PROCESSING SYSTEM, METHOD, AND PROGRAM

FIG. 15
100,
DATA PROCESSING SYSTEM
EXTERN;Ijm — 1%
<« DRECT | SECOND
MEMORY MEMORY |e—>| “LOCAL
~| ACCESS MEMORY
1 ’
v —180 110 vy ~120
INsTRUCTION L. L | cEnNTRAL || VECTOR
MEMORY >> PROCESSOR [PROCESSOR
A
Y 150
FIRST
L>| LOCAL
MEMORY

(57) Abstract: The present disclosure provides a data processing system including a central processor; a vector processor electronically
connected to the central processor and configured to perform operations based on instructions received from the central processor;
an instruction memory unit electronically connected to the central processor and configured to store instructions; an external memory
unit; a first local memory unit electronically connected to the central processor and configured to store one-dimensional systolic data;
a second local memory unit electronically connected the vector processor and configured to store matrix data; and a direct memory
access unit electronically connected to the first local memory unit, the second local memory unit, the instruction memory unit, and the
external memory unit and configured to access data in the external memory unit, wherein data is transferred via the direct memory
access unit at a timing based on a predetermined selection priority.

[Continued on next page]

WO 2020/0591:56 A1 |10 0000 0000 O 00 O

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, IR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK, SM,
TR). OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

10

15

20

WO 2020/059156 PCT/JP2018/035246

[DESCRIPTION]

[Title of the Invention]

DATA PROCESSING SYSTEM, METHOD, AND PROGRAM
[Technical Field]

[0001]

The present invention generally relates to data processing system, mefhod, and
program based a one-dimensional array architecture, and, in particular, vto be used for
continuous matrix processing including matrix transpose calcﬁlations.

[Background Art] |
[0002]

Machine learning has become very popular in the recent years due to its high
performance in many research fields. With more and more applications for machine
learning being developed, the computation complexity has been greatly increasing.
Therefore, efficient data processing is very important. In order to improve calculation
efficiency, increased parallelism in vector processing is highly beneficial and therefore
preferred.

[0003]
In vector processing, the main concept is to process data in a vector pattern. In

order to process the matrix data, vector lanes are used in which each vector lane should

- include an arithmetic logic unit (ALU). In order to store the calculation data, each

vector lane should include a local memory. In addition, in order to transfer the data
between on-chip local memory and off-chip external memory, direct memory access
(DMA) may be used. Finally, for the overall control logic, a central control unit is

preferably used in the system. Based on the above concepts, some vector processor

10

15

20

25

WO 2020/059156 PCT/JP2018/035246
2

designs can be found in Patent Literature 1, Non-Patent Literature 1, and Non-Patent
Literature 2.
[0004]

In machine learning, one of the most common computations is matrix
computation. General matrix multiply (GEMM) is used in both foﬁmd and backward
propagation. When performing the GEMM function, all the source data has to be
taken from the memory, and in order to fully utilize the fetched data from each element,
two-diménsional processing elgmenfs are used. However, a disadvantage of the two-
dimensional array is that if the actual matfix size in the calculation is much smaller than
the size of the supported two-dimensional array, the computation resource in the unused
processing elements are wasted. As an alternative, a one-dimensional array can also be
‘used due to its higher flexibility.

[Citation List]
[Patent Literature]
[Patent Literature 1] United States Patent No. 005600843 A

[Non-Patent Literature 1] “Application-Specific Soft-Core Vector Processor for.

. Advanced Driver Assistance Systems” written by Stephan Nolting et al., published in

Sept. 2017 at International Conference on Field Programmable Logic and Applications.
[Non-Patent Literature 2] ”Fully Pipelined Soft Vector Processor as a CPU Accelerator”
written by Yeyong Pang et al., published in Nov. 2017 at Chinese Journal of Electronics,
vol. 26, no. 6, pp. 1198-1205.

[Disclosure of Invention]

[Technical Problem]

[Problem to be solved by the Invention]

[0005]

10

15

20

WO 2020/059156 PCT/JP2018/035246

3

A first problem with conventional technology is that a matrix transpose is not
genefally supported in vector processors. In machine learning, a matrix transpose is
used in several cases such as backward propagation for a fully-connected layer. In the
referenced literatures, a way to efficiently transpose matrices inside the processor is not
disclosed. Therefore, if a specific instruction for a matrix transposition is nbt supported
by the vector processor, the transposition must be performed outside of the vector |
processor. In order to do that, the matrix to be transposed Should first be transferred
from the local memory inside the vector processor to an external memory outside the
pfocessor. After the transposed results are prepared in the external memory, the
transposed matrix should be transferred from the external memory outside of Vecfor
processor to the vector processor, which wastes a lot of time on data transfer.

[0006]

A second proBIem is that there are many data transfers mainly composed of two
types. One is a transfer between the local memories themselves, and the other is a
transfer between local memory and external memory. Since the external memory is not

always available for the current vector processor, the data transfer between the local

memory and the external memory usually have bubble cycles. Moreover, when

performing the data transfer between the local memory and the external memory, even
though there are several bubble cycles, other transfer requests cannot be processed since
the requests are submitted one by one in a serial manner which reduces the throughput
performance of the whole computation system.
[0007]

One exemplary objective of the present invention is to provide a matrix

transposition device that is capable of solving the first problem (identified above) in

10

15

20

25

WO 2020/059156 PCT/JP2018/035246
4

which matrix transposition is not supported in the conventional vector processing
engines.
[0008]

Another exemplary objective of the present invention is to prévide a parallel
system that is capable of solving the second problem (identiﬁed above) in which multiple
requests for one local memory cannot be accepted at the same time.

[Means for Solving the Problem]
[0009]

| A first éspect of the present disclosure provides a data processing system
including a central processor; a vector processor electronically connected to the central
processor and configured to perform operations based on instructions received from the
central processor; an instruction memory unit electronically connected to the central
processor and configured to store instructions; an external memory unit; a first local
memory unit electronically connected to the central processor and configured to store
one-dimensional systolic data; a second local memory unit electronically connected the
vector processor and configured tolstore a matrix data; and a direct memory access unit
electronically connected to the first lqcal memory unit, the second local memory unit, the
instruction memory unit, and the external memory unit and configured to access data in
the external memory unit, wherein data is transferred via the direct memory access unit at
a t_iming based on a predetermined selection priority.
[0010]

A second aspect of the present disclosure provides a method for a data
processing system. The data processing system includes: a central processor; a vector
processor electronically connected to the central processor; an instruction memory unit

electronically connected to the central processor; an external memory unit; a first local

10

15

20

25

WO 2020/059156 _ PCT/JP2018/035246
5

memory unit electronically connected to the central pfocessor; a second local memory
unit electronically connected the vector processor; a direct memory access unit
electronically connected to the first local memory unit, the second local memory unit, the
instruction memory unit, and the external memory unit. The method includes:
performing, by the vector processor, operations based on instructions received from the
central processor; storing, by the instruction memory unit, instructions; storing, by the
first local memory unit, one-dimensional systolic data; storing, by the second local
memory unit, matrix data; and accessing, by the direct memory access unit, data in the
external memory unit. Data is transferred via the direct memory access unit at a timing
based on a predetermined selection priority.

[0011]

Ac-third aspect of the present disclosure provides a program for a data processing
system. - The data processing system includes: a central processor; a vector processor
electronically connected to the central proéessor; an instruction memory unit
electronically connected to the central processor; an external memory unit; a first local
memory unit electronically connected to the central processdr; a second local memory
unit electronically connected the vector processor; a direct memory access unit
electronically connected to the first local fnemory unit, the second local memory unit, the
instruction memory unit, and the external memory unit.. The program causes: the vector
procéssor to perform operations based on instructions received from the central
processor; the instruction memory ﬁnit to store instructions; the first local memory unit to
store one-dimensional systolic data; the second local memory unit to store matrix data;
and the direct 'memory access unit to access data in the external memory unit. Data is
transferred via the direct memory access unit at a timing based on a predetermined

selection priority.

10

15

20

WO 2020/059156 PCT/JP2018/035246

[0012] |

One effect of the present inyention is that a matrix transpose may be performed
inside the local memories. The reason for the effect is that a specific instruction for the
matrix transpose can be made.

[0013]

When the vector processor receives this instruction, it will start fo transfer the
data from one local memory to the other. During the transfer, the mapped address for
the source and destination memory is calculated thus each data item from the source
matrix will be put in a transpose manner in the destination matrix.

.[0014]

A second effect is that data bet\&een two local memories and external memory
canbe transferred within‘the same period.
[0015]

The reason for the effect is that the data transfer with the lower priority can be
executed during the bubble cycles of the data transfer with the higher priority due to a
priority request selection scheme being implemented.

[BRIEF DESCRIPTION OF THE DRAWINGS]
[FIG. 1]

A block diagram illustrating the structure of a first example embodiment of the

present invention.
[FIG. 2]
A block diagram illustrating the structure of a local memory of the first example

embodiment.

[FIG. 3]

10

15

20

WO 2020/059156 PCT/JP2018/035246

7

A block diagram illustrating the structure of a local memory of the first example
embodiment.
[FIG. 4]

A block diagram illustrating the structure of the processing element of the first
example embodiment.
[FIG. 5]

A block diagram illustrating the structure of the matrix transfer of the first
example embodiment.
[FIG. 6]

A block diagram illustrating the data mapping for a local memory of the first
example embodiment.
[FIG. 7]

A block diagram illustrating the data mapping for a local memory of the first
example embodiment.
[FIG. 8]

A block diagram illustrating the priority of different memory access requests for
a local memory of the first example embodiment.
[FIG. 9]

A block diagram illustrating the priority of the different memory access requests
for a local memory of the first example embodiment.
[FIG. 10]

A flow diagram illustrating the procedures of two continuous GEMM
calculations without a matrix transposition by a conventional method.

[FIG. 11]

10

15

20

WO 2020/059156 PCT/JP2018/035246
g

A flow diagram illustrating the procedures of two continuous GEMM
éalculations without a matrix transposition by the method of the first example
embodiment.

[FIG. 12]

A flow diagram illustrating the procedures of two continuous GEMM
calculations with a matrix transposition by a conventional method.
[FIG. 13]

A flow diagram illustrating the procedures of two continuous GEMM
calculations with a matrix transposition by the method of the ﬁrs’; example embodiment.
[FIG. 14]

A block diagram illustrating the mechanism of two requests working in the same
periodWith the priority selection of the first example embodiment.

[FIG. 15]

A block diagram illustrating the structure of another example embodiment of the
present invention.

[EXAMPLE EMBODIMENTS]
[Explanation of Structure]
[0016]

First, a first example embodiment of the invention is elaborated below referring
to the accompanying drawings.
[0017]

Referring to FIG. 1, in the first example embodiment of the present invention, a
data processing system 100 contains central processor (CP) 110, vector processing (VP)

engine 120, DMA 130, matrix transfer device 140, a first local memory 150 for data

10

15

20

25

WO 2020/059156 PCT/JP2018/035246
9 .
storage, a second local memory 160 for data storage, an instruction memory 180 for
instruction storage, and an external memory 170.
[0018]

The‘ CP 110 may be a MIPS processor, or a similar architecture processor, which
supports basic instructions such as arithmetic computation and store/load to/from
external memory 170 with a general purpose register inside the central processor 110.
The ceﬁtral processor 110 controls the first and second local memories 150, 160 to fetch
the calculation data from external memory 170, and also prepare all of the instructions
stored in the instruction memory 180. The central processor 110 then sends the vector
instruction and the matrix data to the vector processor 120. The vector processor 120
receives the instruction and starts to do the computation. The calculation of the vector
processor 120 is based on a one-dimensional systolic pattern. One input is fetched from
the first local memory 150, the other input is fetched from the second local memory 160.
After calculation, the results are stored into the second local memory 160. .There isa
path between the first local memory 150 and the second local memory 160, and data can |
be transferred between the first local memory 150 and the second lqcal memory 160 by
way of a matrix transfer device 140. The transfer between first and second local
memories 150, 160 can be a noﬁnal transfer or a transposed transfer. If the calculation
finishes, the result in the second local memory 160 may‘be transferred to the external
memory 170 through the direct memory access 130. |
[0019]

The detail architecture inside the vector processor 120 is shown in FIG.4. Each
of a plurality of processors 121 is connected to each other. There is a connection
between the central processor 110 and the first processing element 121, which is used to

transfer the data value and the instruction information. Between neighboring processing

10

15

20

25

WO 2020/059156 PCT/JP2018/035246
10

elements 121, there is a connection channel which is used to broadcast the information to
each processing element 121. Inside each processing element 121, in order to calculate
the multiplication and addition efficiently, a digital signal processor (DSP) can be used to
achieve lower power and higher frequency. In addition, there is a dedicated register
125 in each processing element 121 in order to. store intermediate results. Each
processing element 121 has one dedicated register 125.
[0020]

The details of the architecture of the local memory 150 are shown in FIG. 2.
There are 16 two-port RAM banks 151, and one first data selection unit 153. The tWo-
port RAM 151 is used to store data. The first data selection unit 153 selects the data
transfef with the external memory 170 or the second local memory 160. There is also
an output as‘the systolic data input for the vector processor 120. Tt should be noted that
the number of two-port RAM banks for the first local memory 150 in this exemplary
embodiment is 16, but could also be 8, 32, etc.
[0021]

The details of the architecture of the second local memory 160 are shown in
FIG. 3. There are two-port RAM banks 161, a second data selection unit 162, and a
data-ring 163. The number of RAM banks 161 is equal to the number of processing
elements 121, one processing element 121 is corresponding to one RAM bank 161 ..
[0022]

The details of the archifecture of the matrix transfer device 140 are shown in
FIG. 5. Inside the matrix transfer device 140, there is an address generator 141 and
bank number generator 142. Because the organization of the first local memory 150
and the second local memory 160 are different, no matter what kind of data is transferred

from either local memory to the other, the bank and the address in each bank in the

10

15

20

25

WO 2020/059156 PCT/JP2018/035246
11

destination bank would be different from the bank and the address in the source bank.
Therefore, the address generator 141 and the bank number generator 142 are used.
[Description of Operation]

[0023]

Next, referring to flowcharts in FIGS. 10 to 13, the general operation of the
present example embodiment is described in detail.
[0024]

First, the direct meniory acc;ess unit (DMA) transfers the instruction from the
external memory 170 to the instruction memory 180. For each application, the
application could be compiled to assembly code. Therefore, the assembly codes are
made for each application and stored in the instruction memory 180.

10025]

After that, the central processor 110 fetches the instructions one by one from the
instruction inemory 180. The initial data is stored in the first local memory 150 and the
second local memory 160 before starting calculation. When performing the general
matrix multiply (GEMM) function, the left matrix is stored in the first local memory 150,
and the right matrix is stored in the second local memory 160. For each matrix M*K,
the data mapping in the first local memory 150 is explained with reference to FIG. 6.
When there are 16 banks of RAM used for the first local memory .150, D1]0,0] (D1[m,k]
represents the m-th row and k-th column element in the matrix) is stored in the address0
of bankO0 of the first local memory 150 in order to store the matrix. The data D1[0,1],
for example, is stored in the address0 of bank1 of the first local memory 150, and the
data D1[0,15] is stored in the address0 of bank15 of the first local memory 150, for
example. Starting from D1[0,16], the data is stored in the address1 of bank0 of the first

local memory 150.

10

15

20

25

WO 2020/059156 PCT/JP2018/035246

12
[0026]

Therefore, the address generator 141 and the corresponding bank are calculated
by the following equations.
ADDR=(m*K+k)/16
BANK=(m*K+k)%16
[0027]

About the data mapping for the second local memory 160, since each processing
element 121 is corresponding to one RAM bank 161, the number of RAM bank 161 is
equal to the number of processing elements 121. In an example where there are 256
processing elements 121, a data mapping method is given with reference to FIG. 7.
D2[0,0] is stored in the address 0 of the bank0 of the second local memory 160, D2[0,1]
is stored in the address 0 of the bank1 of the second local memory 160, and so on. For
D2[1,0], the data is stored in the address 1 of the bank0 of the second local memory 160.
.For D2[1,1], the data is stored in the address 1 of bank1 of the second local memory 160.
For each matrix K*N, if N is smaller than the number of PEs 121, the unused column
will be filled with zeroes. If N is larger than the number of PEs 121, the matrix will be
cut by column according to the number of PEs 121, and then mapped to the second local

memory 160. Therefore, for the element D2[k,n] (k represents the row, while n

represents the column), the address generator and the corresponding bank is obtained by

the following equations.

ADDR=k
BANK=n
[0028]
In order to store the matrix in the second local memory 160, a data-ring 163 is

used to pass the data through all of the two-port RAM banks, and write/read the data

10

15

20

WO 2020/059156 PCT/JP2018/035246

13

to/from the corresponding two-port RAM banks. For example, when the cache line is
64 bytes and single precision floating point which is 32 bit is used, there are 16 data
items in one cache line. ~ Each data item should be stored in the coﬁesponding two-port
RAM bank 161.

[0029]

After storing the left and right matrices in the first local memory 150 and the
second local memory 160, the computation is executed in a one-dimensional systolic
manner. For the GEMM calculation, given that the left matrix is Dl(M,‘K), and the
right matrix is D2(K,N), the multiplication result is RES(M,N). For each element of
RES[m,n], the following calculation is conducted.

[Math. 1]

K-1
RES[m,n] =) D1[m, k] * D2[k,n]
k=0

D1[0,0] is read from the local memory 150 and transferfed to processing elements 121.
D2[0,0] is read from the second local memory 160 and will be the other input operand for
the processing element 121. After the calculation, the multiplication of D1[0,0] and
D2[0,0] will be stored in a dedicated register. D1[0,0] will be transferred to the second
processing element 121 in a systolic manner. D2[0,1] is read from the second local
memory 160. D1[0,0] and D2[0,1] are two operands for the multiplication. The result
of D1[0,0]*D2[0,1] is stored in the dedicated register 125. For the latter processing |
elements 121, D1[0,0] is always transferred in a systolic way. Finally, D1[0,0] will
transfer through all the processing elements 121. In fact, the dataflow for each
processing element 121 is completely the same. Therefore, the data flow of one
processing element 121 will simply be explained hereinafter.

[0030]

10

15

20

25

WO 2020/059156 PCT/JP2018/035246
14

After D1[0,0] is transferred through all the PEs 121, the next data item will be
read from the first local memory 150. The left matrix is read in row-major order.
Therefore, D1[0,1], for example, is read from the first local memory 150 and sént to the
first processing element 121, D2[1,0] is read from the sécond local memory 160 in the
first processing 121. Thereafter, D1[0,1]*D2[1,0] is calculated. . The previous result of
D1[0,0]*D2[0,0] is read from the dedicated register 125 and added to the result of
D1[0,11*D2[1,0]. The sum is stored in the dedicated register 125 again. By doing so
iteratively, the first element RES[0,0] in the first processing element 121 can be obtained.
Similarly, all of the elements in the first processing element 121 can be calculated.

After calculating the elements, the results are sent to the two-port RAM bank 161 in the
second local memory 160. |
[0031]

Hereinafter, the data transfer between the first local memory 150 and the second
local memory 160 will be explained. There are four cases. The first case is a normal
transfer from the first locél memory 150 to the second local memory 160. Supposing
that the matrix size stored in the second 1ocal memory 160 is KxN, N processing
elements 121 are used and the depth of each RAM bank is K. As described above, if N
is smaller than the number of processing elements 121 (e.g. 256), the unused columns are
filled with zeroes. Therefore, D2[0,0] in the second local memory 160 is mapped to the
first element bf the first RAM bank in the local memory 150. D2[0,1] in the second
local memory 160 is mapped to the first element of the second RAM in the first local
memory 150. However, for D2[0,n] in the second local memory 160, if n is larger than
the number of banks supported by the first local memory 150, the address and bank in the
first local memory 150 and the second local memory 160 are different. For the address

and bank mapping of the other elements, the calculation method is shown in the

10

15

20

WO 2020/059156 PCT/JP2018/035246
15
following equation where DST_ADDR and DST_BANK are the destination address and

bank respectively. In this case, the destination address and the bank are in the first local
memory 150. SRC_ADDR and SRC_BANK represent the source address and the
source bank, in this case, the source address and the source bank are in the second local
memory 160. SRC NUM _BANK is the number of two-port RAM banks 161 in the
second local memory 160, énd DST NUM _BANK is the number of two-port RAM
banks 151 supported in the ﬁrst local memory 150.
DST_ADDR=(SRC_ADDR*SRC_NUM_BANK+SRC _BANK)/DST_NUM_BANK
DST BANK=(SRC_ADDR*SRC NUM BANK-+SRC_BANK)%DST NUM_BANK
[0032]

In the real situation, in each clock cycl.e, 512-bit data are transferred supposed
that the cache line is 512-bit. For the 32-bit single precision float case, one data item is
32-bits, so 16 data items are tranvsferr_ed in one clock cycle. Supposing there are 256

_processing ele;ménts 121, for the data transfer between the first local memory 150 and the
second local memory 160, in the first clock cycle, D2[0,0], D2[0,1]...D2[0,15] are taken
out from the RAM 161 of each processing element 121 and transferred to the first local
memory 150 through data-ring. Since D2[0,0], D2[0,1] ... D2[0,15] are stored in the
different bénks of the first local fnemory 150, so these data items can be written to the
first local memory 150 in the same clock cycle. In the second clock cycle, D2[0,16],
D2[0,17], D2[0,18]...D2[0,31] are taken out from the RAM bank 161 of the |
corresponding processing element 121 and transferred to the first local memory 1.50
throﬁgh data—ring. 163. Since D2[0,16], D2[0,17]...D2[0,31] are stored in different
banks of the local memory 150, so these data items can be written to the first local

memory 150 in the same clock cycle. Similarly, in each clock cycle, 16 data items are

10

15

20

25

WO 2020/059156 PCT/JP2018/035246
16
read from the RAM bank 161 of the corresponding processing element 121, and then

transferred through the data-ring 163, and finally stored in the first local memory 150.
[0033]

The second case is a normal transfer from the first local memory 150 to the

second local memory 160. Similarly, the address and the bank génerator is the same as
the above, the only difference is that source becomes the first local memory 150, while |

the destination becomes the second local memory 160.

[0034]

The third case is that the transposed matrix is transferred from the first local
merﬁory 150 to the second local memory 160. Supposing that the matrix [N,M] is
stored in the first local memory 150, this matrix is transposed to the size of [M,N] and
stored in the second local memory 160. For example, D1{0,0] in the first local memory
150 is mapped to address 0 in bank O. in the second local memory 160. D1[0,1] in the
second local memory 160 is mapped to the addre;s 1 in bank 0 in the second local
memory 160. For the address and bank mapping of the other elements, the calculation
method is shown in the following equations.

DST_ADDR=(SRC_ADDR* SRC_NUM_BANK+SRC_BANK)%DST_NUM_BANK
DST BANK=(SRC_ADDR*SRC NUM_BANK+SRC BANK)/DST NUM_BANK
[0035]

The transfer is still based on the 16x16 block. Howéver, this 16x16 block is in
the second local memory 160. In order to generate the 16x16 block for the side of the
second local memory 160 in each 16 clock cycles, therefore, we have to find the
corresponding elements of the D2[0,0], D2[1,1], D2[2,2]...D2[15,15] in the first local
memory 150. The corresponding address for D2[0,0] is address 0 in bank 0, the

corresponding address for D2[1,1] is address (N+1)/16 in bank 1, and the corresponding

10

15

20

WO 2020/059156 PCT/JP2018/035246
17
address for D2[2,2] is address (Nx2+2)/16 in bank 2. Similarly, the corresponding

position for D2[15,15] is address (Nx15+15)/16 in bank 15. Therefore, 16 data items
can be fetched in one clock cycle. In the second clock cycle, the corresponding
elements of the D2[1,0], D2[2,1], D2[3,2]...D2[0,15] are found in the first local memory
150. The corresponding address for D2[1,0] is address N/16 in bank0, the
corresponding address for D2[2,1] is address (Nx2+1)/16 in bank1. Similarly, the
corresponding position for D2[0,15] is address 0 in bank15. By these mapping
methods, the address of the first local memory 150 for 16x16 blocks of the local memory
160 can be known. In each clock cycle, the 16 elements fetched from the first local
memory 150 are transposed and stored in the second local memory 160. For example,
in the first cycle, D2[0,0], D2[1,1], D2[2,2]...D2[15,15] are the diagonal, so the
transposed results are the same. For the second local memory 160, the address of the
bank0 is-0, the address .of the bank1 i1s 1 and so on. In the second clock cycle, D2[1,0],
D2[2,1], D2[3,2]...D2[0,15] are fetched from the first local memory 150. For D2[1,0],
the transposed result should be stored in the address 0 of bank1, D2[2,1] should be stored
in the address 1 of bank2, D2[3,2] should be stored in the address 2 of bank3.

Similarly, all the data can be stored in the 16 banks of the second local memory 160 in
one clock cycle.

[0036] |

The address generator for the first local memory 150 can be represented as the

- following equation where CNT is the count of each 16 clock cycles for a 16x16 block,

SRC BANK means which bank in the first local memory 150.
SRC_ADDR _IN_B16=(N*(SRC_BANK+CNT)+SRC_BANK)/16 if SRC_BANK

+CNT <=15

10

15

20

25

WO 2020/059156 PCT/JP2018/035246

18
SRC_ADDR_IN B16=(N*(SRC_BANK+CNT-16)+SRC_BANK)/16 if SRC_BANK -

+CNT >15

10037]

The basic address for the 16x16 block is composed of two parts, one part is
corresponding to the vertical movements of the 16x16 block, marked as delta_v, and the
other part ié corresponding to the horizontal movements of the 16x16 block, marked as
delta h. B16_vertical num represents the vertical address of the 16x16 block in the
second local memory 160. Here, a vertical scan of the 16x16 block in the second local
memory 160 is used.

B16_vertical num=(B1 6_vertical_num<M/l 6)7B1 6_Vertical_num+1 :0
Delta_v=(B16_vertical num<M/16)?(Delta_v+N):0 |

Delta h=(B16_vertical num==0)?(Delta_h+1):Delta_h

SRC B16_ADDR=Delta v+Delta h

[0038]

Therefore, the final address for 16 banks of the first local memory 150 can be
obtained by the following equation.
SRC_ADDR=SRC_ADDR IN B16+SRC B16_ADDR
[0039]

The address generator for the first local memory 150 has been given in the
above. Next, an explanation of the address and bank generator for the second local
mémory 160 is given. Since the scan of the source matrix is the vertical scan in the
second local memory 160, the scan of the transposed matrix is a horizontal scan in the
second local memory 160. Therefore, the basic acidress and basic bank can be
calculated by the following.

DST _ADDR_IN B16 = (DST BANK%16-CNT) if DST BANK%16-CNT >=0

10

15

20

25

WO 2020/059156 PCT/JP2018/035246
19
DST_ADDR_IN_B16 = (DST_BANK%16-CNT+16) if DST_BANK%16-CNT <0

DST B16_ADDR=(DST B16 BANK <N/16)? DST Bl 6 _ADDR:(DST B16 ADDR
+16)

DST_ADDR=]5$T_ADDR_IN_B 16+DST B16_ADDR

[0040]

The fourth case is that the transposed matrix will be transferred from the second
local memory 160 to the first local memory 150. | Sﬁpposing that the matrix [M,N] is
stored in the second local memory 160, this matrix needs to be transposed to [N,M] and
stored in the first local memory 150. For example, D2[0,0] in the second ilocal memory

160 is still mapped to address 0 in bank 0 in the first local memory 150. D2[0,1] in the

- second local memory 160 is mapped to the address 1 in bank 0 in the first local memory

150. For the address and bank mapping of the other elements, the calculation method is
shown in the following equation.
DST_ADDR=(SRC_BANK*M+SRC_ADDR)/DST NUM BANK

DST BANK=(SRC_BANK*M+SRC_ADDR)%DST NUM_BANK

[0041]

If the data of D2[0,0], D2[0,1]...D2[0,15] is taken from the RAM 161 of each
processing élement 121, the 16 data items are stored in the same RAM bank of the first
local memory ISQ. Therefore, we cannot store these 16 data elements into the first local
memory 150 in one clock cycle. In order to avoid this problem, a cyclic data mapping
method is used. The transfér is based on a 16x16 block, which means that after the data
of one 16x16 block is accessed; the 16x16 block is shifted to the next 16x16 block. The
top left 16x16 block is transferred first which takes 16 clock cycles. In the first clock
cycle, D2[0,0], D2[1,1], D2[2,2]...D2[15,15] are read from the RAM 161 of the second

local memory 160. These elements are stored in different banks of the first local

10

15

.20

WO 2020/059156 PCT/JP2018/035246
20
memory 150. D2[0,0] is stored in the first RAM of the first local memory 150, D2[1,1]

is stored in the second RAM of the local memory, and so on. Therefore, we can store
these 16 data items in the first local memory 150 in one clock cycle. In the second
clock cycle, D2[0,1], D2[1,2], D2[2,3]...D2[14,15] and D2[15,0] are read from the RAM
| bank 161 of the second local memory 160. These elements are also stored in different
banks of the first local memory 150. Therefore, we can store these 16 data in the first
local memory 150 in one clock cycle. - The address generator is the same as that of the
third case, while the only difference is that the third case is to transfer from the first local
memory 150 to the second local memory 160, while this fourth case is to transfer from
the second local memory 160 fo the first local memory 150. Therefore, the address of
the source and destination is swapped.
[0042]

Regarding the second local memory 160, transfers between external memory

170 and the second local memory 160 and transfers between the first local memory 150

and the second local memory 160 are possible. If more than one transfer request is
received at thf; same clock cycle, priority is determined by the data selection unit 162.

An explanation of this operation is described below with reférence to the flowcharts in
FIG. 8. The first priority is data transfer from the external memory 170 to the second
local memory 160. This is because the data has to been taken from the external memory
170 if the data is valid. The second priority is transfer from the second local memory
160 to the external memory 170. The third priofity is transfer from the first local
memory 150 to the second local memory 160, and the final priority is transfer from the

second local memory 160 to the first local memory 150.

[0043]

10

15

.20

WO 2020/059156 PCT/JP2018/035246

21

Regarding the first local memory 150, a first data selection unit 153 is used. If
more than one transfer request is received at the same clock cycle, a selection is
performed based on priority, as shown in FIG. 9. The first priority is data transfer from
the external memory 170 to the first local memory 150. The second priority is transfer
from the first local memory 150 to the external memory 170. The third priority is
transfer from the second local memory 160 tb the first local memory 150, and the final
priority is transfer from thé first local memory 150 to the second local memory 160.
[0044]

For the continuous GEMMs (e.g. the first GEMM is A*B=C, while the second
GEMM is C*D=E). Hereinafter, an explanation is given with reference to FIG. 10.

The first GEMM is A*B=C, matrix A is stored in the first local memory 150, and matrix
B is stored in the second local méfnory 160. After sto;ing the matrix A in the first local
memory 150 and the matrix B in the local memory 160, the computation is executed and
the results are stored in the second local memory 160. If the second GEMM is C*D=E,
matrix C should be stored in the first local memory 150 as the systolic one-dimensional
input. In order to store the matrix C in the first local memory 150, the results have to be
sent to the external memory 170 first, and then transferred from the external rﬁemory to
the first local memory 150. After that, matﬁx D is stored in the second local memory
160 and then the computation is started. ~Finally, the calculation results are obtained and
transferred to the external memory 170.

[0045]

However, in our methods, we can difectly transfer the matrix C from the second
local memory 160 to the first local memory 150. Therefore, we can save the transfer of

matrix C to the external memory 170. The processing procedures are shown in FIG. 11.

10

15

20

25

WO 2020/059156 PCT/JP2018/035246
22

Calculating the‘ first GEMM can be parallelized when storing the matrix D of the second
GEMM. |
[0046]

Similarly, if the second GEMM is C.T*D=E where C.T is the transposed matrix
of C, in the conventional method, the procedures are shown in FIG. 12. For calculating
the first GEMM, the procedures are same those shown in FIG. 10. After storing C in
the external memory, the central processor 110 will transpose the matrix C in the external
memory 170. After that, the transposed matrix of C is transferred to the first local
memory 150, matrix D is transferred to the second local memory 160 and the second
GEMM can begin operation.

10047]

However, in methods of the present disclosure, not only can direct transfer the
matrix C from the second local memory 160 to the first local memory 150 be performed,
but the transpose can be finished during the transfer. Therefore, the transfer of matrix C
to the external mémory 170 can be performed in fewer operations. In addition, transfer
time to the central proce'ssor can be reduced. The processing procedures are shown in
FIG. 13.

[0048]

In the above example, there are no simultaneous requests for the same local
memory (i.e., the first local memory 150 or the second local memory160). However, in
some implementations, these processes may occur. For example, after calculating the
first GEMM A*B=C, the results of matrix C are should be transferred to the external
memory 170. Meanwhile, the‘ results should also be transferred to the first local
memory 150 for the next GEMM C*D=E. In this case, transfer between the second

local memory 160 and the external memory 170 has higher priority. As shown in FIG.

10

15

20

25

WO 2020/059156 PCT/JP2018/035246

23

14, since the data transfer from/to the external memory 170 has some bubble cycles,
these bubble cycles can be utilized to perform the transfer between the first local memory
150 and the second local memory 160.
[Description of Effect]
[0049]

Next, the effect of the pfesent example embodiment is déscribed.
[0050] |

As the present example embodiment is configured in such a manner that the
mapping address is given in a cyclic manner for two local memories, it is possible to
transfer the data in a transposed manner through a data-ring 163 inside the accelerator,
thus there is no need to perform the transpose on the Host side.

[0051]

In addition, the example embodiment is configured in such a manner that the
data transfer and the calculation use two different channels, which enable a continuous
matrix computation and can be executed in a parallel way. Further, the data transfer of
the previoﬁs matrix computation can be performed simultaneously with the computation
of the next matrix computation.

[0052]

Moreover, more than one write/read requests can be executed in the same period

for each local memory, which can utilize the bubble cycles of the communication |

between the local memory and the external memory.

[0053]
Referring to FIG. 15, in another example embodiment of the present invention, a

data processing system 100 contains central processor (CP) 110, vector processing (VP)

10

15

20

25

WO 2020/059156 PCT/JP2018/035246

24

engine 120, DMA 130, a first local memory 150 for data storage, a second local memory
160 for data storage, an instruction memory 180 for instruction storage, and an external
mem(;ry 170.

[0054]

The above-mentioned program may be for partially carrying out the above-
mentioned functions. The above-mentioned program may be a so-called difference file
(difference program) that is combined with a program that is already recorded in the
computer system in order to carry out the above-mentioned functions.

[0055]

All or some of the functions of the above-mentioned data processing system
}may be carried out by utilizing hardware such as an ASIC (Application Specific
Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-
Programmable Gate Array) or the like.

[0056] |

In addition thereto, the features in the above-mentioned exemplary erhbodiments
may be appropriately replaced with well-known feaﬁres, within a range not departing
from the scope of the present invention. Additiopally, the technical scope of the
invention is not limited to the above-mentioned exemplary embodiments, and various
modifications may be made within a range not departing from the scope of the present

invention.

' [Industrial Applicability]

[0057]
The present invention is applicable to a data processing apparatus that involves a
large amount of vector or matrix computation, such as image or video processing

platforms, and deep learning platforms.

10

15

20

WO 2020/059156

[Reference Signs List]

[0058]

100

110

120

121

125

130

140

141

142

150

153

160

161

162

163

170

180

Data Processing System
Central Processor (CP)

Vector Processor (VP)
Processing Element (PE)
Dedicated Register

Direc‘t Memory Access (DMA)

Matrix Transfer Device

" Address Generator

Bank Number Generator
First Local Memory

First Data Selection Unit
Second Local Memory
RAM Bank

Second Data Selection Unit
Data-Ring

External Memory

Instruction Memory

25

PCT/JP2018/035246

10

15

20

25

WO 2020/059156 PCT/JP2018/035246

26
[CLAIMS]

[Claim 1]

1. A data processing system comprising:

a central processor;

a vector processor electronically connected to the central processor and
configured to perform operations based on instructions received from the central
processor;

an instruction memory unit electronically connected to the central processor and
configured to store instructions;

an external memory unit;

a first local memory unit electronically connected to the central processor and
configured to store one-dimensional systolic data;

a second local memory unit electronically connected the vector processor and
configured to store matrix data; and

a direct memory access unit e€lectronically connected to the first local memory
unit, the second local memory unit, the instruction memory unit, and the external
memory unit and configured to access data in the external memory unit, wherein

data is transferred via the direct memory access unit at a timing based on a

predetermined selection priority.

[Claim 2]
2. The data processing system of claim 1, further comprising
- a matrix transfer device electronically connected between the first and second
local memory units and configured té transfer data between the first and second local

memory units.

WO 2020/059156 PCT/JP2018/035246
27

[Claim 3]
3. The data processing system of claim 2, wherein
the matrix transfer unit is able to perform matrix transposition on data when

5 transferring the data between the first and second local memory units.

[Claim 4]
4. The data processing system of claim 3, wherein
the matrix transfer unit includes an address generator configured to generate
10 memory addresses for a source memdry and a destination memory, the source memory
being one of the first local memory unit and the second local memory unit, and the
destination memory being the other of the first local memory unjt and the second local

memory unit.

15 [Claim 5]
5. The data processing system of claims 1 to 4, wherein
the second local memory unit has a data ring configured to ring-broadcast data,
the data ring using, when multiple memory requests are received, the predetermined
selection priority to transfer data to the first local memory unit and the external memory

20 unit via the direct memory access unit.

[Claim 6]
6. The data processing system of claims 1 to 5, wherein
the first and second local memory units each include a plurality of two-port

25 RAM banks on which data is stored, the number of two-port RAM banks of the first local

10

15

20

25

WO 2020/059156 PCT/JP2018/035246
28

memory unit being equal to the number of two-port RAM banks of the second local

memory unit.

[Claim 7]

7. A method for a data processing system, the data processing system
comprising: a central processor; a vector processor electronically connected to the central
processor; an instruction memory unit electronically connected to the central brocessor;
an external memory unit; a first local memory unit electronically connected to the central
processor; a second local memory unit electronically connected the vector processor; a
direct memory access unit electronically connected to the first local memory unit, the
second local memory unit, the instruction memory unit, and the external memory unit,
the method comprising:

performing, by the vector processor, operations based on instructions received
from the central processor;

storing, by the instruétiori memory unit, instructions;

storing, by the first local memory unit, one-dimensional systolic data;

storing, by the second local memory unit, matrix data; and

accéssing, by the direct memory access unit, data in the external memory unit,
wherein

data is transferred via the direct memory access unit at a timing based on a

predetermined selection priority.

[Claim 8]
8. A program for a data processing system, the data processing system

comprising: a central processor; a vector processor electronically connected to the central

WO 2020/059156 PCT/JP2018/035246
29

processor; an instruction memory unit electronically connected ito the central processor;
an external memory unit; a first local memory unit electronically connected to the central
processor; a second local memory unit electronically connected the vector processor; a
direct memory access unit electronically connected to the first local memory unit, the
S second local memory unit; the instruction memory unit, and the external memory unit,

the program causing:

the vector processor to perform operations based on instructions received from
the central processor;

the instruction memory unit to store instructions;

10 the first local memory unit to store one-dimensional systolic data;
thé second local memory unit to store matrix data; and
the direct memory access unit to access data in the external memory unit,
: Wherein
data is transferred via the direct memory access unit at a timing based on a

15 predetermined selection priority.

WO 2020/059156

1/10

FIG. 1

PCT/JP2018/035246

DATA PROCESSING SYSTEM

160

—a
)

Y

SECOND
LOCAL

MEMORY

A

A

y ~120

el
-

~170 130
EXTERNAL
D —— DIRECT
»| ACCESS
A
y ~180 ~110
INSTRUCTION | N, | CENTRAL
MEMORY ’ | PROCESSOR
]
y —~150
FIRST

Y

LOCAL

Y

VECTOR
PROCESSOR

140

MEMORY

-
-

Y

MATRIX

TRANSFER

PCT/JP2018/035246

WO 2020/059156

2/10

091 _AHOW3N
VY001
ANOQ3S IHL
40 1S3N03Y

€G1__
> NOILO313S V.LVA d3svd ALIHOIHd <
A A A A
1S3no3ad| 1S3no3ay 1S3NO3H| 1S3no3d
d3a1o313s| a3a1oT13s d3a1o313s| G31od13s
Y Y A Y
00 py][@) 0O pel@]
V] V 1 | eeeee V) V 1
=3 =3 =3 23
X X X e
me\ = e/ o T S
0S1—
e X X)
m m m m
O O O O
- C C C
m m m m
wn wn w n
— — — —
e O e O
M M M M
O @) O O
By T T T
) o) o
Y Y Y Y

¢ DIA

0L+ AHOWIN
VRNEILXT
40 1S3NO3Y

PCT/JP2018/035246

WO 2020/059156

3/10

EEEENCERCE S

3dd NOH4 1SIND3YH ~

dd INOYH4 1S3ND3Y ~

-

3d WOH4 1S3N03Y

f

| vy
1HOd-OML

191

| vy
1HOd-OML

19 Fﬁ

J
HI4SNVHL
404 <._.<OL

A
HI4SNVHL
404 <._.<04

19 _,ﬁ

A
H34SNVHL
HO4d vlvd

A

| vy
1HOd-OML

.w,ﬁ

o vd
1HOd-OML

/

A
H3I4SNVH1
404 v1vd

)

Y

ONIH-VivQd

€91~

A
A

\
[

0S1_AHOW3N
1vOQ1
1SHId dH1
INOH4 1S3N03Y

—-

NOILO3 T3S VLvVA d3ISva ALIHOIHd <

29—

091~

£ DIA

01 AHOWIIN
TYNY3LXT JHL
WOHH 1S3N03H

WO 2020/059156

4/10

PCT/JP2018/035246

o
N
\
N
T
< ININIT
AHOWAN TvD0T ONISS3IO0Hd
aNQO3S 7\
OL 1S3N03Y .
N
T
< ININI13
AHOW3N 1vD01 DNISS3O0Hd
aNQOD3s
~+ Ol 1S3NO3H
s i
(qV}
R S
- INEERE]
AHOW3AW T¥Y001 ONISS3O0Hd
aNOD3s 7\
OL 1S3N03ad
N
T
< INENERE!
AHOW3N TvO0T DNISS3004Hd
aNQ23s 7\
Ol 1S3NO3ad

VECTOR
INSTRUCTION
AND
SYSTOLIC INPUT

WO 2020/059156

5/10

- PCT/JP2018/035246

FIG. 5
DATA OF 140 - DATA OF
THE FIRST ~140 THE SECOND
LOCAL LOCAL
MEMORY: 150 MEMORY: 160
ADDRESS OF j1 42 1141 ADDRESS OF
THE FIRST wg wg THE SECOND
LOCAL e a0 LOCAL
MEMORY: 150 i<t W<t MEMORY: 160
- > COC CC |- -
Qw Qw
25 25
0 0]
FIG. 6
m\ 150
/ V17 ‘ =
= | \’1 [0,1]\:17[0,14]
| D1[0,15]
D0 N)[R
/Y
D1[0,16]| s s s =
< < < <
o o o o
- = | eccee |
(2 m (e o o
O O O O
o] a o ||
c;) O e (;3
= E E ~
N — p— —
151 151 151 151

WO 2020/059156 PCT/JP2018/035246
6/10
FIG. 7

,m\ 160

L D1[0,254
J o DQ[M[OJ]\"] 202[0,255]
D2[1,0]
///V
D2[11]| s | | = =||s
<€ <L <€ <€
c (o (a st c
- — | eoces = —
o o oc (g
ol lo ol |0
o a o a
o |g o||g
=l |8 A=
A . . N
i1 161 ie1 161
FIG. 8§

HIGHER

EXTERNAL MEMORY 170 =
LOCAL SECOND MEMORY 160

LOCAL SECOND MEMORY 160 =
EXTERNAL MEMORY 170

PRIORTY

LOCAL FIRST MEMORY 150 =
LOCAL SECOND MEMORY 160

LOCAL SECOND MEMORY 160 =
\/ LOCAL FIRST MEMORY 150
LOWER '

WO 2020/059156 PCT/JP2018/035246
7/10

FIG. 9
HIGHER

/\ EXTERNAL MEMORY 170 =
LOCAL FIRST MEMORY 150

LOCAL FIRST MEMORY 150 =
EXTERNAL MEMORY 170

PRIORTY

LOCAL SECOND MEMORY 160 =
LOCAL FIRST MEMORY 150

LOCAL FIRST MEMORY 150 =
\/ LOCAL SECOND MEMORY 160
LOWER

FIG. 10

TRANSFER A TO THE LOCAL FIRST MEMORY 150

Y
TRANSFER B TO THE LOCAL SECOND MEMORY 160

/
GEMM CALCULATION A*B = C
TRANSFER C TO THE EXTERNAL MEMORY 170

Y
TRANSFER C TO THE LOCAL FIRST MEMORY 150

Y
TRANSFER D TO THE LOCAL SECOND MEMORY 160

Y
GEMM CALCULATION C*D = E

WO 2020/059156

PCT/JP2018/035246

8/10
FIG. 11

TRANSFER A TO THE LOCAL FIRST MEMORY 150

)

TRANSFER B TO THE LOCAL SECOND MEMORY 160

Y

GEMM CALCULATION A*B = C

TRANSFER D TO THE

Y

TRANSFER C TO THE LOCAL FIRST MEMORY 150

Y

GEMM CALCULATION C*D = E -

FIG. 12

TRANSFER A TO THE LO

CAL FIRST MEMORY 150

\

[

TRANSFER B TO THE LOC

AL SECOND MEMORY 160

\

i

GEMM CALCULATION A*B = C

\

i

TRANSFER C TO THE E

XTERNAL MEMORY 170

\

i

CP TRANSPOSE C IN THE EXTERNAL MEMORY 170

\

y

TRANSFER C.T TO THE LOCAL FIRST MEMORY 150

\

TRANSFER D TO THE LOC

AL SECOND MEMORY 160

\

[

GEMM CALCULATION C.T*D = E

LOCAL SECOND MEMORY 160

WO 2020/059156 PCT/JP2018/035246

9/10

FIG. 13

TRANSFER A TO THE LOCAL FIRST MEMORY 150

Y
TRANSFER B TO THE LOCAL SECOND MEMORY 160

Y
_ TRANSFER D TO THE
GEMM CALCULATION A*B = C | | | ocAL SECGOND MEMORY 160
Y
TRANSFER C.T TO THE FIRST LOCAL 150

Y
GEMM CALCULATION C*D = E

FIG. 14

BUBBLE CYCLES
WORKING CYCLES

TRANSFER FROM -
EXTERNAL MEMORY 170 l [§ & N
TO LOCAL MEMORY 160

TRANSFER FROM |
LOCAL MEMORY 160 D L]
TO LOGAL MEMORY 150

WO 2020/059156

10/10

PCT/JP2018/035246

160

Y

SECOND
LOCAL
MEMORY

A

FIG. 15
100 —,
DATA PROCESSING SYSTEM
‘ ~170 130
EXTERNAL |
<> DIRECT
MEMORY MEMORY |«
>~ ACCESS
y
y —~180 | ' ~110
INSTRUCTION |, L | CENTRAL |,
MEMORY 7> PROCESSOR
A
y —~150
FIRST
> LOCAL
MEMORY

Y

VECTOR
PROCESSOR

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2018/035246

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl. GO6F9/38(2006.01)1i, GO6F1l7/16(2006.01)1

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl. GO6F9/38, GO6F17/16

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Published examined utility model applications of Japan 1922-1996
Published unexamined utility model applications of Japan 1871-2018
Registered utility model specifications of Japan 1996-2018
Published registered utility model applications of Japan 199%94-2018

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y JP 2008-158699 A (TOSHIBA CORPORATION) 1,6-8
A 2008.07.10, paragraphs [0009]-[0017], [0028], 2=-5

[0042],[0047], Fig.l
(Family: none)

Y US 2002/0026543 Al (TOJIMA, Masayoshi et al.) 1,6-8
A 2002.02.28, paragraphs [0084]-[0089],[0097], 2-5
[0122],[0130], Fig.l

& JP 2002-41445 A & EP 1156422 A2
& KR 10-0429724 BI

Y JP 8-115594 A (OKI ELECTRIC INDUSTRY CO., LTD.) |6
1996.05.07, paragraph [0013], Fig.l
(Family: none)

i Further documents are listed in the continuation of Box C. ™ See patent family annex.

¥ Special categoﬁgs of cited documents: o “T” later document published after the international filing date or

“A” document defining the general state of the art which is not priority date and not in conflict with the application but cited to
considered to be of particular relevance understand the principle or theory underlying the invention

«g» earlier application or patent but published on or after the inter-
national filing date

“L” document which may throw doubts on priority claim(s) or which
is cited to establish the publication date of another citation or other

«“X” document of particular relevance; the claimed invention cannot
be considered novel or cannot be considered to involve an
inventive step when the document is taken alone

special reason (as specified) “y” document of particular relevance; the claimed invention cannot
«0” document referring to an oral disclosure, use, exhibition or other be considered to involve an inventive step when the document is
means combined with one or more other such documents, such

“p” document published prior to the international filing date but later combination being obvious to a person skilled in the art

than the priority date claimed “&” document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
10.12.2018 18.12.2018
Name and mailing address of the ISA/JP Authorized officer 5Bl6296
Japan Patent Office OHMOMO, Yukio
3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan | Telephone No. +81-3-3581-1101 Ext. 3545

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2018/035246
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A

US 2003/0233511 Al (SEIKO EPSON CORPORATION)
2003.12.18, Whole Document

& JP 2003-280982 A & EP 1347387 A2

& CN 1445679 A

2-5

Form PCT/ISA/210 (continuation of second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - wo-search-report
	Page 43 - wo-search-report

