«» UK Patent Application «GB 2 361785 A

(43) Date of A Publication 31.10.2001

(2n
(22)

(30

Application No 0023999.6
Date of Filing 02.10.2000

Priority Data

{31) 09416575 {32) 12.10.1999 (33) US

(71)

(72)

{74)

Applicant(s)
International Business Machines Corporation
{Incorporated in USA - New York)
Armonk, New York 10504, United States of America

Inventor(s)
Ravi B Konuru
Olivier Gruber
Wim DePauw

Agent and/or Address for Service
IBM United Kingdom Limited
intellectual Property Department, Hursley Park,
WINCHESTER, Hampshire, S021 2JN,
United Kingdom

(51) INT CL7

GO6F 11/32

{(52) UK CL {Edition S)

G4A AFMD AFMP

(56} Documents Cited

GB 2258063 A WO 00/77643 A1 US 5819094 A
Liang and Viswanathan, "5th USENIX Conf. on
Object-Oriented Technologies & systems”, 3-7 May
1999

Harada M et al, “Systems and Computers in Japan",
vol 27, No11, 1996, "A Structured Object Mode..
Aral and Gernter,Proc. of the ACM/SIGPLAN PPEALS
1988, Paralle! Programming:Experience, July 1998

(58) Field of Search

UK CL (Edition S) G4A AFMD AFMP

INT CL? GO6F 11/00 11/30 11/32 11/34

Online: WPI, EPODOC, PAJ, COMPUTER, IEL, INSPEC,
and selected internet sites

{(64) Abstract Title
Partial and consistent monitoring of object-oriented programs and systems

(67) A method of monitoring events generated by an object-oriented system comprises the steps of:
monitoring events which describe executed operations associated with the object-oriented system; and
applying one or more sequencing rules when reporting a subset of the monitored events, the one or more
sequencing rules substantially ensuring consistent reporting of the subset of monitored events. Preferably,
monitoring continues when event reporting is at least partially disabled. The monitoring step may include
dividing the monitored events into categories. One category may include entity events defining existence
status of a given event. Another category may include activity events defining an operation associated with a
given event. Entity events and activity events may be further divided into object events, execution events, type
events and synchronization events. The sequencing rules are applied to maintain consistency with respect to
information associated with these categories.

FIG. 2
EROGRAN VIEN
OBJECTS
081 0812
[2 T
REPORTING
e N
REPORTING
J) OFF
o
085
T REPORTING
o

®: (BJECT CREATION

08J1:

O: OBJECT RECLANATION

0BJECT OF CLASS TYPE C4
0BJ5: DBJECT OF CLASS TYPE C3 (C2 DERIVED CLASS OF (i)

V G8L19€¢C 899

7

1/4

PROGRAM 2
! Ve 4 Vs 10
O L2 PROGRAM EVENT
G ORING -
&gu%‘n > MOX(I;TENRIIN PROCESSING TOOL
3
EVENT
REPORTING |~ 12
CONTROLLER
FIG. 2
PROGRAM VIEW
0BJECTS .
081 0BJ2
@ ®
0&‘3 0BJ4
¢
- REPORTING
ON
— REPORTING
OFF
o o)
0BJS
®
REPORTING
ON
e,
o 0

FIG.
TIME
Y
e:
O
0BJ1:
0BJS:

OBJECT CREATION
OBJECT RECLAMATION

OBJECT OF CLASS TYPE Cf

OBJECT OF CLASS TYPE Cp (Co DERIVED CLASS OF Ci)

2/4

FIG. 3

/ |1, POTENTIAL INFINITE
1 ——"| TREE (RET) GENERATION
2. CAN BE AVOIDED WITH
p N UEES

3/4

FIG. 4

@M'

400
\

CREATE INITIAL RET WITH E AS ROOT | 404
y

CREATE_EMPTY UIES |~ 406
'

IF £ IS A TYPE EVENT, ADD CORRESPONDING
IDENTITY EVENT TO UIES

T

. CREATE FIRST STARTING NUPES WITH E AS

THE ONLY EVENT

— 410

a

418
N

ADD ELEMENTS OF
NUPES AS CHILDREN
OF THEIR PARENT
EVENT

1

YES

y
APPLY THE FOLLOWING RECURSIVE OPERATION
~ TO NEW NUPES SETS

— 412

v

FOR EACH EVENT IN THE NUPES, CREATE
NEW NUPES, AND FOR EACH ENTITY EVENT
ADDED, INSERT A CORRESPONDING
IDENTITY EVENT INTO UIES

L~ 414

416
NEW NUPES ?

NO

FOR EACH IDENTITY EVENT IN UIES,
GENERATE AN IDENTITY EVENT

v

TRAVERSE THE TREE IN-POST-FIX ORDER
AND REPORT THE EVENTS IN THE RET

blb

302 —~(EVENT E | 500
4 ya 504 /
l BOOKKEEPING |

506

NO 514
RN
S 8 EVENT
GENERATE RET FOR E AND 516 BogPECMtI:N .
REPORT EVENTS KKEEP
(SEE FIG. 4) CORRESPONDING

EVENT IN RABS OR

\ 4
UPDATE RABS AND RECS FOR
ACTIVITY-END AND ENTITY

RE?AMAHON dil REPORT EVENT AND REMOVE
510 RELATED EVENT FROM RABS
OR_RECS
'U:
(END)
FIG. 6

f
¥

602~ PROCESSOR

/ }
¥

604~ MEMORY

1/0 DEVICE(S) |~ 606

10

15

20

25

30

35

£2501/89

METHODS AND APPARATUS FOR PARTIAL AND CONSISTENT MONITORING OF

OBJECT-ORIENTED PROGRAMS AND SYSTEMS

A e e e e e e e e

The present invention generally relates to computer programming and,

in particular, to monitoring object-oriented programs.

Monitoring is that activity where a program execution environment
reports to external listener subsystems what is happening during the
program execution. Monitoring enables many different tools for performing
different tasks. Examples of such tools are profiling tools for
performance enhancements, tracing tools for program understanding, or.
debugger tools for debugging. Monitoring is generally costly because: (1)
amount of information produced is fairly large; (ii) the overhead of
monitoring is high; or (iii) a combination of both. Consequently, many
systems support partial monitoring where only a subset of the information
is produced. There are many different . ways for expressing which subset is
of interest. However, no matter what conventional method is used to
partially monitor a system, the resulting partial monitoring can result in
the generation of an-inconsistent subset of the complete information. Such
an inconsistent subset of information can lead to incorrect interpretation
of the program execution behaviour by the various information processing

tools and lead to erroneous conclusions.

As a result, there exists a need for partial monitoring methods and
apparatus which, when incorporated into a program execution environment,
result in the generation of consistent information regarding program
execution without limitiﬁg the possible kinds of information filtering
criteria. Accordingly, the consistent information so produced could be
used by tools such as, for example, program analyzers or program
visualizers to correctly interpret the program execution and solve

performance, program understanding and correctness problems.

The present invention accordingly provides, in a first aspect, a
method of monitoring events generated by an object-oriented system, the
method comprising the steps of: monitoring events which describe executed
operations associated with the object-oriented system; and applying one or

more sequencing rules when reporting a subset of the monitored events, the

10

15

20

25

30

35

one or more sequencing rules substantially ensuring consistent reporting of

the subset of monitored events.

Preferably, in a method according to the first aspect, monitoring

continues when event reporting is at least partially disabled.

Preferably, in a method according to the first aspect, the monitoring

step further comprises the step of dividing the monitored events into

categories.

Preferably, in a method according to the first aspect, one category
includes entity events, an entity event defining an existence status of a

given event.

Preferably, in a method according to the first aspect, another
category includes activity events, an activity event defining an operation

associated with a given event.

Preferably, in a method according-to the first aspect, the entity
events and activity events are further divided into at least one of an
cbject event category, an execution event category, a type event category

and a synchronizatiocrn event category.

Preferably, in a method according to the first aspect, the one or

more sequencing rules substantially ensure consistency associated with an

object event.

Preferably, in a method according to the first aspect, the one or
more sequencing rules substantially ensure consistency associated with an

execution event.

Preferably, in a method according to the first aspect, the one or
more sequencing rules substantially ensure consistency associated with a

type event.

Preferably, in a method according to the first aspect, the one or
more sequencing rules substantially ensure consistency associated with a

synchronization event.

10

15

20

25

30

35

40

Preferably, in a method according to the first aspect, one the
sequencing rules is that an entity event reporting creation of an entity

precede an event reporting reclamation of the entity.

Preferably, in a method according to the first aspect, one of the
sequencing rules is that an activity event referring to an entity appear

between respective entity events reporting creation and reclamation of the

entity.

Preferably, in a method according to the first aspect, one of the

sequencing rules is that an entity is not reclaimed without reporting its

reclamation.

Preferably, in a method according to the first aspect, omne of the
sequencing rules is that an invocation is not reported without its

associated parent being reported.

Preferably, in a method according to the first aspect, one of the

sequencing rules is that synchronization events maintain correct semantics.

Preferably, in a method according to the first aspect, the monitoring
step includes monitoring events generated in association with the

object-oriented system executing a computer program.

Preferably, in a method according to the first aspect, determination
of the subset of the monitored events to be reported is made using one of a

dynamic and static criterion.

In a second aspect, the present invention provides apparatus for
monitoring events generated by an object-oriented system, the apparatus
comprising: at least one processor operative to monitor events which
describe executed operations associated with the cbject-oriented system;
and apply one or more sequencing rules when reporting a subset of the
monitored events, the one or more sequencing rules substantially ensuring

consistent reporting of the subset of monitored events.

Preferably, in a method according to the second aspect, the

monitoring operation continues when event reporting is at least partially

disabled.

10

15

20

25

30

35

40

Preferably, in a method according to the second aspect, the

monitoring operation further comprises dividing the monitored events into

categories.

Preferably, in a method according to the second aspect, one category

includes entity events, an entity event defining an existence status of a

given event.

Preferably, in a method according to the second aspect, another
category includes activity events, an activity event defining an operation

associated with a given event.

Preferably, in a method according to the second aspect, the entity
events and activity events are further divided into at least one of an
object event category, an execution event category, a type event category

and a synchronization event category.

In a third aspect, the present invention provides a computer program

to, when loaded into a computer system and executed, monitor events

generated by an object-oriented system, the computer program comprising

computer code to perform the steps of a method of the first aspect.

The present invention provides methods and apparatus for partial
monitoring which, when incorporated into a program execution environment,
result in the generation of consistent information regarding program

execution without limiting the possible kinds of information filtering

criteria.

In one aspect of the invention, a method of monitoring events
generated by an object-oriented system comprises the steps of: (1)
monitoring events which describe executed operations associated with the
object-oriented system; and (ii) applying one or more sequencing rules when
reporting a subset of the monitored events, the one or more sequencing
rules substantially ensuring consistent reporting of the subset of
monitored events. Preferably, monitoring continues when event reporting is
at least partially disabled. Further, the monitoring step may include
dividing the monitored events into categories. One category may include
entity events, an entity event defining an existence status {e.g., object
creation, object reclamation, etc.) of a given event. Another category may
include activity events, an activity event defining an operation associated

with a given event. Still further, the entity events and activity events

10

15

20

25

30

35

40

may be further divided into at least one of an object event category, an
execution event category, a type event category and a synchronization event
category. The sequencing rules are applied to maintain substantial

consistency with respect to information associated with the categories.

In cne embodiment, the sequencing rules may specify that: (i) an
entity event reporting creation of an entity precede an event reporting
reclamation of the entity; (ii) an activity event referring to an entity
appear between respective entity events reporting creation and reclamation
of the entity; (iii) an entity is not reclaimed without reporting its
reclamation; (iv) an invocation is not reported without its associated

parent being reported; and (v) synchronization events maintain correct

semantics.

Advantageocusly, the preferred embodiments of the invention may
produce substantially consistent information in the context of partial
reporting (i.e., reporting a subset of the events being monitored) with
respect to a program being executed by.the object-oriented system.
Selection of the subset of information to.be reported may be made using
either dynamic or static filtering criteria. The information may be used
by tools such as, for example, program analyzers or program visualizers to
correctly interpret the program execution and solve performance, program

understanding and correctness problems.

It is to be appreciated that the term “partial monitoring” as used in
accordance with a preferred embodiment the invention may be thought of és
referring to the perspective of the external listener (e.g., tool). That
is, while a subset of the monitored events are reported to the listener in
accordance with the one or more sequencing rules, a methodology in
accordance with a preferred embodiment of the present invention preferably
monitors substantially all events associated with the object-oriented
system. However, due to the subset reporting, it appears to the extermal
listener that the listener is partially monitoring the object-oriented
system. As mentioned, one advantage over the prior art is that the
sequencing rules substantially ensure consistent reporting of the subset of

monitored events.

A preferred embodiment of the present invention will now be described

by way of example, with reference to the accompanying drawings, in which:

10

15

20

25

30

35

40

FIG. 1 is a block diagram illustrating an illustrative program
execution and event monitoring system in which a preferred embodiment of

the invention may be employed;

FIG. 2 is a visual representation illustrating object-oriented

program execution through time;
FIG. 3 is a diagram illustrating potential infinite tree generation;

FIG. 4 is a flow diagram illustrating a report event tree generation

methodology according to one embodiment of the invention;

FIG. 5 is a flow diagram illustrating a consistent monitoring

methodology according to one embodiment of the invention; and

FIG. 6 is a block diagram illustrating an exemplary computer system

for implementing preferred embodiments of the invention.

As mentioned, monitoring is that activity where a running system
reports to external listeners what is happening inside the system. A
system usually reports its activity through events. Depending on the
object-oriented systém that is considered, these events can be different in
nature. For example, a program execution environment can report events
related to the execution of the program. The events reported can be read
accesses to data structures, write accesses to data structures, the
beginning of execution of a method, the end of execution of a method, etc.
A high-level block diagram illustrating the context of the preferred
embodiments of the invention is shown in FIG. 1. As shown, a program 2 is
executed within a program execution environment 4. The environment 4
includes a program execution subsystem 6 and an integrated monitoring
subsystem (agent) 8. The program execution subsystem 6 feeds the
monitoring agent 8 different types of events and event information
regarding program execution. The monitoring agent portion of the program
execution environment reports events in a form that is readable and
understandable by external listener subsystems such as, for example,
program event processing tools 10. The event reporting may be controlled
by an event reporting controller 12. That is, the controller 12 directs
the monitoring agent 8 what to report and whether to report (i.e.,
reporting on) or not report (i.e., reporting off) information to the
processing tool 10. It will be understood by one of ordinary skill in the

programming art that preferred embodiments of this invention deal with

10

15

20

25

30

35

40

particular methodologies of developing and providing such an integrated

monitoring subsystem.

Each system designer decides what monitoring capabilities needs to be
included in a system. Because monitoring is usually very expensive, many
systems provide some ways of subsetting the reported events as users see
fit. This encompasses many well-known subsets. For instance, this
includes start-stop tracing where the monitoring is stopped and then later
resumed. The starts and stops may be user-driven or they can be timer
driven (sampling). Partial monitoring also includes more advanced
filtering where only some events are generated based on some filtering

criteria such as events related to a particular event type or component.

If partial monitoring allows to cut the monitoring overhead to a
practical level in most cases, it also makes it likely, when using
conventional partial monitoring techniques, to introduce inconsistencies in
the reported event stream. To understand how such inconsistencies may be
introduced, one needs to gain a basic understanding what we mean by an
object-oriented system in the context of programming languages. A class or
type is the building block of an object-oriented language and is a template
that describes the data and behaviour associated with instances of that
class. When one instantiates a class, an object that is created looks and
feels like other instances of the same class. The data associated with a
class or an object is stored in member variables. The behaviour associated
with a class or cbject is implemented with methods. For example, a
rectangle can be considered a class that has two attributes or member
variables: length and breadth, and a method named area. From this
rectangle class, one can create or instantiate new instances or new
rectangle objects. These new objects share similar behaviour with respect
to the attributes and methods that can be invoked on them. However, the
actual values of the attributes and the value returned by the methods can

be different. Method invocations are executed in the context of a thread

of execution.

During the execution of an object-oriented program, potentially many
objects are created, manipulated, and returned to system storage when they
are no longer needed. This return to system storage can be automatic or
through an explicit return-to-storage operation by the program. We refer
herein to both types of return as reclaiming or reclamation. An
object-oriented program achieves its task by potentially creating many

objects of different classes and invoking methods on them.

10

15

20

25

30

35

40

Consider a visual representation of an object-oriented program
execution through time as shown in FIG. 2. For the sake of discussion, 1let
us assume that the identity of objects is nothing but the memory address to
which they have been allocated. During its execution, the program creates
5 objects, OBJ1l through OBJ5, and invokes methods on these objects.
However, OBJ1l and OBJS have the same identity since OBJ5 is allocated at
the same address as OBJ1l after OBJ1l has been reclaimed. Since reporting
was turned off during the time the OBJ1 was reclaimed and OBJ5 was created,
a program understanding tool can read the monitoring events generated by a
conventional monitoring system and mistakenly associate the costs and
methed invocations to the wrong objects. The consequence is that tools
have to shield themselves from these inconsistencies, either by ignoring
them and presenting potentially erroneous results or by implementing costly

detection and prevention mechanisms.

The preferred embodiments of the present invention provide an
automated methodology for avoiding inconsistencies, while not limiting
filtering mechanisms of partial monitoring. The preferred embodiments of
the present invention are applicable to” any system implementing some form
of monitoring. The preferred embodiments of the present invention will be
explained in the context of a monitoring API (application programming
interface) relying on events to report intermal activity to externmal
listener subsystems. An alternative embodiment of the present invention
may, for example, apply to the internal design of systems that embed one or

more kinds of listener subsystems.

The preferred embodiments of the present invention dictate
consistency rules regarding the generation of events; but not necessarily
which events should be generated and not what kind of partial monitoring is
permissible. A basic requirement is that any generated event belong to one
and only one of the two following categories: (i) entity events; and (ii)

activity events.

Entity events are defined as events which report the
creation/existence of an entity in the system as well as its
death/reclamation. Activity events are defined as events which, on the
contrary, only report that something is happening on one or more existing

entities, that is, no entity creation or reclamation is involved.

For instance, an event reporting the creation of an object is an

entity event. An event reporting the invocation of a method on an object

10

15

20

25

30

35

40

is also an entity event, for a stack frame has been created. However, an
event reporting that an object has been moved in memory or that an object

reference has been assigned to another object is an activity event.

It is also important to notice that, because we assume a programmatic
monitoring API, entity events have to introduce an identity for the created
entities, called the monitoring identity. The rationale for the identity
is to allow other events to be able to refer to entities. For instance, an
event reporting a method invocation needs to refer to the receiver object,
the class implementing the method, and possibly even the thread on which
the invocation occurs. Without monitoring identity, this would be

impossible.

One advantage of preferred embodiments of the present invention is
that they work with no globally unique identity schemes. Such schemes are
expensive to implement and most system designers prefer using “scoped”
identity such as the memory address at which the entity has been allocated.
By “scoped,” we mean that the identity'is only valid from the time the
entity is created to the time it is reclaimed. The consequence is that the
mapping between an entity and its identity is time-scoped. Our only

requirement is that entity events always report changes in the mapping.

To further explain what we mean by object-oriented monitoring through
events, let us define in abstract terms the concepts and events of a very
typical object-oriented system. This definition applies to substantially
any existing object-oriented system. However, it is to be appreciated that
the use of this abstract definition is werely exemplary. An
object-oriented system presents four basic entities: (i) type; (ii) object;
(iii) thread; and (iv) invocation. A type describes an object structure
and specifies its behaviour, i.e., the set of methods one may invoke on an
object of that type. An invocation is the execution of a method on its
receiver object. Each invocation is carried on one and only one thread.

Invocations nest, forming the thread execution stack.

Typically, such a system would have entity events to report the
creation and reclamation of these entities. For instance, events reporting
the creation and reclamation of an object or a thread, events for reporting
the loading and unloading of a type, and/or events for reporting the
beginning or end of an invocation. These events may represent the core
monitoring. That core would then typically be extended with extra activity

events such as an event reporting that a thread is suspended or resumed.

10

15

20

25

30

35

40

10

Other events may be used to report ocbject management activities such as
compaction, probably yielding new monitoring identities for objects.
Synchronization events, reporting the “enters” (entries) and “leaves”
(departures) from a critical section, as well as potential waits, would
also be examples of activity events. A critical section is a set of
program instructions that need to be executed as a unit with respect to the
data structures they manipulate. In a system having a single “thread” of
execution, achieving a critical section is trivial. But in modern systems,
many threads of execution are concurrently executed to improve
functionality and processing time. It is quite possible these threads need
to access and manipulate shared data structures. To maintain consistency,
a lock structure is associated with the shared data and a thread performs
the operations in a critical section only after gaining ownership to the
lock. Once the operations are completed, the thread releases the ownership
of the lock. 1If it happens that another thread has lock ownership, then a
thread desiring to acquire the lock waits on the owning thread until the
lock is free. A diagram showing the different threads in a system with
arrows drawn from a thread waiting for a resource to the thread owning the
resource is called a wait graph. Such a wait graph, with accurate
information and some additional summary information, is an excellent tool
for determining sources of contention and reasons for infinite waiting of

threads for resources.

In the presence of partial monitoring, inconsistencies in the above
abstract system may appear under four major forms: (i) type
inconsistencies; (ii) object inconsistencies; (iii) execution

inconsistencies; and (iv) synchronization inconsistencies.

Type inconsistencies may exist when types are confused because the
correspondence between types and their identifier is not maintained
accurately. Object inconsistencies may exist when objects are confused
because the correspondence between objects (type instances) and their
identifier is not maintained accurately. Execution inconsistencies may
exist when threads are confused, as well as method invocations, because the
correspondence between threads and their identifier is not maintained
accurately, as well as when the thread stack nesting of methods is not
maintained accurately. Synchronization inconsistencies may exist when the
ownership of lock and critical section is confused, as well as the wait

graph between threads.

10

15

20

25

30

35

40

11

Each of these cases may provoke the erroneous reporting of
potentially serious conditions from conventional monitoring tools that
support some form of partial monitoring. Such erroneous reporting may
include, for example, erroneous profiling information (accounting of
times), erroneous object reclamation, erroneous memory leaks, or even false
deadlocks. Unfortunately, there exist no comprehensive solutions for these
and other problems in the prior art in the area of supporting partial and
consistent monitoring for object-oriented systems. In general, the
conventional program execution environments leave the burden of making
sense of the information generation to the information processing tools.

In the context of Java‘::’]‘.anguage (see, e.g., “Java Language Specification,”
J Gosling, B. Joy and G. Steele, Addison Wesley, ISBN 0201634511 (1996) ;
and “Java 1.1 Developer’s Handbook,” P. Heller, S. Roberts, with P. Seymour
and T. McGinn, Sybex, ISBN 0-7821-1919-0), the Java Virtual Machine (JVM)
from Sun Microsystems exports an API called JVMPI (see, e.g.,“Comprehensive
profiling support in the Java Virtual Machine,” Sheng Liang and Deepa
Viswanathan. Usenix Conference on Object-Oriented Technologies (COOTS)
1999) that allows for callbacks into the JVM to handle certain
inconsistencies related to the type system. However, it is known to be
incomplete. In particular, the trace generation can be incorrect in the
presence of garbage collection. In the context of the C language, some
work has been done in the context of a tool named Parasight (see,

e.g., "Non-intrusive and interactive profiling in Parasight,” Ziya Aral and
Ilya Gernter, Proceedings of the ACM/SIG PLAN PEALS 1988, Parallel
Programming: Experience with Applications, Languages and Systems, pages
21-30. July 1988) that provides some support for consistent tracing.
However, they do not address the issues due to garbage collection since it

does not exist for normal C programs.

In a significant departure over the prior art, the preferred
embodiments of the present invention provide methodologies for supporting
partial and consistent monitoring of object-oriented programs. These
methods, when incorporated in program execution environments, can be used
to produce consistent information which can be used by batch and
interactive tools such as, for example, program analyzers, visualizers and
debuggers for purposes such as program understanding, visualization and

debugging.

For the description of this embodiment of the invention, we will
assume without loss of generality that a virtual machine (VM) executes the

object-oriented system of interest and events occurring as part of the

10

15

20

25

30

35

40

12

system execution are delivered to external event listeners which have to
register to a single event source, exported by the running VM. Notice that
the VM does not take care of maintaining any history of generated events.

That would be the responsibility of listeners.

The preferred embodiments of the invention provide a monitoring
methodology that is composed of two parts: (i) a categorization of events
that fully describe the execution of an object-oriented program; and (ii) a
set of sequencing rules in order to ensure the consistency of the event
stream. These parts will be explained in detail below. Referring back to
FIG. 1, it is to be appreciated that this inventive methodology may be
implemented by the monitoring agent 8 (also referred to herein as the
monitoring system or subsystem) within the program execution environment 4.
The object-oriented program would then be program 2 in FIG. 1. The event
stream is reported by the monitoring agent 8 to, for example, the program
event processing tool 10. Reporting may be controlled by the event

reporting controller 12.

Thus, the preferred embodiments of the invention apply to any system
that needs to support consistent partial monitoring and whose events can be

expressed as belonging to one of the specified event categories.

According to one embodiment of the invention, we group monitoring
events into four categories: (i) type events; (ii) object events; (iii)

execution events; and (iv) synchronization events.

Type events are the definition of types allowing to describe objects
which are instances of types. A type is either a basic type, a class or an
interface. Basic types are the classical ones such as integers, floats,
etc. A class has a name, a class it is derived from (called super class),
a list of implemented interfaces, a set of methods that it implements, and
a set of fields it defines. An interface has a name, a set of interfaces
it extends, and a set of methods and constants it declares. A method has a
return type, a name, and a list of parameter types (the receiver being
implicit and compatible with the class implementing the method). A field

has a name and a type.

We define three events on types: create, load, and reclaim. The
rationale for three events is further elaborated in the following section
(Sequencing Rules). The create event specifies the name of the type and

monitoring identity. The load event defines the type. It refers to the

10

15

20

25

30

35

40

13

super class and to the implemented interfaces. It also includes the
description of the class members, that is, the methods and the fields.
Method descriptions refer to the return and parameter types. Field
description refers to the field type. The reclaim event indicates the type

is no longer known to the monitored system.

Object events report the life cycle of objects (creation,
destruction) as well as the object graph, that is, references between
objects. Objects are created upon explicit request and later reclaimed.
Whenever an object is allocated, a create event is generated; whenever an
object is reclaimed, a reclaim event is generated. The create event
includes the monitoring identity of the created object and refers to the

class of the object. The reclaim event just refers to the reclaimed

object.

A reference identifies at runtime an object and allows an object A to
refer to an cbject B. A reference event reports the existence of a
reference from a pointing-to object to'a pointed-to object (potentially
identical). A reference event refers to the field (and may also refer to
its declaring class) containing the reference and to the referred-to
object. Execution events report the procedural aspect of the monitored
system, although reté.ining its object-oriented characteristics. First of
all, two events report the creation and destruction of a thread. The
create event provides the thread name and its monitoring identity. The
destruction event just refers to the reclaimed thread. A renaming event is

also provided allowing to keep track of name changes.

A thread executes method invocations following a Last-In-First-oOut
(LIFO) model. In other words, if a thread executes a method A that invokes
another method B, then the LIFO model states the execution of method B
completes before the execution of method A. It can be said that method A
is the parent of method B. A method invocation represents the execution
of the method instructions. Two events are used to report method
invocation: an enter and a leave event. The enter event refers to the
thread, the class implementing the currently executing method, and the
receiver object. The leave event only refers to the thread. This is

sufficient because of the LIFO model.

Synchronization events report the activity regarding critical
sections and locks. Many different synchronization semantics exist and are

used by different systems or even sometimes combined. However, most

10

15

20

25

30

35

40

14

synchronization mechanisms ultimately rely on locks. A thread may acquire
a lock, release it if it owns it, or be suspended awaiting for the lock to
become available. Often, locks are associated with objects. We define
four events: acquire, release, begin-wait and end-wait. All
synchronization events refer to the involved thread and the associated

object, if applicable.

Events have to be sequenced in a certain way so to ensure that the
reported event stream is consistent. We first assume full reporting in
this section, that is, each listener is sent all events and in the same

order. Then we will consider partial reporting.

When full reporting is assumed, there are only two fundamental

sequencing rules:

1. The entity event reporting the creation of an entity must precede the

event reporting its reclamation (death).

2. Any activity events referring to an-entity must appear between the

entity events reporting the creation and reclamation of that entity.

Although these two rules seem very intuitive, their enforcement is
tricky in some cases. We explained earlier that we define three events for
types: the create, load, and reclaim events. The rationale is a sequencing
one. Type definitions are by definition recursive and potentially cyclic.
This suggests to separate the definition of a type from its mere existence
so to be able to break cyclic dependencies in type definitions. The create
event must precede the load event which must precede the reclaim event.

Any other event referring to a class must appear after the locad event for
that class. For certain languages, maintaining such a precedence invariant
in the VM can be tricky. For instance, consider the static initializer
feature in the Java language. Static initializers are snippets of code
which initialize class static fields at load time. Care must be taken to
issue the class load event before any static initializer is run, otherwise
the sequencing rules would be violated, having events such as enter and

leave events referring to a non-lcaded class.

Consider the more interesting case of partial reporting. In this
context, listeners are allowed to get only a partial view of the running
system. Many different ways have been designed to specify which partial

view. Some of the partial reporting options that can be provided include:

10

15

20

25

30

35

40

15

(i) listen only to one kind of events (type, execution, object, or
synchronization); (ii) filtering events on a thread basis; and (iii)

suspend and resume monitoring, globally or selectively per thread.

In the event of partial reporting, the previous sequencing rules are

not enough to ensure consistency. The following three rules must be added

to the above two rules:

3. No defined entity may be reclaimed without its reclamation being

reported.
4. No invocation may be reported without its parent being reported.

5. The four synchronization events (acquire, release, begin-wait,

end-wait) must always exhibit a well-formed sequence.

These rules have to be maintained by the running system as do the
first two sequencing rules. However, it is important to notice that even
though reporting has been totally or partially turned off, maintaining
these rules remains a requirement. In other words, monitoring is never

turned off as a subsystem, it may only not report anything.

The third consistency rule (3. above) is not surprising and quite
obviously complements the normal sequencing rules. It states that if an
entity has been defined, then its reclamation must be reported to. The
rationale is to allow listeners to maintain accurate mapping between
monitoring identities and entities. See an example of such inconsistencies

below. Full reporting status is assumed at the beginning of the example.

Step (1) Class Cl is created with id #12

Step (2) Class Cl is loaded, has methods M1l (id #23 and M2 #24)
Step (3) Object 01 (id #34) of Class Cl is created

Step (4) Invocation of wmethod M1 on Ol

Step (5) The user turns monitoring off

Step (6) Object 01 is reclaimed (id #34 is freed for reuse)
Step (7) Object 02 (id #34 is reused) of class Cl

Step (8) The user turns tracing back on...

Step (9) Invocation of method M1 on 02 is executed

In step (9), the listeners will mistake 02 for Ol because the freeing

and reuse of the monitoring identifier #34 was not reported. Such Object

10

15

20

25

30

35

40

16

inconsistencies can result in execution information that is incorrect, but
most conventional visualizers will display the information as if it is

correct, misleading the end users.

The fourth consistency rule (4. above) is a little more tricky.
Before explaining it, let us state first that the third rule ensures that
leave events are reported for any reported enter event when reporting is
turned off regarding invocation events. This is, however, not enough.
Consider the following scenario. While a thread is running, the execution
reporting is turned off. As a result, from the third rule, leave events
will be generated as currently on the stack invocations will return. While
the reporting is turned off, many invocations take place which are not
reported. When reporting is turned back on, the thread stack is not empty,
hence, before reporting the next enter event, the runtime system has to
recursively report all unreported enter events for all the currently

executing invocations on the thread stack.

The fifth consistency rule (5. above) is one example of the necessary
consistency on activity events. Although:synchronization events are not
entity events and therefore there is no risk of mistaking entities, it is
still necessary to maintain correct semantics. This is what we mean by

well-formed sequence of acquire, release, begin-wait and end-wait events.

The essence of the rationale for applying the rules for partial
monitoring consistency is to maintain the monitoring subsystem as active
even when reporting is suspending. The result is that some events may be
reported even though listeners have expressed that they didn’t want them.
Also, this may result in missed events ‘to be reported late. Although this
may at first seem counter productive in light of partial monitoring, this
is not the case. By experience, the spurious events are not many,
especially comparing to the amount of events avoided while the partial

tracing option is on.

For instance, let us suppose that one expresses no more interest in
execution events. In the worst case, all currently executing methods will
generate spurious leave events. But comparing this to the number of
enter/leave event pairs that would be generated even in ten seconds of
execution time on an average machine, this is negligible. While, for object
events, more events may be generated, partial monitoring still proves

productive.

10

15

20

25

30

35

40

17

To further facilitate a better understanding of preferred embodiments
of this invention, we now describe a generic operative form of this
invention. The related flow diagram for the generic algorithm is shown in
FIG. 5. But before explaining FIG. 5, the following terms, concepts and
data structures need to be understood in this context: Selection;
Bookkeeping; Event-Specific Bookkeeping; Reported Activity-Begin Set;
Reported Entity-Creation Set; Prerequisite Event Set; Identity Event Set;

and Report Event tree.

Selection: An event is in selection if the current filtering criteria
are such that the event needs to be reported. For example, all object
creation events are in selection if the user specified all object-life

cycle events as the filtration criteria.

Bookkeeping: This generic name is used to cover operations that have
a notion of summary associated with them. For example, a counter for the
number of class-creation events may need to be incremented even if the
specific class object in the class-creation event is not in the current

selection.

Event-specific Bookkeeping: This generic name is used to describe the
operations that need to be performed for a specific event when it is not in
the current selection. For instance, if wmethod-enter event is not in the
current selection, the monitoring system may record the time at which the
enter occurred so that it can report the correct elapsed time of a method
in case the method becomes part of the selection before the method-leave

event occurs.

Reported Activity-Begin Set (RABS): This is the subset of activity
events that have occurred on entities that are currently live. The subset
includes only those events that can be categorized as activity-begin
events. For instance, for method events, it could be a method-enter event.
For synchronization related events, it could be an acquire event or a

begin-wait event.

Reported Entity Creation Set (RECS): This is the subset of all the
entities that are currently live and have been reported by the monitoring
system to external listener subsystems. For instance, if the creation of a
class C has been reported, then it becomes a member of this set. If the

class C is reclaimed it is removed from this set.

10

15

20

25

30

35

40

18

Prerequisite Event Set (PES): Each event that can be generated by a
monitoring system has a prerequisite event set. For an event E, this is
the set of events that need to be reported before the event E can be
reported. Such a set is constructed by applying the sequencing rules to
the Event. For instance, for a method-enter event, the sequencing rules
may specify the thread executing the method, the object on which the method
is being executed, and the method itself. Only then can the method-enter
event be generated. Thus, an Unreported Prereguisite Event Set (UPES)

consists of events from PES that have not yet been reported.

Identity Event Set (IES): This is a special kind of an event set that
is defined to handle certain technical problems in reporting events. 1In
certain languages, it is possible to have cycles in the type system. In
other words, to completely define a type A, one may eventually need to
define a type B that in turn requires the definition of type A. In such a
scenario, it is not possible to order the reporting of the definitions of
type A and B. To break this cycle, we introduce the notion of an “identity
event” for a type which can contain information about its identity and all
other information excluding those parts.- that require knowledge of other
types. For the above example, the identity event can contain identity of
class A, the name of the class, and may be the location of the file from
which the class definition was loaded into the execution environment. For
a type A, this is the set of identity events that need to be reported
before the type can be defined. An Unreported Identity Event Set (UIES)
for an event is the subset of IES information that has not yet been

reported.

Report Event Tree (RET): Conceptually, there is one such tree for
each event that can be generated by a wmonitoring agent. For an event E,
the root of this tree is the event itself and the children are the elements
of its UPES. The UPES can be calculated by subtracting RABS and RECS from
PES. The complete report tree can be generated by repeatedly adding the
elements of the UPES of the children events. However, as mentioned
earlier, it is possible in some languages to have cycles in the type
system. If the rule of adding the elements of UPES is blindly applied,
then the generation process will never terminate. For example, consider a
type Tl with types T2 and T3 in its UPES. Also, assume that for type T3, Tl
is in its UPES. The partially generated RET for a type Tl is shown in
FIG. 3. The children (the elements of its UPES) of Tl are T2 and T3.
However, Tl is a member of T3's UPES. If we blindly apply the generation

rule, it would result in an infinite tree.

10

15

20

25

30

35

40

19

So we add a related set and another condition to the RET generation.
Every RET has an associated UIES that contains the identity events for the
entity events in the tree. The UIES is updated before an entity event is
added to the RET. Further, we forbid adding those elements of UPES for an
event to the RET whose identity event is already contained in the UIES.
Let us see how this applies to the above example. At the point where the
generation rule is being applied to T3, UIES contains (T1l, T2). Now, Tl
cannot be added to the RET as a child of T3 since it is already present in

the UIES. Thus, this set and the additional condition stop the generation

process.

The above description of an RET generation methodology is depicted in
the flow chart of FIG. 4. First, in the RET generation methodology 400,
the initial report event tree is created with the given event E (402) as
the root (step 404). 2An empty UIES is created (step 406). If the event is
an entity type event, its identity event is added to the UIES (step 408).
Then, only those events of UPES that are not in UIES are identified. We
call this subset a Non-redundant UPES (NUPES). We create a starting NUPES
with E as the only event (step 410) and- apply a recursive operation (steps

412-418) to NUPES to generate the RET.

For each event in a NUPES, we create its new NUPES. In addition, for
each type related event in this set, a corresponding identity event is
added to UIES (step 414). The events in the NUPES then become the children
of the RET (step 418). Then, the generation process is recursively applied

to generate the RET until no new NUPES are created (step 416).

At this point, the RET and UIES are complete and ready to be used for
report generation. First, the UIES is processed (step 420). All the
identity events in the UIES are reported. Then the RET is traversed in a
left-to-right post-fix order for the generation of the events (step 422).
The concept of tree traversal in a left-to-right post-fix order is well
known in the art of data structures and tree algorithms. For the example
in FIG. 3, first the identity events for Tl, T2 and T3 are generated

followed by entity creation events for T2, T3 and then Tl in that order.

Given the above concepts, data structures and the sub-algorithm for
RET generation, we now refer to FIG. 5 which illustrates an embodiment of a
complete generic algorithm 500 for consistent generation of monitoring
events according to the preferred embodiments of the invention. When an

event is generated by the program execution environment, it is delivered to

10

15

20

25

30

35

40

20

the monitoring subsystem (agent). The monitoring subsystem performs
generic bookkeeping, as described previously (step 504). Then the event
502 is checked to determine if it is in selection (step 506). Depending on

the richness allowed in the filtering criteria, it could be as simple as
checking a flag on the event-type or it could be a complex function that

takes as input the event information and returms a true or false verdict.

If the event is in selection, then the event is handed over the RET
generation module {(of the monitoring agent) which performs the steps as
described in FIG. 4 and the events are reported (step 508). Further, for
each reported event, if it happens to be an activity-end event or an entity
reclamation event, the corresponding activity-begin events and entity
creation events are removed from the RABS and RECS, respectively (step
510). Such a removal allows for recycling of identifiers. That concludes

the processing of the event.

If the event is not in current selection (step 506), we check if it
still needs to be reported for maintaining event generation consistency.
An event needs to be reported if its an activity-end (e.g., method-leave)
event or an entity reclamation event (step 512) and the corresponding
activity-begin (e.g., method-enter) event or entity creation event is a
member of the RABS or RECS, respectively (step 516). If it needs to be
reported {(step 512 and step 516 succeed), then the event is reported and
the corresponding activity-begin event or entity creation event is removed
for the RABS or RECS, respectively (step 518). Such a removal allows for
recycling of identifiers. TIf the event is determined not to be an
activity-end or entity reclamation event, this is noted to event specific

bookkeeping (step 514). This concludes the processing of the event.

If the event is not in current selection, its an activity-end or
entity reclamation event and it need not be reported according to the above
conditions (step 512 succeeds but step 516 fails), then the event is

silently ignored.

However, if the event is not in current selection but its an
activity-begin or entity creation event (step 512 fails), then the
monitoring agent might have to do some event-specific bookkeeping, as
described previously. This is necessary to ensure monitoring consistency
in case of dynamic changes in filtering criteria that result in its related

events becoming part of the new selection. This concludes the processing

of the event.

10

15

20

25

30

35

40

21

Referring now to FIG. 6, a block diagram illustrating an exemplary
computer system for implementing preferred embodiments of the present
invention is shown. The computer system may comprise a processor 602
operatively coupled to memory 604 and I/O devices 606. It is to be
appreciated that the term “processor” as used herein is intended to include
any processing device, such as, for example, one that includes a CPU
(central processing unit). The term “memory” as used herein is intended to
include memory associated with a processor or CPU, such as, for example,
RAM, ROM, a fixed memory device (e.g., hard drive), a removable memory
device (e.g., diskette), flash memory, etc. In addition, the term
“input /output devices” or “I/0 devices” as used herein is intended to
include, for example, one or more input devices, e.g., keyboard, for
inputting data to the processing unit, and/or one or more output devices,
e.g., CRT display and/or printer, for presenting results associated with
the processing unit. It is also to be understood that “processor” may
refer to more than one processing device and that various elements
associated with a processing device may be shared by other processing
devices. Accordingly, software components including instructions or code
for performing the methodologies of the- preferred and alternative
embodiments of the invention, as described herein, may be stored in one or
more of the associated memory devices (e.g., ROM, fixed or removable
memory) and, when ready to be utilized, loaded in part or in whole (e.g.,
into RAM) and executed by a CPU. Thus, in accordance with this exemplary
implementation, it is to be understood that one or more of the elements
shown in FIG. 1 may be implemented on a computer system as illustrated in

FIG. 6.

While we have explained the methodologies of the preferred
embodiments of the invention generally for application to a large class of
problems, it is to be appreciated that one need not implement the invention
in the same manner as described in the illustrative embodiments. For
example, instead of explicitly creating the many sets described, one can
extend the object representation supported by a program execution
environment to carry additonal flags to denote set membership, thus
reducing the complexity and performance overheads of set management to
simple setting and resetting of flags in objects. Some program execution
environments are such that once objects are allocated in memory, their raw
memory address remains the same all through the program execution. In such
cases, the need for generating new identities for entities is obviated, as
well as the memory for storing identities. Further, instead of building a

complete RET before generating events, one can do a depth first expansion

10

15

22

and reporting of the RET which can reduce space overheads. Further, if the
program execution system invokes the monitoring subsystem along different
paths for different events, then the context in which a set of operations
is executed is known statically. This feature can be used to eliminate
run-time checks for the type of the event generated by the program

execution system.

Accordingly, it is to be understood that the methodologies of the
preferred and alternative embodiments of the invention can be readily
applied to the generation of a consistent set of monitoring events in the
presence of partial monitoring. Further, the consistency is maintained
even when the information subsetting criteria are dynamically changed
during program execution. The methodologies are general enough to apply to
a large class of systems that can be depicted in an object-oriented manner,
thus not necessarily to just object-oriented systems. An embodiment of the
present invention has been used, with many of the described optimisations,
for supporting consistent partial monitoring for programs written in the
Java programming language by modifying-a version of Java Virtual Machine

(avM) .

10

15

20

25

30

35

40

23

CLAIMS

1. A method of monitoring events generated by an object-oriented systen,

the method comprising the steps of:

monitoring events which describe executed operations associated with

the object-oriented system; and

applying one or more sequencing rules when reporting a subset of the
monitored events, .the one or more sequencing rules substantially ensuring

consistent reporting of the subset of monitored events.

2. A method as claimed in claim 1, wherein monitoring continues when event

reporting is at least partially disabled.

3. A method as claimed in claim 1 or claim 2, wherein the monitoring step
further comprises the step of dividing the monitored events into

categories.

4. A method as claimed in any of claims 1, 2 or 3, wherein one category
includes entity events, an entity event defining an existence status of a

given event.

5. A method as claimed in claim 4, wherein another category includes
activity events, an activity event defining an operation associated with a

given event.

6. A method as claimed in claim 5, wherein the entity events and activity
events are further divided into at least one of an object event category,
an execution event category, a type event category and a synchronization

event category.

7. A method as claimed in claim 5 or claim 6, wherein the one or more
sequencing rules substantially ensure consistency associated with an cbject

event.

8. A method as claimed in any of claims 5 to 7, wherein the one or more
sequencing rules substantially ensure consistency associated with an

execution event.

10

15

20

25

30

35

40

24

9. A method as claimed in any of claims 5 to 8, wherein the one or more
sequencing rules substantially ensure consistency associated with a type

event.

10. A method as claimed in any of claims 5 to 9, wherein the one or more
sequencing rules substantially ensure consistency associated with a

synchronization event.

11. A method as claimed in any of claims 5 to 10, wherein one the
sequencing rules is that an entity event reporting creation of an entity

precede an event reporting reclamation of the entity.

12. A method as claimed in any of claims 5 to 11, wherein one of the
sequencing rules is that an activity event referring to an entity appear

between respective entity events reporting creation and reclamation of the

entity.

13. A method as claimed in any of claims 5 to 12, wherein one of the
sequencing rules is that an entity is not:.reclaimed without reporting its

reclamation.

14. A method as claimed in any of claims 5 to 13, wherein one of the
sequencing rules is that an invocation is not reported without its

associated parent being reported.

15. A method as claimed in any of claims 5 to 14, wherein one of the

sequencing rules is that synchronization events maintain correct semantics.

16. A method as claimed in any preceding claim, wherein the monitoring
step includes monitoring events generated in association with the

object-oriented system executing a computer program.

17. A method as claimed any preceding claim, wherein determination of the
subset of the monitored events to be reported is made using ocne of a

dynamic and static criteriom.

18. Apparatus for monitoring events generated by an object-oriented

system, the apparatus comprising:

at least one processor operative to: (i) monitor events which

describe executed operations associated with the object-oriented system;

10

15

20

25

25

and (ii) apply one or more sequencing rules when reporting a subset
of the monitored events, the one or more sequencing rules substantially

ensuring consistent reporting of the subset of monitored events.

19. Apparatus as claimed in claim 18, wherein the monitoring operation

continues when event reporting is at least partially disabled.

20. Apparatus as claimed in claim 18, wherein the monitoring operation

further comprises dividing the monitored events into categories.

21. Apparatus as claimed in claim 20, wherein one category includes entity

events, an entity event defining an existence status of a given event.

22. Apparatus as claimed in claim 21, wherein another category includes
activity events, an activity event defining an operation associated with a

given event.

23. Apparatus as claimed in claim 22, .wherein the entity events and
activity events are further divided into at least one of an object event
category, an execution event category, a type event category and a

synchronization event category.

24. A computer program to, when loaded into a computer system and executed,

monitor events generated by an object-oriented system, the computer program

comprising computer code to perform the steps of a method as claimed in any

of claims 1 to 17.

&

Ko

~ Paterit

: ; '®
@ ‘/T . Pﬁ@ INVESTOR IN PEOPLE
L@
Application No: GB 0023999.6 Examiner: Adam Tucker
Claims searched: 1-24 Date of search: 21 August 2001
Patents Act 1977

Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK Cl (Ed.S): G4A AFMP, AFMD
Int Cl (Ed.7): GO6F 11/00, 11/30, 11/32, 11/34

Other: Online: WPI, EPODOC, PAJ, COMPUTER, IEL, INSPEC and selected internet
sites

Documents considered to be relevant:

Category| Identity of document and relevant passage Relevant
to claims

A | GB 2258063 A (Research Machines plc) See page 6 lines 10-20 -
X, E | WO 00/77643 A1 (Isogon Corp) See in particular page 9 line 19-page | 1-10, 16-

10 line 30 and page 13 line 26-page 14 line 6 24
X,Y | US 5819094 (Sato and Murayama) See whole document Xizld ;;18,
Y:2,19

X, Y | Liang and Viswanathan, "5" USENIX Conference on Object-Orientated
Technologies and Systems", published 3-7 May 1999, USENIX,
"Comprehensive Profiling Support in the Java Virtual Machine" See in
particular sections 2, 4 and 6

X, Y | Systems and Computers in Japan, Vol 27, No. 11, 1996, Harada M.,
Sawada T., and Fujisawa T., "A Structured Object Modelling Method ~ |X 1 318,

X:1-24
Y:2,19

1
2,

. . ! 20-24

SOMM and Its Environment SOME", pages 1-18, see in particular pp 1- | y.5 19

3,5,10, 13
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Documentpublished on or after the declared priority date butbefore the

with one or more other documents of same category. filing date of this invention.
B Patent document published on or after, but with priority date earier

& Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

4 e
& 1y The % -~
3 Office ¢ .
ﬁc&T . TR ;?Oié INVESTOR IN PEOPLE
Application No: GB 0023999.6 ~ Examiner: Adam Tucker

Claims searched: 1-24 Date of search: 21 August 2001

Category| Identity of document and relevant passage Relevant
to claims
A Aral and Gernter, Proceedings of the ACM/SIGPLAN PPEALS 1988,
Parallel Programming: Experience with Applications, Languages and
Systems, published July 1988, "Non-intrusive and Interactive Profiling
in Parasight", pages 21-30
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Documentpublished on or after the declared priority date but before the
with one or more other documents of same category. filing date of this invention.
E Patent document published on or after, but with priority date earlier
&

Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

