

US 20140283211A1

(19) United States(12) Patent Application Publication

Crawford et al.

(54) METHODS AND COMPOSITIONS FOR PLANT PEST CONTROL

- (71) Applicant: Monsanto Technology LLC, St. Louis, MO (US)
- (72) Inventors: Michael J. Crawford, St. Louis, MO (US); Michelle L. Gasper, St. Charles, MO (US); Xiangqian Li, Chesterfield, MO (US); Barry J. Shortt, New Melle, MO (US); Deryck Jeremy Williams, University City, MO (US)
- (73) Assignee: Monsanto Technology LLC, St. Louis, MO (US)
- (21) Appl. No.: 14/209,108
- (22) Filed: Mar. 13, 2014

Related U.S. Application Data

(60) Provisional application No. 61/783,260, filed on Mar. 14, 2013.

(10) Pub. No.: US 2014/0283211 A1 (43) Pub. Date: Sep. 18, 2014

Publication Classification

- (51) Int. Cl. *C12N 15/82* (2006.01)

(57) **ABSTRACT**

Provided are methods and compositions to improve fungal disease resistance and/or nematode resistance in various crop plants. Also provided are combinations of compositions and methods to improve fungal disease resistance and/or nematode resistance in various crop plants.

Figure 1

METHODS AND COMPOSITIONS FOR PLANT PEST CONTROL

[0001] This application claims benefit of U.S. Provisional Patent Application No. 61/783,260, filed on Mar. 14, 2013, which is incorporated herein by reference in its entirety.

INCORPORATION OF SEQUENCE LISTING

[0002] A sequence listing is provided herewith as a part of this U.S. patent application via the USPTO's EFS system in the file named "40_70_59232_Seq_listing.txt" which is 101,482 bytes in size (measured in MS-Windows®), was created on Mar. 12, 2014, and is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

[0003] Powdery mildews are fungal diseases that affect a wide range of plants including cereals, grasses, vegetables, ornamentals, weeds, shrubs, fruit trees, broad-leaved shade and forest trees, that is caused by different species of fungi in the order Erysiphales. The disease is characterized by spots or patches of white to grayish, talcum-powder-like growth that produce tiny, pinhead-sized, spherical fruiting structures (the cleistothecia or overwintering bodies of the fungus), that are first white, later yellow-brown and finally black. The fungi that cause powdery mildews are host specific and cannot survive without the proper host plant. They produce mycelium (fungal threads) that grow only on the surface of the plant and feed by sending haustoria, or root-like structures, into the epidermal cells of the plant. The fungi overwinter on plant debris as cleistothecia or mycelia. In the spring, the cleistothecia produce spores that are moved to susceptible hosts by rain, wind or insects.

[0004] Powdery mildew disease is particularly prevalent in temperate and humid climates, where they frequently cause significant yield losses and quality reductions in various agricultural settings including greenhouse and field farming. This affects key cereals (e.g. barley and wheat), horticultural crops (e.g. grapevine, pea and tomato) and economically important ornamentals (e.g. roses). Limited access to natural sources of resistance to powdery mildews, rapid changes in pathogen virulence and the time consuming introgression of suitable resistance genes into elite varieties has led to the widespread use of fungicides to control the disease. This has not surprisingly led to the evolution and spread of fungicide resistance, which is especially dramatic amongst the most economically important powdery mildews.

[0005] Downy mildew diseases are caused by oomycete microbes from the family Peronosporaceae that are parasites of plants. Peronosporaceae are obligate biotrophic plant pathogens and parasitize their host plants as an intercellular mycelium using haustoria to penetrate the host cells. The downy mildews reproduce asexually by forming sporangia on distinctive white sporangiophores usually formed on the lower surface of infected leaves. These constitute the "downy mildew" and the initial symptoms appear on leaves as light green to yellow spots. The sporangia are wind-dispersed to the surface of other leaves. Depending on the genus, the sporangia may germinate by forming zoospores or by germ-tube. In the latter case, the sporangia behave like fungal conidia and are often referred to as such. Sexual reproduction is via oospores.

[0006] Most Peronosporaceae are pathogens of herbaceous dicots. Some downy mildew genera have relatively restricted

host ranges, e.g. Basidiophora, Paraperonospora, Protobremia and Bremia on Asteraceae; Perofascia and Hyaloperonospora almost exclusively on Brassicaceae; Viennotia, Graminivora, Poakatesthia, Sclerospora and Peronosclerospora on Poaceae, Plasmoverna on Ranunculaceae. However, the largest genera, Peronospora and Plasmopara, have very wide host ranges.

[0007] In commercial agriculture, downy mildews are a particular problem for growers of crucifers, grapes and vegetables that grow on vines. Peronosporaceae of economic importance include *Plasmopara viticola* which infect grapevines, *Peronospora tabacina* which causes blue mold on tobacco, *Bremia lactucae*, a parasite on lettuce, and *Plasmopara halstedii* on sunflower.

[0008] Rusts (Pucciniales, formerly Uredinales) are obligate biotrophic parasites of vascular plants. Rusts affect a variety of plants; leaves, stems, fruits and seeds and is most commonly seen as coloured powder, composed of tiny aeciospores which land on vegetation producing pustules, or uredia, that form on the lower surfaces. During late spring or early summer, yellow orange or brown, hairlike or ligulate structures called telia grow on the leaves or emerge from bark of woody hosts. These telia produce teliospores which will germinate into aerial basidiospores, spreading and causing further infection.

[0009] The Death No Defense 1 (DND1) gene was identified from an Arabidopsis mutant unable to mount a Hypersensitive Response upon challenge by avirulent Pseudomonas syringae strains but nevertheless able to control pathogen infection (Yu I C, Parker J, Bent A F. Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc Natl Acad Sci USA. 1998 95(13):7819-24). The DND1 mutant was subsequently shown to be a loss of function allele in the AtCNGC2, a cyclic nucleotide-gated ion channel which results in constitutively elevated salicylic acid levels and increased pathogenesis-related (PR) gene expression (Clough S J et al. The Arabidopsis dnd1 "defense, no death" gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA. 2000 97(16):9323-8). In addition to elevated resistance to Pseudomonas, the DND1 Arabidopsis mutant demonstrated higher resistance to Xanthomonas campestris pv. campestris and X. c. pv. Raphani (bacteria), Peronospora parasitica (oomycete) and Tobacco ringspot virus. However plants exhibit a dwarf phenotype and were conditional lesion mimics under certain conditions

SUMMARY OF THE INVENTION

[0010] The present embodiments provide for compositions comprising polynucleotide molecules and methods for treating a plant to alter or regulate gene or gene transcript expression in the plant, for example, by providing RNA or DNA for inhibition of expression. Various aspects provide compositions comprising polynucleotide molecules and related methods for topically applying such compositions to plants to regulate endogenous DND1 genes in a plant cell. The polynucleotides, compositions, and methods disclosed herein are useful in decreasing levels of DND1 transcript and improving fungal disease and/or nematode resistance of a plant.

[0011] In one embodiment, the polynucleotide molecules are provided in compositions that can permeate or be absorbed into living plant tissue to initiate localized, partially systemic, or systemic gene inhibition or regulation. In certain embodiments, the polynucleotide molecules ultimately provide to a plant, or allow the in planta production of, RNA that

is capable of hybridizing under physiological conditions in a plant cell to RNA transcribed from a target endogenous gene or target transgene in the plant cell, thereby effecting regulation of the endogenous DND1 target gene. In certain embodiments, regulation of the DND1 target gene, such as by silencing or suppression of the target gene, leads to the upregulation of another gene that is itself affected or regulated by decreasing the DND1 target gene's expression.

[0012] In certain aspects or embodiments, the topical application of a composition comprising an exogenous polynucleotide and a transfer agent to a plant or plant part according to the methods described herein does not necessarily result in nor require the exogenous polynucleotide's integration into a chromosome of the plant. In certain aspects or embodiments, the topical application of a composition comprising an exogenous polynucleotide and a transfer agent to a plant or plant part according to the methods described herein does not necessarily result in nor require transcription of the exogenous polynucleotide from DNA integrated into a chromosome of the plant. In certain embodiments, topical application of a composition comprising an exogenous polynucleotide and a transfer agent to a plant according to the methods described herein also does not necessarily require that the exogenous polynucleotide be physically bound to a particle, such as in biolistic mediated introduction of polynucleotides associated with a gold or tungsten particles into internal portions of a plant, plant part, or plant cell. An exogenous polynucleotide used in certain methods and compositions provided herein can optionally be associated with an operably linked promoter sequence in certain embodiments of the methods provided herein. However, in other embodiments, an exogenous polynucleotide used in certain methods and compositions provided herein is not associated with an operably linked promoter sequence. Also, in certain embodiments, an exogenous polynucleotide used in certain methods and compositions provided herein is not operably linked to a viral vector.

[0013] In certain embodiments, methods for improving fungal disease resistance and/or nematode resistance in a plant comprising topically applying compositions comprising a polynucleotide and a transfer agent that suppress the target DND1 gene are provided. In certain embodiments, methods for selectively suppressing the target DND1 gene by topically applying the polynucleotide composition to a plant surface at one or more selected seed, vegetative, or reproductive stage(s) of plant growth are provided. Such methods can provide for gene suppression in a plant or plant part on an as needed or as desired basis. In certain embodiments, methods for selectively suppressing the target DND1 gene by topically applying the polynucleotide composition to a plant surface at one or more pre-determined seed, vegetative, or reproductive stage(s) of plant growth are provided. Such methods can provide for DND1 gene suppression in a plant or plant part that obviates any undesired or unnecessary effects of suppressing the genes expression at certain seed, vegetative, or reproductive stage(s) of plant development.

[0014] In certain embodiments, methods for selectively improving fungal disease resistance and/or nematode resistance in a plant by topically applying the polynucleotide composition to the plant surface at one or more selected seed, vegetative, or reproductive stage(s) are provided. Such methods can provide for improved fungal disease resistance and/or nematode disease resistance in a plant or plant part on an as needed or as desired basis. In certain embodiments, methods for selectively improving fungal disease and/or nematode

resistance in a plant by topically applying the polynucleotide composition to the plant surface at one or more predetermined seed, vegetative, or reproductive stage(s) are provided. Such methods can provide for improving fungal disease and/or nematode resistance in a plant or plant part that obviates any undesired or unnecessary effects of suppressing DND1 gene expression at certain seed, vegetative, or reproductive stage (s) of plant development.

[0015] Polynucleotides that can be used to suppress a DND1 include, but are not limited to, any of: i) polynucleotides comprising at least 18 contiguous nucleotides that are essentially identical or essentially complementary to a gene or a transcript of the gene(s) of SEQ ID NO: 1-33; ii) polynucleotides comprising at least 18 contiguous nucleotides that are essentially identical or essentially complementary to a polynucleotides of SEQ ID NO: 34-59; iii) polynucleotides of SEQ ID NO: 34-59 (Table 2); or iv) SEQ ID NO: 64-67 (Table 4). Methods and compositions that provide for the topical application of certain polynucleotides in the presence of transfer agents can be used to suppress DND1 gene expression in an optimal manner. In certain embodiments, the compositions provided herein can be applied on an "as needed" basis upon scouting for the occurrence of fungal disease or nematodes. In certain embodiments, the compositions can be applied in a manner that obviates any deleterious effects on yield or other characteristics that can be associated with suppression of DND1 gene expression in a crop plant. The applied polynucleotides are complementary to the DND1 target host gene in plants and their topical application leads to suppression of the DND1 gene's activity.

[0016] Provided herein are compositions and methods for controlling plant fungal diseases. Plant fungal diseases that can be controlled with the methods and compositions provided herein include, but are not limited to, obligate biotrophic powdery mildew, downy mildew and rust fungal infestations in plants. In certain embodiments, methods and compositions for reducing expression of one or more host plant DND1 polynucleotide and/or protein molecules in one or more cells or tissues of the plant such that the plant is rendered less susceptible to fungal infections from the order Erysiphales, the family Peronosporaceae or the order Pucciniales, are provided. In certain embodiments, nucleotide and amino acid sequences of plant DND1 genes which can be downregulated by methods and compositions provided herein to increase plant resistance to powdery mildew, downy mildew or rust infection are disclosed.

[0017] Also provided herein are methods and compositions that provide for reductions in expression of DND1 target polynucleotide and protein molecules in at least the cells of a plant root and for improved resistance to nematodes. Nematodes that can be controlled by the methods and compositions provided herein include, but are not limited to, root knot nematodes (such as Meloidogyne sp.), cyst nematodes (such as Globodera sp. and Heterodera sp.), lesion nematodes (such as Pratylenchus sp.), and the like. In certain embodiments, DND1 expression is reduced in plant root cells from which nematodes feed by providing topically to plant leaves, shoots, roots and/or seeds compositions comprising polynucleotides that comprise at least 18 contiguous nucleotides that are essentially identical or essentially complementary to a DND1 gene or to a transcript of the DND1 gene; and a transfer agent.

[0018] Also provided are methods and compositions where topically induced reductions in DND1 transcript or protein

levels are used to achieve powdery mildew, downy mildew or rust control while minimizing deleterious pleiotropic effects in the host plant. Such methods and compositions provide for optimized levels of DND1 gene inhibition and/or optimized timing of DND1 gene inhibition.

[0019] Certain embodiments are directed to methods for producing a plant exhibiting an improvement in fungal disease resistance and/or nematode resistance comprising topically applying to a plant surface a composition that comprises:

a. at least one polynucleotide that comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to a DND1 gene or to a transcript of the gene; and

b. a transfer agent, wherein the plant exhibits an improvement in fungal disease resistance and/or nematode resistance that results from suppression of the DND1 gene. In certain embodiments, the polynucleotide molecule comprises sense ssDNA, sense ssRNA, dsRNA, dsDNA, a double stranded DNA/RNA hybrid, anti-sense ssDNA, or anti-sense ssRNA. In certain embodiments, the polynucleotide is selected from the group consisting of SEQ ID NO: 34-59, or wherein the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 1-33. In certain embodiments, the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 64-67. In certain embodiments: (a) the plant is a cucumber plant, the gene or the transcript is a cucumber DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 1, 3, 7, 11, or 19; (b) the plant is a soybean plant, the gene or the transcript is a soybean DND1 gene or transcript, and the polynucleotide molecule is selected from the group consisting of SEQ ID NO: 34-59, or the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 2, 4, 21, or 31; (c) the plant is a lettuce plant, the gene or the transcript is a lettuce DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 5 or 9; (d) the plant is a tomato plant, the gene or the transcript is a tomato DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 6, 10, 64, 65, 66 or 67; (e) the plant is a barley plant, the gene or the transcript is a barley DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 8 or 12; (f) the plant is a cotton plant, the gene or the transcript is a cotton DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 13, 14, 18, 25 or 26; (g) the plant is a melon plant, the gene or the transcript is a melon DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 15, 27, or 28; (h) the plant is a maize plant, the gene or the transcript is a maize DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 16, 20, 29, or 30; (i) the plant is a rice plant, the gene or the transcript is a rice DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 17, 22, 32, or 33; or, (j) the plant is a wheat plant, the gene or the transcript is a wheat DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 23 or 24. In certain embodiments, the composition comprises any combination of two or more polynucleotide molecules. In certain embodiments, the polynucleotide is at least 18 to about 24, about 25 to about 50, about 51 to about 100, about 101 to about 300, about 301 to about 500, or at least about 500 or more residues in length. In certain embodiments, the composition further comprises a non-polynucleotide herbicidal molecule, a polynucleotide herbicidal molecule, a polynucleotide that suppresses an herbicide target gene, an insecticide, a fungicide, a nematocide, or a combination thereof. In certain embodiments, the composition further comprises a non-polynucleotide herbicidal molecule and the plant is resistant to the herbicidal molecule. In certain embodiments, the transfer agent comprises an organosilicone preparation. In certain embodiments, the polynucleotide is not operably linked to a viral vector. In certain embodiments, the polynucleotide is not integrated into the plant chromosome. Further embodiments are directed to: a plant made according to any of the above-described methods; progeny of plants that exhibit the improvements in fungal disease resistance and/or nematode resistance; seed of the plants, wherein seed from the plants exhibits the improvement in fungal disease resistance and/or nematode resistance; and a processed product of the plants, the progeny plants, or the seeds, wherein the processed products exhibit the improvement in fungal disease resistance and/or nematode resistance. In certain embodiments, the processed product of the plant or plant part exhibits an improved attribute relative to a processed product of an untreated control plant and the improved attribute results from the improved fungal disease resistance and/or nematode resistance. An improved attribute of a processed product can include, but is not limited to, decreased mycotoxin content, improved nutritional content, improved storage characteristics, improved flavor, improved consistency, and the like when compared to a processed product obtained from an untreated plant or plant part.

[0020] An additional embodiment is directed to a composition comprising a polynucleotide molecule that comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to a DND1 gene or transcript of the gene, wherein the polynucleotide is not operably linked to a promoter; and, b) a transfer agent. In certain embodiments, the polynucleotide is selected from the group consisting of SEQ ID NO: 34-59, or the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 1-33. In certain embodiments, the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 64-67. In certain embodiments: (a) the plant is a cucumber plant, the gene or the transcript is a cucumber DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 1, 3, 7, 11, or 19; (b) the plant is a soybean plant, the gene or the transcript is a soybean DND1 gene or transcript, and the polynucleotide molecule is selected from the group consisting of SEQ ID NO: 34-59, or the polynucleotide comprises at least 18 contiguous nucleotides that are

essentially identical or essentially complementary to SEQ ID NO: 2, 4, 21, or 31; (c) the plant is a lettuce plant, the gene or the transcript is a lettuce DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 5 or 9; (d) the plant is a tomato plant, the gene or the transcript is a tomato DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 6, 10, 64, 65, 66 or 67; (e) the plant is a barley plant, the gene or the transcript is a barley DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 8 or 12; (f) the plant is a cotton plant, the gene or the transcript is a cotton DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 13, 14, 18, 25 or 26; (g) the plant is a melon plant, the gene or the transcript is a melon DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 15, 27, or 28; (h) the plant is a maize plant, the gene or the transcript is a maize DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 16, 20, 29, or 30; (i) the plant is a rice plant, the gene or the transcript is a rice DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 17, 22, 32, or 33; or, (j) the plant is a wheat plant, the gene or the transcript is a wheat DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 23 or 24. In certain embodiments, the polynucleotide is at least 18 to about 24, about 25 to about 50, about 51 to about 100, about 101 to about 300, about 301 to about 500, or at least about 500 or more residues in length. In certain embodiments, the composition further comprises a non-polynucleotide herbicidal molecule, a polynucleotide herbicidal molecule, a polynucleotide that suppresses an herbicide target gene, an insecticide, a fungicide, a nematocide, or a combination thereof. In certain embodiments, the transfer agent is an organosilicone preparation. In certain embodiments, the polynucleotide is not physically bound to a biolistic particle.

[0021] Another embodiment is directed to a method of making a composition comprising the step of combining at least: (a) a polynucleotide molecule comprising at least 18 contiguous nucleotides that are essentially identical or essentially complementary to a DND1 gene or transcript of a plant, wherein the polynucleotide is not operably linked to a promoter or a viral vector; and, (b) a transfer agent. In certain embodiments, the polynucleotide is obtained by in vivo biosynthesis, in vitro enzymatic synthesis, or chemical synthesis. In certain embodiments, the method further comprises combining with the polynucleotide and the transfer agent at least one of a non-polynucleotide herbicidal molecule, a polynucleotide herbicidal molecule, a fungicide, and/or a nematocide. In certain embodiments, the transfer agent is an organosilicone preparation.

[0022] Yet another embodiment is directed to a method of identifying a polynucleotide for improving fungal disease resistance and/or nematode resistance in a plant comprising;

tially identical or essentially complementary to a DND1 gene or transcript of a plant; (b) topically applying to a surface of at least one of the plants a composition comprising at least one polynucleotide from the population and an transfer agent to obtain a treated plant; and, (c) identifying a treated plant that exhibits suppression of the DND1 gene or exhibits an improvement in fungal disease resistance or exhibits an improvement in nematode resistance, thereby identifying a polynucleotide that improves fungal disease resistance and/or nematode resistance in the plant. In certain embodiments, the polynucleotide is selected from the group consisting of SEQ ID NO: 34-59, or the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 1-33. In certain embodiments, the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 64-67. In certain embodiments: (a) the plant is a cucumber plant, the gene or the transcript is a cucumber DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 1, 3, 7, 11, or 19; (b) the plant is a soybean plant, the gene or the transcript is a soybean DND1 gene or transcript, and the polynucleotide molecule is selected from the group consisting of SEQ ID NO: 34-59, or the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 2, 4, 21, or 31; (c) the plant is a lettuce plant, the gene or the transcript is a lettuce DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 5 or 9; (d) the plant is a tomato plant, the gene or the transcript is a tomato DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 6, 10, 64, 65, 66 or 67; (e) the plant is a barley plant, the gene or the transcript is a barley DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 8 or 12; (f) the plant is a cotton plant, the gene or the transcript is a cotton DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 13, 14, 18, 25 or 26; (g) the plant is a melon plant, the gene or the transcript is a melon DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 15, 27, or 28; (h) the plant is a maize plant, the gene or the transcript is a maize DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 16, 20, 29, or 30; (i) the plant is a rice plant, the gene or the transcript is a rice DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 17, 22, 32, or 33; or, (j) the plant is a wheat plant, the gene or the transcript is a wheat DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 23 or 24.

(a) selecting a population of polynucleotides that are essen-

[0023] A further embodiment is directed to a plant comprising an exogenous polynucleotide that comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to a DND1 gene or transcript of the gene, wherein the exogenous polynucleotide is not operably linked to a promoter or to a viral vector, is not integrated into the chromosomal DNA of the plant, and is not found in a non-transgenic plant; and, wherein the plant exhibits an improvement in fungal disease resistance and/or nematode resistance that results from suppression of the DND1 gene. In certain embodiments, plant further comprises an organosilicone compound or a component thereof. In certain embodiments, the polynucleotide is selected from the group consisting of SEQ ID NO: 34-59, or comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 1-33. In certain embodiments, the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 64-67. In certain embodiments: (a) the plant is a cucumber plant, the gene or the transcript is a cucumber DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 1, 3, 7, 11, or 19; (b) the plant is a soybean plant, the gene or the transcript is a soybean DND1 gene or transcript, and the polynucleotide molecule is selected from the group consisting of SEQ ID NO: 34-59, or the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 2, 4, 21, or 31; (c) the plant is a lettuce plant, the gene or the transcript is a lettuce DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 5 or 9; (d) the plant is a tomato plant, the gene or the transcript is a tomato DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 6, 10, 64, 65, 66 or 67; (e) the plant is a barley plant, the gene or the transcript is a barley DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 8 or 12; (f) the plant is a cotton plant, the gene or the transcript is a cotton DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 13, 14, 18, 25 or 26; (g) the plant is a melon plant, the gene or the transcript is a melon DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 15, 27, or 28; (h) the plant is a maize plant, the gene or the transcript is a maize DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 16, 20, 29, or 30; (i) the plant is a rice plant, the gene or the transcript is a rice DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 17, 22, 32, or 33; or, (j) the plant is a wheat plant, the gene or the transcript is a wheat DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 23 or 24.

[0024] An additional embodiment is directed to a plant part comprising an exogenous polynucleotide that comprises at least 18 contiguous nucleotides that are essentially identical the gene, wherein the exogenous polynucleotide is not operably linked to a promoter or to a viral vector and is not found in a non-transgenic plant; and, wherein the plant part exhibits an improvement in fungal disease resistance and/or nematode resistance that results from suppression of the DND1 gene. In certain embodiments, the polynucleotide is selected from the group consisting of SEQ ID NO: 34-59, or wherein the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 1-33. In certain embodiments, the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 64-67. In certain embodiments: (a) the plant is a cucumber plant, the gene or the transcript is a cucumber DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 1, 3, 11, or 19; (b) the plant is a soybean plant, the gene or the transcript is a soybean DND1 gene or transcript, and the polynucleotide molecule is selected from the group consisting of SEQ ID NO: 34-59, or the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 2, 4, 21, or 31; (c) the plant is a lettuce plant, the gene or the transcript is a lettuce DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQID NO: 5 or 9; (d) the plant is a tomato plant, the gene or the transcript is a tomato DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 6, 10, 64, 65, 66 or 67; (e) the plant is a barley plant, the gene or the transcript is a barley DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 8 or 12; (f) the plant is a cotton plant, the gene or the transcript is a cotton DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 13, 14, 18, 25 or 26; (g) the plant is a melon plant, the gene or the transcript is a melon DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEO ID NO: 15, 27, or 28; (h) the plant is a maize plant, the gene or the transcript is a maize DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 16, 20, 29, or 30; (i) the plant is a rice plant, the gene or the transcript is a rice DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 17, 22, 32, or 33; or, (j) the plant is a wheat plant, the gene or the transcript is a wheat DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 23 or 24. In certain embodiments, the plant part is a flower, meristem, ovule, stem, tuber, fruit, anther, pollen, leaf, root, or seed. In certain embodiments, the plant part is a seed. Also provided are processed plant products obtained from any of the aforementioned plant parts, wherein the processed plant products exhibit an improved attribute relative to a processed plant product of an untreated control plant and wherein the improved attribute

or essentially complementary to a DND1 gene or transcript of

results from the improved fungal disease resistance and/or nematode resistance. In certain embodiments, the processed product is a meal, a pulp, a feed, or a food product. Another embodiment is directed to a plant that exhibits an improvement in fungal disease resistance and/or nematode resistance, wherein the plant was topically treated with a composition that comprises: (a) at least one polynucleotide that comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to a DND1 gene or to a transcript of the gene; and (b) a transfer agent; and, wherein the plant exhibits an improvement in fungal disease resistance and/or nematode resistance that results from suppression of the DND1 gene.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] FIG. 1 shows the efficacy of certain DND1 ssDNA trigger sequences to *Phytophthora sojae* root rot (PRR).
[0026] FIG. 2 shows the average total cysts removed from 4 replicas per treatment.

[0027] FIG. **3** is a graph showing the results of an evaluation of Tomato Powdery Mildew disease in treated plants.

DETAILED DESCRIPTION

I. Definitions

[0028] The following definitions and methods are provided to better define the present invention and to guide those of ordinary skill in the art in the practice of the present invention. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art.

[0029] Where a term is provided in the singular, the inventors also contemplate embodiments described by the plural of that term.

[0030] As used herein, the terms "DNA," "DNA molecule," and "DNA polynucleotide molecule" refer to a singlestranded DNA or double-stranded DNA molecule of genomic or synthetic origin, such as, a polymer of deoxyribonucleotide bases or a DNA polynucleotide molecule.

[0031] As used herein, the terms "DNA sequence," "DNA nucleotide sequence," and "DNA polynucleotide sequence" refer to the nucleotide sequence of a DNA molecule.

[0032] As used herein, the term "gene" refers to any portion of a nucleic acid that provides for expression of a transcript or encodes a transcript. A "gene" thus includes, but is not limited to, a promoter region, 5' untranslated regions, transcript encoding regions that can include intronic regions, and 3' untranslated regions.

[0033] As used herein, the terms "RNA," "RNA molecule," and "RNA polynucleotide molecule" refer to a singlestranded RNA or double-stranded RNA molecule of genomic or synthetic origin, such as, a polymer of ribonucleotide bases that comprise single or double stranded regions.

[0034] Unless otherwise stated, nucleotide sequences in the text of this specification are given, when read from left to right, in the 5' to 3' direction. The nomenclature used herein is that required by Title 37 of the United States Code of Federal Regulations §1.822 and set forth in the tables in WIPO Standard ST.25 (1998), Appendix 2, Tables 1 and 3.

[0035] As used herein, a "plant surface" refers to any exterior portion of a plant. Plant surfaces thus include, but are not limited to, the surfaces of flowers, stems, tubers, fruit, anthers, pollen, leaves, roots, or seeds. A plant surface can be

on a portion of a plant that is attached to other portions of a plant or on a portion of a plant that is detached from the plant. [0036] As used herein, the phrase "polynucleotide is not operably linked to a promoter" refers to a polynucleotide that is not covalently linked to a polynucleotide promoter sequence that is specifically recognized by either a DNA dependent RNA polymerase II protein or by a viral RNA dependent RNA polymerase in such a manner that the polynucleotide will be transcribed by the DNA dependent RNA polymerase. A polynucleotide that is not operably linked to a promoter can be transcribed by a plant RNA dependent RNA polymerase.

[0037] As used herein, any polynucleotide sequences of SEQ ID NO: 1-33, 34-63 and 64-67, though displayed in the sequence listing in the form of ssDNA, encompass all other polynucleotide forms such as dsDNA equivalents, ssDNA equivalents, ssRNA equivalents, dsRNA, and ssDNA complements.

[0038] As used herein, a first nucleic-acid sequence is "operably" connected or "linked" with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to an RNA and/or protein-coding sequence if the promoter provides for transcription or expression of the RNA or coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein-coding regions, are in the same reading frame.

[0039] As used herein, the phrase "organosilicone preparation" refers to a liquid comprising one or more organosilicone compounds, wherein the liquid or components contained therein, when combined with a polynucleotide in a composition that is topically applied to a target plant surface, enable the polynucleotide to enter a plant cell. Exemplary organosilicone preparations include, but are not limited to, preparations marketed under the trade names "Silwet®" or "BREAK-THRU®" and preparations provided in Table 1. In certain embodiments, an organosilicone preparation can enable a polynucleotide to enter a plant cell in a manner permitting a polynucleotide suppression of target gene expression in the plant cell.

[0040] As used herein, the phrase "provides for an improvement in fungal disease resistance and/or nematode resistance" refers- to any measurable increase in a plants resistance to fungal- and/or nematode-induced damage. In certain embodiments, an improvement in fungal disease resistance and/or nematode resistance in a plant or plant part can be determined in a comparison to a control plant or plant part that has not been treated with a composition comprising a polynucleotide and a transfer agent. When used in this context, a control plant is a plant that has not undergone treatment with polynucleotide and a transfer agent. Such control plants would include, but are not limited to, untreated plants or mock treated plants.

[0041] As used herein, the phrase "provides for a reduction", when used in the context of a transcript or a protein in a plant or plant part, refers to any measurable decrease in the level of transcript or protein in a plant or plant part. In certain embodiments, a reduction of the level of a transcript or protein in a plant or plant part can be determined in a comparison to a control plant or plant part that has not been treated with a composition comprising a polynucleotide and a transfer agent. When used in this context, a control plant or plant part

is a plant or plant part that has not undergone treatment with polynucleotide and a transfer agent. Such control plants or plant parts would include, but are not limited to, untreated or mock treated plants and plant parts.

[0042] As used herein, the phrase "wherein said plant does not comprise a transgene" refers to a plant that lacks either a DNA molecule comprising a promoter that is operably linked to a polynucleotide or a recombinant viral vector.

[0043] As used herein, the phrase "suppressing expression" or "suppression", when used in the context of a gene, refers any measurable decrease in the amount and/or activity of a product encoded by the gene. Thus, expression of a gene can be suppressed when there is a reduction in levels of a transcript from the gene, a reduction in levels of a protein encoded by the gene, a reduction in the activity of the transcript from the gene, a reduction in the activity of a protein encoded by the gene, any one of the preceding conditions, or any combination of the preceding conditions. In this context, the activity of a transcript includes, but is not limited to, its ability to be translated into a protein and/or to exert any RNA-mediated biologic or biochemical effect. In this context, the activity of a protein includes, but is not limited to, its ability to exert any protein-mediated biologic or biochemical effect. In certain embodiments, a suppression of gene expression in a plant or plant part can be determined in a comparison of gene product levels or activities in a treated plant to a control plant or plant part that has not been treated with a composition comprising a polynucleotide and a transfer agent. When used in this context, a control plant or plant part is a plant or plant part that has not undergone treatment with polynucleotide and a transfer agent. Such control plants or plant parts would include, but are not limited to, untreated or mock treated plants and plant parts.

[0044] As used herein, the term "transcript" corresponds to any RNA that is produced from a gene by the process of transcription. A transcript of a gene can thus comprise a primary transcription product which can contain introns or can comprise a mature RNA that lacks introns.

[0045] As used herein, the term "liquid" refers to both homogeneous mixtures such as solutions and non-homogeneous mixtures such as suspensions, colloids, micelles, and emulsions.

II. Overview

[0046] Provided herein are certain methods and polynucleotide compositions that can be applied to living plant cells/ tissues to suppress expression of target genes and that provide improved fungal disease resistance and/or nematode resistance to a crop plant. Also provided herein are plants and plant parts exhibiting fungal disease resistance and/or nematode resistance as well as processed products of such plants or plant parts. The compositions may be topically applied to the surface of a plant, such as to the surface of a leaf, and include a transfer agent. Aspects of the method can be applied to various crops, for example, including but not limited to: i) row crop plants including, but are not limited to, corn, barley, sorghum, soybean, cotton, canola, sugar beet, alfalfa, sugarcane, rice, and wheat; ii) vegetable plants including, but not limited to, tomato, potato, sweet pepper, hot pepper, melon, watermelon, cucumber, eggplant, cauliflower, broccoli, lettuce, spinach, onion, peas, carrots, sweet corn, Chinese cabbage, leek, fennel, pumpkin, squash or gourd, radish, Brussels sprouts, tomatillo, garden beans, dry beans, or okra; iii) culinary plants including, but not limited to, basil, parsley,

coffee, or tea; iv) fruit plants including but not limited to apple, pear, cherry, peach, plum, apricot, banana, plantain, table grape, wine grape, citrus, avocado, mango, or berry; v) a tree grown for ornamental or commercial use, including, but not limited to, a fruit or nut tree; or, vi) an ornamental plant (e.g., an ornamental flowering plant or shrub or turf grass). The methods and compositions provided herein can also be applied to plants produced by a cutting, cloning, or grafting process (i.e., a plant not grown from a seed) that include fruit trees and plants. Fruit trees produced by such processes include, but are not limited to, citrus and apple trees. Plants produced by such processes include, but are not limited to, avocados, tomatoes, eggplant, cucumber, melons, watermelons, and grapes as well as various ornamental plants.

[0047] Without being bound by theory, the compositions and methods as described herein are believed to operate through one or more of the several natural cellular pathways involved in RNA-mediated gene suppression as generally described in Brodersen and Voinnet (2006), Trends Genetics, 22:268-280; Tomari and Zamore (2005) Genes & Dev., 19:517-529; Vaucheret (2006) Genes Dev., 20:759-771; Meins et al. (2005) Annu. Rev. Cell Dev. Biol., 21:297-318; and Jones-Rhoades et al. (2006) Annu. Rev. Plant Biol., 57:19-53. RNA-mediated gene suppression generally involves a double-stranded RNA (dsRNA) intermediate that is formed intra-molecularly within a single RNA molecule or inter-molecularly between two RNA molecules. This longer dsRNA intermediate is processed by a ribonuclease of the RNAase III family (Dicer or Dicer-like ribonuclease) to one or more shorter double-stranded RNAs, one strand of which is incorporated into the RNA-induced silencing complex ("RISC"). For example, the siRNA pathway involves the cleavage of a longer double-stranded RNA intermediate to small interfering RNAs ("siRNAs"). The size of siRNAs is believed to range from about 19 to about 25 base pairs, but the most common classes of siRNAs in plants include those containing 21 to 24 base pairs (See, Hamilton et al. (2002) EMBO J., 21:4671-4679).

Polynucleotides

[0048] As used herein, "polynucleotide" refers to a DNA or RNA molecule containing multiple nucleotides and generally refers both to "oligonucleotides" (a polynucleotide molecule of 18-25 nucleotides in length) and longer polynucleotides of 26 or more nucleotides. Embodiments include compositions including oligonucleotides having a length of 18-25 nucleotides (18-mers, 19-mers, 20-mers, 21-mers, 22-mers, 23-mers, 24-mers, or 25-mers), or medium-length polynucleotides having a length of 26 or more nucleotides (polynucleotides of 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, about 65, about 70, about 75, about 80, about 85, about 90, about 95, about 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 210, about 220, about 230, about 240, about 250, about 260, about 270, about 280, about 290, or about 300 nucleotides), or long polynucleotides having a length greater than about 300 nucleotides (e.g., polynucleotides of between about 300 to about 400 nucleotides, between about 400 to about 500 nucleotides, between about 500 to about 600 nucleotides, between about 600 to about 700 nucleotides, between about 700 to about 800 nucleotides, between about 800 to about 900 nucleotides, between about 900 to about 1000 nucleotides, between about 300 to about

500 nucleotides, between about 300 to about 600 nucleotides, between about 300 to about 700 nucleotides, between about 300 to about 800 nucleotides, between about 300 to about 900 nucleotides, or about 1000 nucleotides in length, or even greater than about 1000 nucleotides in length, for example up to the entire length of a target gene including coding or non-coding or both coding and non-coding portions of the target gene). Where a polynucleotide is double-stranded, its length can be similarly described in terms of base pairs.

[0049] Polynucleotide compositions used in the various embodiments include compositions including oligonucleotides, polynucleotides, or a mixture of both, including: RNA or DNA or RNA/DNA hybrids or chemically modified oligonucleotides or polynucleotides or a mixture thereof. In certain embodiments, the polynucleotide may be a combination of ribonucleotides and deoxyribonucleotides, for example, synthetic polynucleotides consisting mainly of ribonucleotides but with one or more terminal deoxyribonucleotides or synthetic polynucleotides consisting mainly of deoxyribonucleotides but with one or more terminal dideoxyribonucleotides. In certain embodiments, the polynucleotide includes noncanonical nucleotides such as inosine, thiouridine, or pseudouridine. In certain embodiments, the polynucleotide includes chemically modified nucleotides. Examples of chemically modified oligonucleotides or polynucleotides are well known in the art; see, for example, U.S. Patent Publication 2011/0171287, U.S. Patent Publication 2011/0171176, U.S. Patent Publication 2011/0152353, U.S. Patent Publication 2011/0152346, and U.S. Patent Publication 2011/ 0160082, which are herein incorporated by reference. Illustrative examples include, but are not limited to, the naturally occurring phosphodiester backbone of an oligonucleotide or polynucleotide which can be partially or completely modified with phosphorothioate, phosphorodithioate, or methylphosphonate internucleotide linkage modifications, modified nucleoside bases or modified sugars can be used in oligonucleotide or polynucleotide synthesis, and oligonucleotides or polynucleotides can be labeled with a fluorescent moiety (e.g., fluorescein or rhodamine) or other label (e.g., biotin).

[0050] Polynucleotides can be single- or double-stranded RNA, single- or double-stranded DNA, double-stranded DNA/RNA hybrids, and modified analogues thereof. In certain embodiments, the polynucleotides that provide singlestranded RNA in the plant cell may be: (a) a single-stranded RNA molecule (ssRNA), (b) a single-stranded RNA molecule that self-hybridizes to form a double-stranded RNA molecule, (c) a double-stranded RNA molecule (dsRNA), (d) a single-stranded DNA molecule (ssDNA), (e) a singlestranded DNA molecule that self-hybridizes to form a double-stranded DNA molecule, (f) a single-stranded DNA molecule including a modified Pol III gene that is transcribed to an RNA molecule, (g) a double-stranded DNA molecule (dsDNA), (h) a double-stranded DNA molecule including a modified Pol III gene that is transcribed to an RNA molecule, and (i) a double-stranded, hybridized RNA/DNA molecule, or combinations thereof. In certain embodiments, these polynucleotides can comprise both ribonucleic acid residues and deoxyribonucleic acid residues. In certain embodiments, these polynucleotides include chemically modified nucleotides or non-canonical nucleotides. In certain embodiments of the methods, the polynucleotides include double-stranded DNA formed by intramolecular hybridization, doublestranded DNA formed by intermolecular hybridization, double-stranded RNA formed by intramolecular hybridization, or double-stranded RNA formed by intermolecular hybridization. In certain embodiments where the polynucleotide is a dsRNA, the anti-sense strand will comprise at least 18 nucleotides that are essentially complementary to the target gene. In certain embodiments the polynucleotides include single-stranded DNA or single-stranded RNA that self-hybridizes to form a hairpin structure having an at least partially double-stranded structure including at least one segment that will hybridize to RNA transcribed from the gene targeted for suppression. Not intending to be bound by any mechanism, it is believed that such polynucleotides are or will produce single-stranded RNA with at least one segment that will hybridize to RNA transcribed from the gene targeted for suppression. In certain embodiments, the polynucleotides can be operably linked to a promoter-generally a promoter functional in a plant, for example, a pol II promoter, a pol III promoter, a pol IV promoter, or a pol V promoter.

[0051] In some embodiments, the polynucleotide molecules are designed to modulate expression by inducing regulation or suppression of an endogenous gene in a plant and are designed to have a nucleotide sequence essentially identical or essentially complementary to the nucleotide sequence of an endogenous gene of a plant or to the sequence of RNA transcribed from an endogenous gene of a plant, which can be coding sequence or non-coding sequence. These effective polynucleotide molecules that modulate expression are referred to herein as "a trigger, or triggers". By "essentially identical" or "essentially complementary" it is meant that the trigger polynucleotides (or at least one strand of a doublestranded polynucleotide) have sufficient identity or complementarity to the endogenous gene or to the RNA transcribed from the endogenous gene (e.g. the transcript) to suppress expression of the endogenous gene (e.g. to effect a reduction in levels or activity of the gene transcript and/or encoded protein). Polynucleotides of the methods and compositions provided herein need not have 100 percent identity to a complementarity to the endogenous gene or to the RNA transcribed from the endogenous gene (i.e. the transcript) to suppress expression of the endogenous gene (i.e. to effect a reduction in levels or activity of the gene transcript or encoded protein). Thus, in certain embodiments, the polynucleotide or a portion thereof is designed to be essentially identical to, or essentially complementary to, a sequence of at least 18 or 19 contiguous nucleotides in either the target gene or messenger RNA transcribed from the target gene (e.g. the transcript). In certain embodiments, an "essentially identical" polynucleotide has 100 percent sequence identity or at least about 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent sequence identity when compared to the sequence of 18 or more contiguous nucleotides in either the endogenous target gene or to an RNA transcribed from the target gene (e.g. the transcript). In certain embodiments, an "essentially complementary" polynucleotide has 100 percent sequence complementarity or at least about 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent sequence complementarity when compared to the sequence of 18 or more contiguous nucleotides in either the target gene or RNA transcribed from the target gene.

[0052] In certain embodiments, polynucleotides used in the methods and compositions provided herein can be essentially identical or essentially complementary to any of: i) conserved regions of DND1 genes of both monocot and dicot plants; ii) conserved regions of DND1 genes of monocot plants; or iii) conserved regions of DND1 genes of dicot plants. Such poly-

nucleotides that are essentially identical or essentially complementary to such conserved regions can be used to improve fungal disease resistance and/or nematode disease resistance by suppressing expression of DND1 genes in any of: i) both dicot and monocot plants, including, but not limited to, maize, barley, wheat, sorghum, rice, cucumber, pea, *Medicago* sp., soybean, pepper, tomato, lettuce, cotton, melon, and grape; ii) monocot plants, including, but not limited to, maize, barley, wheat, sorghum, and rice, and; or iii) dicot plants, including, but not limited to, cucumber, pea, *Medicago* sp., soybean, pepper, tomato, lettuce, cotton, melon, and grape.

[0053] Polynucleotides containing mismatches to the target gene or transcript can thus be used in certain embodiments of the compositions and methods provided herein. In certain embodiments, a polynucleotide can comprise at least 19 contiguous nucleotides that are essentially identical or essentially complementary to said gene or said transcript or comprises at least 19 contiguous nucleotides that are essentially identical or essentially complementary to the target gene or target gene transcript. In certain embodiments, a polynucleotide of 19 continuous nucleotides that is essentially identical or essentially complementary to the endogenous target gene or to RNA transcribed from the target gene (e.g. the transcript) can have 1 or 2 mismatches to the target gene or transcript. In certain embodiments, a polynucleotide of 20 or more nucleotides that contains a contiguous 19 nucleotide span of identity or complementarity to the endogenous target gene or to an RNA transcribed from the target gene can have 1 or 2 mismatches to the target gene or transcript. In certain embodiments, a polynucleotide of 21 continuous nucleotides that is essentially identical or essentially complementary to the endogenous target gene or to RNA transcribed from the target gene (e.g. the transcript) can have 1, 2, or 3 mismatches to the target gene or transcript. In certain embodiments, a polynucleotide of 22 or more nucleotides that contains a contiguous 21 nucleotide span of identity or complementarity to the endogenous target gene or to an RNA transcribed from the target gene can have 1, 2, or 3 mismatches to the target gene or transcript. In designing polynucleotides with mismatches to an endogenous target gene or to an RNA transcribed from the target gene, mismatches of certain types and at certain positions that are more likely to be tolerated can be used. In certain exemplary embodiments, mismatches formed between adenine and cytosine or guanosine and uracil residues are used as described by Du et al. Nucleic Acids Research, 2005, Vol. 33, No. 5 1671-1677. In certain exemplary embodiments, mismatches in 19 base pair overlap regions can be at the low tolerance positions 5, 7, 8 or 11 (from the 5' end of a 19 nucleotide target) with well tolerated nucleotide mismatch residues, at medium tolerance positions 3, 4, and 12-17, and/or at the high tolerance nucleotide positions at either end of the region of complementarity (i.e. positions 1, 2, 18, and 19) as described by Du et al. Nucleic Acids Research, 2005, Vol. 33, No. 5 1671-1677. It is further anticipated that tolerated mismatches can be empirically determined in assays where the polynucleotide is applied to the plants via the methods provided herein and the treated plants assayed for suppression of DND1 expression or appearance of fungal disease resistance and/or nematode resistance.

[0054] In certain embodiments, polynucleotide molecules are designed to have 100 percent sequence identity with or complementarity to one allele or one family member of a given target gene coding or non-coding sequence of a DND1

target gene. In other embodiments, the polynucleotide molecules are designed to have 100 percent sequence identity with or complementarity to multiple alleles or family members of a given DND1 target gene. In certain embodiments, the polynucleotide can thus comprise at least 18 contiguous nucleotides that are identical or complementary to SEQ ID NO: 1-33. In certain embodiments, the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 1-33. In certain embodiments, the polynucleotide comprises at least 18 contiguous nucleotides that are identical or complementary to SEQ ID NO: 64-67. In certain embodiments, the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 64-67.

[0055] In certain embodiments, polynucleotide compositions and methods provided herein typically effect regulation or modulation (e.g., suppression) of gene expression during a period during the life of the treated plant of at least 1 week or longer and typically in systemic fashion. For instance, within days of treating a plant leaf with a polynucleotide composition as described herein, primary and transitive siRNAs can be detected in other leaves lateral to and above the treated leaf and in apical tissue. In certain embodiments, methods of systemically suppressing expression of a gene in a plant, the methods comprising treating said plant with a composition comprising at least one polynucleotide and a transfer agent, wherein said polynucleotide comprises at least 18 or at least 19 contiguous nucleotides that are essentially identical or essentially complementary to a gene or a transcript encoding a DND1 gene of the plant are provided, whereby expression of the gene in said plant or progeny thereof is systemically suppressed in comparison to a control plant that has not been treated with the composition.

[0056] Compositions used to suppress a target gene can comprise one or more polynucleotides that are essentially identical or essentially complementary to multiple genes, or to multiple segments of one or more genes. In certain embodiments, compositions used to suppress a target gene can comprise one or more polynucleotides that are essentially identical or essentially complementary to multiple consecutive segments of a target gene, multiple non-consecutive segments of a target gene, multiple alleles of a target gene, or multiple target genes from one or more species.

[0057] In certain embodiments, the polynucleotide includes two or more copies of a nucleotide sequence (of 18 or more nucleotides) where the copies are arranged in tandem fashion. In another embodiment, the polynucleotide includes two or more copies of a nucleotide sequence (of 18 or more nucleotides) where the copies are arranged in inverted repeat fashion (forming an at least partially self-complementary strand). The polynucleotide can include both tandem and inverted-repeat copies. Whether arranged in tandem or inverted repeat fashion, each copy can be directly contiguous to the next, or pairs of copies can be separated by an optional spacer of one or more nucleotides. The optional spacer can be unrelated sequence (i.e., not essentially identical to or essentially complementary to the copies, nor essentially identical to, or essentially complementary to, a sequence of 18 or more contiguous nucleotides of the endogenous target gene or RNA transcribed from the endogenous target gene). Alternatively the optional spacer can include sequence that is complementary to a segment of the endogenous target gene adjacent to the segment that is targeted by the copies. In

certain embodiments, the polynucleotide includes two copies of a nucleotide sequence of between about 20 to about 30 nucleotides, where the two copies are separated by a spacer no longer than the length of the nucleotide sequence.

Tiling

[0058] Polynucleotide trigger molecules can be identified by "tiling" gene targets in random length fragments, e.g. 200-300 polynucleotides in length, with partially overlapping regions, e.g. 25 or so nucleotide overlapping regions along the length of the target gene. Multiple gene target sequences can be aligned and polynucleotide sequence regions with homology in common are identified as potential trigger molecules for multiple targets. Multiple target sequences can be aligned and sequence regions with poor homology are identified as potential trigger molecules for selectively distinguishing targets. To selectively suppress a single gene, trigger sequences may be chosen from regions that are unique to the target gene either from the transcribed region or the non-coding regions, e.g., promoter regions, 3' untranslated regions, introns and the like.

[0059] Polynucleotides fragments are designed along the length of the full length coding and untranslated regions of a DND1 gene or family member as contiguous overlapping fragments of 200-300 polynucleotides in length or fragment lengths representing a percentage of the target gene. These fragments are applied topically (as sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA) to determine the relative effectiveness in providing the yield/quality phenotype. Fragments providing the desired activity may be further subdivided into 50-60 polynucleotide fragments which are evaluated for providing the yield/quality phenotype. The 50-60 base fragments with the desired activity may then be further subdivided into 19-30 base fragments which are evaluated for providing the yield/quality phenotype. Once relative effectiveness is determined, the fragments are utilized singly, or in combination in one or more pools to determine effective trigger composition or mixture of trigger polynucleotides for providing the yield/ quality phenotype.

[0060] Coding and/or non-coding sequences of gene families in the crop of interest are aligned and 200-300 polynucleotide fragments from the least homologous regions amongst the aligned sequences are evaluated using topically applied polynucleotides (as sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA) to determine their relative effectiveness in providing the yield/quality phenotype. The effective segments are further subdivided into 50-60 polynucleotide fragments, prioritized by least homology, and reevaluated using topically applied polynucleotides. The effective 50-60 polynucleotide fragments are subdivided into 19-30 polynucleotide fragments, prioritized by least homology, and again evaluated for induction of the yield/quality phenotype. Once relative effectiveness is determined, the fragments are utilized singly, or again evaluated in combination with one or more other fragments to determine the trigger composition or mixture of trigger polynucleotides for providing the yield/ quality phenotype.

[0061] Coding and/or non-coding sequences of gene families in the crop of interest are aligned and 200-300 polynucleotide fragments from the most homologous regions amongst the aligned sequences are evaluated using topically applied polynucleotides (as sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA) to determine their relative effectiveness in inducing the yield/quality phenotype. The effective segments are subdivided into 50-60 polynucleotide fragments, prioritized by most homology, and reevaluated using topically applied polynucleotides. The effective 50-60 polynucleotide fragments are subdivided into 19-30 polynucleotide fragments, prioritized by most homology, and again evaluated for induction of the yield/quality phenotype. Once relative effectiveness is determined, the fragments may be utilized singly, or in combination with one or more other fragments to determine the trigger composition or mixture of trigger polynucleotides for providing the yield/quality phenotype.

[0062] Also, provided herein are methods for identifying a preferred polynucleotide for improving fungal disease and/or nematode resistance in a plant. Populations of candidate polynucleotides that are essentially identical or essentially complementary to a DND1 gene or transcript of the gene can be generated by a variety of approaches, including but not limited to, any of the tiling, least homology, or most homology approaches provided herein. Such populations of polynucleotides can also be generated or obtained from any of the polynucleotides or genes provided herewith in SEQ ID NO: 1-59. Such populations of polynucleotides can also be generated or obtained from any of the polynucleotides provided herewith in SEQ ID NO: 64-67. Such populations of polynucleotides can also be generated or obtained from any genes that are orthologous to the genes provided herewith in SEQ ID NO: 1-33. Such populations of polynucleotides can also be generated or obtained from any genes that encode orthologous proteins. Such polynucleotides can be topically applied to a surface of plants in a composition comprising at least one polynucleotide from said population and a transfer agent to obtain treated plants. Treated plants that exhibit suppression of the DND1 gene and/or exhibit an improvement fungal disease and/or nematode resistance are identified, thus identifying a preferred polynucleotide that improves improving fungal disease and/or nematode resistance in a plant. Suppression of the gene can be determined by any assay for the levels and for activity of a gene product (i.e. transcript or protein). Suitable assays for transcripts include, but are not limited to, semi-quantitative or quantitative reverse transcriptase PCR® (qRT-PCR) assays. Suitable assays for proteins include, but are not limited to, semi-quantitative or quantitative immunoassays, biochemical activity assays, or biological activity assays. In certain embodiments, the polynucleotides can be applied alone. In other embodiments, the polynucleotides can be applied in pools of multiple polynucleotides. When a pool of polynucleotides provides for suppression of the DND1 gene and/or an improvement in fungal disease resistance and/or nematode disease resistance are identified, the pool can be de-replicated and retested as necessary or desired to identify one or more preferred polynucleotide(s) that improves fungal disease resistance and/or nematode disease resistance in a plant.

[0063] Methods of making polynucleotides are well known in the art. Such methods of making polynucleotides can include in vivo biosynthesis, in vitro enzymatic synthesis, or chemical synthesis. In certain embodiments, RNA molecules can be made by either in vivo or in vitro synthesis from DNA templates where a suitable promoter is operably linked to the polynucleotide and a suitable DNA-dependent RNA polymerase is provided. DNA-dependent RNA polymerases include, but are not limited to, *E. coli* or other bacterial RNA polymerases as well as the bacteriophage RNA polymerases such as the T7, T3, and SP6 RNA polymerases. Commercial preparation of oligonucleotides often provides two deoxyribonucleotides on the 3' end of the sense strand. Long polynucleotide molecules can be synthesized from commercially available kits, for example, kits from Applied Biosystems/ Ambion (Austin, Tex.) have DNA ligated on the 5' end that encodes a bacteriophage T7 polymerase promoter that makes RNA strands that can be assembled into a dsRNA. Alternatively, dsRNA molecules can be produced from expression cassettes in bacterial cells that have regulated or deficient RNase III enzyme activity. Long polynucleotide molecules can also be assembled from multiple RNA or DNA fragments. In some embodiments design parameters such as Reynolds score (Reynolds et al. Nature Biotechnology 22, 326-330 (2004) and Tuschl rules (Pei and Tuschl, Nature Methods 3(9): 670-676, 2006) are known in the art and are used in selecting polynucleotide sequences effective in gene silencing. In some embodiments random design or empirical selection of polynucleotide sequences is used in selecting polynucleotide sequences effective in gene silencing. In some embodiments the sequence of a polynucleotide is screened against the genomic DNA of the intended plant to minimize unintentional silencing of other genes.

[0064] While there is no upper limit on the concentrations and dosages of polynucleotide molecules that can be useful in the methods and compositions provided herein, lower effective concentrations and dosages will generally be sought for efficiency. The concentrations can be adjusted in consideration of the volume of spray or treatment applied to plant leaves or other plant part surfaces, such as flower petals, stems, tubers, fruit, anthers, pollen, leaves, roots, or seeds. In one embodiment, a useful treatment for herbaceous plants using 25-mer polynucleotide molecules is about 1 nanomole (nmol) of polynucleotide molecules per plant, for example, from about 0.05 to 1 nmol polynucleotides per plant. Other embodiments for herbaceous plants include useful ranges of about 0.05 to about 100 nmol, or about 0.1 to about 20 nmol, or about 1 nmol to about 10 nmol of polynucleotides per plant. In certain embodiments, about 40 to about 50 nmol of a ssDNA polynucleotide are applied. In certain embodiments, about 0.5 nmol to about 2 nmol of a dsRNA is applied. In certain embodiments, a composition containing about 0.5 to about 2.0 mg/mL, or about 0.14 mg/mL of dsRNA or ssDNA (21-mer) is applied. In certain embodiments, a composition of about 0.5 to about 1.5 mg/mL of a long dsRNA polynucleotide (i.e. about 50 to about 200 or more nucleotides) is applied. In certain embodiments, about 1 nmol to about 5 nmol of a dsRNA is applied to a plant. In certain embodiments, the polynucleotide composition as topically applied to the plant contains the at least one polynucleotide at a concentration of about 0.01 to about 10 milligrams per milliliter, or about 0.05 to about 2 milligrams per milliliter, or about 0.1 to about 2 milligrams per milliliter. In certain embodiments, a composition of about 0.5 to about 1.5 mg/mL of a long dsRNA polynucleotide (i.e. about 50 to about 200 or more nucleotides) is applied. Very large plants, trees, or vines may require correspondingly larger amounts of polynucleotides. When using long dsRNA molecules that can be processed into multiple oligonucleotides, lower concentrations can be used. To illustrate certain embodiments, the factor 1×, when applied to oligonucleotide molecules is arbitrarily used to denote a treatment of 0.8 nmol of polynucleotide molecule per plant; 10x, 8 nmol of polynucleotide molecule per plant; and 100×, 80 nmol of polynucleotide molecule per plant.

[0065] The polynucleotide compositions as described herein are useful in compositions, such as liquids that comprise polynucleotide molecules, alone or in combination with other components either in the same liquid or in separately applied liquids that provide a transfer agent. As used herein, a transfer agent is an agent that, when combined with a polynucleotide in a composition that is topically applied to a target plant surface, enables the polynucleotide to enter a plant cell. In certain embodiments, a transfer agent is an agent that conditions the surface of plant tissue, e.g., seeds, leaves, stems, roots, flowers, or fruits, to permeation by the polynucleotide molecules into plant cells. The transfer of polynucleotides into plant cells can be facilitated by the prior or contemporaneous application of a polynucleotide-transferring agent to the plant tissue. In some embodiments the transferring agent is applied subsequent to the application of the polynucleotide composition. The polynucleotide transfer agent enables a pathway for polynucleotides through cuticle wax barriers, stomata and/or cell wall or membrane barriers into plant cells. Suitable transfer agents to facilitate transfer of the polynucleotide into a plant cell include agents that increase permeability of the exterior of the plant or that increase permeability of plant cells to oligonucleotides or polynucleotides. Such agents to facilitate transfer of the composition into a plant cell include a chemical agent, or a physical agent, or combinations thereof. Chemical agents for conditioning or transfer include (a) surfactants, (b) an organic solvent or an aqueous solution or aqueous mixtures of organic solvents, (c) oxidizing agents, (d) acids, (e) bases, (f) oils, (g) enzymes, or combinations thereof. Embodiments of the method can optionally include an incubation step, a neutralization step (e.g., to neutralize an acid, base, or oxidizing agent, or to inactivate an enzyme), a rinsing step, or combinations thereof. Embodiments of agents or treatments for conditioning of a plant to permeation by polynucleotides include emulsions, reverse emulsions, liposomes, and other micellar-like compositions. Embodiments of agents or treatments for conditioning of a plant to permeation by polynucleotides include counter-ions or other molecules that are known to associate with nucleic acid molecules, e.g., inorganic ammonium ions, alkyl ammonium ions, lithium ions, polyamines such as spermine, spermidine, or putrescine, and other cations. Organic solvents useful in conditioning a plant to permeation by polynucleotides include DMSO, DMF, pyridine, N-pyrrolidine, hexamethylphosphoramide, acetonitrile, dioxane, polypropylene glycol, other solvents miscible with water or that will dissolve phosphonucleotides in non-aqueous systems (such as is used in synthetic reactions). Naturally derived or synthetic oils with or without surfactants or emulsifiers can be used, e.g., plant-sourced oils, crop oils (such as those listed in the 9^{th} Compendium of Herbicide Adjuvants, publicly available on the worldwide web (internet) at herbicide.adjuvants.com can be used, e.g., paraffinic oils, polyol fatty acid esters, or oils with short-chain molecules modified with amides or polyamines such as polyethyleneimine or N-pyrrolidine. Transfer agents include, but are not limited to, organosilicone preparations.

[0066] In certain embodiments, an organosilicone preparation that is commercially available as Silwet® L-77 surfactant having CAS Number 27306-78-1 and EPA Number: CAL. REG.NO. 5905-50073-AA, and currently available from Momentive Performance Materials, Albany, N.Y. can be used to prepare a polynucleotide composition. In certain embodiments where a Silwet L-77 organosilicone preparation is used as a pre-spray treatment of plant leaves or other plant surfaces, freshly made concentrations in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) are efficacious in preparing a leaf or other plant surface for transfer of polynucleotide molecules into plant cells from a topical application on the surface. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and an organosilicone preparation comprising Silwet L-77 in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and an organosilicone preparation comprising Silwet L-77 in the range of about 0.3 to about 1 percent by weight (wt percent) or about 0.5 to about 1% by weight (wt percent) is used or provided.

[0067] In certain embodiments, any of the commercially available organosilicone preparations provided in the following Table 1 can be used as transfer agents in a polynucleotide composition. In certain embodiments where an organosilicone preparation of Table 1 is used as a pre-spray treatment of plant leaves or other surfaces, freshly made concentrations in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) are efficacious in preparing a leaf or other plant surface for transfer of polynucleotide molecules into plant cells from a topical application on the surface. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and an organosilicone preparation of Table 1 in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided.

TADLE I	TABLE	1	
---------	-------	---	--

Exemplary organosilicone preparations			
Name	CAS number	Manufacturer ^{1, 2}	
BREAK-THRU ® S 321	na	Evonik Industries AG	
BREAK-THRU ® S 200	67674-67-3	Evonik Industries AG	
BREAK-THRU ® OE 441	68937-55-3	Evonik Industries AG	
BREAK-THRU ® S 278	27306-78-1	Evonik Goldschmidt	
BREAK-THRU ® S 243	na	Evonik Industries AG	
Silwet ® L-77	27306-78-1	Momentive Performance	
		Materials	
Silwet ® HS 429	na	Momentive Performance	
		Materials	
Silwet ® HS 312	na	Momentive Performance	
		Materials	
BREAK-THRU ® S 233	134180-76-0	Evonik Industries AG	
Silwet ® HS 508		Momentive Performance	
		Materials	

TABLE 1-continued

Exemplary organosilicone preparations		
Name	CAS number Manufacturer ^{1, 2}	
Silwet ® HS 604	Momentive Performance Materials	

¹ Evonik Industries AG, Essen, Germany

² Momentive Performance Materials, Albany, New York

[0068] Organosilicone preparations used in the methods and compositions provided herein can comprise one or more effective organosilicone compounds. As used herein, the phrase "effective organosilicone compound" is used to describe any organosilicone compound that is found in an organosilicone preparation that enables a polynucleotide to enter a plant cell. In certain embodiments, an effective organosilicone compound can enable a polynucleotide to enter a plant cell in a manner permitting a polynucleotide mediated suppression of a target gene expression in the plant cell. In general, effective organosilicone compounds include, but are not limited to, compounds that can comprise: i) a trisiloxane head group that is covalently linked to, ii) an alkyl linker including, but not limited to, an n-propyl linker, that is covalently linked to, iii) a poly glycol chain, that is covalently linked to, iv) a terminal group. Trisiloxane head groups of such effective organosilicone compounds include, but are not limited to, heptamethyltrisiloxane. Alkyl linkers can include, but are not limited to, an n-propyl linker. Poly glycol chains include, but are not limited to, polyethylene glycol or polypropylene glycol. Poly glycol chains can comprise a mixture that provides an average chain length "n" of about "7.5". In certain embodiments, the average chain length "n" can vary from about 5 to about 14. Terminal groups can include, but are not limited to, alkyl groups such as a methyl group. Effective organosilicone compounds are believed to include, but are not limited to, trisiloxane ethoxylate surfactants or polyalkylene oxide modified heptamethyl trisiloxane.

(Compound I: polyalkyleneoxide heptamethyltrisiloxane, average n = 7.5).

One organosilicone compound believed to be ineffective comprises the formula:

[0069] In certain embodiments, an organosilicone preparation that comprises an organosilicone compound comprising

a trisiloxane head group is used in the methods and compositions provided herein. In certain embodiments, an organosilicone preparation that comprises an organosilicone compound comprising a heptamethyltrisiloxane head group is used in the methods and compositions provided herein. In certain embodiments, an organosilicone composition that comprises Compound I is used in the methods and compositions provided herein. In certain embodiments, an organosilicone composition that comprises Compound I is used in the methods and compositions provided herein. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and one or more effective organosilicone compound in the range of about 0.015 to about 2 percent by weight (wt percent) (e.g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided.

[0070] In certain embodiments, the polynucleotide compositions that comprise an organosilicone preparation can comprise a salt such as ammonium chloride, tetrabutylphosphonium bromide, and/or ammonium sulfate. Ammonium chloride, tetrabutylphosphonium bromide, and/or ammonium sulfate can be provided in the polynucleotide composition at a concentration of about 0.5% to about 5% (w/v). An ammonium chloride, tetrabutylphosphonium bromide, and/ or ammonium sulfate concentration of about 1% to about 3%, or about 2% (w/v) can also be used in the polynucleotide compositions that comprise an organosilicone preparation. In certain embodiments, the polynucleotide compositions can comprise an ammonium salt at a concentration greater or equal to 300 millimolar. In certain embodiments, the polynucleotide compositions that comprise an organosilicone preparation can comprise ammonium sulfate at concentrations from about 80 to about 1200 mM or about 150 mM to about 600 mM.

[0071] In certain embodiments, the polynucleotide compositions can also comprise a phosphate salt. Phosphate salts used in the compositions include, but are not limited to, calcium, magnesium, potassium, or sodium phosphate salts. In certain embodiments, the polynucleotide compositions can comprise a phosphate salt at a concentration of at least about 5 millimolar, at least about 10 millimolar, or at least about 20 millimolar. In certain embodiments, the polynucleotide compositions will comprise a phosphate salt in a range of about 1 mM to about 25 mM or in a range of about 5 mM to about 25 mM. In certain embodiments, the polynucleotide compositions can comprise sodium phosphate at a concentration of at least about 5 millimolar, at least about 10 millimolar, or at least about 20 millimolar. In certain embodiments, the polynucleotide compositions can comprise sodium phosphate at a concentration of about 5 millimolar, about 10 millimolar, or about 20 millimolar. In certain embodiments, the polynucleotide compositions will comprise a sodium phosphate salt in a range of about 10 mM to about 160 mM or in a range of about 20 mM to about 40 mM. In certain embodiments, the polynucleotide compositions can comprise a sodium phosphate buffer at a pH of about 6.8.

[0072] In certain embodiments, other useful transfer agents or adjuvants to transfer agents that can be used in polynucleotide compositions provided herein include surfactants and/ or effective molecules contained therein. Surfactants and/or effective molecules contained therein include, but are not limited to, sodium or lithium salts of fatty acids (such as tallow or tallowamines or phospholipids) and organosilicone surfactants. In certain embodiments, the polynucleotide compositions that comprise a transfer agent are formulated with counter-ions or other molecules that are known to associate with nucleic acid molecules. Illustrative examples include, but are not limited to, tetraalkyl ammonium ions, trialkyl ammonium ions, sulfonium ions, lithium ions, and polyamines such as spermine, spermidine, or putrescine. In certain embodiments, the polynucleotide compositions are formulated with a non-polynucleotide herbicide. Non-polynucleotide herbicidal molecules include, but are not limited to, glyphosate, auxin-like benzoic acid herbicides including dicamba, chloramben and TBA, glufosinate, auxin-like herbicides including phenoxy carboxylic acid herbicide, pyridine carboxylic acid herbicide, quinoline carboxylic acid herbicide, pyrimidine carboxylic acid herbicide, and benazolinethyl herbicide, sulfonylureas, imidazolinones, bromoxynil, delapon, cyclohezanedione, protoporphyrionogen oxidase inhibitors, and 4-hydroxyphenyl-pyruvate-dioxygenase inhibiting herbicides.

[0073] In certain embodiments, the polynucleotides used in the compositions that are essentially identical or essentially complementary to the DND1 target gene or transcript will comprise the predominant nucleic acid in the composition. Thus in certain embodiments, the polynucleotides that are essentially identical or essentially complementary to the target gene or transcript will comprise at least about 50%, 75%, 95%, 98%, or 100% of the nucleic acids provided in the composition by either mass or molar concentration. However, in certain embodiments, the polynucleotides that are essentially identical or essentially complementary to the target gene or transcript can comprise at least about 1% to about 50%, about 10% to about 50%, about 20% to about 50%, or about 30% to about 50% of the nucleic acids provided in the composition by either mass or molar concentration. Also provided are compositions where the polynucleotides that are essentially identical or essentially complementary to the target gene or transcript can comprise at least about 1% to 100%, about 10% to 100%, about 20% to about 100%, about 30% to about 50%, or about 50% to a 100% of the nucleic acids provided in the composition by either mass or molar concentration.

[0074] Polynucleotides comprising ssDNA, dsDNA, ssRNA, dsRNA, or RNA/DNA hybrids that are essentially identical or complementary to certain plant target genes or transcripts and that can be used in compositions containing transfer agents that include, but are not limited to, organosilicone preparations, to suppress those target genes when topically applied to plants are disclosed in co-assigned U.S. patent application Ser. No. 13/042,856. Various polynucleotide herbicidal molecules, compositions comprising those polynucleotide herbicidal molecules and transfer agents that include, but are not limited to, organosilicone preparations, and methods whereby herbicidal effects are obtained by the topical application of such compositions to plants are also disclosed in co-assigned U.S. patent application Ser. No. 13/042,856, and those polynucleotide herbicidal molecules, compositions, and methods are incorporated herein by reference in their entireties. Genes encoding proteins that can provide tolerance to an herbicide and/or that are targets of a herbicide are collectively referred to herein as "herbicide target genes". Herbicide target genes include, but are not limited to, a 5-enolpyruvylshikimate-3-phosphate synthase

(EPSPS), a glyphosate oxidoreductase (GOX), a glyphosate decarboxylase, a glyphosate-N-acetyl transferase (GAT), a dicamba monooxygenase, a phosphinothricin acetyltransferase, a 2,2-dichloropropionic acid dehalogenase, an acetohydroxyacid synthase, an acetolactate synthase, a haloarylnitrilase, an acetyl-coenzyme A carboxylase (ACCase), a dihydropteroate synthase, a phytoene desaturase (PDS), a protoporphyrin IX oxygenase (PPO), a hydroxyphenylpyruvate dioxygenase (HPPD), a para-aminobenzoate synthase, a glutamine synthase, a cellulose synthase, a beta tubulin, and a serine hydroxymethyltransferase gene. The effects of applying certain compositions comprising polynucleotides that are essentially identical or complementary to certain herbicide target genes and transfer agents on plants containing the herbicide target genes was shown to be potentiated or enhanced by subsequent application of an herbicide that targets the same gene as the polynucleotide in co-assigned U.S. patent application Ser. No. 13/042,856. For example, compositions comprising polynucleotides targeting the EPSPS herbicide target gene were potentiated by glyphosate in experiments disclosed in co-assigned U.S. patent application Ser. No. 13/042,856.

[0075] In certain embodiments of the compositions and methods disclosed herein, the composition comprising a polynucleotide and a transfer agent can thus further comprise a second polynucleotide comprising at least 19 contiguous nucleotides that are essentially identical or essentially complementary to a transcript to a protein that confers resistance to a herbicide. In certain embodiments, the second polynucleotide does not comprise a polynucleotide that is essentially identical or essentially complementary to a transcript encoding a protein of a target plant that confers resistance to said herbicidal molecule. Thus, in an exemplary and non-limiting embodiment, the second polynucleotide could be essentially identical or essentially complementary to a transcript encoding a protein that confers resistance to a herbicide in a weed (such as an EPSPS encoding transcript) but would not be essentially identical or essentially complementary to a transcript encoding a protein that confers resistance to that same herbicide in a crop plant.

[0076] In certain embodiments, the polynucleotide compositions that comprise a transfer agent can comprise glycerin. Glycerin can be provided in the composition at a concentration of about 0.1% to about 1% (w/v or v/v). A glycerin concentration of about 0.4% to about 0.6%, or about 0.5% (w/v or v/v) can also be used in the polynucleotide compositions that comprise a transfer agent.

[0077] In certain embodiments, the polynucleotide compositions that comprise a transfer agent can further comprise organic solvents. Such organic solvents include, but are not limited to, DMSO, DMF, pyridine, N-pyrrolidine, hexamethylphosphoramide, acetonitrile, dioxane, polypropylene glycol, other solvents miscible with water or that will dissolve phosphonucleotides in non-aqueous systems (such as is used in synthetic reactions).

[0078] In certain embodiments, the polynucleotide compositions that comprise a transfer agent can further comprise naturally derived or synthetic oils with or without surfactants or emulsifiers. Such oils include, but are not limited to, plantsourced oils, crop oils (such as those listed in the 9th Compendium of Herbicide Adjuvants, publicly available on line at www.herbicide.adjuvants.com), paraffinic oils, polyol fatty acid esters, or oils with short-chain molecules modified with amides or polyamines such as polyethyleneimine or N-pyrrolidine.

[0079] In some embodiments, methods include one or more applications of the composition comprising a polynucleotide and a transfer agent or one or more effective components contained therein. In certain embodiments of the methods, one or more applications of a transfer agent or one or more effective components contained therein can precede one or more applications of the composition comprising a polynucleotide and a transfer agent. In embodiments where a transfer agent and/or one or more effective molecules contained therein is used either by itself as a pre-treatment or as part of a composition that includes a polynucleotide, embodiments of the polynucleotide molecules are double-stranded RNA oligonucleotides, single-stranded RNA oligonucleotides, double-stranded RNA polynucleotides, singlestranded RNA polynucleotides, double-stranded DNA oligonucleotides, single-stranded DNA oligonucleotides, doublestranded DNA polynucleotides, single-stranded DNA polynucleotides, chemically modified RNA or DNA oligonucleotides or polynucleotides or mixtures thereof.

[0080] Compositions and methods as described herein are useful for modulating or suppressing the expression of an endogenous DND1 target gene or transgenic DND1 target gene in a plant cell or plant. In certain embodiments of the methods and compositions provided herein, expression of DND1 target genes can be suppressed completely, partially and/or transiently to result in an improvement in fungal disease resistance and/or nematode resistance. In various embodiments, a DND1 target gene includes coding (proteincoding or translatable) sequence, non-coding (non-translatable) sequence, or both coding and non-coding sequence. Compositions as described herein can include polynucleotides and oligonucleotides designed to target multiple DND1 genes, or multiple segments of one or more DND1 genes. The target gene can include multiple consecutive segments of a target DND1 gene, multiple non-consecutive segments of a DND1 target gene, multiple alleles of a target gene, or multiple DND1 target genes from one or more species. DND1 target genes include, but are not limited to, the endogenous DND1 plant genes of SEQ ID NO: 1-33. DND1 target genes include, but are not limited to, DND1 plant genes that encode orthologous proteins or essentially homologous proteins having between about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acid substitutions, deletions, or insertions.

[0081] Target genes and plants containing those target genes can be obtained from: i) row crop plants including, but are not limited to, corn, soybean, cotton, canola, sugar beet, alfalfa, sugarcane, rice, and wheat; ii) vegetable plants including, but not limited to, tomato, potato, sweet pepper, hot pepper, melon, watermelon, cucumber, eggplant, cauliflower, broccoli, lettuce, spinach, onion, peas, carrots, sweet corn, Chinese cabbage, leek, fennel, pumpkin, squash or gourd, radish, Brussels sprouts, tomatillo, garden beans, dry beans, or okra; iii) culinary plants including, but not limited to, basil, parsley, coffee, or tea; iv) fruit plants including but not limited to apple, pear, cherry, peach, plum, apricot, banana, plantain, table grape, wine grape, citrus, avocado, mango, or berry; v) a tree grown for ornamental or commercial use, including, but not limited to, a fruit or nut tree; or, vi) an ornamental plant (e.g., an ornamental flowering plant or shrub or turf grass). The methods and compositions provided herein can also be applied to plants produced by a cutting, cloning, or grafting process (i.e., a plant not grown from a seed) include fruit trees and plants that include, but are not limited to, citrus, apples, avocados, tomatoes, eggplant, cucumber, melons, watermelons, and grapes as well as various ornamental plants. Such row crop, vegetable, culinary, fruit, tree, or ornamental plants exhibiting improvements in fungal disease resistance and/or nematode resistance that result from suppressing DND1 gene expression are provided herein. Such row crop, vegetable, culinary, fruit, tree, or ornamental plant parts or processed plant products exhibiting improvements in fungal disease resistance and/or nematode resistance that result from suppressing DND1 gene expression are also provided herein. Such plant parts can include, but are not limited to, flowers, stems, tubers, fruit, anthers, meristems, ovules, pollen, leaves, or seeds. Such processed plant products obtained from the plant parts can include, but are not limited to, a meal, a pulp, a feed, or a food product.

[0082] In some embodiments, a method for modulating or suppressing expression of an DND1 gene in a plant including (a) conditioning of a plant to permeation by polynucleotides and (b) treatment of the plant with the polynucleotide molecules, wherein the polynucleotide molecules include at least one segment of 18 or more contiguous nucleotides cloned from or otherwise identified from the DND1 target gene in either anti-sense or sense orientation, whereby the polynucleotide molecules permeate the interior of the plant and induce modulation of the target gene is provided. The conditioning and polynucleotide application can be performed separately or in a single step. When the conditioning and polynucleotide application are performed in separate steps, the conditioning can precede or can follow the polynucleotide application within minutes, hours, or days. In some embodiments more than one conditioning step or more than one polynucleotide molecule application can be performed on the same plant. In embodiments of the method, the segment can be cloned or identified from (a) coding (protein-encoding), (b) non-coding (promoter and other gene related molecules), or (c) both coding and non-coding parts of the DND1 target gene. Noncoding parts include DNA, such as promoter regions or the RNA transcribed by the DNA that provide RNA regulatory molecules, including but not limited to: introns, 5' or 3' untranslated regions, and microRNAs (miRNA), trans-acting siRNAs, natural anti-sense siRNAs, and other small RNAs with regulatory function or RNAs having structural or enzymatic function including but not limited to: ribozymes, ribosomal RNAs, t-RNAs, aptamers, and riboswitches. In certain embodiments where the polynucleotide used in the composition comprises a promoter sequence essentially identical to, or essentially complementary to, at least 18 contiguous nucleotides of the promoter of the endogenous target gene, the promoter sequence of the polynucleotide is not operably linked to another sequence that is transcribed from the promoter sequence.

[0083] Compositions comprising a polynucleotide and a transfer agent provided herein can be topically applied to a plant or plant part by any convenient method, e.g., spraying or coating with a powder, or with a liquid composition comprising any of an emulsion, suspension, or solution. Such topically applied sprays or coatings can be of either all or of any a portion of the surface of the plant or plant part. Similarly, compositions that comprise a transfer agent or other pretreatment can in certain embodiments be applied to the plant or plant part by any convenient method, e.g., spraying or wiping a solution, emulsion, or suspension. Compositions

comprising a polynucleotide and a transfer agent provided herein can be topically applied to plant parts that include, but are not limited to, flowers, stems, tubers, meristems, ovules, fruit, anthers, pollen, leaves, or seeds.

[0084] Application of compositions comprising a polynucleotide and a transfer agent to seeds is specifically provided herein. Seeds can be contacted with such compositions by spraying, misting, immersion, and the like.

[0085] In certain embodiments, application of compositions comprising a polynucleotide and a transfer agent to plants, plant parts, or seeds in particular can provide for an improvement in fungal disease resistance and/or nematode resistance in progeny plants, plant parts, or seeds derived from those treated plants, plant parts, or seeds. In certain embodiments, progeny plants, plant parts, or seeds derived from those treated plants, plant parts, or seeds will exhibit an improvement in fungal disease resistance and/or nematode resistance that result from suppressing expression of a DND1 gene. In certain embodiments, the methods and compositions provided herein can provide for an improvement in fungal disease resistance and/or nematode resistance in progeny plants or seeds as a result of epigenetically inherited suppression of DND1 expression. In certain embodiments, such progeny plants exhibit an improvement in fungal disease resistance and/or nematode resistance from epigenetically inherited suppression of DND1 gene expression that is not caused by a transgene where the polynucleotide is operably linked to a promoter, a viral vector, or a copy of the polynucleotide that is integrated into a non-native location in the chromosomal DNA of the plant. Without seeking to be limited by theory, progeny plants or seeds derived from those treated plants, plant parts, or seeds can exhibit an improvement in an improvement in fungal disease resistance and/or nematode resistance through an epigenetic mechanism that provides for propagation of an epigenetic condition where suppression of DND1 gene expression occurs in the progeny plants, plant parts, or plant seeds.

[0086] In certain embodiments, progeny plants or seeds exhibiting an improvement in fungal disease resistance and/ or nematode resistance as a result of epigenetically inherited suppression of DND1 gene expression can also exhibit increased methylation, and in particular, increased methylation of cytosine residues, in the endogenous DND1 gene of the plant. Plant parts, including seeds, of the progeny plants that exhibit an improvement in an improvement in fungal disease resistance and/or nematode resistance as a result of epigenetically inherited suppression of DND1 gene expression, can also in certain embodiments exhibit increased methylation, and in particular, increased methylation of cytosine residues, in the endogenous DND1 gene. In certain embodiments, DNA methylation levels in DNA encoding the endogenous DND1 gene can be compared in plants that exhibit an improvement in fungal disease resistance and/or nematode resistance and control plants that do not exhibit an improvement in fungal disease resistance and/or nematode resistance to correlate the presence of the an improvement in fungal disease resistance and/or nematode resistance to epigenetically inherited suppression of DND1 gene expression and to identify plants that comprise the epigenetically inherited improvement in fungal disease resistance and/or nematode resistance.

[0087] Various methods of spraying compositions on plants or plant parts can be used to topically apply to a plant surface a composition comprising a polynucleotide that com-

prises a transfer agent. In the field, a composition can be applied with a boom that extends over the crops and delivers the composition to the surface of the plants or with a boomless sprayer that distributes a composition across a wide area. Agricultural sprayers adapted for directional, broadcast, or banded spraying can also be used in certain embodiments. Sprayers adapted for spraying particular parts of plants including, but not limited to, leaves, the undersides of leaves, flowers, stems, male reproductive organs such as tassels, meristems, pollen, ovules, and the like can also be used. Compositions can also be delivered aerially, such as by a crop dusting airplane. In certain embodiments, the spray can be delivered with a pressurized backpack sprayer calibrated to deliver the appropriate rate of the composition. In certain embodiments, such a backpack sprayer is a carbon dioxide pressurized sprayer with a 11015 flat fan or equivalent spray nozzle with a customized single nozzle assembly (to minimize waste) at a spray pressure of about 0.25 MPa and/or any single nozzle sprayer providing an effective spray swath of 60 cm above the canopy of 3 to 12 inch tall growing plants can be used. Plants in a greenhouse or growth chamber can be treated using a track sprayer or laboratory sprayer with a 11001XR or equivalent spray nozzle to deliver the sample solution at a determined rate. An exemplary and non-limiting rate is about 140 L/ha at about 0.25 MPa pressure.

[0088] In certain embodiments, it is also contemplated that a plant part can be sprayed with the composition comprising a polynucleotide that comprises a transfer agent. Such plant parts can be sprayed either pre- or post-harvest to provide for an improvement in fungal disease resistance and/or nematode resistance in the plant part that results from suppression of DND1 gene expression. Compositions can be topically applied to plant parts attached to a plant by a spray as previously described. Compositions can be topically applied to plant parts that are detached from a plant by a spray as previously described or by an alternative method. Alternative methods for applying compositions to detached parts include, but are not limited to, passing the plant parts through a spray by a conveyor belt or trough, or immersing the plant parts in the composition.

[0089] Compositions comprising polynucleotides and transfer agents can be applied to plants or plant parts at one or more developmental stages as desired and/or as needed. Application of compositions to pre-germination seeds and/or to post-germination seedlings is provided in certain embodiments. Seeds can be treated with polynucleotide compositions provided herein by methods including, but not limited to, spraying, immersion or any process that provides for coating, imbibition, and/or uptake of the polynucleotide composition by the seed. Seeds can be treated with polynucleotide compositions using seed batch treatment systems or continuous flow treatment systems. Seed coating systems are at least described in U.S. Pat. Nos. 6,582,516, 5,891,246, 4,079,696, and 4,023,525. Seed treatment can also be effected in laboratory or commercial scale treatment equipment such as a tumbler, a mixer, or a pan granulator. A polynucleotide composition used to treat seeds can contain one or more other desirable components including, but not limited to liquid diluents, binders to serve as a matrix for the polynucleotide, fillers for protecting the seeds during stress conditions, and plasticizers to improve flexibility, adhesion and/or spreadability of the coating. In addition, for oily polynucleotide compositions containing little or no filler, drying agents such as calcium carbonate, kaolin or bentonite clay, perlite, diatomaceous earth or any other adsorbent material can be added. Use of such components in seed treatments is described in U.S. Pat. No. 5,876,739. Additional ingredients can be incorporated into the polynucleotide compositions used in seed treatments. Such ingredients include but are not limited to: conventional sticking agents, dispersing agents such as methylcellulose (Methocel A15LV or Methocel A15C, for example, serve as combined dispersant/sticking agents for use in seed treatments), polyvinyl alcohol (e.g., Elvanol 51-05), lecithin (e.g., Yelkinol P), polymeric dispersants (e.g., polyvinylpyrrolidone/vinyl acetate PVPNA S-630), thickeners (e.g., clay thickeners such as Van Gel B to improve viscosity and reduce settling of particle suspensions), emulsion stabilizers, surfactants, antifreeze compounds (e.g., urea), dyes, colorants, and the like that can be combined with compositions comprising a polynucleotide and a transfer agent. Further ingredients used in compositions that can be applied to seeds can be found in McCutcheon's, vol. 1, "Emulsifiers and Detergents," MC Publishing Company, Glen Rock, N.J., U.S.A., 1996 and in McCutcheon's, vol. 2, "Functional Materials," MC Publishing Company, Glen Rock, N.J., U.S.A., 1996. Methods of applying compositions to seeds and pesticidal compositions that can be used to treat seeds are described in U.S. Patent Application publication 20080092256, which is incorporated herein by reference in its entirety.

[0090] Application of the compositions in early, mid-, and late vegetative stages of plant development is provided in certain embodiments. Application of the compositions in early, mid- and late reproductive stages is also provided in certain embodiments. Application of the compositions to plant parts at different stages of maturation is also provided. **[0091]** The following examples are included to demonstrate examples of certain embodiments. It should be appreciated by those of skill in the art that many changes can be made in the specific embodiments that are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

EXAMPLES

Example 1

DND1 DNA Polynucleotides Give an Effect on Soybean for Efficacy to *Phytophtora Sojae* Root Rot (PRR)

[0092] DND1 ssDNA triggers (Table 2) were tested on soybean (cultivar Williams 82) for efficacy to Phytophthora sojae (PRR). Four reps were performed per treatment. Triggers were applied as pools of 20 nm of oligos in 0.2% Silwet, 5 mM NaPO4 and 1% AMS in Gibco Ultra Pure water. There were 3 to 4 20 nm triggers applied as a pool for a final concentration of 60 to 80 nm (Table 3). 50 µL was applied to each plant; 25 µL per each unifoliate (VC-V1) 12 days after seeding. One day after trigger application the plants were inoculated with Phytophtora sojae as follows: two 8 mm plugs containing PRR inoculum harvested from V8+cef agar plates were ground in a Cuisinart blender and pushed through a syringe. Four agar plates total were used in the inoculation. Of the four plates, two were started 6 days before use and the other two plates were started 13 days before use. One plug each for the inoculation came from the 6 day old plate and the second plug was from the older (13 day) plate. Plants were harvested 22 days after inoculation; roots were weighed and rated for disease. Disease development was observed, as the non-inoculated roots were 3 times larger than the inoculated control. None of the oligo pool treatments were statistically different than the formulation blank or the filtered control treatment. However, pool 5 roots weighed 52% more than the formulation blank and 32% larger than the filtered control roots. (Error bars are large enough that these roots were not statistically different.) Roots were also rated for disease using a 0 to 4 scale; this is a subjective rating scale.

[0093] Rating scale: 0=no disease; 1=10% browning of roots; 2=25% browning or roots; 3=50% browning of roots; 4=80% browning of roots.

[0094] As shown in FIG. 1: pool 5 had less disease than all the other inoculated treatments; roots in pool 5 treated plants did not have as much browning and had more secondary roots. This is the first time that a direct correlation was observed between bigger roots and less disease in testing triggers to confer efficacy against PRR.

TABLE 2

DND1 ssDNA tri	qqer se	quen	ces			
Sequences		s	equ List	ence.	•	gene
GGAGAGAGGAGAAGGTGTTGTGCAT	coding	SEQ	ID	NO:	34	DND1
CCAGCCCTCCGTCCATGTACAAGCA	coding	SEQ	ID	NO :	35	DND1
ATGTAGCCTGTGACTTTTTGCATTC	coding	SEQ	ID	NO :	36	DND1
AGCGACTCCCGCGATACGTACGCCA	coding	SEQ	ID	NO :	37	DND1
CACCCTGTCACAGATGTTGTCAAGA	coding	SEQ	ID	NO :	38	DND1
AAGGCACCATGAAAGCAGCTCGTCA	coding	SEQ	ID	NO :	39	DND1
ATTCAAGGTGGTCATGTGGCCTTAT	coding	SEQ	ID	NO:	40	DND1
GAGTAGAAGAACAGCGGGTCTATCG	coding	SEQ	ID	NO:	41	DND1
ATCACGAATGCGTCGAACCAGAATC	coding	SEQ	ID	NO :	42	DND1
TGACAGGAAGTGCCCATTGGTAGAT	coding	SEQ	ID	NO:	43	DND1
GCAGCATATTGCAAGAGCCTGCGTT	coding	SEQ	ID	NO:	44	DND1
TGCTGCCCATCTCTGACGTTCAAAA	coding	SEQ	ID	NO:	45	DND1
CTAAATGGATTGTCATCCACAACTG	coding	SEQ	ID	NO:	46	DND1
TTATTGTCATAATGATTTTAATTTT	coding	SEQ	ID	NO:	47	DND1
AAGGCACCATGAAAGCAGCTCGTCA	coding	SEQ	ID	NO:	48	DND1
CAAACCCCAAAAAATGGGATAAAGA	coding	SEQ	ID	NO :	49	DND1
AAAATAGAAGGTATCTAATTTTTAA	Upstream	ιSEQ	ID	NO:	50	DND1
TAAAAAAATAGAAATAACTACATGT	Upstream	ιSEQ	ID	NO:	51	DND1
CTATCTTGGTTTCTTGCTAACTCTG	Upstream	ιSEQ	ID	NO:	52	DND1
TAATTTTATCAACTATTATACCATC	Upstream	n SEQ	ID	NO:	53	DND1
GAATTTTTAGACCATTCAACCGGGA	Upstream	n SEQ	ID	NO:	54	DND1
ACATTCTTGTAAAATATTTTCTCTG	Upstream	n SEQ	ID	NO :	55	DND1
AAGGATATTTACAAATTTGAGACAT	Upstream	ιSEQ	ID	NO:	56	DND1
TTTCATATTTTCTTCATCCCAGCAT	Upstream	ιSEQ	ID	NO :	57	DND1

TABLE 2 -continued

DND1 ssDNA trigger seq	uences			
Sequences	Sequ list	ence ing		gene
ATGATGGTAGCATGAGATTACACCCUpstream S	SEQ ID	NO:	58	DND1
ATGGCTCATTTTAGAATAAACTTTAUpstream &	SEQ ID	NO :	59	DND1
ATGGGGGGCTCCCGTTAATCCGAAGA control S	SEQ ID	NO :	60	
AGCGCCGGTAGCGAGCATACGTATG control \$	SEQ ID	NO :	61	
ACGACTCTGCTTATTATACTCGGTC control &	SEQ ID	NO :	62	
GACATATTAGGGGCGACGTCTCCAA control s	SEQ ID	NO :	63	

[0095] Control oligos were generated using bioinformatics processes such that they would not match to any sequences in soybean, tomato, cucumber, lettuce, cotton, and maize with identity over 94.7%.

TABLE 3

Triggers wer amount	e applied in pools of 3-4 μ being 20 nmol in 50 μl to 5 mM NaPO4, 1% AMS,	oolynucleotides each with the oligo otal volume in the presence of and 0.2% Silwet L-77.	<u>э</u>
Trt		SEQ ID NOs:	
1	pool 1	34, 35, 46, 41	
2	pool 2	37, 36, 42, 47	
3	pool 3	43, 45, 38, 39	
4	pool 4	48, 44, 40,	
5	pool 5	54, 57, 58, 50	
6	pool 6	51, 56, 55, 53	
7	pool 7	49, 52, 59	
8	control pool	60, 61, 62, 63	
9	Form Blank		
10	Inoc Only		
11	Not Inoc		
12	Inoc-plugs		
	only		
13	Inoc-tray		
	only		

Example 2

Application of Topical Polynucleotides to Soybean Leaves for Control of Soy Cyst Nematode (SCN)

Growth Chamber Whole Plant Assay

[0096] Soybean seeds were planted in sand in 3 inch pots and allowed to grow for 8 to 11 days. Unifoliate leaves were topically treated with a pool of up to 4 ssDNA triggers targeting either the coding sequence or the promoter sequence of the DND1 gene. 20 nmol each total polynucleotide (80 nmols total) were mixed in a solution containing 0.2% Silwet L-77, 5 mM NaPO4 and 1% AMS in Gibco ultrapure water. The final volume of water was final 50 µL. Each unifoliate received 25 µL of the polynucleotide containing solution. One day after topical polynucleotide application, pots were inoculated with 1000 vermiform SCN eggs. Cysts were harvested and counted 28 days after inoculation. FIG. 2 shows the average total cysts removed from 4 replicas per treatment. [0097] One pool in particular, Pool 3, containing oligos corresponding to SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:38, and SEQ ID NO:39, all in the antisense direction with

respect to the DND1 coding sequence, gave particularly good efficacy in terms of decreased cyst number.

Example 3

Topical Oligonucleotide Application and Fungal Testing Methods

Application of Oligonucleotides to Leaves for Powdery Mildew Control

[0098] Barley seeds are planted in 2 inch pots in the greenhouse. Five days later, barley seedlings are sprayed with nucleotides, either ssDNA and/or dsRNA oligos directed to the promoter and/or targeting the coding region of a target gene of interest such as SEQ ID NO: 1-33. The nucleotide solution applied consists of 6-20 nm of each ssDNA oligonucleotide or 0.5-4 nm dsRNA, 0.1 to 0.3% L77 Silwet, 50 mM NaPO₄ in a final volume of 40 μ L water. Two to 4 days post spraying seedlings are infected with dry spores of barley powdery mildew (*Blumeria graminis f.* sp. *hordei*) and 7 days post infection, disease development is scored for the percentage of leaf area covered with powdery mildew.

[0099] Cucumber seeds are planted in a 3-inch square pot and thinned to one plant per pot after emergence. When the first true leaf is fully expanded and the second leaf is opening a nucleotide solution of either ssDNA and/or dsRNA oligos directed to the promoter and/or targeting the coding region of a target gene of interest such as SEQ ID NO: 1-33 is applied to the first true leaf or the cotyledons. The nucleotide solution applied consists of 6-20 nm of each ssDNA oligonucleotide or 0.5-4 nm dsRNA, 0.1 to 0.3% L77 Silwet, 50 mM NaPO₄ in a final volume of 40 μ l water. Two days later the entire cucumber plant is inoculated with a shower of dry spores of cucumber powdery mildew (*Podosphaera xanthii*) shaken off diseased plants. Disease severity will be evaluated on the treated leaf and succeeding leaves 10 days later and at subsequent intervals.

[0100] Tomato seeds are planted in a 3-inch square pot and thinned to one plant per pot after emergence. Two weeks old tomato seedlings are treated with 6-20 nm of each ssDNA oligonucleotide or 0.5-4 nm dsRNA, 0.2-0.5% L77 Silwet, 50 mM NaPO4, 1% ammonium sulfate in a final volume of $30 \,\mu\text{L}$ water. Two to 4 days post spraying plants are inoculated with dry spores of tomato powdery mildew (*Oidium neolycopersici*) and 13 days post infection, disease development is scored for the percentage of leaf area covered with powdery mildew.

Example 4

Use of VIGS to Suppress Expression of DND1 Gene for Control of Tomato Powdery Mildew (TPM, *Oidium Neolycopersici*)

[0101] To identify polynucleotide sequences that can suppress DND1 expression and provide protection against Tomato Powdery Mildew infection, polynucleotides as summarized in Table 4, below, were introduced into tomato plants using a Tomato Golden Mosaic Virus (ToGMV) vector. Polynucleotide sequences that exhibit activity using VIGS-mediated suppression of DND1 are subsequently screened for their ability to suppress expression of DND1 and provide fungal and nematode resistance when provided to a plant through direct topical application with a transfer agent.

[0102] A modification of the sprout vacuum-infiltrationmediated agroinoculation method for virus-induced gene silencing protocol described in Yan et al. Plant Cell Rep (2012) 31:1713-1722 was used. Surface sterilized tomato seeds (Microtom variety) were first germinated on 1/4 Murashige-Skoog media plus Cefotaxime. Approximately three days later, Agrobacterium component A containing ToGMoV:DND1 Suppression Sequence (Table 4) and the ToGMoV component B were each separately inoculated into 10 mL Luria Broth with appropriate concentrations of spectinomycin, gentamycin, and chloramphenicol and shaken at 24° C. for about 1-2 days to prepare an Agrobacterium inoculum containing the ToGMoV vector components. The A genome component is known to encode viral functions necessary for viral DNA replication, while the B genome component specifies functions necessary for spread of the virus through the infected plant (Revington, et al. Plant Cell. 1989 October; 1(10): 985-992). After about one to two days of growth, the Agrobacterium were pelleted by centrifugation and resuspended to a final OD600 of 0.05 in Infiltration Buffer (10 mM MES, 10 mM MgCl, 100 uM Acetosyringone). The Agrobacterium A component and B component were mixed for use at a 1:1 ratio and an Infiltration buffer only control (Mock) was also prepared along with GFP. The A and B component mixture, the mock Infiltration buffer control and the GFP controls were then allowed to incubate at room temperature (~25° C.) for 3-4 hours. About 3 mls of each sample containing a ToGMV vector with a given test DND1 suppression sequence or control was transferred into a small microtiter dish. Typically, 1 microtiter plate (6-24 wells) was used for each test ToGMV vector with a given test DND1 suppression sequence (typically >5 reps/polynucleotide sequence) and 1 microtiter plate was used for the controls (Mock, GFP). About 3-5 sprouts were added to each well; a vacuum was pulled for 10 seconds and then stopped. Pulling and stopping of the vacuum was then repeated 2 more times. Vacuum-infiltrated sprouts were planted in soil, taking care not to cross contaminate samples. This was accomplished by changing gloves between samples and using new tweezers. Planted sprouts were covered with a humidity dome (70-80% humidity) and left at room temperature (~25° C.) overnight to recover. After one day, potted sprouts were transferred to a growth chamber (16 hr light cycle, 70% humidity, 200 µmol light, ~25° C.). Twelve days later plants were scored visually on the first two leaves to obtain an average disease rating/ plant (ratings=0, 1, 10, 25, 50, 75 and 100%). Data was analyzed for all replicates using ANOVA Single Factor Analysis ($\alpha=0.1$).

TABLE 4

Sequences of DND1 t	ested in the Tomato Powdery M	fildew VIGS assay:
SEQ ID NO	Species	Name
64	Tomato	DND1-A
65	Tomato	DND1-B
66	Tomato	DND1-C
67	Tomato	DND1-D
68	Aqueoria victoria	GFP

		Г	ABLE 5			
	Average	Dise	ase Rating or	Leaf 1-2		
VIGS vector used	Average % Disease		Disease	Percent (%) reduction to GFP		
Mock		81.25				
GFP		65				
DND1-A		54.69			8	
DND1-B		43.75			26	
DND1-C		43.13			27	
DND1-D		43.13			27	
ANOVA Single Factor:						
Groups	Repetitions		Sum	Average	Varia	nce
Mock	6		487.5	81.25	171.8	75
GFP	5		325	65	109.3	75
DND1-A	8		437.5	54.6875	398.9955	
DND1-B	4		175	43.75	260.4167	
DND1-C	8		345	43.125	347.7679	
DND1-D	4		172.5	43.125	630.7	292
ANOVA						
Source of Variation	\mathbf{SS}	df	MS	F	P-value	F crit
Between Groups Within Groups	17396.75 9670.371	6 35	2899.458 276.2963	10.49402	1.19E-06	1.949626

[0103] Potted tomato plants that were Agro inoculated with a recombinant ToGMV vector containing a sequence that provides for suppression of the endogenous DND1 gene showed decrease in Tomato Powdery Mildew (TPM) lesions on their leaves after TPM challenge. See Table 5. No decrease in TPM lesions was observed in control plants subjected to mock (Infiltration buffer only) treatment or a ToGMV vector containing a GFP sequence. Of the 4 fragments of DND1 gene tested, three (SEQ ID NO 65, 66, 67 corresponding to fragments DND1-B, DND1-C and DND1-D) gave comparable results, providing a 27% reduction of TPM lesions compared to the GFP control (FIG. **5**).

```
<160> NUMBER OF SEQ ID NOS: 68
<210> SEQ ID NO 1
<211> LENGTH: 2001
<212> TYPE: DNA
<213> ORGANISM: Cucumis sativus
<400> SEQUENCE: 1
attcacaatc caaatatata gtttaattga tcattgattt acggtgtttc tttagattga
                                                                       60
aaqaaaaaqq ttttttacaa attctatttt atttcaactc tttqtcctaa aaqqtttcta
                                                                     120
aaataaactt ttaaagtgtt gtaaaaaagt tattattaaa cctttcaaat tttcttctac
                                                                     180
agaatttctc ttgtattaat taatgtgggg cattctttt tgtactactc atccatttct
                                                                     240
tgttcgtgta gtataaaata taattgtcct tgcacttggc ttgtgtctca ctcaaagttt
                                                                      300
actgtttatc tcgtcaagta gataaaacgt ttagtggtca gaacgcaaag ctagaaaaac
                                                                      360
aacaaatagt taataaatgg ttgaatcgcg gatcacactc tctttaagtc gttttgcggc
                                                                      420
tctgcttctt tgtgcaaata aagttattgc atcgtcatcc ccaagataaa aaaacctttg
                                                                      480
tttttcaatt gattttgcat ataaatcaat cggaatctca gcactcagat aaacgctcaa
                                                                      540
aattgettga taaacteaaa gaagaagttt gaaagaaatt ttttetaget tatgaaaatt
                                                                      600
tgtcgcgtat atataatgaa agaatgaaaa aagtgtatat atagtgtgag agaattatca
                                                                      660
atagacggtt ggaaattaat ttttggaaaa ttaattttgt aacaatttta tttatggaga
                                                                      720
```

SEQUENCE LISTING

gattaggttg acttattaaa tacaaaacga taataaaacg tttgactctt ttaaatatgt	780
aataaagatc atgacatcaa tatatctcat catgctcgac catctctcct agaatgtcaa	840
tatatacgat gagacgatgt tctaaccttt cgcgtagctc atgttatcgc atagtcatga	900
tcaatattac atagttgaaa acttgctaaa acatgaaaga ctatcaagtt ttcattcgca	960
tcgaatttga aacatagctt agtcttctcg catcccataa agaattggcg tttaaaacat	1020
agttatatca cactgtttgg tcttattagg taaagaattt tccattcaac aattctccac	1080
ttaaattttt tttactatag gcaatttact cactttttat cttttattat tattattagt	1140
tccattatga aaatcaaatc attgacctta tttttagtat agattctaat taagtgttgt	1200
tttagtatag gtcattcatt gaacttcctt ttagtatcac aattgaggaa agggcatttc	1260
aacaatagag tgggtggtta ctaatacact tagatgctaa atggtcagtg attttaataa	1320
taaattaagt agggttggta ggggtgtgat ttaaagaatt tttctttaat tccatgctct	1380
ttettggaag tttggagatt ttagagattt caataaagtt ggttgttgtg atgacagtaa	1440
agagtgattt taaaagctaa gatgaattca tttggaatca tatttttagt taaaaacttt	1500
gatagccata atgttggagt tggtttaggg cgctaataaa gggtaataaa gaaggacaat	1560
ttctccccac gttcagattt agagaaaaga aaagaagaat aaaatcagaa ttgaattaga	1620
ggaaaggtta aaagtgttat taacaaaaag gaaacgtatt gattggaatg ttagtagttg	1680
tagccaaata tattaagaaa actgaaccga cttgcacccg ttctataaat caaacaaaag	1740
atggggaagg tgtttttgga ggttgtgaaa tagagaagga taaatttgta aattaagaac	1800
taatattgtc gttattgatg aaatctctgt tggggttggg gttccccttt tgcatttata	1860
ttatteetea ateeteeaee tetettaata atteetttt tgteaettet atetttaaca	1920
ctccaaaact cacattetea catecaacaa aacaacaata taacaeetea etaeeeteet	1980
ccataactct cccttcatcc a	2001
<210> SEQ ID NO 2 <211> LENGTH: 2000 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 2	
catgaaatat atatatata atcttctttt tgaaattttc tcttaataca tattcatctt	60
tgcagctata gttatttttg tactataatc acattggggt taccttatgc gtgctataaa	120
ttaaaactta tgacctcatg cataatatct aaattttgat cttaacaaat ttttcactta	180
caactattaa ctattatata attctctata aaattaaaaa gagaaaaaga gcaaaacaag	240
aaagaaataa ttaaggaacg ataaagcaag ccaatccgga aaaaaacttg aaaggcaacg	300
cattlctacg gcatgagatt ttcgtatcat tagtattatt taaactttga tatttattct	360
tgcttcatgg ttactctaaa gtctaaatcc tttctttgtt tatgtgataa gcacttttgg	420
aaacctagag agtacaactg aatggctaga agtagttttc aacatcattg tgctgaccag	480
tggccttctt cttgtcacta tgttgattgg aaacatcaag gtaaacacaa ttacccaggc	540
tatataaata agtgcgaatc caaaccaata attaatcaag cacattcatt ttagttcatt	600
cattaatttg gttgcgtaaa tatatttgtt atgaaattgt tttggcatat tatgggcacg	660
taccatatgt gtatgtatat acacggggca ggtatttttg cacgcaacaa cgtcaaaqaa	720

gcaagcaatg caattgaaga tgaggaatat tgaatggtgg atgagaaaac gacgcttgcc	780
gctagggttt aggcagcgcg tgcgtaacta tgagaggcag cgttgggctg ccatgcgtgg	840
ggttgatgaa ttcgagatga ctaaaaatct ccctgaggga ttaagaagag acatcaagta	900
ccatctttgt ctagacttgg tgagacaggt aaggaaattt cctagaatac taaaaggatt	960
tttagtttcc attttaaaca ataaaaagaa attgagtaaa atatttggag gaaaaatcgt	1020
ctcagttttt cttgtttcta ggtattcctt tcactatttc tagctatcca catggaaaat	1080
aatattgttt attttccaaa aggaaaaaga aaatattttt cttttcttat cacacatatc	1140
tttttcggag attcatgtag ttaagaacgt atatatatag tctgactaat aaacatctaa	1200
tttagttcat gctcaaccta atttaatcac taaaaaatga agttactaaa tagtttctca	1260
agaatgcatc taatgtacca aactgctgaa tcagtatata tttgttgaac aatgagagga	1320
aaatggtttt gttttcacat cttagtaaca taataggttt tccattaaaa aaattaaact	1380
ggatcaaacc atactgcgct aaaagaactt gaatatatat aagtattacc tacatgttta	1440
gtttaattac accaaaaata atgaatagta cgctatgttt tgtttagctt cttgttagaa	1500
aaccaattac gtacgttttt ttttcttttt tctttataga gtaatggctt tatattttgt	1560
tcaggtgcct ctatttcaac acatggacga tctggttcta gagaacatct gtgaccgtgt	1620
gaagtetetg atatteacaa agggagaaae agtaegttet aattteeaet atatagtate	1680
acatgttgca taatgcattg ggacaaagtt aaataacatt aaataagaaa tatactgata	1740
ctaacacact ctatcatgaa ctaaaattta tagagaatta taagatttga caagtcccac	1800
tetttattta ataagtttta tteatgattt taetgtttet aataaaettt aaetattaat	1860
aaagaatgca atagaagagt gttaaaaagt agtatattgc tagctagtac tcgattgaaa	1920
taaatagatt tttatatact attttcaaat tgaaatgatt cagctttatt aaacctaaca	1980
tgattaacaa tatgatgcag	2000
<210> SEQ ID NO 3 <211> LENGTH: 1999 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus	
<400> SEQUENCE: 3	
taaaatttga tcatctgatt cgctctcgac tggatgccta cacacttgat ttggaggaag	60
cgaaacatgt gacgttettg aagtttgttg aaegtetaeg ettgatttgg agaagegaag	120
cacataatgt tetteaagtt ggttgaatge ttaegettga tttgaggaag tggaacatet	180
gatettettg aagttggaag aaagtttgta tetteaaatg agttteaate ttegagggtg	240
gtcgacttta ggagttggga agtcttgtag tttttgaaaa aattctctat agaccttatg	300
gagtaaaaaa aatttcaacc cttacaaatg aaagaatttc tctatttata gagttcttat	360
ttaattcgtg gattttaact taatctaatc gttaagatga aaacatgtga cattattaaa	420
atggtcaatt tatgtttttc aattctttaa tttggggcac atgtcaattt taattagtcc	480
taaattttaa tttatttgta cttttcatca acttaataaa tgatgtgaca atttatgatt	540
ggteteaatt tettatteaa eacateegta ttgaatatet tttttetaat tetttataaa	600
tactogtaga acattgotta tattatatgg taaaaaacaa tataaaacat tqaaaqaaaa	660
tatagticga accordaage atatatett offaagge aagaatte asteasagae	720
ogengeeegn geeeggaage acacacaee egegeaayye aaayaactea dalcadacae	.20

atatggtggt atgtattgat ttgatgtatt tgtttttatt ttgacgtatg tgacacatat	780
cttacctacg attcaatgta tatattttt tctaaaacaa aaaagatgaa caactcatta	840
tttaatatat ttcacaactc gaaactaaac aatctattta aaatgttcgt tctcttttct	900
aaagctaaaa gggcaaaaat aaataaaaga tcaaattttg gaataatttg attatcatct	960
tcacattttg aatcatcaca aagtctcgaa tagttttgtt ttcttattcg tcttttgtga	1020
tattattgaa aaagaaaaag aaatagttac aaaaatatta tattattgtt cacgctgaat	1080
ataagttaac tatctctcct atcaatttcg agatttaaaa tctgatctat ccaatgacat	1140
gtcgtgtatg aataaaattt tatgataaga attgagtgaa caatcattct ctataatgac	1200
taaaagggac catataaaga aaaagacatt gttttaataa ttttgaaata gtaatcaatc	1260
aaacattata ttatacacac tgtgctcaaa tgggtaggtc ctcatcactt tgctatagaa	1320
gttttggtgg ggcataaaaa tgtcttattc tctattttaa ttttcaaaat gacaattcta	1380
acctcttagt aaataataat aactcaaatg attgattgct ttataacttt gaaagttgat	1440
ttcctataac atcaaaaata gttacatgta ccactagcta tttgggtctt tatcatgcat	1500
atatacctta aagtctatac ctaatatttt cattgtctaa acttttttta aaagtaaaat	1560
tacggaaaag ggtacgatgt ttttgtaata tatatatat tgtttagaaa attacatgat	1620
gtgtcatttt ccaaatttgt gatcatacaa aaacgtagtg aatttttttg aaataatatt	1680
gataacgtat aattaatact tgatgcaaaa ttccactata aaaagaactt ttccctttct	1740
ctcaatgcac acatcaacca agattatttt caacgtatta ttcttttttt actttctctt	1800
tattagtttt taatctacca aaagaaagat gttctcaata ttaattaagt tgattatggt	1860
tgttatttgt aataatatct ccaacagaaa caacaaaggg gttgatgtgt gtatgttgag	1920
gttgacaaat tcaatttgta tacaaagaga atatggttaa aagggtgagt atggagattt	1980
ggtatgaagg tttcaattt	1999
<210> SEQ ID NO 4 <211> LENGTH: 2000 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 4	
gggaaatgaa cacttaaaaa caactctaaa attatgaagt atttattata ctattattt	60
cttaaactat ataaactaaa ctataaaact gcaagtattt tatggttgat tacttataca	120
acaaagccaa tataattgtt aagatataat aaaaaataaa cttttaatag agtgttttaa	180
cagtgtgttt ggtttatcgt tacacaatcc ttaatcctta gtgtatgttc attttaaagt	240
ttcctctcat atacttcccg gttgaatggt ctaaaaattc atgttaccaa caaaccaaac	300
agatactaac aaatatgctg ggatgaagaa aatatgaaat gacgaatatt aattactaat	360
atccttctac tgtaaaataa taaactgaat acacatgtga ttgcagaaat gtttcgattt	420
gaatattatg tgtcgcttga gaaatagtat ttaatgtact ttgtctttat ttgttcaaca	480
gaaaaaagat gccagctggt attcgaagat aagtagaatg ttttcctgtt tcaaatcatt	540
gtactcttgg ctattatacg tttcaaaata caaggcttat aaattatttt tcgagaattt	600
ttaaaaatta gataccttct attttaaaga aagataacaa attttttgga tattttaaaa	660
taatttttat tattggggtg taatctcatg ctaccatcat taatatcaca atttcattat	720

ttgcactttt aaacaggaaa aagttgtcac tgttatatgc gacatttatc acatgtagtt	780
atttctattt ttttatatct tttccagaaa catgcatatt aaaaatacac ttttagttta	840
aaggaacaat atttctatgt ctcaaatttg taaatatcct tattataaag tgaattcaag	900
ttatttaatg ttgttagctt aatattaatt ttactttaaa gggtttaaag aaagatatta	960
acagagaaaa tattttacaa gaatgtcatt atcatttttc tttagataag tataatagat	1020
ggtataatag ttgataaaat tatacttatg taatttaatc teteettata tatatttaac	1080
taaattatga tcatcttttt attaatatat attttttcat ttcaattaac agagttagca	1140
agaaaccaag atagaattta aaaattgtat tttaaaacaa aacaaaaatt acagagtgaa	1200
taaacatgta aagtttattc taaaatgagc catacaaatt ttcgaataaa atcaaagtat	1260
ataactactg attacaacgt ttaaactata acaacttaga gtctatttta aagttgagta	1320
aaattaattt taataaaaat aataaccatc aaattttgta ttgaaatgtg taaatggtat	1380
tagaaatata aagccagaag tatataattg tgtctccaat agtttttctt tatctacaaa	1440
ggtagatact gattattatc tagtaaggtt ttttacattg gtagaaaaat acttgtattg	1500
tgtatggaat agtttgttat actaatacaa gcacattaag ttttacaata gttttaatct	1560
ttagcttaat acatatatat taaattctca tagaggatga gtaatgacat ttggatgcaa	1620
agttgaagga taagaagaag aagaagaaaa aaaagaaag	1680
ggaggcaaac aaaagaaggt ggtcccaagt tatacagaaa acggcaaaga gcaaacagca	1740
gggttgagta gagagtagca accccaccac ccttccctca acgttgcgta accgtaagct	1800
ccaatcccca ccctcttcca tttcacatgc aaattcatcc ctctttattc tcatctcatt	1860
tccatgetet ettettatat agtaccette ttecaeteca tgtgeettee tetgacaeae	1920
tetaateeca eteeteecaa teeeteeatg taaeteaeet tetteeeeat getaatggtt	1980
tctctccgat atctccaacc	2000
<210> SEQ ID NO 5 <211> LENGTH: 2091 <212> TYPE: DNA <213> ORGANISM: Lactuca sativa	
<400> SEQUENCE: 5	
atgttagacc agagaagcaa gctgatcaac catggtgacg atctagacga cgaaagtcac	60
ccaatttcgt tcacaaccga atgttatgca tgcactcaag taggtgttcc ggtgttccac	120
tccactagct gcaaccaagc tcagcaaccg gaatgggaag cttccgccgg ctcatccctc	180
atccccatcc gcaacagacc cggttccaag atcatcaaga accgatattc cgccggaaaa	240
cggagaccac tgtcgtcttc agggttgtcg ttcaggcgag tgtatgatcc aaggagcaaa	300
agtgtacaaa ggtggaatag gtttgtgttg cttgctcgtg gtatggcgtt ggctgttgac	360
cctttgttct tctactcgct gtcaataggc cgtgggggta cgccgtgtct ttacatggac	420
ggeggtettg eggeggttgt ggeegtgetg eggaeaatga ttgaetgett eeatgtegte	480
cacatatggt tacagtttcg ggtggcttat gtgtcacgtg agtcgcttgt ggttggttgt	540
gggaagetgg tgtgggacce gaagtetate geattgeatt atgtgegate aettaaagge	600
ttetggtaeg acatattegt egtaetgeeg gtteeteagg ttgtgttett attggtaett	660
ccgaaactta tccaagaaga gcgaataaaa acgatcatga ccacccttct qctaqttttc	720

atgttccagt	tcctccccaa	agtctaccac	tccatctact	taatgagacg	gatggcaaag	780	
gtcaccggct	acatcttcgg	caccatttgg	tggggtttcg	cccttaatct	aatcacttat	840	
tttattgcct	ctcatgttgc	cggtggctgt	tggtacgttt	tggcaataca	acgagtggtt	900	
ttgtgtctta	gacaacaatg	tgaaaacaaa	aactcatgcg	atcttaccct	ttcgtgcgcc	960	
gaggagattt	gctaccagtt	ttcaggaacc	tcaggaaatc	catgcaatag	aaacttcacc	1020	
atgcatgctg	ttagaatgcc	attgtgttta	gatacgaatg	gaccatacca	ttatggtatc	1080	
tatcagtggg	cgcttcctgt	gatctctagc	aactcactaa	ggataaaaat	tctttatcct	1140	
atcttttggg	gtttaatgag	tctcagcact	ttcgggaatg	atcttgagcc	cactagtcac	1200	
tgggtcgaag	tgatcttcag	tatttgcatc	gtgctgagtg	gcttgatgct	attcacctta	1260	
ttgattggta	atattcaggt	gtttctgcat	gctgttatgg	cgaggaagaa	gaaaatgcaa	1320	
ctgagatgcc	gagatatgga	gtggtggatg	aaaaggagac	aactgccatc	gcgtcttaga	1380	
catagagttc	gccattatga	acgccaaaat	tgggttttga	tgggtggaga	agatgagatg	1440	
gaattgatta	aagagttccc	agaaggcctc	agacgagata	tcaaacggtt	tttatgtatt	1500	
gatctaatcc	gaatggtacc	attgttccat	aacttggaag	atcttattct	tgataacatc	1560	
tgtgatcgtg	ttaagccgct	tgtgttttca	aaagacgaaa	agatcatcag	ggaaggggat	1620	
ctagtgcaac	gaatggtgtt	cattgttcaa	gggcgtgtaa	aaagctacca	aaacctaagt	1680	
aaaggagttg	tagcgacaag	catcctggac	cctggaggct	acttcggcga	tgagcttctg	1740	
tcatggtgcc	ttcggagacc	attgataaac	aggcttccgt	catcttcggc	tacatttacg	1800	
tgtttagaag	ctacacatgc	atttgggttg	gatgcgaacc	atcttcagta	tgttacagac	1860	
cattttcggt	acaaatttgc	aaacgagagg	ctgaagcgta	cagtgagata	ttactcctcg	1920	
aactggagga	catgggcggc	agtaaatatc	cagcttgggt	ggaggaggta	tacggcgagg	1980	
atgaggccgg	tgatggctat	tgtaagtgca	gagaataatg	gcagtgaccg	tatgettagg	2040	
cagtatgctg	ccattttcat	gtcaattagg	ccacatgatc	atttggattg	a	2091	
<210> SEQ : <211> LENG <212> TYPE <213> ORGAI	ID NO 6 TH: 2127 : DNA NISM: Solant	um lycopers:	icum				
<400> SEQUI	ENCE: 6		atata		attager	C A	
auguettete	accaagacgt	aggaggggg	aaggatgagg	agatgootco	accegaega	120	
tocattoaat	attatacata	tactcaactt	aacgacgacg	ttttcaacto	caccacttor	100	
gatggageta	accaaccoc	atagaaagat	tragregatt	attatateat	tocaattoaa	240	
aacconsect	attoasses	cooppost	caatcaacta	acaacaaca	cacatogog	210	
aaattaaaa	atatatata	agatagaa	aggreeagre	agageter	aagaataat	200	
ccgttcgggc	gtgtattaga	ccctcgaage	aagcgcgtgc	agagatggaa	ccgaatgatt	360	
ttattggcac	gtggcatggc	tttagccgtt	gatcetetat	tcttttacgc	cttatccatc	420	
ggccgcggtg	gatcgccgtg	tttgtacatg	gacggcagcc	tggcggctat	cgtcaccgtg	480	
attcggacta	gcgtcgacgc	cgtgcacctc	ttccatttgt	ggttgcagtt	tcgtttggct	540	
tacgtgtcga	gagaatcgct	ggtggttggt	tgtgggaaac	tcgtgtggga	tgcgcgtgcg	600	
attgcttctc	actatgttag	gtcccttaaa	ggattttggt	tcgatgcttt	tgtcatcctt	660	

cccgttccac aggctgtatt ctggctggtg gttccaaaac taataagaga agagcagata	720
aagettataa tgaegateet tttattaatg ttettgttee agtteettee caaagtttat	780
cactgtataa gcttaatgag aaggatgcaa aaggttacag gatatatttt tggtaccatc	840
tggtggggat ttggacttaa tctcattgct tattttattg cttctcatgt tgctggggga	900
tgetggtatg ttettgeaat acaaagagtg getteatgte taaggeagea gtgtgagege	960
aaccettegt gtaatetate tttgtettge teagaggagg tgtgttatea gtttetgttg	1020
ccaacaggaa ctgtgggaaa tccatgtgct gggaactcaa caacagtgac caggaagcca	1080
atgtgtttgg atgtcaatgg accatttcca tatgggatat accaatgggc acttcctgtt	1140
gtttctagca gatccgtcac tgttaagatt ctttacccca tcttttgggg attgatgacc	1200
cttagcacat ttggcaatga cttagaacca acaagtcact ggctggaagt tattttcagt	1260
atatgeettg tgettagtgg attgatgete tteaetttge tgattggtaa catteaggtg	1320
tttttacacg cggtcatggc aaagaagcga aaaatgcaat taagatgtag ggatatggaa	1380
tggtggatga ggaggagaca attaccatca caattaagac aaagagttcg ccactttgaa	1440
caccagagat gggctatgat gggtggcgaa gatgagatgg aacttgtaaa agacctgcca	1500
gaaggactac gaagggacat caaacgcttt ctttgccttg atcttattaa gaaggttcct	1560
ctgttcgaaa gtttggatga tctgattcta gataacattt gtgatcgcgt taagccactt	1620
gtgttctcta aagatgagaa gatcataaga gaaggagatc cagtgcacag ggttgtgttc	1680
attgttcgtg gacgtgtaaa aagtagccaa aacctcagta aaggagtgat tgccacaagc	1740
atacttgagc ctggaggctt ctttggagat gaacttettt eetggtgett aegeegteee	1800
tttattgaca gacttccagc ttcttccgca accttcactt gcattgaatc tacagaagca	1860
tttggcttag atgcaaacca ccttcgattt atcacggatc acttcagata caaatttgca	1920
aacgagaggc tgaagagaac agcaaggtat tattcatcca attggagaac ctgggctgct	1980
gtgaatatac agttagcttg gcgacgttac atgatgagga ctagccgtcc cactatacat	2040
gtgatcgaaa atggggataa tgatcatcgt cttcgcaagt atgctgcaat gttcttgtca	2100
atcagaccac atgatcatct tgaatag	2127
<210> SEQ ID NO 7 <211> LENGTH: 2061 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus	
<400> SEQUENCE: 7	
atggtteggt ggagegaget ttgtetgagg ceateacege etecteteaa tgtegeegee	60
gacgcaaccc cagtettgga atgetacgee tgtacceaag tgggegttee ageetteeae	120
tccaccagct gcgaccacgc ccaccaacaa cccgaatggg aagcctccgc gggctcttcc	180
ctggttccaa tccaacccac aaaatcctca ccagcgcccc gacattcttc ggcgggttgc	240
ttcgggacgg ttctggaccc aagaaagaaa ccggttcaga gatggaaccg ggttctgtta	300
ttggcccggg gaatgtctct tgcggttgat ccgctttact tctatgctct gtctattgga	360
agaggaggat ggccttgcct gtacatggat ggtgggttgg ctgccggagt tacggtggtt	420
cgaacgtgtc ttgatatagt gcacttgtgg cacgtgtggc ttcagttcag	480
gtgtcgaaag agagtatggt gattgggtgt gggaaactgg tgtgggatgc acgtgatatt	540

getteteact atgttegtte ttteaaagge ttttggtttg atgeetttgt tateeteect	600	
gttcctcaga ttgtttattg gttggtttta ccaaaactga tcagagaaga aagaatcaaa	660	
cttataatga cagtaatett attaatgtte ttgtteeaat teeteecaaa agtttaeeae	720	
tccattattt taatgagaag aatgcagaag gttactggat acatctttgg caccatttgg	780	
tggggttttg gcctcaatct cattgcctat tttattgcct ctcatgttgc tgggggttgt	840	
tggtatgttc ttgcaataca gcgagttgct tcttgtatcc aacaacattg tgagagaaac	900	
aagtgcaact tatctttgtc ttgctctgag gaggtgtgtt atcagtttct atcatcagat	960	
acaacgattg gaagttcgtg tggtcggaat tcgactgcta cgtttaggaa gccactatgt	1020	
ttggatgtta atggtccgtt cgcctatggc atctacaagt gggctcttcc tgtcatttct	1080	
agcaattcag ttgctgtcaa aatcctttat cctatctttt ggggattaat gactctcagc	1140	
acctttggaa atgatcttga gcctacgagt aattggctgg aagtgtgctt cagtatttgt	1200	
acggtgctta gtggattgtt gcttttcact cttttgattg gtaatattca ggtacttttg	1260	
cacgctgtca tggcaaggag gcgaaaaatg cagctgagat gtcgagattt ggagtggtgg	1320	
atgaggagac gacaattgcc atctcgtttg aaacatcgag ttcgacacta tgagcaccag	1380	
agatgggcag ctatgggagg agaagatgag atggaactaa tcaatgattt gccagaaggt	1440	
cttagaagag atatcaaacg tcatctttgt gttgacctaa tcagaaaggt gcctctcttt	1500	
caaaacctgg aggagctgat tctagacaac atatgtgaca aagtcaagcc acttgtattc	1560	
tccaaagatg aaaagataat cagagaagga gatcctgttc caaggatgtt attcatagtg	1620	
tgtggacgag taaaacgtag ccaaagcctg agcaagggca tgacagcgac aagttttatt	1680	
gaaccgggag gatttettgg tgaegaaetg etategtggt gtettegteg eccatttetg	1740	
gagagacttc cagetteate egetaeattt gtttgeattg aaceaaeaga ageatttgee	1800	
ctgaaagcag accatctgaa gtacataacc gatcacttcc gctacaaatt cgcgaatgag	1860	
agactgaaga gaacagcaag attttactct tccaactgga gaacatgggc tgctgttaac	1920	
atacaacttg cttggcgtcg atacagaaaa cggatgaggc gtccagtgat agctgtggtg	1980	
gaaaatggaa gcactgaacg tcggcttttg cagtatgctg caatgttcat gtcattcaga	2040	
ccacatgatc atcttgaata g	2061	
<210> SEQ ID NO 8 <211> LENGTH: 1424 <212> TYPE: DNA <213> ORGANISM: Hordeum vulgare		
<400> SEQUENCE: 8		
tacgttettg egatteageg tgtegeetee tgeetacaat eegaatgega gataaacaae	60	
aattgcaatt tgatgtcact ggcttgctcc aaggagatgt gctttcactt cccttggtca	120	
tcagatatga ctgcattggc atgcgatacg aacttaactt	180	
ccggcctgtc taagtggcaa tggcgccttt gcttacggaa tctacaaggg agcccttcct	240	
gttatetega geaatteact tgetgteaaa attetetate ceatattetg gggeeteatg	300	
accctcagca catttggaaa tgatcttgag ccgacgagca actggcttga ggtgatcttc	360	
agcatcatta atgtactcag cgggctgatg ctcttcacgc tgctgatcgg caacatacag	420	
gtattettge acgeegtget ggegaggaag eggaagatge agetgeggtt eegggaeatg	480	

gagtggtgga tgagg	cggcg gcagctgcc	g tegeggetge	ggcagcgggt	ccggaagtac	540
gagegggage ggtge	gcggc catcaccgg	c gacgaggaga	tggagatgat	caaggacctc	600
cccgagggcc tccg	gogga catcaagog	g tacctctgcc	tggagctggt	gaagcaggtg	660
cccctgttcc acggo	atgga cgagctgat	c ctggacaaca	tctgcgaccg	gctgcggccg	720
ctggtgttct gcggd	ggcga gaaggtgat	c cgggaggggg	acccggtgca	gcgcatggtg	780
ttcgtcctgc agggg	aaget geggageae	g cagccgctga	ccaagggcgt	ggtggcggag	840
tgcgtgctgg gcgcg	gggag cttcctcgg	c gacgagctgc	tgtcgtggtg	cctgcggcgg	900
ccgttcgtcg accgo	ctgcc ggcgtcgtc	g gccacgttcg	agtgcgtcga	ggcggcgcag	960
geettetgee tegae	gcgcc ggacctgcg	c tacatcacgg	agcacttccg	gtacaagttc	1020
gccaacgaca agcto	aagcg caccgcgcg	c tactactcgt	ccaactggcg	gacgtgggcc	1080
geegteaaeg tgeag	ctcgc gtggaggag	g tacagggcca	ggatgatggc	gacggcggtg	1140
ctgeegeege egeeg	මයයෙයි යයියයියියයියිය	g cccgaggacg	gggaccgccg	gctgcggcat	1200
tatgcggcca tgtto	atgtc gctcaggcc	g cacgaccacc	tcgagtaggc	tcgggaccgt	1260
tcgggtggct agggg	atcgg aggggacgt	g ggcatgtaga	gggaccttgc	tttggtataa	1320
cgtgtatctg tcace	ttgta gctgacaag	g ctcgccattt	attaaggatg	atcagtacaa	1380
taatggaggt ggagg	utggta tttctaaaa	a aaaaaaaaaa	aaaa		1424
<210> SEQ ID NO <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM:	9 43 Lactuca sativa				
<400> SEQUENCE:	9				
atggcttgta ggaat	gaaca ttcagatgo	t tacacagaaa	ccactgacga	agaagaagaa	60
gtagcagaaa aagaq	tacga ggagaacat	a tatagcgtgt	gtagtccaag	tgggagagca	120
agaattgacc cgaga	tctcc atgggtcca	a gaatggaacc	gggttttcct	gttggtgtgt	180
gcgatgggtc tgttc	gtgga cccgctctt	c ttctacactc	tgtcgattag	cgagtcgtgc	240
atgtgtttgt togto	gacgg gtggttcgc	c gtcactgtga	cggtgctccg	gtgcatgacg	300
gacgcgttgc accto	tggaa tatatggtt	g cggttcaaga	tgaaaaggtc	atctccactt	360
gacgaacgcc ggtto	agcac cgatgaatc	g attgtacgga	acgtgctgac	gaggttgatg	420
acggaggcca gaaac	cgctt ctcacttga	t atcttcgtcg	tcttaccaat	ctctcaggct	480
gtgggtgett gttgg	tactt gctaggagc	c cagaggactt	ccagatgctt	gaaggagaaa	540
tgcatggaaa caaat					
ggaacaaaca aacta	ggatg catgccaag	a gtattgacgt	gtgaaaactt	catgtattat	600
	ggatg catgccaag gtgat aagagacac	a gtattgacgt g tggagactct	gtgaaaactt tatggggtga	catgtattat gagtagaagc	600 660
acaaggacta cttgt	ggatg catgccaag gtgat aagagacac ctaca aggtagcga	a gtattgacgt g tggagactct c agtttcagtt	gtgaaaactt tatgggggtga ttggtgcata	catgtattat gagtagaagc taaatggaca	600 660 720
acaaggacta cttgt gttcaactcg ttacc	ggatg catgccaag gtgat aagagacac ctaca aggtagcga caatga gagcagatt	a gtattgacgt g tggagactct c agtttcagtt g gagaagatac	gtgaaaactt tatggggtga ttggtgcata tcttccccat	catgtattat gagtagaagc taaatggaca attttggggt	600 660 720 780
acaaggacta cttgt gttcaactcg ttacc ttgatgacac taagt	ggatg catgccaag gtgat aagagacac ctaca aggtagcga aatga gagcagatt acatt tggtaactt	a gtattgacgt g tggagactct c agtttcagtt g gagaagatac g gagagcacaa	gtgaaaactt tatggggtga ttggtgcata tcttccccat cagattggtt	catgtattat gagtagaagc taaatggaca attttggggt ggaagtggtt	600 660 720 780 840
acaaggacta cttgt gttcaactcg ttacc ttgatgacac taagt ttcattatca ttgtt	ggatg catgccaag gtgat aagagacac ctaca aggtagcga aatga gagcagatt acatt tggtaactto ctcac gacgggcct	a gtattgacgt g tggagactct c agtttcagtt g gagaagatac g gagagcacaa c cttttagtca	gtgaaaactt tatggggtga ttggtgcata tcttccccat cagattggtt ccatgttgat	catgtattat gagtagaagc taaatggaca attttggggt ggaagtggtt tggaaacatt	600 660 720 780 840 900
acaaggacta cttgt gttcaactcg ttacc ttgatgacac taagt ttcattatca ttgtt aaggtgtttt tgcat	ggatg catgccaag gtgat aagagacac actaca aggtagcga aatga gagcagatt acatt tggtaactt cctcac gacgggcct gcaac gacatcaaa	a gtattgacgt g tggagactct c agtttcagtt g gagaagatac g gagagcacaa c cttttagtca g aaactagcaa	gtgaaaactt tatggggtga ttggtgcata tcttccccat cagattggtt ccatgttgat tgcagttgaa	catgtattat gagtagaagc taaatggaca attttggggt ggaagtggtt tggaaacatt aatgagagac	600 660 720 780 840 900 960
acaaggacta cttgt gttcaactcg ttacc ttgatgacac taagt ttcattatca ttgtt aaggtgtttt tgcat atagagtggt ggatg	ggatg catgccaag gtgat aagagacac ctaca aggtagcga aatga gagcagatt acatt tggtaactt ctcac gacgggcct gcaac gacatcaaa aggag gagacgcct	a gtattgacgt g tggagactct c agtttcagtt g gagaagatac g gagagcacaa c cttttagtca g aaactagcaa c cctcaagaat	gtgaaaactt tatggggtga ttggtgcata tcttccccat cagattggtt ccatgttgat tgcagttgaa ttagacaaag	catgtattat gagtagaagc taaatggaca attttggggt ggaagtggtt tggaaacatt aatgagagac agtcagaaat	600 660 720 780 840 900 960 1020

-concinued	
ctgcctgagg gcctgcgaag agatataaag taccatctat gcttggattt ggttcgacag	1140
gtacetttat tteaacatat ggacaacetg gteettgaga acatatgtga eegtgttaag	1200
ccccttattt acactaatgg agaaataatt actcgagagg gagatgcagt gcaaaggatg	1260
ttatttatag tacgagggca tcttcaaagt agccaatatt tacgagatgg tgtcaaaagt	1320
agttgtatgt taggcccagg aaacttcagt ggggacgagc tcttatcgtg gtgtctaaag	1380
agacetttea ttgaaagaet acetteatea teateaacae tagteaetet egagaeeaca	1440
gaagcttttg gcctagatgc cgaagatgta aagtatgtta cacaacattt tagatatact	1500
tttgtgaacg aaaaagtgaa gatgagtgca agatattatt caccaggatg gaggacttgg	1560
gccgcagttg cgattcaatt ggcttggagg aggtacaagc atagacttac acttaactcg	1620
ttgtcgttta ttagaccaag gagacctttg tctaggtgtt cttcacttgg ggaagatagg	1680
ctaagacttt atacggctct attgacttcg ccaaagccta atcaagatga ttttgaattt	1740
tga	1743
<210> SEQ ID NO 10 <211> LENGTH: 2441 <212> TYPE: DNA <213> ORGANISM: Solanum lycopersicum	
<400> SEQUENCE: 10	
agtgcatata ttctcttcat tttttttat ctccatatcc caaatccata aaagaaaaaa	60
actagcacaa aaaaaaaaaa ttaatggcta gtcatcatga acttgaacta tcaaataatt	120
atagtgatcg aagtgacgat gacatggacg aggacgagga tgagcaagat aacatagaag	180
aggaggaaaa agaagatgat aattcaaatg actacaacat ttgtagtagt cgtagtcgag	240
gaggaggatt gacagacttc ttttcgtgga aagtcataga ccctagagcg ccttgggttc	300
aagaatggaa togagtattt ttattagtat gtgocaoggg gotatttgtg gatoototot	360
ttttctactc tctctctatc agcgagactt gcatgtgcct ttttatcgat ggttggtttg	420
cggtaacggt caccgttett egatgeatga eegatgegat geatttatgg aacatgtgga	480
tacgattcaa gatgcataaa ttacgtcctt acaatgaaaa aatggatgaa aatcaaatta	540
ctagtagtag tcgaggtcca cgactacatc aagaccagag ttttcgatgt tttgtggcct	600
tacgatactt gaaatccaag aagggtttet ttttggatet ettegteate etteettae	660
ctcagatagt gatgtgggta gggattccag gtttactgga gaaaggatat acaacaacag	720
taatgacagt attattaata atgtttetgt tteaatatet geecaaaatt tateaeteag	780
tttgcctgct aagacgcatg cagaatctct ctggatacat ttttggtact gtttggtggg	840
gaattgetet taacttgatt gettattttg ttgeeteeca tgeagtggga geatgttggt	900
acttgctagg aatccaaagg gcagcaaaat gtttgaaaca acagtgtaga gttacaaatg	960
gttgtagcct aagaatgttg gcatgtgaag agaaaatatt ttatggaaca agtagtttgg	1020
tgaagcatag aagtagagtc atatggggtg agtccaaaat tgcaagatca acatgtctag	1080
cctctgaaca caattttgat tatggagttt ataaatggac tgttcaactt gtcacaaatg	1140
agaatcgttt tgagaaaata ttatttccca tcttctgggg tctcatgact ctcagtacat	1200
ttggaaactt ggagagcaca acagattggc tggaagatgt attcataatc attgttctca	1260
ctactggtct tcttcttgtc actatgttga ttggtaatat caaggtattc ttgcatgcaa	1320

- caacatcaaa gaaacaagca atgcaactaa aaatgagaaa tgtagaatgg tgga	atgagga 1380
gaagaaggtt gcctcaagga tacaagcaaa gggtcagaaa ttatgaaagg cata	agatttg 1440
cagcaacaag aggagttgat gaatatgaga tgataagcaa ccttcctgag ggad	cttagaa 1500
gagacatcaa atatcatctt tgtttggact tggttagaca ggttcctttg tttc	caacata 1560
tggataattt ggtcctggag aacatatgtg accgcgtaaa atccttgatt ttca	actaaag 1620
gagaaacaat aacaagagaa ggtgatccag ttcaaagaat gttgttcata gtga	agaggtc 1680
atctccaaag cagtcaagaa cttagagatg gtgtcaaaag ttgttgcatg ttgg	ggccctg 1740
gaaacttcag cggcgacgaa cttctctcat ggtgcctccg gaaacccttc gtgg	gagcgtc 1800
taccgccttc ctcctcatcg ctagtgactc tcgagaccac agaagcgttt ggcc	ctcgaag 1860
cagatgatgt caagtatgtc actcaacatt tccgctacac atttgtgaat gaga	aaagtga 1920
agagaagege cagatattat tetecaggat ggegaaettg ggetgeegtt geta	attcagt 1980
tggcctggag gagatataga caccggctga ctctcacgtc gttgtccttc atto	cgaccaa 2040
gacgaccgtt gtctcgatct tcttcattaa cagaagacag actcaggcta tata	acagctt 2100
tgetcaette accaaageet aatcaggaeg attttgattt ttaaaaagag caac	caaacaa 2160
atggaatgtt accttettte tgttatgaga taggageaea teeeeteetee	atatgtc 2220
cttcaattat ccattcatgt gatatgtagt agtctcttcg tttcaattta tgtg	gaattcg 2280
tggacaccga gtttaagaaa gaaaagaaga ttttgatcta cagagtctgt agat	ttttgag 2340
gtcatgtaga acateteaga teaagtgtgt etgattttat eeteeatgtg tget	tacttgt 2400
atcttttcct gaatataatt atttctaatc taaaaaaaaa a	2441
<210> SEQ ID NO 11 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus	
<210> SEQ ID NO 11 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus <400> SEQUENCE: 11	
<210> SEQ ID NO 11 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus <400> SEQUENCE: 11 atggccacca cctccctaac atccgatgac gaagagctag accaccaaga atca	agaagaa 60
<210> SEQ ID NO 11 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus <400> SEQUENCE: 11 atggccacca cctccctaac atccgatgac gaagagctag accaccaaga atca gaagaacact ccaacgctgc gttttgtcag agcttatacg gagttgcttc agtt	agaagaa 60 tetegae 120
<pre><210> SEQ ID NO 11 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus <400> SEQUENCE: 11 atggccacca cctccctaac atccgatgac gaagagctag accaccaaga atca gaagaacact ccaacgctgc gttttgtcag agcttatacg gagttgcttc agtt ccaacatcca aatgggttcg agaatggaat tgggtcttcc tcctcgtctg tgca</pre>	agaagaa 60 tctcgac 120 agcgggc 180
<pre><210> SEQ ID NO 11 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus <400> SEQUENCE: 11 atggccacca cctccctaac atccgatgac gaagagctag accaccaaga atca gaagaacact ccaacgctgc gtttgtcag agcttatacg gagttgcttc agtt ccaacatcca aatgggttcg agaatggaat tgggtcttcc tcctcgtctg tgca ctgttcgtcg accctttgtt tctctacacg ctatccataa gcgagtcgtg gatg</pre>	agaagaa 60 tetegae 120 ageggge 180 gtgegtt 240
<pre><210> SEQ ID NO 11 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus <400> SEQUENCE: 11 atggccacca cctccctaac atccgatgac gaagagctag accaccaaga atca gaagaacact ccaacgctgc gtttgtcag agcttatacg gagttgcttc agtt ccaacatcca aatgggttcg agaatggaat tgggtcttcc tcctcgtctg tgca ctgttcgtcg acccttgtt tctctacacg ctatccataa gcgagtcgtg gatg tttattgacg ggtggttggc catcaccgtg accgtcctcc gctgcatggg cgat</pre>	agaagaa 60 tctcgac 120 agcgggc 180 gtgcgtt 240 tgctttg 300
<pre><210> SEQ ID NO 11 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus <400> SEQUENCE: 11 atggccacca cctccctaac atccgatgac gaagagctag accaccaaga atca gaagaacact ccaacgctgc gtttgtcag agcttatacg gagttgcttc agtt ccaacatcca aatgggttcg agaatggaat tgggtcttcc tcctcgtctg tgca ctgttcgtcg acccttgtt tctctacacg ctatccataa gcgagtcgtg gatg tttattgacg ggtggttggc catcaccgtg accgtcctcc gctgcatggg cgat cacctttgga atatgtggct tcagctcag actgctacaa agtcatcctt tgct</pre>	agaagaa 60 tctcgac 120 agcgggc 180 gtgcgtt 240 tgctttg 300 tggtagc 360
<pre><210> SEQ ID NO 11 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus <400> SEQUENCE: 11 atggccacca cctccctaac atccgatgac gaagagctag accaccaaga atca gaagaacact ccaacgctgc gtttgtcag agcttatacg gagttgcttc agtt ccaacatcca aatgggttcg agaatggaat tgggtcttcc tcctcgtctg tgca ctgttcgtcg acccttgtt tctctacacg ctatccataa gcgagtcgtg gatg tttattgacg ggtggttggc catcaccgtg accgtcctcc gctgcatggg cgat cacctttgga atagtggct tcagctcag actgctacaa agtcatcctt tgct ggggagggtg atgggagggg tgaaaataga cggctttgcg atagtagccc acgo</pre>	agaagaa 60 tctcgac 120 agcgggc 180 gtgcgtt 240 tgctttg 300 tggtagc 360 cgccgtc 420
<pre><210> SEQ ID NO 11 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus <400> SEQUENCE: 11 atggccacca cctccctaac atccgatgac gaagagctag accaccaaga atca gaagaacact ccaacgctgc gtttgtcag agcttatacg gagttgcttc agtt ccaacatcca aatgggttcg agaatggaat tgggtcttcc tcctcgtctg tgca ctgttcgtcg acccttgtt tctctacacg ctatccataa gcgagtcgtg gatg tttattgacg ggtggttggc catcaccgtg accgtcctcc gctgcatggg cgat cacctttgga atatgtggct tcagctcag actgctacaa agtcatcctt tgct ggggagggtg atgggagggg tgaaaataga cggctttgcg atagtagccc acg gctctccggt atttgaagtc caagaaaggc ttctttttg atctttgt catt</pre>	agaagaa 60 tctcgac 120 agcggggc 180 gtgcgtt 240 tgctttg 300 tggtagc 360 cgccgtc 420 tcttcct 480
<pre><210> SEQ ID NO 11 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus <400> SEQUENCE: 11 atggccacca cctccctaac atccgatgac gaagagctag accaccaaga atca gaagaacact ccaacgctgc gttttgtcag agcttatacg gagttgcttc agtt ccaacatcca aatgggttcg agaatggaat tgggtcttcc tcctcgtctg tgca ctgttcgtcg accctttgtt tctctacacg ctatccataa gcgagtcgtg gatg tttattgacg ggtggttggc catcaccgtg accgtcctcc gctgcatggg cgat cacctttgga atatgtggct tcagctcag actgctacaa agtcatcctt tgct ggggagggtg atgggagggg tgaaaataga cggctttgc atagtagccc act ctctccggt atttgaagtc caagaaagc ttctttttg atctcttgt catt tttcctcagg ttgtattatg gatagtaatt cctagaataa tgaaagaagg attag tttactcagg ttgtattatg gatagtaatt cctagaataa tgaaagaagg attag</pre>	agaagaa 60 tctcgac 120 agcgggc 180 gtgcgtt 240 tgctttg 300 tggtagc 360 cgccgtc 420 tcttcct 480 agtgaca 540
<pre><210> SEQ ID NO 11 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus <400> SEQUENCE: 11 atggccacca cctccctaac atccgatgac gaagagctag accaccaaga atca gaagaacact ccaacgctgc gtttgtcag agcttatacg gagttgctt agtt ccaacatcca aatgggttcg agaatggaat tgggtcttce tcctcgtctg tgca ctgttcgtcg accctttgtt tctctacacg ctatccataa gcgagtcgtg gatg tttattgacg ggtggttggc catcaccgtg accgtcctc gctgcatggg cgat gaggagggtg ataggagggg tgaaaataga cggcttgcg atagtagcce acgo gctctccggt atttgaagte caagaaagge ttetttttg atcctttgt catt tttectcagg ttgtattatg gatagtaatt cctagaataa tgaaagaagg atta tcggtgatga cagtettatt gatagtttt ttgttcaat attaccaaa attg</pre>	agaagaa 60 tctcgac 120 agcgggc 180 gtgcgtt 240 tgctttg 300 tggtagc 360 cgccgtc 420 tcttcct 480 agtgaca 540 gtaccat 600
<pre><210> SEQ ID NO 11 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus <400> SEQUENCE: 11 atggccacca cctccctaac atccgatgac gaagagctag accaccaaga atca gaagaacact ccaacgctgc gtttgtcag agcttatacg gagttgcttc agtt ccaacatcca aatgggttcg agaatggaat tgggtcttcc tcctcgtctg tgca ctgttcgtcg acccttgtt tctctacacg ctatccataa gcgagtcgtg gatg tttattgacg ggtggttggc catcaccgtg accgtcctcc gctgcatggg cgat cacctttgga atagtggct tcagctcag actgctacaa agtcatcct tgct ggggagggtg atgggagggg tgaaaataga cggcttgcg atagtagccc acg gctctccggt attgaagtc caagaaagc ttcttttg atcctttg catt tttcctcagg ttgtattatg gatagtaatt cctagaataa tgaaagaagg atta tcggtgatga cagtcttatt gatagtttt ttgttcaat attaccaaa attg tctgtttgct tactaccgacg tctccaaac ctttctggt acatctttgg catt</pre>	agaagaa 60 tctcgac 120 agcgggc 180 gtgcgtt 240 tgctttg 300 tggtagc 360 cgccgtc 420 tcttcct 480 agtgaca 540 gtaccat 600 tgtttgg 660
<pre><210> SEQ ID NO 11 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus <400> SEQUENCE: 11 atggccacca cctccctaac atccgatgac gaagagctag accaccaaga atca gaagaacact ccaacgctgc gtttgtcag agcttatacg gagttgcttc agtt ccaacatcca aatgggttcg agaatggaat tgggtcttcc tcctcgtctg tgca ctgttcgtcg accctttgtt tctctacacg ctatccataa gcgagtcgtg gatg tttattgacg ggtggttggc catcaccgtg accgtcctcc gctgcatggg cgat cacctttgga atatgtggct tcagctcaag actgctacaa agtcatcctt tgct ggggagggtg atgggagggg tgaaaataga cggctttgc atagtagccc acgo gctctccggt atttgaagtc caagaaaggc ttctttttg atcttttgt catt tttactcaag tgtgattat gatagtatt cctagaataa tgaaagaagg atta tcggtgatga cagtcttatt gatagtttt ttgttcaat atttaccaaa attg tcggtgatg tactaccgacg tctccaaac ctttctggt acatctttgg cact tggggcattg ctccaatct cattgcttac ttgttgctg cccatgctg agg</pre>	agaagaa 60 tctcgac 120 agcggggc 180 gtgcgtt 240 tgctttg 300 tggtagc 360 cgccgtc 420 tcttcct 480 agtgaca 540 gtaccat 600 tgtttgg 660 tgtttgg 720
<pre><210> SEQ ID NO 11 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus <400> SEQUENCE: 11 atggccacca cctccctaac atccgatgac gaagagctag accaccaaga atca gaagaacact ccaacgctgc gtttgtcag agcttatacg gagttgcttc agtt ccaacatcca aatgggttcg agaatggaat tgggtcttcc tcctcgtctg tgca ctgttcgtcg accctttgtt tctctacacg ctatccataa gcgagtcgtg gatg tttattgacg ggtggttggc catcaccgtg accgtcetce gctgcatggg cgat cacctttgga atagtggct tcagctcaag actgctacaa agtcatcctt tgct ggggagggtg atgggagggg tgaaaataga cggctttgc atagtagcce acgo gctctccggt attgaagtc caagaaaggc ttctttttg atcctttgt catt tttcctcagg ttgtattatg gatagtatt cctagaataa tgaaagaagg atta tcggtgatga cagtcttatt gatagtttt ttgtttcaat attaccaaa atto tcggtgatga cagtcttatt cattgcttac tttgttgctg cccatgctg agg tgggagcattg ctccaatct cattgcttac ttgttgctg ccatgctg agg tgggattg ctccaatct cattgcttac tttgttgctg cccatgctg agg tgggattg ctccaatct cattgcttac tttgttgcta agagcaatg tagg</pre>	agaagaa 60 tetegac 120 ageggge 180 gtgegtt 240 tgetttg 300 tggtage 360 egeegte 420 tetteet 480 agtgaca 540 gtaccat 600 tgtttgg 660 tgcatgt 720 atcagea 780
<pre><210> SEQ ID NO 11 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus <400> SEQUENCE: 11 atggccacca cctccctaac atccgatgac gaagagctag accaccaaga atca gaagaacact ccaacgctgc gtttgtcag agcttatacg gagttgcttc agtt ccaacatcca aatgggttcg agaatggaat tgggtcttcc tcctcgtctg tgca ctgttcgtcg acccttgtt tctctacacg ctatccataa gcgagtcgtg gatg tttattgacg ggtggttggc catcaccgtg accgtcctcc gctgcatggg cgat cacctttgga atatgtggct tcagctcaag actgctacaa agtcatcctt tgct ggggagggtg atgggagggg tgaaaataga cggcttgcg atagtagccc acgc gctctccggt attgaagtc caagaaaggc ttctttttg atctttgt catt tttactcaag tggtattatg gatagtaatt cctagaataa tgaaagaagg atta tcggtgatga cagtcttatt gatagtttt tgttcaat attaccaaa attg tcggtgatga cagtcttatt cattgcttac tttgttgct cccatgctg aggt tgggaatg ctccaacct cattgcttac tttgttgct acatctttgg cact tggggcattg ctccaactc cattgcttac tttgttgct acatcttg cag tgggattg tttatagggtaca aagagcagca aaatgtctaa aggacaatg tag acaaccaaca gctgtgggct gaggttgtta tcatgcaaga acccaatct cattg tcagtactat taggggtaca aggagggtg aagggagag acccaatct tcattg tcagtactat taggggtaca aggacaga acatgtcaa agagcaatg taga acaaccaaca gctgtgggct gaggttgtta tcatgcaaga acccaatct cattg tcagtactat taggggtaca aggacaga acatgtcaa agagcaatg taga acaaccaaca gctgtgggct gaggttgtta tcatgcaaga acccaatct cattg tcagtactat taggggtaca aggacaga acatgtcaa agagcaaga acccaatct cattg accaaccaaca gctgtgggct gaggttgtta tcatgcaaga acccaatct cattg tcagtactat taggggtaca aggacaga acccaatct cattg accaaccaaca gctgtgggct gaggttgta tcatgcaaga acccaatct cattg accaaccaaca gctgtgggct gaggttgta tcatgt acatctt gagagcaatg acccaatct cattg accaaccaaca accaaccaaccaaccaaccaaccaacaa</pre>	agaagaa 60 tctcgac 120 agcggggc 180 gtgcgtt 240 tgctttg 300 tggtagc 360 cgccgtc 420 tcttcct 480 agtgaca 540 gtaccat 600 tgtttgg 660 tgcttgg 660 tgctagc 720 atcagca 780

aaattcatgt gtttagatac tgctgataac tttgattatg gagcttataa atggactgtt	960
caacttgttg tcaatcaaag tcggttggag aaaatccttt tccccatctt ttgggggcctc	1020
atgactetta gtacetttgg gaatttggaa ageacaaetg aatggetgga agtagtgtte	1080
aatatcattg ttctcaccag tggactctta ttggtcacca tgttgattgg aaatatcaag	1140
gtgtttctac atgcaacaac gtcaaaaaaa caaggaatgc agctgaagat gaggaaccta	1200
gagtggtgga tgaggaagcg aaggctgcca caagggtttc ggcagcgtgt tcggaactat	1260
gaacgccaac ggtgggcggc gatgcggggt gtggacgagt gcgagatgat aaaaaaccta	1320
ccggaagggc ttagacgaga cataaagtat cacctttgct tggatctagt caggcaggtg	1380
ccattgtttc aacatatgga tgatcttgtt cttgagaaca tttgtgatcg tgtcaagtcc	1440
ctcatcttca ctaagggcga aaccataaca agagaaggag atccagtaca aagaatgcta	1500
ttcgtagtgc gagggcatct ccaaagcagc caagtcctac gcgacggcgt aaaaagctgc	1560
tgcatgttgg gccccggcaa cttcagcggc gacgagcttc tatcctggtg cctccgccgc	1620
cetticatag agegeettee acceteetee titaeteteg tgacaetgga gaceaetgaa	1680
gcetteaget tggaggeega ggatgteaag tatgtaaeee ageaetteeg etaeaeettt	1740
gtcaatgaca aggtcaagcg cagtgcccgc tactactccc caggctggcg cacttgggct	1800
getgttgeca tecagetage etggegeega tategeeate gteteaeaet eaegteettg	1860
teetttatte ggeeeegeeg eeeactetea eggtgetett eettggggga ggategeete	1920
cgcctctata cggcgttgct tacttctcca aagcccaacc acgaccactt tgatttttga	1980
<210> SEQ ID NO 12 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Hordeum vulgare	
<400> SEQUENCE: 12	
atggccacca cctccctaac atccgatgac gaagagctag accaccaaga atcagaagaa	60
gaagaacact ccaacgctgc gttttgtcag agcttatacg gagttgcttc agttctcgac	120
ccaacatcca aatgggttcg agaatggaat tgggtcttcc tcctcgtctg tgcagcgggc	180
ctgttcgtcg accctttgtt tctctacacg ctatccataa gcgagtcgtg gatgtgcgtt	240
tttattgacg ggtggttggc catcaccgtg accgtcctcc gctgcatggg cgatgctttg	300
cacctttgga atatgtgget teageteaag aetgetaeaa agteateett tgetggtage	360
ggggagggtg atgggagggg tgaaaataga cggctttgcg atagtagccc acgcgccgtc	420
geteteeggt atttgaagte caagaaagge ttettttttg atetetttgt eattetteet	480
tttcctcagg ttgtattatg gatagtaatt cctagaataa tgaaagaagg attagtgaca	540
tcggtgatga cagtottatt gatagttttt ttgtttcaat atttaccaaa attgtaccat	600
tetgtttget tactaegaeg tetecaaaae etttetggtt acatetttgg eaetgtttgg	660
tggggcattg ctctcaatct cattgcttac tttgttgctg cccatgctgc aggtgcatgt	720
tggtatctat taggggtaca aagagcagca aaatgtctaa aagagcaatg tagatcagca	780
acaaccaaca gctgtgggct gaggttgtta tcatgcaaag acccaatctt ctatggacca	840
aacaatatga gaatgggaag agatggagga aggtttgatt gggcaaacaa taggctatca	900
aaattcatgt gtttagatac tgctgataac tttgattatg gagcttataa atggactgtt	960

caacttgttg tcaatcaaa	g tcggttggag	aaaatccttt	tccccatctt	ttggggcctc	1020
atgactctta gtacctttg	g gaatttggaa	agcacaactg	aatggctgga	agtagtgttc	1080
aatatcattg ttctcacca	g tggactctta	ttggtcacca	tgttgattgg	aaatatcaag	1140
gtgtttctac atgcaacaa	c gtcaaaaaaa	caaggaatgc	agctgaagat	gaggaaccta	1200
gagtggtgga tgaggaage	g aaggetgeea	caagggtttc	ggcagcgtgt	tcggaactat	1260
gaacgccaac ggtgggcgg	c gatgeggggt	gtggacgagt	gcgagatgat	aaaaaaccta	1320
ccggaagggc ttagacgag	a cataaagtat	cacctttgct	tggatctagt	caggcaggtg	1380
ccattgtttc aacatatgg	a tgatcttgtt	cttgagaaca	tttgtgatcg	tgtcaagtcc	1440
ctcatcttca ctaagggcg;	a aaccataaca	agagaaggag	atccagtaca	aagaatgcta	1500
ttcgtagtgc gagggcatc	c ccaaagcagc	caagtcctac	gcgacggcgt	aaaaagctgc	1560
tgcatgttgg gccccggca	a cttcagcggc	gacgagette	tatcctggtg	cctccgccgc	1620
cctttcatag agegeette	c accetectee	tttactctcg	tgacactgga	gaccactgaa	1680
geetteaget tggaggeeg	a ggatgtcaag	tatgtaaccc	agcacttccg	ctacaccttt	1740
gtcaatgaca aggtcaagc	g cagtgcccgc	tactactccc	caggetggeg	cacttgggct	1800
getgttgeea teeagetag	c ctggcgccga	tatcgccatc	gtctcacact	cacgtccttg	1860
teetttatte ggeeeegee	g cccactctca	cggtgctctt	ccttggggga	ggatcgcctc	1920
cgcctctata cggcgttgc	tacttctcca	aagcccaacc	acgaccactt	tgatttttga	1980
<211> LENGTH: 2389 <212> TYPE: DNA <213> ORGANISM: Goss <400> SEQUENCE: 13	ypium hirsut	um			
ceteetteet teettteet	t tccattcgcc	caatteetgg	ctcgcccatg	gttccactct	60
tteteaceat geettetea	g tccaacttct	ccctatcaag	gtggtttgga	ctttttcaac	120
ttccaaactc aatgccaga	g agatctgata	atggtagtgt	tagcggcgaa	ggcaatgaag	180
aaaacccaat ttcctacac	c gtagaatgtt	acgcttgtac	tcaagtcggt	gttccagttt	240
ttcactccac cagctgtga	c caageteace	caccggaatg	ggaagcetee	gctggttctt	300
ccctcgttcc aattcaage	cgtacggeet	ccaaacagaa	gaagactcaa	cagcetgeeg	360
cgcctaatac tcggcgacc	t tetggteegt	tcggtcgggt	gcttgatcct	aggaccaagc	420
gagtgcaaaa ctggaaccg	g gctttcttat	tggctcgtgc	aatggcttta	gccattgatc	480
ctttgttttt ctatgcttt	a tctataggaa	gaggtgggtc	gccgtgtttg	tacatggatg	540
ggggcetege tgecategt	a accgtcctcc	gcacgtgtgt	ggacgccgtg	catttgttcc	600
atetttgget teagtteag	a ctggcgtacg	tgtcaaggga	gtcgctggtc	gtcggttgtg	660
gtaaactcgt gtgggacgc	a cgtgccatcg	cttctcatta	cgttcgttcc	ctcaaaggtt	720
tetggtttga tgtetttgt	g attetgeegg	tteetcagge	agtattttgg	ttagttgtac	780
caaaattaat aagggaaga	g cagatcaaga	ttattatgac	aatactgtta	ttaatcttct	840
tgttccaatt cttgccaaa	g gtttaccaca	tcatttgctt	aatgagaagg	ctgcaaaagg	900
tcaccggtta catctttgg	c accatttggt	ggggttttgg	ccttaatctc	attgcctact	960

catgtctgcg g	gcaacaatgc	gcgagaaaca	agcagtgcaa	gctttcattg	tcgtgctcgg	1080	
aggaagtgtg c	ctaccaattc	ttatttccag	ctgaggcagt	aggaaatact	tgtggtggta	1140	
actcaaccaa c	cgttattgga	aaacctttat	gtttagaggt	tcatggacca	ttcaattatg	1200	
ggatatatca g	gtgggctctc	cctgttgttt	ctagcaattc	tgttgctgtt	aggatccttt	1260	
atcccatcta t	ttggggctta	atgtctctca	gcacctttgg	gaatgatctt	gaaccaacaa	1320	
gtcactggtt a	agaagtgatg	ttcagtattt	gcattgtgct	tgctggattg	atgctcttta	1380	
ctttattgat t	tggaaacatt	caggtattct	tgcatgctgt	catggcgaag	aagaggaaaa	1440	
tgcagctgag a	atgtcgagac	atggaatggt	ggatgaaacg	ccggcaacta	ccatcttgtt	1500	
tgagacaacg a	agtccgccat	tacgaacgcc	aaaaatgggc	gaccttgggc	ggagaagacg	1560	
aaatggaact g	gatcaaagac	ttacccgaag	gcctccggag	agacattaaa	cgcttccttt	1620	
geettgaeet e	catcaagaag	gttcctttat	tccataactt	gaatgatctt	attctggata	1680	
acatctgtga t	tcgagttaag	ccgctcgtat	tctctaaaga	tgaaaagata	attagagaag	1740	
gtgatccagt a	acaaagaatg	gtgtttgtcg	ttcgtggacg	tataaaacgt	atccaaagcc	1800	
ttagcaaagg c	cgtggttgcc	acaagtttaa	tcgagtcagg	aggcttccta	ggtgacgaat	1860	
tgttgtcatg g	gtgtettege	cgaccattta	tcaaccgtct	tccagcctcg	tccgcaacat	1920	
ttgtttgtgt a	agagccgatt	gaagcattca	gtctcgactc	aaaccatctc	aaatacatta	1980	
cagatcactt c	caggtataaa	tttgccaatg	agagacttaa	aagaacagca	agatactatt	2040	
catcgaattg g	gcgaacatgg	gcagccgtga	atatacaact	tggctggcgg	cgttacagaa	2100	
cgaggactcg a	aggtccaatg	atttctgctg	ccgaaaacgg	caacagcagc	gaccgccggt	2160	
tgctgcaata c	cgctgccatg	tttatgtcaa	taaggccaca	agatcatcta	gaataaagaa	2220	
aagccaattg c	ccttctgcaa	ttcatttggg	tcattatgta	atctgtactg	tcatttaata	2280	
aagtttttca t	ttcaccatgg	aaaccatttt	gaacatagtt	gtttgctcat	tctgtactca	2340	
tctgcttcaa g	gtacaagtca	aaaaaaaaaa	agaagaaaag	gggggggaa		2389	
<210> SEQ II <211> LENGTH <212> TYPE: <213> ORGANI	D NO 14 H: 2067 DNA ISM: Gossyr	bium hirsutu	ım				
<400> SEQUEN	NCE: 14						
atgeettett e	ccatgtggag	cgagctttgc	ctgagaccct	caccgcctcc	tttcaatgtc	60	
geegeegaeg e	caacccctgt	cgtggaatgc	tacgcatgta	cccaagtcgg	cgtcccagcc	120	
ttccactcca c	ccagctgcga	ccacgcccac	caacaacccg	aatgggaagc	ctccgcgggc	180	
tetteeetgg t	ttccaatcca	acccacaaaa	tcctcaccac	cgccccgaca	ttetteegeg	240	
ggttgetteg g	ggacggttct	ggacccaaga	aagaaaccgg	ttcagagatg	gaaccgggtt	300	
ctgttactgg c	cccggggaat	ggctcttgcg	gttgatccac	tttacttcta	tgctctgtcg	360	
attggaagag g	gagggtggcc	ttgcctgtac	atggatggag	ggttggccgg	cggggtgacg	420	
gtggttcgaa c	cgtgtcttga	tatagtgcac	ctgtggcacg	tgtggcttca	gttcaggctt	480	
gettaegtgt e	cgaaagagag	tatggtgatt	gggtgtggga	aactggtgtg	gaatgcacgt	540	
gatattgctt c	ctcactatgt	tcgttctttt	aaaggctttt	ggtttgatgc	ctttgttatc	600	
ctccctattc c	ctcagattgt	ttattggttg	gttttaccaa	aactgatcag	agaagagaga	660	

atcaaactta taatgacagt aatcttatta atgtttttgt tccaattcct cccaaaagtt	720
taccactcca ttattttaat gagaagaatg cagaaggtta ctggatacat ctttggcacc	780
atttggtggg gttttggcct caatctcatt gcctatttca ttgcctctca tgttgctgga	840
ggttgttggt atgttettge aataeagega gttgettett gtateeaaea aeattgtgag	900
agaaacaact gcaacttatc tttgtcttgc tctgaggagg tgtgttatcg gtttctctca	960
tcacctacaa caattggaag tttgtgtggt cggaattcaa ctgctacgtt taggaagcca	1020
ctatgtttgg atgttaaagg teegttegee tatggeatet acaagtggge teteeetgte	1080
atttctagta attcagttgc tgtcaaaatc ctttatccta tcttttgggg attaatgact	1140
ctcagcacct ttggaaatga tcttgagcct acgagtaatt ggctggaagt gtgcttcagt	1200
atttgcacgg tgcttagtgg attgttgctt ttcacccttt tgattggtaa tattcaggta	1260
cttttgcatg ctgtcatggc aaggaggcga aaaatgcagc tgagatgtcg agatttggag	1320
tggtggatga ggagacggca attgccgtct cgtttgaaac atcgagttcg acactatgag	1380
caccagagat gggcagctat gggaggagaa gatgagatgg aactaatcaa tgatttgcct	1440
gaaggtotta gaagagatat caaacgtoat otttgtgttg acotaatoag aaaggtgoot	1500
ctctttcaaa acctggagga gctgattcta gacaacatat gtgatcgagt caagccactt	1560
gtatteteea aagatgaaaa gattateaga gaaggagate etgtteeaag aatgttatte	1620
atagtgtgtg gacgagtaaa acgtagccaa agcctgagca agggcatgac agcgacaagt	1680
tttattgaac cgggaggett tettggtgat gaaetgetat egtggtgtet tegtegeeea	1740
tttctggaga gacttccagc ttcatccgct acatttgttt gcattgaacc aacagaagca	1800
tttgccctga aagcagacca tctgaagtac ataaccgatc acttccgcta caaattcgcg	1860
aatgagagac tgaagagaac agcaagattt tactcttcca actggagaac atgggctgct	1920
gttaacatac aacttgcttg gcgtagatac agaaaacgga tgaggcgtcc agcgatagct	1980
gtggtggaaa acggaagcac tgaacgtcgg cttttgcagt atgctgcaat gttcatgtca	2040
ttcagaccac atgatcatct tgaatag	2067
<210> SEQ ID NO 15 <211> LENGTH: 2893 <212> TYPE: DNA <213> ORGANISM: Cucumis melo	
<400> SEQUENCE: 15	
gacatcacgg gaaaatggca aatataaata tcggcgccgg gtacaaaatc ggatcatccc	60
aatcggacgc gaaccectag cgcgatcatc accattattg tgatgtgeec ggeteacetg	120
tgccaggaac ccggtggccc cactacgaac aattgctcga gtcaatccgg taggtgtagc	180
cgtgtctgcg tagccgttcc ggggagccaa gggctcggca ccaccgcggc atcggtgcac	240
aaggacggeg caegtaegeg ceaegteett gggeeeegge geagttgtae eeteeatete	300
tgtcctcttt acttgcccca tccatcccac gccgatcgcc aggcgccagc agcaggctag	360
ctctgctccg ccgctcactg ctcgctaget actggaccgc gettecetet etceategeg	420
ccggcgcgca cggctagete tageteeegg ageegeeett teatggteee egeegtggte	480
gggacgagat geeteegete geatteetee geegetaeet eeeegegagg ettetegege	540
gagcgtgcga tggtggagtc cgggggagcc cgggcgtggc gcgggacgag gaggccggag	600

gcagcggcgg	actgagcggc	cggtcggcgg	gggcgccgtc	cggggagtgc	tacgcgtgca	660	
cgcagcccgg	ggtgccggcg	ttccactcca	cggcctgcga	ccaggtgcac	tcgccggact	720	
gggacgccga	cgcgggggtcc	tcgctggtgc	cggtccaggc	gcagcagcag	gcccagccgg	780	
cggcggcggc	ggcgcagcac	gcggcgcggt	ggctgttcgg	gcccgtgctg	gacccgcgca	840	
gcaagcgcgt	gcagcgctgg	aaccgctgga	tcctgctcgg	ccgcgccgcc	gcgctggcgc	900	
tggacccgct	cttcttctac	gcgctctcca	tcggccgcgc	cggccggccc	tgcctctact	960	
tggacgccgg	cctcgccgcc	gcggtcaccg	cgctccggac	ctgcgccgac	gtcgcgcacc	1020	
tcgcgcacgt	gctcctgcag	ttccgcctcg	cctacgtctc	ccgcgagtcc	ctcgtcgtcg	1080	
ggtgcggcaa	gctcgtctgg	gacgcccgcg	ccatcgccgc	gcactacgcc	cgctccgtca	1140	
agggcctctg	cttcgacctc	ttcgtcatcc	tccccatccc	gcaggtcatc	ttctggttgg	1200	
ttataccaaa	gttaattagg	gaagaacgtg	ttaggcttat	catgacgata	ctgctactca	1260	
tgttcatatt	tcaatttctc	cccaaggtct	accatagtat	acacatcatg	aggaaaatgc	1320	
agaaggtgac	gggttacatc	tttggatcga	tatggtgggg	atttggttta	aatctatttg	1380	
cctatttcat	tgcttctcat	attgcaggtg	ggtgctggta	tgttcttgca	atccagcgca	1440	
ttgcttcctg	cctccaggaa	gaatgcaaga	aaaacaatag	ttgtgatcta	atatcactag	1500	
cttgttcgaa	ggagatatgc	tttcaccctc	cttggtcttc	gaatgttaat	gggttcgcat	1560	
gtgatacgaa	catgacctcc	tttagtcaac	gaaatgtgtc	tacttgttta	agtggtaaag	1620	
ggtcgtttgc	ttatggaatc	tatttggggg	ctcttcctgt	tatatcgagc	aattcgcttg	1680	
ctgtcaaaat	tctctatcct	atattttggg	gactcatgac	actcagtact	tttggtaacg	1740	
atcttgcccc	aacaagcaat	ggtattgagg	tgatattcag	cataatcaat	gtcctcagtg	1800	
gcctgatgct	cttcacattg	ctgatcggaa	acatacaggt	atttctgcac	gcggtcctgg	1860	
caaggaagcg	gaagatgcag	ctgcggttcc	gagacatgga	atggtggatg	agacggaggc	1920	
agctgccgtc	tcggctgagg	cagagggtgc	gcaaatatga	gcgcgaacgc	tgggccgccg	1980	
tcacgggaga	cgaggagatg	gagatgatca	aggatctgcc	tgaaggactg	aggcgggaca	2040	
tcaagcgcta	cctctgcctc	gagctggtta	agcaggttcc	gctgttccat	ggcatggacg	2100	
atctgatcct	ggataacatc	tgcgaccggc	tgcggccact	ggtgttctcc	agcggggaga	2160	
aggtgatccg	agagggcgac	cccgtgcagc	gcatggtgtt	catcctgcag	ggcaagctcc	2220	
ggagcacgca	gccgctgacc	aagggcgtgg	tggcaacgtg	catgctaggg	gcgggcaact	2280	
tcctaggcga	cgagctgctg	tcgtggtgcc	tgcgccgccc	cttcgtggac	cggctccccg	2340	
cgtcgtcggc	cacgttcgag	tgcgtggagg	cggcgcaggc	gttctgcctc	gacgcgccgg	2400	
acctgcggtt	catcaccgag	cacttccgct	acaagttcgc	caacgagaag	ctcaggcgca	2460	
cggcgcggta	ctactcgtcc	aactggcgga	cgtgggccgc	cgtcaacatc	cagctcgcgt	2520	
ggcgcaggta	tagggcccgg	gcatcgacgg	acctggcggc	gatggccgcg	ccgccgttgg	2580	
cgggcggacc	cgacgacggg	gaccggcggc	tcagacacta	cgcggccatg	ttcatgtcgc	2640	
tccggccgca	tgaccaccta	gagtgatcag	gaggggggac	gggaccatcc	tagctgtgcc	2700	
ggccgggtca	tggtgtctgt	acagtgtaca	ctagtggtat	gttgttgtca	tcttctgcgt	2760	
gagtgaactg	gtggtteggg	atttgtcatt	taaagaaggt	caataatgga	gaaatagttt	2820	
cttagcccga	ttcaattotc	ttcctttcac	caaqaataaa	aattacttct	qccqqactqc	2880	
e			j a c a d a		JJJ40090		

ctctccgcgt tgg	2893
<210> SEQ ID NO 16 <211> LENGTH: 2446 <212> TYPE: DNA <213> ORGANISM: Zea mays	
<400> SEQUENCE: 16	
atgeetteee teteetteet eegetteete teegggaggt egetegegga tgtgtgtgat	60
ggggtgaaga ggaggcttgg attgggggat gatgaaggcc gggacgagga ggctggtctg	120
geeggagggt egageegtee ggeggeggeg geggeggtgg eggggeetee eggegagtge	180
tacgegtgea egeageeegg ggtgeegteg tteeaeteea egaegtgega eeaggtgeae	240
tcgccggact gggacgcgga cgcgggctcg tcgctagtgc cggtccaggc gcagccgtcg	300
geggegeace acgeggegge ggeggeggeg eggtgggtgt teggeeeggt getegaeeeg	360
cggagcaagc gcgtgcagcg gtggaaccgg tggatcctgc tggcccgcgc cgccgcgctg	420
geggtggace egetettett etaegegete tecateggee gegeegggea geegtgegtg	480
tacatggacg coggeetege egeogeegte acggegetee geacegeege egacetggeg	540
cacetegeee aegteeteet ceagtteege gtegeetaeg teteeegega gteeetegte	600
gteggetgeg geaagetegt etgggaeeee egegeeateg eegeteaeta egeeegetee	660
ctcaagggcc tctggttcga tctcttcgtc atcctgccca tcccacaggt catcttctgg	720
ctagtcatac cgaagttaat cagagaagag caaatcaaac ttatcatgac aatgctgctg	780
ctcttattct tgctgcaatt tctccccaag gtgtaccaca gtatttatat catgaggaaa	840
atgcagaagg tgactggtta catctttgga acgatatggt ggggattcgg gcttaatctt	900
ttegeetatt teattgette teacategea ggtggatgtt ggtatgteet tgegatteag	960
cgtgtcgcct cctgcctcca ggaggaatgc aagataaaga acacttgcaa cctaacatca	1020
cttgcttgct ccaaggagat gtgttttcac cttccttggt cagataagaa tggactggca	1080
tgcaacttga cttcttttgg ccaacaaaac attccagact gtctaagcgg caatgggccc	1140
tttgcttatg gaatctacaa aggggctctg cctgttattt ccagcaattc acttgctgtt	1200
aaaatactct accctatatt ttggggactc atgactctca gtacttttgg taatgatctt	1260
gagcctacaa gcaattggct tgaggtgatt ttcagcataa tcaatgtact tagcgggttg	1320
atgetettea cattgetgat tggaaacata caggtettet tgeatgetgt ettageaaga	1380
aagcgaaaga tgcagctgcg gttccgggac atggaatggt ggatgcggcg gaggcagttg	1440
ccgtcccgcc tgaggcagag ggtccggaag tacgagcgtg aacgctgggc ggccatcacg	1500
ggagatgagg agatggagat gatcaaggac ctgcctgaag ggctcaggcg agacatcaaa	1560
cgctacctct gcctcgagct agttaaacag gttcctctgt tccatggcat ggacgatctc	1620
ateetggaca acatetgega caggetgagg eegetggtgt tetecagegg egagaaggtg	1680
atccgggagg gcgacccggt gcagcggatg gtgttcgtcc tccaggggaa gctccggagc	1740
acgcagccgc tggccaaggg cgtggtggcg acgtgtatgc tcggcgccgg caacttecte	1800
ggcgacgage tgctgtcgtg gtgcctccgg cggccgtccc tggaccggct gccggcgtcg	1860
teggegaegt tegagtgegt egagaeggeg eaggegttet geetegaege eeeegaeett	1920
cgcttcatca cggagcagtt ccggtacaag ttcgccaacg agaagctcaa gcggacggcg	1980

		-continued			
cgctactact cctcc	aactg gcggacgtgg gcggcc	gtca acatccagct cgcgt	ggcgc 2040		
cggtacaagg caagg	acgac gaccgacctg gcgtcg	gcgg cgcagccgcc gtccg	ccggc 2100		
gggcccgacg acggg	gaccg ccggctccgc cattac	gcgg ccatgttcat gtcgc	ccagg 2160		
ccacacgatc accto	gagtg agagcagccg tggatt	ggga ccgagagtga cgggg	catat 2220		
gcaatgcaac cgtac	gegea tggageggae caecet	gcgc cggccatata tcatt	gatte 2280		
cattgtagta cgate	gtatc ctgctgccgg tcttga	caat tgattagcat ttgtc	attgt 2340		
ataagatgac caata	atggt tatgatgtag ttccaa	caaa ataatgcaat gtgct	ccttg 2400		
gttggcgccg caaat	cggat cattgagaag gacatc	actg ggaata	2446		
<210> SEQ ID NO <211> LENGTH: 11 <212> TYPE: DNA <213> ORGANISM:	17 90 Dryza sativa				
<400> SEQUENCE:	17				
cgaageetge eggeg	tacgc caggtccagg agaggg	atgg cgctcgactt cttcg	ccatc 60		
ctccccgtga tgcag	atggt ggtttgggtg gcggcg	ccgg cgatgatccg tgcgg	ggtcg 120		
acgacggcgg tgatg	acggt gctgctggtg gcgttc	ctgc tggagtacct gccta	agatc 180		
taccactccg tctcc	tteet eeggeggaeg eaggae	aagt ccggccacat cttcg	gcacc 240		
atctggtggg gcate	gtgct taacctcatg gcctac	ttcg tcgccgccca cgcgg	agga 300		
gcgtgctggt acctg	ctcgg ggtgcagagg gccacc	aagt geeteaagga geagt	getee 360		
atctccgggc cgccg	gggtg cgcgtcgggg ccgctg	gegt geeceageee tetet	actac 420		
ggcggcgccg gcgcc	gegge gteegtegee ggegae	agge tegegtggge cacag	acccc 480		
cccgccggga gcatg	tgeet egtgageggt gacaag	tacc agttcggggc gtaca	agtgg 540		
acggtgatgc tggtg	gccaa cacgagccgg ctggag	aaga tgctgctccc catat	cetgg 600		
ggcctcatga cgctg	agcac gttcggcaac ctggag	agca cgacggagtg gctgg	agatc 660		
gtgttcaaca tcgtg	accat cacgggcggg ctcatc	ctgg tcaccatgct catcg	gcaac 720		
atcaaggcgt tcctg	aacgc gaccacgtcc aagaag	cagg cgatgcacac gcggc	agagg 780		
agcctcgagt ggtgg	atgaa gcgcaaggag ctgccg	caga gctaccggca ccggg	agagg 840		
cagttcgagc ggcag	eggtg ggeggeeaee egegge	gtgg acgagtgcca gatcg	egege 900		
gacctccccg aggcc	ctccg ccgcgacatc aaagta	ccac ctctgcctcg acctc	gteeg 960		
ccaggtgccg ctctt	ccagc acatggacga cctcgt	cctc gagaacatgt gcgac	egegt 1020		
ccgctccctc atcta	cccca agggcgagac catccg	teeg ggaggggeee eeggt	gcagc 1080		
ggatggtgtt catcg	tgcgg gggcacctgg agtgca	ggca ggagctgcgg aacgg	ggcga 1140		
cgagctgctg catgc	tgggg ccgggcaact tcacgg	gcga cgagctgctg	1190		
<210> SEQ ID NO 18 <211> LENGTH: 2169 <212> TYPE: DNA <213> ORGANISM: Gossypium hirsutum					
<400> SEQUENCE:	18				
atggttccac tcttt	ctcac catgeettet cagtee	aact teteectate aaggt	ggttt 60		
ggactttttc aactt	ccaaa ctcaatgcca gagaga	tetg ataatggtag tgtta	gegge 120		

gaaggcaatg aagaaaaccc aatttcctac accgtagaat gttacgcttg tactcaagtc	180
ggtgttccag tttttcactc caccagctgt gaccaagctc acccaccgga atgggaagcc	240
teegetggtt etteeetegt teeaatteaa getegtaegg eeteeaaaca gaagaagaet	300
caacageetg eegegeetaa taeteggega eettetggte egtteggteg ggtgettgat	360
cctaggacca agcgagtgca aaactggaac cgggctttct tattggctcg tgcaatggct	420
ttagccattg atcctttgtt tttctatgct ttatctatag gaagaggtgg gtcgccgtgt	480
ttgtacatgg atggggggcct cgctgccatc gtaaccgtcc tccgcacgtg tgtggacgcc	540
gtgcatttgt tccatctttg gcttcagttc agactggcgt acgtgtcaag ggagtcgctg	600
gtcgtcggtt gtggtaaact cgtgtgggac gcacgtgcca tcgcttctca ttacgttcgt	660
tccctcaaag gtttctggtt tgatgtcttt gtgattctgc cggttcctca ggcagtattt	720
tggttagttg taccaaaatt aataagggaa gagcagatca agattattat gacaatactg	780
ttattaatct tcttgttcca attcttgcca aaggtttacc acatcatttg cttaatgaga	840
aggetgeaaa aggteaeegg ttaeatettt ggeaeeattt ggtggggttt tggeettaat	900
ctcattgcct acttcatagc ctctcacgtt gctggagggt gctggtatgt ccttgcaata	960
caacgggtag cctcatgtct gcggcaacaa tgcgcgagaa acaagcagtg caagctttca	1020
ttgtcgtgct cggaggaagt gtgctaccaa ttcttatttc cagctgaggc agtaggaaat	1080
acttgtggtg gtaactcaac caacgttatt ggaaaacctt tatgtttaga ggttcatgga	1140
ccattcaatt atgggatata tcagtggget etceetgttg tttetageaa ttetgttget	1200
gttaggatee tttateeeat etattgggge ttaatgtete teageaeett tgggaatgat	1260
cttgaaccaa caagtcactg gttagaagtg atgttcagta tttgcattgt gcttgctgga	1320
ttgatgetet ttaetttatt gattggaaac atteaggtat tettgeatge tgteatggeg	1380
aagaagagga aaatgcagct gagatgtcga gacatggaat ggtggatgaa acgccggcaa	1440
ctaccatctt gtttgagaca acgagtccgc cattacgaac gccaaaaatg ggcgaccttg	1500
ggcggagaag acgaaatgga actgatcaaa gacttacccg aaggcctccg gagagacatt	1560
aaacgettee tttgeettga eeteateaag aaggtteett tatteeataa ettgaatgat	1620
cttattctgg ataacatctg tgatcgagtt aagccgctcg tattctctaa agatgaaaag	1680
ataattagag aaggtgatcc agtacaaaga atggtgtttg tcgttcgtgg acgtataaaa	1740
cgtatccaaa gccttagcaa aggcgtggtt gccacaagtt taatcgagtc aggaggcttc	1800
ctaggtgacg aattgttgtc atggtgtctt cgccgaccat ttatcaaccg tcttccagcc	1860
togtoogcaa catttgtttg tgtagagoog attgaagcat toagtotoga otoaaacoat	1920
ctcaaataca ttacagatca cttcaggtat aaatttgcca atgagagact taaaagaaca	1980
gcaagatact attcatcgaa ttggcgaaca tgggcagccg tgaatataca acttggctgg	2040
cggcgttaca gaacgaggac tcgaggtcca atgatttctg ctgccgaaaa cggcaacagc	2100
agegacegee ggttgetgea ataegetgee atgtttatgt caataaggee acaagateat	2160
ctagaataa	2169

<210> SEQ ID NO 19 <211> LENGTH: 2067 <212> TYPE: DNA <213> ORGANISM: Cucumis sativus

<400> SEQUI	ENCE: 19					
atgccttctt	ccatgtggag	cgagctttgc	ctgagaccct	caccgcctcc	tttcaatgtc	60
gccgccgacg	caacccctgt	cgtggaatgc	tacgcatgta	cccaagtcgg	cgtcccagcc	120
ttccactcca	ccagctgcga	ccacgcccac	caacaacccg	aatgggaagc	ctccgcgggc	180
tcttccctgg	ttccaatcca	acccacaaaa	tcctcaccac	cgccccgaca	ttcttccgcg	240
ggttgcttcg	ggacggttct	ggacccaaga	aagaaaccgg	ttcagagatg	gaaccgggtt	300
ctgttactgg	cccggggaat	ggctcttgcg	gttgatccac	tttacttcta	tgctctgtcg	360
attggaagag	gagggtggcc	ttgcctgtac	atggatggag	ggttggccgg	cggggtgacg	420
gtggttcgaa	cgtgtcttga	tatagtgcac	ctgtggcacg	tgtggcttca	gttcaggctt	480
gcttacgtgt	cgaaagagag	tatggtgatt	gggtgtggga	aactggtgtg	gaatgcacgt	540
gatattgctt	ctcactatgt	tcgttctttt	aaaggctttt	ggtttgatgc	ctttgttatc	600
ctccctattc	ctcagattgt	ttattggttg	gttttaccaa	aactgatcag	agaagagaga	660
atcaaactta	taatgacagt	aatcttatta	atgtttttgt	tccaattcct	cccaaaagtt	720
taccactcca	ttattttaat	gagaagaatg	cagaaggtta	ctggatacat	ctttggcacc	780
atttggtggg	gttttggcct	caatctcatt	gcctatttca	ttgcctctca	tgttgctgga	840
ggttgttggt	atgttettge	aatacagcga	gttgcttctt	gtatccaaca	acattgtgag	900
agaaacaact	gcaacttatc	tttgtcttgc	tctgaggagg	tgtgttatcg	gtttctctca	960
tcacctacaa	caattggaag	tttgtgtggt	cggaattcaa	ctgctacgtt	taggaagcca	1020
ctatgtttgg	atgttaaagg	tccgttcgcc	tatggcatct	acaagtgggc	tctccctgtc	1080
atttctagta	attcagttgc	tgtcaaaatc	ctttatccta	tcttttgggg	attaatgact	1140
ctcagcacct	ttggaaatga	tcttgagcct	acgagtaatt	ggctggaagt	gtgcttcagt	1200
atttgcacgg	tgcttagtgg	attgttgctt	ttcacccttt	tgattggtaa	tattcaggta	1260
cttttgcatg	ctgtcatggc	aaggaggcga	aaaatgcagc	tgagatgtcg	agatttggag	1320
tggtggatga	ggagacggca	attgccgtct	cgtttgaaac	atcgagttcg	acactatgag	1380
caccagagat	gggcagctat	gggaggagaa	gatgagatgg	aactaatcaa	tgatttgcct	1440
gaaggtetta	gaagagatat	caaacgtcat	ctttgtgttg	acctaatcag	aaaggtgcct	1500
ctctttcaaa	acctggagga	gctgattcta	gacaacatat	gtgatcgagt	caagccactt	1560
gtatteteca	aagatgaaaa	gattatcaga	gaaggagatc	ctgttccaag	aatgttattc	1620
atagtgtgtg	gacgagtaaa	acgtagccaa	agcctgagca	agggcatgac	agcgacaagt	1680
tttattgaac	cgggaggctt	tcttggtgat	gaactgctat	cgtggtgtct	tcgtcgccca	1740
tttctggaga	gacttccagc	ttcatccgct	acatttgttt	gcattgaacc	aacagaagca	1800
tttgccctga	aagcagacca	tctgaagtac	ataaccgatc	acttccgcta	caaattcgcg	1860
aatgagagac	tgaagagaac	agcaagattt	tactcttcca	actggagaac	atgggctgct	1920
gttaacatac	aacttgcttg	gcgtagatac	agaaaacgga	tgaggcgtcc	agcgatagct	1980
gtggtggaaa	acggaagcac	tgaacgtcgg	cttttgcagt	atgctgcaat	gttcatgtca	2040
ttcagaccac	atgatcatct	tgaatag				2067

<210> SEQ ID NO 20 <211> LENGTH: 2178 <212> TYPE: DNA <213> ORGANISM: Zea mays

39

E: 20					
gcatteet eeg	ccgctac	ctccccgcga	ggettetege	gcgagcgtgc	60
cggggggag ccc	gggcgtg	gcgcgggacg	aggaggccgg	aggcagcggc	120
cggtcggc ggg	ggcgccg	tccggggagt	gctacgcgtg	cacgcagccc	180
ttccactc cac	ggcctgc	gaccaggtgc	actcgccgga	ctgggacgcc	240
tegetggt gee	ggtccag	gcgcagcagc	aggcccagcc	ggcggcggcg	300
geggegeg gtg	gctgttc	gggcccgtgc	tggacccgcg	cagcaagcgc	360
aaccgctg gat	cctgctc	ggccgcgccg	ccgcgctggc	gctggacccg	420
gegetete cat	cggccgc	gccggccggc	cctgcctcta	cttggacgcc	480
geggteae ege	gctccgg	acctgcgccg	acgtcgcgca	cctcgcgcac	540
tteegeet ege	ctacgtc	tcccgcgagt	ccctcgtcgt	cgggtgcggc	600
gacgcccg cgc	catcgcc	gcgcactacg	cccgctccgt	caagggcctc	660
ttcgtcat cct	ccccatc	ccgcaggtca	tcttctggtt	ggttatacca	720
gaagaacg tgt	taggctt	atcatgacga	tactgctact	catgttcata	780
cccaaggt cta	ccatagt	atacacatca	tgaggaaaat	gcagaaggtg	840
tttggatc gat	atggtgg	ggatttggtt	taaatctatt	tgcctatttc	900
attgcagg tgg	gtgctgg	tatgttcttg	caatccagcg	cattgcttcc	960
gaatgcaa gaa	aaacaat	agttgtgatc	taatatcact	agcttgttcg	1020
tttcaccc tcc	ttggtct	tcgaatgtta	atgggttcgc	atgtgatacg	1080
tttagtca acg	aaatgtg	tctacttgtt	taagtggtaa	agggtcgttt	1140
tatttggg ggc	tcttcct	gttatatcga	gcaattcgct	tgctgtcaaa	1200
atattttg ggg	actcatg	acactcagta	cttttggtaa	cgatcttgcc	1260
ggtattga ggt	gatattc	agcataatca	atgtcctcag	tggcctgatg	1320
ctgatcgg aaa	catacag	gtatttctgc	acgcggtcct	ggcaaggaag	1380
ctgcggtt ccg	agacatg	gaatggtgga	tgagacggag	gcagctgccg	1440
cagagggt gcg	caaatat	gagcgcgaac	gctgggccgc	cgtcacggga	1500
gagatgat caa	ggatctg	cctgaaggac	tgaggcggga	catcaagcgc	1560
gagctggt taa	gcaggtt	ccgctgttcc	atggcatgga	cgatctgatc	1620
tgcgaccg gct	gcggcca	ctggtgttct	ccagcggggga	gaaggtgatc	1680
cccgtgca gcg	catggtg	ttcatcctgc	agggcaagct	ccggagcacg	1740
aagggcgt ggt	ggcaacg	tgcatgctag	gggcgggcaa	cttcctaggc	1800
tegtggtg eet	gcgccgc	cccttcgtgg	accggctccc	cgcgtcgtcg	1860
tgcgtgga ggc	ggcgcag	gcgttctgcc	tcgacgcgcc	ggacctgcgg	1920
cacttccg cta	caagttc	gccaacgaga	agctcaggcg	cacggcgcgg	1980
aactggcg gac	gtgggcc	gccgtcaaca	tccagctcgc	gtggcgcagg	2040
gcatcgac gga	cctggcg	gcgatggccg	cgccgccgtt	ggcgggcgga	2100
	cagacac	tacgcggcca	tqttcatqtc	actecaacca	2160
	gaagaacg tgt cccaaggt cta cttggatc gat attggatc gat gaatgcaa gaa cttcaccc tcc cttagtca acg ggtattgg ggc atatttg ggg ggtattga ggt ctgatcgg aaa ctgcggtt ccg gagatgat caa gagctggt ca cccgtgca gcg aagggcgt ggt cccgtggtg cct cccgtggtg cct ccgtggtg cct aactgcgc gac gacttccg cta aactggcg gac	gaagaacg tgttaggctt cccaaggt ctaccatagt cttggatc gatatggtgg gaatgcaa gaaaaacaat cttagtca gaaaacaat cttagtca cccttggtct cttagtca acgaaatgtg ggtattgg ggctcttcct atatttg gggactcatg ggtattga ggtgatattc ctgatcgg aaacatacag ctgcggtt ccgagacatg gagetggt caaggatctg gagetggt taagcaggtt cgcgaccg gctgcggcca cccgtgca gcgcatggtg aagggcgt ggtggcaacg ccgtggtg cctgcgccag cacttccg ctacaagttc aactgcg gacctggcg gaacgg gacctggcg aactgcg gacctggcg gaacgg gacctggcg cacttccg ctacaagttc	yaagaacg tgttaggett atcatgacga cecaaggt ctaccatagt atcatgacga cttggate gatatggtgg ggattggtt attgcaag tgggtgetgg tatgttettg gaatgeaa gaaaaacaat agttgtgate ctteaece teettggtet tegaatgtta cttagtea acgaaatgtg tetaettgtt cattggg ggetetteet gttatatega atattttg gggaeteatg acaeteagta ggtattga ggtgatatte ageataatea ctgategg aaacataeag gtatttetge ctgeggtt eegagacatg gaatggtgga cagagggg getgeegeea etggtgtee cgegaeeg getgeggeea etggtgtee cegtgge ggegeaag tgeatgeegg cagtteeg ageeggeeg gegteetgee caetteeg etaeaagte geegteegg caetteeg etaeaagte geegteegga cagaggg ggegegeag gegttetgee caetteeg etaeaagte geegaacg caetteeg gaeetggee geegteaaa caagggeg ggegegeag gegttetgee caetteeg etaeaagte geegaacgaga aactggeg gaeetgggee geegteaaca gaategae ggaeetggee geegteaaca aactggeeg gaeetggee geegteaaca geategae ggaeetggee geegteaaca geategee ggaeetggee geegteaaca aactggeeg gaeetggee geegteaaca	<pre>gaagaacg tgttaggctt atcatgacga tactgctact gaagaacg tgttaggctt atcatgacga tactgctact cccaaggt ctaccatagt atacacatca tgaggaaaat cttggatc gatatggtgg ggatttggtt taaatctatt attgcagg tgggtgctgg tatgttcttg caatccagcg gaatgcaa gaaaaacaat agttgtgatc taatatcact ctcaccc tccttggtct tcgaatgtta atgggttcgc cttagtca acgaaatgtg tctacttgtt taagtggtaa catttggg ggctcttcct gttatatcga gcaattcgct atattttg gggactcatg acactcagta cttttggtaa ggtattga ggtgatattc agcataatca atgtcctcag ctgagtcgg aaacatacag gtattctgc acgcggtcct ctggggtt ccgagacatg gaatggtgga tgagacggag gagatgat caaggatctg cctgaaggac tgaggcggga ggcgaccg gctgcggcca ctggtgttct ccagcgggga ccgtggtg ggtggcaacg tgcatgctag gggcgggaa cccgtggt ggtggcaacg tgcatgctag gggcgggaa cccgtggt ggtggcaacg tgcatgctag acgcggcgc ccttaggggt ggtggcaacg tgcatgctag acgcgggga ccgtggtg cctgcgccg cccttcgtgg accggcgcg cacttccg ctacaagttc gccaacgaga agctcaggcg cacttccg gacggggc gcgttctgc tcgacgcgc gaactggg gacgtgggc gccgtcaca tccagccgc cacttccg gacgggg gcggtcgaca tccagcggcg aactggcg gacgtgggc gccgccgc gaactggc gacgtgggc gccgtcaca tccagccgc gaactggc gacgtggg gcgatggccg cgccgcgtt aacgggg gacgtggg gcgatggccg cgccgctt aacgggg gacggggg gcggcgag gcgttctgc tcgacgcgc cacttccg ctacaagttc gccaacgaga agctcaggcg gaactggc ggaccgg gcgtcacaca tccagctcgc gaaccgcg gacgtggg gcggcgacg cgccgccgtt aaccgqcg gcdcagacac taccqcqcca tgttcatgt</pre>	yaagaacg tgttaggett atcatgacga tactgetaet catgtteata yaagaacg tgttaggett atcatgacga tactgetaet catgtteata eecaaggt etaecatagt atacacatea tgaggaaaat geagaaggtg ettggate gatatggtgg ggatttggtt taaatetatt tgeetattte attgeagg tgggtgetgg tatgttettg caateeageg cattgettee gaatgeaa gaaaaacaat agttgtgate taatateaet agettgtteg etteaeee teettggtet tegaatgtta atgggttege atgtgataeg ettagtea acgaaatgtg tetaettgtt taagtggtaa agggtegtt ettagtea acgaaatgtg tetaettgtt taagtggtaa agggtegtt eatttggg ggetetteet gttatatega geaatteget tgetgteaaa atatttig gggaeteatg acaeteagta ettitggtaa egatettgee ggaatgeag agacaatae gtatteetge acgeggteet ggeeaaggaag etggeggt eegaacatg gaatggtgga tgagaeegga geagetgeeg eagagggt geegeaaatat gageeggaae getgggegga egateggg gagatggt taageaggt eegetgete eegetgga eggeeggaa eegegaeeg getgeggeea etggtgtte eegaegge ggaeeggga eegegggg ggegeaacg tgeatgetag gggeeggaa etteetagge eegegggt getgegeea etggtgtee tegaeggaa etteetagge eegeggeg ggtggeaaeg tgeatgetag gggeeggaa etteetagge eegegaeeg getgeggeea etggtgtee etegaeggea eteetagge eegegggg ggegegegg geettege eesteetagge eegegggg ggeggeegg geettege eesteetagge gaeettegg eegegtgg ggeggeegg geettege eesteetagge gaeettegg eegegtgg gaeetaggte geesteaga ageteagge gaeettegg eegegtgg gaeetggee geesteaca teeageege geeggeegg eactege gaeetggeg geesteaca teeageege geeggeegg eactege gaeetggeg geestagee geesteaca teeageege gaeetgee gaeetggeg geesteaca teeagetege geesgeegg eactege gaeetggeg geestagee geesteaca teeagetege geesgeegg eactgee gaeetggee geesteaca teeagetege geesgeegg eactege gaeetggee geesteaca teeagetege geesgeegga

				COLLET	lucu		_
catgaccacc	tagagtga					2178	
<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN	ID NO 21 IH: 2145 : DNA NISM: Glycin	ne max					
<400> SEQUE	ENCE: 21						
atgcacaaca	ccttctcctc	tctccttcgt	tggattagca	aaaagttgcg	acgaaggaat	60	
tcaattagca	atggtgacag	tggcagcgac	agcttccaga	acggtgctgc	cacagttgtg	120	
gatgacaatc	catttagcag	cggggtggag	tgttacgcct	gcacgcaagt	aggtgtgccg	180	
gtgtttcact	ccaccagctg	cgacagtgcc	ttccaccagt	tgcagtggga	ggettegget	240	
gggtcgtctc	tggttcccat	ccagagccga	cccaacaagg	tcctcggctt	tcggaccgtg	300	
tccggatcaa	gtcggggggcc	gttcgggcgg	gttctggatc	cgagaagcaa	gcgcgtgcag	360	
aggtggaacc	gcgcgctgct	cctggcgcgt	ggggtggcgc	tggcgataga	cccgctgttc	420	
ttctactcgc	tgtcgatagg	aagggagggg	tcgccgtgct	tgtacatgga	cggagggctg	480	
gcggcgatgg	tgacggtggc	gcgcacgtgc	gtggacgccg	tgcacctctt	gcacgtgtgg	540	
ctgcagttca	ggctggcgta	cgtatcgcgg	gagtcgctgg	tggtggggtg	cgggaaactc	600	
gtgtgggacg	cgcgtgagat	cgcgtcgcat	tacctgcgat	cgttgaaggg	attctggttc	660	
gacgcattcg	tgatcctccc	agtcccccag	gttgtgtttt	ggttgttagt	gccaaaattg	720	
ctaagagaag	agaaaattaa	aatcattatg	acaataatgc	tattgatttt	tttgttccaa	780	
tttctcccta	aggtttacca	tagcatctgc	atgatgagaa	gaatgcaaaa	agtcacaggc	840	
tacatcttcg	gcaccatttg	gtggggtttt	ggtctcaatc	tcatagctta	ttttattgct	900	
tctcatgttg	ctggagggtg	ctggtatgtc	cttgcaattc	aacgtgttgc	gtcgtgcctc	960	
cggcagcagt	gtgagagaac	taatggatgc	aatctctctg	tgtcatgctc	agaggagata	1020	
tgctaccagt	ctttgttacc	agctagcgcg	ataggagatt	catgtggtgg	aaactcaaca	1080	
gtggtaagaa	agcctctgtg	cttagatgtt	gaaggacctt	tcaaatatgg	gatctaccaa	1140	
tgggcacttc	ctgtcatatc	cagcaactct	ttggctgtaa	agattettta	tcccattttt	1200	
tggggtttga	tgaccctcag	cactttcgga	aatgatcttg	aacccacaag	ccactggcta	1260	
gaagtgattt	tcagtatatg	catagtactc	agtggactat	tgcttttcac	attattgatt	1320	
ggtaacattc	aggtattett	acatgcagtc	atggcaaaga	agagaaagat	gcagctgaga	1380	
tgtcgtgaca	tggaatggtg	gatgaggagg	aggcagttgc	catcgcgatt	aagacagaga	1440	
gttcgccatt	ttgaacgtca	gagatgggca	gcaatgggag	gagaagatga	gatggaaatg	1500	
atcaaagact	tgccagaggg	gctgaggagg	gacatcaagc	gccatctttg	cctcgatctc	1560	
attagaaagg	ttcctctatt	ccacaacttg	gatgatctta	ttcttgacaa	catctgtgac	1620	
agggtgaaac	ccctagtctt	ctctaaagat	gaaaagataa	tcagagaagg	tgatcctgta	1680	
ccaaggatgg	tgttcatcgt	ccgagggcgc	ataaaacgca	accaaagcct	tagcaaaggc	1740	
atggtagcct	caagcatcct	tgagccagga	gggtttttgg	gtgacgagct	gctttcatgg	1800	
tgccttcgca	ggccgtttat	cgatagactt	ccggcctcct	cggctacatt	tgtgtgtctt	1860	
gaatcatcag	aagcetttgg	ccttgatgcc	aatcacttga	ggtacatcac	tgatcacttc	1920	
cggtacaaat	ttgcgaacqa	gaggetgaaq	agaacagcaa	gatattattc	atccaattgq	1980	

agaacctggg ctgc	tgtcaa cattcaattt	gcttggagac	gttacaggca	gaggactaaa	2040	
ggtccagtga cccc	tgtaag ggacactaat	ggaggcactg	aacgcaggct	cttgcaatat	2100	
gctgcaatgt tcat	gtcaat aaggccacat	gaccaccttg	aatga		2145	
<210> SEQ ID NO <211> LENGTH: 2 <212> TYPE: DNA <213> ORGANISM:	22 181 Oryza sativa					
<400> SEQUENCE:	22					
atgeetteee tete	ctteet eegetteete	tccgggaggt	cgctcgcgga	tgtgtgtgat	60	
ggggtgaaga ggag	gcttgg attggggggat	gatgaaggcc	gggacgagga	ggctggtctg	120	
gccggagggt cgag	cegtee ggeggeggeg	gcggcggtgg	cggggcctcc	cggcgagtgc	180	
tacgcgtgca cgca	geeegg ggtgeegteg	ttccactcca	cgacgtgcga	ccaggtgcac	240	
tcgccggact ggga	cgcgga cgcgggctcg	tcgctagtgc	cggtccaggc	gcagccgtcg	300	
gcggcgcacc acgc	aacaac aacaacaaca	cggtgggtgt	tcggcccggt	gctcgacccg	360	
cggagcaagc gcgt	gcagcg gtggaaccgg	tggatcctgc	tggcccgcgc	cgccgcgctg	420	
gcggtggacc cgct	cttett ctaegegete	tccatcggcc	gcgccgggca	gccgtgcgtg	480	
tacatggacg ccgg	cetege egeegeegte	acggcgctcc	gcaccgccgc	cgacctggcg	540	
cacctcgccc acgt	cetect ceagtteege	gtcgcctacg	tctcccgcga	gtccctcgtc	600	
gtcggctgcg gcaa	getegt etgggaeeee	cgcgccatcg	ccgctcacta	cgcccgctcc	660	
ctcaagggcc tctg	gttega tetettegte	atcctgccca	tcccacaggt	catcttctgg	720	
ctagtcatac cgaa	gttaat cagagaagag	caaatcaaac	ttatcatgac	aatgctgctg	780	
ctcttattct tgct	gcaatt tctccccaag	gtgtaccaca	gtatttatat	catgaggaaa	840	
atgcagaagg tgac	tggtta catctttgga	acgatatggt	ggggattcgg	gcttaatctt	900	
ttcgcctatt tcat	tgette teacategea	ggtggatgtt	ggtatgtcct	tgcgattcag	960	
cgtgtcgcct cctg	cctcca ggaggaatgc	aagataaaga	acacttgcaa	cctaacatca	1020	
cttgcttgct ccaa	ggagat gtgttttcac	cttccttggt	cagataagaa	tggactggca	1080	
tgcaacttga ctto	ttttgg ccaacaaaac	attccagact	gtctaagcgg	caatgggccc	1140	
tttgcttatg gaat	ctacaa aggggctctg	cctgttattt	ccagcaattc	acttgctgtt	1200	
aaaatactct accc	tatatt ttgggggactc	atgactctca	gtacttttgg	taatgatctt	1260	
gagcctacaa gcaa	ttggct tgaggtgatt	ttcagcataa	tcaatgtact	tagcgggttg	1320	
atgctcttca catt	gctgat tggaaacata	caggtcttct	tgcatgctgt	cttagcaaga	1380	
aagcgaaaga tgca	getgeg gtteegggae	atggaatggt	ggatgcggcg	gaggcagttg	1440	
ccgtcccgcc tgag	gcagag ggtccggaag	tacgagcgtg	aacgctgggc	ggccatcacg	1500	
ggagatgagg agat	ggagat gatcaaggac	ctgcctgaag	ggctcaggcg	agacatcaaa	1560	
cgctacctct gcct	cgagct agttaaacag	gttcctctgt	tccatggcat	ggacgatctc	1620	
atcctggaca acat	ctgcga caggctgagg	ccgctggtgt	tctccagcgg	cgagaaggtg	1680	
atccgggagg gcga	cccggt gcagcggatg	gtgttcgtcc	tccaggggaa	gctccggagc	1740	
acgcagccgc tggc	caaggg cgtggtggcg	acgtgtatgc	tcggcgccgg	caacttcctc	1800	
ggcgacgagc tgct	gtegtg gtgeeteeqq	cggccgtccc	tggaccggct	gccggcgtcg	1860	
		-				

aowt	1 20 1	
-COULT		100
COILC	TTTC	i u u

tcggcgacgt	tcgagtgcgt	cgagacggcg	caggcgttct	gcctcgacgc	ccccgacctt	1920	
cgcttcatca	cggagcagtt	ccggtacaag	ttcgccaacg	agaagctcaa	gcggacggcg	1980	
cgctactact	cctccaactg	gcggacgtgg	gcggccgtca	acatccagct	cgcgtggcgc	2040	
cggtacaagg	caaggacgac	gaccgacctg	gcgtcggcgg	cgcagccgcc	gtccgccggc	2100	
gggcccgacg	acggggaccg	ccggctccgc	cattacgcgg	ccatgttcat	gtcgctcagg	2160	
ccacacgatc	acctcgagtg	a				2181	
<210> SEQ : <211> LENG <212> TYPE <213> ORGAI	ID NO 23 IH: 1193 : DNA NISM: Triti	cum aestivu	n				
<400> SEQUI	ENCE: 23						
cgcgaagcct	gccggcgtac	gccaggtcca	ggagagggat	ggcgctcgac	ttcttcgtca	60	
tcctccccgt	gatgcagatg	gtggtttggg	tggcggcgcc	ggcgatgatc	cgtgcggggt	120	
cgacgacggc	ggtgatgacg	gtgctgctgg	tggcgttcct	gctggagtac	ctgcctaaga	180	
tctaccactc	cgtctccttc	ctccggcgga	cgcaggacaa	gtccggccac	atcttcggca	240	
ccatctggtg	gggcatcgtg	cttaacctca	tggcctactt	cgtcgccgcc	cacgcggtgg	300	
gcgcgtgctg	gtacctgctc	ggggtgcaga	gggccaccaa	gtgcctcaag	gagcagtgct	360	
ccatctccgg	gccgccgggg	tgcgcgtcgg	ggccgctggc	gtgccccagc	cctctctact	420	
acggcggcgc	cggcgccgcg	gcgtccgtcg	ccggcgacag	gctcgcgtgg	gccacagacc	480	
cccccgccgg	gagcatgtgc	ctcgtgagcg	gtgacaagta	ccagttcggg	gcgtacaagt	540	
ggacggtgat	gctggtggcc	aacacgagcc	ggctggagaa	gatgctgctc	cccatattct	600	
ggggcctcat	gacgctgagc	acgttcggca	acctggagag	cacgacggag	tggctggaga	660	
tcgtgttcaa	catcgtgacc	atcacgggcg	ggctcatcct	ggtcaccatg	ctcatcggca	720	
acatcaaggc	gttcctgaac	gcgaccacgt	ccaagaagca	ggcgatgcac	acgcggctgc	780	
ggagcctcga	gtggtggatg	aagcgcaagg	agctgccgca	gagctaccgg	caccgggtgc	840	
ggcagttcga	gcggcagcgg	tgggcggcca	cccgcggcgt	ggacgagtgc	cagatcgtgc	900	
gcgacctccc	cgaggccctc	cgccgcgaca	tcaaagtacc	acctctgcct	cgacctcgtc	960	
cgccaggtgc	cgctcttcca	gcacatggac	gacctcgtcc	tcgagaacat	gtgcgaccgc	1020	
gtccgctccc	tcatctaccc	caagggcgag	accatccgtc	cgggaggggc	ccccggtgca	1080	
gcggatggtg	ttcatcgtgc	gggggcacct	ggagtgcagg	caggagctgc	ggaacgggggc	1140	
gacgagctgc	tgcatgctgg	ggccgggcaa	cttcacgggc	gacgagctgc	tgt	1193	
<210> SEQ : <211> LENG <212> TYPE <213> ORGAI	ID NO 24 TH: 1190 : DNA NISM: Triti	cum aestivu	n				
<400> SEQUI	ENCE: 24						
cgaagcctgc	cggcgtacgc	caggtccagg	agagggatgg	cgctcgactt	cttcgtcatc	60	
ctccccgtga	tgcagatggt	ggtttgggtg	gcggcgccgg	cgatgatccg	tgcggggtcg	120	
acgacggcgg	tgatgacggt	gctgctggtg	gcgttcctgc	tggagtacct	gcctaagatc	180	
taccactccg	tctccttcct	ccggcggacg	caggacaagt	ccggccacat	cttcggcacc	240	

-continued	
atotggtggg goatogtgot taacotoatg gootaottog togoogooca ogoggtgggo	300
gcgtgctggt acctgctcgg ggtgcagagg gccaccaagt gcctcaagga gcagtgctcc	360
ateteeggge egeeggggtg egegtegggg eegetggegt geeeeageee tetetaetae	420
ggeggegeeg gegeegegge gteegtegee ggegaeagge tegegtggge caeagaeeee	480
cccgccggga gcatgtgcct cgtgagcggt gacaagtacc agttcggggc gtacaagtgg	540
acggtgatgc tggtggccaa cacgagccgg ctggagaaga tgctgctccc catattctgg	600
ggcctcatga cgctgagcac gttcggcaac ctggagagca cgacggagtg gctggagatc	660
gtgttcaaca tcgtgaccat cacgggcggg ctcatcctgg tcaccatgct catcggcaac	720
atcaaggegt teetgaaege gaccaegtee aagaageagg egatgeaeae geggetgegg	780
ageetegagt ggtggatgaa gegeaaggag etgeegeaga getaeeggea eegggtgegg	840
cagttcgagc ggcagcggtg ggcggccacc cgcggcgtgg acgagtgcca gatcgtgcgc	900
gaceteeeg aggeeeteeg eegegacate aaagtaceae etetgeeteg acetegteeg	960
ccaggtgccg ctcttccagc acatggacga cctcgtcctc gagaacatgt gcgaccgcgt	1020
ccgctccctc atctacccca agggcgagac catccgtccg ggaggggccc ccggtgcagc	1080
ggatggtgtt catcgtgcgg gggcacctgg agtgcaggca ggagctgcgg aacggggcga	1140
cgagctgctg catgctgggg ccgggcaact tcacgggcga cgagctgctg	1190
<210> SEQ ID NO 25 <211> LENGTH: 2629 <212> TYPE: DNA <213> ORGANISM: Gossypium hirsutum	
<400> SEQUENCE: 25	
tccacgcgtc cgattatgtc ctttctacat atttcatcaa tctttgcctc ttaaacaatt	60
ctaacttata tteeeettet tetteaaace tttaatggee ateteteett ageeeeeaaa	120
aatatcaatc aaaattttt tttcttttgc gatggcaagt gaacatgaat tttatccttc	180
acgtgcaacg cccatgcaat actttacgga tgaagacgaa ggagaagaag aaggaggaga	240
aatagaagaa gaatcgacgg acgacgaagt ttgcaaagaa gaagagaaag agaattcaag	300
tgactggagg agtttgtatt tgatgtgcgg cggtcgccgc ggcggtgggc gtcgccgtaa	360
aacttggtca ctggggcaag ttttttcga cccgagggcc aaatgggttc aagaatggaa	420
tagggtttte eteetggtat gegegaeggg aetgttegtg gaeceattgt tettttaege	480
cctgtccatt agcgacacgt gcatgtgcct cttcgtcgac gggtggttcg ccatcaccgt	540
	<pre>coo</pre>
gacggcgctc cggtgcatga ctgacgcgtt gcacgtgtgg aacatgtgcc tccagctcaa	600
gacggcgctc cggtgcatga ctgacgcgtt gcacgtgtgg aacatgtgcc tccagctcaa aatgatcaag agatcatcgt cgtcgtacag tcgcggcaat gacaagagga gtgggagtga	600 660
gacggcgctc cggtgcatga ctgacgcgtt gcacgtgtgg aacatgtgcc tccagctcaa aatgatcaag agatcatcgt cgtcgtacag tcgcggcaat gacaagagga gtgggagtga gagtgaaggc gaagggggtg acggcggaga aggaagcagc aaccgacccc gtgctgcgaa	600 660 720
gacggcgctc cggtgcatga ctgacgcgtt gcacgtgtgg aacatgtgcc tccagctcaa aatgatcaag agatcatcgt cgtcgtacag tcgcggcaat gacaagagga gtgggagtga gagtgaaggc gaagggggtg acggcggaga aggaagcagc aaccgacccc gtgctgcgaa tggccgccac ctggccttcc aatgcttgaa agccaaaaag ggactcttct ttgacctatt	600 660 720 780
gacggcgctc cggtgcatga ctgacgcgtt gcacgtgtgg aacatgtgcc tccagctcaa aatgatcaag agatcatcgt cgtcgtacag tcgcggcaat gacaagagga gtgggagtga gagtgaaggc gaagggggtg acggcggaga aggaagcagc aaccgacccc gtgctgcgaa tggccgccac ctggccttcc aatgcttgaa agccaaaaag ggactcttct ttgacctatt ggtaattctc cctctgccac agattgtact atgggtggca attccatcat tattggaaaa	600 660 720 780 840
gacggcgctc cggtgcatga ctgacgcgtt gcacgtgtgg aacatgtgcc tccagctcaa aatgatcaag agatcatcgt cgtcgtacag tcgcggcaat gacaagagga gtgggagtga gagtgaaggc gaagggggtg acggcggaga aggaagcagc aaccgacccc gtgctgcgaa tggccgccac ctggccttcc aatgcttgaa agccaaaaag ggactcttct ttgacctatt ggtaattctc cctctgccac agattgtact atgggtggca attccatcat tattggaaaa aggatcggta acgctagtaa tgacggtgtt cttgatcatc ttcctctcc aatacctccc	600 660 720 780 840 900
gacggegete eggtgeatga etgaegegtt geaegtgtgg aacatgtgee teeageteaa aatgateaag agateategt egtegtaeag tegeggeaat gacaagagga gtgggagtga gagtgaagge gaagggggtg aeggeggaga aggaageage aacegaeeee gtgetgegaa tggeegeeae etggeettee aatgettgaa ageeaaaaag ggaetettet ttgaeetatt ggtaattete eetetgeeae agattgtaet atgggtggea atteeateat tattggaaaa aggateggta aegetagtaa tgaeggtgtt ettgateate tteettee aataeeteee caagatetae eaeteegtet geetttaeg tegaatgeag aacettteeg getaeatttt	600 660 720 780 840 900 960
gacggcgctc cggtgcatga ctgacgcgtt gcacgtgtgg aacatgtgcc tccagctcaa aatgatcaag agatcatcgt cgtcgtacag tcgcggcaat gacaagagga gtgggagtga gagtgaaggc gaagggggtg acggcggaga aggaagcagc aaccgacccc gtgctgcgaa tggccgccac ctggccttcc aatgcttgaa agccaaaaag ggactcttct ttgacctatt ggtaattctc cctctgccac agattgtact atgggtggca attccatcat tattggaaaa aggatcggta acgctagtaa tgacggtgtt cttgatcatc ttcctcttcc aatacctccc caagatctac cactccgtct gcctttacg tcgaatgcag aacctttccg gctacatttt cggcactgtt tggtgggga ttgctctcaa tttgattgct tattccgtcg cctcacacgc	600 660 720 780 840 900 960

atgtagaggg atagagaatt	gtgacctgag attattggct	tgcaaagacc caatttacta	1140
tggaacaaga agtatggtaa	gggatagagc aaggttggtt	tgggcagaaa ccaatcgagc	1200
aaggagtact tgcattgata	accctgataa ctatgattat	ggagcttata aatggaccgt	1260
tcagctagtt accaacgata	gtcgtctcga gaaaatactt	tttcctatct tttggggtct	1320
tatgactctc agcacatttg	ggaacttgga gagcacaaca	gaatggctgg aggttgtttt	1380
caacatcatt gttcttacca	gtggacttct tcttgtcaca	atgttgattg gtaacatcaa	1440
ggtgtttttg catgcaacaa	cgtccaagaa acaagcaatg	caattgaaga tgaggaacat	1500
agagtggtgg atgaggaaga	ggcgcctgcc ttctggattc	aagcaaaggg tccgcaatta	1560
tgagcggcaa cggtgggcgg	ccatgcgcgg tgtcgatgaa	tgccagatga tcagaaacct	1620
ccccgagggg ctccggagag	atatcaagta ccatctttgc	ctggatttag ttagacaggt	1680
accattgttt caacacatgg	atgatttggt cctagagaac	atttgtgatc gtgtcaaatc	1740
tctaattttt accaaaggag	aaactataac aagggaaggc	gacccagtac aaagaatgct	1800
atttgtagta aggggacatc	tecaaageag ecaagttett	agagatggtg tgaaaagttg	1860
ctgcatgtta gggcccggaa	atttcagtgg cgatgagctc	ttgtcatggt gtcttcgaag	1920
accetteatt gagaggetee	caccategae ttecaceete	gtaacgcttg aaactaccga	1980
ggcatttggc ctcgatgctg	aggatgtcaa atatgtcaca	caacatttcc gttacacatt	2040
tgttaacgaa agggtcaaga	ggagtgeteg gtattattet	cccggatggc ggacttgggc	2100
tgcggtggcg attcaattgg	cttggaggcg gtacaaacac	cggttaaccc ttacgtcgtt	2160
gtcattcatt aggcctcgga	ggccgttgtc gagaagtaat	tcattggggg aggacagact	2220
caggctttat acagctatgt	taacttcacc aaaaccaaat	caagatgatt ttgattttg	2280
aaaataaaaa aattaaaatg	atgctacatg gaattcccat	ggtccttaag tttgagtttt	2340
ctgaattaat gttcgctcta	ataccatttg taagtacctc	gtatttggta cgagagcatt	2400
attetttaet tegaeteage	ctgtagtttt gtttttaaaa	gaaaaaaaaa agtttgtatc	2460
tacagctaaa aaaaaaaaaa	aaaaaactcg aaaagtcttt	tagaccaggc gggggggccca	2520
cgatctcccc ccccggcggg	ggtccaaaat aaatgtcccc	ccctccccct ctactggagc	2580
tgettecatt teaeeggeee	gccgcttaca cacttcccgg	tggggcaaa	2629
<210> SEQ ID NO 26 <211> LENGTH: 2130 <212> TYPE: DNA <213> ORGANISM: Gossyp	pium hirsutum		
<400> SEQUENCE: 26			
atggcaagtg aacatgaatt	ttatccttca cgtgcaacgc	ccatgcaata ctttacggat	60
gaagacgaag gagaagaaga	aggaggagaa atagaagaag	aatcgacgga cgacgaagtt	120
tgcaaagaag aagagaaaga	gaattcaagt gactggagga	gtttgtattt gatgtgegge	180
ggtcgccgcg gcggtgggcg	tcgccgtaaa acttggtcac	tggggcaagt ttttttcgac	240
ccgagggcca aatgggttca	agaatggaat agggttttcc	tcctggtatg cgcgacggga	300
ctgttcgtgg acccattgtt	cttttacgcc ctgtccatta	gcgacacgtg catgtgcctc	360
ttcgtcgacg ggtggttcgc	catcaccgtg acggcgctcc	ggtgcatgac tgacgcgttg	420
cacgtgtgga acatgtgcct	ccagctcaaa atgatcaaga	. gatcatcgtc gtcgtacagt	480

aont	1 20 1 1	$\sim d$
COLL	TTTT	eu

-continued	
cgcggcaatg acaagaggag tgggagtgag agtgaaggcg aagggggtga cggcggagaa	540
ggaagcagca accgaccccg tgctgcgaat ggccgccacc tggccttcca atgcttgaaa	600
gccaaaaagg gactettett tgacetattg gtaattetee etetgeeaca gattgtaeta	660
tgggtggcaa ttccatcatt attggaaaaa ggatcggtaa cgctagtaat gacggtgttc	720
ttgatcatct tootottoca atacotococ aagatctacc actoogtotg cottttacgt	780
cgaatgcaga acctttccgg ctacattttc ggcactgttt ggtgggggat tgctctcaat	840
ttgattgett atttegtege etcaeaegeg geggggggegt gttggtaett gttagggatt	900
caaagatcgg ctaagtgctt gaaagagcaa tgtagaggga tagagaattg tgacctgaga	960
ttattggctt gcaaagaccc aatttactat ggaacaagaa gtatggtaag ggatagagca	1020
aggttggttt gggcagaaac caatcgagca aggagtactt gcattgataa ccctgataac	1080
tatgattatg gagettataa atggaeegtt eagetagtta eeaaegatag tegtetegag	1140
aaaatacttt ttcctatctt ttggggtctt atgactctca gcacatttgg gaacttggag	1200
agcacaacag aatggetgga ggttgtttte aacatcattg ttettaecag tggaettett	1260
cttgtcacaa tgttgattgg taacatcaag gtgtttttgc atgcaacaac gtccaagaaa	1320
caagcaatgc aattgaagat gaggaacata gagtggtgga tgaggaagag gcgcctgcct	1380
tetggattea ageaaagggt eegeaattat gageggeaae ggtgggegge eatgegeggt	1440
gtcgatgaat gccagatgat cagaaacctc cccgaggggc tccggagaga tatcaagtac	1500
catctttgcc tggatttagt tagacaggta ccattgtttc aacacatgga tgatttggtc	1560
ctagagaaca tttgtgatcg tgtcaaatct ctaattttta ccaaaggaga aactataaca	1620
agggaaggcg acccagtaca aagaatgcta tttgtagtaa ggggacatct ccaaagcagc	1680
caagttetta gagatggtgt gaaaagttge tgeatgttag ggeeeggaaa ttteagtgge	1740
gatgagetet tgteatggtg tettegaaga eeetteattg agaggeteee accategaet	1800
tocaccotog taacgottga aactaccgag goatttggoo togatgotga ggatgtoaaa	1860
tatgtcacac aacatttccg ttacacattt gttaacgaaa gggtcaagag gagtgctcgg	1920
tattattete eeggatggeg gaettggget geggtggega tteaattgge ttggaggegg	1980
tacaaacacc ggttaaccct tacgtcgttg tcattcatta ggcctcggag gccgttgtcg	2040
agaagtaatt cattggggga ggacagactc aggctttata cagctatgtt aacttcacca	2100
aaaccaaatc aagatgattt tgatttttga	2130
<210> SEQ ID NO 27 <211> LENGTH: 1986 <212> TYPE: DNA <213> ORGANISM: Cucumis melo	
<400> SEQUENCE: 27	
atggccacca cctcccaaac atccgatgac gaagaactag aacacgacga atcagaagat	60
gaagaagaac actccaacgc tgcgttttgt cagagcttat acggagttgg ttctgttctc	120
gacccaacaa ccaaatgggt tcgagaatgg aattgggtct tcctcctcgt ctgtgcagcg	180
gggetgtteg tegaceettt gtttetetae aegettteea taagegagte gtggatgtge	240
gtttttattg acgggtggtt ggccatcacc gtcacggtcc tccgctgcat qqqcqatqct	300
ttgcaccttt ggaatatetg ggttcagetg aagaetgeta caaagtgate etttgcaget	360

ggtagggggg agggtgatgc gagggatgaa aatagagggc ttagagatag tagcccacgc	420
gccgtcgctc tccggtattt gaagtccaag aaaggcttct tttttgacct ctttgttatt	480
cttccttttc ctcaggttgt attatgggta gtaattccca gaataatgaa agaaggatta	540
gtgacaatgg tgatgacagt attattaata gtatttttgt ttcaatattt accaaaattg	600
tatcattctg tttgcttatt acgacgtctc caaaaccttt ctggctacat ctttggcact	660
gtttggtggg gcattgctct caatctcatt gcttactttg ttgctgccca tgctgcaggt	720
gcatgttggt atctattagg ggtacagaga gcagcaaaat gtcttaaaga gcaatgtaga	780
tcagcaacaa gcaacagctg tgggctgaga ttgttatcat gcaaagaccc aatcttctat	840
ggaccaaaca atatgagaat gggaagagat agaggaagat ttgattgggc aaacaatagg	900
caatcgaagt tcatgtgttt agatactgct gataactttg attatggagc ttataaatgg	960
actgttcaac ttgttgtcaa tcaaagtcga ttggagaaaa tccttttccc catcttttgg	1020
ggcctcatga ctcttagtac ctttgggaat ttggaaagca caactgaatg gctggaagtt	1080
gtgttcaata tcattgttct caccagtgga ctcttattgg tcaccatgtt gattggaaat	1140
atcaaggtgt ttctacatgc aacaacgtca aaaaaacaag gaatgcagct gaagatgagg	1200
aacctagagt ggtggatgag gaagcgacgg ctgccacaag ggtttcgtca gcgtgttcgg	1260
aactacgaac ggcaacggtg ggcggcgatg cggggggtgg acgagtgcga gatgataaaa	1320
aacctaccgg aggggcttcg acgagacata aagtatcacc tttgcttgga tctagttagg	1380
caggtgccat tgtttcaaca tatggatgat cttgttcttg agaacatttg tgatcgtgtc	1440
aagteeetea tetteactaa gggegaaaca ataacaagag aaggagatee agtacaaaga	1500
atgetatteg tagtgegagg geateteeaa ageageeaag tettaegega eggegtaaaa	1560
agetgetgea tgttgggeee eggeaaette ageggegaeg agettetate etggtgeete	1620
cgccgccctt tcatagagcg ccttccaccg tcctccttta ctcttgtgac actcgagacc	1680
actgaagcet teagettgga ggeegaggat gteaagtatg taaceeagea etttegetae	1740
acctttgtca atgacaaggt caagcgcagt gcccgctact actccccagg ctggcgcact	1800
tgggctgctg ttgccatcca gctagcctgg cgccgatatc gccatcgtct cacactcacg	1860
teettgtegt ttatteggee eeggegeeea eteteaeggt getetteett gggggaggat	1920
cgcctccgcc tctatacggc gttgcttact tctcctaagc ccaaccacga ccactttgat	1980
ttttga	1986
<210> SEQ ID NO 28 <211> LENGTH: 1986 <212> TYPE: DNA <213> ORGANISM: Cucumis melo	
<400> SEQUENCE: 28	
atggccacca cctcccaaac atccgatgac gaagaactag aacacgacga atcagaagat	60
gaagaagaac actccaacgc tgcgttttgt cagagcttat acggagttgg ttctgttctc	120
gacccaacaa ccaaatgggt tcgagaatgg aattgggtct tcctcctcgt ctgtgcagcg	180
gggetgtteg tegaceettt gtttetetae acgettteea taagegagte gtqqatqtqe	240
qtttttattq acqqqtqqtt qqccatcacc qtcacqqtcc tccqctqcat qqqcqatqct	300
ttacacett agatateta adteacta egestate cessostate attacacet	360
Ligiallin gyaalallig gylleagely aagaelgela caaagleale ettigeaget	500

420

ggtagggggg agggtgatgc gagggatgaa aatagagggc ttagagatag tagcccacgc

gccgtcgctc tccggtattt gaagtccaag aaaggcttct tttttgacct ctttgttatt	480
cttccttttc ctcaggttgt attatgggta gtaattccca gaataatgaa agaaggatta	540
gtgacaatgg tgatgacagt attattaata gtatttttgt ttcaatattt accaaaattg	600
tatcattctg tttgcttatt acgacgtctc caaaaccttt ctggctacat ctttggcact	660
gtttggtggg gcattgctct caatctcatt gcttactttg ttgctgccca tgctgcaggt	720
gcatgttggt atctattagg ggtacagaga gcagcaaaat gtcttaaaga gcaatgtaga	780
tcagcaacaa gcaacagctg tgggctgaga ttgttatcat gcaaagaccc aatcttctat	840
ggaccaaaca atatgagaat gggaagagat agaggaagat ttgattgggc aaacaatagg	900
caatcgaagt tcatgtgttt agatactgct gataactttg attatggagc ttataaatgg	960
actgttcaac ttgttgtcaa tcaaagtcga ttggagaaaa tccttttccc catcttttgg	1020
ggcctcatga ctcttagtac ctttgggaat ttggaaagca caactgaatg gctggaagtt	1080
gtgttcaata tcattgttct caccagtgga ctcttattgg tcaccatgtt gattggaaat	1140
atcaaggtgt ttctacatgc aacaacgtca aaaaaacaag gaatgcagct gaagatgagg	1200
aacctagagt ggtggatgag gaagcgacgg ctgccacaag ggtttcgtca gcgtgttcgg	1260
aactacgaac ggcaacggtg ggcggcgatg cggggggtgg acgagtgcga gatgataaaa	1320
aacctaccgg aggggcttcg acgagacata aagtatcacc tttgcttgga tctagttagg	1380
caggtgccat tgtttcaaca tatggatgat cttgttcttg agaacatttg tgatcgtgtc	1440
aagteeetea tetteactaa gggegaaaca ataacaagag aaggagatee agtacaaaga	1500
atgctattcg tagtgcgagg gcatctccaa agcagccaag tcttacgcga cggcgtaaaa	1560
agetgetgea tgttgggeee eggeaactte ageggegaeg agettetate etggtgeete	1620
cgccgccctt tcatagagcg ccttccaccg tcctccttta ctcttgtgac actcgagacc	1680
actgaageet teagettgga ggeegaggat gteaagtatg taaceeagea etttegetae	1740
acctttgtca atgacaaggt caagegeagt geeegetaet aeteeeeagg etggegeaet	1800
tgggctgctg ttgccatcca gctagcctgg cgccgatatc gccatcgtct cacactcacg	1860
teettgtegt ttatteggee eeggegeeea eteteaeggt getetteett gggggaggat	1920
cgcctccgcc tctatacggc gttgcttact tctcctaagc ccaaccacga ccactttgat	1980
ttttga	1986
<210> SEQ ID NO 29 <211> LENGTH: 3192 <212> TYPE: DNA <213> ORGANISM: Zea mays	
<400> SEQUENCE: 29	
gtacatgtac tacgcgggca aagcaaagca tcggtgtcta cctcattatt ttcggagtcc	60
gagtggcgaa acccgccgca gcttccactg ggcagtgctc cacaggctca tatccgattc	120
cgateeetaa gaeeteagee getgeggeat eeaeggeeaa eteaageget ggeaaetgge	180
aagggcagat gatetgtgta tageaetege taeettetet tgattteeee eteaggtege	240
tgaccaaggg teetgteege catggatgeg gagegaaget etgeaegeag egeeacaeet	300
tttggtccgc cgtccgatcg ccaccgctag acgccacgc tgcgttggttgg	360

atcgccgatt	cccttggcgg	tctagtgcct	gcggtcggcg	ccagacgccg	gcgaggtagc	420	
cgcgagacac	aggtacgggt	gccgaacggg	aacggctgct	gcccgccgag	ccgtcgactg	480	
cctgcctgga	gccttgactg	cgcaagcgca	gctgccgtgt	gttgagtgct	gagtcgccga	540	
ctccaccagg	tggccagcga	ttgctttgct	gctccaggaa	agaagccaaa	aaaaaacacg	600	
aagaattaaa	catcgattga	aagggaaaag	acaatgccaa	gcctgaactg	agaggcgcac	660	
actggatttc	gcatcagttc	atgtcgttcc	ttacaccgtc	aatttgacga	atcacctcgc	720	
cacgccgcct	tgattttgtt	ttgtcctccg	cttctggccg	ggctcagttc	agctgtatgg	780	
tattggtatc	gccatgtcaa	gcgacctctc	cacacgctcc	tcgccttcct	cctccaccgc	840	
gtcgccttcc	gacgactcgc	ggcggcagga	gcaaggccag	gcggcgggta	acgccagcgg	900	
gagccggcgg	tggcggtggc	gcctcgggct	gggcgcggcg	tgggcgctgg	acccgcgggc	960	
gaggtgggtc	cgggactgga	accgcgccta	cctcctggcc	tgcgcggccg	ggctcatggt	1020	
cgacccgctc	ttcctctacg	ccgtgtccct	gagcggcccg	ctcatgtgca	tattcgtcga	1080	
cggctggctc	geegeegeeg	tcaccgcgct	gcgctgcggg	gtggacgcca	tgcacgtgtg	1140	
gaacgtcgcc	acgcagctcc	gcaccgccaa	ggcgccgccg	ggtaagcgcg	tggccggcga	1200	
cgaggagcag	cagcagaccg	tcgccgaggc	cgcgcgcaag	ctccccgagg	acgcggcgtc	1260	
caggaggggg	ctgttgctgg	acttcttcgt	catccttccc	gtgatgcagg	tggtggtgtg	1320	
ggttgcggcg	ccggcgatga	tccgcgcggg	gctgacgacg	ccggtgatga	cggtgctgct	1380	
ggtgtcgttc	ctgctggagt	acctgcccaa	gatctaccac	gcggcgcgcc	tgctccggcg	1440	
gatgcagagg	cagtctggct	acatcttcgg	caccatctgg	tggggcatcg	cgctcaacct	1500	
catggcctac	ttcgtcgccg	cccatgctgt	gggcgcgtgc	tggtacctgc	tcggcgtcca	1560	
gcgggccagc	aagtgcctga	aagagcagtg	cctccaggcg	gccgggtgcg	cgcgcggcag	1620	
cgcggtggcc	tgcgcggcgc	cgctgtacta	cggcggctcc	ccgtctcccg	gagtcggcgg	1680	
cggcgacagg	ctcgcctggg	ccgggaacgc	gcaggcccgg	ggcacgtgcc	tcgccagcgg	1740	
cgacaactac	cagtacggcg	cgtacacgtg	gacggtgatg	ctggtggcga	acccgagccg	1800	
ggtggagcgg	atgctgctcc	ccatcttctg	gggcctcatg	acgctcagca	cgttcggcaa	1860	
cctggagagc	acgacggagt	ggctggagat	cgtgttcaac	atcatcacca	tcacgggcgg	1920	
gctcgtcctc	gtcaccatgc	tcatcggcaa	catcaaggtg	ttcctgaacg	cgaccacgtc	1980	
caagaagcag	gccatgcaca	cgcggctgcg	cggcgtggag	tggtggatga	agcgcaagaa	2040	
actgccgcgg	agcttccgcg	gccgggtgcg	ccagttcgag	cgccagcggt	gggccgccac	2100	
gcgcggcgtc	gacgagtgcc	agatcgtgcg	cgacctcccc	gagggcctcc	gccgggacat	2160	
caagtaccac	ctctgcctcg	acctcgtccg	ccaggtccca	ttcttccagc	acatggacga	2220	
cctcgtgctc	gagaacatct	gcgacagggt	gaaatccctc	atctttccca	agggagaaac	2280	
catcgtgagg	gagggcgacg	tggtgcagcg	gatgctgttc	atcgtgcggg	gccacctgca	2340	
gtgcagccag	gtgctgcgga	acggcgcgac	gagcagctgc	acgctggggc	ctggcaactt	2400	
cageggegae	gagetgetgt	cgtggtgcct	gegeegeeeg	ttcctggaac	gcctcccgac	2460	
gtcgtcggcg	acgctggtga	cgctggagag	caccgaggtg	ttcggcctgg	acgccgccga	2520	
cgtcaagtac	gtcacgcagc	acttccgcta	caccttcacc	aacgacaagg	tgegeegeag	2580	
cgctcqctac	tactcqcccq	gctgqcqtac	ctggqcqqcc	gtcgccqttc	agctqqcctq	2640	
5 5	55	5 55-5-7-		5 5 - 5 - 7 -	5 555		

				-contir	nued		
gaggaggtac	aagcaccgca	agacgctctc	gtcgctctcc	ttcatccgcc	cgcggcgccc	2700	
gctgtcccgc	tgctcctcgc	tcggggagga	gaagctccgc	ctgtacacgg	ccatcctcac	2760	
ctcgcccaag	cccaaccagg	acgacgactt	ctagctagct	tagctaggcc	gttccaggcc	2820	
ggattetett	ctcctcagcg	aggagtatat	atatcaaaca	acatgcattt	atttgtagta	2880	
ttcattactc	gcatgtcgca	tgagagacag	agccatgacc	gtactccctc	cgctttccta	2940	
ttagttgtcg	tttaggataa	cgacacggtc	tctaatatat	aactttgacc	aatattttt	3000	
gttaaaatac	aaataaactc	ttaatacatt	tatactttta	taaaagtact	ttttatgata	3060	
aattggtgca	tataaatatt	aggtttcaaa	actaaataac	aaaatagtta	tttgtagtca	3120	
aaactttata	agtttgactc	gaaccttatc	taaaacgaca	attaatagga	aaccggaggg	3180	
agtattttgc	at					3192	
<210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN	ID NO 30 IH: 2001 DNA HISM: Zea ma	ауа					
<400> SEQUE	ENCE: 30						
atgtcaagcg	acctctccac	acgeteeteg	ccttcctcct	ccaccgcgtc	gccttccgac	60	
gactcgcggc	ggcaggagca	aggccaggcg	gcgggtaacg	ccagcgggag	ccggcggtgg	120	
cggtggcgcc	tcgggctggg	cgcggcgtgg	gcgctggacc	cgcgggcgag	gtgggtccgg	180	
gactggaacc	gcgcctacct	cctggcctgc	gcggccgggc	tcatggtcga	cccgctcttc	240	
ctctacgccg	tgtccctgag	cggcccgctc	atgtgcatat	tcgtcgacgg	ctggctcgcc	300	
gccgccgtca	ccgcgctgcg	ctgcggggtg	gacgccatgc	acgtgtggaa	cgtcgccacg	360	
cageteegea	ccgccaaggc	gccgccgggt	aagcgcgtgg	ccggcgacga	ggagcagcag	420	
cagaccgtcg	ccgaggccgc	gcgcaagete	cccgaggacg	cggcgtccag	gaggggggtg	480	
ttgctggact	tcttcgtcat	ccttcccgtg	atgcaggtgg	tggtgtgggt	tgcggcgccg	540	
gcgatgatcc	gcgcgggggct	gacgacgccg	gtgatgacgg	tgetgetggt	gtcgttcctg	600	
ctggagtacc	tgcccaagat	ctaccacgcg	gcgcgcctgc	tccggcggat	gcagaggcag	660	
tctggctaca	tcttcggcac	catctggtgg	ggcatcgcgc	tcaacctcat	ggcctacttc	720	
gtcgccgccc	atgctgtggg	cgcgtgctgg	tacctgctcg	gcgtccagcg	ggccagcaag	780	
tgcctgaaag	agcagtgcct	ccaggcggcc	gggtgcgcgc	gcggcagcgc	ggtggcctgc	840	
gcggcgccgc	tgtactacgg	cggctccccg	tctcccggag	tcggcggcgg	cgacaggctc	900	
gcctgggccg	ggaacgcgca	ggcccgggggc	acgtgcctcg	ccagcggcga	caactaccag	960	
tacggcgcgt	acacgtggac	ggtgatgctg	gtggcgaacc	cgagccgggt	ggagcggatg	1020	
ctgctcccca	tcttctgggg	cctcatgacg	ctcagcacgt	tcggcaacct	ggagagcacg	1080	
acggagtggc	tggagatcgt	gttcaacatc	atcaccatca	cgggcgggct	cgtcctcgtc	1140	
accatgctca	tcggcaacat	caaggtgttc	ctgaacgcga	ccacgtccaa	gaagcaggcc	1200	
atgcacacgc	ggetgegegg	cgtggagtgg	tggatgaagc	gcaagaaact	gccgcggagc	1260	
ttccgcggcc	gggtgcgcca	gttcgagcgc	cagcggtggg	ccgccacgcg	cggcgtcgac	1320	
gagtgccaga	tcgtgcgcga	cctccccgag	ggceteegee	gggacatcaa	gtaccacctc	1380	
tgcctcgacc	tcgtccgcca	ggtcccattc	ttccagcaca	tggacgacct	cgtgctcgag	1440	

aacatctgcg acagggtgaa atccctcatc tttccccaagg gagaaaccat cgtgagggag	1500
ggcgacgtgg tgcagcggat gctgttcatc gtgcggggcc acctgcagtg cagccaggtg	1560
ctgcggaacg gcgcgacgag cagctgcacg ctggggcctg gcaacttcag cggcgacgag	1620
ctgctgtcgt ggtgcctgcg ccgcccgttc ctggaacgcc tcccgacgtc gtcggcgacg	1680
ctggtgacgc tggagagcac cgaggtgttc ggcctggacg ccgccgacgt caagtacgtc	1740
acgcagcact teegetacae etteaceaae gacaaggtge geegeagege tegetaetae	1800
tegecegget ggegtaeetg ggeggeegte geegtteage tggeetggag gaggtaeaag	1860
cacegeaaga egetetegte geteteette ateegeeege ggegeeeget gteeegetge	1920
teetegeteg gggaggagaa geteegeetg tacaeggeea teeteacete geeeaageee	1980
aaccaggacg acgacttcta g	2001
<210> SEQ ID NO 31 <211> LENGTH: 2076 <212> TYPE: DNA <213> ORGANISM: Glycine max <400> SEQUENCE: 31	
atggtacta ccataacaga gcaagaagco teateacgto cocogeacot getegactae	60
gccaccacta catecgacqa egacacqqaa aaqqaqqaq aqqaqetqqt acacqacca	120
aacqaateet ceqqeqqaqq qeqqtqqtt eeqqeqqeqt qeqqtqqeqq cacacaqaa	180
aqcqqqqqaq qcqcqttaqq qcqaqttctt qacccaaqqq cqaaqtqqt ccauqaatqq	240
aacagggtgt tootgotagt gtgcgcccccg gggttgtteg ttgaccetet ettettetag	300
gcqctctccq tcaqcqactc qtqcatqtqc atcttcattq acquatqqct cqccatcacc	360
gtcacqqtqc tqcqqtqcat qaccqacqca ctqcacqtqt qqaacatqqt tataaqtqc	420
aaqatqqcqa aacqcacctt cqqactcqqc qcctccacca cttcttccqq caqaqqaaca	480
tectegteet etgteggaet caqaqatace eqaceqeqtt ceqteqeqat qqqatatete	540
atgteacgga coggattett tittgatetg tiogttatte tieetetace acagatteta	600
ctatgggtgg caateceete ettgttggag aaaggtteag tgacattggt gatgacagtg	660
ttettaatta tetttetett eeaataett tteatteggt ttgeeatte	720
cgacgcacgc aaaacctctc tggctacatt tttggaacag tttggtgggg aatcqccctt	780
aacatgatcg cgtattttgt tgcttcccat gcagcagggg catgttggta cttqctaqqq	840
atacaaaggg cagccaagtg tctcaaagtg cagtgtgaga aaacaagtgg ttqtggcatg	900
aaaatottgt ottgtcaaac accoatatat tacggaagca acagttttot agttagggat	960
agggcaaggt tggcttgggc agagaacagg gaagtgagac acacatgcct aaatggtcct	1020
gacaactaca actatggagc ttatagatgg tctgttcagc ttgtcacaaa cqataatcqa	1080
ttqqaqaaqa tacttttccc tatcttctqq qqcctaatqa ctctcaqcac ttttqqaaac	1140
ctagagata caaccaata actagaata atttcaaca toattatat accastaga	1200
attattatta taadatatatt asttaassa steesattat tittaasta	1000
clicitorig teactatgit gattggaaac atcaaggiat tittgcatge aacaacgica	1260
aaaaagcaag caatgcaatt gaagatgagg aatattgaat ggtggatgag gaaacgacgc	1320
ttgccgctag ggtttaggca gcgcgtgcgt aactatgaga ggcaacgttg ggctgccatg	1380
cgtggggttg atgaatttga gatgactaaa aatcttcctg agggattaag aagagacatt	1440

				- 20110 11	lued	
aaataccatc	tttgtctaga	cttggtgaga	caggtgcctc	tatttcaaca	catggacgat	1500
ctggttctag	agaacatctg	tgaccgtgtg	aagtctctga	tattcacaaa	gggagaaaca	1560
atagctagag	aaggagaccc	agttcagaga	atgctatttg	tagtaagggg	tcaccttcaa	1620
agcagccaag	tcctaaggga	tggtgtgaag	agttgttgca	tgttaggtcc	aggaaacttc	1680
agtggggacg	aactcctctc	atggtgttta	aggagaccct	tcatagaacg	ccttccacca	1740
tcttcatcca	cactcatcac	gttggaaacc	accgaggctt	ttggccttga	agccgaggat	1800
gtgaagtatg	tgacacaaca	ttttaggtac	acatttgtta	aggagaaggt	gaagagaagt	1860
gcaaggtatt	actcaccagg	gtggagaact	tgggctgctg	tggccattca	attggcatgg	1920
aggaggtaca	agcataggtt	gactttgact	tcattgtcct	ttataaggcc	taggaggcct	1980
ttgtcaaggt	cctcttccat	gggagaggac	aggettegee	tctacacggc	tttgttaacc	2040
tccccaaagc	ctaatcagga	tgattttgac	ttttga			2076
<210> SEQ] <211> LENGT <212> TYPE: <213> ORGAN	ID NO 32 TH: 2001 : DNA NISM: Oryza	sativa				
<400> SEQUE	ENCE: 32					
atggcgtcct	cctccgccgc	cgccgcctcg	tccgctcatg	gtgttggtgt	tgtgcagagg	60
ttatggctgg	aggagcagga	gcggaagccg	ccgccgaagc	gtggcggcgg	caagcggagg	120
tgggcgtggg	cgccgctcga	gccgcggcgg	gcggggtggt	gggcgcggga	gtgggacagg	180
gcgtacctcc	tcgcctgcgc	ggcgggggtc	atggtcgacc	cgctcttcct	gtacgccgtg	240
tccgtcagcg	ggccgctcat	gtgcgtcttc	ctcgacgggt	ggttcgccgc	cgcggtcacc	300
gtgctccggt	gcacggtgga	cgccatgcac	gcctggaact	tgctgatgcg	cctccgggcg	360
gcggtgcggc	cgccggagga	ggacgacggc	gccgacgagg	aggtggcggc	ggagcggggga	420
gccggcggca	atggcggcgg	gccggcgccg	gctcaggtgg	cgaggccggt	gtccaggaaa	480
gggctcatgc	tggacatgtt	cgtcattctt	cccgtaatgc	aggtgatcgt	ctgggtggcg	540
gcaccggcga	tgatacgcgc	cgggtcgacg	acggcggtaa	tgacggtgct	cctggtgtcg	600
ttcctgttcg	agtacctgcc	caagatatac	cacgccgtcc	gcctcctgcg	ccggatgcag	660
aacacctacg	tgttcggcac	catctggtgg	ggcatcgcgc	tcaacctcat	ggcctacttc	720
gtcgccgctc	acgcggtggg	cgcgtgctgg	tacctgctcg	gggcgcagcg	cgcgaccaag	780
tgcctcaagg	agcagtgcgc	ccagggcggg	agcgggtgcg	cgcccggtgc	gctggcgtgc	840
gcggcgccgc	tctactacgg	tggcgccgtg	ggcggcgtgg	gcgcggacag	gctcgcctgg	900
gccctcgacg	cctccgcccg	gggcacgtgc	ctcgacagcg	gcgacaacta	ccagtacggg	960
gcgtacaagt	ggaccgtcat	gctcgtggcg	aacccgagcc	ggctggagaa	gatettgete	1020
cccatcttct	ggggcctcat	gacactcagt	acatttggga	acttggcgag	cacaacagag	1080
tggctggaga	tagtgttcaa	catcatcact	atcaccgggg	gcttaatcct	cgtgacgatg	1140
ctcataggaa	acatcaaggt	gttcttgaac	gcggcgacgt	cgaagaagca	ggcgatgcag	1200
acgaggctgc	ggggcgtgga	gtggtggatg	aagcggaaga	agctgccgca	gagetteegg	1260
caccgggtgc	ggcagcacga	gcggcagcgg	tgggcggcca	cgcgcggcgt	cgacgagtgc	1320
cgcatcgtcc	gcgacctgcc	ggaggggctc	cgccgcgaca	tcaagtacca	cctctgcctc	1380

gacctcgtcc	gccaggtgcc	actgttccaa	cacatggacg	acctggtgct	cgagaacatc	1440	-
tgtgacaggg	tcaagtccct	cgtattcccc	aaaggagaaa	ttatcgttag	agagggcgac	1500	
ccggtgcaga	ggatgctgtt	catagtgcga	gggcacctgc	agagcagcca	ggtgctgagg	1560	
accggcgcca	cgagctgctg	cacgctgggg	ccgggcaact	tcagcggggga	cgagctgctg	1620	
tcgtggtgca	tgcggcggcc	gttcctggag	cggctgccgg	cgtcgtcgtc	gacgctggtg	1680	
acgatggaga	gcacggaggc	gttcgggctg	gaggccgcgg	acgtcaagta	cgtgacgcag	1740	
cacttccgct	acaccttcac	caacgacagg	gtgcggcgca	gcgcgcgcta	ctactcgcac	1800	
gggtggcgca	cgtgggcggc	cgtcgccgtg	cagctcgcgt	ggcggcggta	caagcaccgc	1860	
aagacgctcg	cgtcgctctc	cttcatccgc	ccgcgcaggc	cgctgtcgcg	gtgctcgtcg	1920	
ctcggcgagg	agaagctccg	gctctacacc	gcgatcctca	cctcacccaa	gcccaacccc	1980	
aaccaggacg	acttggtgtg	a				2001	
<210> SEQ <211> LENG <212> TYPE <213> ORGAN	ID NO 33 IH: 2001 : DNA NISM: Oryza	sativa					
<400> SEQU	ENCE: 33						
atggcgtcct	cctccgccgc	cgccgcctcg	tccgctcatg	gtgttggtgt	tgtgcagagg	60	
ttatggctgg	aggagcagga	gcggaagccg	ccgccgaagc	gtggcggcgg	caagcggagg	120	
tgggcgtggg	cgccgctcga	gccgcggcgg	gcgggggtggt	gggcgcggga	gtgggacagg	180	
gcgtacctcc	tcgcctgcgc	ggcgggggtc	atggtcgacc	cgctcttcct	gtacgccgtg	240	
tccgtcagcg	ggccgctcat	gtgcgtcttc	ctcgacgggt	ggttcgccgc	cgcggtcacc	300	
gtgctccggt	gcacggtgga	cgccatgcac	gcctggaact	tgctgatgcg	cctccgggcg	360	
gcggtgcggc	cgccggagga	ggacgacggc	gccgacgagg	aggtggcggc	ggagcgggga	420	
gccggcggca	atggcggcgg	gccggcgccg	gctcaggtgg	cgaggccggt	gtccaggaaa	480	
gggctcatgc	tggacatgtt	cgtcattctt	cccgtaatgc	aggtgatcgt	ctgggtggcg	540	
gcaccggcga	tgatacgcgc	cgggtcgacg	acggcggtaa	tgacggtgct	cctggtgtcg	600	
ttcctgttcg	agtacctgcc	caagatatac	cacgccgtcc	gcctcctgcg	ccggatgcag	660	
aacacctacg	tgttcggcac	catctggtgg	ggcatcgcgc	tcaacctcat	ggcctacttc	720	
gtcgccgctc	acgcggtggg	cgcgtgctgg	tacctgctcg	gggcgcagcg	cgcgaccaag	780	
tgcctcaagg	agcagtgcgc	ccagggcggg	agcgggtgcg	cgcccggtgc	gctggcgtgc	840	
gcggcgccgc	tctactacgg	tggcgccgtg	ggcggcgtgg	gcgcggacag	gctcgcctgg	900	
gccctcgacg	cctccgcccg	gggcacgtgc	ctcgacagcg	gcgacaacta	ccagtacggg	960	
gcgtacaagt	ggaccgtcat	gctcgtggcg	aacccgagcc	ggctggagaa	gatcttgctc	1020	
cccatcttct	ggggcctcat	gacactcagt	acatttggga	acttggcgag	cacaacagag	1080	
tggctggaga	tagtgttcaa	catcatcact	atcaccgggg	gcttaatcct	cgtgacgatg	1140	
ctcataggaa	acatcaaggt	gttettgaae	geggegaegt	cgaagaagca	ggcgatgcaq	1200	
acqaqqctqc	qqqqcqtqqa	qtqqtqqatq	aaqcqqaaqa	aqctqccqca	qaqcttccqq	1260	
caccoctice	ddcadcacda	acaacaacaa	tagagagaga	cacacacat	cdacdadtad	1320	
cacetostos	acascataca	adadddat c	-999099000	taaataaa	catatagata	1200	
egeategtee	ycgacctgcc	ygaggggctc	ogeegegaea	icaagtacca	Gerergeere	T380	

gacetegtee gecaggtgee actgtteeaa cacatggaeg acetggtget egagaacate	1440
tgtgacaggg tcaagtccct cgtattcccc aaaggagaaa ttatcgttag agagggcgac	1500
ccggtgcaga ggatgctgtt catagtgcga gggcacctgc agagcagcca ggtgctgagg	1560
accggcgcca cgagctgctg cacgctgggg ccgggcaact tcagcgggga cgagctgctg	1620
tegtggtgea tgeggeggee gtteetggag eggetgeegg egtegtegte gaegetggtg	1680
acgatggaga gcacggaggc gttcgggctg gaggccgcgg acgtcaagta cgtgacgcag	1740
cacttccgct acaccttcac caacgacagg gtgcggcgca gcgcgcgcta ctactcgcac	1800
gggtggcgca cgtgggcggc cgtcgccgtg cagctcgcgt ggcggcggta caagcaccgc	1860
aagacgeteg egtegetete etteateege eegegeagge egetgtegeg gtgetegteg	1920
ctcggcgagg agaageteeg getetaeaee gegateetea eeteaeeeaa geeeaaeeee	1980
aaccaggacg acttggtgtg a	2001
<210> SEQ ID NO 34 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 34	
ggagagagga gaaggtgttg tgcat	25
<210> SEQ ID NO 35 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 35	
ccagccctcc gtccatgtac aagca	25
<210> SEQ ID NO 36 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 36	
atgtagcetg tgaetttttg catte	25
<210> SEQ ID NO 37 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 37	
agcgactccc gcgatacgta cgcca	25
<210> SEQ ID NO 38 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 38	
caccctgtca cagatgttgt caaga	25
<210> SEQ ID NO 39 <211> LENGTH: 25	

<212> TYPE: DNA

<213> ORGANISM: Glycine max	
<400> SEQUENCE: 39	
aaggcaccat gaaagcagct cgtca	25
<210> SEQ ID NO 40 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 40	
attcaaggtg gtcatgtggc cttat	25
<210> SEQ ID NO 41 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 41	
gagtagaaga acagcgggtc tatcg	25
<210> SEQ ID NO 42 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 42	
atcacgaatg cgtcgaacca gaatc	25
<210> SEQ ID NO 43 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 43	
tgacaggaag tgcccattgg tagat	25
<210> SEQ ID NO 44 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 44	
gcagcatatt gcaagagcct gcgtt	25
<210> SEQ ID NO 45 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 45	
tgctgcccat ctctgacgtt caaaa	25
<210> SEQ ID NO 46 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 46	
ctaaatggat tgtcatccac aactq	25

-continued

<210> SEQ ID NO 47 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max		
<400> SEQUENCE: 47		
ttattgtcat aatgatttta atttt	25	
<210> SEQ ID NO 48 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max		
<400> SEQUENCE: 48		
aaggcaccat gaaagcagct cgtca	25	
<210> SEQ ID NO 49 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max		
<400> SEQUENCE: 49		
caaaccccaa aaaatgggat aaaga	25	
<210> SEQ ID NO 50 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max		
<400> SEQUENCE: 50		
aaaatagaag gtatctaatt tttaa	25	
<210> SEQ ID NO 51 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max		
<400> SEQUENCE: 51		
taaaaaaata gaaataacta catgt	25	
<210> SEQ ID NO 52 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max		
<400> SEQUENCE: 52		
ctatettggt ttettgetaa etetg	25	
<210> SEQ ID NO 53 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max		
<400> SEQUENCE: 53		
taattttatc aactattata ccatc	25	
<210> SEQ ID NO 54 <211> LENGTH: 25		

<213> ORGANISM: Glycine max

<400> SEQUENCE: 54	
gaatttttag accattcaac cggga	25
<210> SEQ ID NO 55 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 55	
acattettgt aaaatatttt etetg	25
<210> SEQ ID NO 56 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 56	
aaggatattt acaaatttga gacat	25
<210> SEQ ID NO 57 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 57	
tttcatattt tcttcatccc agcat	25
<210> SEQ ID NO 58 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 58	
atgatggtag catgagatta caccc	25
<210> SEQ ID NO 59 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Glycine max	
<400> SEQUENCE: 59	
atggctcatt ttagaataaa cttta	25
<210> SEQ ID NO 60 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic	
<400> SEQUENCE: 60	
atggggggtt ccgttaatcc gaaga	25
<210> SEQ ID NO 61 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic	
<400> SEQUENCE: 61	

agcgccggta gcgagcatac gtatg	25
<pre><210> SEQ ID NO 62 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic</pre>	
<400> SEQUENCE: 62	
acgactctgc ttattatact cggtc	25
<pre><210> SEQ ID NO 63 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic</pre>	
<400> SEQUENCE: 63	
gacatattag gggcgacgtc tccaa	25
<210> SEQ ID NO 64 <211> LENGTH: 644 <212> TYPE: DNA <213> ORGANISM: Solanum lycopersicum	
<400> SEQUENCE: 64	
aagtggtttg gcatatteeg aegaagatea gtteaaeetg ataaeagega egaeaaegat	60
gacgacatca atccaatctc aaattccatt gaatgttatg catgtactca agttggcgtc	120
cctgttttcc actccaccag ttgcgatgga gctaaccaac cggagtggga agcttcagcc	180
ggttettete tagtteeaat teaaaacegg aeggatteaa aaaeeggaaa ateeeggtee	240
agtogoagoo ggoacacato ggggoogtto gggogtgtat tagacootog aagcaagogo	300
gtgcagagat ggaaccgaat gattttattg gcacgtggca tggctttagc cgttgatcct	360
ctattetttt acgeettate categgeege ggtggatege egtgtttgta catggaegge	420
ageetggegg ctategteae egtgattegg actagegteg aegeegtgea eetetteeat	480
ttgtggttgc agtttcgttt ggcttacgtg tcgagagaat cgctggtggt tggttgtggg	540
aaactogtgt gggatgogog tgogattgot totoactatg ttaggtooot taaaggattt	600
tggttcgatg cttttgtcat ccttcccgtt ccacaggetg tatt	644
<210> SEQ ID NO 65 <211> LENGTH: 652 <212> TYPE: DNA <213> ORGANISM: Solanum lycopersicum	
<400> SEQUENCE: 65	
cgacgccgtg cacctcttcc atttgtggtt gcagtttcgt ttggcttacg tgtcgagaga	60
atcgctggtg gttggttgtg ggaaactcgt gtgggatgcg cgtgcgattg cttctcacta	120
tgttaggtcc cttaaaggat tttggttcga tgcttttgtc atccttcccg ttccacaggc	180
tgtattctgg ctggtggttc caaaactaat aagagaagag	240
gateettta ttaatgttet tgtteeagtt eetteeeaaa gtttateaet gtataagett	300
aatgagaagg atgcaaaagg ttacaggata tatttttggt accatctggt ggggatttgg	360

acttaatctc attgcttatt ttattgcttc tcatgttgct gggggatgct ggtatgttct	420
tgcaatacaa agagtggctt catgtctaag gcagcagtgt gagcgcaacc cttcgtgtaa	480
tctatctttg tcttgctcag aggaggtgtg ttatcagttt ctgttgccaa caggaactgt	540
gggaaatcca tgtgctggga actcaacaac agtgaccagg aagccaatgt gtttggatgt	600
caatggacca tttccatatg ggatatacca atgggcactt cctgttgttt ct	652
<210> SEQ ID NO 66 <211> LENGTH: 656 <212> TYPE: DNA <213> ORGANISM: Solanum lycopersicum	
<400> SEQUENCE: 66	
atctttgtct tgctcagagg aggtgtgtta tcagtttctg ttgccaacag gaactgtggg	60
aaatccatgt gctgggaact caacaacagt gaccaggaag ccaatgtgtt tggatgtcaa	120
tggaccattt ccatatggga tataccaatg ggcactteet gttgttteta geagateegt	180
cactgttaag attetttace ceatettttg gggattgatg accettagea catttggeaa	240
tgacttagaa ccaacaagtc actggctgga agttattttc agtatatgcc ttgtgcttag	300
tggattgatg ctcttcactt tgctgattgg taacattcag gtgtttttac acgcggtcat	360
ggcaaagaag cgaaaaatgc aattaagatg tagggatatg gaatggtgga tgaggaggag	420
acaattacca tcacaattaa gacaaagagt tcgccacttt gaacaccaga gatgggctat	480
gatgggtggc gaagatgaga tggaacttgt aaaagacctg ccagaaggac tacgaaggga	540
catcaaacgc tttctttgcc ttgatcttat taagaaggtt cctctgttcg aaagtttgga	600
tgatetgatt etagataaca tttgtgateg egttaageea ettgtgttet etaaag	656
<210> SEQ ID NO 67 <211> LENGTH: 651 <212> TYPE: DNA <213> ORGANISM: Solanum lycopersicum	
<400> SEQUENCE: 67	
atggaacttg taaaagacct gccagaagga ctacgaaggg acatcaaacg ctttctttgc	60
cttgatctta ttaagaaggt teetetgtte gaaagtttgg atgatetgat tetagataae	120
atttgtgatc gcgttaagcc acttgtgttc tctaaagatg agaagatcat aagagaagga	180
gatccagtgc acagggttgt gttcattgtt cgtggacgtg taaaaagtag ccaaaacctc	240
agtaaaggag tgattgccac aagcatactt gagcctggag gcttctttgg agatgaactt	300
ctttcctggt gettacgeeg teeettatt gaeagaette eagettette egeaacette	360
acttgcattg aatctacaga agcatttggc ttagatgcaa accaccttcg atttatcacg	420
gatcacttca gatacaaatt tgcaaacgag aggctgaaga gaacagcaag gtattattca	480
tccaattgga gaacctgggc tgctgtgaat atacagttag cttggcgacg ttacatgatg	540
aggactagcc gtcccactat acatgtgatc gaaaatgggg ataatgatca tcgtcttcgc	600
aagtatgetg caatgttett gteaateaga eeacatgate atettgaata g	651

<210> SEQ ID NO 68 <211> LENGTH: 649 <212> TYPE: DNA <213> ORGANISM: Aqueoria victoria

<400> SEQUI	INCE: 68						
ctggatggtg	atgtgaacgg	gcacaagttc	tccgtcagcg	gagagggtga	aggtgatgcc	60	
acctacggaa	ageteaceet	gaagttcatc	tgcactaccg	gaaagctccc	tgttccgtgg	120	
ccaaccctcg	tcaccacttt	cacctacggt	gttcagtgct	tctcccggta	cccagatcac	180	
atgaagcagc	atgacttctt	caagagcgcc	atgcccgaag	gctacgtgca	agaaaggact	240	
atctctttca	aggatgacgg	gaactacaag	acacgtgccg	aagtcaagtt	cgaaggtgat	300	
accctggtga	accgcatcga	gctgaaaggt	atcgatttca	aggaagatgg	aaacatcctc	360	
ggacacaagc	tggagtacaa	ctacaactcc	cacaacgtat	acatcacggc	cgacaagcag	420	
aagaacggca	tcaaggctaa	cttcaagatc	aggcacaaca	tcgaagatgg	aagcgtgcaa	480	
ctggcggacc	actaccagca	gaacacgccc	atcggcgatg	gccctgtcct	gctgccggac	540	
aaccattacc	tgtccacgca	atctgccctc	tccaaggacc	ccaacgagaa	gagggaccac	600	
atggtcctgc	tggagttcgt	gacggctgct	gggatcacgc	atggcatgg		649	

What is claimed is:

1. A method for producing a plant exhibiting an improvement in fungal and/or nematode disease resistance comprising topically applying to a plant surface a composition that comprises:

- a. at least one polynucleotide that comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to a DND1 gene or to a transcript of said gene; and
- b. a transfer agent, wherein said plant exhibits an improvement in fungal and/or nematode disease resistance that results from suppression of said DND1 gene.

2. The method of claim 1, wherein said polynucleotide molecule comprises sense ssDNA, sense ssRNA, dsRNA, dsDNA, a double stranded DNA/RNA hybrid, anti-sense ssDNA, or anti-sense ssRNA.

3. The method of claim **1**, wherein said polynucleotide is selected from the group consisting of SEQ ID NO: 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, and 59, or wherein said polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33.

- 4. The method of claim 3, wherein:
- (a) the plant is a cucumber plant, the gene or the transcript is a cucumber DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 1, 3, 7, 11, or 19;
- (b) the plant is a soybean plant, the gene or the transcript is a soybean DND1 gene or transcript, and the polynucleotide molecule is selected from the group consisting of SEQ ID NO: 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, and 59, or the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 2, 4, 21, or 31;
- (c) the plant is a lettuce plant, the gene or the transcript is a lettuce DND1 gene or transcript, and the polynucleotide

comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 5 or 9;

- (d) the plant is a tomato plant, the gene or the transcript is a tomato DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 6 or 10;
- (e) the plant is a barley plant, the gene or the transcript is a barley DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 8 or 12;
- (f) the plant is a cotton plant, the gene or the transcript is a cotton DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 13, 14, 18, 25 or 26;
- (g) the plant is a melon plant, the gene or the transcript is a melon DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 15, 27, or 28;
- (h) the plant is a maize plant, the gene or the transcript is a maize DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 16, 20, 29, or 30;
- (i) the plant is a rice plant, the gene or the transcript is a rice DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 17, 22, 32, or 33; or,
- (j) the plant is a wheat plant, the gene or the transcript is a wheat DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 23 or 24.

5. The method of claim **1**, wherein said composition comprises any combination of two or more polynucleotide molecules.

7. The method of claim 1, wherein said transfer agent comprises an organosilicone preparation.

8. The method of claim **1**, wherein said polynucleotide is not operably linked to a viral vector.

9. The method of claim **1**, wherein said polynucleotide is not integrated into the plant chromosome.

10. A plant obtained by the method of claim 1.

11. A processed product of said plant of claim 10, wherein said processed product exhibits an improved attribute relative to a processed product of an untreated control plant and wherein said improved attribute results from said fungal and/ or nematode disease resistance.

12. A composition comprising a polynucleotide molecule that comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to a DND1 gene or transcript of said gene, wherein said polynucleotide is not operably linked to a promoter; and, b) a transfer agent.

13. The composition of claim 12, wherein said polynucleotide is selected from the group consisting of SEQ ID NO: 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,52, 53, 54, 55, 56, 57, 58, and 59, or wherein said polynucleotide comprises at least 18 contiguous nucleotides that areessentially identical or essentially complementary to SEQ IDNO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33.

14. The composition of claim 12, wherein:

- (a) the plant is a cucumber plant, the gene or the transcript is a cucumber DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 1, 3, 7, 11, or 19;
- (b) the plant is a soybean plant, the gene or the transcript is a soybean DND1 gene or transcript, and the polynucleotide molecule is selected from the group consisting of SEQ ID NO: 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, and 59, or the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 2, 4, 21, or 31;
- (c) the plant is a lettuce plant, the gene or the transcript is a lettuce DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 5 or 9;
- (d) the plant is a tomato plant, the gene or the transcript is a tomato DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 6 or 10;
- (e) the plant is a barley plant, the gene or the transcript is a barley DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 8 or 12;
- (f) the plant is a cotton plant, the gene or the transcript is a cotton DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 13, 14, 18, 25 or 26;

- (g) the plant is a melon plant, the gene or the transcript is a melon DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 15, 27, or 28;
- (h) the plant is a maize plant, the gene or the transcript is a maize DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 16, 20, 29, or 30;
- (i) the plant is a rice plant, the gene or the transcript is a rice DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 17, 22, 32, or 33; or,
- (j) the plant is a wheat plant, the gene or the transcript is a wheat DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 23 or 24.

15. The composition of claim **12**, wherein said composition further comprises a non-polynucleotide herbicidal molecule, a polynucleotide herbicidal molecule, a polynucleotide that suppresses an herbicide target gene, an insecticide, a fungicide, a nematocide, or a combination thereof.

16. The composition of claim **12**, wherein said transfer agent is an organosilicone preparation.

17. A plant comprising an exogenous polynucleotide that comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to a DND1 gene or transcript of said gene, wherein said exogenous polynucleotide is not operably linked to a promoter or to a viral vector, is not integrated into the chromosomal DNA of the plant, and is not found in a non-transgenic plant; and, wherein said plant exhibits an improvement in fungal and/or nematode disease resistance that results from suppression of the DND1 gene.

18. The plant of claim 17, wherein said plant further comprises an organosilicone compound or a component thereof.

19. The plant of claim **17**, wherein said polynucleotide is selected from the group consisting of SEQ ID NO: 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, and 59, or wherein said polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33.

20. The plant of claim 17, wherein:

- (a) the plant is a cucumber plant, the gene or the transcript is a cucumber DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 1, 3, 7, 11, or 19;
- (b) the plant is a soybean plant, the gene or the transcript is a soybean DND1 gene or transcript, and the polynucleotide molecule is selected from the group consisting of SEQ ID NO: 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, and 59, or the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 2, 4, 21, or 31;
- (c) the plant is a lettuce plant, the gene or the transcript is a lettuce DND1 gene or transcript, and the polynucleotide

comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 5 or 9;

- (d) the plant is a tomato plant, the gene or the transcript is a tomato DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 6 or 10;
- (e) the plant is a barley plant, the gene or the transcript is a barley DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 8 or 12;
- (f) the plant is a cotton plant, the gene or the transcript is a cotton DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 13, 14, 18, 25 or 26;
- (g) the plant is a melon plant, the gene or the transcript is a melon DND1 gene or transcript, and the polynucleotide

comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 15, 27, or 28;

- (h) the plant is a maize plant, the gene or the transcript is a maize DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 16, 20, 29, or 30;
- (i) the plant is a rice plant, the gene or the transcript is a rice DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 17, 22, 32, or 33; or,
- (j) the plant is a wheat plant, the gene or the transcript is a wheat DND1 gene or transcript, and the polynucleotide comprises at least 18 contiguous nucleotides that are essentially identical or essentially complementary to SEQ ID NO: 23 or 24.
 - * * * * *