
United States Patent (19) 11 3,851,734
Sackin (45) Dec. 3, 1974

54 ELEVATOR SYSTEM 57 ASTRACT
(75 inventor: Milton Sackin, Pittsburgh, Pa. A new and improved elevator system, and method of

• - o directing a plurality of elevator cars to serve floor calls (73) Assignee: Westinghouse Electric Corporation, in an elevator system. Service is provided for a floor
Pittsburgh, Pa. call by either allocating the floor call to a suitably con

22 Filed: Mar. 12, 1973 ditioned elevator car which is busy serving one or
more calls for elevator service, or by specifically as

(21) Appl. No.: 340,615 signing a non-busy car to serve the call. The floor calls
which are in the elevator system at any instant are pe

(52) U.S. Cl.. 187129 R riodically reprocessed. The manner in which a call is
5 Int. Cl... B66b 1/22 reprocessed depends upon whether it is allocated to a
58) Field of Search....................................... 187/29 busy car, or processed by assigning a non-busy car to

it. The assignment of a car to the highest down call in
56) References Cited the building at the time the call is processed is not

UNITED STATES PATENTS changed to a higher down call subsequently registered
3,443,668 5/1969 Hall et al..... 187/29 if there is another non-busy car which can be assigned
3,605.95 9/1971 Kirsch. 4, to the subsequent down call. When all cars have no
Primary Examiner-Robert K. Schaefer
Assistant Examiner-W. E. Duncanson, Jr.
Attorney, Agent, or Firm-D. R. Lackey

HER
MNG

FUNCTIONS

--

82 TAPE tic READER

assignment and no allocated calls, the system is reiniti
ated to cause any floor calls which may have been reg
istered and for some reason not answered to appear as
a new call in the system.

21 Claims, 30 Drawing Figures

80 NTERRUPT
INTERFACE

74
PROCESSOR

72
ERS MEMORY

systEM processor
OTHERCARS

70
iNTERFACE

INTERFACE

S6
is ANONG DE

3 OR 64 O
28 32

PULSE
DETECTOR

PATENTEL DEC 31974 3,851,734
SHEET ol. Of 18

- - - - - - - - - -
80-INTERRUPT

82 TAPE NPU
FUNCTIONS TMNG READER INTERFACE

CORE
MEMORY

SYSTEMPROCESSOR
OTHER CARS

74.
7O Processor

INTERFACE 72

6-orridor
CALL

CONTROL

FIG.

38
MT

CAR CALL - SWITCHES
CONTROL N

HATCHWAY
5 TIMING 4. 2

DOOR
OPERA

MOTOR SPEED
Rs. PATTERN

GENERATOR
DISTANCE 24 5O 48 PULSES

56

st ANDING DEir W DETECTOR
s 64

28 32
PULSE

DETECTOR

PATENTE SC 31974 3,851,734
SHEET 03 of 18

5O 5 2
POWER
FAILURE

--- PLACING IN BID
-- FLOW

FIG.4

HIGHEST PRIORITY

F.G. 5

NPUT REGISTERA
IIIo9 8 7 6 5 4 3 2 to FIG.6

ME

SERVICE DIRECTION
(= UP, O =DN)

- FLOOR ADDRESS- -ZONE--
PCLO io9876.5432 to

DEMcISCALL ADEMAND FIG.8
ASG (HASCAR BEEN
ASSIGNED TO CALL)

CALL TABLE (CL)
2-2 BT WORDS/CALL

PATENTEL DEC 31974 3,851,734
SHEET OS Sf 18

INPUT WORDS FROM EACH CAR
9 8 7 || 6 || 5 || 4 || 3 || 2 | O

AVAS 32L DRCLCCBLCCABCALLUPSVUPTRINSC BYPSSLDN

"T" " " ' " || "...i.e., W2 W75 WT5OCREGATSV

OUTPUT WORDS TO EACH CAR

wol..........L. O "EAD6FAD5 FAD4FAD3 IFAD2 IFAD. FADoSASsitASS MODOPARK
FIGI3 owl "T" can

s: "I OW2 STT MNFL NEXT

EXTRA MEMORY WORD FOREACH CAR
7 6 5 4 3

FIG.14 As MFSBNX BCC. ASG MFX

ZONE CODE
UPSV DNSW CODE ZONE ZONE

} TE
worm-mm-aman-mamma-a-a-name

ammamamramenema-e-

amawasawwara-areason

earan-man-m-m-m-m-

{
{ wr-rmammammon

-n-r-r-rapamam-m-e-

e

MZD

M

().

H

| L

--NO ASSIGNMENT -

PATENTE GCC 31974

2OO

2O2

STORE PC.
STOREACC

2O4.
READ
NPUT

2O6

DECREMENT
T ME

Y 28
/

24
ReTREve

ACC

26

RET REVE
PC. 8; RETURN

FIG.I6

SET TIMEs 32
BID TIMER PROGRAM

JMP TO's TAff
OF PROGRAM N

3,851,734
SHEET OS OF 18

22O

222

SET TO ZERO:
XBDR, DEMIND,
DEMAS, TODEM,
UPK,DPK,UPTIM,
NCL, NTOD, MFU,
NEX,ZCC,ZINIT

2

S
BIT at N

SET INXBDR

FG.7

PATENTC 31974 3,851,734

SHEET 07 of 18.
246

248
DECREMENf.

NXTM, MFTM, MFSTIM

25p 252
Y DECREMENT

DPK

254

258 256

DECR Y
UPTIM

N

<>
SET SDPK
N SYSW

262
264 SET UPK,UPPK

SE UPK 8
266 UPPK NSYSW

CLEAR TODEM

278
298

N Y TOM=SYSMFX--O
SET MFTIMs 4 SET TC BITS a

SYSW BT
NTODa-NTOD

29 O

WN-WN

282

NTOD -- QTOD
LWN - NCL

3OO Y

O SET ODEM FIG. 8 BT

EC 3974 ... 3.851, PATENTECC SHEET 08 OF 18 3,851,734

3O3

SET TO ZERO:
NOSC, NAC,
ZNMC, ZMDC

3O4.
SET Z =
MAXCRN

TRANSFER:
OWO-ZOWO WO-ZWO
OW! --ZOWI W -a-ZW 33O
OW2-e-ZOW2 W2 --Z W2
XW -- ZXW 329

3O6 DEMAS--- O
O- SYSMFX-s- O

- NCL-s- O
CAR-STATUS
ANALYSS

(FIGS. 20A,2OB2OC,2OD)

3O Y 23i
NJ NCR.

ZINT
Y

32

s Y
39 N

34 BD ACR 38. s- “s SET MFD
IN"DEMIND" N

35 "DEMAS"

SET MFD
N"DEMIND"

F.G. 9

PATENTECEC 31974 3,851,734
SEE O 9 of 18

FG.2OA

O 33
332

333

Y.34

N BYPASS
STATUS

p

353
ZACPMF--
ACP-MFL

NEXT, AVAD
LANT 8 OOOR NORMAL

NEX=ZCC = O

SET MMF

387 389
-N. N

SE)
3r: 1 CAR (

QUAliY FOR -NEXT->3
N 388,

l,

PATENTEL DEC 31974 3,851, 73.
SEET 10 Of 18

FIG2 OB

44

SATISFY MFDY
REQ yNS

BSMT, AVAD,
NEXT, PARK
CLEAR ZXW
SET ZONE
ASGN MODE=OO
TASS-- T.D.
SASS--S.D.

SET MFX,SYSMF
CLEAR CRA

ASG

42 SETZACLBO

CAR
CHANGED
ZONE

p SET
ZONE CODE --
SET ZACLBO

SHOULD
T BE MADE
aVAD

PATENTE.C 317 3,851, 734
SEET 1.1. Of 18

FG.2OC

YY,397
SET AVAD

PATENTEL CEC 31974 ; 3,851,734
SHEET 12 of 18

FG, 2OD

46 462

424

449

Yássive, N
ASFL--OW o MAIN FL 8

BELOW DOOR,
LANT NORMA

MF PARK
TASS-s-DOWN
SASS-DOWN
ASGN MODE=OO PARK, AS MODE

NORMAL DOOR

. 448
MD BLDG
PARK

AVAD,ASGN

Y

337 338

SET CARN Y SET CAR
DNPK DNPK

34O 34 342 343

OUTPUT UPDATE UPDATE
3MMND EXTRA worD INFUSAA

PATENTE DEC 31974 SHEET 13 OF 18

47O 47l- 472)
NT ALIZE DA WTH

FOR UP CALLS CALL WORD

NT ALZE
FOR DOWN
CALLS

475 NCR TBITN

INCREMENT BITAf FINISHED WITH TH
BIT OFYCAll

478

XOR YOALL + CLR WORD
8. STORE IN CCLR
CLR-YCALL
YCALL - O.

FINISHED
WH ALL

MAN
FLOOR UP Y.

ADD CALL TO
TABLE SET
ZONE 8, MER

REMOVE CALL
AND COMPACT

TABLE

D ECR NCL, YNCLO

REMOVE BIT FROM CRA
FOREACH CAR WITH
PROPER SASS

FG.2

PATENTEL CEC 31974 3,851,734
SHEET 15 OF 18.

FG.22B

UP CALL
... PROGRAM

AHICAR-s-X
HIFLR-s-ACRFLR

FC 31974 3,851,734 PATENTE CEC 3 SHEET 16 of 18

FG.22 C

563 N
SET MZDSWP
AH FLR-e-MFL
AHICAR -e- -

SET DEMIND: MZ

552

IF CALL = O
DELETE CRA
TO ACLFLR
OFX

FDCL-e-O
MZDSWP-a-O

SET SPMCR: ACLOCR
558

FOR ACLOCR:
F CALL FO SET CRA TO ACLOCR-e-AHICAR

DELETECRA ACLFLR, SD SET; ASGDEM
TO ACLFLR
OF ACLOCR

ACLOCR-XI
ASDF-ACLMCR

PATENTELEC 31974 3,851,734
SHEET 17 of 18

6OO 605

O2

FIG.23A

TOM
PROGRAM

's-
k
TODEM:h
PROGRAM

624

625

ADRESS
626
MZ OUTPUT
ASSIGNMENT

PATENTE DEC 31974 3,851,734
SHEET 18 of 18

FIG. 23B
645

RESET LOBMZD

648 65O

DEMIND: H
PROGRAM

4

DEMIND: LO
PROGRAM

DEMINDMZ DEMEND:BSMT
PROGRAM PROGRAM

3,851,734
ELEVATOR SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

Certain of the apparatus disclosed and described in
this application, but not claimed, may be claimed in the
following concurrently filed applications:
Application Ser. No. 340,619, filed March 12, 1973

in the name of J. Vine, which is assigned to the same
assignee as the present application.
Application Ser. No. 340,617, filed Mar. 12, 1973 in

the name of M. Sackin and D. M. Edison, which is as
signed to the same assignee as the present application.

BACKGROUND OF THE INVENTION
1. Field of the Invention:
The invention relates in general to elevator systems,

and more specifically to elevator systems in which a
plurality of elevator cars are controlled by a central dis
patching control apparatus.

2. Description of the Prior Art:
Central dispatchers in the prior art used for dispatch

ing a plurality of elevator cars to serve floor calls regis
tered in the associated building or structure, usually
employ many logic elements. Thus, central dispatchers
of this type receive signals from the corridor call regis
ters and from the elevator cars in parallel, they are pro
cessed in parallel, and in response thereto signals are
output to the system in parallel.

lf a digital computer were to be used for dispatching
elevator cars to the task of serving floor calls in a build
ing, the conventional prior art parallel approach to sig
nal collecting, processing and generation is necessarily
replaced by a serial approach due to the restricted
number of logic elements in the processing function of
the usual digital computer. in serial or sequential pro
cessing, each input signal is observed in turn, and each
output signal is generated in turn. The signals are pro
cessed at very high rates, and they are at the relatively
low logic voltage level.
Thus, it would be desirable to insure that service is

not delayed to a call for elevator service because it
somehow became lost in the system during processing,
or because it is considered erroneously by the system
processor as being answered when in fact the call has
not been placed in the assignment register of any of the
CaS.

In the prior art, the highest down call registered re
ceives special priority, and when a car is assigned to an
swer the highest down call registered its assignment will
be changed if, while on its way to answer this call, a sec
ond and still higher down call is registered. The first
call, now unassigned, will be assigned to another avail
able car, or the next car that becomes available, i.e.,
one not currently busy serving a call for elevator ser
vice. This arrangement often results in two cars travel
ing substantially the full length of the building, as the
first car may have been the closest available car to the
first highest down call registered, but it may not be the
closest car to the subsequently registered highest down
call. An available car near the second call will not be
assigned to the second call, as the first call will auto
matically be assigned to the subsequently registered
highest down call. Thus, the second car may be as
signed to the first call.

O

15

20

25

30

35

40

45

50

55

60

65

2

SUMMARY OF THE INVENTION
Briefly, the present invention is a new and improved

elevator system, and method of dispatching cars in an
elevator system, to serve calls for service therein. A
programmable digital computer system processor is
used, with sequential processing of data, and sequential
generation of command and status signals. The floor
calls are placed in a call table, with new floor calls
being allocated to the closest suitably conditioned ele
vator car which is already busy serving calls for eleva
tor service, and if the call cannot be so allocated, a de
mand signal is generated relative to the call. The closest
non-busy or available car is assigned specifically to a
demand call.
The floor calls are marked in the call table when they

are allocated to a car, or processed by assigning a car
to them, and they are also marked as to whether a de
mand signal was created for them.
To prevent floor calls from becoming "lost' for some

reason, and to provide the most efficient elevator ser
vice by updating certain types of assignments, the
whole call table is processed at rapid intervals, which
includes calls previously processed. The invention dis
tinguishes between the two categories of processed
calls, providing a different strategy for calls which were
originally processed by allocation to a running call and
those originally processed by assigning a non-busy or
available car to the call.

if the call was originally processed by assigning a car
to the call, the call is marked as an assigned-demand
call in the call table. The strategy is to confirm that a
car has been given the assignment of stopping at the
floor of this call, and if this is verified, the processing
of this call is complete, and the assignment is not
changed. If a car is not found with this assignment, the
assigned status of the call is deleted and the call repro
cessed by either allocating the call to the closest suit
ably conditioned busy or running car, or by creating a
demand signal for it and assigning the closest available
car to the demand call.

If the call is in the category of having been allocated
to a car, it is marked assigned but not as a demand call.
Upon reprocessing this category of call, the assigned
status is always deleted and the call reprocessed by al
locating the call to the closest suitably conditioned car,
or by creating a demand signal relative to the call and
assigning the closest available non-busy car.

If all of the cars become non-busy, i.e. they have no
assignment, no floor call allocation, and no car calls,
the invention follows an initialization procedure which
is normally only used upon start-up of the system,
which procedure clears the call table and car assign
ment tables. If there would happen to be a lost call for
elevator service, it would then appear as a new call in
the system and be processed in the same manner as a
new call.
The invention retains the priority of the highest down

call, and does so with a different strategy which pre
vents two cars from effectively changing places in the
building, and thus it eliminates needless travel and
shortens waiting time. When a down call is registered
which is the highest down call and it cannot be allo
cated to a busy car, a demand signal is created which
results in the closest available non-busy car being as
signed to the call. If a higher down call is registered
while the first car is on its way to its previously highest

3,851,734
3

down call, the assignment to this car is not automati
cally changed to the higher call. The system is first ex
amined to see if there is a car available which can be
specifically assigned to this call. If there is, the assign
ment to this first car is not changed, and the new call
becomes a demand to which the closest available car is
assigned. If there are no available cars then the assign
ment to the first assigned car is changed to the higher
down call. Therefore, the calls will always be assigned
to the closest car and still maintain the priority of the
highest down call.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be better understood, and further
advantages and uses thereof more readily apparent,
when considered in view of the following detailed de
scription of exemplary embodiments, taken with the
accompanying drawings, in which:
FIG. 1 is a partially schematic and partially block dia

gram of an elevator system which may utilize the teach
ings of the invention;
FIG. 2 is a detailed block diagram of a system proces

sor which may be used in the elevator system shown in
FIG. 1;
FIG. 3 is a schematic representation of instruction

cycle state sequences which may be used to execute in
structions by the system processor shown in FIG. 2;
FIG. 4 is a block diagram of a new and improved soft

ware system for the elevator system shown in FIG. 1,

15

20

25

30
which directs the system processor hardware to the
task of operating the elevator system to provide im
proved elevator service;

FIG. 5 is a diagrammatic representation of a bid reg
ister used by the software system to determine the most
efficient linkage of subprograms during each running of
the program in response to traffic conditions being ex
perienced by the elevator system;
FIG. 6 is a diagrammatic representation of input reg

ister number 1 shown in FIG. 2, illustrating its use for
interrupts, such as a time interrupt;
FIG. 7 is a diagrammatic representation of a call re

cord, call change record, and a car assignment table es
tablished by the software system for keeping track of
corridor calls, and the allocation or assignment of the
corridor calls to the various elevator cars of the system;

FIG. 8 is a diagrammatic representation of a call
table established by the software system, illustrating the
two words placed into the call table for each corridor
call;

FIG. 9 is a diagrammatic representation of a timed
out call record established by the software system, for
keeping track of corridor calls registered for longer
than a predetermined period of time;

FIG. 10 is a diagrammatic representation of words
established by the software system to keep track of sys
tem demands, the types of demands, and whether a car
has been assigned to certain of the demands;
FIG. 11 is a diagrammatic representation of a system

signals word established by the software system to keep
track of certain types of system demands;
FIG. 12 is a diagrammatic representation of the input

words received by the system processor from each ele
vator car of the system;
FIG. 13 is a diagrammatic representation of the out

put words prepared by the system processor for each

35

40

4
elevator car of the system, and sent to the associated
car controllers thereof,
FIG. 14 is a diagrammatic representation of an addi

tional word established by the software system for each
elevator car;

FIG. 15 is a diagrammatic representation of a zone
code which may be used to identify corridor call loca
tion and service direction request, as well as the loca
tions and movements of the various elevator cars in the
associated building; -

FIG. 16 is a flow chart illustrating a subprogram
which may be used for the block software function enti
tled “Interrupt Executive' in FIG. 4;
FIG. 17 is a flow chart illustrating a subprogram

which may be used to establish the linkages between
the subprograms of the software system shown in FIG.
4, in response to the bid register shown in FIG. 5;

FIG. 18 is a flow chart illustrating a subprogram
which may be used for the block software function enti
tled “Time" in FIG. 4;
FIG. 19 is a flow chart illustrating a subprogram

which may be used for the block software function enti
tled “CSU' in FIG. 4;
FIGS. 20A, 20B, 20C and 20D show an illustrative

flow chart for determining the status of each elevator
car, which flow chart may be used by the subprogram
CSU shown in FIG. 19,
FIG. 21 is a flow chart illustrating a subprogram

which may be used for the block software function enti
tled “TNC' in FIG. 4; v.
FIGS. 22A, 22B and 22C illustrate a flow chart which

may be used for the block software function entitled
“ACL' in FIG. 4;
FIGS. 23A and 23B illustrate a flow chart which may

be used for the block software function entitled "ACR'
in FIG.4;
FIG. 24 is a flow chart for a subroutine “LOOK"

which may be used in the software function; and

45

50

55

60

65

DESCRIPTION OF PREFERRED EMBODIMENTS
FIGURE 1.

Referring now to the drawings, and FIG. 1, in partic
ular, there is shown an elevator system 10 which may
utilize the teachings of the invention. Elevator system
10 includes a plurality of cars, such as car 12, the
movement of which is controlled by a system processor
11. Since each of the cars of the bank of cars, and the
controls therefor, are similar in construction and oper
ation, only the controls for car 12 will be described.
More specifically, car 12 is mounted in a hatchway

13 for movement relative to a structure 14 having a
plurality of landings, such as 30, with only the first, sec
ond and 30th landings being shown in order to simplify
the drawing. The car 12 is supported by a rope 16
which is reeved over a traction sheave 18 mounted on
the shaft of a drive motor 20, such as a direct current
motor as used in the Ward-Leonard drive system, or in
a solid state drive system. A counterweight 22 is con
nected to the other end of the rope 16. A governor rope
24 which is connected to the top and bottom of the car
is reeved over a governor sheave 26 located above the
highest point of travel of the car in the hatchway 13,
and over a pulley 28 located at the bottom of the hatch
way. A pick-up 30 is disposed to detect movement of

3,851,734
S

the car 12 through the effect of circumferentially
spaced openings 26A in the governor sheave 26. The
openings in the governor sheave are spaced to provide
a pulse for each standard increment of travel of the car,
such as a pulse for each 0.5 inch of car travel. Pick-up
30, which may be of any suitable type, such as optical
or magnetic provides pulses in response to the move
ment of the openings 26A in the governor sheave. Pick
up 30 is connected to a pulse detector 32 which pro
vides distance pulses for a floor selector 34. Distance
pulses may be developed in any other suitable manner,
such as by a pick-up disposed on the car which cooper
ates with regularly spaced indicia in the hatchway.
Car calls, as registered by push button array 36

mounted in the car 12, are recorded and serialized in
car call control 38, and the resulting serialized car call
information is directed to the floor selector 34.
Corridor calls, as registered by push buttons mounted

in the corridors, such as the up push button 40 located
at the first landing, the down push button 42 located at
the thirtieth landing, and the up and down push buttons
44 located at the second and other intermediate land
ings, are recorded and serialized in corridor call control
46. The resulting serialized corridor call information is
directed to the system processor i 1. The system pro
cessor 11 directs the corridor calls to the cars through
an interface circuit, shown generally at 15, to effect ef
ficient service for the various floors of the building and
effective use of the cars.
The floor selector 34 processes the distance pulses

from pulse detector 32 to develop information con
cerning the position of the car 12 in the hatchway 13,
and also directs these processed distance pulses to a
speed pattern generator 48 which generates a speed
reference signal for a motor controller 50, which in
turn provides the drive voltage for motor 20.
The floor selector 34 keeps track of the car 12 and

the calls for service for the car, it provides the request
to accelerate signal to the speed pattern generator 48,
and provides the deceleration signal for the speed pat
tern generator 48 at the precise time required for the
car to decelerate according to a predetermined decel
eration pattern and stop at a predetermined floor for
which a call for service has been registered. The floor
selector 34 also provides signals for controlling such
auxiliary devices as the door operator 52, the hall lan
terns 54, and it controls the resetting of the car call and
corridor call controls when a car or corridor call has
been serviced. -

Landing, and leveling of the car at the landing, is ac
complished by a hatch transducer system which utilizes
inductor plates 56 disposed at each landing, and a
transformer 58 disposed on the car 12.
The motor controller 50 includes a speed regulator

responsive to the reference pattern provided by the
speed pattern generator 48. The speed control may be
derived from a comparison of the actual speed of the
motor and that called for by the reference pattern by
using a drag magnet regulator, such as disclosed in U.S.
Pats. No. 2,874,806 and 3,207,265, which are assigned
to the same assignee as the present application. The
precision landing system using inductor plates and
transformer 58 is described in detail in U.S. Pat. No.
3,207,265.
An overspeed condition near either the upper or

lower terminal is detected by the combination of a
pick-up 60 and slow-down blades, such as a slow-down

6
blade 62. The pick-up 60 is preferably mounted on the
car 12, and a slow-down blade is mounted near each
terminal. The slow-down blade has spaced openings,
such as a toothed edge, with the teeth being spaced to
generate pulses in a pick-up 60 when there is relative
motion between them. These pulses are processed in

O

15

20

25

30

pulse detector 64 and directed to the speed pattern
generator 48 where they are used to detect overspeeds.

A new and improved floor selector 32 for operating
a single elevator car, without regard to operation of the
car in a bank of cars, has been disclosed in co-pending
application S.N. 254,007, filed May 17, 1972, now U.S.
Pat. No. 3,750,850 which is assigned to the same as
signee as the present application. In order to avoid du
plication and to limit the complexity of the present ap
plication, application S.N. 254,007, filed May 17,
1972, is hereby incorporated by reference, and will
hereinafter be referred to as the first incorporated ap
plication.
The programmable system processor i1 includes an

interface function 70 for receiving signals from, and
sending signals to, the car controllers (interface 15) of
the elevator cars in the elevator system, a core memory
72 in which a software package is stored, a processor
74 for executing instructions stored in the memory 72
relative to the dispatching of elevator cars and other
wise controlling a group of elevator cars according to
software strategy stored in the core memory, a tape
reader 76, and input interface 78 for transferring the
software data from paper tape, or the like, to the core

35

40

45

50

55

60

65

memory 72, an interrupt function 80, also connected to
the processor 74 via input interface 78, and a timing
function 82 for controlling the transmission of data be
tween the system processor 11 and the car controllers
of the elevator cars.
Concurrently filed application Ser. No. 340,618,

filed Mar. 12, 1973, in the name of David Edison enti
tled "Elevator System' which is assigned to the same
assignee as the present application, discloses a new and
improved elevator system for operating a plurality of
elevator cars in response to signals provided by a pro
grammable system processor. This application is
hereby incorporated by reference, and will be hereinaf
ter referred to as the second incorporated application.
The second incorporated application sets forth the
changes necessary in each single car control, described
in the first incorporated application, as well as details
of the interface functions 15 and 17, and master timing
82, shown in block form in FIG. 1, for operating a plu
rality of elevator cars according to a software program
stored in the core memory 72. The present application,
as well as the concurrently filed applications referred
to under the heading "Cross-References to Related Ap
plications,' collectively set forth a new and improved
processor 74 for executing the instructions stored in
the core memory 72, as well as new and improved strat
egy for dispatching a plurality of elevator cars to more
efficiently service calls for elevator service registered
from the various landings or floors of an associated
structure. The new and improved strategy is imple
mented by software, which acts upon the data received
from the corridor call registers and from the car con
trollers of the various elevator cars, to provide signals
for the car controllers which effect the new and im
proved strategy of the stored program.

3,851,734
7

FIGURE 2

FIG. 2 is a detailed block diagram of the processor 74
shown in FIG. 1, as well as the core memory 72, the . .
input interface 70, the tape reader 76, and the interrupt
function 80. Since the programmable system processor
11 is broadly similar in function to most digital comput
ers, and is therefore well known to those skilled in the .
art, a block diagram of the various functions will be suf
ficient description for those skilled in the digital com
puter art.

fixed cycle control sequence, to control serial gating of
data between the various registers of the programmable
system processor 1 1. For purposes of example, the in
struction and data word lengths are 12 bits wide, per
mitting the addressing of 4,096 words of memory, but
an 8K core, or larger, may be used, as required by a
specific application.

Processor 74 includes five registers, a program
counter register 84, a memory address register 86, a
memory buffer register 88, an instruction register 90,
and an accumulator register 92.
The program counter 84 provides a pointer to mem

ory 72 for instruction execution. The contents of the
program counter 84 provide the address of the instruc
tion being executed.
The memory address register 86 is a temporary stor

age register for forming addresses for memory read and
write functions.
The memory buffer register 88 is the interface for

data transferred to and from the memory 72.
The instruction register 90 is the temporary storage

10
Processor 74 is a special purpose controller which

utilizes a stored program, a fixed instruction set, and a

15

8
ter according to the instruction being executed and the
specific cycle state of the processor. An instruction de
coder 96 and cycle state decoder and control 98 con
trol the gating paths established in a gating and steering
function 100, which in turn specifies the gating paths
in the data steering gating 94. Clocking of data is con
trolled by a pulse control function 102, which is re
sponsive to the instruction register 90 and cycle state
decoder and control 98, to provide an enable signal for
a master oscillator or clock 104. The master oscillator
104 provides the correct number of gating pulses GCP
for the specific function being executed.
The pulse control 102 and cycle state decoder and

control 98 also control a memory read and write func
tion 106, which in turn sets the memory for a reading
or writing function, depending upon the specific cycle
state dictated by the instruction.
The various arithmetic and logical functions which

cooperate with the accumulator register 92 are shown
generally at 108, and the function of incrementing the
program counter register is shown at 110.

25

30

A skip test circuit 111 provides a signal SKIP for the
circuitry 110 for incrementing the program counter 84,
when the program counter 84 is to be incremented by
two instead of by one.
The instruction set for the systems processor 11 in

cludes eight memory reference instructions, i.e. those
which require a memory operation in the execution of
the instruction other than the initial memory operation
required to call up the function, and 16 accumulator
reference instructions, i.e., those that cause operation
of the current contents of the accumulator at the begin
ning of the instruction execution.
The instruction set is as follows:

Memory Reference Mnemonic Code
Insaructions

1. Load Accumulator LDA 111 () XXXX XXXX
2. Add Accumulator ADD 1 E0 () do. do.
3. And Accumulator AND 0 1 0() do. do.
4. Exclusive Or Accumulator XOR 010() do. do.
5. Store Accumulator STA 101() do. do.
6. Store Program Counter STP 100() do. do.
7. Program Branch BRA 01 () do. do.
8. Operate OPR 000 1 do. do.

Accumulator Reference Mnemonic Code
Instructions

1. Skip Unconditionally SKU 0000 0000 YYYY
2. Form 2's Complement CHS 0000 000 do.
3. Load Accumulator With Zero LDZ 0000 "... 0010 do.
4. Priority Interrupt PRI 0000 001 1 0000
5. Long Shift LSA 0000 01.00 YYYY
6. Shoft Shift SSA 0000 01.01 do.
7. Skip On Bit SKB 0000 0.110 do.
9. Input NP 0000 1000 OOYY
10. Output OUT 0000 1001 00YY
i 1. Skip on Zero SKZ 0000 1010 0000
12. Skip on Positive SKP 0000 1011 0000
13. Skip on Negative SKN 00:0 1100 0000
14. One's Complement NOT 0000 1101 0000
15. Literal Add LTA 0000 1110 YYYY
16. Set BitTo Zero STZ 0000 1111

location for the instruction being executed.
The accumulator register 92 is a temporary storage

location for the result of arithmetic and logical opera
tions.
The processor 74 also includes a data steering gating

60. The addressing of the memory reference instructions
may be "direct," in which event the instruction is
stored on the same page of the core memory 72 as the
address of the instruction provided by the program
counter 84. The addressing of the memory reference

function 94 which steers input data to the proper regis- 65 instructions may also be "indirect," in which event the

3,851,734
9

instruction is stored in a different page of the memory
than the page on which the address of the instruction
provided by the program counter 84 is stored. The
fourth MSB of the instruction code determines whether
the addressing will be direct or indirect, with a logical
"one' indicating a direct instruction and a logical
"zero' indicating an indirect instruction. With a direct
instruction, the address of the memory to be operated
is determined by the four MSB of the program counter
and the eight LSB of the instruction. The four MSB of
the program counter defines one of the 16 possible 256
word pages within the 4,096 word blocks of core mem
ory, and the eight LSB of the instruction defines the
word within the page.
With indirect addressing, the four MSB of the pro

gram counter 84 and the eight LSB of the instruction
are used for determining an address in the same page
as the program counter pointer, and the contents of this
address is the address of the memory to be operated
upon. Since this address is a full 12 bit word, this ad
dress can be anywhere within the 4,096 word block of
memory 72. -

A fixed cycle control sequence is utilized to effectin
struction execution. The control sequence includes six
possible cycle states. However, every cycle state is not
utilized for every instruction. FIG. 3 illustrates the five
different cycle state sequences that are used, with the
Roman numerals indicating cycle states as follows:

-
II -

II -

instruction Fetch
. Indirect Addressing
Memory Read

IV - Memory Write
V - Accumulator Reference
VI - Increment Program Counter

Cycle states I and VI are used with all instructions,
while the use of the remaining cycle states depend upon
the specific instruction being executed. For example, a
memory reference instruction involving a memory read
operation would use cycle states I, III and VI with di
rect addressing, and cycle states I, II, III and VI with in
direct addressing. A memory reference instruction in
volving a memory write operation would use cycle
states I, IV and VI with direct addressing, and cycle
states I, II, IV and VI with indirect addressing. An accu
mulator reference instruction would use cycle states I,
V and VI.
Cycle state I calls up from the memory the instruc

tion to be executed. At the start of cycle state I, the ad
dress of the instruction is in the program counter 84.
The contents of the program counter 84, indicated by
serial output signal PCO is transferred to the serial
input ADIN of the memory address register 86 via the
data steering gating circuits 94. The cycle state decoder
and control 98 is outputting the cycle state signal for
cycle state I to both the gating and steering decoder
100, which sets the gating paths in data steering gating
94, and to memory read/write control 106, which sets
the memory 72 for the memory read operation re
quired to call up the address of the instruction placed
in the memory address register 86. The memory ad
dress from the memory address register 86 is trans
ferred in parallel to the core memory 112 via gates 114,
and the contents of this address is transferred in paral
lel to the memory buffer register 88 via gates 116. The
contents of the memory buffer register 88 are then
transferred serially, indicated by output signal MBO, by

10

15

20

25

30

35

40

45

50

55

60

65

the gating pulses GCP to the input IRIN of the instruc
tion register 90 via data steering gating circuit 94.
Various parts of the instruction in the instruction reg

ister 90 are transferred in parallel to the instruction de
coder 96, pulse control 102, and addition and bit test
circuitry 108. The instruction decoder 96 sets gates in
the gating and steering decoder 100, and it enables the
cycle state decoder and control 98 to provide the cycle
state output signal associated with the specific instruc
tion.

If the instruction placed in the instruction register 90
was an indirect memory reference instruction, the se
quence automatically advances to cycle state II. Cycle
state II obtains the memory address that data is to be
read from during cycle state III, or written into during
cycle state IV, depending upon the specific instruction.
In cycle state II, the four MSB of the program counter
84 contained in the serial output signal PCO, and the
eight LSB of the instruction register 90 contained in the
serial output signal IRO are transferred to the memory
address register 86 via the data steering gating circuits
94, which have been preset to accomplish this function.

If the instruction being executed is a direct memory
reference instruction which requires a memory read
operation (instructions LDA, ADD, AND, XOR, BRA
and OPR direct) advancement is made directly from
cycle state I to cycle state III. If the instruction being
executed is an indirect memory reference instruction of
this type, advancement is made from cycle state II to
cycle state III.
Cycle state III obtains the data from memory 112 that

is to be operated upon by the instruction execution.
The memory address for this data is contained in the
memory buffer register 88 for an indirect instruction,
as a result of the memory read operation in cycle state
II, and is contained in the four MSB of the program
counter 84 and eight LSB of the instruction register 90
for a direct instruction. During cycle state III, this data
is transferred from its location to the address register
86 via the data steering gating circuit 94, and a memory
read operation is initiated in response to signal II being
applied to memory read/write control 106 from the
cycle state decoder and control 98. The data read from
the memory 112 is transferred in parallel to the mem
ory buffer register 88, and is then serially transferred to
the accumulator register 92 via data steering gating cir
cuits 94, or operated upon by the contents of the accu
mulator 92 and the result stored in the accumulator 92,
or transferred to the program counter 84, depending
upon the specific instruction.
If the instruction being executed is a direct memory

reference instruction which requires a memory write
operation (instructions STP and STA) advancement is
made directly from cycle state I to cycle state IV. If the
instruction being executed is an indirect memory refer
ence instruction of this type, advancement is made
from cycle state II to cycle state IV. Cycle state IV
writes data into memory 112. The memory address for
the write operation is contained in the memory buffer
register 88 for an indirect instruction, and is contained
in the four MSB of the program counter 84 and the
eight LSB of the instruction register 90 for a direct in
struction. During cycle state IV, this data is transferred
from its location to the memory address register 86 via
the data steering gating circuit 94. The data to be writ
ten into the memory 112 is contained in either the ac

3,851,734
13

to be set is determined by decoding the literal. Bits
other than the specified bit of the accumulator are not
changed by execution of this instruction.
Execution of instruction INP causes the contents of

one of the input registers 126 or 128 shown in FIG. 2
to be transferred to the accumulator. The two LSB of
the literal selects the input register, with a 01 referring
to input register 126 and a 10 referring to input register
128. The contents of the addressed input register re
main unchanged by execution of this instruction.
Execution of instruction OUT forces the contents of

the accumulator to transfer to an output register. Since
an output register is not presently used, this instruction
would not be used until such a register is required.
Execution of instruction SKZ results in the next in

struction in the sequence being skipped if the contents
of the accumulator is zero. In other words, the program
counter 84 is incremented by two if all of the bits of the
accumulator are logical zeros. The program counter is
incremented by one if any bit of the accumulator is a
logical one. The contents of the accumulator are not
altered by execution of this instruction.
Execution of instruction SKP results in the next in

struction in sequence being skipped if the contents of
the accumulator is positive. This condition is satisfied
if the most significant bit of the accumulator is logical
zero and the contents of the accumulator is not 000s.
Execution of this instruction does not alter the contents
of the accumulator.
Execution of instruction SKN results in the next in

struction in sequence being skipped if the contents of
the accumulator is negative. This condition is satisfied
if the most significant bit of the accumulator is a logical
one. The contents of the accumulator are not changed
by execution of this instruction.
Execution of instruction NOP results in the one's
complement of the accumulator contents being

formed. The result is stored in the accumulator and the
previous contents thereof are destroyed.
Execution of instruction LTA results in the literal

being arithmeticly added to the contents of the accu
mulator. The results are stored in the accumulator and
the previous contents are destroyed.
Execution of instruction STZ results in a bit of the ac

cumulator being set to logical zero. The bit to be set to
zero is defined by decoding the literal. For example, if
the literal is 0000, it refers to the LSB, and if the literal
is 101 it refers to the MSB of the accumulator. Only
the bit specified by decoding the literal is affected by
execution of this instruction.
The master oscillator 104 may include a crystal con

trolled oscillator which provides gated clock pulses
GCP at the desired rate, such as 6 MHZ, for shifting
and control of data transferred within the processor 74.
The gating signal for initiating the pulses GCP is the sig
nal ENABLE provided by the pulse control circuit 102.

The pulse control circuit 102 may include a four bit
binary synchronous counter which is parallel loaded to
provide a predetermined number of active clock
pulses, up to and including 12, in response to the four
LSB of the instruction register 90. The pulse control
102, in addition to controlling the number of active
clock pulses, provides clock pulses on count 0 and on
count 15 of the synchronous counter which establishes
the gating paths necessary to enable gated clock pulse
generation. Set and reset pulses are also provided on

10

15

20

25

30

35

40

45

55

60

65

4.
counts 0 and 14, respectively of the synchronous
counter. The 12 gated clock pulses appear on counts 3
through 14 of this counter.
For example, assume the synchronous counter is on

count 15, which halted the count from a previous cycle
state. When a signal is provided to transfer or shift the
data, the counter will advance to a count of 0, which
count establishes the gating necessary to enable clock
pulse generation, and it also establishes the parallel
loading of the counter. Gated clock pulses are gener
ated from the beginning of the next clock pulse. Upon
the next clock pulse the counter is parallel loaded to an
initial value necessary to permit the correct number of
gated clock pulses to be generated. The gated clock
pulse circuitry is disabled on count 14 and the cycle
state advanced. The count of 15 halts the counting op
eration, completing the data shift or transfer for a given
cycle state, or a portion of a cycle state, when a cycle
state requires more than one data shift.
The cycle state decoder and control 98 may include

a binary synchronous counter which is either parallel
loaded or advanced by one count depending upon the
specific instruction, which forces the parallel load cir
cuitry to follow the requisite instruction cycle state se
quence, as shown in FIG. 3. The outputs of the counter
are decoded to provide signals I through VI, corre
sponding to the specific cycle state the processor is in
at any instant.
The read/write memory control 106 is gated at the

propertime by count 14 from the pulse control 102 and
the various cycle state signals which require a memory
operation. A read or write signal is provided by control
106, over lines 120 or 122, respectively, when the
memory 112 is not busy, as indicated by the absence of
a memory busy signal over line 124.
The instruction decoder 96 may include, for exam

ple, a three to eight line decoder responsive to parallel
output bits 9 through 11 of parallel output signal IRP
of instruction register 90, for decoding the eight mem
ory reference instructions, and a four to 16 line de
coder responsive to bits 4 through 7 of parallel outpt
IRP of instruction register 90, for decoding the 16 ac
cumulator reference instructions. The instruction de
coding circuitry 96 and the cycle state output signals
from cycle state decoder and control 98 provide the in
puts to the gating and steering decoder logic 100. The
outputs of logic 100 establish the gating paths for the
gated clock pulses GCP.
The data steering gating 94 receives inputs from the

various registers, and steers these signals to the input of
the proper register as established by the specific in
struction and cycle state of the instruction execution
sequence.
Program counter register 84, memory address regis

ter 86, memory buffer register 88, instruction register
90, and accumulator register 92, may each include
three, four bit synchronous shift registers. The clock
pulse input to the registers may be the GCP signal
which is gated under control of the gating and steering
decoder logic 100.
The increment program counter circuitry 110, for ex

ample, may include a full adder, a first flip-flop for sav
ing the carry for each serial arithmetic operation, and
a second flip-flop utilized to add an additional 1 to the
program counter contents. The program counter 84 is
incremented by 1 or 2 during cycle state VI for all in
structions except SKU. The program counter is incre

5
mented by 1 during cycle state VI, except when the sec
ond flip-flop is set by a signal SKIP which causes the
program counter to be incremented by 2.
The signal SKIP is provided by the skip test circuit

111. A 16 to 1 line multiplexer may be utilized to test
the bit selected by the SKB instruction. The parallel
outputs ACPA of the accumulator 92 are connected to
the data inputs of the multiplexer, and the four LSB of
the instruction register 90 are connected to the data se
lect inputs. The multiplexer is enabled by the SKB in
struction. Thus, when the SKB instruction is executed,
the accumulator bit defined by the code of the four
LSB of the program counter will determine the state of
the SKIP signal.
The addition and bittest circuity 108 includes the full

adders and flip-flops required to save their carry out
puts resulting from bit serial addition. One addition cir
cuit is used for execution of the SKU instruction during
cycle state VI, in which the contents of the four LSB of
the instruction register 90 are added to the contents of
the program counter 84. Another addition circuit is op
erative during cycle state V for adding the contents of
the four LSB of the instruction register 90 to the con
tents of the accumulator 92 for execution of instruction
LTA. Still another addition circuit is operative during
cycle state III, for implementing the ADD, AND and
XOR instructions.
The addition and bit test circuitry 108 also includes

the set/clear bit circuitry used with the SET and STZ
instructions, which force a selected bit of the accumu
lator 92 to a logical one and logical zero, respectively.
The bit manipulation is accomplished on a serial basis
as the accumulator 92 is shifted during cycle state V.
For example, the data outputs of a 4 to 16 line decoder
may be cross connected to the data inputs of a 16 to 1
line multiplexer. The inputs of the decoder are con
nected to the four LSB of the instruction register 90.
The output of the multiplexer provides a signal which
may be utilized to control the setting or clearing of the
appropriate bit. The outputs of the pulse control
counter of pulse control 102 are connected to the data
select inputs of the multiplexer. The output of the mul
tiplexer is a logical one during the interval the selected
bit is being shifted, which may be used to force the se
rial input to the accumulator 92 during this interval to
a logical one or a logical zero in response to a SET or
STZ instruction, respectively.
The addition and bit test circuitry 108 also includes

circuitry for performing the 2's complement function.

The input interface 78 includes two 12 bit registers
126 and 128 referred to as input register No. 1 and
input register No. 2, respectively. Input register No. 1
provides interrupt inputs to the processor 74, and input
register No. 2 provides data input to the processor 74
via external devices, such as the tape reader 76.
The interrupt circuitry 80 which provides interrupts

for input register No. 1 includes a time interrupt gener
ator 130, interrupt receiver and storage circuitry 132,
and interrupt detection circuitry 134.
The interrupt receiver and storage circuitry 132 has

inputs connected to the time interrupt generator 130,
as well as to any additional interrupts, such as an inter
rupt responsive to a low voltage detector. Pulses are
generated by the interrupts in circuit 132 which are di
rected to the interrupt detection circuitry 134, and also
stored in memories, such as flip-flops, which in turn are

3,851,734

5

0

5

20

25

35

40

45

50

55

60

65

16
connected to the parallel inputs of input register No. 1.
Input register No. 1 is loaded with a stored interrupt
from circuit 132 in response to a signal from the inter
rupt detection circuit 134, which forces parallel load
ing of input register No. 1. This signal remains active
until the contents of input register No. 1 are serially
transferred to the accumulator 92 via data steering gat
ing 94. The processor 74 inputs the contents of input
register No. 1 to the accumulator 92 in order to read
the active interrupt number. The interrupt storage flip
flops are reset when input register No. 1 is loaded.
The interrupt detection circuitry 134, upon receiving

an interrupt signal from circuitry 132, provides a signal
to the processor 74 of an active interrupt, including sig
nals to program counter 84 and memory address regis
ter 86. The signals from the interrupt detection cir
cuitry 134 to the memory address register 86 zero's the
memory address register to force the instruction STP
located at 00018 to store the contents of the program
counter. The signal from the interrupt detection cir
cuitry 134 to the program counter 84 forces the con
tents of the program counter to be zeroed during cycle
state III, to force the instruction STA located at 00s.
The STA instruction stores the contents of the accumu
lator. A program associated with an interrupt may then
be initiated.

FIG. 4

FIG. 4 is a block diagram which illustrates a new and
improved arrangement of subprograms for effecting
the dispatching and control of a plurality of elevator
cars. In general, the concept is divide the program into
subsections, and include means, hardware, software, or
both, for indicating which subsections of the program
have a need to run, as determined by signals and data
provided by the elevator system. Additional means
then serially runs the subsections of the program which
have a need to run with their sequence being based on
their relative urgencies. The software of a programma
ble system processor for directing the associated hard
ware to the task of elevator car dispatching must (a)
read and store car status data from the car controller
of the various elevator cars, (b) read and store corridor
call data, (c) process the system data obtained in (a)
and (b) to determine an advantageous pattern of ser
vice assignments to the cars, (d) send commands to ini
tiate an elevator car on a determined service assign
ment, (e) send floor numbers to running cars to indi
cate appropriate stopping points, and (f) output signals
indicative of system conditions, as necessary to the
proper functioning of other system components.
The software scheme employed should permit strat

egy changes to be incorporated without modification of
the overall program concept. Further, the software
should accomplish all of the functions (a) through (e)
listed above while using the sequential processing mode
required with a digital computer system processor, in
such a manner that stop requests to moving cars are al
most always valid when received by the car controller
of the associated car.
Certain physical features of the elevator installation

affect the software, such as the total number of floors
to be served by the elevator cars, the number of eleva
tor cars in the bank or elevator system, the presence or
absence of an express zone at which none of the cars
stop, and basement and top extension floors to be
served.

3,851,734 17
Certain strategy concepts which affect the software,

regardless of the specific strategy to be implemented,
are the main floor, or point where passengers initially
enter the elevator system, Zoning of the building for
service assignment purposes, demands for service for a
zone initiated by a corridor call from that zone when no
car is presently assigned to the zone, and modifications
of car assignment patterns according to traffic condi
tions.
The activities of the programmable system processor

can be divided into two broad categories, (1) book
keeping, and (2) actions intiated by significant events
in the system. The bookkeeping activities must be per
formed on a cyclic basis, with a sufficiently high fre
quency to keep the computer's records up to date. This
includes reading in the car status data and corridor call
registers, and updating system-signal outputs. At any
instant of time, the occurrence of an event in the sys
tem requires some special action by the computer,
which temporarily must break the cyclic bookkeeping
activity. Such significant events are (a) a new corridor
call in the system, for which the computer or system
processor must try to allocate to a suitable running car,
or register a demand signal relative to the call which
signifies that an available non-busy car, if any, must be
assigned to the call, (b) car stops, which cancels a cor
ridor call at that floor if the car and call service direc
tion are similar, and perhaps may require a new stop

10

15

20

25

request to the car, (c) a car becomes available, requir
ing the car to be assigned to a call for which a demand
signal was created, if any, (d) a car leaves the main
floor, which may require a replacement car to be
brought to the main floor, (e) a car enters a new zone,
which now allows calls in the new zone to be allocated
to the car, possibly cancelling a demand, (f) a car is
taken out of service, requiring any calls allocated to the
car to be reallocated, if possible, or to create a demand
signal for those which are not so allocated, and (g) a
car is by-passing corridor calls, which may mean cer
tain calls allocated to the car must be reallocated, or a
demand signal created therefor. For purposes of this
specification, calls added to the assignment register of
a busy or running car, i.e., a car already busy on the
task of serving a car call or a corridor call on a Zone ba
sis, as opposed to a specifically assigned basis, will be
referred to as allocated calls, and corridor calls which
cannot be so allocated and for which a demand signal
is created, to which an available non-busy car is as
signed, will be referred to as assigned or demand calls.
In other words, calls are allocated, cars are assigned. In
certain instances a call will be referred to as being unas
signed, with this being for the convenience of the soft
ware language. What is meant, is that the call is consid
ered unallocated.
The occurrence of an event in the system which re

quires action by the system processor may be detected
by hardware, in which case the hardware generates an
interrupt pulse which causes the normal cyclic activity
of the computer to be broken; or, the events may be de
tected by software. Detection of an event by software
is achieved by comparison of successive data records,
in which case the program itself interrupts its cyclic
bookkeeping function by branching itself into the ac
tion appropriate to the event detected.
A number of events will often occur in a very short

period of time, and since they must be processed se
quentially, the software arrangement assigns priority

30

35

40

45

50

55

60

65

8
ratings to events in accordance with the urgency of the
actions, and then the program processes them in the
order of priority.

In the embodiment of the invention selected for illus
tration, two hardware interrupts are provided, one for
power failure, and one for timing. The power failure in
terrupt enables the computer to intitiate an emergency
procedure when the line voltage falls below a predeter
mined level. The timing interrupt occurs at regular in
tervals, and is used by the computer to maintain a
clock, so that timing of actions can be efficiently per
formed as required by the strategy. All other events are
detected by comparison of successive data records, but
other, events may be detected hy hardware, if desired.

The software package employed includes a set of
function programs, i.e., bookkeeping and control pro
grams, which run under the direction of an executive
program. The executive program includes (a) an inter
rupt executive, shown generally at 150 in FIG. 4, which
handles hardware interrupt processing, such as power
failure indicated by block 152, and (b) a priority exec
utive which controls the running of the function pro
grams according to their priorities.
A unique priority is assigned to each function pro

gram as a fixed characteristic of the software package.
These are four possible program states, (1) running,
(2) suspended due to interrupt, (3) bidding to run, and
(4) inactive.
The only program not subject to interrupt is the inter

rupt executive 150. Thus, the interrupt executive can
only be in states (l) running, or (4) inactive. It is never
bidding to run, since it runs immediately upon receipt
of an interrupt pulse. If the interrupt is for timing, the
interrupt executive decrements a clock, and may place
a timer program into bid, and optionally may place cer
tain other function programs into the bidding state be
fore returning control to the suspended program. The
optional feature is only required where the elevator sys
tem is such that certain bookkeeping programs may be
prevented from running often enough to keep the sys
tem up to date during heavy traffic conditions, in which
event the interrupt executive places them in bid when
they haven't run for a predetermined selected period of
time.
Once a function program starts, it runs either until

completion, or until an interrupt occurs. In the former
case, the program transfers back to the priority execu
tive, while in the latter case control transfers to the in
terrupt executive and the function program goes into
suspension. When the interrupt executive has com
pleted, it restarts the suspended program from the
point at which it was interrupted. Function programs,
once started, are not suspended for the running of
other function programs, regardless of priority ratings.

The function of the priority executive is to initiate the
highest priority function program bidding to run. It is
subject to interrupt in the same manner as the function
programs. Function programs are placed in bid by
other function programs, and by the interrupt execu
tive. The interrupt executive places a timer program
154 into bid at predetermined intervals, such as every
3.2 seconds, as indicated by dashed line 156. The timer
program 154 is given the highest priority, i.e., zero, to
insure that it will run before any other function pro

9
gram when the priority program is checking the bid
register to see which program to run next.
Before discussing the bidding structure further, it is

essential to describe how the software package is di
vided into a plurality of subprograms, and the bidding
priority associated with each. These subprograms are
referred to as CSU, TNC, ACL, ACR, and CHECK.
Subprogram CSU, indicated by block 158 in FIG. 4,

has the second highest priority, i.e., 1. Subprogram
CSU reads and stores car status data provided by the
car controllers of the elevator cars in the bank, and it
also compares the new data relative to the previous
data record to detect events requiring action. Subpro
gram CSU places subprogram TNC into bid, indicated
by dashed line 160, and also subprogram ACR, indi
cated by dashed line 162, as required by the detected
events, and sets a flag for use by function program ACL
in response to detected events.
Subprogram TNC, indicated by block 164, has the

third highest priority, i.e., 2. Subprogram TNC reads
the status of the corridor call registers and makes a
comparison with the previous record to detect the ar
rival of new calls. New calls are added to a call table CL
which keeps a record of the floor number, service di
rection, and the elapsed time since the call was regis
tered, for each call. The subprogram TNC also detects
the cancelling of a corridor call, and removes the call
from the call records. Subprogram TNC places subpro
gram ACL into bid, indicated by dashed line 166.
Subprogram ACL, indicated by block 168 in FIG. 4,

has the fourth highest priority, i.e., 3. Subprogram ACL
allocates calls to running or busy cars that are suitably
conditioned, i.e., located relative to the call and with a
service direction such that the car will be able to handle
the call as it proceeds on its journey through the build
ing. Any call which cannot be so allocated by subpro
gram ACL creates a demand signal which signifies that
an available car should be assigned to serve the call.
Subprogram ACL registers the demand signal, includ
ing a signal identifying the type of demand, but the as
signment of an available car to the call is performed in
subprogram ACR.
Subprogram ACL normally only allocates new calls

detected since it last ran, as the other calls in the call
table were processed, i.e., either allocated to busy cars
or flagged as demand calls, during previous cycles.
However, when a flag or indicator is set by subprogram
CSU in response to the detection of an event which
may require reallocation of one or more calls, subpro
gram ACL will process all of the calls in the system.
Subprogram ACL places subprogram CHECK into bid,
indicated by dashed line 170, or this function may auto
matically be performed by the priority executive each
time control is returned to the priority executive.
Subprogram ACR, indicated by block 172 in FIG. 4,

has the fifth highest priority, i.e., 4. Subprogram ACR,
which is placed into bidding by subprogram CSU only
when there is a demand in the system and there is an
available car which can be assigned to the demand, as
signs available cars to demands in an order of priority
specified by the strategy. A demand may be a single
call, or a group of calls from a single zone. Program
ACR assigns a car to each demand until all demands
are satisfied or no available car remains, and outputs a
command to each car it assigns. Subprogram ACR
places program CHECK into bid, indicated by dashed
line 174, or as hereinbefore stated relative to subpro

10

15

20

25

35

40

45

50

55

60

65

3,851,734 V
20

gram ACL, the priority program may place subprogram
CHECK into bid each time it obtains control.
Subprogram CHECK, indicated by block 176, may

simply place subprogram CSU into bid, indicated by
dashed line 178, and it may additionally be used to
check for computer failure, and then automatically dis
connect the computer or system processor should some
predetermined action of the computer fail to satisfy a
predetermined requirement.
Subprogram TIME indicated by block 154 in FIG. 4,

which has the highest priority of zero, decrements all
of the clock counters by which the computer controls
the timing of certain of its actions. For example, it con
trols the clock for timing how long the car stands at the
main floor, and the elapsed time each corridor call has
been registered.

In certain installations, where the running of the
strategy programs ACL and ACR may result in exces
sive running times, the interrupt executive may place
subprograms CSU and TNC into bid on a time basis.
For example, if the subprogram CSU has not run for a
predetermined period of time, such as 0.4 second, it
may be placed into bid by the interrupt executive, as
indicated by dashed line 180. If subprogram TNC has
not run for a predetermined period of time, such as 0.7
second, it may be placed into bid by the interrupt exec
utive, as indicated by dashed line 182. In most installa
tions, however, the subprograms CSU and TNC will
normally run frequently enough that timed bidding by
the interrupt executive will not be required.
The bidding structure among the subprograms in

FIG. 4 is indicated by dashed lines, and the flow or se
quence of the running of the subprograms is indicated
by solid lines between the blocks. It will be noted that
the function programs run in two main loops. The first
main loop includes function programs CSU-TNC-ACL
CHECK-CSU, and the second main loop includes func
tion programs CSU-TNC-ACL-ACR-CHECK-CSU.
The second main loop only occurs when a demand has
been created due to the non-allocation of a call to a
suitable busy car by subprogram ACL, and subprogram
CSU determines that there is a car available for assign
ment to the demand and accordingly places subpro
gram ACR into bid. Even though subprogram CSU
places subprogram ACR into bid, it also places subpro
gram TNC into bid, and when CSU completes its run
ning, the priority executive runs TNC since it has a
higher priority than ACR. Subprogram TNC then
places subprogram ACL into bid. Thus, when TNC re
turns control to the priority executive, it runs ACL be
cause it has a higher priority than ACR. When subpro
gram ACL is completed, subprogram ACR then runs
because it has a higher priority than CHECK. Subpro
gram ACR runs until all demands have been satisfied,
or there are no available cars to assign to demands, and
then returns control to the priority executive which
runs subprogram CHECK. Subprogram CHECK bids
subprogram CSU and the loop which is followed on the
next running of the program depends upon whether or
not CSU bids ACR.
While the block diagram of FIG. 4 indicates that se

lected function subprograms run and place other sub
programs into bid, it is to be understood that the steps
for determining whether a specific subprogram has a
need to run may be outside the subprogram, just as it
is for subprogram ACR. The need for subprograms
CSU, TNC and ACL may be determined outside these

3,851,734
2

programs and if they have a need to run they may then
be placed into bid. For example, instead of entering
subprogram TNC to find out if there are any new calls,
this step could be performed outside TNC and TNC
placed into bid only when the program has something
to do. In the specific embodiment of the invention the
step for determining the need for subprograms CSU,
TNC and ACL are determined within the program, and
if they have a need to run they, in effect, put themselves
into bid by branching into the necessary steps to take
the required action. If they have no need to run, the
program is exited when this is determined.
Before describing the subprograms of the software

package in detail, certain of the tables kept by the soft
ware in the memory, or referred to by the software, will
be described.

FIG. 5
FIG. 5 illustrates the bid register XBDR referred to

by the priority executive at the completion of a func
tion program to determine the highest priority program
bidding to run. When a program is placed into bid, its
associated bit of the bid register is set to logic one. The
bid register is a 12 bit word, with only the 6 bits starting
from zero being used. Subprogram TIME, having the
highest priority, is associated with bit zero, and subpro
gram CHECK, having the lowest priority, is assigned to
bit 5.

FIG. 6

FIG. 6 illustrates the 12 bits of input register No. 1,
referred to with reference numeral i26 in FIG. 2. Input
register No. 1 is used as an interrupt register, as herein
before described, with bit zero being set to a logical one
in response to a signal from the time interrupt genera
tor 130. Any additional hardware interrupts would be
assigned to other bits of input register No. 1.

FIG 7

FIG. 7 illustrates the call record CLR, the call change
record CCLR, and car assignment table CRA. While
these records use different memory locations in the
memory 12 shown in FIG. 2, they are illustrated in a
consolidated manner in FIG. 7 for convenience.
When the corridor call registers are read, the infor

mation is stored in a memory location which includes
six 12-bit words for a building having up to 36 floors.
This is the call record CLR, with the calls being stored
therein on a one bit per floor per direction basis. Words
CLR0, CLR1 and CLR2 provide 36 bits and thus room
for storing down calls from up to 36 floors. The floors
may be assigned to like numbered bits, numbering the
bits and floors starting from the right-hand side of the
down call record. Words CLR3, CLR4 and CLR5 pro
vide 36 bits and room for storing up calls from up to 36
floors. The bits of these words are numbered starting
from the right side of the call record, and the floors are
assigned to bits starting floor No. 1 from the highest
numbered bit used in the down call record.
The call change record CCLR follows the same for

mat as the call record CLR, and its six words CCLR0
through CCLR5 in the same core region. When the lat
est call record is compared with the immediately pre
ceding one, a bit is set in the call change record for
each change. Thus, a new up or down corridor call will
set a bit in the call change record, since a set bit ap
pears for this floor in the latest reading of the corridor

10

15

20

25

30

35

40

45

50

55

60

65

22
call register but not in the previous reading. In like
manner, a canceled corridor call, i.e., one that was an
swered, will set a bit in the call change record since a
set bit appears for the associated floor in the previous
record but not in the latest reading.
Car assignment table CRA contains three words per

car for a building having up to 36 floors, with the con
vention used for up service (UPSV) cars and down ser
vice (DNSV) cars being the same as used for storage
of up and down corridor calls, respectively, in the call
record CLR. The specific convention used is deter
mined by the service direction of the car. Thus, when
the service direction of a car is down, its three words
CRAN0 through CRAN2 of its assignment table will
have the convention of the upper table in FIG. 7, and
when the service direction is up, its three words CRAN
0-CRAN2 will have the convention of the lower table
in FIG. 7. When a program allocates a call to a car, or
assigns a car to a specific floor, it sets an indicator or
bit for the floor in question in the car's assignment table
CRA. if the car is a running car and the call is allocated
to it by program ACL, the program, in addition to set
ting the bit associated with the floor of the call in the
car's assignment table, must check to see if this call is
closer than the stop previously sent to the car, and if so,
it must replace the “next stop' address with the address
of this call. If the car is an available car being assigned
to a demand call by program ACR, in addition to plac
ing the call in the car assignment table of the car, it
must assign the service direction for the car, give it a
start signal, and send the address of the floor to the car.
If the demand has several calls associated with it, such
as a number of high zone up calls, all the calls associ
ated with the demand are placed in the car assignment
table CRA of the car, and the floor address of the first
stop is sent to the car.

FIG. 8
FIG. 8 illustrates the call table CL wherein two 12-bit

words are kept for each corridor call. The first word
PCLO maintains a 3-bit binary word corresponding to
the zone of the call (bits 0-2), bit 4 of the word estab
lishes the service direction of the call, with a logical one
indicating up and a logical zero indicating down, and
bits 5 through 11 are the address of the floor in binary.
The second word associated with each call, referred to
as PCLOA, uses bit 1 to flag whether or not the call is
a demand call and bit 0 to indicate whether or not a car
has been assigned to the floor of the call. Bits 5 through
11 are used by the call timer, which is set to the timed
out value when the call is first stored in the call record.
This time is decremented on each running of the sub
program TIME, going negative when the call times out.

FIG. 9

FIG. 9 illustrates a timed out call record TCA, which
consists of three 12-bit words TCA0-TCA2 for up to
36 floors. The same convention applies as heretofore
explained relative to the call record CLR.

FIG. ()

FIG. 10 illustrates data words DEMIND, TODEM,
and DEMAS. Word DEMIND is a demand indicator
word, with bits of the word being assigned to different
types of service demands. For example, a main floor
demand for service to a top extension floor (MFE) is

3,851,734
23

assigned to bit 9, a top extension floor demand (TE) is
assigned to bit 7, a main zone down demand (MZD) is
assigned to bit 6, a high Zone up demand (HZ) is as
signed to bit 5, a low zone up demand (LZ) is assigned
to bit 4, a main floor demand (MF) is assigned to bit
2, and a basement demand (B) is assigned to bit 1. A
demand thus sets a bit in DEMIND corresponding to
the type of demand registered.
Word TODEM is used for timed out demands, and

uses the same convention as DEMIND. A demand reg
istered for a predetermined period of time sets a bit in
TODEM corresponding to the type of demand. When
a car is assigned to a demand, the corresponding bit in
DEMIND is reset to zero, but the corresponding bit in
TODEM is not reset to zero until the call is actually an
swered by the car.
Word DEMAS is an indicator word. When a car has

been assigned to answer a main floor demand (MFD)
or a demand from the main floor for the extension
(MFE), a bit is set in DEMAS corresponding to the de
mand bit in DEMIND. The bit is turned off in DEMAS
when the car responds and the call is canceled.

FIG 11

FIG. 11 illustrates a system status word SYSW which
has bits set corresponding to different system condi
tions. For example, bit 7 may be associated with intense
up traffic (SIUP), bit 6 with down peak (SDPK), bit 5
with up peak (UPPK), bit 4 with a basement demand
(BASD), bit 3 with a top extension demand (TEXD),
bit 2 with main zone down demand (MZDD), bit 1 with
an up demand in the high zone (UDHZ), and bit 0 with
an up demand in the low zone (UDLZ).

FIG. 12
F.G. 12 illustrates the three 12-bit input words IW0,

IW i and IW2 which are sent to the system processor
from each car controller. These input words provide
status data relative to each car which the system pro
cessor uses in determining its strategy and corridor call
assignments. The information conveyed by the symbols
in these input words is listed in the symbol and signal
identification table hereinafter set forth.

FIG. 13

FIG. 13 illustrates the three 12-bit output words
OW0, OW, and OW2 which are sent to each car con
troller by the system processor. These words include
the various commands sent to each elevator car by the
system processor, in order to dispatch the cars and an
swer corridor calls according to the programmed strat
egy. The information conveyed by these words may
also be obtained by looking up the appropriate symbol
in the table hereinafter set forth.

FIG. 14

FIG. 14 illustrates an additional or extra memory
word maintained for each car, to further aid the system
processor in keeping track of each car. The informa
tion contained in this extra word may also be identified
by referring to the listing of signals and program identi
fiers.

FIG 15

FIG. 15 illustrates how a building may be zoned and
coded, to provide a zone code used by the system pro
cessor to keep track of corridor calls, demands, and the

O

15

25

30

35

40

45

50

55

60

65

24
elevator cars. A call for up or down service, or a car set
for up or down service, uses the zone code of 1 for the
basement (B), the zone code 2 for the main floor (MF),
and 7 for the top extension (TE). An up service call, or
a car set for up service uses zone codes 4 and 5 for
floors between the main floor and top extension, di
vided into low and high zones LZ and HZ, respectively.
A call for down service, or a car set for down service,
associated with the floors between the main floor and
top extension (MZD), uses a zone code of 6. A car with
no assignment is given a zone code of 0. If the building
has a middle express zone at which no cars stop, this
group of floors may be given the zone code of 3.

In describing the software programs shown in FIG. 4
in detail, it will be helpful to set forth the program iden
tifiers used in the flow charts, as well as the various sig
nals and symbols used in the discussion of the flow
charts. The following listing of symbols and their func
tions also include the signals used in the input words,
output words, and extra word, shown in FIGS. 12, 13
and 14.

Symbol Description

ACC Accumulator register
ACN Serial input signal to accumulator register
ACL Subprogram for allocating calls
ACLFLR Call floor
ACLqbCR Car number of closest suitable car found so far
ACLMCR Call floor minus ACP
ACO Serial output signal from accumulator register
ACP Advanced car position
ACPA Parallel output signal from accumulator register
ACR Subprogram for assigning available cars
ACRFLR ACP of car being processed
ACRMSK Zone mask - exposes zone of call for car selection
ADIN Serial input signal to memory address register
ADO Serial output signal from memory address register
AHICAR Car number of highest car considered so far
AHIFLR ACP of highest car considered so far
ASDF Call floor minus ACP of closest car to call found so far
ASFL Assigned floor
ASG Assigned
ASGN Assigned
ATSV Attendant service
AVAD Car available according to system processor
AVAS Car available according to floor selector
AVPO-AVP6 ACP in binary
B Basement Zone - Code 1
BASCAP Capability to serve basement
BASD Basement demand - system signal
BCC Basement car call
BDR Bid register
BNXT Basement next
BSMT Basement assignment signal
BYP ls car bypassing corridor calls?
BYPS Signal - Car is bypassing corridor calls
CAL Signal that car has a car call
CAZON Zone of call being processed
CARZON Zone of car being processed
CCAB Car call above ACP
CCA Inhibits car from answering car calls
CCBL Car call below. ACP
CCLR Call change record
CCLR0- Word names in CCLR
CCLR5
CL Call table
CLR Call record
CR0-CLR5 Word names in CLR
CRA Car assignment table
CRAn0- Word names in CRA
CRAn2
CREG Car call registered signal
CRNO Car number
CSU Subprogram for bringing status of cars up to date

DCLO Close car door signal from processor
DEC Signal that car has started to decelerate
DECR Decrement
DEM Demand
DEMAS Indicator word - used to indicate when a car has heen

assigned in Mif) at MFI: demands

3,851,734
25

-Continued

Symbol Description
DEMIND Demand indicator word - has a bit for each type of

service demand
DNPK Car down peak signal
DNSV Down service signal
DdPN Open car door signal from processor
DPK Down peak timer
DRCL Signal that car door is closed
DS Down service
DT Down travel

FAD0-FAD6 Assigned floor address in binary
FDCL indicator - set to zero when highest down catt has

been processed ',
FL Floor

GCP Gated clock pulses
H HIGH
HIFLR ACP of highest car considered so far
HZON High zone
HLMO Hall lantern signal
HM Hall lantern signal
HZ High zone up - Code 5

i.E. Subprogram - Interrupt Executive
INCR increment
NSC Car in service signal
RN Serial input signal to instruction register
IRO Serial output signal from instruction register
IRP Parallel output signal from instruction register
IS In service
W0-W2 Input words to system processor
JMP Jump

LKA Bit selection mask used in Subroutine LOOK
LKO Bit selection mask used in Subroutine LOOK
Lds Low
LdBMZD indicator set when an available car has been assigned

to main zone down service
LOOK Subroutine
LSB Least significant bit

MAXCRN Highest number assigned to a car
MBN Serial input signal to memory buffer register
MBO Serial output signal from memory buffer register
MCCR Master car call reset
MF Main floor zone - Code 2
MFD Main floor demand
MFL Main floor number
MFTM Timer which runs when no car at main floor
MFS Main floor start
MFSTM Main floor start timer
MFX indicatcr set when a car is expressing to main floor
MFU indicator set when there is a main floor up call
MNFL Signal which indicates ACP is at main floor
MdbD0 Floor address mode signal
McD Floor address mode signal
MSB Most significant bit
MSK Mask
MZD Main zone down - Code 6
MZDD Systems signal - main zone down demand
MZDSWP indicator - non-zero during second loop when

processing highest down call
NAC Number of in service cars available
NCL Number of calls in call table CL
NEX Indicator - indicates there is a next car when non-zero
NEX Car next signal for next car to leave main floor
NMCRO Number of cars in system
NOSC Number of cars out of service
NTOD Number of timed out down calls
NXTM Next timer

OCRNO Car number
dW0-5W2 Output words from system processor to cars
PARK Park signal from processor
P.C. Program counter register
PCALLO Pointer to address of first word of call table
PCN Scrial input signal to program counter register
PCLO Address ptr. of call table - 1st word of call being processed
PCLOA Address ptr. of call table - 2nd word of call being processed
PCLOAX Local address of PCLOA
PCLOX Local address of PCLO
PCLV Temporary storage address for call table address being processed
PCO Serial output signal from program counter register

5

O

15

20

25

30

35

40

45

50

55

60

65

Symbol
PIN-0
PN2-0
PR

QTOD

REFLR

SASS
SD
SDPK
SUP
SLDN
SPMCR

STRP

STT
SYSMFX
SYSW

TASS
TBITN

TCA
TCAO-TCA2
TD
E

TEXD
TNC
Tob
TdbDEM
TobM

UDHZ
UDLZ
UPK
UPPK
UPSV
UPTEM
UPTR
US
UT

VTM

WN
WT50
WT75

XW

YCALL

YNCLO

ZACLBD

ZACP

ZACPMF

ZCC
Z
ZNT

ZWO
ZW
ZW2
ZMDC
ZNMC

ZONE

26
-Continued

Description
Output signal from input register No. 1
Output signal from input register No. 2
Pointer

Quota of T.O. down demands
Floor No. of call being processed

Service assignment signal from processor
Service direction
System down peak signal
System intense up traffic signal
Car slowing down signal
Indicator which is non-zero when a Zone 6 ASG car
has been given a down corridor call
Indicator which is non-zero when door light beam has
not been broken for a predetermined time
Basement signal
System has a car which is expressing to main floor System signals word

. Travel assignment signal from processor
Bit number used to load information from corridor calls
Timed out call record
Word names in TCA
Travel direction
Top extension zone - Code 7
System signal for TE demand
Subprogram for tabulating new calls
Timed out -
Timed out demand indicator
indicator which when non-zero indicates MFTIM has
timed out

System signal - up demand in high zone
System signal - up demand in low zone
Up peak indicator - non-zero during up peak
System signal - up peak
Up service signal
Up peak timer - positive during up peak
Up travel signal
Up service
Up travel

Storage location

Variable used in timer program
Car load signal indicating 50% of capacity
Car load signal indicating 75% of capacity
Bid register
Variable used to indicate the number of the car being processed
Extra word

Call word created in TNC for XOR with CLR word to
obtain. CCLR
Counts number of processed calls in call table as
opposed to new calls

Indicator - when non-zero it requests ACL to
reprocess all calls in call table CL
Image of ACP at start of processing run through
program .
Variable set to the advanced car position minus main floor
indicator - when non-zero it indicates a car call has
been registered in the “next" car
The number of the car being processed
Indicator - zero during first run through CSU and one thereafter
Image of input word IW0 at start of CSU
Image of input word Wi at start of CSU
Image of input word IW2 at start of CSU
Counter - No. of cars qualifying to answer MFD
Counter - No. of cars at main floor excluding those with BSMT assignment
Code identifying location of calls and service direction,
and location of car
image of output word dW0 at start of CSU
Image of output word dWl at start of CSU
Image of output word dW2 at start of CSU
Image of extra word at start of program run
Cycle states of system processor
Signal indicating car is moving

3,851,734
27

FIG. 16

FIG. 16 is a flow chart of an interrupt executive pro
gram which may be used for the function shown as
block 150 in FIG. 4. The interrupt executive program.
starts at terminal 200 in response to a timing interrupt
initiated by the time interrupt generator 130 shown in
FIG. 2; or, when the computer is first taking control of
the system and the program has been started at the hex
adecimal address 00016. The interrupt executive, in
step 202, stores the information which is currently in
the program counter 84 and in the accumulator 92, and
in step 204 input register No. 1 is read. Input register
No. 1 is illustrated in block form as register 126 in FIG.
2, and the 12 bits of the register are shown in FIG. 6.
Step 206 checks bit 0 to see if it is set (i.e., a logical
one). If this bit is set, it indicates a timing interrupt and
the timer is decremented in step 208. If this bit is not

O

5

set, i.e., it is a logical zero, it indicates the computer has .
just taken control and the program is at address 0008.
in this event, the program leaves the interrupt execu
tive program at terminal 210 to follow certain initializa
tion procedures, as will be hereinafter explained.

If the entry into the interrupt executive was for a tim
ing interrupt, the time is checked in step. 212 to see if
the time is less than zero. If the time is not less than
zero, the contents of the accumulator and program
counter are retrieved in steps 214 and 216, respec
tively, and the program running at the time of the inter
rupt is reentered at the same point that it was at the
time of the interrupt.

If the time is less than zero, it indicates that it has
been 3.2 seconds since the timer program last ran, and
the timer is set to 32 and the timer program is placed
in bid in step 218. Steps 214 and 216 are then followed
to resume the program which was running. When the
running is completed and control is returned to the pri
ority executive, the subprogram TIME, bid by step 218,
will run since it has the highest priority.

FG. 17

FIG. 17 is a flow chart which illustrates an initializa
tion procedure and the priority executive. If the pro
gram was started at hexadecimal address 00018 and thus
the interrupt executive 150 followed the path to termi
nal 210, an initialization procedure starting at terminal
220 of FIG. 17 would be followed. As shown in step
222, this includes setting to zero the bid register
XBDR, the demand word DEMIND, the indicator word
DEMAS, the timed out demand indicator TODEM, the
up and down peak indicators UPK and DPK, respec
tively, the up peak timer UPTIM, indicator NCL which
indicates the number of calls in the call table CL, indi
cator NTOD for the number of timed out down calls,
indicator MFU for a main floor up call, indicator NEXI
for "next' car, indicator ZCCI for a car call in the
"next' car, and indicator ZINIT for indicating the first
run through subprogram CSU. The program then fol
lows the path through terminal 224 to step 226, which
clears the car assignment table CRA, the call record
CLR, the call change record CCLR, and the call table
CL, shown in FIGS. 7 and 8. This completes the initiali
zation steps, and the priority executive is entered atter
minal 228.
The function of the priority executive is to start at the

highest priority bit, i.e., bit 0, of the bid register XBDR
shown in FIG. 5, and run the highest priority program

20

25

35

28
which is bidding to run. Therefore, the first step 230 is
to set the pointer to bit 0 of the bid register. The pro
gram CHECK is then placed in bid in step 232 by set
ting bit 5 of the bid register. Each bit of the bid register
is successively checked, starting from bit 0, by steps
234 and 236, and when a set bit is found, this bit is
turned off in step 238 and the program junps to the
start of this program at terminal 240. If none of the
function programs were bidding to run, the subprogram
CHECK would be run as it was placed in bid by the pri
ority executive during step 232. Subprogram CHECK
may be an active program, which checks the computer
logic for malfunction; or, as illustrated in FIG. 17, it
may simply be a dummy program entered at terminal
242 which has a single step 244 for placing subprogram
CSU into bid by setting bit 1 of the bid register XBDR
to a logic one, and then returns to terminal 228 of the
priority executive. Thus, when the computer is first tak
ing control, the priority executive starts the active pro
gram with program CSU by bidding the subprogram
CHECK. Subprograms ACL and ACR thus effectively
place subprogram CHECK into bid when they return
control to the priority executive, since the priority ex
ecutive bids the subprogram CHECK for them.

FIG. 18

FIG. 18 is a flow chart of a subprogram TIME which
may be used for the function shown as block 154 in
FIG. 4. Subprogram TIME is entered at terminal 246
and step 248 decrements timers NXTIM, MFTIM and
MFSTEM. Timer NXTIM controls the time for dis
patching the "next" car from the main floor, timer
MFTIM runs when there is no car at the main floor, and
timer MFSTIM is the main floor start timer. The down
peak timer DPK is checked in step 250 to determine if
it is greater than zero, and if it is, indicating a down

40

45

50

55

60

65

peak condition, the down peak timer is decremented in
step 252 and the system down peak SDPK is set in the
system signals word SYSW shown in FIG. 11. .
The up peak timer UPTIM is then checked in step

256 to see if it is greater than zero. If it is, indicating an
up peak condition, the down peak timer DPK is
checked to see if it is greater than zero, as down peak
predominates up peak if both occur at the same time.
If a down peak condition is occurring UPK and UPPK
are set to logic one in step 262. If an up peak is occur
ring in the absence of a down peak, UPK and UPPK are
set to logic one in step 264. If an up peak is not occur
ring, step 256 proceeds directly to step 262, setting
UPK and UPPK to logic one. The timed out demand
word TODEM, shown in FIG. 10, is cleared in step 266,
and the indicator NEXI is checked in step 268. If NEXI
is greater than zero it indicates there is a "next" car,
and when it is zero it indicates there is no "next' car.
If there is a "next' car, step 270 sets indicators
SYSMFX and TobM to zero, both of which are associ
ated with the function of obtaining a car for the main
floor when there is no "next' car. The main floor timer
MFTIM is set to four in step 270, and is continually
reset to four as long as there is a car at the main floor.
The program then proceeds to terminal 272.

If step 268 determines that there is no "next' car, the
up peak indicator UPK is checked in step 274. If an up
peak is occurring and UPK is set, indicator TobM is set
in step 276 and the program advances to terminal 272.
When an indicator of a bit is indicated as being set, it
indicates that it is set to a logic one. If the uppeak UPK

3,851,734
29

is not set, the main floor timer MFTIM, which runs
when there is no car at the main floor, is checked in
step 278 to see if it has timed out. If it has not timed
out, the program advances to terminal 272. If it has
timed out, step 280 checks to see if there is an up call
registered at the main floor, and if there is, indicator
TobM is set in step 276. If there is no up call at the main
floor, i.e., MFU is not set, the program advances to ter
minal 272.
The subprogram TIME now checks every call in the

call table CL for timing out. Step 282 sets the number
of timed out down calls NTOD to the quota QTOD
which will initiate up call bypass. Step 282 also sets the
variable WN to the number of calls in the call table CL
minus 1, in order to provide a negative number when
all the calls in the call table have been processed. WN
is tested in step 284 to determine if all calls have been
processed, and if not, the call timer of the call is
checked in step 286 to see if it has timed out, i.e., is it
negative? If it is not timed out, the timer for this call is
decremented in step 288 and the next call, if any, is
considered by setting WN equal to WN-1 in step 290.
If a call is found whose timer has timed out, the associ
ated bit in the timed out demand word TODEM, illus
trated in FIG. 10, is set in step 292. The call is checked
in step 294 for service direction. If it is an up call, step
296 sets the associated bit in the systems word SYSW,
and if it is a down call, step 298 sets the associated bit
in the timed out call record TCA, shown in FIG. 9. Step
298 also sets the number of timed out down calls
NTOD to NTOD minus A. Then, for both up and down
calls, the program advances to step 290 to process the
next call. When all calls have been processed, step 284
exits the subprogram TIME via terminal 300, returning
to terminal 228 of the priority executive shown in FIG.
17,

FIG. 9

FIG. 19 is a flow chart of subprogram CSU, which,
along with the flow chart shown FIGS. 20A, 20B, 20O
and 20D, may be used for the function 158 shown in
block form in FIG. 4. Subprogram CSU starts at termi
nal 302, and in step 303 it sets to zero the number of
out-of-service cars (NOSC), the number of available
cars (NAC), the number of cars at the main floor, ex
cluding those with a basement assignment (ZNMC),
and the number of cars qualifying as answering a main
floor demand (ZMDC). Step 304 sets the variable Z1
equal to the highest number assigned to an elevator car,
i.e., number 3 for a 4 car system, starting the number
ing from zero. Step 305 forms an image of the output
words OW0, OW1 and OW2, an image of the input
words IW0, IW, and W2, and an image of the extra
word XW, for the first car to be processed for use dur
ing the analysis. The car status analysis starts at termi
nal 306 and ends at terminal 307. The car status analy
sis between these terminals is shown in FIGS. 20A,
20B, 200 and 20D, and will be hereinafter described.

After the car status analysis for the car in question is
completed, step 308 decrements Z1, and Z1 is then
checked in step 309 to see if there is still another car
to be considered. If there is still one or more cars to
consider, the program returns to step 305 for the next
car and its analysis is performed.
When all cars have been considered, the indicator

ZINIT is checked in step 310 to see if this is the first run

3)
of subprogram CSU following start up of the system. If
it is the first run, ZINIT is set non-zero in step 311 and
the program returns to terminal 302. The first car sta
tus analysis following start up of the system is not an in
depth analysis, as will be observed when FIGS. 20A
through 20D are described.

10

5

25

30

35

40

45

50

55

60

65

If this was not the first run through subprogram CSU
following start up, the program advances to step 312
which checks the down peak timer DPK. The down
peak timer DPK is positive during a down peak condi
tion, and if it is positive, the program advances to step
313 which sets the bits MFD in the DEMIND and
DEMAS words shown in FIG. 10 associated with the
main floor demand. If the down peak timer DPK is not
positive, step 314 checks to see if there are any cars
which qualify to answer a main floor demand, or if the
system is in up peak. If any cars qualify, counter ZMDC
will be positive, or if the system is in up peak, the up
peak indicator UPK will be positive, and the program
advances to step 313, previously described. If there are
no cars which qualify, or if the system is not in up peak,
the main floor demand bit MFD is set in DEMIND in
step 315, to register a demand for a car at the main
floor.
Step 316 checks to see if there are any demands in

the system by checking the demand word DEMIND. If
there are no demands in the system, subprogram TNC
is bid in step 317. If there are demands, it is important
to note that subprogram ACR is not automatically
placed into bid. First, the system is checked to see if
there is an available car which can be assigned to the
demand. If there are none, counter NAC will be zero
when it is checked in step 318 and subprogram CSU
places subprogram TNC into bid in step 317. If there
is a demand and an available car, subprogram ACR is
bid in step 319, and then subprogram TNC is bid in step
317. If both TNC and ACR are placed into bid, TNC
will run before ACR since it has a higher priority, as
pointed out relative to the program bidding and flow
structure in FIG. 4.
Step 317 advances to step 325, which checks to see

if all in service cars are available according to the sys
tem processor (AVAD). If all in service calls are not
AVAD, program CSU exits at terminal 326 and the
program returns to terminal 328 of the priority execu
tive. The program also exits from terminal 326 if either
the down peak timer DPK or up peak timer UPK are
positive, as checked in step 327, or if there is a demand
in the system, determined by checking DEMIND in
step 328. If all in service cars are AVAD, the system is
not on down peak or up peak, and there are no de
mands in the system, step 329 reinitializes DEMAS,
SYSMFX and NCL by setting them to zero and the pro
gram exits at terminal 330 which enters terminal 224
of FIG. 17 in order to clear all of the tables in step 226.
This insures that a corridor call does not become "lost'
for some reason, clearing the call table CL and car as
signment registers CRA when all in service cars are
available. If an unanswered corridor call is present it
will be re-registered in the call record CLR and picked
up as a new call in the call change record CCLR, result
ing in one of the available cars being assigned to the
call.

FIGS. 20A-20D
FIGS. 20A-20D may be assembled to provide a sin

gle flow chart for the car status analysis function which

3,851,734
3.

is performed for each car between terminals 306 and
307 of subprogram CSU in FIG. 19. The car status
analysis starts at terminal 331 and in step 332 ZACP is
formed which is an image of the advanced car position
of the car whose status is being checked. Step 333.
checks ZINIT to see if this is the first run through CSU
after start up, and if it is the program advances to termi
nal 334 (FIG. 20B) and follows the initialization proce
dures of step 335. This step sets BSMT, AVAD, NEXT,
and PARK to logic one, it clears the image of the extra
word ZXW, it sets the zone of the car according to the
zone code shown in FIG. 15, it sets both of the assign
ment mode signals MOD0 and MOD1 to logic zero, in
hibiting all corridor calls to the car, it sets the travel as
signment signal TASS to correspond to the travel direc
tion of the car, and it sets the service assignment signal
SASS to correspond to the service direction of the car.
The program then advances to terminal 336 (FIG.
20D) where the system down peak timer DPK is
checked in step 337. If the system down peak timer in
“on,' the car indicator DNPK is set in step 338, and if
it is not on, DNPK is set in step 339. The three com
mand words OW0, OW1 and OW2 shown in FIG. 13
are then outputted to the car in step 340, the extra
word shown in FIG. 14 is updated in step 341, the input
data is updated in step 342, and the car status analysis
exits at terminal 343, returning to terminal 307 in FIG.
19.
After all cars have been checked by this initial proce

dure, ZINIT is set to one in step 311 (FIG. 19) of CSU
and analysis of the cars starts all over again. This time,
step 333 of FIG. 20A will advance to step 344, to check
if the car is, in service. If it is not in service, counter
NOSC for counting the number of cars out of service
is incremented in step 345. The car is then checked in
step 346 to determine if the car was in service on the
previous running of CSU. If it was not in service during
the previous running, the program advances to step 342
and the car status analysis is complete for this car, exit
ing back to terminal 307 of FIG. 19 via terminal 343.

If the car was in service on the last running of CSU
but is not now in service, this is an event which requires
processing all of the calls in the call table on the next
running of ACL, so flag ZACLDB is set in step 347.
The car is checked in step 348 to determine if this car
is indicated by the system processor as being the next
car to leave the main floor. If it is identified as the next
car to leave the main floor, indicators NEXI and ZCCI
are set to zero in step 418, indicating there is no next
car, and the program advances to terminal 334 in FIG.
20B, following the same route described for the first
run through the car status analysis immediately follow
ing start up. If the car was not next, the program ad
vances directly from step 348 to terminal 334.

If the car is in service, step 349 checks to see if the
car was in service during the previous running of CSU.
If it was not in service during the previous running, its
assignment table CRA is cleared in step 350 and the
program advances to terminal 334, which was herein
before described.

If the car was in service, the car is checked for a
change in its bypass status in step 351, and if there was
a change in its bypass status, indicator ZACLBD is set
in step 352 to cause subprogram ACL to process all of
the calls in the call table.

O

15

20

25

30

35

40

45

50

55

60

65

32
Variable ZACPMF is then set to the advanced car

position minus the main floor is step 353. The car posi
tion is checked in step 354 to see whether the advanced
car position is below the main floor. If it is, output sig
nal BSMT is set for the car in step 355, and step 356
sets the mode signals MOD0 and MOD1 to give the car
a main floor and below assignment, it sets the basement
assignment signal STT, as well as to properly set the
travel and service assignments. The program then ad
vances to terminal 336 in FIG. 20), hereinbefore de
scribed.

If the advanced car position is not below the main
floor, step 354 advances to step 357 and checks to see
if signal BSMT is set. If it is not set, the program ad
vances directly to terminal 358. If it is set, the car is
checked in steps 359 and 360 to determine if the car
is available according to the floor selector (AVAS),
and if it is, was it AVAS on the preceding run of CSU.
If the car is not AVAS, or is AVAS and was AVAS on
the previous running of CSU, the program advances to
the basement assignment step 356 hereinbefore de
scribed. If the car is AVAS but was not AVAS on the
previous running of CSU, the flag ZACLBD is set and
BSMT is set in step 361. The change in availability ac
cording to the selector is an event requiring ACL to
process all of the calls in the call table during its next
running, in response to the set indicator ZACLBD, and
setting BSMT removes the basement signal to the car.
The program then advances to terminal 358.
Step 362 sets STT to turn off the basement signal and

checks for basement car calls in step 363. If there is a
basement car call, step 354 sets BCC, and if there are
no basement car calls, step 365 sets BCC.
Step 366 determines if the car is assigned to serve a

demand, and if it is, step 367 checks to see if the car
is selected as the next car to leave the main floor. If it
is "next," signals NEXT and AVAD are set, the door
and lantern modes are set normal, and indicators NEXI
and ZCCI are set to zero, in step 368. Step 369 (FIG.
20B) sets the master car call reset signal MCCR, en
abling car calls to be registered in this "next' car, and
the program advances to terminal 370. If the car is not
next, step 380 sets AVAD and MNFL and the program
advances to terminal 370. -

If a car is not assigned to a demand, step 366 ad
vances to step 371 which determines if the advanced
car position is at the main floor. If it is not at the main
floor, step 372 sets MNFL and MFS, the output signal
which indicates whether the advanced car position is at
the main floor, and the main floor start signal, respec
tively.
Step 373 determines if the car is the next car to leave

the main floor, and if it is, the program advances to step
368, hereinbefore described. If it is not "next,' the car
is checked in step 374 (FIG. 20B) to determine if it has
completed its run. If it has not, signal AVAD is set in
step 375 and the program advances to terminal 370. If
the car has completed its run, it is checked in step 376
to see if it should be made AVAD, i.e., does it have any
car calls or demands? If it is suitable to be made
AVAD, step 377 sets AVAD, and if not, step 378 sets
AVAD, and the program advances to terminal 370 via
step 369, hereinbefore described. If step 371 deter
mines that the advanced car position is at the main
floor, determined by binary input signal AVP0-AVP6
being equal to the binary address of the main floor, step
379 sets MNFL and step 381 checks to see if the car

3,851,734
33

has a main floor start signal. If it does, step 382 checks
the main floor start timer MFSTIM to see if it has timed
out. If it has timed out, step 383 sets the door and lan
tern modes normal and the program advances to termi
nal 384 in FIG. 20D. If timer MFSTIM has not timed
out, step 385 checks the car weight, and if it is greater
than 75 percent of capacity, the program advances to
step 383, just described. If the car weight is less than 75
percent of capacity, step 369 (FIG. 20B) enables car
calls to be registered and the program advances to ter
minal 370.

If the car is at the main floor but does not have a main
floor start signal, step 386 determines if the car is se
lected as the next car to leave the main floor. If it is not
"next,” step 387 determines if the car qualifies as the
next car to leave the main floor. If it does not qualify,
step 388 sets NEXT, and proceeds to step 369, herein
before described. If it does qualify as "next,” signal
NEXT is set in step 389 and the program advances to
terminal 390 in FIG. 200. If step 386 determines that
the car is "next,' the program also advances to termi
nal 390.
From terminal 390 in FIG. 20O, the “next' car is ex

amined in step 391 to see if the doors should be held
open. If they should, step 392 checks the door timer,
and if it has not timed out the program goes to terminal
370 (FIG. 20B). If the door timer has timed out, as de
termined by step 392, step 393 checks to see if the car
is moving. If it is, the program goes to terminal 370. If
it is not moving, step 394 checks for car calls above the
advanced car position. If there are no car calls above,
step 395 checks to see if the car doors are open. If the
car doors not open, the program goes to terminal 370
via step 369, hereinbefore described. If they are open,
step 396 determines if indicator STRP is set, indicating
the safety ray beam associated with the door has been
unbroken for four consecutive seconds. If indicator
STRP is set, step 397 sets signal AVAD and the pro
gram goes to terminal 370 via step 369, and if STRP is
not set, the program goes from step 396 to terminal 370
via step 369.

If step 394 determined that there were car calls
above, the master car call reset signal MCCR is
checked in step 398 to see if it is set. If it is set, indicat
ing car calls cannot be accepted by the car, the pro
gram goes to terminal 370. If it is not set, indicating car
calls may be registered, step 399 sets AVAD and
checks indicator ZCCI in step 400 to see if a car call
has been registered in the car. If a car call has been reg
istered, the safety ray indicator STRP is checked in step
401. If it is set, indicating an unbroken beam for 4 sec
onds, the door is set normal in step 402, signal MCCR
is set in step 403 (FIG. 20D), and the program goes to
terminal 384. If step 400 finds ZCCI not set, step 404
sets ZCC and also sets the timer NXTIM which con
trols the time interval before the car gets the main floor
start command. The program then advances to termi
nal 405. If indicator STRP was not set in step 401, the
program also advances to terminal 405.
From terminal 405, the program checks timer

NXTEM for timing out in step 406. If it has timed out,
the program goes to step 402, hereinbefore described,
and if it has not timed out step 407 checks to see if the
car is on down peak, and if it is, the program goes to
step 402. If it is not on down peak, step 408 determines
if the car weight is over 50 percent of its capacity. If it
is over 50 percent of its capacity, step 409 sets the up

10

15

25

30

35

40

45

50

55

60

65

34.
peak timer UPTIM and the program goes to step 402.
If the car weight is less than 50 percent of its capacity,
the program goes to step 403.
Program branches which enter terminal 370 in FIG.

20B are now checked in step 40 to see if the car satis
fies the requirements of meeting a main floor demand
(MFD), for example, is the car AVAD and the at the
main floor, or will it shortly be at the main floor be
cause of its travel and service direction? If the car qual
ifies it is counted by incrementing counter ZMDC in
step 411, and the program advances to step 412. If it
does not meet the MFD requirements, the program
proceeds directly to step 412.
Step 412 checks to see if the advanced car position

is the main floor, and if so, it is counted in step 413 by
incrementing ZNMC, and if not, the program advances
to terminal 414. If the advance car position is at the
main floor and not moving, as checked in step 415, or
moving but not decelerating, as checked in step 416,
the program goes to terminal 414. If the advanced car
position is at the main floor, and the car is moving and
decelerating, indicating the car is just arriving at the
main floor, signals MFX, SYSMF and ASG are set, and
the assignment register CRA of the car is cleared in
step 417. The program then goes to terminal 414.
From terminal 414, the car is checked in step 419 to

see if it has a PARK assignement. If it does, step 420
sets the car not available according to the dispatcher
(AVAD is set), and the program proceeds to terminal
421. If the car does not have an assignment PARK, step
419 proceeds to step 422 which checks to see if the car
is assigned to a demand. If it is assigned to a demand,
step 423 determines if it should retain the assigned sta
tus by determining if the car has answered its first call
since its assignment. If it has not answered its first call
it should maintain the assigned status and the program
goes to step 424 in FIG. 20D. If the car has answered
the first call of its assignment, it would not retain the
assigned status, and step 425 sets both ASG and
ZACLBD to flag program ACL to process all the calls
in the call table, as this car is now a busy car which may
be given zone assignments, i.e., calls may be allocated
to it.
The program then goes to terminal 421, and the car

is checked for a change in zone in step 426. If it has not
changed zone, the program goes to terminal 424. If it
has changed zone, step 427 sets the zone code and also
sets the indicator ZACLBD since this is an event re
quiring processing of all the calls in the call table CL
the next time subprogram ACL runs. The program then
goes to terminal 424.

If step 422 found the car was not assigned, step 428
checks to see if the car is AVAD. If it is not AVAD,
step 429 determines if the car has been selected to be
the next car to leave the main floor. If it is "next,' the
program goes to terminal 336, hereinbefore described.

If the car is not AVAD and not "next,” step 430
checks to see if the car was AVAD the last time CSU,
ran. If it was not, the program goes to terminal 421,
hereinbefore described. If it was AVAD on the last run,
the program goes to step 335, hereinbefore described,
to set the signals listed therein.

If step 428 determines that the car is AVAD, step
431 checks to see if the advanced car position is at the
main floor. If it is not, step 432 determines if the car is
expressing to the main floor. If it is not, the program

3,851,734
35

goes to terminal 433. If it is expessing to the main floor,
signal AVAD is set in step 434 and step 435 in FIG.

36
corridor calls. If NTOD is positive, the program ad
vances to step 452 which sets the assignment mode nor

20D checks to see if the car is in the main zone down .
(zone 6). If it is not in this zone, the program goes to
terminal 436. If it is in zone 6, step 437 sets the car for
the main floor park assignment, with both the travel
and service signals TASS and SASS set to down, and
with the assignment mode 00 to reject corridor calls.
The program then goes from step 437 to terminal 336,
hereinbefore described.

If step 431 in FIG. 20B finds the advanced car posi
tion is at the main floor, the up peak indicator UPK is
checked in step 438. If the up peak indicator is not set,
the program goes to terminal 433. If the up peak indi
cator is set, step 439 determines if the number of cars
at the main floor, excluding those with a basement as
signment, is greater than two. If indicator ZNMC is
greater than two, the program goes to terminal 433. If
indicator ZNMC is not greater than two, step 440 sets
AVAD, and step 441 clears the car assignment register
CRA and the extra word shown in FIG. 14, and sets the
zone equal to zero, the zone for a car with no assign
ment. The program then proceeds to step 403 in FIG.
20D, and terminal 384, hereinbefore described.
From terminal 433 the program goes to step 442

which increases the number of available car indicator
NAC. by one, and then step 443 determines if this
AVAD car was AVAD on the previous running of
CSU. If it was not, the program advances to step 441,
hereinbefore described, and if it was AVAD on the pre
vious running, the program goes to terminal 384 in
FIG. 20D via step 403, hereinbefore described.
An analysis which arrives at terminal 384 in FIG.

20D sets the assignment mode 00 and sets ASGN to
logic one in step 444, and advances to terminal 445.
The program, from terminal 445, advances to step 446
which asks the question "are the number of available
cars plus the number of cars at the main floor equal to
twice the number of cars in the system?' If the answer
is no, the program goes to terminal 336, hereinbefore
described. If the answer is yes, step 447 determines if
there are any demands in the system. If there are none,
step. 448 initiates a mid-building park for the car and
sets AVAD and ASGN, and the program returns to ter
minal 336. if step 447 locates a demand, the program
goes to terminal 336 instead of to step 448.
A program branch arriving at terminal 424 in FIG.

20D checks in step 449 to see if the car assignment reg
ister CRA has a floor assigned therein. If it does have
a floor assigned in CRA, step 450 provides the address
for the floor as signal FAD0-FAD6, placing the signal
in output word OW0.
Step 451 then checks to see if the service assignment

SASS is up. If the answer is no, step 452 sets the assign
ment mode normal, the door mode normal, and the lat
ern mode normal, and sets PARK and STT, before ad
vancing to terminal 445.

If step 45 determines that SASS is up, step 453 de
termines if the advanced car position is equal to or
greater than the main floor. If it is not, the program ad
vances to step 452. If it is, step 454 checks to see if the
car is on down peak, and if it is not, the program goes
to step 452. If the car is on down peak, step 455 checks
the number of timed out down calls. If indicator NTOD
is negative, the quota for going into up call bypass is
reached and the program goes to terminal 384 and to
step 444 which sets the assignment mode 00, rejecting

O

5

20

25

mal, able to 'see' corridor calls ahead of its service di
rection.

lf step 449 determined that a floor was not assigned
in the car assignment table CRA of the car being con
sidered, step 456 checks to see if the car has a base
ment assignment or a basement car call. If it is a base
ment car, step 457 determines if the advanced car posi
tion of the car is at the main floor or above. If its ad
vanced car position is below the main floor, the pro
gram goes to terminal 336 hereinbefore described. If
the advanced car position is at the main floor or above,
step 458 sets STT and PARK, it provides a main floor
and below assignment, it sets the car assignment for
down travel and down service, and sets the door and
hall lanterns normal. The car is checked in step 459 to
see if it is moving. If it is not moving, the program goes
to terminal 336. If it is moving, step 460 sets the car
ASGN and then goes to terminal 336.

If step 456 determines that the car is not a basement
car, step 461 checks to see if the advanced car position
is at the main floor. If it is not at the main floor the pro
gram goes to terminal 436, hereinbefore described. If
the advanced car position is at the main floor, step 462
checks for car. calls above. If there are no car calls
above, the program goes to terminal 436. If there are

30

35

car calls above, the program goes to terminal 445,
hereinbefore described. This completes a car status
analysis which may be used for this function in program
CSU.

FIG 21

FIG. 21 is a flow chart of subprogram TNC, which
may be used for function 164 shown in block form in
FIG. 4. Subprogram TNC, which tabulates new calls,
starts at terminal 470 and step 471 initializes the sub
program for scanning for up calls. The corridor call

40

45

50

55

60

65

registers load their call information directly into the
core during cycle state VI by direct memory access,
with the core addresses being sequential in the order of
the floors of the building. The up calls are located at a
predetermined bit of each call word in the core, and
step 472 loads the first call word into the accumulator
to examine this bit. If an up call is registered, deter
mined by step 473, a bit is set in a 12-bit word YCALL
in step 474. Otherwise, step 474 is skipped. Word
YCALL is a variable used to provide a call record word
for comparison with the previous call record word CLR
to obtain the call change record CCLR. The word
YCALL then becomes the new CLR word. Steps 475,
476 and 477 go through 12 floors of the building and
then, in step 478, exclusive OR's the word YCALL and
the previous call record word CLR for the same floors
and the result is stored in the call change record CCLR.
Since YCALL is now the new CLR word, YCALL may
be set to zero to process the next group of 12 floors.
Step 479 then returns to step 472 via step 477 to check
the next 12 floors. When all floors of the structure have
been checked, step 479 advances to step 480 which
asks if down calls have been checked. Since only up
calls have been checked so far, the program advances
to step 481 to set the address pointer for scanning the
core addresses for down calls, looking at the down call
bit of the call words. The process described relative to
up calls in then repeated for down calls until step 479

3,851,734
37

finds that all floors have been checked for down calls.
Step 480 then advances the program to step 482.
Step 482 sets counter YNCLO to the number of calls

in the call table CL, and then step 483 prepares to scan
the call change record CCLR for down calls. Any bit
set in CCLR indicates a change, i.e., either a cancelled
call or a new call. Therefore, step 484 scans CCLR
until it finds a bit which has been set. When a set bit is
found, step 485 checks to see if it is an up call from the
main floor. Since we are first processing down calls, it
will not be a main floor up call and the program ad
vances to step 486.
Step 486 determines if the call is in the call table. It

it is, the set bit in CCLR indicates the call has been an
swered, and the call is removed from the call table CL,
counters NCL and YNCLO are decremented, and the
call is removed from any car assignment register CRA
which may currently contain the call, by steps 487,488
and 489, respectively, and the program returns to step
484 to look for another set bit in CCLR.

If step 486 determines that the call is not in the call
table CL, the set bit indicates a new corridor call, and
step 490 adds the call to the bottom of the call table
CL, setting the zone and timer as shown in the two call
words for each call in FIG. 8. Step 491 increments
counter NCL, to reflect the added call, but counter
YNCLO is not incremented since this call has not yet
been processed by program ACL. The program then
returns to step 484 to look for the next set bit in the call
change record CCLR.
When no further set bit is found, or if there were

none to start with, the program advances to step 492
which checks to see if the call change record CCLR has
been processed for up calls. Since up calls have not yet
been processed, step 493 initializes for up calls and the
program returns to step 484. Step 485 checks to see if
a set bit indicates a main floor up call, and if so step 494
changes the indicator MFU to the opposite condition
of what it presently is. If it was a logic zero, it is set to
a logic one to indicate a call. If it was a logic one it is
set to logic zero to indicate the call has been answered.

The remaining portion of the up call change record
CCLR is processed in the same manner described rela
tive to down calls in the call change record. When no
further set bit is found, or if none were found to begin
with, step 492 advances to step 495 which places sub
program ACL into bid and exits the program at termi
nal 496 to return to terminal 228 of the priority execu
tive. Since subprogram ACL is the highest priority pro
gram now bidding to run, even if CSU put ACR into
bid, program ACL will now run.

FIGS. 22A-22C

FIGS. 22A, 22B and 22C may be assembled to pro
vide a flow chart for the strategy program ACL, shown
as block 168 in FIG. 4. The function of subprogram
ACL is to allocate corridor calls to suitably conditioned
cars already busy with the task of serving calls for ele
vator service, or to create a demand signal relative to
a call which cannot be so allocated. This program does
not assign available cars to demand calls, as that func
tion is performed by subprogram ACR when a demand
exists, determined by ACL, and there is an available
car which can be assigned to this demand, determined
by CSU, which then puts ACR into bid.

10

5

20

25

30

35

40

45

50

55

60

65

38
Subprogram ACL starts at terminal 500 and then im

mediately checks flag ZACLBD in step 501 to see if
CSU found an event which indicates that the whole call
table CL should be processed, as opposed to only pro
cessing new calls which were added to the bottom of
the processed calls in the call table CL by subprogram
TNC. If flag ZACLBD is not set, step 502 sets the ad
dress pointer to the first new call, Since each call has
two words in the call table, the address of the first new
call is the address PCALLO Of the first call plus twice
the number of calls in the call table (2YNCLO).

If ZACLBD is set, all demands are reset in step 503
and step 504 sets the pointer to the first call in the call
table CL. Steps 502 and 504 both advance to step 505
which sets the address of the second word of the first
call to be considered.
Step 506 again checks indicator ZACLBD, and if it

is not set, step 507 sets indicator FDCL to zero, as only
new calls will be processed, which omits the portion of
the program relative to highest down call strategy. The
program then advances to terminal 508.

If step 506 finds ZACLBD set, indicating all calls will
be processed, the highest down call strategy will be
used, and step 509 sets FDCL to logic one, it sets indi
cator MZDSWP to zero, which indicator is also used in
the highest down call strategy, and it sets indicator
SPMCR to zero, used to indicate when a zone 6 unas
signed (ASG) car has been given a down corridor call.

Step 509 then advances to step 510 which orders the
call table CL, using any of the well known sorting tech
niques, to place the highest call in the building at the
top of the list, and the rest of the calls in order as they
appear in the building when proceeding downwardly
from the highest call registered. The program then ad
vances to terminal 508.
From terminal 508, the program goes to step 511

which examines the contents of the address of the first
word PCLO of the call, which may be the first call in
the call table, or the first new call, depending upon
whether ZACLBD is set. If the contents of address
PCLO is not zero, there is a call at this address and step
512 sets the zone mask ACRMSK for car selection, and
CALZON to the zone of the call, taken from bits 0,
and 2 of the first call word.
Step 513 checks CALZON to see if the call is for the

basement zone (zone as determined from FIG. 15).
If it is for the basement zone, step 514 runs the base
ment program and then advances to terminal 515.
When a call has been processed, the program always
returns to terminal 515 to start the selection of the next
call, with the addresses of the two words of the next call
being established in step 516. The program then re
turns to terminal 508 to examine the contents of the ad
dress of the first word of this next call. The basement
program, for example, sets predetermined require
ments for a basement car, and finding such a car would
set the signal BSMT for this car to a logic one. If such
a car is not found, it would create a demand for the
basement by setting bit number one in DEMIND asso
ciated with a basement demand B. In either event, the
program would return to terminal 515 as described.

If step 513 determines that the call zone (CALZON)
is not the basement zone, step 517 sets the variable
ACLFLR equal to the call floor and advances to termi
nal 518.

3,851,734
39

The program then advances from terminal 518 to
step 519 which checks bits 0 and 1 of the second call
word to see if the call is a demand, and to see if a car
has been assigned to this demand. If the call is an as
signed-demand call, the program advances to terminal
520. If the call is any other combination besides an as
signed-demand call, step 521 arbitrarily sets the call as
a demand call, but unassigned (ASG), regardless of
what the combination actually is. The program then ad
vances to terminal 520.
Step 522 arbitraily sets the variable ACLOCR to

minus one. This variable will later be set to the car
number of the closest suitable car found to the call
floor, and will be changed to the car number of a closer
suitable car, as other cars are considered and closer
cars found. Step 522 arbitrarily sets the variable ASDIF
to 128. ASDIF will later be set to the call floor minus
the advanced car position of the closest suitable car
found, and will be changed as required when closer
suitable cars are found. Step 522 also sets the variable
X1 to the number of cars in the elevator system. The
program then advances to terminal 523 (FIG. 22B),
which is the terminal the program returns to each time
it wishes to consider another car relative to the specific
call being considered.
Step 524 then sets X1 to X1 minus one, since the

highest number assigned to a car is one less than the
maximum number of cars in the elevator system, when
assigning numbers to cars starting with zero.
Step 525 is used to detect when all of the cars have

been considered relative to a specific call, advancing to
terminal 526 when it is considering a car, and to termi
nal 527 when there are no further cars to consider.

If a car is being considered, terminal 526 advances to
step 528 to provide the address for obtaining informa
tion relative to the car being considered, and step 529
sets the variable ACLMCR equal to the call floor minus
the advanced car position of the car being checked.
Step 530 checks to see if the car is both in service and
not bypassing corridor calls. If the car is not in service,
or if it is in service but it is bypassing corridor calls, the
program returns to terminal 523 to consider the next
car, as this car is not suitable for any call regardless of
its location in the building or its service direction.

If the car passes the "in service' and "not bypassing'
test of step 530, it is then checked in step 531 to see if
mask ACRMSK for car selection exposes the zone of
the car (CARZON). If the car does not pass this test,
i.e., it does not have the same zone as the call being
considered, the program returns to terminal 523 to
consider the next car. It will be noted that only busy
cars can be considered, as an available car without an
assignment is given the code of zero (see FIG. 15). The
zone of a busy car is the zone of its advanced car posi
tion, while the zone of an assigned car, a car which has
not started to decelerate to answer the first call after
being assigned to a demand, has the zone of the call it
is assigned to answer.

If the car passes the test of step 531, we already know
that it has the proper service direction for the call, be
cause the zone also identifies the service direction. The
program then advances to step 532 which checks the
service direction of the call. If the call is for up service,
step 533 runs the up call program and then returns to
terminal 523 to consider another car. The up call pro
gram is not shown in detail, as it may be very similar to
the down call program, if desired, or as in the usual

O

5

20

25

30

35

40

45

50

55

60

65

40
case, it may not be as complicated as the down call
strategy. For example, the up call program may follow
the strategy set forth in U.S. Pat. NOS. 3,292,736 and
3,256,958, both of which are assigned to the same as
signee as the present application. In general, if the
ACLMCR is equal to or greater than zero, the ad
vanced car position is at or below the floor of the call,
and the car is therefore suitably conditioned for the up
call. It is then just a matter of storing the car number
and position of the closest suitably conditioned car to
the call, and updating it as a closer suitable car is found.
After the up call program in step 533 processes a car
relative to a call, it returns to terminal 523 to process
the next car. :

If the call being considered in step 532 is for down
service, the program advances to step 534 which tests
the call to see if the call is a demand call and whether
a car has been assigned thereto. If it is a demand call
and a car has been assigned to the demand, it will be
referred to as an assigned-demand call. If it is an as
signed-demand call, the car is checked in step 535 to
see if this car is an assigned car, i.e., a car assigned to
a demand which has not yet started to decelerate to an
swer the first call of the demand assignment. If the car
is an assigned car, step 536 checks to see if the floor the
car is assigned to is the same as the floor of the call
presently being considered. If it is, then the call is al
lowed to remain with this car, since the car is already
in the process of answering the call, and the program
advances to terminal 537 (FIG.22C) and to step 538
which sets indicators FDCL and MZDSWP to zero,
since if this call was the highest down call, the special
highest down call strategy need not be considered.
Since no further cars need be considered relative to this
call, step 538 returns to terminal 515 to select the next
call.

If step 534 determines that the call is an assigned
demand call but step 535 finds the car to be unassigned
(ASG) or if the car is assigned and step 536 finds that
the assigned floor is not the same as the call floor, then
the program returns to terminal 523 to consider the
next car. .

If step 534 finds that this down call is not an assigned
demand call, the program advances to step 539 which
checks to see if the car has already been given a zone
6 down call. If a car. is given a zone 6 down call, an indi
cator SPMCR is set, and if the whole call table is being
processed, an SPMCR car is not considered for another
down call. Step 540 checks to see if the whole call table
is being processed by checking indicator ZACLBD. If
the car is a SPMCR car, i.e., its indicator SPMCR is set,
and the whole call table is being processed, this car is
no longer considered for the call being processed and
the program returns to terminal 523 to check another
car. The strategy is to get as many cars working on zone
6 down calls as possible, in order to exhaust busy cars
in zone 6 and create a demand for an available car, or
cars to be assigned to zone 6 when the number of zone
6 down calls exceeds the number of busy cars serving
zone 6.

If the car is not a SPMCR car, or if it is and only new
calls are being considered, the program advances to
step 541 which checks to see if the car is expressing to
the main floor. If the car is expressing to the main floor,
step 542 determines if the up peak indicator UPK is set.
If it is, this car is no longer considered for the call and
the program advances to terminal 523 to consider an

3,851,734
4.

other car. If the car is expressing to the main floor but
the up peak indicator is not set, step 543 determines if
the call being processed is timed out. If it is not timed
out, this car is no longer considered for the call and the
program returns to terminal 523.

If the car is not expressing to the main floor, or if it
is expressing to the main floor and the up peak indica
tor is not set and the call is timed out, the program ad
vances to step 544 to check the condition of indicator
MZDSWP. This indicator will only be set when the
highest down call cannot be allocated according to a
first set of conditions, and provides the opportunity to
try to allocate the highest down call according to a sec
ond set of conditions before leaving subprogram ACL.
Since we haven't determined that this call cannot be
allocated at this point, indicator MZDSWP will not
have been set, even if this is the highest down call regis
tered. Therefore, the program advances to step 545.
Step 545 determines if the car has been assigned to

a demand call by subprogram ACR. If it has been so as
signed, this car is no longer considered for this call and
the program returns to terminal 523. A car retains its
assigned status once it is given an assignment by pro
gram ACR until it starts to decelerate for the first call
of the demand assignment, at which time it becomes a
busy car to which program ACL may allocate corridor
calls.

If the car is not in the assigned status, step 546 checks
to see if ACLMCR, formed in step 529, is greater than
zero. If it is greater than zero, the advanced car position
is on the wrong side of the call, i.e., below this down
call and the program returns to terminal 523 to con
sider another car. If the call floor minus the advanced
car position is not greater than zero, i.e., zero or nega
tive, then the advanced position of the car is either at
or above the floor of the call, and we have now found
a suitable car for the call.
When a suitable call is found for a call, it is now

checked to see if it is the most suitable car found so far,
or if a more suitable car was found during checking a
higher numbered car relative to this call. The basis for
comparing suitability to find the most suitable car, is
which car has an advanced car position closer to the
call floor. This function is performed by first obtaining
the absolute value of ACLMCR without regard to its
sign, which is performed in step 547 (FIG.22C), and
then checking in step 548 to see if ASDIF minus
ACLMCR is greater than zero. ASDIF is the difference
between the call floor and the advanced car position of
the closest car to the call floor found so far. If this is the
first suitable car found, ASDIF will still be 128, since
it was arbitrarily set to this value in step 522. In this in
stance, ASDIF minus ACLMCR will be greater than
zero, and the program advances to step 549. If should
be noted that if a suitable car was previously found and
the present suitable car is closer to the call floor that
ASDIF minus ACLMCR will also be greater than zero,
and in this instance the program will also advance to
step 549. Thus, the program advances to step 549 when
the car being considered is the most suitable car found
so far. -

Step 549 then determines if this "most suitable car so
far' is the first suitable car found, or a more suitable
car than one previously found to be suitable. It does
this by checking ACLOCR relative to zero. If it is nega
tive, as it was arbitrarily set in step 522, this is the first
car found to be suitable and the program advances to

42
step 550 which sets ACLOCR to the car number of the
car presently being considered, and sets ASDIF to that
of ACLMCR. Thus, a future suitable car will be com
pared with this car to determine which is more suitable.
The program then goes to terminal 523 to consider an
other car relative to this call. If a suitable car was previ
ously found but the present car is more suitable,
ACLOCR will not be negative, so step 549 will go to
step 551.

10

15

20

25

Step 551 checks to see if the car which was found to
be less suitable has a car call by checking the signal
CALL. If it does not have a car call and the floor call
now being considered was allocated to the car on a pre
vious running of program ACL, the allocation of this
floor call to the less suitable car is removed by remov
ing the call from its assignment table CRA. The strat
egy is to unclutter the call registers of the cars by re
moving call allocations they will not answer, expediting
their return to the availability status, which allows them
to be assigned to demands. However, if the car has a
car call, it will not be going back to the available status
until it serves the car call, and since the car is suitable
for the floor call being processed, it is allowed to retain
the floor call allocation in the event the more suitable
car is delayed in answering the call for some reason.
Assuming that a suitable car was already found for

the call being processed during the present running of

30

35

40

45

50

55

60

65

program ACL, or during a previous running thereof,
and that step 548 determines that the previous suitable
car is more suitable than the car now being considered.
In this instance, step 548 will advance to step 552. If
this call had been allocated to the car now being con
sidered during a previous running of subprogram ACL,
step 552 removes this call from its assignment table
CRA if the car has no car calls. The reason behind this
strategy is the same as explained for step 551. The pro
gram then returns to terminal 523 to consider another
car. The up call program in step 533 may use steps 547
through 552 to find the most suitable car for an up call
in the same manner as just described for down calls.
Once all the cars have been considered relative to a

call, the number of the most suitable car found will ap
pear in ACLOCR, and the difference between the ad
vanced car position of this car and the call floor will ap
pear in ASDIF.
When all cars have been considered relative to a call,

step 525 determines this when X1 becomes negative,
and the program advances to terminal 527 and to step
553. Step 553 checks the service direction of the corri
dor call presently being considered. If the call is for up
service, the program advances to the up call program
in step 533. This part of the up call program checks to
see if a suitable car was found by checking to see if
ACLOCR is still a negative 1. If it is, a demand will be
registered for the zone of the call and a corresponding
bit set in DEMIND. If ACLOCR is not negative, a suit
able car was found and its assignment table CRA is set
to the call floor. - - -

If step 553 determines that the call is for down ser
vice, the program advances to step 554 (FIG.22C)
where the call is checked to see if is an assigned
demand, call. If the answer is yes, it is immediately
known that no car was found for this call as when step
536 found a car assigned to the floor of an assigned
demand call the program advanced to step 538 and to
terminal 515 to consider the next call. Thus, a car was
not found assigned to the floor of an assigned-demand

register

3,851,734
43

call when an assigned-demand call reaches step 554. If
the call is an assigned-demand call, step 554 returns the
program to step 521 which arbitrarily sets the call as a
demand call but unassigned. All cars are looked at
again relative to this call, but this time in an attempt to.
find a suitable car, rather than a car assigned to the
floor of the call. Thus, this time the program will
branch from step 534 to step 539 and follow the prece
dure hereinbefore described for ASG and DEM calls.
When all cars have been considered, the program will
return to step 554.

If step 554 finds that the call is not an assigned
demand call, step 555 checks to see if a suitable car was
found for the call by checking ACLOCR. If ACLOCR
is not negative, a suitable car was found and the call is
set ASG and DEM by step 556 to indicate that it is a
call allocated to a car by subprogram ACL, as opposed
to a demand call to which a car was assigned by subpro
gram ACR.

Since a suitable car was found, step 557 sets indicator
FDCL and MZDSWP to a logic zero, since the highest
down call strategy will not now apply to this running of
program ACL. The bit of SPMCR corresponding to the
most suitable car found (ACLOCR) is set, to prevent
this car from being allocated another zone 6 down call
when the whole call table is being processed, as herein
before described relative to steps 539 and 540.
Step 558 puts the floor of the call into the assignment

CRA of the most suitable car found
(ACLOCR), and the program returns to terminal 515
to consider the next call in the call table CL. The up
call program 533 may use the same step 558 when it
finds a suitable car for an up call.

If step 555 finds ACLOCR still negative, a suitable
car was not found for the call and the program ad
vances to step 559 to see if this call is the highest down
call by checking indicator FDCL. If the whole call table
is being processed, and this call is the highest down call
registered, FDCL is set to logic one by step 509. If indi
cator FDCL is not set, step 560 creates a demand for
the main zone down (Zone 6), which appears in DE
MIND (bit 6), and the program goes to terminal 515 to
consider the next call.

If indicator FDCL is set, special treatment is given
this highest down call by changing the requirements for
a suitable car, and the cars are checked again relative
to the call. However, this is not done unconditionally.
Step 561 first checks to see if there are any available
cars to assign to a demand. If there is an available car,
the program allows the unassigned highest down call to
create a demand by branching the program to step 560
and then returning to terminal 515 to take the next call.
The strategy here is to prevent two elevator cars from
being made to traverse substantially the full length of
the building unnecessarily. In the prior art the assign

10

5

20

25

30

35

40

45

50

ment to answer the highest down call persists in that if
while an assigned car is moving to answer the highest
down call, another down call is registered which is still
higher, the cargoes to this new higher call and the orig
inal call becomes a demand which is given to the next
available car. In this instance, an available car which is
close to the last registered highest down call will not be
assigned to this down call, as the assignment of the al
ready assigned car will be changed to this higher down
call. The available car which is close to this last regis
tered highest down call may then be assigned to the
down call originally assigned to the first car. Thus it will

60

65

44
be seen that both of these cars may travel unnecessarily
long distances to reach their assigned floors. The pres
ent strategy assigns the highest down call to the closest
car, and then when a new higher down call appears, the
system is interrogated as to there being any more avail
able cars. If there are no available cars, this new higher
down call is given to the assigned car traveling to the
call which was originally the highest down call. If there
is an available car, the assignment is not changed. The
program produces another demand, assigning this call
to the closest available car, while still maintaining the
priority of the highest down call.
When there are no available cars, as determined by

step 561, the program advances to step 562 which
checks to see if the indicator MZDSWP is set. Step 509
reset MZDSWP by setting it to zero, and thus
MZDSWP is not set at this point. The program then ad
vances to step 563 which sets MZDSWP by setting it to
a logic one. Step 563 also sets AHIFLR arbitrarily to
the main floor, with AHIFLR being subsequently set to
the floor of the advanced car position of the highest car
found. AHICAR is also arbitrarily set to minus one,
with AHICAR being subsequently set to the car num
ber of the highest car found. A demand for the main
zone down (zone 6) is also registered by step 563,
which appears in DEMIND. . -
The program now returns to terminal 518 to process

this unassigned highest down call for a second time.
This down call is processed according to an unassigned
demand call, as hereinbefore described, until reaching
step 544. If a car passes all of the tests up to step 544,
step 544 now finds that MZDSWP is set, having been
set by step 563 to signify the second processing of an
unassigned highest down call. The program now
branches from step 544 to step 564 which picks out the
cars which are assigned to demand calls. It will be re
membered that the first processing of this call elimi
nated such cars from consideration in step 545, consid
ering only unassigned cars. On this second processing,
only cars assigned to a demand call are considered. If
step 564 finds the car unassigned it advances the pro
gram to terminal 523 to look at the next car.

If the car is assigned, the advanced car position of
this car (ACRFLR) is checked in step 565 to see if it
is the highest assigned car considered so far (HIFLR).
If this is the first assigned car found in this reprocessing
of the highest down floor call, and it is above the main
floor, it will be the highest car since HIFLR was arbi
trarily set to the main floor. If ACRFLR is not greater
than HIFLR the program goes to terminal 523 to con
sider the next car. If this is the highest car found so far
AHICAR is set to the car number of the car presently
being considered, and HIFLR is set to the floor of the
advanced car position of this car in step 566. When all
cars have been considered AHICAR will thus contain
the car number of the highest assigned car in the build
ing and HIFLR will contain the floor of the advanced
car position of this car.
When all cars have been considered relative to this

call, the program will follow steps 553,554, 555, 559
and 561 to step 562. Step 562 will now find MZDSWP
set since it was set by step 563 to mark the second pro
cessing of the highest down call. The program then
goes to step 567 which checks to see if a car was found
during the second processing of the highest down call.
If no car was found, AHICAR will still be minus one
due to step 563, and the program advances to step 538

3,851,734
45

to reset FDCL and MZDSWP, and then it will go to ter
minal 515 to take the next call.

If a car was found AHICAR will be equal to the num
ber of the car, and the program advances to step 568.
Step 568 determines the location of the car relative to
the call floor by subtracting AHIFLR from ACLFLR.
If the difference is greater than zero, the floor of the ad
vanced car position of the car is below the highest
down call. If the advanced car position is below the call
floor, step 569 checks the travel assignment TASS. If 10
the travel assignment is down, the program goes to the
next call via step 538. If the travel assignment is up,
step 570 checks to see if the car has started to deceler
ate. If it has, the program goes to the next call via step
538. If it hasn't, it is not too late to change the car's as
signment, and the program advances to step 571, which
is where the program goes when step 568 determines
that the advanced car position of the car is above the
call floor. Thus, an assigned car traveling upwardly for
a down floor call will have its assignment changed to
the higher registered down floor call, and since only
one car is assigned to each down floor call in zone 6,
the previously assigned call will become a demand the
next time this call is processed by subprogram ACL, if
the call cannot be allocated to a busy car.
Step 571 checks to see if the call presently being con

sidered, i.e., the highest down call registered, is timed
out. If it is not timed out, step 572 determines if the call
the car is presently assigned to answer is timed out. If
it is the program returns to terminal 515 via step 538
to consider the next call. If the call presently being con
sidered is timed out, or if it is not timed out and the call
the car is assigned to is not timed out, the program ad
vances to step 573 which sets the car number of the

15

20

25

30

closest suitable car (ACLOCR) to the car number of 35
AHICAR set in step 566. The call is also set assigned
and a demand by step 573 since it is being given to an
assigned car. The program then goes to step 557 to
reset FDCL and MZDSWP and to set SPMCR, and step
558 then puts the floor of this highest down call into the
assignment register CRA Of this car (ACLOCR). The
original down call assigned to this car will not have a
car found to be assigned to its floor during the next run
ning of program ACL and an attempt will then be made
to allocate the call to a busy car or a demand will be
created for it to which an available car will be assigned.

When all of the calls to be processed have been com
pleted, step 511 finds the contents of PCLO now equal
to zero, and the program then sets ZACLBD to zero in
step 574, and exits the program via terminal 575 to re
turn to the priority executive. Program ACL does not
have to put subprogram CHECK into bid since this
function is accomplished by step 232 of the priority ex
ecutive, as hereinbefore described.

FIGS. 23A and 23B

FIGS. 23A and 23B may be assembled to provide a
flow chart of subprogram ACR, which may be used for
the function 172 shown in FIG. 4. The function of sub
program ACR is to assign available cars, i.e., those not
already busy serving a call for elevator service, to de
mands created by subprogram ACL when subprogram
ACL is unable to allocate a floor call to a properly con
ditioned busy car. As described in the second incorpo
rated application, the floor selector of an elevator car
provides a signal AVAS to the programmable system

40

45

50

55

60

65

46
processor when the car is in service but not presently
serving a call for elevator service. Signal AVAS is pro
vided when an in service car is not running or deceler
ating and its doors are closed. The system processor
then makes its own decision concerning availability,
providing a signal AVAD when the car is considered
available by the system processor for demand assign
ments.

As hereinbefore explained, program ACR only runs
when a demand is created by subprogram ACL, and
CSU determines that there is an available car which
can be assigned to the demand. Subprogram CSU puts
ACR into bid, but it will not run until programs TNC
and ACL have run, since ACR has a lower priority than
either of these subprograms. Thus, when subprogram
ACR is bid by subprogram CSU, it breaks the program
out of its first loop or cycle and directs it to the second
loop or cycle which includes ACR.
Subprogram ACR successively checks the different

types of system demands, in a predetermined order of
priority. Since when a demand is found, the program
for finding an available car for the demand, is in gen
eral, similar for each demand, only the timed out de
mand for Zone 6, i.e., main zone down, indicated in the
timed out demand word TODEM, and the demand for
the main floor, indicated in the demand word DE
MIND, will be described in detail.
More specifically, subprogram ACR starts at termi

nal 600 and step 601 checks indicator TOM, which
when set indicates the main floor timer MFTIM has
timed out. If TOM is set, step 602 then checks
SYSMFX, which when set, indicates there is a car ex
pressing to the main floor. If indicator TOM is set and
indicator SYSMFX is not set, the program advances to
step 603 which attempts to find a car for the main floor.
If a car cannot be found, the program may exit attermi
nal 604 (FIG. 23B) and return to the priority executive
since it is unlikely that a car could be located for any
other type of demand which might be registered. Or,
the program may be arranged to check certain other
types of demands and attempt to find a car if it finds
one of these demands registered. The complete pro
gram loop is so fast that there will usually only be one
type of demand registered for any specific running of
ACR. Thus, as a practical manner, when ACR finds a
demand and it cannot assign a car to that demand, the
program may immediately return to the priority execu
tive.

If indicator TOM is not set, or if set and indicator
SYSMFX is set, or if step 603 finds a car, the program
advances to step 605 which orders the call table CL in
the same manner described relative to step 510 in sub
program ACL. Step 606 checks TODEM for a timed
out demand in zone 6, i.e., a timed out main zone down
call. If bit 6 of TODEM, representing a timed out main
zone down demand MZD, is set, step 607 sets bit selec
tion masks LKA and LKO equal to binary 7 and binary
6, respectively, which are then and'ed and exclusive
or'ed with a call word in subroutine LOOK in step 608
to find a call of a certain type, and then see if the zone
of the call matches the zone of the demand, i.e., zone
6 in this instance.
FIG. 24 is a flow chart of subroutine LOOK which

may be used for step 608, which subroutine is entered
at terminal 609. Step 610 sets the variable PCLV equal
to the address of the first word of the call table
(PCALLO). Since step 605 ordered the call table, the

3,851,734
47

first word of the call table will be the highest call in the
building, and may be an up or down call. Step 611
checks the contents of PCLV. If the contents is equal
to zero, indicating no calls in the call table, step 612
then sets the accumulator equal to zero and returns to
program ACR via terminal 613.

If the contents of PCLV is not zero, step 614 checks
to see if the call in PCLV matches the look masks.
Since LKA was set to binary 7 in step 607, and 'ing a bi
nary 7 with the call word exposes bits 0, 1 and 2 of the
first call word, which bits have used to identify the
zone. LKO, set to binary 6, exclusive or's binary 6 with
the zone of the call. If they match, the call is a main
zone down call and step 615 places the call table ad
dress PCLV of this call word in the accumulator and
returns to ACR via terminal 613. If the call is not a
zone 6 call, for example it may be an up call, the pro
gram advances to terminal 616 and step 617. Step 617
sets PCLV equal to the address of the first word of the
next call in the call table and returns to step 611. This
cycling continues until either a zone 6 call is found,
which is placed in the accumulator by step 615, or all
calls are tested and no zone 6 call is found, which re
sults in step 612 placing zeros in the accumulator.
Step 618 of FIG. 23A checks to see if a zone 6 call

was found. If a zone 6 call was found it must now be
tested to see if it timed out, since we are looking for a
timed out zone 6 call. Step 619 performs this function,
and if the call is not timed out the progam returns to
terminal 616 of subroutine LOOK which advances to
the next call of the call table to continue the search for
a timed out zone 6 call. If the call is timed out the pro
gram advances to step 620 to see if the call has already
been assigned. If it has, the program returns to terminal
616 of subroutine LOOK to examine the next call in the
call table, as a car will already be in the process of an
swering an assigned call.

if step 620 finds that the call is not assigned, the floor
of the zone 6 call found is made the reference floor
REFLR in step 621. Step 622 then looks for the closest
car to this floor which is in service, available according
to the dispatcher (AVAD), and not assigned (ASG).
Step 623 determines if such a car was found, and if not
the program ACR returns to the priority executive via
terminal 604. If a car was found, step 624 sets OCRNO
to the car number of the car found. OCRNO is the car
number to which an assignment is to be made. Step 625

O

5

20

25

35

40

45

provides the binary address of the call floor, which will
be output to the car in question as signal FADO-FAD6,
and step 626 outputs the car assignment including the
floor address assignment mode MODO, MOD1 and
service assignment SASS.

If step 606 does not find a timed out demand in zone
6, or step 618 does not find a zone 6 call, or if a zone
6 call is found and step 623 finds a car to assign to the
call, the program advances to step 627.
Step 627 checks bit 4 of TODEM for a timed out de

mand in the low zone up, i.e., zone 4, using the conven
tion of FIG. 15. If bit 4 of TODEM is set, step 628 then
checks bit 4 of DEMIND to determine if a car has al
ready been assigned to zone 4. When a car is assigned
to a demand, the demand is removed from DEMIND,
but until the timed out call in the demand zone is an
swered, it will persist in TODEM. Thus, if in checking
TODEM in step 627 a zone 4 timed out demand is
found, step 628 is necessary to see if a car has been pre
viously assigned to this demand. If DEMIND shows a

50

55

60

65

48
zone 4 demand then step 629 finds the lowest up call
in zone 4, and then looks for the closest in service car
which is AVAD and ASG. If a car is found for this call,
the assignment is made to the car and the program ad
vances to terminal 630. If a car was not found, the pro
gram goes back to the priority executive via terminal
604.

If step 627 does not find a timed out demand in zone
4, or if one is found and step 628 does not find a de
mand in zone 4, the program also advances to terminal
630.
From terminal 630, step 631 checks bit 5 of TODEM

for a timed out demand in the high zone (zone 5). Find
ing a zone 5 timed out demand, step 632 checks to see
if a car has already been assigned to zone 5. If step 632
finds that a car has not been assigned to a demand in
zone 5, step 633 finds the lowest up call in zone 5, finds
the closest in service car which is AVAD and ASG, and
outputs the assignment. If a call is not found in step
633, or if a car is found, the program advances to termi
nal 634 (FIG. 23B). If a call is found but a car is not
found, the program returns to the priority executive via
terminal 604. If a timed out demand in zone 5 is not
found, or if one is found and a demand for zone 5 is not
found in DEMIND, the program advances to terminal
634.
From terminal 634, the program advances to step

635 which checks bit 6 of DEMIND for a Zone 6 de
mand. Finding such a demand, step 636 finds the call
and a car for the call if possible, advancing to terminal
604 and to the priority executive if a call is found but
no car, and to step 637 if it cannot find a zone 6 call.
The program also advances to step 637 if step 635 fails
to find a zone 6 demand.
Step 637 checks bit 2 of DEMIND for a main floor

demand. Finding such a demand, step 638 checks bit
2 of DEMAS to see if a car has already been assigned
to a main floor demand. If bit 2 of DEMAS is not set,
step 639 checks indicator LOBMZD to see if an AVAD
car has been assigned to zone 6, the main zone down.
If LOBMZD is not set, an AVAD car has not been as
signed zone 6, and step 640 sets the reference floor
REFLR to the main floor. Step 641 tries to locate the
closest available car, and finding such a car, as deter
mined by step 642, step 643 outputs the main floor as
signment. Step 644 sets bit 2 of DEMAS to indicate a
car has been assigned to the main floor demand, and
indicator LOBMZD is reset. If step 641 fails to find a
car, as noted in step 642, the program returns to the
priority executive via terminal 604. If step 637 fails to
find a demand for the main floor, or if it does and
DEMAS indicates a car has already been assigned to
the main floor demand, the program advances to step
645. If indicator LOBMZD is set (step 639) or a car is
found (step 642), the program advances to step 646.
Step 645 resets LOBMZD, and advances to step 646.

Step 646 checks bit 1 of DEMIND for a basement de
mand, and finding such a demand attempts to find a car
for the basement in step 647. If a car is not found, the
program returns to the priority executive via terminal
604. If a car is found, the program advances to step
648.
Step 648 checks bit 4 of DEMIND for a demand in

the low zone up, zone 4. Finding such a demand, step
649 locates the lowest up call of zone 4 and attempts
to assign a car to it. If step 649 fails to find a car, the
program returns to the priority executive via terminal

3,851,734
49

604. If a car is found, or if a zone 4 call cannot be lo
cated, the program advances, to step 650. Step 650
checks bit 5 of DEMIND for a zone 5 demand. Finding
such a demand, step 651 finds the lowest up call in zone
5, attempts to assign a car to the call, and retuns to the
priority executive via terminal 604. If step 650 does not
find a zone 5 demand, the program returns to the prior
ity executive via terminal 604.

PROGRAM LISTING ONE

For sake of brevity, a program listing filed with the
application has been cancelled from this specification,
but is included in the application on-file in the United
States Patent Office. The program strategy in this
program listing, except as modified, changed or
improved by this, or the co-pending applications set

5

10

15

forth under the heading “Cross-Reference to Re
lated Applications,' follows that disclosed in U.S.
Pat. No. 3,292,736 and/or U.S. Pat. No. 3,256,958,
which are assigned to the same assignee as the
present application.

In summary, there has been disclosed a new and im
proved elevator system, and method of allocating floor
calls and assigning cars to floor calls, which improves
the service provided by the elevator system. A new
floor call is either allocated to a suitably conditioned
car already in the process of serving calls for elevator
service, termed a busy or running car, or failing to find
such a car, the call becomes a demand call and is as
signed to a car which is not busy serving calls for eleva
tor service, termed an available car. The floor calls are
then periodically reprocessed, with the assigned de
mand category of call being handled differently than
calls which were originally allocated to a busy car. With
assigned-demand calls, an elevator car assigned to such
a call travels to the call floor without stopping for any
other calls. Thus, the strategy employed is to verify that
a car has been assigned to the call floor. If such a car
is found, the call retains its assigned-demand status and
the assignment to the car is not disturbed. If such a car
cannot be found, the call is treated as being unassigned
and is reprocessed, first by trying to allocate the call to
a suitably conditioned running car, and failing this, to
make it a demand call to which an available car is as signed.
Allocated calls are always treated as unassigned calls

when they are reprocessed, to determine if there is a
closer car which can be assigned to the call.
Calls are prevented from becoming lost in the system

by reinitializing the system each time all of the cars be
come available simultaneously. Thus, a registered call
for elevator service which the system for some reason
has lost, or has assumed erroneously that a car has been
assigned thereto and is therefore answered, will be reg
istered as a new call.
The highest down call strategy has been improved to

prevent unnecessary running through the building of
the elevator cars, while still retaining the priority of the
highest down call. Instead of changing the assignment
of an assigned car on its way to serve the highest down
call registered to a subsequently registered higher down
call, the system is poled to determine if there are any
available cars. If there are none, the car's assignment
is changed to the new higher down call. If there is an
available car, the car's assignment is not changed and
the closest available car is assigned to the subsequently
registered higher down call.

20

25

30

35

40

45

50

55

60

65

SO
What we claim is:

1. A method of allocating floor calls from a plurality
of floors of a structure to a plurality of elevator cars
mounted in the structure to serve the floors, comprising
the steps of:
providing call table means to which new floor calls
are added and answered floor calls are deleted,

periodically ordering the floor calls in the call table
means such that the floor calls appear in the call
table means in the order in which their associated
floors are located in the structure,

adding new floor calls received between ordering
steps to an end of the ordered floor calls,

providing an assignment register for each of the ele
Vator cars,

periodically processing only new floor calls located at
the end of the ordered floor calls in the call table
means by either allocating each new call to the as
signment register of an elevator car which is in the
process of serving a call for elevator service, or by
creating a demand signal,

periodically assigning elevator cars which are not in
the process of serving a call for elevator service to
floor calls for which a demand signal was created,

processing all of the floor calls in the call table means
following each ordering step, said processing step
including the steps of:

determining for each call if it is in the assignedde
mand category of (a) having had a demand signal
created for it, and (b) in response to the demand
signal an elevator car was assigned to the call,

verifying for an assigned-demand category call that
an elevator car has been assigned to the floor asso
ciated with the call,

proceeding to the next call when the verification step
affirms that a car has been assigned to the floor of
the assigned-demand category call,

considering the assigned-demand category call unas
signed when the verification step fails to affirm that
a car has been assigned to the floor associated with
the call,

processing an assigned-demand category call consid
ered unassigned by either allocating the call to the
assignment register of an elevator car which is in
the process of serving an allocated call for elevator
service, or by creating a demand signal,

considering floor calls not in the assigned-demand
category as unassigned,

and processing each of these floor calls considered
unassigned by either allocating the call to the as
signment register of an elevator car which is in the
process of serving a call for elevator service, or by
creating a demand signal.

2. The method of claim 1 including the step of re
moving all floor calls from the call table means when
all in-service elevator cars are in the category of not in
the process of serving a call for elevator service.

3. The method of claim 1 wherein the step of process
ing all of the floor calls in the call table means starts
with the end of the ordered floor calls representing the
highest call in the structure.
4. The method of claim 1 wherein the step of process

ing all of the floor calls in the call table includes the
steps of determining whether the floor call is an up
floor call or a down floor call, and when it is a down
floor call the step of processing the call to either add
it to the assignment register of an elevator car or to cre

3,851,734
S1

ate a demand signal includes the step of excluding ele
vator cars from consideration for call allocation when
they have already been assigned to answer a floor call
for which a demand signal was created.

5. The method of claim 4 including the step of deter
mining the highest down floor call, and when a suitable
non-assigned car cannot be found during the process
ing step of the highest down floor call, adding the step
of determining if there are any in-service cars not in the
process of serving a call for elevator service, adding the
step of determining the suitability of cars assigned to
answer a call for which a demand signal was created if
there are no cars in this category, and allocating the
highest down call to one of these assigned cars if a suit
able car is found.

6. The method of claim 5 wherein the step of deter
mining the highest down call is performed by starting
the processing of all of the floor calls in the call table
means at the end thereof which represents the top of
the structure, wherein the first down floor call will be
the highest down floor call.
7. A method of allocating floor calls from a plurality

of floors of a structure to a plurality of elevator cars
mounted in the structure to serve the floors, comprising
the steps of:
processing a down floor call by considering the eleva

tor cars relative to the call with a first set of re
quirements,

allocating a down floor call to an elevator car if the
processing step locates a car meeting the first set of
requirements and otherwise considering the call
unassigned, .

determining if an unassigned down floor call is the
highest down floor call registered, w

creating a demand signal for the unassigned down
floor call if it is not the highest down floor call reg
istered,

determining if there are any in-service elevator cars
in the available category of not being in the process
of serving an call for elevator service,

creating a demand signal for the unassigned highest
down floor call if there is a car in the available cate
gory, and assigning a car in the available category
to the call,

reprocessing the unassigned highest down floor call
with a second set of requirements if there are no
cars in the available category,

and allocating the unassigned highest down floor call
to an elevator car if the reprocessing step locates
a car meeting the second set of requirements, and
otherwise creating a demand signal for the call.

8. The method of claim 7 wherein the step of deter
mining if an unassigned down floor call is the highest
down floor call registered includes the steps of provid
ing call table means to which new floor calls are added
and answered floor calls are deleted, periodically or
dering the floor calls in the call table means such that
the floor calls appear in the call table means in the
order in which their associated floors are located in the
structure, and processing the ordered floor calls from
the end of the call table means representing the top of
the structure, such that the first down floor call en
countered is the highest down floor call registered.

9. The method of claim 7 wherein the first set of re
quirements used by the processing step includes the re
quirement that a car not be already assigned to a floor
call for which a demand signal was created, and the

52
second set of requirements used by the reprocessing
step eliminates this requirement.

10. The method of claim 7 wherein the step of allo
cating a down floor call to a car located by the process

5 ing and reprocessing steps allocates the call to the car
which is closest to the call floor if more than one car
is found which meets the first and second sets of re
quirements, respectively.

11. A method of allocating floor calls from a plurality
of floors of a structure to a plurality of elevator cars
mounted in the structure to serve the floors, comprising
the steps of:
providing call table means to which new floor calls
are added and answered floor calls are deleted,

providing an assignment register for each of the ele
Vator cars,

allocating calls in the call table means to said elevator
CarS,

determining when all in-service elevator cars are in
the available category of not bein in the process of
serving a call for elevator service,

and deleting any floor call in the call table means
when all in-service cars are in the available cate
gory.

12. A method of allocating floor calls from a plurality
of floors of a structure to a plurality of elevator cars
mounted in the structure to serve the floors, comprising
the steps of:
providing an assignment register for each of
Vator Cars,

processing new floor calls by allocating each new
floor call to the assignment register of an elevator
car which is in the process of serving a call for ele
vator service, or by creating a demand signal rela
tive to the call, -

assigning an elevator car not in the process of serving
a call for elevator service to a call for which a de
mand signal was created,

periodically reprocessing at least certain of the floor
calls, with said reprocessing step including the
steps of: •

determining for each call reprocessed if it is in the as
signed-demand category of having had a demand
signal created for it and in response to the demand
signal an elevator car was assigned to the call,

verifying for each assigned-demand category call that
an elevator car has actually been assigned to the
floor associated with the call, . .

considering the assigned-demand category call unas
signed when the verification steps fails to locate an
elevator car assigned to the floor of the call,

processing the assigned-demand category call consid
ered unassigned by either allocating the call to the
assignment register of an elevator car which is in
the process of serving a call for elevator service or
by creating a demand signal relative to the call,

considering as unassigned all reprocessed calls which
are not in the assigned demand category,

and processing each of these unassigned floor calls by
either allocating the call to the assignment register
of an elevator car which is the in the process of
serving a call for elevator service, or by creating a
demand signal relative to the call.

13. The method of claim 12 wherein the step of re
processing a floor call which is not in the assigned
demand category includes the step of locating the clos
est elevator car to the floor call having an advanced car

10

15

20

25

the ele 30

35

40

45

50

55

60

65

3,851,734
S3

position and service direction consistent with the floor
call location and request for service direction, and
which is already in the process of serving a call for ele
vator service.

14. An elevator system for a structure having a plu
rality of vertically spaced floors, comprising:
a plurality of elevator cars,
means mounting the elevator cars for movement rela

tive to the structure to serve the floors,
down floor call registering means operable for regis

tering a call for elevator service in the down direc
tion from each of a plurality of said floors, up floor
call registering means operable for registering a
call for elevator service in the up direction for each
of a plurality of said floors, car call registering
means for each of the elevator cars operable for
registering a call for each of a plurality of said
floors which may be desired by load in the associ
ated elevator car,

assignment register means associated with each of
said elevator cars operable to receive an assign
ment to serve predetermined floor calls,

control means associated with each elevator car said
control means being in a first condition when its as
sociated elevator car is in the process of serving a
call for elevator service and in a second condition
when the car is not in the process of serving a call
for elevator service,

first processing means for either allocating new calls
from said up and down floor call registering means
to an elevator car whose control means is in its first
condition or by creating a demand signal relative to
the call,

second processing means for assigning an elevator
car whose control means is in its second condition
to a floor call for which a demand signal was cre
ated,

and third processing means for periodically repro
cessing at least certain of the floor calls, including
first means for verifying that a floor call to which
a car was assigned by said second processing means
actually has an elevator car assigned thereto.

15. The elevator system of claim 14 wherein the third
processing means includes second means for determin
ing the most suitable car for serving a call which was
allocated to a car by the first processing means.

16. The elevator system of claim 15 wherein the sec
ond means includes means responsive to the advanced
car position of the elevator car relative to the floor of
the call being considered, the service direction of the
elevator car and the service direction request of the
floor call, determining the closest car to the call floor
whose position and service direction are consistent
with the call location and service direction request.

A 7. An elevator system for a structure having a plu
rality of vertically spaced floors, comprising:
a plurality of elevator cars,
means mounting the elevator cars for movement rela

tive to the structure to serve the floors,
down floor call registering means operable for regis

tering a call for elevator service in the down direc
tion from each of a plurality of said floors,

up floor call registering means operable for register
ing a call for elevator service in the up direction
from each of a plurality of said floors,

car call registering means for each of the elevator
cars operable for registering a call for each of a plu

O

15

20

25

30

35

40

50

55

60

65

54
rality of said floors which may be desired by load
in the associated elevator car,

control means associated with each elevator car said
control means being in a first condition when its as
sociated car is in the process of serving a call for
elevator service, and in a second condition when
the car is not in the process of serving a call for ele
vator service,

assignment register means associated with each of
said elevator cars operable to receive an assign
ment to serve predetermined floor calls,

collecting means for collecting floor calls from said
up and down floor calls registering means,

ordering means for periodically ordering the floor
calls collected by said collecting means such that
their locations relative to one another correspond
to the relative locations of their associated floors in
the structure,

said collecting means adding floor calls collected
subsequent to the ordering of the floor calls by said
ordering means to an end of the ordered floor calls,

first processing means for periodically processing
certain floor calls collected by said collecting
means by either allocating a selected floor, call to
the assignment register of at least one elevator car
having its control means in its first condition, or
registering a demand signal relative to the call,

second processing means for assigning an elevator
car having its control means in its second condition
to a floor call for which a demand signal was cre
ated,

said first processing means being responsive to said
ordering means, processing all of the floor calls
each time and ordering means orders the floor
calls, and otherwise only processing floor calls
added to an end of the ordered floor calls,

and third processing means for periodically repro
cessing at least certain of the floor calls, including
first means for verifying that floor calls assigned by
said second processing means actually have an ele
vator car assigned thereto.

18. The elevator system of claim 17 wherein the third
processing means includes second means for determin
ing the most suitable car for serving a call which was
allocated to a car by the first processing means.

19. The elevator system of claim 18 wherein the sec
ond means includes means responsive to the advanced
car position of the elevator car relative to the floor of
the car being considered, the service direction of the
elevator car, and the service direction request of the
floor call, determining the closest car to the floor call
whose position and service direction are consistent
with the call location and service direction request.
20. An elevator system for a structure having a plu

rality of vertically spaced floors, comprising:
a plurality of elevator cars,
means mounting the elevator cars for movement rela

tive to the structure to serve the floors,
down floor call registering means operable for regis

tering a call for elevator service in the down direc
tion from each of a plurality of said floors,

up floor call registering means operable for register
ing a call for elevator service in the up direction
from each of a plurality of said floors,

car call registering means for each of the elevator
cars operable for registering a call for each of a plu

3,851,734
SS

rality of said floors which may be desired by load
in the associated elevator car,

first control means associated with each elevator car,
said first control means being in a first condition
when its associated elevator car is in the process of 5
serving a call for elevator service and in a second
condition when the car is not,

second control means associated with each elevator
car, said second control means being in a first con
dition when its associated elevator car has been as
signed to serve a specific floor call and in a second
condition when it is not,

first processing means for either allocating new calls
from said down floor call registering means to an
elevator car whose first and second control means
are in their first and second conditions, respec
tively, and otherwise considering the call unas
signed,

call distinguishing means for determining if a floor
call considered unassigned by said first processing
means is the highest down floor call registered,

demand signal means responsive to said call distin
guishing means for creating a demand signal if the
call is not the highest down floor call registered,

availability means which is in a first condition when
any one of the elevator cars is in service but not in
the process of serving a call for elevator service,
and in a second condition when all cars are in the
process of serving a call for elevator service,

said demand signal means being responsive to said
call distinguishing means and to said availability
means, creating a demand signal for the call when
it is the highest down call registered and said avail
ability means is in its first condition,

second processing means responsive to said call dis
tinguishing means and to said availability means
when it is in its second condition for assigning an
elevator car whose first and second control means
are in their first conditions to the highest down call
registered, or otherwise creating a demand signal

10

15

25

30

35

40

45

SO

55

60

65

56
for the call. :

21. An elevator system for a structure having a plu
rality of vertically spaced floors, comprising:
a plurality of elevator cars, -
means mounting the elevator cars for movement rela

tive to the structure to serve the floors,
down floor call registering means operable for regis

tering a call for elevator service in the down direc
tion from each of a plurality of said floors,

up floor call registering means operable for register
ing a call for elevator service in the up direction
from each of a plurality of said floors,

car call registering means for each of these elevator
cars operable for registering a call for each of a plu
rality of said floors which may be desired by load
in the associated elevator car,

dispatching means for allocating registered floor calls
to selected elevator cars,

and assignment register means associated with each
of said elevator cars operable to receive an assign
ment from said dispatching means,

said dispatching means including:
call table means for collecting new floor calls from

said up and down floor call registering means,
reset means for deleting floor calls from said call
table means when an elevator car having a service
direction consistent with the floor call service re
quest stop at the floor of the call,

control means associated with each of said elevator
cars, said control means being in a first condition
when the associated elevator is in the process of
serving a call for elevator service, and in a second
condition when it is not,

and reinitializing means responsive to the control
means of all of the elevator cars, said reinitializing
means deleting all calls from said call table means
when the control means of every elevator car is in
its second condition.

s k sk k ck

