(12)特許公報(B2)

(11)特許番号 **特許第7534374号**

請求項の数 4 (全16頁)

(P7534374)

(45)発行日 令和6年	■8月14日(2024.8.1	4)		(24)登録日	令和6年8月5日(2024.8.5)
(51)国際特許分類		FI			
C23C 14/	34 (2006.01)	C 2 3 C	14/34	М	
C23C 14/	56 (2006.01)	C 2 3 C	14/56	E	
C23C 14/	08 (2006.01)	C 2 3 C	14/08	D	
H01B 13/	00 (2006.01)	H 0 1 B	13/00	503B	

(21)出願番号	特願2022-180616(P2022-180616)	(73)特許権者	000003964
(22)出願日	令机4年11月10日(2022.11.10)		日東電丄株式会社
(65)公開番号	特開2024-70169(P2024-70169A)		大阪府茨木市下穂積1丁目1番2号
(43)公開日	令和6年5月22日(2024.5.22)	(74)代理人	100103517
審査請求日	令和5年10月12日(2023.10.12)		弁理士 岡本 寛之
早期審査対象出願		(74)代理人	100149607
			弁理士 宇田 新一
		(72)発明者	藤野 望
			大阪府茨木市下穂積1丁目1番2号 日
			東電工株式会社内
		(72)発明者	岩松 祥平
			大阪府茨木市下穂積1丁目1番2号 日
			東電工株式会社内
		審査官	高橋 真由
			目始于中华人
			最終貝に続く

(54)【発明の名称】 透明導電性フィルムの製造方法

(57)【特許請求の範囲】

【請求項1】

(19)日本国特許庁(JP)

長尺の基材フィルムと透明導電層とを厚み方向に順に備える透明導電性フィルムの製造 方法であって、

不活性ガスと反応性ガスとを含む混合ガスが用いられる反応性スパッタリング法により 、減圧雰囲気下で基材フィルム上に透明導電層を形成する、成膜工程を含み、

前記減圧雰囲気における水分圧が、<u>1.5 × 1 0 ^{- 4} P a</u>以下であり、

前記成膜工程では、前記不活性ガスに対する前記反応性ガスの混合割合の変更を実施し、 前記混合割合の変更は、前記不活性ガスに対する前記反応性ガスの混合割合を、前記減 圧雰囲気における水分圧の低下後に低下させることを含む、透明導電性フィルムの製造方 法。

【請求項2】

前記基材フィルムの幅が、1000mm以上である、請求項1に記載の透明導電性フィルムの製造方法。

【請求項3】

前記透明導電層が50nm以上の厚さを有する、請求項1に記載の透明導電性フィルムの製造方法。

【請求項4】

前記透明導電層が非晶領域と結晶粒とを含む、請求項<u>1</u>に記載の透明導電性フィルムの 製造方法。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、透明導電性フィルムの製造方法に関する。

【背景技術】

[0002]

従来、樹脂製の透明な基材フィルムと透明な導電層(透明導電層)とを厚さ方向に順に 備える透明導電性フィルムが知られている。透明導電層は、例えば、液晶ディスプレイ、 タッチパネル、および太陽電池などの各種デバイスにおける透明電極を形成するための導 体膜として用いられる。透明導電層は、ロールトゥロール方式のスパッタ成膜装置により 、長尺の基材フィルム上に形成される(成膜工程)。成膜工程では、例えば、スパッタ成 膜装置の成膜室内が減圧された後、当該成膜室内を通過する基材フィルム上に、反応性ス パッタリング法によって導電性酸化物が成膜される。反応性スパッタリング法では、不活 性ガスと反応性ガス(酸素など)との混合ガスが、成膜室内に導入される。このような透 明導電性フィルムに関する技術については、例えば下記の特許文献1に記載されている。

【特許文献】

[0003]

【文献】特開2017-71850号公報

【発明の概要】

【発明が解決しようとする課題】

[0004]

透明導電性フィルムは、同フィルムを備えるデバイスの製造過程において、比較的高温 の加熱プロセスに晒される場合がある。そのような透明導電性フィルムの透明導電層には 、事後的な加熱による抵抗値の上昇が無いこと又は小さいことが要求される。透明導電性 フィルムの透明導電層の事後加熱による抵抗値上昇は、当該透明導電性フィルムが組み込 まれるデバイスの特性不良の原因となる。

【0005】

一方、本発明者らは、透明導電性フィルムの製造プロセスに関し、次のような知見を得た。ロールトゥロール方式での上述の成膜工程では、成膜室内において水分圧が経時的に 変化する。成膜室内の水分圧に対する反応性ガスの分圧のバランス(成膜室内の水と反応 性ガスとの量的バランスに相当する)は、当該成膜室内で形成される透明導電層の、事後 加熱による抵抗値上昇の有無および大きさに影響を与える。

【0006】

本発明は、透明導電層について加熱による抵抗値の上昇を抑制するのに適した、透明導 電性フィルムの製造方法を提供する。

【課題を解決するための手段】

[0007]

本発明[1]は、長尺の基材フィルムと透明導電層とを厚み方向に順に備える透明導電 性フィルムの製造方法であって、不活性ガスと反応性ガスとを含む混合ガスが用いられる 反応性スパッタリング法により、減圧雰囲気下で基材フィルム上に透明導電層を形成する 、成膜工程を含み、前記成膜工程は、前記不活性ガスに対する前記反応性ガスの混合割合 を、前記減圧雰囲気における水分圧の低下後に低下させること、および/または、前記混 合割合を前記水分圧の上昇後に上昇させることを含む、透明導電性フィルムの製造方法を 含む。

[0008]

本発明[2]は、前記透明導電層が50nm以上の厚さを有する、上記[1]に記載の 透明導電性フィルムの製造方法を含む。

【0009】

本発明[3]は、前記透明導電層が非晶領域と結晶粒とを含む、上記[1]または[2

10

20

]に記載の透明導電性フィルムの製造方法を含む。

【発明の効果】

【 0 0 1 0 】

本発明の透明導電性フィルムの製造方法では、成膜工程が、上記のように、不活性ガス に対する反応性ガスの混合割合を、減圧雰囲気における水分圧の低下後に低下させること 、および / または、混合割合を水分圧の上昇後に上昇させることを含む。このような透明 導電性フィルムの製造方法は、成膜工程において、成膜室内の水分圧に対する反応性ガス の分圧のバランス(成膜室内の水と反応性ガスとの量的バランスに相当する)を確保する のに適する。したがって、透明導電性フィルムの製造方法は、透明導電層について、加熱 による抵抗値の上昇を抑制するのに適する。

【図面の簡単な説明】

[0011]

【図1】本発明の透明導電性フィルムの製造方法の一実施形態の工程図であり、図1Aは、基材フィルムを用意する工程を表し、図1Bは、基材フィルム上に透明導電層を形成する工程を表す。

【図2】図1Bに示す透明導電性フィルムにおいて、透明導電層がパターニングされた場合を表す。

【図3】図1Bに示す透明導電性フィルムの変形例の断面模式図である。

【発明を実施するための形態】

【 0 0 1 2 】

本発明の一実施形態としての透明導電性フィルムの製造方法は、用意工程(図1A)と 、成膜工程(図1B)とを含む。この製造方法は、図1Bに示す透明導電性フィルムXを 製造する方法である。透明導電性フィルムXは、長尺の基材フィルム10と、透明導電層 20とを厚み方向Hに順に備える。透明導電性フィルムXは、厚さ方向Hと直交する方向 (面方向)に広がる。透明導電性フィルムXは、タッチセンサ装置、調光素子、光電変換 素子、熱線制御部材、アンテナ部材、電磁波シールド部材、ヒーター部材、照明装置、お よび画像表示装置などに備えられる一要素である。

【0013】

まず、用意工程では、図1Aに示すように、長尺の基材フィルム10を用意する。基材 フィルム10の長さは、例えば50m以上であり、好ましくは100m以上である。基材 フィルム10の長さは、例えば20000m以下であり、好ましくは5000m以下であ る。基材フィルム10の幅は、例えば200mm以上であり、好ましくは500mm以上 、より好ましくは1000mm以上である。基材フィルム10の幅は、例えば3000m m以下であり、好ましくは2000mm以下である。

【 0 0 1 4 】

基材フィルム10は、透明導電性フィルムXの強度を確保する基材である。基材フィルム10は、本実施形態では、可撓性を有する透明な樹脂フィルムである。基材フィルム10の材料としては、例えば、ポリエステル樹脂、ポリオレフィン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、およびポリスチレン樹脂が挙げられる。ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、およびポリエチレンナフタレートが挙げられる。ポリオレフィン樹脂としては、例えば、ポリメタクリレートが挙げられる。基材フィルム10の材料としては、例えば透明性および強度の観点から、好ましくはポリエステル樹脂が用いられ、より好ましくはPETが用いられる。

【0015】

基材フィルム10において透明導電層20が形成される側の表面10aは、表面改質処理されていてもよい。表面改質処理としては、例えば、コロナ処理、プラズマ処理、オゾン処理、プライマー処理、グロー処理、およびカップリング剤処理が挙げられる。

10

20

40

[0016]

基材フィルム10の厚さは、透明導電性フィルムXの強度を確保する観点から、好ましくは1µm以上、より好ましくは10µm以上、更に好ましくは30µm以上である。基 材フィルム10の厚さは、ロールトゥロール方式における基材フィルム10の取り扱い性 を確保する観点から、好ましくは500µm以下、より好ましくは300µm以下、更に 好ましくは200µm以下、一層好ましくは100µm以下、特に好ましくは75µm以 下である。

[0017]

基材フィルム10の全光線透過率(JIS K 7375-2008)は、好ましくは60%以上、より好ましくは80%以上、更に好ましくは85%以上である。このような構成は、タッチセンサ装置、調光素子、光電変換素子、熱線制御部材、アンテナ部材、電磁波シールド部材、ヒーター部材、照明装置、および画像表示装置などに透明導電性フィルムXが備えられる場合に当該透明導電性フィルムXに求められる透明性を確保するのに適する。基材フィルム10の全光線透過率は、例えば100%以下である。

【 0 0 1 8 】 次に、成膜工程では、

次に、成膜工程では、図1Bに示すように、スパッタリング法により、基材フィルム1 0の表面10a(厚さ方向Hの一方面)上に、材料を成膜して透明導電層20を形成する 。スパッタリング法では、ロールトゥロール方式で成膜プロセスを実施できるスパッタ成 膜装置を使用する。スパッタ成膜装置は、ワークフィルムを繰り出す繰出しロールと、成 膜室と、ワークフィルムを巻き取る巻取りロールとを、ワークフィルムの流れ方向にこの 順で備える。成膜室の内部は、減圧可能である。また、スパッタ成膜装置では、成膜室内 の気圧を測定可能であり、水分圧を測定可能である。また、本工程のスパッタリング法と しては、反応性スパッタリング法が実施される。反応性スパッタリング法では、スパッタ リングガスとしての不活性ガスと反応性ガスとを含む混合ガスが用いられる。 【0019】

本工程のスパッタリング法では、具体的には、繰出しロールから巻取りロールまで基材 フィルム10をワークフィルムとして走行させつつ、成膜室内に減圧雰囲気下で不活性ガ スと反応性ガスとを導入しつつ、成膜室内のカソード上に配置されたターゲットにマイナ スの電圧を印加する。これにより、グロー放電を発生させてガス原子をイオン化し、当該 ガスイオンを高速でターゲット表面に衝突させ、ターゲット表面からターゲット材料を弾 き出し、弾き出たターゲット材料を基材フィルム10上に堆積させる。

【0020】

成膜中の成膜室内の気圧は、例えば0.02Pa以上であり、また、例えば1Pa以下である。

[0021]

不活性ガス(スパッタリングガス)としては、例えば、アルゴンおよびクリプトンが挙 げられる。反応性ガスとしては、例えば、酸素および一酸化窒素が挙げられる。反応性ガ スは、透明導電層20を形成する材料に応じて選択される。透明導電層20を形成する材 料が導電性酸化物である場合、反応性ガスとしては酸素が好適に用いられる。また、成膜 開始時の混合ガスにおける、不活性ガスに対する反応性ガスの割合(混合割合R)は、例 えば0.5流量%以上であり、また、例えば5流量%以下である(混合割合Rは、百分率表 示されている)。不活性ガスに対する反応性ガスの割合(混合割合R)は、不活性ガスの 導入流量F1(sccm)に対する反応性ガス(活性ガス)の導入流量F2(sccm)の比率 (F2/F1)を百分率表示したものである。混合割合Rの好ましい範囲は、後述の水分 圧Pwに応じて変わる。

【0022】

成膜中の基材フィルム10の温度は、成膜中に基材フィルム10からのアウトガスを抑制して透明導電層20を適切に形成する観点から、好ましくは150 以下、より好ましくは70 以下、更に好ましくは40 以下、一層好ましくは10 以下、特に好ましくは-5 以下である。同温度は、例えば、-50 以上、-20 以上または-10 以

10

20

50

【 0 0 2 3 】

ターゲットに対する電圧印加のための電源としては、例えば、DC電源、AC電源、M F電源、およびRF電源が挙げられる。電源としては、DC電源とRF電源とを併用して もよい。成膜中の放電電圧の絶対値は、例えば50V以上であり、また、例えば500V 以下である。ターゲット上の水平磁場強度は、例えば10mT以上であり、また、例えば 100mT以下である。

【0024】

基材フィルム10の走行速度は、透明導電性フィルムXの製造効率の観点から、好まし くは0.5m/分以上、より好ましくは1m/分以上である。基材フィルム10の走行速度は 、透明導電層20の適切な形成の観点から、好ましくは40m/分以下、より好ましくは1 0m/分以下、更に好ましくは5m/分以下、一層好ましくは3m/分以下である。 【0025】

透明導電層20を形成する材料(ターゲットの材料)としては、例えば、導電性酸化物 が挙げられる。導電性酸化物としては、例えば、インジウム含有導電性酸化物およびアン チモン含有導電性酸化物が挙げられる。インジウム含有導電性酸化物としては、例えば、 インジウムスズ複合酸化物(ITO)、インジウム亜鉛複合酸化物(IΖΟ)、インジウ ムガリウム複合酸化物(IGO)、およびインジウムガリウム亜鉛複合酸化物(IGΖΟ)が挙げられる。アンチモン含有導電性酸化物としては、例えば、アンチモンスズ複合酸 化物(ATO)が挙げられる。高い透明性と良好な電気伝導性とを実現する観点からは、 導電性酸化物としては、好ましくはインジウム含有導電性酸化物が用いられ、より好まし くはITOが用いられる。このITOは、InおよびSn以外の金属または半金属を、I nおよびSnのそれぞれの含有量より少ない量で含有してもよい。

【0026】

導電性酸化物としてITOが用いられる場合、透明導電層20の酸化スズ割合は、透明 導電層20の比抵抗を低減する観点から、好ましくは5質量%以上、より好ましくは8質 量%以上、更に好ましくは10質量%以上である。酸化スズ割合は、加湿信頼性試験での 透明導電層20の抵抗値変化を抑制する観点から、好ましくは30質量%以下、より好ま しくは20質量%以下、更に好ましくは15質量%以下である。 【0027】

ITOにおける酸化スズ割合は、例えば次のようにして同定できる。まず、X線光電子 分光法(X-ray Photoelectron Spectroscopy)により、測定対象物としてのITOに おけるインジウム原子(In)とスズ原子(Sn)の存在比率を求める。ITO中のIn およびSnの各存在比率から、ITO中のInの原子数に対するSnの原子数の比率を求 める。これにより、ITOにおける酸化スズ割合が得られる。また、ITOにおける酸化 スズ割合は、成膜時に用いるITOターゲットの酸化スズ(SnO2)含有割合からも特 定できる。

[0028]

成膜中の成膜室においては、水分圧が経時的に変化する。水分圧の変化の原因としては 、成膜室の排気(水分圧の低下の原因)およびワークフィルム(本実施形態では基材フィ ルム10)からのアウトガス中の水分(水分圧の上昇の原因)が挙げられる。成膜中の成 膜室内の水分圧は、透明導電層20の水含有量の調整の観点から、好ましくは0.1×10 - ⁴ Pa以上、より好ましくは0.5×10⁻⁴ Pa以上、更に好ましくは0.7×10⁻⁴ Pa以上、一層好ましくは0.9×10⁻⁴ Pa以上であり、また、好ましくは5.0×10 - ² Pa以下、より好ましくは5.0×10⁻³ Pa以下、更に好ましくは3.0×10⁻⁴ Pa以下、一層好ましくは2.7×10⁻⁴ Pa以下、特に好ましくは2.5×10⁻⁴ Pa 以下である。

【0029】

本工程では、成膜室内の水分圧 P w を測定する。水分圧 P w の測定には、成膜開始時の 水分圧 P w 0 の測定が含まれる。水分圧 P w の測定は、連続測定でもよいし、断続的な測 10

定でもよい。

【 0 0 3 0 】

断続的な測定では、例えば、基材フィルム10の所定長さ(長さL1)が成膜室内を通 過するごとに、成膜室内の水分圧Pwを測定する。長さL1は、水分圧Pwのモニタリン グ精度を確保する観点から、好ましくは1000m以下、より好ましくは800m以下、 更に好ましくは600m以下である。長さL1は、例えば、1m以上、10m以上、また は100m以上である。透明導電性フィルムXの全長(全長L0)に対する長さL1の比 率(L1/L0)は、水分圧Pwのモニタリング精度を確保する観点から、好ましくは1 /2以下、より好ましくは1/3以下、更に好ましくは1/4以下である。比率(L1/ L0)は、例えば、1/200000以上、1/2000以上、1/500以上、また は1/100以上である。本工程中、長さL1は、一定であってもよいし、一定でなくて もよい。

【0031】

断続的な測定では、例えば、基材フィルム10が連続的に通過する成膜室内の水分圧P wを所定時間(時間T)ごとに測定する。時間Tは、水分圧Pwのモニタリング精度を確 保する観点から、好ましくは30分以下、より好ましくは15分以下、更に好ましくは5 分以下である。時間Tは、例えば、0.00001分以上、0.01分以上、または0.1分 以上である。本工程中、時間Tは、一定であってもよいし、一定でなくてもよい。 【0032】

成膜工程は、反応性ガスの混合割合R(不活性ガスに対する反応性ガスの割合)を、減 圧雰囲気における水分圧Pwの低下後に低下させること、および/または、混合割合Rを 水分圧Pwの上昇後に上昇させることを含む。これにより、成膜室内の水と反応性ガスと の量的バランスをとる(成膜室内の水と反応性ガスとの量的バランスは、上述のように、 成膜室内で形成される透明導電層20の、事後加熱による抵抗値上昇の有無および大きさ に影響を与える)。成膜工程での1回目の混合割合Rの変更(低下または上昇)は、次の ように実施される。

【0033】

成膜室では、本工程の成膜開始時から、混合割合 R₀(成膜開始時の混合割合)の条件 での反応性スパッタリング法によって基材フィルム 10上に材料を成膜する。そして、成 膜開始後の 1回目または複数回目の水分圧測定によって測定された水分圧 Pw₁と、成膜 開始時の水分圧 Pw₀とを比較する。水分圧 Pw₀より水分圧 Pw₁が小さい場合(水分圧 Pwが低下した場合)、混合割合 Rを、混合割合 R₀より小さい混合割合 R₁に低下させ る。或いは、水分圧 Pw₀より水分圧 Pw₁が大きい場合(水分圧 Pwが上昇した場合) 、混合割合 Rを、混合割合 R₀より大きい混合割合 R₁に上昇させる。

【0034】

成膜工程での1回目の混合割合Rの変更(低下または上昇)は、成膜開始時の水分圧P w₀と、所定のタイミングで測定された水分圧Pw₁との差に基づき、以上のように実施 される。同様に、n回目の混合割合Rの変更(低下または上昇)は、所定のタイミングで 測定された水分圧Pw_{n-1}と、その後の所定のタイミングで測定された水分圧Pw_nとの 差に基づき、実施される。

【0035】

反応性ガスとして酸素を用いて透明導電層20として例えばITO層を形成する場合、 成膜工程で形成される透明導電層20の表面抵抗値は、成膜室内への酸素導入量(酸素分 圧)の変化に応じて変化する(即ち、透明導電層20の表面抵抗値は酸素導入量依存性を 示す)。具体的には、酸素導入量に対し、透明導電層20の表面抵抗値は、極小値を有す るような放物線様の依存性を示す。そして、透明導電層20の表面抵抗値が極小値をとる 酸素導入量(酸素分圧)は、成膜室内の水分圧が高くなるほど、高くなる傾向にある(成 膜室内の水分圧が低くなるほど、低くなる傾向にある)。このような成膜工程では、例え ば、透明導電層20の表面抵抗値が極小値またはその近傍の値をとるように、成膜室内の 水分圧の増減に応じて上記の混合割合Rを増減させる。

[0036]

水分圧 P w が 0 . 1 × 1 0 ⁻⁴ P a 低下した場合(P w _n - P w _{n - 1} = - 0 . 1 × 1 0 ⁻⁴)、混合割合 R は、例えば 0 . 0 5 流量%低下させ、好ましくは 0 . 1 流量%低下させる。 水分圧 P w が 0 . 1 × 1 0 ⁻⁴ P a 上昇した場合(P w _n - P w _{n - 1} = 0 . 1 × 1 0 ⁻⁴)、 混合割合 R は、例えば 0 . 0 5 流量%上昇させ、好ましくは 0 . 1 流量%上昇させる。 【 0 0 3 7】

(7)

成膜室内の水分圧 P w が 0.9 × 1 0⁻⁴ P a である場合、混合割合 R は、好ましくは 1.8 流量%以上、より好ましくは 2.0 流量%以上であり、また、好ましくは 2.3 流量%以下、より好ましくは 2.1 流量%以下である。成膜室内の水分圧 P w が 1.0 × 1 0⁻⁴ P a である場合、混合割合 R は、好ましくは 1.9 流量%以上、より好ましくは 2.1 流量%超 であり、また、好ましくは 2.3 流量%以下、より好ましくは 2.2 流量%以下である。成 膜室内の水分圧 P w が 1.1 × 1 0⁻⁴ P a 以上 1.4 × 1 0⁻⁴ P a 未満である場合、混合割合 R は、好ましくは 2.0 流量%以上、より好ましくは 2.2 流量%超であり、また、好ましくは 2.5 流量%以下、より好ましくは 2.3 流量%以下である。成膜室内の水分圧 P w が 1.4 × 1 0⁻⁴ P a 以上 1.7 × 1 0⁻⁴ P a 以下である場合、混合割合 R は、好ましくは 2.5 流量%以下、より好ましくは 2.3 流量%超であり、また、好ましくは 2.6 流量%以下、より好ましくは 2.5 流量%以下である。

【0038】

成膜工程では、以上のように混合割合Rを制御しつつ、基材フィルム10の先端領域から後端領域にかけて透明導電層20を形成する。これにより、透明導電性フィルムXを製造できる。

【0039】

透明導電層20は、光透過性と導電性とを兼ね備える。透明導電層20は、好ましくは 、非晶領域と結晶粒とを含む。結晶粒とは、最大長さ30nm以上の結晶粒とする。透明 導電層20が非晶領域と結晶粒とを含むことは、透明導電層20において、低抵抗化と、 屈曲時の割れの抑制とを、両立するのに適する(非晶質透明導電層は高抵抗であり、結晶 質透明導電層は割れやすい)。透明導電層(透明導電性フィルムXでは、基材フィルム1 0上の透明導電層20)が非晶領域と結晶粒とを含むことは、例えば、電界放射型走査電 子顕微鏡(FE-SEM)による透明導電層の観察によって判断できる。

【0040】

透明導電層20の厚さは、透明導電層20の低抵抗化の観点から、好ましくは50nm 以上、より好ましくは70nm以上、更に好ましくは80nm以上である。また、透明導 電層20の厚さは、透明導電層20において加熱による割れを抑制する観点から、好まし くは350nm以下、より好ましくは200nm以下、更に好ましくは150nm以下で ある。

【0041】

透明導電層20の抵抗値R1は、透明導電層20の低抵抗化の観点から、好ましくは1 00 / 以下、より好ましくは70 / 以下、更に好ましくは50 / 以下、一層 好ましくは45 / 以下である。抵抗値R1は、例えば1 / 以上である。抵抗値R 1は、表面抵抗率である(後記の抵抗値R2も同様である)。透明導電層の表面抵抗率は 、JISK7194(1994年)に準拠した四端子法によって測定できる。抵抗値R1 ,R2の測定方法は、具体的には、実施例に関して後述するとおりである。

【0042】

透明導電層20の、140 で30分間の加熱後の抵抗値R2は、透明導電層20の低 抵抗化の観点から、好ましくは100 / 以下、より好ましくは70 / 以下、更に 好ましくは50 / 以下、一層好ましくは45 / 以下、より一層好ましくは40 / 以下、特に好ましくは38 / 以下である。抵抗値R2は、例えば1 / 以上で ある。

【0043】

抵抗値R1と抵抗値R2との差R1-R2は、透明導電層20の加熱による抵抗値の上

昇を抑制する観点から、例えば30 / 以下であり、好ましくは15 / 以下、より 好ましくは13 / 以下、更に好ましくは10 / 以下である(差R1-R2が負の 値であることは、抵抗値が上昇したことを意味する)。

【0044】

抵抗値R1に対する抵抗値R2の比率(R2/R1)は、透明導電層20の抵抗安定性の観点から、例えば0.55以上であり、好ましくは0.70以上、より好ましくは0.80 以上、更に好ましくは0.85以上、特に好ましくは0.90以上であり、また、好ましく は1.0以下である。

【0045】

透明導電性フィルムXの全光線透過率(JIS K 7375-2008)は、好ましく は60%以上、より好ましくは80%以上、更に好ましくは85%以上である。このよう な構成は、タッチセンサ装置、調光素子、光電変換素子、熱線制御部材、アンテナ部材、 電磁波シールド部材、ヒーター部材、照明装置、および画像表示装置などに透明導電性フ ィルムXが備えられる場合に当該透明導電性フィルムXに求められる透明性を確保するの に適する。基材フィルム10の全光線透過率は、例えば100%以下である。

【0046】

透明導電性フィルムXにおける透明導電層20は、図2に模式的に示すように、パター ニングされてもよい。所定のエッチングマスクを介して透明導電層20をエッチング処理 することにより、透明導電層20をパターニングできる。パターニングされた透明導電層 20は、例えば、配線パターンとして機能する。

【0047】

透明導電性フィルムの製造方法において、成膜室内の水分圧に対する反応性ガス(本実施形態では酸素)の分圧のバランス(成膜室内の水と反応性ガスとの量的バランスに相当 する)は、当該成膜室内で形成される透明導電層20の、事後加熱による抵抗値上昇の有 無および大きさに影響を与える。透明導電性フィルムの製造方法では、成膜工程(図1B)が、上述のように、不活性ガスに対する反応性ガスの混合割合Rを、減圧雰囲気におけ る水分圧Pwの低下後に低下させること、および/または、混合割合Rを水分圧Pwの上 昇後に上昇させることを含む。このような透明導電性フィルムの製造方法は、成膜工程に おいて、水分圧Pwに対する不活性ガスの分圧のバランスを確保するのに適する。したが って、透明導電性フィルムの製造方法は、透明導電層20について、加熱による抵抗値の 上昇を抑制するのに適する。具体的には、後記の実施例および比較例をもって示すとおり である。

【0048】

図3に示すように、透明導電性フィルムXの基材フィルム10は、樹脂フィルム11と 機能層12とを備えてもよい。樹脂フィルム11の材料としては、基材フィルム10の材 料として上記した材料が挙げられる。機能層12は、樹脂フィルム11の厚さ方向日の一 方面上に配置されている。機能層12は、樹脂フィルム11に接する。機能層12は、透 明導電層20にも接する。機能層12は、例えば、透明導電層20の露出表面(図3では 上面)に擦り傷が形成されにくくするためのハードコート層である。

【0049】

ハードコート層は、硬化性樹脂組成物の硬化物である。硬化性樹脂組成物は、硬化性樹 脂を含有する。硬化性樹脂としては、例えば、ポリエステル樹脂、アクリルウレタン樹脂 、アクリル樹脂(アクリルウレタン樹脂を除く)、ウレタン樹脂(アクリルウレタン樹脂 を除く)、アミド樹脂、シリコーン樹脂、エポキシ樹脂、およびメラミン樹脂が挙げられ る。これら硬化性樹脂は、単独で用いられてもよいし、二種類以上が併用されてもよい。 ハードコート層の高硬度の確保の観点からは、硬化性樹脂としては、好ましくは、アクリ ルウレタン樹脂およびアクリル樹脂からなる群より選択される少なくとも一つが用いられ る。

【0050】

また、硬化性樹脂としては、例えば、紫外線硬化型樹脂および熱硬化型樹脂が挙げられ

10

50

る。高温加熱せずに硬化可能であるために透明導電性フィルムXの製造効率向上に役立つ 観点から、硬化性樹脂としては、紫外線硬化型樹脂が好ましい。 【0051】

硬化性樹脂組成物は、粒子を含有してもよい。粒子としては、例えば、無機酸化物粒子 および有機粒子が挙げられる。無機酸化物粒子の材料としては、例えば、シリカ、アルミ ナ、チタニア、ジルコニア、酸化カルシウム、酸化スズ、酸化インジウム、酸化カドミウ ム、および酸化アンチモンが挙げられる。有機粒子の材料としては、例えば、ポリメチル メタクリレート、ポリスチレン、ポリウレタン、アクリル・スチレン共重合体、ベンゾグ アナミン、メラミン、およびポリカーボネートが挙げられる。

[0052]

機能層12における透明導電層20側表面は、表面改質処理されていてもよい。表面改 質処理としては、例えば、コロナ処理、プラズマ処理、オゾン処理、プライマー処理、グ ロー処理、およびカップリング剤処理が挙げられる。

【0053】

ハードコート層としての機能層12の厚さは、透明導電層20において充分な耐擦過性 を発現させる観点から、好ましくは0.1µm以上、より好ましくは0.5µm以上、更に 好ましくは1µm以上である。ハードコート層としての機能層12の厚さは、機能層12 の透明性を確保する観点から、好ましくは10µm以下、より好ましくは5µm以下、更 に好ましくは3µm以下である。

【0054】

ハードコート層としての上述の機能層12は、樹脂フィルム11上に、硬化性樹脂組成物を塗布して塗膜を形成した後、この塗膜を硬化させることによって形成できる。硬化性樹脂組成物が紫外線硬化型樹脂を含有する場合には、紫外線照射によって前記塗膜を硬化させる。硬化性樹脂組成物が熱硬化型樹脂を含有する場合には、加熱によって前記塗膜を硬化させる。

【0055】

機能層12は、樹脂フィルム11に対する透明導電層20の高い密着性を実現するための密着性向上層であってもよい。機能層12が密着性向上層である構成は、樹脂フィルム 11と透明導電層20との間の密着力を確保するのに適する。

【0056】

機能層12は、基材フィルム10の表面(厚さ方向日の一方面)の反射率を調整するための屈折率調整層(index-matching layer)であってもよい。機能層12が屈折率調整層である構成は、基材フィルム10上の透明導電層20がパターニングされている場合に、当該透明導電層20のパターン形状を視認されにくくするのに適する。

【0057】

機能層12は、基材フィルム10から透明導電層20を実用的に剥離可能にするための 剥離機能層であってもよい。機能層12が剥離機能層である構成は、基材フィルム10か ら透明導電層20を剥離して、当該透明導電層20を他の部材に転写するのに適する。 【0058】

機能層12は、複数の層が厚さ方向日に連なる複合層であってもよい。複合層は、好ま しくは、ハードコート層、密着性向上層、屈折率調整層、および剥離機能層からなる群よ り選択される2以上の層を含む。このような構成は、選択される各層の上述の機能を、機 能層12において複合的に発現するのに適する。好ましい一形態では、機能層12は、樹 脂フィルム11上において、密着性向上層と、ハードコート層と、屈折率調整層とを、厚 さ方向日の一方側に向かってこの順で備える。好ましい他の形態では、機能層12は、樹 脂フィルム11上において、剥離機能層と、ハードコート層と、屈折率調整層とを、厚さ

【0059】

透明導電性フィルムXは、物品に対して固定され、且つ必要に応じて透明導電層20が パターニングされた状態で、利用される。透明導電性フィルムXは、例えば、固着機能層 10

20

50

を介して、物品に対して貼り合わされる。

【 0 0 6 0 】

物品としては、例えば、素子、部材、および装置が挙げられる。すなわち、透明導電性 フィルム付き物品としては、例えば、透明導電性フィルム付き素子、透明導電性フィルム 付き部材、および透明導電性フィルム付き装置が挙げられる。 【0061】

素子としては、例えば、調光素子および光電変換素子が挙げられる。調光素子としては 、例えば、電流駆動型調光素子および電界駆動型調光素子が挙げられる。電流駆動型調光 素子としては、例えば、エレクトロクロミック(EC)調光素子が挙げられる。電界駆動 型調光素子としては、例えば、PDLC(polymer dispersed liquid crystal)調光素 子、PNLC(polymer network liquid crystal)調光素子、および、SPD(suspen ded particle device)調光素子が挙げられる。光電変換素子としては、例えば太陽電池 などが挙げられる。太陽電池としては、例えば、有機薄膜太陽電池および色素増感太陽電 池が挙げられる。部材としては、例えば、電磁波シールド部材、熱線制御部材、ヒーター 部材、およびアンテナ部材が挙げられる。装置としては、例えば、タッチセンサ装置、照 明装置、および画像表示装置が挙げられる。

[0062]

上述の固着機能層としては、例えば、粘着層および接着層が挙げられる。固着機能層の 材料としては、透明性を有し且つ固着機能を発揮する材料であれば、特に制限なく用いら れる。固着機能層は、好ましくは、樹脂から形成されている。樹脂としては、例えば、ア クリル樹脂、シリコーン樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、 ポリビニルエーテル樹脂、酢酸ビニル / 塩化ビニルコポリマー、変性ポリオレフィン樹脂 、エポキシ樹脂、フッ素樹脂、天然ゴム、および合成ゴムが挙げられる。凝集性、接着性 、適度な濡れ性などの粘着特性を示すこと、透明性に優れること、並びに、耐候性および 耐熱性に優れることから、前記樹脂としては、アクリル樹脂が好ましい。 【0063】

固着機能層(固着機能層を形成する樹脂)には、透明導電層20の腐食抑制のために、 腐食防止剤を配合してもよい。固着機能層(固着機能層を形成する樹脂)には、透明導電 層20のマイグレーション抑制のために、マイグレーション防止剤(例えば、特開201 5-022397号に開示の材料)を配合してもよい。また、固着機能層(固着機能層を 形成する樹脂)には、物品の屋外使用時の劣化を抑制するために、紫外線吸収剤を配合し てもよい。紫外線吸収剤としては、例えば、ベンゾフェノン化合物、ベンゾトリアゾール 化合物、サリチル酸化合物、シュウ酸アニリド化合物、シアノアクリレート化合物、およ び、トリアジン化合物が挙げられる。

【0064】

また、透明導電性フィルムXの基材フィルム10を、物品に対して固着機能層を介して 固定した場合、透明導電性フィルムXにおいて透明導電層20(パターニング後の透明導 電層20を含む)は露出する。このような場合、透明導電層20の当該露出面にカバー層 を配置してもよい。カバー層は、透明導電層20を被覆する層であり、透明導電層20の 信頼性を向上させ、また、透明導電層20の受傷による機能劣化を抑制できる。そのよう なカバー層は、好ましくは、誘電体材料から形成されており、より好ましくは、樹脂と無 機材料との複合材料から形成されている。樹脂としては、例えば、固着機能層に関して上 記した樹脂が挙げられる。無機材料としては、例えば、無機酸化物およびフッ化物が挙げ られる。無機酸化物としては、例えば、酸化ケイ素、酸化チタン、酸化ニオブ、酸化アル ミニウム、二酸化ジルコニウム、および酸化カルシウムが挙げられる。フッ化物としては 、例えばフッ化マグネシウムが挙げられる。また、カバー層(樹脂および無機材料の混合 物)には、上記の腐食防止剤、マイグレーション防止剤、および紫外線吸収剤を配合して もよい。

【実施例】

[0065]

本発明について、以下に実施例を示して具体的に説明する。ただし、本発明は、実施例 に限定されない。また、以下に記載されている配合量(含有量)、物性値、パラメータな どの具体的数値は、上述の「発明を実施するための形態」において記載されている、それ らに対応する配合量(含有量)、物性値、パラメータなどの上限(「以下」または「未満 」として定義されている数値)または下限(「以上」または「超える」として定義されて いる数値)に代替できる。

【0066】

〔実施例1〕

まず、長尺の基材フィルムとしてのポリエチレンテレフタレート(PET)フィルム(厚さ125µm,三菱ケミカル社製)のロール体を用意した。PETフィルムは、200 0メートルの長さを有し、且つ1500mmの幅を有する。

【0067】

次に、反応性スパッタリング法により、PETフィルム上に、厚さ125nmの透明導 電層を形成した(成膜工程)。本工程では、ロールトゥロール方式のスパッタ成膜装置(DCマグネトロンスパッタ成膜装置)を使用した。同装置は、ロールトゥロール方式でワ ークフィルムを走行させつつ成膜プロセスを実施できる成膜室を備える。スパッタ成膜の 条件は、次のとおりである。

【0068】

スパッタ成膜装置の成膜室内の到達真空度が0.9×10⁻⁴ Paに至るまで成膜室内を 真空排気した後、成膜室内に、スパッタリングガス(不活性ガス)としてのアルゴンと、 反応性ガスとしての酸素との混合ガスを導入し、成膜室内の気圧を0.2 Paとした。混合 ガスにおける、アルゴンガスに対する酸素の混合割合R(成膜室へのアルゴン導入量に対 する酸素導入量の割合)は、2.4 流量%(アルゴン500sccmに対して酸素12sccm) とした。ターゲットとしては、酸化インジウムと酸化スズとの焼結体(酸化スズ濃度が1 2 質量%)を用いた。ターゲットに対する電圧印加のための電源としては、DC電源を用 いた。ターゲット上の水平磁場強度は30mTとした。成膜温度(透明導電層が積層され る基材フィルムの温度)は-3 とした。基材フィルムの走行速度は2.0m/分とした。 以上の条件で、ワークフィルムとしてPETフィルムを走行させつつ、成膜室において、 PETフィルム上にインジウムスズ複合酸化物(ITO)を成膜して透明導電層を形成し 続けた。また、成膜工程中、成膜室内の水分圧Pwを10秒毎に測定した。成膜開始時の 水分圧Pw0は1.5×10⁻⁴Paであった。

【0069】

成膜開始の後、成膜室内の水分圧は次第に低下し、 P E T フィルムにおける先端から6 0 0 メートル地点の成膜時の水分圧 P w は 1.1 × 1 0⁻⁴ P a となった(第1時点)。 P E T フィルムにおける先端から6 0 0 メートル地点の成膜時(第1時点の直後)に、酸素 の混合割合 R を 2.4 流量%から 2.3 流量%に変更した(第1の変更)。

【 0 0 7 0 】

酸素の混合割合Rの第1の変更の後、成膜室内の水分圧は次第に低下し、PETフィルムにおける先端から1200メートル地点の成膜時の水分圧Pwは1.0×10⁻⁴Paとなった(第2時点)。PETフィルムにおける先端から1200メートル地点の成膜時(第2時点の直後)に、酸素の混合割合Rを2.3流量%から2.2流量%に変更した(第2の変更)。

[0071]

酸素の混合割合Rの第2の変更の後、成膜室内の水分圧は次第に低下し、PETフィルムにおける先端から1700メートル地点の成膜時の水分圧Pwは0.91×10⁻⁴Paとなった(第3時点)。PETフィルムにおける先端から1700メートル地点の成膜時(第3時点の直後)に、酸素の混合割合Rを2.2流量%から2.1流量%に変更した(第3の変更)。

【0072】

以上のようにして、実施例1のロール状の透明導電性フィルム(長さ2000メートル

40

,幅1500mm)を作製した。

【0073】

〔比較例1〕

成膜工程における酸素の混合割合Rを2.4流量%に維持したこと以外は、実施例1の透明導電性フィルムと同様にして、比較例1のロール状の透明導電性フィルム(長さ200 0メートル,幅1500mm)を作製した。

【0074】

透明導電層の厚さ

実施例1および比較例1における各透明導電性フィルムの透明導電層の厚さを、電界放 射型透過電子顕微鏡(FE-TEM)での観察により測定した。具体的には、まず、FI Bマイクロサンプリング法により、実施例1および比較例1における各透明導電層の断面 観察用サンプルを作製した。FIBマイクロサンプリング法では、FIB装置(品名「F B2200」,Hitachi製)を使用し、加速電圧を10kVとした。次に、断面観 察用サンプルにおける透明導電層の断面をFE-TEMによって観察し、当該観察画像に おいて透明導電層の厚さを測定した。同観察では、FE-TEM装置(品名「JEM-2 800」,JEOL製)を使用し、加速電圧を200kVとした。測定結果を表1に示す。 【0075】

加熱による抵抗変化

実施例1および比較例1の各透明導電性フィルムについて、事後加熱による透明導電層の抵抗値の変化を調べた。具体的には、以下のとおりである。

【0076】

まず、長尺の透明導電性フィルムから、抵抗値測定用の12枚の試料フィルム(第1~ 第12試料フィルム)を切り出した。各試料フィルムは、50mm(透明導電性フィルム の長さ方向の寸法) × 100 mm (透明導電性フィルムの幅方向の寸法)のサイズを有す る。第1試料フィルムは、透明導電性フィルムの長さ方向においては、先端から50mの 領域(先端領域)内であって、透明導電性フィルム幅方向においては一方端(フィルム走 行方向を向いてフィルム右端側)から200mm離れた位置から300mm離れた位置ま での区画から切り出されたものである。第1試料フィルムの幅方向中心位置は、透明導電 性フィルムの幅方向における一方端から250mm離れた位置である(後記の第4試料フ ィルム、第7試料フィルムおよび第10試料フィルムの幅方向中心位置も同様)。第2試 料フィルムは、先端領域内において、透明導電性フィルム幅方向における一方端から70 0mm離れた位置から800mm離れた位置までの区画から切り出されたものである。第 2 試料フィルムの幅方向中心位置は、透明導電性フィルムの幅方向における一方端から7 50mm離れた位置である(後記の第5試料フィルム、第8試料フィルムおよび第11試 料フィルムの幅方向中心位置も同様)。第3試料フィルムは、先端領域内において、透明 導電性フィルム幅方向における一方端から1200mm離れた位置から1300mm離れ た位置までの区画から切り出されたものである。第3試料フィルムの幅方向中心位置は、 透明導電性フィルムの幅方向における一方端から1250mm離れた位置である(後記の 第6試料フィルム、第9試料フィルムおよび第12試料フィルムの幅方向中心位置も同様)。第4試料フィルムは、透明導電性フィルムの長さ方向においては、先端から600~ 650mの領域(第1中間領域)内であって、透明導電性フィルム幅方向においては一方 端から200mm離れた位置から300mm離れた位置までの区画から切り出されたもの である。第5試料フィルムは、第1中間領域内において、透明導電性フィルム幅方向にお ける一方端から700mm離れた位置から800mm離れた位置までの区画から切り出さ れたものである。第6試料フィルムは、第1中間領域内において、透明導電性フィルム幅 方向における一方端から1200mm離れた位置から1300mm離れた位置までの区画 から切り出されたものである。第7試料フィルムは、透明導電性フィルムの長さ方向にお いては、先端から1200~1250mの領域(第2中間領域)内であって、透明導電性 フィルム幅方向においては一方端から200mm離れた位置から300mm離れた位置ま での区画から切り出されたものである。第8試料フィルムは、第2中間領域内において、

20

10

透明導電性フィルム幅方向における一方端から700mm離れた位置から800mm離れ た位置までの区画から切り出されたものである。第9試料フィルムは、第2中間領域内に おいて、透明導電性フィルム幅方向における一方端から1200mm離れた位置から13 00mm離れた位置までの区画から切り出されたものである。第10試料フィルムは、透 明導電性フィルムの長さ方向においては、先端から1700~1750mの領域(第3中 間領域)内であって、透明導電性フィルム幅方向においては一方端から200mm離れた 位置から300mm離れた位置までの区画から切り出されたものである。第11試料フィ ルムは、第3中間領域内において、透明導電性フィルム幅方向における一方端から700 mm離れた位置から800mm離れた位置までの区画から切り出されたものである。第1 2試料フィルムは、第3中間領域内において、透明導電性フィルム幅方向における一方端 から1200mm離れた位置から1300mm離れた位置までの区画から切り出されたものである。

【0077】

次に、JIS K 7194(1994年)に準拠した四端子法により、試料フィルムの 透明導電層の抵抗値R1(加熱処理前の表面抵抗率)を測定した。次に、熱風式の加熱オ ーブン内で、試料フィルムを加熱処理した。加熱処理において、加熱温度は140 とし 、加熱時間は30分間とした。次に、JIS K 7194(1994年)に準拠した四端 子法により、同試料フィルムの透明導電層の抵抗値R2(加熱処理後の表面抵抗率)を測 定した。また、抵抗値R1に対する抵抗値R2の差R1-R2を算出した。そして、透明 導電層の抵抗値上昇の抑制について、差R1-R2が0.0以上の場合(抵抗値が上昇しな かった場合)を"良"と評価し、差R1-R2が0.0未満の場合(抵抗値が上昇した場合) を"不良"と評価した。これらの結果を、表1に示す。また、表1では、各抵抗値につき、 フィルム幅方向の同一位置における先端領域の抵抗値との差(透明導電性フィルムの長さ 方向における抵抗値変化量)をカギ括弧内に示す。実施例1の透明導電性フィルムの抵抗 値R1において、長さ方向の抵抗値変化量の最大値は6 / であった。実施例1の透明導 電性フィルムの抵抗値R2において、長さ方向の抵抗値変化量の最大値は3 / であった 。比較例1の透明導電性フィルムの抵抗値R1において、長さ方向の抵抗値変化量の最大 値は10 / であった。比較例1の透明導電性フィルムの抵抗値R2において、長さ方向 の抵抗値変化量の最大値は20 / であった。 [0078]

10

20

表1					「日子」							c	
	正 イ ビ ビ	成膜	条件		批抗値R 1 (Ω/□)			批抗値R2 (Ω/□)		X	(Ω/\Box)	2	and the second se
/	反らび国	H T T T	金書を	250mm	750mm	1250mm	250mm	750mm	1250mm				I
/		→ 77 圧 → 10-4	設まり	位置	位置	位置	位置	位置	位置	250mm	750mm	1250mm	
			「「「「」」には、「」」に、「」」に、「」」の「」」で、「」」の「」」で、「」」の「」」の「」」の「」」の「」」の「」」の「」」の「」」の「」」の「」」	[先端領域]	[先端領域	[先端領域	[先端領域	[先端領域	[先端領域	位置	位置	位置	
		(F a)	(派里%)	との差]	との差]	との差]	との差]	との差]	との差]				
	0	د -	c	41	4 0	41	36	34	35	L	((
	(先端領域)	г. о	4. 4							ი 	0	0	
		-	c c	45	44	45	3 8	37	38	ſ	ſ	C	
中松后1	0 0 0	т.т	۲. 3 ۲. 3	[4]	[4]	[4]	[2]	[3]	[3]	~	•	~	
夫		-	c	47	44	46	39	37	3 6	c	C	с т	
	1 7 0 0	т. о	7 7	[9]	[4]	[2]	[3]	[3]	[1]	ø		Π	
		0	۰ د	47	44	47	34	3 4	34	с -	C •	с ,	[
		U. Y	2·1	[9]	[4]	[9]	[-2]	[0]	[-]]	۲ ک	п	10	
	0	-	۲ د	41	4 0	41	36	34	35	L	Q	c	
	(先端領域)	1.0	4.4	[-]	[-]					ი 	0	0	
		-	۲ د	47	44	4 5	39	37	37	c	r	c	
上款面 1	0 0 0	т.т	4.4	[9]	[4]	[4]	[3]	[3]	[2]	ø		Ø	
T [M.X計17]		-	r c	47	4 6	4 5	4 8	4 3	38	F	c	Ľ	
		т. и	4.4	[9]	[9]	[4]	[12]	[6]	[3]		n N	•	
		0	۲ د	4 8	4 8	$5 \ 1$	53	5 4	43	L	ų	c	
		0. 2	7. 1.	[2]	[8]	[10]	[17]	[20]	[8]	ດ ເ	0	ρ	

(14)

【表1】

【符号の説明】

[0079]

X 透明導電性フィルム

- H 厚さ方向
- 10 基材フィルム
- 11 樹脂フィルム
- 12 機能層
- 20 透明導電層

20

【図面】 【図1】

図1A

図1B

【**図 3**】 図3

10

30

フロントページの続き

(56)参考文献	特開平02-163363(JP,A)
	特開2001-030409(JP,A)
	国際公開第2021/200709(WO,A1)
	特開2016-164848(JP,A)
	特開2000-144379(JP,A)
	特開2012-021231(JP,A)
(58)調査した分野	(Int.Cl.,D B 名)
	C 2 3 C 1 4 / 0 0 - 1 4 / 5 8
	H01B 13/00