»UK Patent .,GB

(11)25281 15 (13)B

(45)Date of B Publication 19.05.2021

(54) Title of the Invention: Dynamic saving of registers in transactions

(51) INT CL: GO6F 9/46 (2006.01) GO6F 11/14 (2006.01)
(21) Application No: 1412337.6
(22) Date of Filing: 11.07.2014
(43) Date of A Publication 13.01.2016

(56) Documents Cited:

US 20130339688 A1 US 20130339642 A1
US 20110191543 A1 US 20110029490 A1

(58) Field of Search:

As for published application 2528115 A viz:

INT CL GO6F
Other: WPI, EPODOC, INSPEC, XPIPCOM
updated as appropriate

Additional Fields
Other: None

(72) Inventor(s):

Matthew James Horsnell
Stephan Diestelhorst

(73) Proprietor(s):
ARM Limited

(Incorporated in the United Kingdom)
110 Fulbourn Road, Cherry Hinton, CAMBRIDGE,

CB1 9NJ, United Kingdom

(74) Agent and/or Address for Service:

D Young & Co LLP
120 Holborn, LONDON, EC1N 2DY, United Kingdom

d Gl18¢4¢ 89O

LR I I R R I I I I I I I O I I I I I I D I I I I I I U R R I I D U I I U I D R U U U U U D U U U D U O

* * e

s
O OO0
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
. R O OO OO OO OO R OO OO .
+
+ + + +
+
+ + + +
+
+ + + +
+
+ + + +
+
+ + + +
+
+ + + +
+
+ + + +
+
+ + + +
+
+ + + +
+
+ + + +
+
+ + + +
+
+ + + +
+
+ + + +
+
+ + + +
+
+ + + +
+
+ + + +
+
+ + + +
+
+ + + +
+
+ + + . +
+
+ + + . +
+ ++ + + + .+
IR R R O R R R R I IR RIS DO + ‘e 200 OO +
+ + + + +
+ + + + +
+
+ + + . + +
+
+ + + + +
+
+ + + + +
+
+ + + + +
+
+ + + + +
+
+ + + + K + +
+ + + + K + RARAABABANRABANBABABANSABAERNNNY +
+ = + I+ + + + +
+] " + + + + M + K +
+ +
+ + + + + +
+ +
+ + I+ + + + +
+ +
+ 1 ® | + + - + + W + M +
+ sl ’ { + + + K + K +
+ + I+ + + + +
. " X " . .
+ + + + + +
» + +
+ + + + + +
% X X
+ N + I+ + + + +
+
+ X + + + K + +
+ N + + + K + +
+ f + I+ + R I R R R R I R I IR IR IR IR IR I I I O O R I I I I I I I I R R R R IR IR +
v - v v
+ + + +
+ . + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ : + + + +
+ + + + +
A A A A N A AN A A AN
+ + +
+ .+ O + +
+ ., + +
+ + + IR I I I I I I I I I T T T T T T T I I I I I I IR I I I R IR I IR
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T AP AL PP P PP PP PP PP PP PP PP,

LR R R I I I I I I A I I A I I I I I I I I I I I I I I I I A I I I I I A I N I I I I I I I I I I I I A I I I I I O I A I I I I O I I I I I I A I I I I I I N I R I I I I A I I I I I A I I I I I I I I I O N I I I I A I I I I I I I I O I I I I R I O I O I U U O U I O U O D R I U O B R O

0c1

2400
d055400dd

LR N I U N U R U O R U N U N U U U N I U U U O

SYILSIOT |

+* +* * +*
LR R R R R EEEEEEEEEE BB ININ] MR AN EEEEEEEEEEEERE N AR RN R R R
+ +* + + +

AHIVO

MR RN R R R EEE RN

LA AR A AR N
LR R I I I I I A I I I I I I I I I I R I O U I I O I U O O U D D U U U U N U O O
LA ARAAAARAAAAA A AN

A IE 001~

LI R RN EEEEEEEEEEEEEEEEBIEIEIEIEBIEIEIEBIEIEIE IR
AR A A A AN

GLcOcl

* +t e

2400
H055400dd

AR AR AR A A A A AN

Ad LINOHIO
ONIGOLINOW

AR RN R AR AR EEEEE BB

AR NN NN AN NN

*
MR R R R EEEEEEEEEEEEEEEEEEEEEEIEEBEEEEIE BB E BB EBIEEBIEIEEIEIEIBIRIEIEININ NN
*

LR P R L R R O

AR NN NN

+*
+*
+
+*
+*
+
+*
+*
+
+*
+*
+
+*
+*
+
+*
+*
+
+*
+*
+
+*
+*
+
+*
+*
*
+*
+
+*
+*

QO mm AR U I I I I IR I I U I D U O

L B D O

AT

EN

LR N I I U I U I U U I D U I

LR U B I A I I I I I I I I I I I I I I O U O I I I O U U U U O U U O O B O O
*

AL LINOEI0
10 INOD A5V

+
AR R RN R E R EEEEEEE BB

17

LR L L B U B

LB

MR NN EEEEE RN

MR R EEEEEEEEEEE BB BB IEIN]

+

LR B I I I I N

L B 2

MR R RN RN R R RN

LR U U I B N D U N D N B

+
+*
+
+
+*
+*
+*
+*
+*
+

MR RN NN RN R RN

MR R R R R EEEEEEEEEEEEEEEEEEEEEEBEEIEEBEEEIEEIEN
+*

LB NN

AN

AR NN NN RN

R

LR I I U I I I U U U I A

LR RN EE RN R RN AR EEEEEEEEEEEIEEIEIEI N

* 4 e
L L B U B O 2

A LITOE0

L D B U N I U N U U

A LITI&E(0

LR R N I R I I I I I I I I I I I I I I I I I U I I I I I I I R I I I A I I N I I I I I I I I N I I I I I I I I I I I I I I I I I A I I I I I A I I I O I I I I I I I I I O I I A O I D I I O I O U U U O U D U U O O I O R

+* +
000v
00

+*
LR A R R R R R EEEEEEEEEEEEIE BB IEIEIE BRI EEB BB IEE BB IEEBEIEEEEIE BB
+*

+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+
+*
v
+*
+*
+*
+*
+*
+*
+*
+*

ONISSF00dd

+
+*
+*
+
+*
+*
+
+*
+*
+

AN NN NN E RN

INIAVS VIV

LR R R R I I I I R R O O

+*
+*
+
+*
+*
+
+*
+*
+
+
+*

LR B I U I U N D U L D N B

MR RN E RN EEEEE RN

AR AA A A A A A A AR

™\
1

4!

L O 2

0Q1 - 3 Hd HALSID 4

MR RN R EEEEEEEEEEEEIEEIEEIEIE BB IEE.IEIEIEB BB BB IEE BB BB IR IEIN

MR R R R R EEEEEEEEEEEEIEEIEIEEIEEBIEEIEIEEIEEIEEEIEEEEIEEEEEEEIEIEIEIEEIEEEEIEEBIEEIEEIEE RN
LR R B I R R I I I I R I I I I I I I U I I I R I A I I I R I I I I I R I I I I I I I I D I I D I O I I U I I A R I I R I U D I D O O U R R U I I U D D U I U D U U D U D B O R

MR R R R EEEEEEEEEEEIEIEIEIE BRI BRI I IR BB R IR

GLcOcl

LR N B I N D N I U D N U O I N I U I U U U U U N U U L U U N U I N I B I N U R I I I O U O O I O U N N N I I O I I O U I I U U O D U U N N U N U U I N I R O N I O R I I I U O U D U I U N I N I U U N U N O R N I R N U O U D R N D U N U I U O O O U N U U U U N R U U U U U N O U U D I U U U N U U I U U N I N U N U U U N R D U U O I U I I R N L U B U N N U U U U T U U U U U N

LR R R EEEEEEEEEEEEEEEIEEEEIEEEIEEIEEIEEIEIEIEEEIEIEIE BB EBEBIEEBIEEBIEEBIEEBEEEEEIEEEEIEEIEN

R R R O I I I R R R R R R R R R R R R R R

LR I I I R I I I I I I I I I I I I I O I I I I I I I I I I O I I I I I O U O I I O I R I D T I U R I O D U U U O O O

AL LN

ONISS 300

LR R I I R I I I U I I I I R I A I I A I I I R I I I I I I R D R I I I I I I I I D I I R I O I I O I I R I I D I I I R R U I I D R D U D I R I D R I U IR D U UL U U O U D D I O 4

MR R R R R EEEEEEEEEEEIEEIEEIEEIEIEIEIEIE BB IEININ]

* +
+* + 4+

LA R RN RN

U4¢

AHLINOHID
d3INNOD

000000000000000000000000000000000000

* * e

LR R N I R I I I I I I I I N I I I I I I I O I I I I I O O I O D N U U I U U I U U D I U O R

AGLINTEID
ONILLIGIHNE+

ONIHOLINOW

LR D N N N I U O I O U U N U N U U U B U U O D B O

MR EEEEEEEEEEEEEEEEE B EEBEEEEEEEIEIEEIEBIEBIEIBIEIEBIBIEININ
+*

HOELINOD MY

L U N L U U R U U O U D U U O U U U O N U U N N I I U U U U U O I I N U U U N O D U U U U D U U U U U U U O

MR RN R R R R RN

LR R R I I R

+*
+*

: a..--.\ i

. UL¢

+*
+*
+
+*
+*
+*
+*
v
+*
+*
+*
+*
+*
+*
+*
+*
+
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+

AR NN NN E NN R R E R R RN

X
" v S
mm i
. .) ¥ ¥

AR NN E RN E RN

At LITTI&0
ONIAVS VIV

LRI R R I I I T R

AR NN RN RN

MR RN R EEEEEEEEEIEIEIEII

+* +

+*
+
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*

AHOVO

LR I B I I O

LR B I U U O 3
LR L I D U O R
*

GLcOcl

AN R RN RN E NN

+*

* + +
+*

+

0g1L-

LR R I D I I O O I I I A N I I I I I I I I I U I I I I I I I I R I I I I I I I I I A I A I I I I I I I O I I A I I I I I A I I A I A I I I A I I I I I I I O IR I O U R U D R D D D O O U N O U U U U U O D D O

LR U N U U U N U I D U I I 4

LR N I I

* 4 4 4

00¢

* *F A

+*

+
MR EEEEEEEEEEEEEEEEN

ASVIA

+
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+*
+*
+
+*
+*
+
+*
+*
+
+*
+*

o RNl

AR NN E N NN RN N EEEE RN

U9c
I B4

LR N B D I U U I N I U O I U U I N I I O I U U I O D I U N U O U D U I U U U T U O O U U D D U U O D U U N O O

LR R N I D U U U I I O

Le

*

LR U B I L U U U U N U 4

MR EEEEEEE RN

N

LR I I U I I I U U U I A

AN NN
* e
LR B U B

AR NN RN R RN

* 4 e
L L B U B O 2

AR RN NN RN RN

kR

AN

+
+*
+
+*
+*
+
+*
+*
+
+

MR EEEEEEE RN

* s
L L B B O 2

AR U I I I I IR I I U I D U O

LR I N U I B N D U B N B

LR N I I U I U I U U I D U I

LR B O O

L D U B

LR I I U I D N D U I N B

+*
+*
+*
+*
+*
+*
+*
+*
+*
+

AR BN NN NN RN

LR IR I I T R R

*

+

+*

+*

+

+*

N .
* +

+*

+*

L D N I U I N U U N

* 4t
L I B

LR IR I R I T I L N

ERIEREIRIIE

MR R R EEEEEEEEEEEEIEIEIEIEIEIE BB IEIEIE IR BRI BB BB B IEEIEIEBIEIEIEIEIEIEBIEEBIEIEBIEIEBIEIEEIEIEIEIE I IEIEEEBIEIEEBIEIEIEIEIEIEEIEIEIEIEIEIEIN

MR EEEEEEEEEEEEEEEEEEEEEBEEEEEIEEIEIEIEIEBIEIBIEIEBIBIEIBIEIBIB BB IR

LR I B B I I I I I I I D D O O U I U I I D U U O O U O U D O U O U I O U U U U D U D I I U D U U U U U O O

+*
+*
LB BN EEEEEEEEEEEEEEN.

ONIRHOLSdd ViV

Add LN

+* +

L D U L U U U U U O U U 2
+*

1202 15

+

LR B N N U U U U U N U U U U U N U U U U B 2

LR D U I I I U U U D U U U U 4

+* +
MR E RN R EEEEEEN

MR R R EEEEEEEEEEEIEEEEIEEBIEIEIEIEIBIEIEIEBIEIEIRIN

o TART

TRANSACTION

AR RN E RN RN RN EEEEEEEEEIEIEIEIEIRIBIIBIERIBIBIBIBEIBIBIBIBIBIBIBIBIBIBIBIBIBIBIBIRINININ

SELECT SUBSET

OF DATA STORAGE

ELEMENTS

LR R N N B B I U I I I I I I O I U N D D U U U I U U D U U U O U U O U U U L D I I U U U U U U I U U D U O O

*

+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+
+*
+*

LR B N U R N I N N R N I I U O R N I D N I N U U U N U N N I I U O U R D U U N N U U U U U N U O O 2

SAVE BACKUP

LR R I D U D O O

+*

+*

*
AR EE RN RN
+ &+

LR I I I I I I I N N R I I I R

UPDATE MA

LR L U U O

+* +
L R EEEEEEEEEEEEN .

+*

LR R I U U I I I I I I O I I R D I D I U O U D U U D U D U O O

END TRANSACTION
SUCCESSFULLY

MR R R R R EEEEEIEEEEIEEIEEIEEEBIEIEIEIEIEBIEIE BB

FiG. 4

5210

MR R R EEEEEEE N

5220

o230

*
+*
+*

LB EEEEEEEEEEEEEEIEN

5250

LR R I I I I I I I I I I I I I I I I D DR D U D U U U U O O

olGNAL
ERROUR

LR U I N I N I U I N U U I U D D D U U D U O O

1202 15

LR I I I I I I I I I I N I I I O D I I O U I D U U U U U N I B O 2

5100

LR I R
LR R N B N N B I O

d
1 1 O LR R AN AN AR A A RN NN A AN N AN N

LR B I D U D N O I O R O I O U U I O D U U I O O I I U R I O U D U I U U U U O U I U O U U I O U O D U U N U U U U U O B

LR L B O O
LR D B U N B O

IR I IR I R I I I I I IR I IR I I I R IR I I I I R IR
+
-1

L O

LR I I I R I I I I I I I I I I I A I I I I I I A I I O I I I I I I I I D I A I I I D I A I D D U I U O D U U I U U U U U U U U O O

+
+*

+*

ERROR
THROW

LRI I I I I I I I I I R I I I I N I I I O I I I A I I I I I I I I A I A I I O I R I D A A R I O I I I I D O U I U U I I U U U U U O U A

ST60 N END TRANSACTION

na

L I I I O

L I I I

+* +
AR R R R R R EEEEEEEEEEEEEIEEEEIEEEEEEIEEIEIEIEIN
+ +

LB BN EEEEEEEEEEEEEEEIEEBIEBIEEIEBIEIBIBIEIBIEIBIBIEIEIE BB INININ] "S E ;E;O
*

MR R EEEEEEEEEEEEE BB EBIEEBIEEIEEIEIEIEEBIEIEIEIEEIEIBIE RN

R ,’S E 40
e
rrawe

LR I I I N I I I I

LR U U I L I N
L U I O

+

HFiG. 5

2/ 01 21

10

15

20

23

30

DYNAMIC SAVING OF REGISTERS IN TRANSACTIONS

TECHNICAL FIELD

The present disclosure relates to the field of data processing and has particular

relevance to the use of transactions in a data processing apparatus.

BACKGROUND

In a multiprocessor system, 1t 1S often necessary to ensure coordination
between the various processing devices. For example, consider the situation 1n which
a processor A and a processor B both attempt to decrement a shared resource (e.g. the
value of a person’s bank balance) by 10. If the value of the person’s bank balance is
initially 100 then, processed correctly, the shared value should decrease to 80 (100 —
10 — 10). However, 1f processor A and B each get the current value at the same time,
then each of the processors may perform the calculation and write back the new value
(90) 1nto shared memory simultanecusly. Hence, due to the lack of coordination, one

of the two transactions has been masked, or overwritten, by the other transaction.

Locks may be used 1in order to ensure that only a single execution agent (a
processor or thread) can access a shared resource at a time. Considering the above
example, the user’s bank balance 1s a shared resource and so a lock may be applied to
that data value to ensure that only one processor can read and modify that value at
once. If written correctly, such locks can be used to prevent transactions from
overwriting each other and to ensure that access to the shared resource 1s coordinated
across all agents. In other words, this helps to prevent the situation in which one agent
performs an operation on an old version of the shared resource. A disadvantage to
using locks 1s 1n the level of granulanty that 1s protected. For example, consider a
linked list. In a linked list, each element provides a data value and a pointer to the next
element 1n the list. It 1s desirable when multiple agents may seek modification access
to such a linked list to lock access to the list in order to prevent the situation where one
of the elements no longer points to the next element in the list — causing the list to
break. One option 1s to provide a lock for the entire list. However, 1f one agent wishes

to modify the head of a list and another agent wishes to moditfy the tail of the list, then

2/ 01 21

10

15

20

23

30

this lock 1s unnecessarily restrictive — the edits made by the two agents are unlikely to
interfere with each other. Another option 1s to provide a lock for each individual
element of the list. However, this may require a large number of locks in the case of a
large list, with each lock requiring 1ts own storage in memory. Locks also have a
disadvantage that they can cause deadlocks. For example, 1f two agents each require
access to two shared data resources that are protected by locks, and each of the two
agents holds a lock for one of those two shared data resources, then the system enters a
deadlock. In other words, neither agent can proceed and will wait forever for the other

agent to release the lock that 1t needs.

One solution 1s to use transactions rather than locks. When a transaction
begins, the processor enters a special execution mode. While 1n this mode, the system
tracks reads and writes. If there 1s determined to be a conflict (e.g. between multiple
agents) then one of the agents will be killed off and rolled back, e.g. 1its changes will be
undone. If no conflicts occur, then the agents continue until they are done, at which
time the changes made are committed. Consequently a transaction may be thought of
as a series of operations that are treated as a single atomic operation since up until the
transaction 1s committed (a single operation) the entire transaction 1s invisible to other

agents and may even be undone or rewound by that one agent by rolling back.

In some systems, performing transactions may require that every architectural
register 1s saved 1n order for those registers to be restored to their original values 1n the
case of a rollback. Some architectures may include as many as 60 registers and hence,
in such systems, 1t may be necessary to save the values of all of those registers.
However, such an approach can be wasteful, since 1t may involve saving data that 1s
never modified inside the transaction. In this case, the data 1s stored unnecessarily,
thereby consuming both storage space in order to store the values and also time 1n
order to physically copy the data values. Furthermore, 1f a rollback occurs, then all
saved registers must have their values restored, even if those data values have not been
modified. Hence, more time may be wasted in restoring all of the stored data values 1f
a rollback occurs. Additionally, the power consumption associated with restoring all

those stored data values in the event of a rollback 1s also preferably avoided.

2/ 01 21

10

15

20

23

As an alternative, 1t 1s possible for the user and/or the compiler to specify those
registers that will be modified during a transaction. In this case, only the specified
registers are saved and only those registers will be restored in the event of a rollback.
However, 1t may not always be possible to predict whether or not a particular register
will be used 1n a transaction. For example, a transaction may involve one or more
calls to library functions. The user or programmer may have little or no control over
such library functions and may not even be able to see how the library functions work.
In such cases, the user has no way of knowing which registers must be saved when the
transaction starts. Consequently, the user must either save all registers, or else proceed

with the possibility that a rollback will fail as a result of an unsaved register being

modified.

SUMMARY

Aspects of the invention are set out in the attached claims.

In response to a transactional start instruction, which indicates that a
transaction 1s to begin, the mask storage circuitry saves (backs up) a subset of the data
storage elements. These data storage elements may for example be registers in the
data processing apparatus. It will be appreciated that such data storage elements may
also take the form of register files, shadow register files and various types of memory
constructs including, for example, caches and internal scratch pad memories. A mask
1s then stored that indicates which of the data storage elements have been saved. It

should be understood that the word “subset” 1s used here to mean “less than all” of the

10

15

20

25

30

full set of data storage elements. During the transaction, the processor executes one or
more instructions. A monitor detects write attempts to data storage elements that are
not indicated by the mask (i.e. write attempts to data storage elements that have not
been saved or backed up). For example, a monitor may examine those instructions
that cause writes to the data storage elements or may intercept signals sent by the
processing circuitry to the data storage elements. Note that throughout this
specification the term “write” is intended to refer to both actual writes to the data
storage elements and also requests, from the processor, to write to those data storage
elements. If such a write or a write attempt 1s allowed to proceed then the transaction
mechanism itself will have failed, because no rollback will be possible (since a write to
a data storage element that cannot be restored will have been made). Hence, the data
processing apparatus (by virtue of the monitor) is able to detect such writes and may
take suitable action where appropriate. Consequently, it 1S not necessary to save or
back up every single register whenever a transaction 1s to begin and the user need not
be concerned about the possibility of the transaction mechanism failing as a result of a

write attempt being made to a data storage element that has not been saved or backed

up.

The action taken by the data processing apparatus in response to the detection
of an attempt to write to a data storage element not indicated by the mask may take a
number of different forms, examples of which are given below, and these may exist

either in isolation or in combination.

For example, the data processing apparatus may comprise inhibitor circuitry
configured to inhibit the write to the one of the data storage elements not indicated by
the mask. In such embodiments, if an attempt 1s made to write to data storage clement
that has not been backed up, then the attempt to perform the write may simply be
blocked. This may be achieved by the monitor preventing a write request 1ssued by
the processor from reaching the data storage elements. In some embodiments, the
monitor may also signal to the processor that the write attempt has failed, which may
enable the processor to take its own corrective action — for example, by executing an

exception handling routine.

10

15

20

25

30

As another example, the data processing apparatus may comprise a restorer
configured to restore the data storage elements indicated by the mask from the backup.
Accordingly, if an attempt is made to write to a data storage element that has not been
backed up, all of the data storage elements may be restored to their previous values. In
some cases, an updater (for example embodied as updating circuitry) may also update
the program counter to indicate the transactional start instruction. As a result of
turning back the program counter and restoring the data storage elements, a full
rollback of the transaction is caused. Hence, the transaction may be forced to begin

again.

As a further example, in response to detecting the write to one of the data
storage elements not indicated by the mask, the monitor may be configured to signal
an error. For example, a signal may be sent to the processor. The processor may have
a dedicated subroutine for handling such a situation. Alternatively, the processor may
signal an exception and the software itself may comprise an exception handling routine
to handle the situation. This may allow complete flexibility regarding how to proceed
with the transaction. For example, if the transaction has already failed numerous times
then the transaction may simply be rolled back and abandoned. If the failure of the
transaction is unimportant (for example, if the data values themselves are not critical)
then the software may be allowed to continue without even rolling back. In other
cases, the transaction may be rolled back and forced to begin again, this time causing

additional registers to be saved.

The data storage elements may be selected by the data saver based on a
heuristical (e.g. experience based) analysis carried out by the data processing
apparatus. In particular, by using heuristics or statistics, the data saver may select
those data storage elements to be saved (backed up). In such cases, it may be
unnecessary for the programmer to explicitly state those data storage elements that
must be backed up, which reduces a burden on the programmer and may be suitable
for use when libraries are being invoked by the programmer and where it is not clear to

the programmer which data storage elements must be backed up.

10

15

20

25

30

The heuristical analysis may be dependent on data annotated by a compiler.
For example, during compilation, the compiler may provide hints (i.e. indications) that
can be used by the data saver to determine which data storage elements should be

saved.

The heuristical analysis may be dependent on calling conventions associated

with the one or more instructions. A calling convention may be dictated by a

particular architecture and may specify how data should be exchanged between the

caller and the callee in a function call. In particular, calling conventions may indicate
how parameters are to be passed (e.g. using particular data storage elements or the
stack) and how results are to be returned. This information can be useful in predicting
those data storage elements that must be saved, or are likely to have to be saved, prior

to starting a transaction.

The heuristical analysis may be dependent on the number of times that the
monitor has detected a write to one of the data storage elements not indicated by the
mask. For example, if a transaction is repeatedly rolled back as a consequence of
writes to registers that have not been saved, then the data storage elements selected by
the data saver for saving may be varied, in order to seek to reduce the chance that a
future transaction will rollback. For example, the subset of data storage elements that
is selected may be increased in response to the monitor detecting the write to the one
of the data storage elements not indicated by the mask. For example, every time the
monitor detects an attempt to write to a data storage element that has not been saved, a
rollback may occur and an additional register may be saved as compared to the
previous iteration. In other embodiments, the number of registers that are saved may
increment more quickly in order to limit the number of rollbacks that occur. However,

this must be balanced against the increased risk of unnecessarily saving registers.

The subset of data storage elements to be saved may be selected by the data
saver in response to a subset defining instruction. For example, the user may provide a

“best guess” regarding which data storage elements should be saved. Such an

10

15

20

235

30

approach may be useful as an initial starting point for determining which data storage
elements to be backed up. Such an approach may be particularly useful if the user has

acquired knowledge of the workings of a library that 1s being invoked.

The data storage elements may be a plurality of registers.

The monitor may comprise monitoring circuitry. The monitoring circuitry may
intercept signals issued by the processor to the data storage clements. In other
embodiments, the monitor may be implemented by monitoring software and may
monitor the instructions that are executed in order to determine whether an instruction
will cause a write to a data storage element that has not been saved (1.e. that 1s not part

of the mask) before the processor executes that instruction.

The data saver may comprise data saving circuitry, i.e. particular circuitry
configured to perform the described data saving function. However, the data saver
may be implemented by data saving software that explicitly causes the data storage

elements to be backed up or saved to a particular location.

The data saver may be configured to save a backup of the subset of the data
storage elements to a local cache. By using a local cache, it is possible to 1solate the
changes made by other agents until such time as the changes are committed. This 1s
important because until the changes are committed, the changes must not be seen by
other agents. This isolation can be achieved by using a local cache and by providing a
suitable tag on the associated cache line entry to indicate that 1t should not be allowed

to be retrieved by other processors.

According to a second aspect, there is provided a data processing apparatus
comprising: a plurality of means for storing data; mask storage means for storing a
mask; processing means for executing one or more instructions; data saving means for,
in response to a transactional start instruction, selecting a subset of the plurality of
means for storing data and for saving a backup of the data stored by the subset of the

plurality of means for storing data; mask control means for updating the mask to

10

15

20

25

30

indicate the subset of the plurality of means for storing data selected by the data saving

means; and monitoring means for detecting a write to one of the plurality of means for

storing data not indicated by the mask.

According to a third aspect, there is provided a method of data processing 1n a
data processing apparatus comprising a plurality of data storage elements for storing
data, the method comprising the steps of: selecting a subset of the data storage
elements in response to a transactional start instruction; saving a backup of data stored
by the subset of the data storage elements; updating a mask to indicate the subset of
the data storage elements; and detecting a write to one of the data storage elements not

indicated by the mask.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described further, by way of example only, with
reference to embodiments thereof as illustrated in the accompanying drawings, In
which:

Figure 1 is shows an overview of a system comprising a data processing
apparatus in one embodiment;

Figure 2 shows a circuit diagram illustrating the components that make up the
data processing apparatus in one embodiment;

Figure 3 shows a circuit diagram illustrating the components that make up the
data processing apparatus 1n one embodiment;

Figure 4 shows, in flow chart form, a method of using the data processing

apparatus in accordance with one embodiment; and

Figure 5 is a flow chart that indicates how heuristics may be used in order to

select the set of registers that are saved at the start of a transaction.

DESCRIPTION OF EMBODIMENTS

Figure 1 shows a system comprising two data processing apparatuses 102, 104
each comprising a respective processor core 100, 130 and each with an associated set
of registers that is local to that processor core. Each of the processor cores 100, 130

also has an associated local cache 110, 140. In other words, one processor core may

10

15

20

25

30

M W e WY NS N A

not access the cache associated with the other processor core. Fach of the caches 110,
140 may communicate with each other (for coherency purposes) and a shared memory
120 via a memory bus 150. The shared or main memory 120 comprises one or more
shared data structures (shared resources) that can be accessed by the processor cores
100, 130. Since each of the processors cores 100, 130 can access the same shared data
structure held in main memory 120, the system uses transactions in order to provide
coordination between the processor cores and to help prevent a modification by one

processor core being “overwritten” by a modification made by another processor core.

Figure 2 shows an embodiment of the processor core 100. Processing circuitry
160 executes data processing instructions. One of those instructions may be used to
indicate that a transaction is to begin. In response to receiving such instruction, the
processing circuitry 160 signals the data saving circuitry 170 to save a subset of
registers 190 in a register file 180. A mask 200 1s also updated by mask control
circuitry 210 to represent the subset of registers 190. In this example, the subset 190
comprises registers r0, rl, and r2. Accordingly, the mask may contain the value
11100000, thereby indicating that the subset comprises the first three registers out of
the eight registers in the register file 180. Of course, it will be appreciated that in a
register file comprising a large or different number of registers, the size of the mask
will be appropriate in order to reflect which of the registers comprise the subset of
registers that has been saved by the data saving circuitry 170. Processor core 100 also
comprises monitoring circuitry 220 that (functionally) lies between the processing
circuitry 160 and the register file 180. The monitoring circuitry 220 mtercepts write
requests issued by the processing circuitry 160 to the register file 180. In other words,
if the processing circuitry 160 sends a signal to write to a register in the register file
180, then this signal will be firstly received by the monitoring circuitry 220. The
monitoring circuitry 220 will then make a comparison to the set of registers that have
not been saved by the data saving circuitry by inverting, by means of inverter 230, the
mask 200. If the write request issued by processing circuitry 160 and received at
monitoring circuitry 220 is not to one of the registers that have been saved by the data
saving circuitry 170, then the monitoring circuitry reacts. For example, mn this

embodiment, the monitoring circuitry signals a warning to the processing circuitry

10

15

20

235

30

10

160. If, however, the write request (signal) issued by the processing circuitry 160 1s to
one of the registers that have been saved by the data saving circuitry 170, then the
request may be allowed to proceed by the monitoring circuitry 220 to the register file

180 in order for the write to complete.

Figure 3 shows an embodiment of a data processing apparatus 102 comprising
a processor core 100 and a local cache 110. The same reference numerals have been

used to indicate features that have already been described.

In the embodiment illustrated, the data saving circuitry 170 comprises a
heuristic analyser 240. The heuristic analyser monitors the ongoing success or failure
of the data saving circuitry in its selection of the subset of registers 190 that are to be
saved or backed up to the local cache 110. There are a number of different heuristics
or statistics that may be considered by the heuristic analyser 240 when determining the
subset 190. For example, this embodiment considers a heuristic based on the numbér
of times that the monitoring circuitry intercepts an attempt by the processing circuitry
160 to write to a register in the register file 180 that is not part of the subset 190. In
particular, a counter 250 is incremented every time the processing circuitry 160
attempts to write to a register in the register file 180 that has not been saved to the
cache (i.e. a register that is not part of the subset 190). When the data saving circuitry
170 determines the registers that should be saved, the value of the counter 250 1s taken
into account. In this way, as more requests are made by the processing circuitry 160 to
write to registers in the register file 180 that have not been saved, the data saving

circuitry 170 will respond by saving a larger subset of registers.

The heuristic analyser 240 can also consider heuristics such as the calling
conventions associated with the instructions executed by the processing circuitry 160.
Calling conventions dictate the method and manner in which data 1s passed between a
caller and a callee during a function call. For example, the calling convention may
dictate that parameters are passed using a particular combination of registers, or using
the stack. Similarly, the calling convention may indicate how the result of a function

call is to be returned. This information can be used in order to better predict the

10

15

20

25

30

11

registers which are more likely to be written to by the processing circuitry 160. For
example, if the calling conventions indicate that a first parameter is always passed
using a register 10, then it is more likely that a register r0 is likely to be written to at
some point by the processing circuitry 160. Hence, the heuristic analyser 240 may

determine that register 10 should always form part of the selected subset.

A further example of a heuristic considered by the heuristic analyser may be
hints provided by the complier during compilation of source code into instructions for
the processing circuitry 160. Since the complier has visibility of the source code, the
complier may be in a position to provide a good indication of those registers that must
be saved by the data saving circuitry 170. Note, however that this is not always
possible, since source code may reference a library or external code source that 1s not
visible to the complier. Accordingly, the hints provided by the compiler may not

always be complete.

It should be appreciated that various different heuristics, including further
examples not explicitly mentioned here but known to the skilled person, may be
considered by the heuristic analyser 240 in any combination. The heuristic analyser
240 may also combine the different heuristics in various ways 1n order to produce a

final conclusion regarding the subset of registers 190 that are to be saved.

Monitoring and inhibiting circuitry 320 is provided to monitor the attempts of
the processing circuitry 160 to write to the register file 180. The monitoring and
inhibiting circuitry 320 is configured such that as well as monitoring write requests
from the processing circuitry 160 to the register file 180, a signal sent by the
processing circuitry 160 to the register file 180 that relates to a register that has not
been saved (backed up) by the data saving circuitry 170 is inhibited. In other words
that signal is disregarded and is not forwarded to the register file 180.

Additionally, in response to detecting a write request to a register 1n the register
file 180 that has not been saved by the data saving circuitry 170, a program counter

270 held within the register file 180 is updated by an updater 260. The program

10

15

20

25

30

12

counter 270 is used to indicate the instruction that i1s next to be executed by the
processing circuitry 160. Accordingly, by updating the program counter 270 using the
updater 260, it is possible to restart a transaction or to skip over the transaction
altogether if the monitoring and inhibiting circuitry 320 detects that the processing
circuitry 160 is attempting to write to a register that is not part of the subset 190. In
this embodiment, data restoring circuitry 280 is also provided so that if an attempt 1s
made to write to a register that is not part of the subset 190, then those registers that
have been saved are restored from the cache. In other words, the registers that were
backed up are reset to their original values. By means of the data restoring circuitry
280 and the updater 260, it is thus possible to effect a rollback. That 1s, 1n response to
the monitoring and inhibiting circuitry 320 detecting that the processing circuitry 160
is attempting to write to a register that is not part of the subset 190 (1.e. that has not
been saved), the write request is inhibited by the monitoring and inhibiting circuitry
320, the program counter 270 is reset by the updater 260 to the value of the instruction
at which the transaction began, and the data restoring circuitry 280 restores the values
of the subset of registers 190 to the values that those registers had at the time that the
transaction began. In other words, the state of the data processing apparatus 1s reset to

point at which that transaction began.

Figure 4 shows, in flowchart form, a method of executing transactions in
accordance with one embodiment. At step S200, a transaction begins. This may occur
as a result of the processing circuitry 160 receiving a transactional start mstruction.
However, the transaction may also be initiated by hardware if particular conditions are
met. At step S210, a subset of data storage elements is selected. The data storage
elements may be, for example, registers in a register file 180. There are many ways in
which the set of data storage elements may be selected. One way ot selecting these 1s
by the use of heuristics, which will be demonstrated later with respect to Figure 5.
However the data storage elements are selected, a backup 1s made at step 5220. In
some examples, the backup may be achieved by writing the values of those data
storage elements into a cache 110. However, it will be appreciated that other forms of
data storage may be equally acceptable. A mask 200 1s then updated 1n order to retlect

the subset of data storage elements that have been saved at step S230. The transaction

10

15

20

23

30

13

then proceeds by the processor circuitry executing one or more mstructions. If at any
stage during that sequence of instructions, a write or write attempt is made to a data
storage element not indicated by the mask, then this is detected at step S240 and the
flow proceeds to step S250 where some action 1s performed. In this embodiment, an
error is signalled. However, it will be appreciated that other responses may be
appropriate or utilized in other embodiments. For example, a rollback may be
performed, involving altering a program counter 270 and/or restoring the value of the
subset of data storage elements as previously discussed. Various other alerting or
remedial actions may be taken, which will be apparent to the skilled person.
Alternatively, if the data processing apparatus does not detect a write to a register that
is not indicated by the mask (i.e. a register that has not been saved or backed up)

during the transaction, then the transaction ends successtully at step S260.

Figure 5 shows, in flow chart form, the use of a heuristic in selecting the subset
of data storage elements. In this example, the data storage elements are considered to
be registers that form part of a register file 180. The process begins at step S100 when
a transactional start instruction is executed by the processor. This causes an initial
value of x to be initialised or set. In this example, the initial value of x i1s based on
heuristics. In particular, x i‘elates to a counter that is incremented every time an error
is thrown as a result of a write request being issued by processing circuitry 160 to a
register in the register file 180 that has not been saved or backed up. Having
determined the value of x, the set of x registers i1s saved at step S110. For example, the
set of x registers 190 may be saved to a local cache 110. The set of x registers 190 1s
in part determined by using knowledge of the calling conventions of instructions
executed by processing circuitry 160. In particular, if the calling convention indicates
that parameters and return results are always passed using registers in ascending order
from 10 to r8 then the heuristic may determine that the set of x registers starts with
register 0 and additional registers are added sequentially until x registers have been
added. In other embodiments, other heuristics may be used to determine how the set
of registers is expanded. Either before or after the registers are saved, a mask 200 is
updated in order to reflect the set of registers that have been backed up. At step S120

the transaction begins. During this step, a sequence of instructions may be executed

10

15

20

235

30

14

by the processing circuitry 160. However, at any time until the transaction is
committed (i.e. completed), the value of the registers saved at step S110 can be
restored by rolling back. At step S130, it determined whether or not an error has
occurred. In particular, step S130 continually tests whether at any stage during the

transaction, an attempt 1s made by the processing circuitry 160 to write to one of the

registers in the register file 180 that 1s not part of the subset of registers 190 that were
saved 1n step S110. Such an error may be raised by the monitoring circuitry 220 or
monitoring and inhibiting circuitry 320. If no such attempt 1s made during the
transaction, then the transaction ends at step S160. The end of the transaction may
take place implicitly as a result of reaching the end of a block of code, or may occur
explicitly with an end transaction instruction. When the transaction ends, the values of
the registers are saved back to main memory so that other processor cores may access
the newly updated values. Alternatively, if at step S130 an error is thrown, then the
process proceeds to step S140. At step S140, the value of x 1s incremented by 1

thereby causing the next highest register that was unsaved to be saved.

It will be appreciated that in other embodiments, x may be incremented by
more than one. This may cause fewer iterations of the loop to occur. However, it may

take place at the cost of more registers being saved that is actually necessary.

In any event, at step S150, the transaction 1s aborted. In this embodiment, this
causes the program counter 270 to be updated by the updater 260 to the value of the
program counter at the time the transactional start instruction was executed by the
processing circuitry 160. Additionally, the values of the set of registers 190 are
restored to the values that were saved in the previous execution of step S110. In other
words the transaction 1s rolled back, in that the transaction is restarted from its
beginning and the values of the subset of registers 190 will be restored to the values
held by those registers at the time the transactional start instruction was received.

Flow then proceeds to step S110 where the transaction begins again, and the set of x

registers 1s saved once more.

10

15

20

15

Hence, 1t can be seen that in overall summary, an initial estimate of the set of x
registers is made. A transaction then proceeds. However, 1f the transaction fails as a
result of write attempt being made by the processing circuitry 160 to a register 1n the
register file 180 that is not part of the subset of registers 190 (1.e. 1f a write attempt 1s
made to a register that has not been saved at the time of the transaction starting), then
an error is thrown, the transaction 1s rolled back and the set of X registers 1s expanded.
The transaction 1s then restarted with this new set of registers. This process may
proceed until the transaction ends successfully at step S160. There 1s, thus, no need
either to explicitly state the set of registers that must be saved, which may be

unknown, or to save the entire set of architectural registers.

Although illustrative embodiments of the invention have been described in
detail herein with reference to the accompanying drawings, it is to be understood that
the invention is not lunited to those precise embodiments, and that various changes,
additions and modifications can be effected therein by one skilled in the art without
departing from the scope and spirit of the invention as defined by the appended claims.
For example, various combinations of the features of the dependent claims could be
made with the features of the independent claims without departing from the scope of

the present invention.

2/ 01 21

10

15

20

23

30

16

CLAIMS

1. A data processing apparatus comprising:

a plurality of data storage elements, each configured to store data;

mask storage circuitry configured to store a mask;

processing circuitry configured to execute one or more instructions;

a data saver configured, 1n response to a transactional start instruction, to select
a subset of the data storage elements and to save a backup of the subset of the data
storage elements;

mask control circuitry configured to update the mask to indicate the subset of
the data storage elements selected by the data saver; and

a monitor configured to detect a write to one of the data storage elements not
indicated by the mask, wherein

the data storage elements are selected by the data saver based on a heuristical
analysis carried out by the data processing apparatus; and

the heuristical analysis 1s dependent on at least one of: data annotated by a

compiler, and calling conventions associated with the one or more instructions.

2. A data processing apparatus according to claim 1, comprising:
inhibitor circuitry configured to inhibit the write to the one of the data storage

elements not indicated by the mask.

3. A data processing apparatus according to claim 2, comprising:
a restorer configured to restore the data storage elements indicated by the mask

from the backup.
4 A data processing apparatus according to claim 3, comprising:
updating circuitry configured to update a program counter to indicate the

transactional start instruction.

5. A data processing apparatus according to any preceding claim,

2/ 01 21

10

15

20

23

30

17

wherein the monitor 1s additionally configured to signal an error 1n response to

detection of the write to the one of the data storage elements not indicated by the mask.

6. A data processing apparatus according to claim 1,
wherein the heuristical analysis 1s dependent on a number of times the monitor

has detected a write to one of the data storage elements not indicated by the mask.

7. A data processing apparatus according to any preceding claim,
wherein the subset of the data storage elements selected 1s increased in
response to the monitor detecting the write to the one of the data storage elements not

indicated by the mask.
8. A data processing apparatus according to any preceding claim,
wherein the subset of data storage elements 1s selected by the data saver in

response to a subset defining instruction.

9. A data processing apparatus according to any preceding claim,

wherein the plurality of data storage elements 1s a plurality of registers.

10. A data processing apparatus according to any one of claims 1-9,

wherein the monitor comprises monitoring circuitry.

11. A data processing apparatus according to any one of claims 1-9,

wherein the monitor 1s implemented by monitoring software.

12. A data processing apparatus according to any one of claims 1-11,

wherein the data saver comprises data saving circuitry.

13. A data processing apparatus according to any one of claims 1-11,

wherein the data saver 1s implemented by data saving software.

14. A data processing apparatus according to any preceding claim,

2/ 01 21

10

15

20

23

30

18

wherein the data saver 1s configured to save a backup of the subset of the data

storage elements to a local cache.

15. A data processing apparatus comprising:

a plurality of means for storing data;

mask storage means for storing a mask;

processing means for executing one or more instructions;

data saving means for, in response to a transactional start instruction, selecting
a subset of the plurality of means for storing data and for saving a backup of the data
stored by the subset of the plurality of means for storing data;

mask control means for updating the mask to indicate the subset of the plurality
of means for storing data selected by the data saving means; and

monitoring means for detecting a write to one of the plurality of means for
storing data not indicated by the mask, wherein

the data 1s selected by the data saving means based on a heuristical analysis
carried out by the data processing apparatus; and

the heuristical analysis 1s dependent on at least one of: data annotated by a

compiler, and calling conventions associated with the one or more 1nstructions.

16. A method of data processing in a data processing apparatus comprising a
plurality of data storage elements for storing data, the method comprising the steps of:
selecting a subset of the data storage elements in response to a transactional
start 1nstruction;
saving a backup of data stored by the subset of the data storage elements;
updating a mask to indicate the subset of the data storage elements; and
detecting a write to one of the data storage elements not indicated by the mask,
wherein
the data storage elements are selected based on a heuristical analysis carried
out by the data processing apparatus; and
the heuristical analysis 1s dependent on at least one of: data annotated by a

compiler, and calling conventions associated with the one or more instructions.

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - CLAIMS
	Page 23 - CLAIMS
	Page 24 - CLAIMS

