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FIGURE 1

controller. The sensor array includes a plurality of sensors, the plurality of sensors
includes a sensing element, a heating element, and a lighting element. The controller
is communicatively coupled to the sensor array, the heating element, and the lighting
clement, and configured to adjust at least one of the heating element or the lighting
clement based on a temperature profile of the heating element and an illumination
profile of the lighting element.
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INTELLIGENT ELECTRONIC NOSE SYSTEM

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT
[1] This invention was made with government support under grant N64267-19-C-0024
awarded by the Naval Sea Systems Command and grant NB18-21-27 awarded by US Air
Force Research Laboratory (AFRL). The government has certain rights in the invention.
TECHNICAL FIELD
[2] The present description relates generally to detecting analytes using high performance

sensing materials and more particularly to an intelligent electronic nose system.

BACKGROUND
[3] Military and civilian personnel are frequently required to perform their duties in
complex and hazardous environments (e.g., an active warzone, post-disaster relief). However,
it is usually infeasible for medical personnel to continuously assess the health status of
personnel in such conditions. Likewise, it is often infeasible to dedicate time to collect
samples of air or other materials from the hazardous environment for laboratory analysis. To
determine if it is safe to enter and work, personnel must often conduct tests within the
hazardous environment to detect various substances of interest (e.g., toxic industrial
chemicals (TICs)). Therefore, it is desirable to have an automated device that can check for
the presence of certain hazardous gaseous analytes or other materials without endangering

personnel and without delaying operations due to lab processing.

BRIEF DESCRIPTION OF THE DRAWINGS
[4] FIG. 1 is a diagram of an example detection device for detecting various
substances of interest in accordance with the various examples disclosed herein.
[5] FIG. 2 is a block diagram illustrating an example system for training a machine
learning model in accordance with the various examples disclosed herein.
[6] FIG. 3 is a diagram of an example wearable/portable device that includes the
detection device of FIG. 1 in accordance with the various examples disclosed herein.
[7] FIG. 4 is ais a flow chart illustrating an example method of detecting various

substances of interest in accordance with the various examples disclosed herein.
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[8] FIG. 5 is a flow chart illustrating an example method of classifying various

substances of interest in accordance with the various examples disclosed herein.

DETAILED DESCRIPTION
[9] Because it is typically infeasible to use medical personnel to assess the health
status of personnel in hazardous environmental conditions, an unattended monitoring tool is
desirable. Furthermore, current laboratory-based methods used to detect substances of interest
in these hazardous environments are frequently time consuming to operate. As such, a tool
that can be used to quickly identify and detect substances of interest is advantageous.
[10] The following disclosure of example methods and apparatus is not intended to
limit the scope of the description to the precise form or forms detailed herein. Instead, the
following disclosure is intended to be illustrative so that others may follow its teachings.
[11] FIG. 1 is a diagram of an example detection device 10 for detecting gaseous target
analytes. As shown in FIG. 1, the example detection device 10 includes a sensor array 100
containing one or more sensors 200 and a controller 300. As shown in FIG. 1, the sensor 200
of the detection device 10 comprises a sensing element 210, a heating element 220, and a
lighting element 230. The sensing element 210 of the sensor 200 comprises an electrode pair
211, a sensing material 212, and a permselective membrane 213. The sensing material 212
electrically bridges the electrode pair 211.
[12] The sensing material 212 is any suitable material for use in an electrical sensor
(e.g., chemiresistor, chemicapacitor, impedimetric sensor) such that the sensing material 212
changes its electrical properties (e.g., resistance, capacitance, or impedance) in response to
changes in the nearby chemical environment (e.g., direct chemical interaction between the
sensing material 212 and a target analyte, or substance of interest, in the chemical
environment). The sensing material 212 and the analyte may interact by physical or chemical
adsorption and desorption, chemical reaction (e.g., catalytic oxidation or reduction), or
molecular recognition (e.g., covalent bonding, hydrogen bonding, and Val der Waals
interaction). Based on the changes caused by this molecular interaction, an output of the
sensing material 212 can be used to evaluate the presence (or lack thereof) of a particular
analyte in the air or other ambient atmosphere.
[13] As used herein, analyte may refer to any substance whose chemical constituents
are being identified and measured. The substance may be a chemical substance (e.g.,

ammonia, hydrogen sulfide, etc.), a gas, a vapor, a fume, an odor, or smell, for example. As

-0



WO 2023/168413 PCT/US2023/063689

such, while reference in this disclosure may be made to the analyte as a chemical or
hazardous material, the disclosure should not be read as limited to such and should instead be
read as applicable to any sensible substance contained in a gaseous environment.
Furthermore, while reference is made primarily to a single analyte being sensed (e.g., “target
analyte”), this disclosure should not be read as limited to the sensing of a single analyte and
should instead be read as applicable to the sensing of one or more analytes at a time.

[14] The sensing material 212 may include metal oxides (e.g., tin dioxide, chromium
titanium oxide, gallium oxide, indium oxide, molybdenum oxide, tungsten oxide, or zinc
oxide), transition metal dichalcogenides (TMDC), metals (e.g., gold, silver, platinum,
palladium), metal organic frameworks (MOF), phyllosilicates (e.g., kaolinites), conductive
polymers (e.g., polyaniline, polypyrrole), or carbonaceous nanostructures (e.g., single walled
carbon nanotubes, graphene, graphene oxide). In some examples, the sensing material 212
may be an electrospun nanofiber. For example, the sensing material 212 may be a tungsten
trioxide-based or tin oxide-based nanofiber, generated via electrospinning. The metal oxide-
based nanofiber may be doped with a noble metal, such as silver, gold, palladium, platinum,
ruthenium, strontium, or any other noble metal. In some examples, electrospinning is used to
fabricate tungsten trioxide heterojunctions and other carbonaceous materials for use as a
sensing material 212. In some examples, metal dopant is prepared from mixing a metal
precursor (e.g., gold chloride) to a solvent (e.g., dimethylformamide). In some examples, the
metal dopant is applied during the post treatment processing after electrospinning.

[15] In some examples, the sensing material 212 is formed via electrospinning. In some
examples, the electrospinning process includes a solution, a syringe for holding and
dispensing the solution, and a collector for collecting the solution dispensed from the syringe.
In some examples, a charged polymer-based precursor solution is ejected through a small
orifice of the needle of the syringe under the effect of a high voltage electric field. The
ejected solution may solidify or coalesce into a filamentous morphology. The polymer-based
precursor solution in the syringe may be charged via the conductive metal needle, which may
be electrically connected to a high voltage power supply. In some examples, as the precursor
solution is slowly pushed out from the needle, the high-voltage electric field applied between
the needle and the collector provides the electrostatic repulsive force that overcomes the
surface tension of the droplet formed at the needle orifice to eject the charged precursor
solution towards an electrically grounded collector. When the ejected solution travels to the

grounded collector, the solution jet may solidify with the evaporation of the solvent such that
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solid nanofibers are deposited onto the collector. The electrospinning may be followed by
post treatment processing, such as thermal treatment (e.g., calcination) and chemical
modifications, to tune the composition, morphology, dimensions, crystallinity, and crystal
structures of the sensing material 212.

[16] In some examples, the sensing material 212 is a composite material comprising
two or more materials combined together. For instance, in one example the sensing material
comprises an electrospun metal oxide nanofiber coated with a noble metal dopant prepared
from a solution containing both metal oxide (e.g., tin chloride) and noble metal (e.g., gold
chloride) precursors.

[17] The permselective membrane 213 comprises a membrane that allows only some
substances (e.g., target analyte) to pass through the membrane and interact with the sensing
material 212 while blocking other molecules from interacting with the sensing material 212.
In this way, the permselective membrane is designed to at least partially control to which
analyte(s) the sensing element 210 is sensitive. The permselective membrane may be an
organic (e.g., polymer with ionic side groups (e.g., ion-exchange resins)) or a covalent
organic framework (COF) or crystalline micro/mesoporous hybrid materials (e.g., metal
organic framework (MOF)). In some examples, permselective membrane 213 is omitted.

[18] Although reference is made throughout to a single sensing material 212 and/or a
single permselective membrane 213, this disclosure should not be read as limited to inclusion
of a single sensing material 212 and a single permselective membrane 213 but should instead
be read as applicable to embodiments in which multiple sensing materials 212 and multiple
permselective membranes 213 are included in the sensing element. Furthermore, the various
sensors 200 comprising the sensor array 100 may each employ different sensing materials
212 and different permselective membranes 213.

[19] The sensing performance of the sensing material 212 depends on its temperature.
For example, the sensing material 212 may react more intensely (e.g., undergo a greater
change in electrical properties) to a particular analyte at a higher temperature than at a lower
temperature. Accordingly, each sensor 200 contains a heating element 220 which is used to
adjust the sensing performance of the sensing material 212. The example heating element 220
is any suitable heating element configured to generate heat and to provide (e.g., direct, aim,
guide, broadcast, etc.) that generated heat to the sensing material 212. For example, the
heating element 220 may be a microheater made of platinum, gold, silver, nichrome, nickel,
tungsten, titanium, aluminum, copper, graphene, carbon nanotubes, or other suitable material.

-4-
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In some examples, the heating element 220 is made of metal alloys such as titanium nitride,
gallium nitride, gallium arsenide, Dilver P1 (an alloy of nickel, cobalt, and iron), polysilicon,
or any other suitable metal alloy. Although reference is made to the heating element 220 as a
single component, this disclosure should not be read as limited to the heating element 220
being a single heating element, such that this disclosure includes the heating element 220
being made of or including multiple heating elements (e.g., a heater with multiple coils, etc.).
[20] The sensing performance of the sensing material 212 depends on the intensity and
wavelengths of the light incident upon the sensing material 212. For example, the sensing
material 212 may react more intensely (e.g., undergo a greater change in electrical properties)
to a particular analyte when exposed to light with a shorter wavelength than when exposed to
light with a longer wavelength. Accordingly, each sensor 200 contains a lighting element
230 which is used to adjust the sensing performance of the sensing material 212. The
example lighting element 230 is any suitable lighting element configured to generate light
with various wavelengths and intensity and to provide (e.g., direct, aim, guide, broadcast,
shine, etc.) that generated light onto the sensing material 212. For example, the lighting
element 230 may be one or more light-emitting diodes (LEDs) and/or diode lasers, although
other suitable lighting elements may be utilized. Although reference is made to the lighting
element 230 as a single component, this disclosure should not be read as limited to a single
lighting element but should be read as including a lighting element having multiple lighting
elements (e.g., an array with multiple LEDs).

[21] By adjusting the temperature of the sensing material 212, the heating element 220
adjusts the sensing characteristics of the sensing material 212. For example, in some cases the
heating element 220 may adjust the temperature of the sensing material 212 to increase the
sensitivity of sensing material 212 toward a specific analyte and/or to increase the speed by
which the sensing material 212 responds to that analyte. Conversely, in other cases, the
heating element 220 may adjust the temperature of the sensing material 212 to decrease the
sensitivity of sensing material 212 toward a specific analyte and/or to decrease the speed by
which the sensing material 212 responds to that analyte.

[22] By adjusting the intensity and/or wavelengths of light incident on the sensing
material 212, the lighting element 230 adjusts the sensing characteristics of the sensing
material 212. For example, the lighting element 230 may adjust the intensity and/or
wavelengths of the light incident of the sensing material 212 to increase the sensitivity of

sensing material 212 toward a specific analyte and/or to increase the speed by which the
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sensing material 212 responds to that analyte. Conversely, in other cases, the lighting element
230 may adjust the intensity and/or wavelengths of the light incident of the sensing material
212 to decrease the sensitivity of sensing material 212 toward a specific analyte and/or to
decrease the speed by which the sensing material 212 responds to that analyte.

[23] In some examples, the heating element 220 may be a single heating element such
that one or more sensors 200 share a single heating element. Likewise, the lighting element
230 may be a single lighting element such that one or more sensors 200 share a single
lighting element. The various sensors 200 comprising the sensor array 100 may contain the
same or different sensing elements 210. In this way, in some examples, the sensor array 100
may contain a plurality of different sensing elements 210. For example, the sensor array 100
may include 8, 16, 60, 118, or 128 different sensing elements 210. Likewise, the various
sensors 200 comprising the sensor array 100 may each employ different types of heating
elements 220. For example, some sensors 200 may employ microheaters made of one
material, while other sensors may employ microheaters made of another material. Similarly,
the various sensors 200 comprising the sensor array 100 may each employ different types of
lighting elements 230. For example, some sensors 200 may employ lighting elements that
include LEDs, while other sensors employ lighting elements that include lasers.

[24] As shown in FIG. 1, the controller 300 of the detection device 10 comprises a
readout unit 310, a heating control unit 320, a lighting control unit 330, an analysis unit 340,
and a communication unit 350. The readout unit 310, heating control unit 320, lighting
control unit 330, analysis unit 340, and communication unit 350 each execute computer-
executable instructions stored in a memory. The readout unit 310, heating control unit 320,
lighting control unit 330, analysis unit 340, and communication unit 350 may comprise
multiple separate devices or a single device such as a single microcontroller. Additionally,
the controller 300 may be integrated in whole or in part within the detection system 10 or
may comprise a separate device that communicates, for example, via a wired or wireless
connection, with the detection device. In some examples, the controller 300 is electronically
coupled to an external component (e.g., a computer or processor that executes computer-
executable instructions stored in a memory).

[25] The readout unit 310 measures the electrical properties of each sensing material
212. For example, the readout unit may measure the resistance, capacitance, and/or
impedance of a sensing material 212 by measuring the resistance, capacitance, and/or

impedance between its electrode pair 211. The readout unit 310 may make a single
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measurement or a sequence of measurements so as to record the variation in resistance,
capacitance, and/or impedance over time. The readout unit 310 may store the measurements
in computer readable media for processing by the analysis unit 340.

[26] The heating control unit 320 controls the temperature of the heating elements 220.
The heating control unit 320 provides commands to each individual heating element 220
causing that heating element 220 to maintain the temperature of the corresponding sensing
material 212 according to a temperature profile. The temperature profile characterizes the
desired variation in the temperature of the sensing material 212 during the period of sensing.
The heating control unit 320 contains (e.g., in computer readable media) stored temperature
profiles for each different sensing material 212 and for each target analyte. In this way, the
heating control unit 320 controls the temperature of each sensing material 212 so as to
achieve conditions suited for detecting the target analyte or analytes. These temperature
profiles may be generated according to an iterative process that leverages machine learning,
as described in greater depth below.

[27] The lighting control unit 330 controls the illumination produced by the lighting
elements 230. The lighting control unit 330 provides commands to each individual lighting
element 230 causing that lighting element 230 to illuminate the corresponding material 212
according to an illumination profile. The illumination profile characterizes the desired
variation in wavelength composition and intensity of light incident on the sensing material
212 during the period of sensing. The lighting control unit 330 contains (e.g., in computer
readable media) illumination profiles for each different sensing material 212 and each target
analyte. In this way, the lighting control unit 330 controls the incident light on each sensing
material 212 so as to achieve conditions suited for detecting the target analyte or analytes.
These illumination profiles may be generated according to an iterative process that leverages
machine learning, as described in greater depth below.

[28] The analysis unit 340 processes the measurement data from the readout unit 310 to
identify the presence or absence of target analytes. In some embodiments, the analysis unit
340 employs a machine learning model that receives as input the measurement data from the
readout unit 310 and produces as output an identity and/or concentration of the detected
analytes. By considering the electrical responses of multiple sensors 200 comprising the array
100, this machine learning model can achieve higher accuracy at determining the identity
and/or concentration of analytes than is typically possible by considering the electrical
response of only a single sensor.

-7-



WO 2023/168413 PCT/US2023/063689

[29] FIG. 2 is a block diagram illustrating an example system 2000 for training a
machine learning model to identify analytes and their concentrations. To distinguish such a
machine learning model from other machine learning models used herein, a machine learning
model trained according to system 2000 is referred to herein as an “analyte classification
model.” The method of system 2000 may be performed on a separate computer with the
resulting trained model being transferred to the detection device 10. Alternatively, the method
of system 2000 may be performed directly on the detection device 10. As shown, the system
2000 trains the machine learning model according to an iterative process in which the model
is first trained and then tested for accuracy. The flow of components in the initial training
stage is indicated in FIG. 2 by dash-dot-dash lines, and the flow of components in the
subsequent testing stage is indicated in FIG. 2 by dash-dot-dot-dash lines.

[30] As shown in FIG. 2, the system 2000 includes sensing data 2100 and analyte
classification model 2400. The sensing data 2100 are generated by exposing the sensor array
100 to known analytes (e.g., both individual analytes and combinations of analytes) in known
concentrations, and the electrical responses of the sensors 200 are measured by the readout
unit 310 and recorded. Each such exposure comprises a sensing example, such that the
sensing data 2100 include multiple sensing examples. In addition to the electrical response
data from the readout unit, each sensing example also contains data indicating the
temperature and illumination profiles used for each sensor 200. Each sensing example is
labeled with the known analytes to which the array was exposed (both the identity of the
analytes and their concentrations). A plurality of such sensing examples is generated for
various temperature profiles, illumination profiles, and analytes and concentrations.

[31] The sensing data 2100 is divided into a training set 2110 and a testing set 2120.
The training set 2110 may include a pre-determined portion of the sensing examples from the
sensing data 2100 (e.g., 70% of the examples, etc.), and is used to train the analyte
classification model 2400. The training process tunes the model 2400, for example, by
adjusting the parameters of the model, to enable it to accurately predict the labels of the
examples (e.g., the analytes present and their concentrations). During training, the model
2400 “learns” which labels correspond to a particular array response (e.g., the change in
electrical properties of each sensor 200 as measured by readout unit 310) for a particular
operating condition (e.g., the temperature profile and illumination profile of each sensor 200).
The testing set 2120 may include the portion of the sensing data 2100 not used in the training

set. The testing set 2120 is used to evaluate the accuracy of the machine learning model.
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Because the testing set 2120 is used for testing the model (e.g., to determine how accurate the
model is), this data is not used for training the model.

[32] The analyte classification model 2400 is characterized by its parameters (e.g., the
weights of an artificial neural network, the tests of a decision tree, the coefficients of a
regression model, etc.). In some implementations, an iterative process is used to identify
optimal (e.g., most-aligned with a goal of the model 2400) values for the parameters of the
model 2400. During an iteration of training, the model 2400 computes a predicted label 2500
for each sensing example from the training set 2110. This predicted label 2500 for a
particular sensing example may be a predicted identity of the analytes present and their
concentrations. In one implementation, the predicted label 2500 of the model 2400 may have
the form of a one-dimensional vector in which a value of zero indicates the absence of a
target analyte, whereas a non-zero value indicates the concentration of an analyte that has
been detected.

[33] The predicted label 2500 is input into a loss function 2600, which compares the
predicted label 2500 to the corresponding “true” label (e.g., the label originally associated
with the respective entry from the training set on which the model 2400 based its predicted
label). For example, if the predicted label 2500 for the analyte is ammonia at 10 parts per
million (ppm), while the true label from the training set 2110 is ammonia at 8 ppm, there is
an error of 2 ppm. This comparison may be repeated for any number of sensing examples in
the training set 2110. For example, the comparison may be made for all sensing examples in
the training set 2110, or for a pre-determined number (e.g., 10). The loss function 2600 then
computes a value based on the errors for each compared sensing example. To complete the
training iteration, the value computed by the loss function 2600 is leveraged to adjust the
parameters of the model 2400 to reduce the computed value of the loss function 2600,
thereby reducing the aggregate error of the model 2400. Multiple such iterations are
performed to minimize the computed value of the loss function 2600, thereby minimizing the
aggregate error of the model 2400. In this way, the loss function 2600 is used with the
training data 2110 to improve the prediction accuracy of the model 2400.

[34] Once the model has been trained, the testing data is used to compute an accuracy
2700 of the model. The trained model 2400 is used to predict the label for each testing
example. The predicted label of each testing example is compared to the corresponding “true”
label from the testing set and any difference is represented as an error value. Loss function

2600 computes a value that combines the error values for all of the testing examples.
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Although loss function 2600 is shown as used in this example, other loss functions can be
used. The value of the loss function 2600 on the testing data defines the accuracy 2700 of the
model, which for convenience, may be referred to as the “analyte classification accuracy”.
[35] The trained model 2400 is embedded in the analysis unit 340 to identify analytes
and their concentrations.

[36] While reference may be made to the analyte classification model 2400 comprising
a single machine learning model, it is understood that there may be multiple machine learning
models. For example, in one implementation a separate machine learning model may be
made for each individual sensor 200. In this example, an additional machine learning model
then aggregates the outputs of those individual models to determine the analytes present and
their concentrations. Likewise, in some implementations there may be a separate machine
learning model for each choice of a temperature and illumination profile. In other
implementations, one machine learning model may be used for multiple temperature and
illumination profiles. In some implementations, one machine learning model (or models) may
identify which analytes are present and which are absent, while another model (or models)
may determine the concentration of those analytes that were identified as present.

[37] While the process of training a machine learning model is described in terms of
learning model parameters, it is understood that the machine learning includes the use of both
parametric machine learning algorithms (e.g., artificial neural networks, regression, etc.) and
non-parametric learning algorithms (e.g., k-nearest neighbor, decision trees, etc.). Thus,
training a model is to be understood generally as identifying the quantities, such as the
weights of an artificial neutral network or the tests of a decision tree, that define the model.
Such training may or may not include iteration.

[38] As shown in FIG. 2, the sensing data 2100 are divided into a training set 2110 and
a testing set 2120. It is understood, however, that in some examples the sensing data 2100
may be divided into three sets: a training set, a testing set, and a validation set. The training
and testing sets in these examples are analogous to training set 2110 and testing set 2120
respectively. The validation set is used for an additional level of training. In this additional
level, the validation data set is used, for example, to compare the performance of alternative
machine learning algorithms (e.g., artificial neural networks, decision trees, etc.) or to tune
hyperparameters such as the learning rate or the number of nodes for an artificial neural
network. The performance of a model on the validation set is computed using a loss function

(e.g., loss function 2600) just as with the training and testing sets.
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[39] The machine learning models may operate directly on the measurement data from
the readout unit 310, e.g., raw data. Alternatively, the data may be preprocessed. For
example, preprocessing may include considering the difference between that data and sensing
data obtained in the absence of the analytes (e.g., data obtained from measurements in clean,
dry air or pure nitrogen). As each set of sensing data comprises a time series of electrical
measurements, this comparison is computed for every pair of corresponding measurements.
For example, the analysis unit 340 may compute the ratio of, or the difference between,
corresponding measurements. Likewise, features may be computed from the measurement
data. Features may include, for example, the time rate of change (slope) of the electrical
response, the frequency content of the response (e.g., coefficients of a Fourier transform), the
time to reach the peak response, the magnitude of the peak response, etc. The features may be
computed either from the raw data or the preprocessed data. In this way, the machine learning
models may operate on raw data, preprocessed data, computed features, or a combination of
those. Data preprocessing and feature computation are performed by the analysis unit 340.
This analysis unit includes computer-executable instructions stored in a memory. The
analysis unit also includes model parameters for the machine learning models and other data
which is stored in computer readable media.

[40] The communication unit 350 provides a user interface for the user of the detection
device 10 to operate it, including specifying the target analytes to be detected. The
communication unit 350 may also display the results of the detection such as the presence
and absence of target analytes and the concentrations of the analytes that are present. The
communication unit 350 may also communicate with other devices such as mobile phones,
desktop computers, cloud computers, etc. so as to enable the detection device 10 to be
operated remotely and/or to transmit detection results.

[41] In some examples, the detection device 10 may be fabricated, in whole or tn part,
on a printed circuit beard (PCB) or flexible polyimide substrate. The sensor array 100 may
contain one or more individually addressable sensors 200. In some examples, these sensors
are electrical gas sensors. In some examples, a sensor comprises a Micro-Elsctro-Mechanical
System {(MEMS). Each electrical gas sensor may include a sensing element 210, a heating
element 220, and a lighting element 230. The detection device 10 may include a controller
300 such that the controller 300 is configured to adjust the conditions (e.g., temperature,
brightness of light, wavelength spectrum of light, etc.) for the sensing material 212 of each
sensing element 210. The sensing material 212 may comprise a semiconducting sensing
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material that electrically bridges an electrode pair 211. In some examples, the electrode pair
211 is a pair of source-drain electrodes. In some examples, the controller 300 may be
fabricated on a PCB while the sensor array 100 is fabricated on a flexible polyimide
substrate.

[42] In some examples, the heating of the sensing material 212 by heating element 220
and/or the illumination of the sensing material 212 by the lighting element 230 may facilitate
detection of the target analyte by inducing oxidation and/or reduction of that analyte. In some
examples, this heating and/or illumination of the sensing material 212 may facilitate detection
of the target analyte by inducing chemical and/or physical changes in the absorption and/or
desorption properties of the sensing material 212. In some examples, this heating and/or
illumination of the sensing material 212 may facilitate detection of the target analyte by
altering the baseline electrical properties (e.g., the Fermi level, grain boundary potential
barrier, work function, dielectric constant, etc.) of the sensing material 212. In some
examples, this heating and/or illumination of the sensing material 212 may facilitate detection
of the target analyte by altering the surface reactivity of the sensing material 212. In some
examples, the illumination of the sensing material 212 by lighting element 230 may alter the
amount of photogenerated free electron-hole pairs in the sensing material 212, thus
facilitating the detection of the target analyte.

[43] In some implementations, the temperature profiles used by the heating control unit
320 and the illumination profiles used by the lighting control unit 330 are determined from a
training process (the “profile training process”). This process identifies temperature profiles
and illumination profiles to maximize the sensing performance of the sensor array 100 for
detecting particular analytes. During a step of the training process, a candidate temperature
profile and candidate lighting profile are generated for each sensor 200. In some
implementations, these candidate profiles may be generated by selecting them from a set of
standard profiles such as ramp profiles, square wave profiles, sinusoidal profiles, step
profiles, or combinations of these, for example. Next, the sensor array 100 is exposed to
analytes in various combinations and concentrations. The response data from the sensor array
100, as measured by the readout unit 310, is used to train an analyte classification model
using the process 2000 of FIG. 2. The analyte classification accuracy of the trained model is
then computed. Multiple such training steps are performed and the temperature and
illumination profiles which achieve the highest analyte classification accuracy for a

particular analyte or analytes are identified. These profiles are then stored in the heating
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controller 320 and lighting controller 330 for use when the detection system is employed to
detect that analyte or combination of analytes.

[44] In some implementations, the profile training process is combined with a machine
learning process that produces a profile performance model. The profile performance model
is a machine learning model that relates the parameters of the temperature and illumination
profiles to the analyte classification accuracy that these profiles achieve. More specifically,
each step of the profile training process produces a training example for training the profile
performance model. A training example comprises a set of parameter values that define the
temperature and illumination profiles such as their shape (e.g., square wave or sinusoid when
plotted on a 2-dimensional graph with time as the x-axis), amplitude, wavelength content,
rate of change, etc. The training example is also labeled by the analyfe classification
accuracy achieved in that step of the profile training process. The training examples are used
to train a machine learning model that takes as input temperature and illumination profile
parameters and produces as output the predicted analyte classification accuracy. This model
is then used to efficiently identify temperature and illumination profiles (e.g., temperature
and illumination profile parameters) to maximize the analyte classification accuracy. In some
implementations, the temperature and illumination profile parameters identified in this
fashion are used to produce new profile training steps which are then used as new training
examples for the profile performance model so as to create an improved model. The
improved model is then used to identify new temperature and illumination profiles, further
maximizing the analyte classification accuracy. In this fashion, the performance of the
profile performance model and the performance of the temperature and illumination profiles
found may be iteratively improved.

[45] In some implementations, a machine learning model is used to identify optimal
(e.g., most sensitive, most reactive, etc.) sensing materials 212 for detecting particular
analytes. The properties of the sensing materials directly affect the sensing performance of
those materials. Machine learning is used to create a model, called the material performance
model, that relates a material’s properties and/or synthesis parameters to its sensing
performance. The material properties may include characteristics of the material such as the
morphology (e.g., diameter, length), composition (e.g., dopant concentration), structure (e.g.,
crystal substructure, crystallinity, grain size, preferred crystal orientation), electrical
properties (e.g., band gap, carrier concentration, carrier type, carrier mobility), optical
properties (e.g., band-gap, color), chemical and physical properties (e.g., surface area,

-13 -



WO 2023/168413 PCT/US2023/063689

adsorption/desorption kinetics), etc. The synthesis parameters characterize the synthesis
process used to fabricate the sensing material and include parameters of the electrospinning
process (e.g., voltage, flow rate, temperature, etc.), parameters of the thermal treatment (e.g.,
temperature and processing time), and parameters of any other fabrication processes used.
[46] To train the material performance model multiple versions of a material are
fabricated such that they differ in one or more material properties and/or synthesis
parameters. A sensor 200 is then fabricated from each version of the sensing material and
each such sensor is then integrated into an array 100. In some examples, the array 100 is
unique to the sensor 200. In other examples, the array 100 is a previously-generated array 100
re-used for a new iteration of training the material performance model. An analyte
classification model is created for each such array 100 (e.g., according to system 2000 of
FIG. 2). Each array corresponds to a training example for the material performance model. A
training example is characterized by the material properties and/or synthesis parameters of
the material variant contained in that array. The training example is labeled with the analyfe
classification accuracy achieved by the array. The training examples are used to train a
machine learning model that takes as input the material properties and/or synthesis
parameters and produces as output the predicted analyte classification accuracy. This model
is then used to efficiently identify material variants (e.g., material properties and/or synthesis
parameters) to maximize the analyte classification accuracy. In some implementations, the
material properties and/or synthesis parameters identified in this fashion are used to produce
new sensing material variants which are then used as new training examples for the material
performance model so as to create an improved model. The improved model is then used to
identify new material properties and/or synthesis parameters to further maximizing the
analyte classification accuracy. In this fashion, the performance of the material performance
model and the sensing performance of the sensing materials may be iteratively improved.
[47] For example, to identify the relationship between thermal treatment parameters and
the analyte classification accuracy, multiple sensing materials are constructed differing in the
values of the thermal treatment parameters. Sensors 200 are created from these sensing
materials and installed on sensor arrays 100. Each array is subjected to known analytes in
known concentrations such that an analyte classification model is produced. In this way each
array corresponds to a training example which contains the values of the thermal treatment
parameters used for that material variant and which is labeled with the analyte classification

accuracy achieved by that variant. The examples are used to train a material performance
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model that takes as input values of the thermal processing parameters and produces as output
a predicted analyte classification accuracy. This model is then used to identify thermal
processing parameters to maximize the analyte classification accuracy and thus maximize the
sensing performance.

[48] The profile performance model and material performance model are trained using
a process similar to the process 2000 in FIG. 2 used to train the analyte classification model
2400, such that the profile performance model or material performance model may be
substituted for the analyte classification model 2400 in FIG. 2. For example, for each of the
profile performance model or material performance model, the data (e.g., sensing data 2100)
are divided into training (e.g., training set 2110) and testing (e.g., testing set 2120) data,
predicted values are produced (e.g., predicted label 2500), and a loss function (e.g., loss
function 2600) is used. Also, it is understood that the profile performance model and material
performance model can be trained sequentially or simultaneously so that temperature and
illumination profiles and sensing materials can be optimized sequentially or simultaneously.
[49] While reference is made to training machine learning models to maximize analyfe
classification accuracy, it is understood that the machine learning models could also be used
to maximizer or minimize other performance measures such as speed of response, lower limit
of detection, response time, recovery time, etc. In these alternative embodiments, the sensing
examples are instead labeled with the desired performance measure, and the loss function
(e.g., loss function 2600 of FIG. 2) considers the error between the predicted value of that
performance measure and the true value of that measure.

[50] FIG. 3 is a diagram of an example wearable device 30 that includes the detection
device 10 of FIG. 1. As shown in FIG. 3, the detection device 10 may be incorporated into a
portable or wearable device (e.g., a watch). The wearable device 30 may be electronically
coupled to an external device (e.g., a computer, mobile phone, or other electronic device that
includes a processor which executes computer-executable instructions stored in a memory).
The external device may be configured to interact with a user such that the user uses the
external device to select an analyte for the detection device 10 to detect and the external
device then displays the results (detected analytes and concentrations) from the device 10. In
some examples, the wearable device 30 may include a microprocessor and a graphical user

interface such that the user may interact directly with the wearable device 30.
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[51] FIG. 4 is a is a flow chart illustrating an example method 40 of detecting analytes.
The method 40 may be performed, in whole or in part, by the detection device 10 and, in
particular, the sensor 200.

[52] In step 410, an input of a user-selected parameter is received by a user input
element coupled to the detection device 10. In some examples, the user-selected parameter is
the selection of a target analyte to be detected, such as ammonia, nitrogen dioxide, nitric
oxide contained in air, nitric oxide contained in nitrogen, carbon monoxide, nitrous oxide,
methyl nonafluorobutyl ether in trans-1,2-dichloroethylene, methoxy-nonafluorobutane,
1,1,2-Trichloro-1,2 2-trifluoroethane, acetone, ethanol, toluene, ethylbenzene, xylene,
benzene, or methane. In some examples, the user input element is included on a graphical
user interface (GUI). The GUI may be on a portable electronic device with a touchscreen
display. In some examples, the detection device 10 may be incorporated into the portable
electronic device, as shown in FIG. 3

[53] In step 420, a set of values from a dataset stored in computer readable media is
retrieved. In some examples, the set of values comprises temperature profiles for the heating
elements 220 and illumination profiles for the lighting elements 230. These target sensing
conditions may define the most efficient, fastest, and/or most sensitive conditions for
detecting the target analyte.

[54] In step 430, the heating elements 220 are controlled by the heating control unit 320
according to the retrieved temperature profiles and the lighting elements 230 are controlled
by the lighting control unit 330 according to the retrieved illumination profiles.
Simultaneously, the readout unit 310 measures the electrical responses of the sensing
elements 210. In some examples, the heating control unit 320 receives a set of values from
the dataset and, in response, the heating control unit 320 may issue commands to the heating
elements 220 of the one or more sensors 200. Likewise, in some examples the lighting
control unit 330 receives a set of values from the dataset and, in response, the lighting control
unit 330 may issue commands to the lighting elements 230 of the one or more sensors 200. In
response to receiving commands from the heating control unit 320, a heating element 220
may increase electrical flow through the microheater (or other suitable heating element) such
that the metals or other materials that comprise the microheater emit heat thereby increasing
the temperature provided by the heating element 220. In other cases, in response to receiving
commands from heating control unit 320, the heating element 220 may decrease electrical

flow through the microheater (or other suitable heating element) such that the metals or other
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materials that comprise the microheater emit less heat thereby decreasing the temperature
provided by the heating element 220. In response to receiving commands from the lighting
control unit 330, a lighting element 230 may increase electrical flow through the LEDs (or
other suitable light source) such that the electrical current illuminates the LEDs, thereby
increasing the brightness provided by the lighting element 230. In other cases, in response to
receiving commands from the lighting control unit 330, a lighting element 230 may decrease
electrical flow through the LEDs (or other suitable light source), thereby decreasing the
brightness provided by the lighting element 230.

[55] In step 440, the analysis unit 340 processes the sensing data from the readout unit
310. The analysis unit 340 then retrieves a machine learning model and uses it to process the
data and identify the analytes present and their concentrations. The machine learning model
may operate directly on the sensing data from the readout unit 310 or the analysis unit 340
may first pre-process the data and/or compute features from that data. Data from a single
sensor 200 or a collection of sensors may be indicative of a particular target analyte. The
presence and absence of analytes, and the concentration of any detected analytes, may be
displayed, for example on the GUIL. The GUI may be on a portable electronic device with a
touchscreen display, such as device shown in FIG. 2.

[56] FIG. 5 is a flow chart illustrating an example method employing a machine
learning model for analyte classification. The method 50 may be performed, in whole or in
part, by the detection device 10.

[57] In step 510, the detection device 10 is provided. The detection device may be the
detection device 10 of FIG. 1.

[58] In step 520, the detection device 10 is introduced to an analyte. The analyte may be
any a substance whose chemical constituents are being identified and measured. The
substance may be a chemical substance (e.g., ammonia hydrogen sulfide, etc.), an odor, or
smell, for example, such the analyte may be any sensible gaseous molecules.

[59] In step 530, at least one of the heating element 220 or the lighting element 230 of a
sensor 200 is adjusted. A heating element 220 is adjusted according to a temperature profile
which may be indicative of a temperature of the heating element 220. A lighting element 230
is adjusted according to an illumination profile which may be indicative of a brightness or
wavelength composition of the light emitted by the lighting element 230.

[60] In step 540, changes in electrical properties are measured. The nearby chemical
environment causes changes in the electrical properties of the sensing materials 212. In this
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step, those changes in electrical properties are measured for at least one sensing material 212.
In the present example, the readout unit 310 measures the change in electrical properties of
the sensing material 212 of each of the plurality of sensors 200 comprising the sensor array
100.

[61] In step 550, the analysis unit 340 analyzes the sensing data obtained in step 540.
The analysis unit 340 inputs the data into a trained machine learning model (e.g., the analyte
classification model 2400 of FIG. 2). The analysis unit may preprocess the data before
inputting it into the machine learning model, for example, by computing the ratio of each
measurement to a corresponding measurement made in a reference atmosphere such as clean,
dry air or pure nitrogen. Additionally, the analysis unit may compute features from the data
and input these to the machine learning model instead of, or in combination with, the data.
The features might include, for example, the time rate of change of the electrical response,
the frequency content of the response (e.g., coefficients of a Fourier transform), the time to
reach the peak response, and the magnitude of the peak response. The machine learning
model can employ any suitable machine learning algorithm including, for example, artificial
neural networks, decision trees, k-nearest neighbors, look up tables, etc.

[62] In step 560, the machine learning model of step 550 produces as output a list of the
analytes detected along with their concentrations.

[63] Some portions of the detailed descriptions of this disclosure have been presented in
terms of procedures, logic blocks, processing, and other symbolic representations of
operations on data bits within a computer or digital system memory. These disclosures and
representations are the means used by those of ordinary skill in the art of data processing to
most effectively convey the substance of their work to others of ordinary skill in the art. A
procedure, logic block, process, etc., is herein, and generally, conceived to be a self-
consistent sequence of steps or instructions leading to a desired result. The steps are those
requiring physical manipulations of physical quantities. Usually, though not necessarily,
these physical manipulations take the form of electrical or magnetic data capable of being
stored, transferred, combined, compared, and otherwise manipulated in a computer system or
similar electronic computing device. For reasons of convenience, and with reference to
common usage, such data is referred to as bits, values, elements, symbols, characters, terms,
numbers, or the like, with reference to various presently disclosed examples. It should be
borne in mind, however, that these terms are to be interpreted as referencing physical

manipulations and quantities and are merely convenient labels that should be interpreted
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further in view of terms commonly used in the art. Unless specifically stated otherwise, as
apparent from the discussion herein, it is understood that throughout discussions of the
present example, discussions utilizing terms such as “determining” or “outputting” or
“transmitting” or “recording” or “locating” or “storing” or “displaying” or “receiving” or
“recognizing” or “utilizing” or “generating” or “providing” or “accessing” or “checking” or
“notifying” or “delivering” or the like, refer to the action and processes of a computer system,
or similar electronic computing device, that manipulates and transforms data.

[64] While this disclosure has described certain examples, it will be understood that the
claims are not intended to be limited to these examples except as explicitly recited in the
claims. On the contrary, the instant disclosure is intended to cover alternatives, modifications
and equivalents, which may be included within the spirit and scope of the disclosure.
Furthermore, in the detailed description of the present disclosure, numerous specific details
are set forth in order to provide a thorough understanding of the disclosed examples.
However, it will be obvious to one of ordinary skill in the art that systems and methods
consistent with this disclosure may be practiced without these specific details. In other
instances, well known methods, procedures, components, and circuits have not been

described in detail as not to unnecessarily obscure various aspects of the present disclosure.
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CLAIMS

What is claimed is:
1. A detection device to detect analytes comprising:

a sensor array comprising a plurality of sensors, the plurality of sensors comprising:
a sensing element;
a heating element; and
a lighting element; and

a controller, wherein the controller is communicatively coupled to the sensor array,
the heating element, and the lighting element, and configured to adjust at least
one of the heating element or the lighting element based on a temperature profile

of the heating element and an illumination profile of the lighting element.
2. The detection device of claim 1, wherein the sensing element comprises:

an electrode pair;
a sensing material; and
a permselective membrane.

3. The detection device of claim 1, wherein the sensing element comprises tungsten

trioxide-based nanofibers.

4. The detection device of claim 3, wherein the tungsten trioxide-based nanofibers are doped

with a noble metal.

5. The detection device of claim 1, wherein the sensing element comprises tin dioxide-based

nanofibers.

6. The detection device of claim 5, wherein the tin dioxide-based nanofibers are doped with

a noble metal.

7. The detection device of claim 1, wherein the heating element comprises a plurality of
heating elements and the lighting element comprises a plurality of lighting elements, such

that each of the plurality of sensors comprises a respective heating element of the
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plurality of heating elements and a respective lighting element of the plurality of lighting

elements.

The detection device of claim 2, wherein the sensing material comprises a material

formed via an electrospinning process.
The detection device of claim 8, wherein the electrospinning process comprises:

a solution;
a syringe for holding and dispensing the solution; and
a collector for collecting the solution dispensed from the syringe, wherein:
the solution is polymer based,
the syringe is under a high-voltage electric field,
the collector is electrically grounded, and
the solution is ejected by the syringe toward the collector, such that the
solution solidifies into nanofibers.

The detection device of claim 1, wherein:

the temperature profile and the illumination profile are determined by a machine
learning model trained to identify a temperature value and an illumination value

that correspond to a sensitivity value for the sensing element.

The detection device of claim 10, wherein the sensitivity value for a respective sensing
element is based on at least one of a quantity, a timing, or a length of a detected change in

an electrical property of the sensing element.

The detection device of claim 1, wherein the sensing element comprises tungsten

trioxide-based nanofibers.

The detection device of claim 1, wherein the sensing element comprises tin dioxide-based

nanofibers.

A method of detecting analytes, comprising:
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receiving an input of a user-selected parameter, wherein the input is received by a

user input element coupled to a device, the device comprising:

a sensor array comprising a plurality of sensors, the plurality of sensors

comprising:
a sensing element;
a heating element; and
a lighting element; and

a controller, wherein the controller is communicatively coupled to the sensor

array, the heating element, and the lighting element;

retrieving a set of values from a data set stored in computer readable media, wherein

the set of values is related to the user-selected parameter;

adjusting at least one of the heating element and the lighting element based on the

retrieved set of values; and

generating, by the controller, a response, wherein the response is received by the user

input element.

. The method of claim 14, wherein the user-selected parameter is a target analyte.

The method of claim 14, wherein the set of values comprises a temperature profile and an

illumination profile.
The method of claim 16, wherein:

the temperature profile and the illumination profile are determined by a machine
learning model trained to identify a temperature value and an illumination value

that correspond to a sensitivity value for the sensing element.

The method of claim 17, wherein the sensitivity value for a respective sensing element is
based on at least one of a quantity, a timing, or a length of a detected change in a

electrical property of the sensing element.
A method for analyte classification, the method comprising:

providing a device comprising:
22
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a sensor array comprising a plurality of sensors, the plurality of sensors
comprising:
a sensing element;
a heating element; and
a lighting element; and

a controller communicatively coupled to the sensor array, the heating element,
and the lighting element, and configured to adjust at least one of the
heating element or the lighting element based on a temperature profile of

the heating element and an illumination profile of the lighting element;
receiving, by the controller, an indication of a target analyte;

retrieving, by the controller, the temperature profile and the illumination profile

associated with the target analyte;
introducing the device to an unknown target substance; and

determining, via a trained machine learning model stored in the controller, a

concentration of the target analyte in the unknown target substance.

20. The method of claim 19, wherein the temperature profile and the illumination profile are

determined by a second machine learning model trained by:

introducing a known analyte of a plurality of known analytes to a known sensing
element of a plurality of known sensing elements at a known temperature of a
plurality of known temperatures and with a known illumination of a plurality of

known illuminations;

recording a change in electrical property of the known sensing element in response to

the known analyte;

repeating the introduction and recording steps with at least one different known
parameter from the plurality of known analytes, the plurality of known sensing
elements, the plurality of known temperatures, or the plurality of known

illuminations to generate a table of known profiles; and

training the machine learning model based on the table of known profiles.

-3



WO 2023/168413

e

SENSOR
209

SENSING ELEMENT

ELECTRODE PAIR

SEMNSING MATERIAL

212

PERMSELECTIVE
MEMBRANE

HEATING ELEMENT

PIGHTING ELEMENT

236

PCT/US2023/063689

1/5

CONTROLLER
READCUT UNIT
310 i
HEATING CONTRCOL y
UNIT :
320 =,
LIGHTING CONTROL :
UNIT ‘
330 :
ANALYSIS UNIT :"
340 ;
COMMUNIC ATION
LINIT



PCT/US2023/063689

WO 2023/168413

EDERN IR TR

¢ 3d4NSId
0042
Azeinaoy
h
” Y
|
00v¢
006¢ o |SPOIA .
Uooung 5507 UoIIeIIHsS e
ajAjeuy
1
m m ”
m -
| e
¢ o+ o+ o+ o+ o o+ o o 00%¢

oo 5 o s  » o x n e BUIIER Y

EEEEEEEE e FUHUIRAL

071¢
196 Bunss ]

OT1¢
18¢ duiuies |

001<

Bye(] SUISUSE

2/5



WO 2023/168413

FIGURE 3

3/5

PCT/US2023/063689

10



WO 2023/168413 PCT/US2023/063689

410

o Receiving Input by Device

40 é

420
e Retrieving Set of Values

:

430
Adjusting Heating Element
and/or Lighting Element of
Device according to Retrieved
Set
440 é
\‘m

Process Sensing Data from
Device

FIGURE 4

4/5



WO 2023/168413 PCT/US2023/063689

510
e Providing Device
520
. introducing Analyte
50
530

A Adjusting Heating Element
and/or Lighting Element

;

540 ) . .
Measuring Change in Electrical
Properties of Sensing
Materials of Device
550

. Analyzing Measured Change

é

. Outputting Detected Analytes

560

FIGUR

E 5

5/5



	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings

