
United States Patent (19)
Ratakonda

USOO5956O26A

11 Patent Number: 5,956,026
(45) Date of Patent: Sep. 21, 1999

54 METHOD FOR HIERARCHICAL
SUMMARIZATION AND BROWSNG OF
DIGITAL VIDEO

75 Inventor: Krishna Ratakonda, Urbana, Ill.

73 Assignee: Sharp Laboratories of America, Inc.,
Camas, Wash.

21 Appl. No.: 08/994,558
22 Filed: Dec. 19, 1997
51 Int. Cl. G06F 15700; G06T 11/00
52 U.S. Cl. 345/328; 345/348; 345/349;

345/356
58 Field of Search 345/328, 348-349;

386/52, 4, 64; 369/83

56) References Cited

U.S. PATENT DOCUMENTS

5,099,322 3/1992 Gove.
5,339,166 8/1994 LeBrat et al..
5,485,611 1/1996 Astle.
5,513,306 4/1996 Mills et al. 345/352
5,521,841 5/1996 Arman et al..
5,537.528 7/1996 Takahashi et al..
5,550.965 8/1996 Gabbe et al..
5,600,775 2/1997 King et al..
5,606,655 2/1997 Arman et al..
5,635,982 6/1997 Zhang et al., 348/231
5,642,294 6/1997 Taniguchi et al..
5,708,732 1/1998 Merhav et al. 382/232
5,821,945 10/1998 Yeo et al. 345/440

FOREIGN PATENT DOCUMENTS

O 615 245 A2 9/1994 European Pat. Off..
OTHER PUBLICATIONS

Yeo et al., “Time-constrained clustering for Segmentation of
video into story units”, IEEE proceedings of ICPR 1996, pp.
375-380, 1996.
Chen et al., “A multi-layer video browsing system”, IEEE
May 1995, pp. 374-375.

72
MOST COMPACT Y

LEVEL

74

COARSE
LEVEL

76

FINEST Y
LEVEL

Mills et al., “A magnifier tool for video data”, ACM Pro
ceedings of CHI '92 May 1992, pp. 93-98.
Zhang et al., Automatic Video Partitioning and Indexing,
Automatic Control World Congress, Sydney, Australia, Jul.
18–23 1993, pp. 697–700.
Lagendijk et al., Visual Search in a SMASH System, Inter
national Conference on Image Processing, IEEE Signal
Processing Society, Sep. 16-19 1996, pp. 671-674.
Mann et al., Video Orbits of the Projective Group: A New
Perespective on Image Mosaicing, MIT Media Laboratory
Perceptual Computing TR No. 338, 1995.
Tekalp, A. Murat, Digital Video Processing, Prentice Hall
PTR, 1995 (Table of Contents).
Smith et al., Video Skimming and Characterization Through
the Combination of Image and Language Understanding
Techniques, School of Computer Science, Carnegie Mellon
University, Feb. 3, 1997.
Puri et al., Digital Video: An introduction to MPEG-2,
Chapman & Hall, 1997 (Table of Contents).

Primary Examiner Raymond J. Bayerl
Assistant Examiner Sy D. Lulu
Attorney, Agent, or Firm-Robert D. Varitz P.C.
57 ABSTRACT

A method of hierarchical digital Video Summarization and
browsing includes inputting a digital Video signal for a
digital Video Sequence and generating a hierarchical Sum
mary based on keyframes of the Video Sequence. Additional
StepS may include computing histograms for the digital
Video Sequence; detecting shot boundaries within the digital
Video Sequence; determining the number of keyframes to be
allocated within each shot; locating the actual position of
each keyframe within each shot, identifying keyframe loca
tions by the largest consecutive difference criteria; pruning
keyframes for an Shot without meaningful action; extracting
keyframes efficiently in the case of compressed Video, and
browsing the shots using the hierarchical keyframe Sum
mary.

30 Claims, 6 Drawing Sheets

52 51

ZOOM
SUMMARY MAGE MOSAIC

70-1

U.S. Patent Sep. 21, 1999 Sheet 1 of 6 5,956,026

Fig. 1 26

FINEST SUMMARY

COARSE SUMMARY

MOST COMPACT SUMMARY

Fig. 8
DENTIFICATION OF
KEYFRAMES OF THE

HIERARCHICAL SUMMARY

BITSTREAMINDEX
TABLE

VIDEO BITSTREAM

U.S. Patent Sep. 21, 1999 Sheet 4 of 6 5,956,026

DETECT SHOT BOUNDARY

ALLOCATE NUMBER OF KEYFRAMES

THE 3-STEP ITERATIVE METHOD

Fig. 4 38

42

82

DETERMINE KEYFRAME LOCATIONS
ACCORDING TO THE "LARGEST

CONSECUTIVE DIFFERENCE" CRITERION

84

(k1,k2, ..., kK}

PRUNE KEYFRAMES WITHIN SHOTSN-86
WITHOUT MEANINGFULACTION

FINEST LEVEL OF KEYFRAMES 44

Fig. 6 c(x)

tO 2 sits
K1 k2 k3 k4 k5

5,956,026 Sheet S of 6 Sep. 21, 1999 U.S. Patent

| 9

? ? ?

9/
TE}AET _LOV/c)||WOO || SOW

9

“DIJ

U.S. Patent Sep. 21, 1999 Sheet 6 of 6 5,956,026

Fig. 9

m1

2

l

L=(4X4X120 + 4X4X126+ 4X4X124
+ 4X4X128 + 12A) / 64 = 126

1 = 120 + 124/64 = 122
2 = 126 + 124/64 = 128
3 = 124 - 124/64 = 126

n4 = 128 + 124/64 = 130

5,956,026
1

METHOD FOR HERARCHICAL
SUMMARIZATION AND BROWSNG OF

DIGITAL VIDEO

RELATED APPLICATON

“Method for Detecting Transition in Sampled Video
Sequences,” of Krishna Ratakonda, Ser. No. 09/004,058,
filed Jan. 7, 1998.

FIELD OF THE INVENTION

This invention relates to determining representation of a
digital Video Sequence by a Set of Still images in a hierar
chical Summary for applications Such as (i) visual identifi
cation of video content; (ii) Video indexing; (iii) Video
browsing; and (iv) video editing. The digital Video sequence
may be Moving Pictures Experts Group (MPEG) com
pressed and the representation may be determined with
minimal decoding of the compressed bitstream.

BACKGROUND OF THE INVENTION

Compact representation of Video is essential to many
information query and retrieval applications. Examples of
Such applications range from multi-media database access to
Skimming (fast forwarding) through a video clip. Most
previous approaches have mainly concentrated on Splitting a
given Video Segment into "shots. Each shot is represented
by a keyframe which Summarizes the shot. Thus one may
View these representative frames instead of browsing
through the entire video. Shot detection may be achieved
with high accuracy (>90%) and few misses (<5%). Histo
gram based approaches are among the most Successful shot
detection strategies as well as being the least computation
ally demanding. A comparison between various shot detec
tion Strategies may be found in the literature. Many of these
Schemes also take into account Some Special Situations of
interest: pan, Zoom, dissolve and fade in determining video
shot boundaries.

Known techniques generally concentrate on detecting
shot boundaries or Scene changes and using a collection
made up of a single frame from each shot as keyframes
representing the Video Sequence. ASSigning more than one
keyframe to each shot provides better Summaries represent
ing the Video content. Such known Summarization methods,
however, provide a Single layer Summary without any flex
ibility.

Other known techniques make use of color histograms
and describe methods for forming histograms from MPEG
bitstreams (e.g., histograms of DC coefficients of 8x8 block
DCT). Although, this is relatively straightforward for I
(intra-coded) frames, there is more than one way of recov
ering DC (zero frequency) coefficients of a P (predicted)
frame or B (bi-directionally predicted) frame with minimal
decoding of its reference picture.
Known references that are concerned with discrete cosine

transformation (DCT)-compressed video however, do not
address at all the practical aspects of a working System. For
example, after they are identified, keyframes have to be
decoded for visual presentation. None of the known refer
ences Specify an efficient mechanism for decoding key
frames that may be positioned at arbitrary locations of the
bitstream, without decoding the entire Video Sequence.
A major limitation of the above Schemes is that they treat

all shots equally. In most situations it might not be Sufficient
to represent the entire shot by just one frame. This leads to
the idea of allocating a few keyframes per each shot depend

15

25

35

40

45

50

55

60

65

2
ing on the amount of “interesting action' in the shot. The
current State of the art Video browsing Systems thus split a
Video Sequence into its component shots and represent each
shot by a few representative keyframes, where the repre
Sentation is referred to as “the Summary'.
The invention improves and extends the method disclosed

by L. Lagendijk, A. Hanjalic, M. Ceccarelli, M. Soletic, and
E. Persoon, “Visual Search in SMASH System”, Proceed
ings of International Conference on Image Processing, pp.
671-674, Lausanne, 1996, hereinafter “Lagendijk.”

SUMMARY OF THE INVENTION

The invention is a method of hierarchical digital video
Summarization and browsing, and includes, in its basic form,
inputting a digital Video signal for a digital Video Sequence
and generating a hierarchical Summary based on keyframes
of the Video Sequence. Additional Steps may include com
puting histograms for the digital Video Sequence; detecting
shot boundaries within the digital video Sequence; determin
ing the number of keyframes to be allocated within each
shot; locating the actual position of each keyframe within
each shot, identifying keyframe locations by the largest
consecutive difference criteria; pruning keyframes for an
shot without meaningful action; extracting keyframes effi
ciently in the case of compressed Video, and browsing the
shots using the hierarchical keyframe Summary.

“Video summarization” refers to determining the most
Salient frames of a given Video Sequence that may be used
as a representative of the Video. A method of hierarchical
Summarization is disclosed for constructing a hierarchical
summary with multiple levels, where levels vary in terms of
detail (i.e., number of frames). The coarsest, or most
compact, level provides the most Salient frames and contains
the least number of frames.
An object of the invention is to provide a method for

creating a hierarchical, multi-level Summary wherein each
level corresponds to a different level of detail.

Another object of the invention is to provide a method for
improving keyframe Selection.

Another object of the invention is to detect and utilize
motion content of the Scene, Specifically, Zoom and pan, and
present them to the user, along with the hierarchical frame
Summary.

A further object of the invention is to provide a method for
creating a hierarchical, multi-level summary of an MPEG
2-compressed Video where each level corresponds to a
different level of detail.

Yet another object of the invention is to provide a method
that is directly applicable to an MPEG-2 compressed video
for constructing histograms and generating a hierarchical
Summary with minimal decoding of the bitstream.

Another object of the invention is to provide a complete
efficient system for generating summaries of MPEG-2 com
pressed Video.

Still another object of the invention is to provide an
efficient way of handling histogram computation for MPEG
bitstreams.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a representation of the hierarchical structure of
a Video Summary for three levels.

FIG. 2 is a block diagram of the first embodiment of the
method of the invention.

FIG. 3 is a block diagram of an automatic pan/Zoom
processing module of the invention

5,956,026
3

FIG. 4 is a block diagram of a fine-level key-frame
Selection algorithm of the invention.

FIG. 5 is a block diagram of the hierarchical Summary of
the invention.

FIG. 6 is an illustration of cumulative action measures
(C(x)), distribution of keyframes (k) and corresponding shot
Segments (t , t).

FIG. 7 is a block diagram of a portion of the second
embodiment of the invention for use with an MPEG-2
compressed input video.

FIG. 8 is a representation of the data that may be used to
decode the keyframes in the hierarchical Summary.

FIG. 9 is a graph of motion compensation.
FIG. 10 is an illustration of the difference between the

motion compensation algorithms used to define Case (a) and
Case (b).

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Because the current technology for automatic capturing of
Semantic Saliency is not yet mature, Video Summarization
methods rely on low-level image features, Such as color
histograms. Video Summarization is a way of determining
the most Salient frames of a given Video Sequence that may
be used as a representative of the Video. It is possible that a
particular frame carrying important information may not be
included in a Single Summary containing a pre-specified total
number of frames.

Referring now to FIG. 1, a hierarchical multilevel sum
mary 20, which is generated by the hierarchical Summari
Zation method of the invention, may provide a detailed
fine-level Summary with Sufficiently large number of frames,
So that important content information is not lost, but at the
Same time provide leSS detailed Summaries at coarser levels
in order not to hinder the usage of a coarse or compact
Summary for fast browsing and identification of the Video.
Hierarchical multilevel Summary 20 includes a most com
pact Summary, 22, at the coarsest level, which should Suffice
until more detailed information is deemed to be necessary
and the finer level Summaries are invoked, Such as the coarse
Summary 24 and the finest Summary 26. Although three
levels of Summation are depicted in FIG. 1, it should be
appreciated that the hierarchical Summary of the invention
may make use of any number of levels greater than one.
Summary 20 also facilitates fast browsing through a

database of Video Sequences where browsing may be per
formed on the basis of the most compact Summary and
progressive refinement of the Summary to more detailed
levels may be performed at user's request.

Hierarchical, multi-level Summarization facilitates an
effective way of Visual interactive presentation of Video
Summary to the user. The user may interact with the Sum
mary via a graphical user interface, for refining the
Summary, Visualizing different levels of the Summary, and
playing back the Video between any two keyframes of the
Summary at any level. Users of the method disclosed herein
may specify the maximum number of keyframes in the
summary and the number of levels of the hierarchy, and thus
the System is controllable for limited memory and resource
applications.
The method disclosed herein is applicable to both uncom

pressed (or decompressed) or DCT-based (discrete cosine
transform-based) compressed video, such as MPEG com
pressed Video, or other motion-compensated predictive com
pressed video. In the case of MPEG compressed video,

15

25

35

40

45

50

55

60

65

4
Summarization is performed with minimal decoding of the
bitstream and with an efficient way of decoding the
keyframes, resulting in reduced computational and memory
capacity requirements. The examples provided herein are of
MPEG-2 compressed video, but, as noted above, are appli
cable to any DCT-based compressed video. Those of skill in
the art will understand that a reference to an MPEG video is
a reference to a compressed Video stream, unless otherwise
noted.

In the hierarchical Summarization method disclosed
herein, detection of Special effects, Such as fades, via post
processing, is Supported. Segments containing Such effects
are not included in the Summarization process in order not
to adversely effect its accuracy. Provisions are also allowed
in the method for detecting pan and Zoom Segments for most
compact and expressive representation in the Summary.
A video Sequence may be indexed on the basis of its

Summary frames using techniques developed for Still
images. Multiple levels provide flexibility towards indexing
at varying detail level.
The hierarchical approach of the invention allows the user

quickly to browse through a collection of Video Sequences
by considering their most compact Summaries 22, with an
option of accessing a finer Summary, 24, 26, if the content
of the most compact Summary is indeed interesting. A user
of the method of this invention has the flexibility of refining
the Summary at Selected Segments of the Video Sequence.
When used to summarize a MPEG video sequence, two

components, referred to as “bitstream indeX table generator'
and “decoder manager', are provided. These components
are necessary to efficiently decode the keyframes in order to
generate a visual Summary and Subsequently browse through
the Video without decoding it in its entirety.
The overall method of the invention is Summarized,

generally at 30, in FIG. 2. The method is intended to operate
on a Video camera and recorder, Such as a camcorder, or on
a computer System having the capability to, at a minimum,
place video Sequences, and, ideally, to Store large amounts of
video data, which video data serves as video input 32. The
mechanism which includes the method of the invention is
referred to herein as a “system.” Input video 32 is first
processed to detect and remove frames that are involved
Special effects, Such as fade in or fade out, 34, because fade
in/out frames will result in Spurious shot boundaries and
keyframes. Such frames are classified as global motion
events, and are Subsequently excluded from further proceSS
ing. The next Step is histogram computation36. Image color
histograms, i.e., color distributions, constitute representative
feature vectors of the Video frames and are used in shot
boundary detection 38 and keyframe selection. Shot bound
ary detection 38 is performed using a threshold method,
where differences between histograms of Successive frames
are compared. Given total number of keyframes (user
Specified) 40, each shot is assigned a number of keyframes
42 depending on the “action' within the shot, according to
well known techniques. Finest level keyframe selection 44
is performed using an improved version of the Lagendijk
technique. The implementation disclosed herein includes an
improved version of this technique by incorporating addi
tional new steps, as shown in FIG. 4, to be more fully
described later herein, wherein an expansion of the finest
level keyframe Selection method is provided.

Referring again to FIG. 2, the automatic pan/Zoom
processing, 46, which results in generation of an image
mosaic, 51, and a Zoom Summary, 52, are optional Steps, and
will be explained later herein. The next step is the new

5,956,026
S

method for generating keyframe hierarchy 48, i.e., Summary
at coarser detail than the finest level Summary. This proceSS
is also described in detail later herein. It is based on a
variation on the theme of Vector quantization. Once the
finest and coarse level Summaries are determined for a given
shot, the process is repeated for other Shots in the Video
sequence, block 50. Additional steps include browsing the
hierarchical summary, block 53, and termination of the
process, block 54.
Automatic Pan/Zoom Processing

The Steps of automatic pan/Zoom processing 46 are shown
in FIG. 3, which include detecting pan and Zoom events in
the digital Video Sequence. Frames that contain global
motion are detected 56. This is a pre-Screening method
aimed at identifying those frames that undergo global
motion. These frames may be compactly represented using
an image mosaic, if the global motion due to camera pan, as
detected by pan detector 58, or by Zoom Summary 52, i.e.,
the first and last frames of a Zoom-in or Zoom-out Sequence
as detected by Zoom detector 60 and compiled by Zoom
estimator 66. Hence mosaic building 62 is only attempted
for those frames that exhibit a global pan motion and which
result in image mosaic 51. Frames that take part in image
mosaic 51 or in a Zoom-in or Zoom-out Sequence are
excluded from the finest level summary, block 64, as the
finest level Summary is further processed to form the coarser,
more compact, levels.

In an alternative embodiment, pan/Zoom processing 46
may be done interactively rather than automatically. The
user may Select from finest keyframes Summary Selected, 44,
those keyframes that constitute the Start and ending of a pan
Sequence, and the System may construct image mosaic 51 in
response, and present it to the user. The user may identify or
tag frame numbers K and L, i.e., the two keyframes between
which there is a camera pan. Mosaic builder 62 considers
frames between frame number K-n and L--n in building a
mosaic, where “n” is a predetermined offset. Mosaic builder
62 may be implemented according to image Stitching tech
niques well known to those of ordinary skill in the art.

In the case of Zoom, as with pan, the user may manually
Specify the beginning and ending frames, or an automatic
Zoom detection algorithm may be employed, which, again,
is an algorithm well-known to those of ordinary skill in the
art.

A form for the hierarchical Summary is depicted in FIG.
5, generally at 70. The hierarchical summary is divided into
hierarchical keyframe levels. The user may be first presented
with the most compact (coarsest) level Summary 72, i.e., the
most compact Summary, possibly along with image mosaic
51 and Zoom Summary 52. Then the user may tag a parent
and see the child(ren) frames in the finer level, referred to
herein as a coarse level 74. Tagging frames in the finest level
76 results in playback of the video; for instance if the j-th
keyframe is tagged at the finest level, frames between the
th and (i+1) St keyframes are played back. In an actual GUI
implementation the children-parent relationships may be
explicitly indicated during display. AS used herein, “tag” or
"tagging” may be accomplished by identifying a particular
object on a computer monitor, as by clicking on a particular
frame. The keyframes in the hierarchical Summary may be
spatially sub-sampled into “thumbnails” for cost effective
Storage and fast retrieval and display of the Summary.
Normal playback of a video sequence will be at the finest
level, however, playback may also be done at a coarser level.

UNCOMPRESSED VIDEO INPUT

The first embodiment of the invention is referred to herein
as a "pixel domain” approach to hierarchical digital Video

5

15

25

35

40

45

50

55

60

65

6
Summarization and browsing, and required an uncompressed
digital video input 32.
Assume that the total number of keyframes to be used for

the entire Video Sequence is given (which is normally
dictated by Storage space requirements). Lagendijk’s tech
nique has three key Steps:

1. Detect shot boundaries,
2. Determine the number of keyframes to be allocated to

each shot, and
3. Find the positions of the keyframes within each shot.
The technique used in this invention is depicted generally

at 80 in FIG. 4, and includes a 3-step iterative method 82.
Detecting shot boundaries, block 38, FIG. 2, is done using
a histogram based approach with a dynamic threshold. It is
assumed that the first n, typically n=3, frames of the
Sequence do not correspond to shot boundaries. The mean
action measure A, and the standard deviation of action
measure A are determined by computing the mean and
Standard deviation of the action measures, respectively,
defined later herein, across the first n frames. The threshold
is Set to A+C.A. Once a boundary is detected according to
this threshold, a new threshold is determined for the next
shot in this Same fashion using the first n frames of this new
shot. The value of parameter C. typically is Set to 10.
The action measure (A(...) between two histograms (h

and ha) is defined to be (the l, norm):

Achi, h;) = Xh (i)-h: (i) (1)

The cumulative action measure (C(-)) for a shot (s) with n
frames S., . . . , S, is defined to be:

5x (2)

C(x) = X A(hs, h, ,), (x sn)

The cumulative action measure for each shot, and the Sum
of the cumulative action measures of each shot is thus found.
The number of keyframes allocated to a particular shot “s”,
block 42, is proportionate to the relative amount of cumu
lative action measure within that shot.

Locating the actual positions of the keyframes within the
shot may be posed as an 1 minimization problem. Each
keyframe represents (and replaces) a contiguous set of Video
frames. The union of these contiguous Sets of Video frames
is the entire shot. Since each of these contiguous Sets of
Video frames is represented by a single keyframe, one would
like to ensure that the amount of action within one contigu
ous set of video frames is Small. The rationale behind this is
that if there is too much “action' within one contiguous Set
of Video frames, a single keyframe might not be able to
represent it fully. Thus, given the total number of keyframes
to be assigned to one shot (which is the same as the number
of contiguous sets into which the shot is split), a minimi
Zation procedure which finds the keyframes that minimize
the “action' within corresponding contiguous Sets of Video
frames is used. Given that Kkeyframes are to be positioned
within a shots, let the location of the keyframes be k, (j=1,
. . . , K). Further, lett, 1,..., t-1 be the contiguous set of
video frames represented by the keyframe at ki. In other
wordst, t-1) is the shot segment which is represented by
the keyframe ki. The following cost criterion must be
minimized over all possible t, (k, are determined by selecting

5,956,026
7

Note that to and t are the first and last frames of the shot
(and hence are constants). Once k=(t)/2 is Substituted in
the above cost criterion, the optimum Solution Satisfies
2C(t)-C(k) s C(k).

In order to carry out the minimization, following Steps are
performed in an iterative way, which differs from that of the
Lagendijk technique.

1. Set k=1 (assume that to-0 and the Second frame is
chosen as a candidate for being the first keyframe.)

2. For i=1 through K-1
t=2K-t-.
Define k to be the first Video frame (i.e., video frame

with the Smallest Subscript, n, that is greater than t)
for which 2C(t)-C(k)s C(k) holds.

3. For i=K, compute t'=2 k-t-1. If t >2k-t-1=tk,
increment k by 1 and Go to Step 2. Otherwise, keep
the results of the previous iteration, add an offset to all
kS So that t=t, and Stop.

The minimization may be carried out in a finite number of
Steps, as depicted in FIG. 6. Cumulative error is a non
decreasing function within a shot. Thus the above minimi
zation procedure is aimed at finding those keyframes, k,
which give the best Stair case approximation (best in the l
sense) to the cumulative error curve 90. This results in a
distribution of keyframes k which varies adaptively to the
amount of “action' in the shot. The area to be minimized, as
expressed by the integral in Eq. 3 is depicted at 92.

The meaning of the third step above is as follows. The last
keyframe of the shot should be as close as possible to the
mid point between t and t=t. Increment k and repeat
steps 2 and 3 until this midpoint is exceeded for the first time
and then take the results of the previous iteration and offset
them such that the last keyframe coincides with the
midpoint, i.e., t=2k-t, and the t determined by the
3-Step iterative method coincides with t.

Another novelty introduced to the previous algorithm
relates to cases where one may overshot the shot boundary
even with k=1 due to a Sufficiently large number of key
frames assigned to this particular shot. In this case, a simple
Scheme is used to distribute the keyframes in Such a way that
they are equispaced. In the Simple Scheme, if a shot has n
frames and K frames are to be allocated, every (n/K)th frame
is Selected as a keyframe.
An Improvement in Keyframe Selection

In Lagendijk’s technique, the keyframe for a shot Segment
It, t-1), given t- and t-1, is always located at k=(t+
t-1)/2. In other words, the keyframe is always selected to be
in the middle of the Segment as representative of the frames
in the Segment. However going back to the definition of
cumulative error, the cumulative error is dependent only on
the absolute change between Successive frames. Thus, a
keyframe in the middle of a Segment might not be repre
Sentative of the actual change between two frames that are
Separated by more than one frame. Consider a Video
Sequence in which a reporter is talking. ASSume that there
are two frames which are, for example, 10 frames apart, and
that both frames show the reporter with an open mouth.
Consequently, the two frames appear to represent very little
change, or “action.” However, the cumulative change
between the two frames might be large, Since the cumulative
change represents the Sum of the absolute changes between

15

25

35

40

45

50

55

60

65

8
Successive frames. It is possible that these two frames may
be among those selected as keyframes if the “middle of the
segment” rule is applied. Thus blindly choosing the “middle
of the Segment' frame as the keyframe might result in
erroneous Selection of keyframes.

In this embodiment, the resulting Set of breakpoints
within each shot, to, t, . . . , t), obtained by the 3-step
iterative method is considered. That frame in the Segment
(t , t-1), which is most different (in terms of the action
measure A(.)) from the previous keyframe (k-1), is selected
as the keyframe located at k. This strategy takes the largest
difference from the previous keyframe, and is referred to
herein as the "largest consecutive difference’ criteria, block
84. The first keyframe, (k), is taken as the one determined
by the 3-step iterative method. This method ensures that the
Successive keyframes are Sufficiently different from each
other, thus reducing redundancy as much as possible.
Reducing the Number of Keyframes in Shot Segments
without Meaningful Action

Because Lagendijk's technique is entirely based on cumu
lative error, as explained above, it might report large errors
between two frames which are, in fact, very close together.
Although the techniques introduced above is good for
choosing the most interesting frame in a given shot Segment,
it does not resolve the situation where the entire shot
Segment is “uninteresting from a Standpoint of action
within the shot segment. For instance, there may be an
accumulation of error due to slight camera movement which
does not result in much meaningful change between Suc
cessive keyframes.

In order to ignore shots without any meaningful action,
the Shots are identified and keyframes for those shots are
pruned, block 86, which leaves the finest level of keyframes,
block 44. This is done by evaluating the mean and standard
deviation of the action measure between Successive video
Sequence frames which lie between two given keyfrarnes is
determined and analyzed. If there is enough “meaningful
action' between two keyframes, then the action measure
between Successive frames in the original Video Sequence is
Significant, i.e., the keyframe is identified according to the
largest consecutive difference criteria, block 84.
Thus if A is the mean action measure between keyframes

k, and k . and A is the Standard deviation of the action
CSUC

(S/B) *ArtAnzA(k. k-1) (4)
if the content between the two keyframes is interesting,
where S is the number of Video Sequence frames between the
two keyframes k and k . If the shot segment is uninter
esting in the above Sense, that particular keyframe is deleted
and the shot Segment is merged with the next shot Segment.
The parameter B in the above expression is a constant. If

B is less than 1, only keyframes with large differences will
Survive, which may result in excessive pruning. The value of
B is chosen to be 2.0 for the simulations reported herein. The
quantity (S/B) increases if the number of keyframes allocated
to the shot is Small because the distance between keyframes,
and hence the number of frames between keyframes, S,
increases, when the number of keyframes allocated to the
shot is Small. The maximum value that (S/B) may achieve is
Set to C, where C. is the factor used in defining the threshold
for shot boundary detection, in order to limit the amount of
pruning of keyframes.

Further experimentation revealed that the linear thresh
olding Scheme might result in uneven keyframe allocation
for some choices of total number of keyframes. In order to
alleviate this problem, a limit MAXERASE=0.3, is set on

5,956,026
9

the maximum percentage of the total number of keyframes
which may be erased by the above pruning method. In the
limiting case, the most redundant 30 percent of the frames,
corresponding to MAXERASE=0.3, will be removed. The
meaning of “most redundant' is to be taken in the Sense that
A(k, k,) is the Smallest for the most redundant keyframe.
In this case, k, will be the redundant keyframe to be
removed.

This technique, when applied to a high-motion Sequence
does not produce any change as expected because the
motion is mostly constructive, i.e., Eq. (4) is Satisfied for all
deleted keyframes, thus, there is no redundancy.
Hierarchical Summary and Browsing

Although the above disclosure describes an intelligent
“video indexing System, Such a System provides only a
fixed Sequence of Video frames, which is a more compact
representation of the Video content than the original full
Sequence of Video frames. In most situations, this represen
tation is still inadequate, as the level of interest in a video
Sequence varies as one moves along the Sequence and the
content changes. Also, the level of interest in a particular
Video content cannot be predicted. Consider a Video
Sequence in which a girl is petting a cat: the camera pans
from the girl to the cat. One perSon might want to See the cat
more closely but not the girl; whereas another perSon might
want to see the girl closely but not the cat, yet another perSon
might want to see both of them. The goal is to minimize the
number of “uninteresting frames' that any one of these
people watch.

In order to reconcile and Satisfy diverse viewing require
ments with the same Video indexing System, a multi
resolutional video browser, block 53, FIG. 2, is provided to
allow a user to browse the hierarchical Summary by Select
ing a specific level Summary. This is a browser instead of a
mere indexing System. A viewer may start at a coarse level
of detail and expand the detail with a mouse click at those
parts of the keyframe Sequence which are more interesting
to the viewer. More than one level of detail is required so
that the viewer may browse at a viewer-Selected pace. The
finest level keyframes Still may be detected. At a coarser
level, Similar keyframes at the fine levels are clustered
together and each cluster is represented by a representative
keyframe.
To Solve this clustering problem, a modification of the

well known Linde-Buzo–Gray (LBG) algorithm (or Lloyd's
algorithm or K-means algorithm) is proposed. Note that it is
desirable to cluster Similar images together. ASSume that
images are represented by their histograms and that Similar
images have Similar histograms. Treating each histogram as
a feature vector of its associated frame, find (N/r) represen
tative histograms at the coarse level to replace the N
histograms in the finest level, where N is the number of
keyframes at the finest level. The parameter r is the
compaction ratio and is a parameter to be Supplied to the
program by the user. In the discussion which follows,
keyframes are expressed in terms of their histogram vectors.

This is different from a regular clustering problem
because it is desired to pick a representative vector to
replace, for example, p consecutive vectors (in time). In the
regular LBG case, there is no “consecutivity” restriction on
the vectors quantized to one representative vector. The
following iteration, which is similar to the regular LBG
iteration, will always converge. This new 3-step iterative
method is referred to herein as “pairwise LBG, or PLBG.
It must be noted that PLBG has the same local minima
problems as LBG. Fortunately a “cleanup stage” after the
iterations may be used to quickly take care of this. Initially,

5

15

25

35

40

45

50

55

60

65

10
Start with an equally spaced partition of the Sequence of
histogram vectors. For example, for a compaction ratio of 3,
each partitioned set contains 3 histogram vectors (except
possibly the last one or two sets). Then go through the
following steps for the PLBG method:

1. ASSign the centroid (or mean) histogram as the repre
Sentative vector for each Set of vectors.

2. Starting with the first partition, adjust each partition So
as to minimize the total 1 norm for the two adjacent
Sets on either side of the partition (hence the term
pair-wise). Mathematically, if H is the representative
vector for the vectors in Set (t , t) and H, is the
representative vector for the vectors in the Set (t, t)
adjust t Such that the total Sum of the Squared distances
of the vectors in each Set to the corresponding repre
Sentative vector is minimized.

3. If, following the adjustment, for any partition, t=t,
delete H, from the representative set of vectors. If
t=t, delete H. from the set of representative vec
torS.

4. Go to Step 1.
The Stopping criterion may be either based on the amount

of decrease in distortion, or a fixed number of iterations. AS
previously noted, Stop after 10 iterations. At each iteration
the distortion (1 norm between the representative vector of
each set and the corresponding vectors in the Set) is reduced.
Thus, the total distortion at each iteration forms a decreasing
Sequence. Furthermore, distortion is always greater than or
equal to Zero. Hence the Sequence has a limit by elementary
real analysis. Questions Such as: “Is there a local minima
(and hence a fixed point) for the iteration?” are purely
academic and the reader is referred to the literature for Such
discussion. The deletion step (step 3) might actually result in
a slightly Smaller number of keyframes were originally
expected or Selected.

In the above method, after Stopping, the frame in the first
cluster whose histogram vector is closest to the representa
tive vector is selected as the first keyframe. Keyframes for
Subsequent clusters may be determined in the Same way.
Better results are obtained when keyframes are Selected
within Subsequent clusters according to the “largest differ
ence from the previous keyframe criterion', where the
difference is expressed in terms of the action measure.

In the formulation of the above iteration, there is a
possibility that the last Set may be inadequately represented
because the last partition is always fixed to the last vector in
the Sequence. The same may be said for the first frame of the
shot, however, Such a situation was not observed in the
experiments reported herein. Thus, another Step is provided
after the completion of iteration to resolve this problem. In
this final Stage, test whether one more representative vector
need to be added at the end of the representation.
Specifically, consider adding the last vector as the new
representative. If the difference between the last vector and
the previous representative vector is less than 0X (mean of
the differences between all other pairs of Successive repre
sentative vectors) the last vector is allowed. Chose 0 to be
0.75 during the simulations. Note that 0 may vary between
0 and 1.
The baseline approach (Lagendijk) misses the Scene that

has a feature of interest if 3 keyframes are specified and the
baseline approach is applied to a Video Sequence. The results
are inferior to that of the most compact (coarsest) level of the
multilevel hierarchy with 3 keyframes, generated using the
above method. Further, it is much more efficient to utilize the
proposed hierarchical approach than applying the baseline
algorithm multiple times to obtain different numbers of
keyframes to generate a multi-level Summary.

5,956,026
11

Block Histogram Action Measure
Histogram-based action measure is not adequate in all

Situations. For example, if a black object translates against
a white background, the histogram-based action measure
would not register the movement. In Situations where it is
desired to catch fine motion, for example, hand gestures or
head movements, it is advantageous to have a better action
CSUC.

Block histograms have been proposed for shot detection.
However, it was concluded that block histograms were too
Sensitive for shot detection and give rise to a number of false
alarms. The idea behind block histograms is to split the
image into a few blocks (4 or 16 is usual) and define the
action measure to be the Sum of the absolute histogram
differences over each block. It may be easily seen that block
histograms would be more sensitive to motion which would
not be caught by a simple overall histogram based approach.
Block histograms were used experimentally for the finest
level keyframes only, as shown in the 3-step iteration
method of FIG. 4. The disadvantage of using block histo
grams is that it is computationally and memory wise more
intensive as it is necessary to deal with 4 or 16 histograms
per Video frame instead of just one. In experimental
Sequences, however, it was found that the block histogram
approach did not result in Significant performance improve
ment.

Using Motion Characteristics for Summarization
The Special cases of interest, Such as pan or Zoom, have

not, So far, been considered. In the case of a camera pan, an
intelligent browser should (a) detect the frames with a pan
and (b) provide an option for the pan frames to be converted
into an image mosaic for viewing purposes. Since detection
of pan and Zoom both involve computing motion vectors,
Zoom detection along with pan detection may be achieved
without much additional computational overload.

Because finding the motion vectors for each frame in a
Sequence is computationally demanding, a pre-Screening
method is developed which first detects all possible
Sequences of frames with dominant, or global, motion. Since
dominant motion may be caused by (a) pan, or (b) Zoom, or
(c) other special editing effect, the detected Sequence is
examined more closely to determine the existence of a pan
O ZOO.

Pre-Screening for Dominant Motion
Dominant motion implies that each pixel within the video

frame experiences a change in intensity. This change in
intensity is usually caused by Zoom or camera motion. This
change will be most noticeable in edge pixels of the Video
frame. The approach is to look at each pixel and determine
whether it is an edge pixel, and if So to find the difference
between the current pixel and the pixel at the same location
in the previous frame. If the absolute value of the difference
at an edge pixel is greater than a threshold (PZ THESH=
15), the pixel is designated as having motion. To determine
whether a pixel is an edge pixel, the value attained by the
Sobel edge-detection operator at that pixel is compared to a
threshold value (PZ THRESH1=50). If PZ THRESH is
reduced, one might obtain false alarms. If PZ THRESH1 is
reduced, there might not be a significant change at Such
pixels because they do not belong to Strong edges, motion
might not cause much intensity variation. In order to deter
mine whether a particular frame is a pan frame, threshold on
the ratio (pan ratio) between the number of pixels which are
classified as having motion to the total number of edge
pixels (PZ THRESH2=0.9). Another step needed to ensure
that the ratio crosses PZ THRESH2 consistently through
out the pan is to fill out the neighborhood. In other words,

15

25

35

40

45

50

55

60

65

12
an edge pixel has motion if the intensity variation of any
pixel within a NEIGHXNEIGH, where NEIGH=5, is greater
than PZ THRESH. Sequences of frames which are shorter
than a particular number are rejected (TOO MANY
FRAMES NOT PANZOOM=5). Subsampling may be
used to further reduce computational burden.
Pan Detection
The approach for pan detection is a variation of known

techniques. In order to detect a pan, look at the motion
vectors at subsampled pixel locations (SPACING=24). The
method used to determine motion vector is simple block
matching (BLKSIZE=7x7, SEARCHSIZE=24x24). Vary
the Search Size based upon the pan vector of the previous
frame: the Search size is halved if the previous pan vector is
Smaller than (SEARCHSIZE/2)-2, original (larger) search
Size is restored when the previous pan vector is greater than
(SEARCHSIZE/2)-2. This variation results in no perfor
mance degradation.

For pan detection, it has been proposed to find all motion
vectors parallel to the modal (most frequently occurring)
motion vector within a tolerance limit. If the number of Such
motion vectorS is greater than a particular threshold, a pan
is detected. However, in the case of a pan, not only are the
motion vectors parallel, they also have approximately the
Same magnitude. Therefore, a Small neighborhood of the
modal motion vector is examined, instead of looking at all
parallel motion vectors. If a tie in the value of a modal
motion vector occurs, an arbitrary decision is made. The size
of the neighborhood is controlled by VARN (=4). Larger
values for VARN would lead to a smaller neighborhood
around the modal motion vector (VARN=4 in our case
implies a 3x3 neighborhood). PANRATIO (=0.5) determines
the threshold on the ratio between number of motion vectors
within the neighborhood to the total number of motion
vectors. Even if Some frames in a Sequence of pan frames
fall below the thresholds, continuity of the pan is ensured, if
the hole is not bigger than 3 (TOO BIG A HOLE=3).
Zoom Detection

Examining the outermost rim of motion vectors in an
image, i.e., motion vectors at the edges of the image, should
detect Zoom conditions. Motion vectors at diametrically
opposite positions of the rim should point in opposite
directions. Threshold (ZOOMRATIO=0.7) on the ratio of
motion vectors pointing in opposite directions to the total
number of motion vectors. Only the motion vectors on the
outer rim are used because the center of Zoom might be
located anywhere within the image. Thus motion vectors at
the outer rim are the best indicators of the presence of a
Zoom. Additionally, there is not as much foreground motion
at image edges.
Color Processing

In this portion of the disclosure, the previously disclosed
methods are extended to color Sequences. Two different
embodiments are described. In the first embodiment, a
concatenated histogram consisting of a 256-bin Y-histogram
and two 128-bin U and V histograms is used. In the second
embodiment, a simple 256-bin Y-histogram is used. For
Some experimental Sequences, no significant change in
results were observed. In both cases the activity measure is
defined as in Eq. 1. However, in Some Sequences using a
color histogram may be crucial for detecting change
between two Video frames, e.g., the luminance stays nearly
the same but chroma values change.
Summary of the Uncompressed Video Input Method
A block diagram of the hierarchical Summary and brows

ing method is shown in FIG. 2. The dissolve, fade in/fade
out, removal module is explained in the cited related

5,956,026
13

application, and included herein by reference, and discloses
a dissolve detection method. The module is used to convert
a dissolve into an abrupt Scene transition by removing the
transition frames from the Video Sequence. The finest level
keyframe detection block is expanded in FIG. 4, where
major Steps are shown. The automatic pan/Zoom auto pro
cessing module is presented in detail in FIG. 3. It automati
cally (a) detects and builds a mosaic (panoramic) image if
there is a pan and (b) detects and finds the first and the last
frames of a Zoom Sequence. It also excludes the pan/Zoom
related keyframes from the finest level keyframes, So that
only non-pan and non-Zoom frames participate in the hier
archical keyframe generation process. This removal and
auto pan/Zoom processing is optional and may be enabled
interactively at only certain portions of the Video clip by the
user if desired. The GUI will allow the user to start browsing
the video at a particular level of Summary (among the
various levels generated by the hierarchical browser). For
instance, the coarsest Summary along with mosaic images
and Zoom Summary may be presented first. Then, the user
may interactively retrieve/playback frames at finer hierarchy
levels. With the click of a button the user may access either
the parent-children of the keyframe currently being viewed.
Choosing the parent will result in the replacement of a group
of keyframes at the current level by a Single keyframe which
is their parent. Choosing the children will find all the child
keyframes corresponding to the current keyframe. FIG. 5
illustrates this concept of parent and child keyframes. At the
finest level further expansion, i.e., the children at the finest
level, will lead to the playing of the video clip between
Specified keyframes. At the time the Video is played, Sound
corresponding to that part of the Video clip may also be
Synchronously played. This functionality of playing the
Video clip may also be provided at coarser levels of the
hierarchy.

The video browsing method described herein may have
applications which go beyond simply providing an effective
user interface for multi-media manipulation. It provides an
understanding of the temporal nature of the Video Sequence
which may be potentially employed in Second generation
Video coding Systems, reminiscent of Second generation
image coding Systems. For example encoderS designed to
deal with an MPEG-2 bitstream blindly adapt an IBBP or
IBBBP format. However, a hierarchy of keyframes may be
used in designing encoders which intelligently, and more
importantly, computationally efficiently, adapt to the nature
of the temporal Video stream thus providing higher quality
while utilizing lesser resources. Information on how to
utilize a hierarchy of Video frames in improving compres
Sion is available in the literature, where the multi-Scale
nature of a Segmentation algorithm is exploited to obtain
lossleSS Still image compression. A major difference between
Second generation image coding Systems and Second gen
eration video coding Systems is that the former necessitated
a fundamental change in the coding mechanism, and hence
failed to make much impact, while the latter may be incor
porated within any of the existing Video coding Standards.
Computational Performance
The computational performance of the keyframe genera

tion method depends heavily upon the hard disk acceSS
Speed of the computer used to practice the method of the
invention. In the following discussion, “real time proceSS
ing” means the ability to process 30 frames per Second at a
given resolution. For a 300 frame quarter common interme
diate format (QCIF) color sequence (176x144 resolution), it
was found that construction of the histograms took 11
Seconds, while the rest of the processing took less than a

15

25

35

40

45

50

55

60

65

14
second on a SUN(B) Ultra SPARC-2(R). Thus, provided that
histogram computation may be achieved in real time, it
should be easy to achieve real time hierarchical keyframe
generation. It may also be noted that the processing after the
computation of the histograms is independent of the actual
frame resolution, thus the amount of time taken to process
a 300 frame QCIF Sequence is the same as that of processing
a sequence at 1024x780 resolution, provided that the histo
grams of each frame have been pre-computed.

Currently global motion detection may be carried out in
real time. However, due to the heavy computational burden
asSociated with the block matching algorithm, which is
required for pan/Zoom detection, pan/Zoom processing may
not be carried in real time in a Software implementation.

COMPRESSED VIDEO INPUT

In the foregoing discussion, only uncompressed or
decompressed bitstreams were considered and used in the
experiments. However most of the available video streams
are in a compressed format for compact Storage. The method
of FIG. 4 may be extended to a compressed bitstream in such
a way as to extract keyframes while performing minimal
decoding. It will be appreciated that a brute-force method of
dealing with compressed Video may be simply to decom
preSS the entire Video Stream, thereafter using the techniques
described herein for uncompressed Video.

This portion of the disclosure deals with a variation of
hierarchical Summarization and browsing of digital Video as
may be used with MPEG-2 bitstreams. The overall scheme
is summarized in the flow diagram given in FIG. 7. A novel
way of computing histograms is disclosed. Histograms of
DC coefficients of 8x8 blocks are used. The process begins
with an input bitstream 132. Histogram computation 134 for
I pictures is therefore straightforward by methods well
known to those of ordinary skill in the art. Histogram
computation for predicted pictures (Pand B frames), without
fully decoding their reference frames, is performed as dis
closed later herein, resulting in increased accuracy in his
tograms and hence in keyframe Selection 136. Hierarchical
keyframe selection 136 determines the identities of the
keyframes of the hierarchical Summary, for instance, in
terms of their temporal display order, and provides this
Summary information to a decoder manager, that will be
described later herein. Once the histograms of DCT coeffi
cients are generated, hierarchical keyframe Selection is per
formed as taught in connection with FIG. 4.

It should be noted that a mechanism for detecting dissolve
regions in the Video, Such as the one disclosed in my
co-pending application: "Detecting Dissolve Regions in
Video Sequences,” cited above, may be easily integrated to
processing block 134 in FIG. 7 that performs histogram
computation and BIT generation. Namely, frames contained
in a dissolve region may be marked within BIT and ignored
in the Subsequent keyframe Selection proceSS. Otherwise,
frames within the dissolve region may give rise to Spurious
keyframes.
The method generates a record of the bitstream, concur

rent to histogram computation 134 that contains information
about each picture, Such as their byte offset location in the
bitstream, their reference frames, and the quantization
matrix used in quantizing the DCT blockS. In the current
invention, a table referred to as the “bitstream index table”
(BIT) is generated. The contents of BIT 138 and the method
of generating BIT is discussed in detail later herein.
One purpose of BIT 138 is to capture the essential

parameters of the bitstream in order to enable decoding of

5,956,026
15

the keyframes for generating a Visual Summary without the
need for decoding or parsing the entire bitstream. Parsing
requires that the System look at every bit in the Video Stream,
regardless of whether the Video Stream is decoded or not. In
addition, the BIT or a slimmed down version of BIT, is
provided along with the original bitstream and the identity of
the Summary, as depicted in FIG. 8, for efficient browsing by
the user when the user, for instance, wants to visually
display the Summary or playback the Video between two
keyframes. Later herein, a Specific embodiment of the
method is described wherein a Summary is presented to the
user and some interactivity is provided. Note that in FIG. 8,
the bitstream may reside in memory located at a different
physical location than the BIT and the identity of Summary
frames. For instance, bitstreams may reside in a database
server and the summary and the BIT may reside at the local
machine. Alternatively, all three types of data may reside in
the same medium such as a DVD disk or any other high
capacity Storage medium. Methods for further compaction
(or pruning) of BIT are discussed in the Section entitled
"Generating a pruned bitstream indeX table for compact
Storage.” It should be appreciated that, having generated
BIT, and having decided to “prune” the size of BIT, any
number of techniques may be used to down-size BIT. A
Single example is provided herein. It should also be noted
that it is possible not to form and store a BIT at all, but to
parse the entire bitstream and decode everytime a keyframe
needs to be decoded.

Referring again to FIG. 7, during generation of hierarchi
cal Summary 140, the information contained in BIT is
utilized by decoder manager 142 to Selectively decode the
keyframes, passed to an MPEG-2 decoder 144, and, once
decoded, forms hierarchical Summary 140. Decoder man
ager 142 performs a similar task during the presentation
Stage, as the user desires to browse through the Video by
playing back Video between the keyframes. The working
principles of the decoder manager (that may be implemented
by a computer program, for instance) are discussed below.

The invention may be implemented within a Video camera
that is storing MPEG-2 compressed video, Subsequent to
recording. In Such a case, the Summary information and BIT
may be stored in a Storage System that also stores the Video
Stream, or they are Stored in any memory location that is
linked with the video stream in a well-defined fashion. The
hierarchical Summary itself, containing the keyframes, or
their Subsampled versions, may also be Stored in a Storage
System for immediate access. On-camera user interface may
be provided for identification of video content stored in the
camera, on tape, or on any other Storage medium on the basis
of the hierarchical Summary.

Alternatively, bitstreams may be downloaded from a
camera to a computer where the Summarization process is
carried out. In this case, the Summary may be copied back
to the tape or any other Storage medium holding the Video
data, or onto Some other memory that is linked with a
well-defined link to the video bitstream. For instance, cam
eras that directly record compressed MPEG streams are
currently available (e.g., Hitachi MP-EG1A camera) where
bitstreams may then be downloaded to a PC. The system of
the current invention may be used to process Such bitstreams
on a PC platform.

The following issues must be addressed and resolved in
order to make the hierarchical video Summary work effi
ciently with MPEG-2 bitstreams:

1. Generate a keyframe hierarchy while performing mini
mal decoding of the MPEG-2 bitstream.

15

25

35

40

45

50

55

60

65

16
2. Establish a procedure for decoding the Selected key

frames from the MPEG-2 bitstreams without having to
decode all the frames.

3. Develop a strategy to decode a Stretch of frames
between two given keyframes.

This approach works at the histogram level. A method is
disclosed that computes a color histogram for each frame
while minimally decoding the MPEG-2 bitstream.

Histogram computation and consequently Subsequent
processing is insensitive to Subsampling by a factor of 8 in
each dimension. Going one Step further, it was found that
histograms computed using only the DC component of the
DCT of 8x8 blocks, i.e., the mean of 8x8 blocks, were
Sufficient for practical purposes. For motion compensated
images, it has been proposed that approximate motion
compensation could be used to reduce the computation
while obtaining negligible degradation in performance.
According to the block matching scheme used in the MPEG
Standard, a 16x16 macroblock motion vector may overlap, at
most, four other 16x16 macro blocks in the reference frame
from which motion compensated prediction is being per
formed. Similarly each 8x8 Sub-block within the 16x16
macro block overlaps, at most, four other 8x8 Sub-blockS.
Thus, it was Suggested that each 8x8 Sub block may be
approximated by a weighted average of the values in each of
the 8x8 sub-blocks that it overlaps. The weights assigned to
individual blocks could be made proportional to the area of
the overlap. Referring to FIG. 9, the 8x8 sub-block's mean
value is:

where A is 8 times the DC component of the residual
DCT for the block (the factor of 8 comes in because the DC
component of the residual DCT for the block used in the
MPEG-2 standard is one-eighth of the mean value of the
residual error of the block). Histograms are obtained by
updating the histogram vector with the mean of each 8x8
block within the image found as in Eq. 5. The above method
of obtaining histograms has certain problems leading to
possible degradation of performance. One of the improve
ments of the method of the invention is to propose a better
way of handling histogram computation for MPEG bit
StreamS.

MPEG bitstreams incorporate complicated coding strat
egies which necessitate decoding information from other
parts of the bitstream before one may attempt to decode a
particular frame. A Successful video browsing Strategy also
needs to address the problem of decoding particular video
frames in the minimum amount of time.
Computing Histograms from MPEG Bitstreams

Decoding an MPEG bitstream involves two computation
ally intensive Steps:

1. Obtaining inverse DCT of 8x8 blocks.
2. Motion compensation with 16x16 macro blocks in the

case of MPEG-2 bitstreams, the blocks may be smaller
or have only even/odd fields.

Previously, it was pointed out that replacing an 8x8 block
by its mean value does not have much effect on the histo
gram of the image. In this implementation, each 8x8 block
is replaced by 8x(DC value of the DCT coefficients). From
the formula for inverse DCT computation it may be seen that
this yields the mean value of the block, accurate within
compression related quantization error.

In order to understand the next step, a brief review of the
coding Strategy employed in an MPEG bitstream is pro
vided. A typical MPEG bitstream has three kinds of frames:

5,956,026
17

I (intra-coded frame),
B (bi-directionally predicted frame), and
P (predicted frame).

I frame contains only DCT data (no motion compensation is
performed). Thus using the DC value of DCT coefficients to
compute a histogram completely covers the problem of
minimally decoding I frames. B and P frames involve the
additional Step of using block motion vectors to predict the
current frame from previously decoded reference frame(s).
Note that the previous decoded frame available has itself
only been partially decoded. Thus, the Strategy to be used in
decoding the B and P frames must be carefully considered.
In the following discussion, Case (a) refers to a motion
compensation Scheme which already exists and is commonly
used in literature. Case (b) refers to a new motion compen
sation Scheme that is disclosed herein.

In order to Simplify motion compensation, most known
methods use the Scheme given in the previous Section, where
each 8x8 Sub-block is replaced by the weighted average of
the 8x8 sub-blocks it overlaps. Consider the two scenarios:
Case (a) replace the 8x8 Sub-block with the weighted
average of Overlapped blocks in the partially decoded ref
erence frame and Case (b) replace the 8x8 sub-block with
the exact pixels from the partially decoded reference frame.
In Case (a), it will be seen that the entire 8x8 block in the
motion compensated predicted frame will have a single
value. In Case (b), the 8x8 block may potentially have many
different values (i.e., pixels within it may have many dif
ferent values). In order to illustrate this further, consider an
example of an 8x8 block going through Cases (a) and (b).
FIG. 10 illustrates this. In FIG. 10, assume that the predic
tion block is obtained from an I frame i.e., each 8x8 block
has a single value associated with it in the prediction frame.
Case (a) will lead to an 8x8 block in the current frame which
has only one value u. Case (b), will lead to an 8x8 block in
the current frame which has potentially four different values.

This does not cause much difference in the first few
motion compensated frames (P or B frames) following an
intra-coded reference frame (or I frame). In fact, because of
the insensitivity of the histogram computation to averaging
and Sub-Sampling, it would seem that the two procedures
will be equally effective for histogram computation.
However, Case (a) should be favored because it involves less
computation and memory consumption. This occurs because
in any given frame (I or P or B), with motion compensation
performed as in Case (a), only one value for each 8x8 block
will be obtained. Thus, 8 times less capacity is needed in
each dimension i.e., potentially 64 (8x8) times lesser
memory than for storing entire frames. However, Case (a)
might lead to excessive degradation, as explained below, and
hence is not a viable alternative.
AS the number of contiguous motion compensated

frames, i.e., without an intervening I frame, increases, the
difference between Case (a) and Case (b) increases. Refer
ring back to FIG. 3, consider what happens when prediction
is attempted from an already motion compensated frame, for
example, from a P frame to a B frame or from a P frame to
another P frame. In Case (a), the weighted averaging opera
tion is applied on the four blocks the prediction block
overlaps, each of which has a Single value, and finish with
a single value for the entire 8x8 predicted block. In Case (b),
because each block in the prediction frame may have
potentially four (or more) different values, the current pre
dicted block may have a large number of different values.
Now, one should note the key difference which emerges
between Cases (a) and (b) as this chain of prediction from
already motion compensated frames becomes large. Given a

5

15

25

35

40

45

50

55

60

65

18
Sufficiently long Sequence of motion compensated frames,
one would expect Case (a) to yield a single value for the
entire frame, provided that there is sufficient motion between
frames, as described later herein. This however, does not
occur in Case (b).

In order to explain this phenomenon more thoroughly,
consider replacing each 8x8 block in the I frame by its mean
to produce a Smaller version of the original image. Now,
motion compensation as implemented in Case (a) necessi
tates recursive application of a 2x2 averaging filter repeat
edly on this Small image. From elementary Fourier analysis,
it may be easily shown that repeated application of an
averaging filter would lead to a uniform image in the limit,
neglecting edge effects.

It was observed in practice that the above observations
hold true. For a typical MPEG-2 compressed sequence the
distance between two I frames is 15. It was found that this
lead to a very noticeable degradation of performance when
motion compensation was performed according to Case (a).
The motion compensation Scheme of Case (a) produces a
Strong periodical variation in the histograms which leads to
spurious keyframe detection. Thus, Case (b) was used for
implementation. Computing the histograms using the mini
mal decoding method cuts the histogram computation speed
by half for a QCIF Sequence, although the advantage was
found to be larger for a higher resolution. Currently, a
512-dimensional histogram vector is used, and is formed by
concatenating a 256 bin grey Scale (Y component)
histogram, a 128 bin U component histogram and a 128 bin
V component histogram. Note that the above discussion is
applicable to Y, U and V components of a frame individually,
regardless of chroma format.
Extracting Particular Frames from an MPEG-2 Bitstream

Extracting particular frames from an MPEG-2 bitstream,
in the embodiment described herein, is a two step procedure.
In the first step, which is carried out concurrently with the
histogram calculation, a “bitstream indeX table' is generated
which contains the information necessary to quickly decode
a randomly picked frame from the MPEG-2 bitstream. Once
the keyframe hierarchy is generated, i.e., identities of key
frames that will be in the hierarchical Summary are defined,
only the keyframes at the finest level of hierarchy need be
decoded; frames at a coarse level of the hierarchy are a
Subset of the frames at the finest level. The second step in the
keyframe extraction procedure is carried out by the decoder
manager, as explained below, which uses the bitstream index
table generated in the first Step.
The advantage of the above two Step procedure over

decoding relevant portions of the bitstream directly is a
Saving in time that would be required to review the entire
bitstream to the frame of interest. In order to decode frame
number 1350 from a 1400 frame MPEG-2 bitstream without
a bitstream indeX table, it is necessary to parse the entire
bitstream up to frame number 1350, although it might not be
fully decoded. This takes a considerable amount of time. If
a bitstream indeX table is available, one may go directly to
the relevant portions of the bitstream; thus parsing and
decoding at absolute minimum amount is only required.
The following information is needed in order to decode a

randomly picked frame, referred to herein as the current
frame, from an MPEG-2 bitstream:

1. The most recent Sequence Header in the past (its byte
offset).

2. The byte offset of the current frame into the bitstream.
3. The most recent Quantization Matrix reset (if any) in

the past (its byte offset).
4. The reference frames (I-P/I-I/P-P) corresponding to the

current frame, if the current frame is a B frame (their
byte offsets).

5,956,026
19

5. The most recent I frame (which is the P frame's
reference frame) if the current frame is a P frame (its
byte offset).

It is to be noted that in the Case of B/P frames, several
frames other than the reference frame(s) may need to be
decoded in order to correctly decode the reference frame(s).
A common data Structure to hold the above information has
been developed to facilitate information exchange between
the two steps, i.e., (1) generating the bitstream index table
and (2) using the bitstream index table of the frame extrac
tion method by the decoder manager, described later herein.
The following segment of C-code embodies the different
flags used in formulating the bitstream indeX table, although
it will be appreciated that this is merely an example, and that
BIT may have any number of different syntax forms:
enum IndexFile:State {
K SEQUENCE HEADER=0,
K PICTURE IFRAME,
K PICTURE BFRAME,
K PICTURE PFRAME,
K OUANT MATRIX EXTENSION,
K END OF DATA,
K OFFSET

i. K OFFSET flag is added to any byte offset to
differentiate it from the other flags defined above. Thus a
byte offset of 15 would translate to 15+K OFFSET (=21) in
terms of our representation. K END OF DATA is used a
de-limiter between different events (for example sequence
header and I frame or I frame and B frame etc.). To
understand how the bitstream index table generated appears,
Suppose that the following Sequence of events needed to be
coded:

1. Sequence Header starts at 0 bytes.
2. I picture at 150 bytes
3. Ppicture at 3000 bytes
4. B picture at 4200 bytes
5. B picture at 5300 bytes
6. Quant Matrix reset at 5400 bytes
7 . P picture at 6200 bytes
This Sequence is converted into the following represen

tation:
K END OF DATA K SEQUENCE HEADER
K OFFSET--O K END OF DATA

K PICTURE IFRAME K OFFSET-150 K END
OF DATA

K PICTURE PFRAME K OFFSET-3000 K END
OF DATA

K PICTURE BFRAME
K OFFSET + 42 OO K. END OF DATA
K PICTURE BFRAME K OFFSET--5300

K OUANT MATRIX EXTENSION K OFFSET--
5400 K END OF DATA

K PICTURE PFRAME K OFFSET-6200 K END
OF DATA

This in turn will yield a byte representation, using the
C-data Structure given above, of:

5 O 6 5 11565 23OO653 4206 5353064 54O652 62O6
5

The Spaces in the above byte-wise representation are
necessary for the decoder to parse the bitstream. Note that
the K END OF DATA flag is, strictly speaking, redun
dant. How ever this flag may be used to prune out any

15

25

35

40

45

50

55

60

65

20
spuriously generated data (due to errors in the bitstreams),
thus making the algorithm error resilient. The flag acts as a
"sync signal’ to remove Spurious data; for example a
Sequence header not followed by a byte offset (due to an
error in the bitstream) will be discarded.
The decoder manager which uses the above generated

“bitstream index table” functions as follows:

1. Initialize the last decoded frame number (ldf) to -1
2. For each frame to be decoded (ftd)

Find the frame at which to start decoding (sdf).
If ftd is an I frame, then Sdf=ftd.
If ftd is a P frame, then Sdf=most recent I frame

before ftd.
If ftd is a B frame, then Sdf=most recent I frame

before both of the anchor frames corresponding to
ftd.

If Sdf obtained above is less than ldf+1 set Sdf=ldf+1.
Thus if sclf<ldf+1 some of the required frames
have been already decoded.

For i=ldf+1 to Sdf
Find the most recent Sequence header (rsh).
Find the most recent quant matrix reset (qmr), if qmr

is greater than rsh (if any).
Decode rsh, qmr in the order they appear in the

bitstream.
Decode all I and P frames sequentially starting from Sdf

till ftd-1.
Decode ftd.

In order to decode a stretch of frames, decode the first
frame (ftd) following the decoder manager procedure,
above. The rest of the frames are sequentially decoded till
the end of the stretch.

Field pictures need to be taken care of as a special case,
if needed. One may possibly use the histograms of the
even/odd fields, which ever is decoded first. The other field
may not be decoded, in the case of B pictures, or may be
decoded with the minimal decoding Strategy, in the case of
P and I pictures. The histograms need to be scaled by a factor
of 2 if only one field is being decoded. It may also be
possible that the extra decoded field may not be used in the
computation of the histograms for P/I frames, in this case the
histograms need not be Scaled, because all frames have only
one field contributing to the histogram. In order to differ
entiate fields from frames and take appropriate Steps, the
MPEG-2 bitstream provides two pieces of information from
the picture header and picture coding extension:

1. temporal reference (in the picture header) provides the
frame number being currently decoded. Note that the
temporal reference is reset at the Start of every Group
of Pictures header.

2. the picture structure (in the picture coding extension)
provides the top/bottom field information.

Generating a Pruned Bitstream Index Table for Compact
Storage
An important issue from an implementational point of

view is the compact representation of the BIT to save disk
Space. At a first glance this might not seem important, Since
the bitstream index table may take only about 8-10 bytes of
Space for each frame, comparing with the large Space
occupied by the MPEG video. The over head may be
reduced by taking the following Steps:

1. Using incremental byte offsets rather than absolute byte
offsets. This results in a good amount of Saving for
large Sequences.

2. Using a simple text compression algorithm, like gzip on
Unix platforms or pkZip on PCs.

5,956,026
21

3. Removing the END OF DATA flag.
4. Pruning the bitstream index table to store the minimal

amount of information necessary to decode the key
frames with minimal decoding and parsing of the
bitstream.

Note that the last item will allow access to only the
keyframe locations and does not let the user change the
locations of the keyframes later on. It may be also noted that
(1) and (4) are not completely compatible. If incremental
byte offsets are to be used, the pruning algorithm of (4)
should change the byte offsets to reflect the changed order of
frames. In the current implementation, a Pruned Bitstrearn
Index Table is generated, as described below. The decoder
manager Subsequently uses this pruned version of the table.
The decision to use a pruned bitstream table is a function of
the amount of Storage Space available and Speed that is to be
obtained: if Storage Space is available, there is no need to
prune the bitstream table, as there will be room for the full
table, and retrieval and manipulation will be much quicker.
Pruned Bitstream Index Table
The same structure is used as for the bitstream index table

(BIT) but with a different organizational syntax to develop
the Pruned bitstream index table (PBIT). Each keyframe is
represented as a unit (between two K END OF DATA
flags) as opposed to each Video frame being represented as
a unit in the BIT. The following information is necessary in
order to decode a particular (current) keyframe without
parsing and decoding the entire bitstream:

1. The type of current keyframe I/B/P.
2. The Start Decode Frame (sdf) corresponding to the

current keyframe (byte offset). Note that the actual Sdf
in terms of byte offset (not lclf+1, if sclf-ldf+1) needs to
be Stored because the decoder might not be operating
Sequentially to decode all the keyframes, as was
assumed to be in the BIT version of the decoder
manager. In the case that the decoder is operating
Sequentially and Sdf-ldf+1, then decoding needs to
start from laf-1. This information is already available
as laf-1 is the video frame following the previous
keyframe, whose offset is available.

. Byte offset of the current keyframe.
4. The most recent Sequence header offset. There is no

need for the K SEQUENCE HEADER flag, as every
valid MPEG-2 bitstream has a sequence header.

5. If there was ever any quantization matrix reset, the
quantization matrix offset needs to be Stored, with the
K QUANT MATRIX EXTENSION flag, because
there may not be any quantization matrix reset in a
valid MPEG-2 bitstream. Note that quantization matrix
resets need not be stored if the reset occurs before the
Sequence header Since the Sequence header's appear
ance automatically resets the quantization matrix.

The decoder manager uses the Sdf information, the type of
the current keyframe and its byte offset as follows: if the
desired current keyframe is of type I or P, the decoder
manager will Start decoding at Sdf, and will parse the
bitstream and look only for I and P frames. Such I and P
frames will be decoded until the current desired keyframe is
reached, which is also decoded. In this technique, the
decoder manager does not have to check to see if any frame
is a B frame and thus looks for only I and P frame headers.
If the desired current keyframe is of type B, the decoder
manager will consider each frame Starting from Sdf, will
decode all I or P frames, and stop at every B frame and check
to see if that frame is the desired keyframe.

If the keyframe is of type B, one may want to approximate
it with its most recently decoded reference (I or P) frame, in
order to eliminate the need for parsing B frames.

3

15

25

35

40

45

50

55

60

65

22
Suppose that a B frame is the keyframe to be decoded

which starts at 53500 bytes offset, needs a quantization
matrix to be read from 43000 bytes and a sequence header
to be read at 39000 bytes. The frame to start decoding begins
at 45000 bytes. This data is encoded thus:
K END OF DATA K PICTURE BFRAME
K OFFSET-45000

K OFFSET--53500 K OFFSET-39000
K OUANT MATRIX EXTENSION K OFFSET--
43000 K END OF DATA

It should be clear that PBIT may be further slimmed down
at the cost of increasing computational time by increasing
the amount of parsing that the decoder manager performs.
Hence, there is a tradeoff between complexity of decoder
manager and the Size of PBIT. An appropriate balance may
be made depending on application requirements. For
instance, the PBIT may store the Sdf and the byte-offsets of
all I and P frames between the Sdf and the current keyframe
and the byte offset of the current frame, eliminating the need
for the decoder manager to parse the bitstream. The
consequence, however, is an increase in size for PBIT. At the
other extreme, only the Sdf and the byte offset of the
keyframe is Stored, resulting in the most compact represen
tation for PBIT but requiring that the decoder manager
parses the bitstream between the Start frame and the key
frame positions and decodes the I and P frames.

In order to incorporate automatic pan/Zoom detect/extract
functionality, the entire frame bitstream may need to be
decoded.
Thus a System for reviewing keyframes of a digital Video

Sequence has been disclosed. The input video Stream may be
conventional digital Video, or may be an DCT-based com
pressed Stream. Although a preferred embodiment of the
invention, and Several variations thereto have been
disclosed, it should be appreciated that further variations and
modifications may be made thereto without departing from
the Scope of the invention as defined in the appended claims.

I claim:
1. A method of hierarchical digital Video Summarization

and browsing comprising:
inputting a digital Video signal for a digital Video

Sequence; and
generating a hierarchical keyframe Summary, including

dividing the hierarchical keyframe Summary into mul
tiple level Summaries, including a most compact level
Summary, a coarse level Summary, and a finest level
Summary, and

identifying keyframes by Setting k=1, where to-0 and the
Second frame is chosen as a candidate for being the first
keyframe; defining, for i=1 through K-1, and t=2
k-t, k to be the first video frame for which
2C(t)-C(k)s C(k) holds, and for i=K, computing
t=2k-to-1, and unless tra 2 k.k-t-1=tk, keeping the
results of the previous iteration, add an offset to all ks
So that t=t, and Stopping, otherwise, increment k by
1 and go to Said defining, and

identifying keyframes including Starting from the Second
keyframe positioned at k by the largest consecutive
difference criteria.

2. The method of claim 1 which includes, after said
inputting, computing histograms for the digital Video
Sequence; detecting shot boundaries within the digital video
Sequence; determining the number of keyframes allocated
within each shot, and pruning keyframes for a shot without
meaningful action.

3. The method of claim 2 which includes, after said
generating, browsing the keyframes using the hierarchical
keyframe Summary.

5,956,026
23

4. The method of claim 2 which, after Said inputting,
includes detecting and removing dissolve events.

5. The method of claim 4 which, after said detecting and
removing dissolve events includes detecting global motion
events by detecting frames within the digital Video Sequence
that include events taken from the group of events consisting
of pan events and Zoom events.

6. The method of claim 5 which includes detecting pan
events and building an image mosaic.

7. The method of claim 5 which includes detecting Zoom
events, estimating the degree of Zoom in the event, and
compiling a Zoom Summary.

8. The method of claim 5 which includes excluding global
motion events from the hierarchical Summarization process.

9. The method of claim 1 which includes browsing the
keyframes by a user after Selecting a specific level Summary.

10. The method of claim 1 wherein keyframes in the
keyframe hierarchical Summary may be spatially Sub
Sampled into thumbnails for Storage, retrieval or display.

11. The method of claim 1 wherein Said generating a
hierarchical keyframe Summary includes clustering key
frames and generating keyframes of a coarser level Sum
mary.

12. The method of claim 11 wherein said clustering
includes producing a compaction ratio in the number of
keyframes at the coarser level.

13. The method of claim 11 wherein said clustering
includes pairwise clustering.

14. The method of claim 11 wherein said generating
keyframes of a coarser level Summary includes generating
keyframes using largest consecutive difference criteria.

15. The method of claim 1 wherein said computing
includes locating the last keyframe of the shot adjacent the
midpoint between t_i and t.

16. The method of claim 1 wherein said identifying
includes Selecting every (n/K)th frame as a keyframe.

17. The method of claim 1 wherein said identifying
includes detecting uninteresting shots and eliminating their
keyframes from the hierarchical keyframe Summary.

18. The method of claim 1 wherein said inputting includes
inputting a compressed digital Video Sequence and generat
ing a bitstream indeX table, wherein Said computing histo
grams includes only partially decoding the compressed
digital Video Sequence.

15

25

35

40

24
19. The method of claim 18 wherein said allocating

keyframes within each shot includes fully decoding the
keyframe.

20. The method of claim 19 wherein said fully decoding
the keyframe includes decoding the keyframe without parS
ing the Video bitstream and without completely decoding the
Video bitstream by using a bitstream indeX table.

21. The method of claim 18 wherein said partially decod
ing a DCT-based compressed video includes using the DC
value of DCT coefficients to compute a histogram.

22. The method of claim 18 wherein said partially decod
ing includes decoding only keyframes and their reference
frames.

23. The method of claim 18 wherein said decoding
includes decoding by a decoder manager.

24. The method of claim 23 wherein said decoding by a
decoder manager includes using a bitstream indeX table to
decode the keyframes with minimal decoding and parsing of
the entire video bitstream.

25. The method of claim 24 wherein said decoding by the
decoder manager includes generating a pruned bitstream
indeX table and Storing only the information needed to
decode keyframes without parsing and decoding the entire
bitstream.

26. The method of claim 1 which further includes gener
ating one or more coarser-level Summaries from a given
keyframe Summary by Statistical clustering histogram vec
tors of keyframes.

27. The method of claim 26 where only those keyframes
that are consecutive in time are allowed to be included in the
Same cluster.

28. The method of claim 27 where clustering is performed
using a pairwise K-means clustering algorithm.

29. The method of claim 28 which includes selecting
keyframes to represent keyframe clusters and choosing
keyframes as those frames within the clusters whose histo
gram vectors are closest to the centroid vectors of the
clusters.

30. The method of claim 28 wherein said selecting
includes Selecting the keyframes in the Second and existing
Subsequent clusters on the basis of largest consecutive
difference criterion.

