
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2010/0185814 A1

US 20100185814A1

KANO et al. (43) Pub. Date: Jul. 22, 2010

(54) DATA COPYING METHOD AND APPARATUS tion of application No. 11/093,604, filed on Mar. 29,
NATHIN PROVISIONED SYSTEM 2005, now Pat. No. 7,162,600.

(75) Inventors: Yoshiki KANO, Sunnyvale, CA O O
(US); Akira YAMAMOTO, Publication Classification
Kanagawa-ken (JP) (51) Int. Cl.

G06F 2/16 (2006.01)
Correspondence Address: G06F 12/00 (2006.01)
MATTINGLY & MALUR, P.C.
1800 DIAGONAL ROAD, SUITE 370 (52) U.S. Cl. 711/112: 711/162; 711/E12.001;
ALEXANDRIA, VA 22314 (US) 711 FE12.103

(73) Assignee: HITACHI, LTD., Tokyo (JP) (57) ABSTRACT

(21) Appl. No.: 12/694,695 Data migration includes copying between normal volumes
and thin provisioned Volumes. Data in a normal Volume can

(22) Filed: Jan. 27, 2010 be copied to a thin provisioned volume. Alternatively, data
O O structures can be provided to facilitate converting a normal

Related U.S. Application Data Volume into a thin provisioned Volume without actual copy
(63) Continuation of application No. 1 1/604,090, filed on ing of data. Copying from a thin provisioned Volume to a

Nov. 22, 2006, now abandoned, which is a continua

30

normal Volume is also disclosed.

Console

Patent Application Publication Jul. 22, 2010 Sheet 1 of 20 US 2010/0185814 A1

Patent Application Publication Jul. 22, 2010 Sheet 2 of 20 US 2010/0185814 A1

402

tOStS Console

Segment Volume

Logical Device Virtual Device (Allocation on use)

Storage Subsystem

FIG.2
30

Patent Application Publication Jul. 22, 2010 Sheet 3 of 20 US 2010/0185814 A1

2
O
O
ww

O m O

5 2
s

us 3.
O 8
S. O s

w

O

CN were

S. c cro
wers wa w

sh

S were s
g l

w

s

val w y

w

3

i we

3 : :
S fe

3 a c were kn

n
e

9
A CD - N d w

Patent Application Publication Jul. 22, 2010 Sheet 4 of 20 US 2010/0185814 A1

27-0
Allocated Segment for Virtual Device S

145 14 142 143 144

WDEV Size Start Segment SEGMENT
WBA Size

3TB 2047

4096 2047

00

It 2048 2047

y 146 147 148

SEGMENT DEV

22517

24564

FIG.6

Patent Application Publication Jul. 22, 2010 Sheet 5 of 20 US 2010/0185814 A1

Start

Yes

111 Segment already allocated?

112 Get a segment from the free
segment pool

113 Perform write operation

FIG.7

Patent Application Publication Jul. 22, 2010 Sheet 6 of 20 US 2010/0185814 A1

Preparation (b):
Storage subsystem

divides LDEVs to segments by user
defined or system default sized segment

in their storage subsystem

SEG #301 SEG 302
Start: 22517 Start: 24564
Size; 2047 Size: 2047

Write data in 22520 LBA

Step 111 Lookup segment

WDEV

Step 112 117

DEV 200 LDEV2.01
118

LDEVS

Preparation (a):
Administrator assigns DEVs for free segment

FIG.8

Patent Application Publication Jul. 22, 2010 Sheet 7 of 20 US 2010/0185814 A1

100

Segment found?

Perform read operation

101

Return NULL 102

FIG.9

Step 101 Read data in BA 22520

Step 103 or Step 104
Read data from segment if segment is allocated.
if it is not allocated, return requested size NULL data

Step 102
Lookup segment

- w w w is as a w is was a

DEV2.00 DEV2O1

Patent Application Publication Jul. 22, 2010 Sheet 9 of 20 US 2010/0185814 A1

475 476

Used VDEV Reserved
VDEV

1,2,3,4,5 -
FG, 14

S. 28-1

- 477

Free VDEV

100,101,102,
103.109

Step 1. 185

486 A87 -- - - - - - - w

f who we a w up ------- it". ? y --------------- ------- t------- {
Source VDEV Target WDEV ------ -ash

117

Step2 Free Segment Pool (LDEV1)

2.2 Copy 2.1 Allocate

Step3 Free Segment Pool (LDEV1)

3.1. Change path

Target WDEV ------- 117
3.2. Return segment and become WDEV number to free VDEV

Free Segment Pools
FIG.15

Patent Application Publication Jul. 22, 2010 Sheet 10 of 20 US 2010/0185814 A1

5
well
(s
-

O)
8
a
CD
O)
O)

i

Patent Application Publication Jul. 22, 2010 Sheet 11 of 20 US 2010/0185814 A1

O Check Criteria for
201 U-assigned LDEV

Check Criteria for
2O2 LU-assigned WDEV

No

Alert list has entry?

203

Alert to migrate for administrator
204 by pager, e-mail or SNMP trap

End

US 2010/0185814 A1 2010 Sheet 12 of 20 . 22, Jul tion Ca Patent Application Publ

% X ?AOqë ?ueuuôes pesseooe si

ET?JIE

US 2010/0185814 A1 Jul. 22, 2010 Sheet 13 of 20 Patent Application Publication

Patent Application Publication Jul. 22, 2010 Sheet 14 of 20 US 2010/0185814 A1

Task management

Get a segment and turn on a re W End of segments for bitmap with which segmon ent
Source VDEV 162 is aSSOciated in LDEV

Patent Application Publication Jul. 22, 2010 Sheet 15 of 20 US 2010/0185814 A1

Migration Procedure

Migrater creates a pair of
151 Source device and target

device.

152

Migrater copies segment data
from source VDEV to target 154
DEV based On Segment table

Migrater creates a
bitmap table for target 155

device

No

Migrater copies data from
153 source LDEV to target WDEV

based on bit map

156

Migrater suspends the source
157 device; Host wait for next IO

Operation.

Migrater changes the path from
source device to target device,

Host can run the next IO
Operation.

159 v Migrater discards the pair.

158

End

Patent Application Publication Jul. 22, 2010 Sheet 16 of 20 US 2010/0185814 A1

WDEV

BA:0 BA:3TB VLBA:0 WBA:3TB

27-0

segment size. 2048

segment size: 2048

FG.24

w - - - a a a to he

LDEV VDEV

LBA:0 LBA.3TB VLBA:0 VLBA:3TB

27-0
Start SEGMENT
VLBA

100

4096

300

segment size. 2048

segment size: 2048

US 2010/0185814 A1 Jul. 22, 2010 Sheet 17 of 20 Patent Application Publication

| || ||

- - - - - - -

LLL [OOd lueuuôes eel ooi.

VETA
| NEWSDES?ue?S

DOET deu?IE

Patent Application Publication Jul. 22, 2010 Sheet 18 of 20 US 2010/0185814 A1

3

E

O
s

co

S2
D
s

R

|
S.

Patent Application Publication Jul. 22, 2010 Sheet 19 of 20 US 2010/0185814 A1

Storage Subsystem with external storage connectivity

Disc - ExLU
Mapping

U-DEV
Mapping

40

FIG.28
30

Storage Subsystem

Patent Application Publication Jul. 22, 2010 Sheet 20 of 20 US 2010/0185814 A1

231 232 233 234 235 236 237 230

Size RAD Disk DEV Start BA End LBA
Group
1 107374.1823

10737418 2147483.647
2

1TB RAID5 1,2,3,4 1
2

2 10,11,12,13 2147483647 10

E20 42949.67295

SS s

240

500GB 10.00.00.00. C936.07.32 1

500GB 10.00.00.00. C9.36O7.32

10.00.00.00. C9.36.07.DF

FIG.30

Start Parity G 3 End
50 LBA 0 arity Group LBA 1 TB - Size

519

513

N - -
Header S. Data S. Header S. Data FG.31

512 l, SAA

511 1st sequence Disc(5TB) 2nd sequence Disc(.5TB)

US 2010/0185814 A1

DATA COPYING METHOD AND APPARATUS
NATHIN PROVISIONED SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application is related to commonly owned U.S.
application Ser. No. 09/931,253, filed Aug. 17, 2001, now
U.S. Pat. No. 6,725,328, and is herein incorporated by refer
ence in its entirety for all purposes

BACKGROUND OF THE INVENTION

0002 The invention is related to storage systems and in
particular to migration in a allocation as needed (i.e., thin
provisioned) storage system.
0003 Allocation-on-use (allocation-as-needed, also
referred to as “thin provisioning”) technology provides an
efficient storage space management for virtual Volumes, since
space is allocated on an as-needed basis. Conventional
“manual provisioning of storage involves installing the
actual physical storage called for; e.g., if 10terabytes (TB) of
storage is required, then in a "manual provisioning
approach, 10 TB of storage is purchased and installed. Manu
ally provisioned volumes are referred to herein as “normal
Volumes. Thin provisioning allows a user (e.g., administra
tor) to create Volumes of any size without actually purchasing
or installing the entire amount of disk storage. Thin provi
sioned volumes are referred herein as “thin provisioned vol
umes. A common use of thin provisioning is in virtual Stor
age systems, where “virtual volumes” in the virtual storage
are provided as thin provisioned Volumes. Commonly owned
U.S. Pat. No. 6,725,328 shows an example of thin provision
ing, referred to therein as allocation-on-use.
0004 Current data migration technologies for volumes
such as Logical Units (LUs) in the SCSI environment perform
operations on a block-by-block basis irrespective of the data
in the blocks. If we use the current migration technology for
thin-provisioning technology, the benefits of thin provision
ing will be lost because conventional migration technology
copies all blocks in the source Volume to the target Volume.
Consequently, even in a thin-provisioning system, all blocks
would be allocated. Improvements in this area of storage
technologies can be made.
0005. As the amount of information treated in a computer
system for use in companies, corporations, etc. is drastically
increased, the capacity of a storage device Such as a disk for
storage of data has been increased steadily in these years. For
example, a magnetic disk storage system having a capacity of
the order of terabytes is very common. With respect to such a
disk storage system, there is a technique by which a single
storage device Subsystem is made up of a plurality of types of
logical disks (which will be sometimes referred to merely as
disks), e.g., as disclosed in U.S. Pat. No. 5,956,750, incorpo
rated herein by reference. Disclosed in the disclosure is, more
specifically, a disk Subsystem which is made up of disks
having different RAID levels such as RAIDS and RAID1 as
devices (logical disks) to be accessed by a host computer, or
made up of disks having different access rates as actual mag
netic disks (physical disks) of logical disks. A user can selec
tively use the devices according to the access rates of the
respective devices.

SUMMARY OF THE INVENTION

0006. The present invention provides a method to migrate
between “normal volumes” and “virtual volume' while main

Jul. 22, 2010

taining the benefits of thin-provisioning. Migration from a
normal Volume includes determining whether a data block
contains production data. A data block which contains pro
duction data is identified as a segment in the thin provisioned
volume. Those data blocks which do not contain production
data are placed in a free segment list. Thereafter, data access
can take place in the thin provisioned Volume.
0007. A further aspect of the present invention is migra
tion of data from a thin provisioned Volume to a normal
Volume. Each segment allocated to the thin provisioned Vol
ume is copied to a corresponding location in the normal
Volume according to the logical blockaddress associated with
the segment.
0008 A further aspect of the present invention is creation
of a normal volume having a bitmap to understand the modi
fication of blocks within a volume. The volume is used on
migration from normal Volume to virtual Volume.

BRIEF DESCRIPTION OF THE DRAWINGS

0009 Aspects, advantages and novel features of the
present invention will become apparent from the following
description of the invention presented in conjunction with the
accompanying drawings, wherein:
0010 FIG. 1 is a block diagram showing a configuration of
a computer system to which a first embodiment of the present
invention is applied;
0011 FIG. 2 shows a functional representation of the sys
tem configuration of FIG. 1;
0012 FIG.3 shows information for defined parity groups:
0013 FIG. 4 shows processing for SCSI write operations:
0014 FIG. 5 shows configuration information for a thin
provisioned Volume;
0015 FIG. 6 shows information for a free segment pool for
thin provisioned Volumes;
0016 FIG.7 shows the processing for a write operation on
a thin provisioned Volume;
0017 FIG. 8 shows the data flow during a write operation
in an LDEV;
0018 FIG. 9 shows the processing for a read operation on
a thin provisioned Volume;
0019 FIG. 10 shows the data flow of a read operation on a
thin provisioned volume:
0020 FIG. 11 shows a table of free LDEVs;
0021 FIG. 12 shows configuration information for
defined LDEVs;
0022 FIG. 13 shows state changes during a migration
from LDEV to LDEV;
(0023 FIG. 14 shows a table of pooled VDEV’s;
0024 FIG. 15 shows the flow for a migration operation
between two VDEVs;
0025 FIG. 16 shows a user interface for setting migration
thresholds;
0026 FIG. 17 illustrates triggering of migration;
0027 FIG. 18 shows triggering for migration from an
LDEV to a VDEV;
0028 FIG. 19 shows triggering for migration from a
VDEV to an LDEV;
0029 FIG. 20 shows an example of an interface for rec
ommending migrations;
0030 FIG. 21 shows processing performed by a sched
uler;
0031 FIG. 22 shows the processing for migration opera
tions between LDEV and VDEV:

US 2010/0185814 A1

0032 FIG. 23 shows re-creation of the bitmap for an
LDEV during migration of data from a VDEV to the LDEV:
0033 FIG. 24 shows the flow of data during a migration
from an LDEV to a VDEV:
0034 FIG. 25 shows the flow of data during a migration
forman LDEV to a VDEV that does not involve copying data;
0035 FIG. 26 shows the flow of data during a migration
from a VDEV to an LDEV:
0036 FIG. 27 shows the system configuration according

to another embodiment of the present invention;
0037 FIG. 28 shows the functional view of the configu
ration shown in FIG. 27:
0038 FIG. 29 shows an external mapping table for exter
nally defined LUNs;
0039 FIG. 30 shows a mapping from external LUN des
ignations to internal LUN designations; and
0040 FIG. 31 illustrates an example of a parity group
defined by external LUNs.

DESCRIPTION OF THE SPECIFIC
EMBODIMENTS

0041. The first embodiment shows the migration from a
Logical DEVice (LDEV) which is a volume comprising
blocks of data on one or more physical devices to a Virtual
DEVice (VDEV) which comprises on-demand allocated seg
ments, or from VDEV to LDEV on host's initial write using
allocation-on-use technology.
0042 FIG. 1 shows a diagram illustrating the hardware
components and interconnections among the components.
One or more host systems 2, each has an operating system
(OS) and a hardware configuration of a conventional com
puter system; e.g., PC, workstation, Mini Computer or Main
frame. The host system includes a CPU 11, memory 12, and
an internal disk 13. The host system further includes a host
bus adapter (HBA) 14 for connection to a Fibre Channel (FC)
switch 400 (or an Ethernet switch or the like). Each host
system can store its data (e.g., production data created and
used by applications such as a database) on a logical unit (LU)
provided by a storage subsystem 30.
0043. A console 402 is configured similarly to the host
system 2, but may not be configured with an HBA. The
console 402 is in communication with the storage system 30
over a suitable communication channel. For example, FIG. 1
shows that the console 402 is connected to a switch 401,
which in turn is connected to the storage subsystem 30. The
console provides remote administrative access to the storage
Subsystem, allowing a system administrator to maintain and
otherwise manage the Subsystem.
0044) The storage subsystem 30 is configured to provide
storage using SCSI-2,3 command sets on its LU's. The stor
age system comprises several RAID controllers (CTL) 20 and
several physical storage devices 32. The controller 20 com
prises components such as a processor, memory, and network
interface cards (NICs) such as Ethernet cards or FC ports. The
controller provides SAN (storage area network) capability, or
can process SCSI I/O requests to provide RAID-based access
to the physical storage devices 32. An initial embodiment of
the present invention is based on open system using SCSI.
However, it is clear that the invention can be applied to other
systems; e.g., Mainframes using CKD (Count Key Data)
Format.
0045. The controller 20 typically includes non-volatile
random access memory (NVRAM) and can store data to the
NVRAM. The NVRAM can serve as a data cache that is

Jul. 22, 2010

protected against power failures using battery protection for
memory. In case of power failure, for example, data on the
NVRAM may be de-staged to a storage configuration area on
the physical storage devices 32 using a backup battery as a
power source. The controller can provides FC ports which
have WWN (World Wide Name) to specify the target ID as
SCSI world, and consists of LUN on a FC port.
0046. A management console 390 is typically provided for
the customer engineer. It can be connected to the storage
subsystem internally. The console 390 provides GUI-based
interface for the creation or deletion of parity groups among
the physical devices 32, and interfaces related to user admin
istrator function like the creation ordeletion of logical device,
of path between logical device and LU, and of path between
LU and FC port.
0047 FIG. 2 is a diagram illustrating a logical view of the
software components of the system shown in FIG. 1 and the
interactions among them. The SAN 400 is logical connection
between a given Host 10 and Storage Subsystem 30 using a
switch or Hub like FC and Ethernet. This capability is pro
vided primarily by a fibre channel switch, a hub, an Ethernet
Switch or hub, etc. The LAN/WAN 401 is logical connection
between the Console 402 and Storage subsystem 30 using
switches like Ethernet, FDDI, Token ring, and so on. The
storage subsystem is connected to LAN/WAN 401 to access
from other host to manage storage Subsystem.
0048. The storage subsystem 30 comprises various soft
ware components or modules. The functions provided by the
software can be enabled in microcode that executes in the
controller 20. The program code can be provided from an
installation stored on optical media such as CD-ROM, or can
be obtained from FD or other remote devices like an Internet
connection to install microcode. The microcode comprises a
conventional parity group manager (not shown), a logical
device manager (LDEV Mgr) 23 that creates a logical device
to provide a logical storage from physical discs to an JO
process 21, a Virtual Device Manager (VDEV Mgr) 22, and a
migrater 24. Details of these processes are discussed further
below.

0049. The parity group manager is known, and thus not
shown in FIG. 2. This module is part of the microcode in the
controller 20. The parity group manager defines and main
tains parity group information for physical storage devices 32
using RAID0/1/2/3/4/5/6 technology. RAID 6, based on
RAID 5 technology, provides dual parity protection. The
created parity group is listed in an LDEV Config table 29
(FIG.3). The information in this table includes a parity group
number 51 to identify the parity group within storage sub
system, a usable capacity size 52 created from RAID tech
nology, a RAID configuration 53, and the constituent physi
cal storage devices 54. Additional information in the table is
discussed below.

0050. The LDEV manager 23 manages the structure of
each LDEV and the behavior of IO from the LU's. The LDEV
presents a logical storage area for an LU to store and present
data from/to host. The LDEV is part of a parity group. The
administrator defines and initially formats a region of the
LDEV adding the number of LDEV. The mapping between
LDEV and parity group is stored in LDEV Config table 29
(FIG. 3). For each parity group (field 51 in the LDEV Config
table 29), a record is maintained for each LDEV in that parity
group. The record includes an LDEV number 55 which iden
tifies the LDEV, a start Logical Block Address (LBA) 56

US 2010/0185814 A1

which represents the LDEV's start address in the parity
group, and an end LBA 57 which represents the LDEV's end
address in the parity group.
0051. The data used to represent an initialized volume can
be ASCII “0” (Zero). However, “0” is also sometimes used as
the return value in a read function call to indicate an un
assigned segment in a VDEV (discuss in later), which can
create ambiguity. Therefore, another data representation can
be selected, e.g., NULL (\O), as the NULL fill value in an
initialized disk. This selection can be provided via the console
402. After the LDEV is initialized, the state of initialization is
stored in FMT field 58 of FIG. 3. In case of the initialization,
the microcode turns a format bit ON (“1”) to indicate the
LDEV has initialized and not yet written to; the LDEV is said
to be in an “initialized state.” If the bit is OFF (“0”), this
indicates the LDEV has been written to and thus is no longer
in the initialized state.

0052 Each LDEV is associated with a bitmap 26. Each bit
in the bitmap 26 corresponds to a block in the LDEV, and is
initially set to OFF (e.g., logic “0”). When data is written to
the block, the corresponding bit is set to ON (e.g., logic “1”).
More generally, blocks which have been allocated to stored
data for application on the host or which are used by the
operating system on the host to manage a file system are
referred to as production data. These blocks are referred to as
allocated blocks. Data contained in blocks which are not
allocated for application data and which are not used by the
operating system can be referred to as non-production data.
These blocks are referred to as unallocated blocks.
0053. Where an LDEV comprises a large number of
blocks, the blocks can be grouped into a smaller number of
block-groups. This helps to keep the bitmap at a smaller more
convenientsize. For example, an LDEV might comprise 256x
2"blocks, which would require a 256 kilobit bitmap. Instead,
if each bit corresponds to 256 blocks, then the bitmap need
only be 1 kilobit in size.
0054 Ifan LDEV does not have a corresponding bitmap
defined for it, a suitable process can be provided which allows
a system administrator to create one. This can be requested
via the Console 402. The LDEV manager 23 would read each
block (or group of blocks) from the LDEV and either set the
corresponding bit to OFF if the block (or group of blocks) has
not been written (i.e., the data block is filled with NULLs), or
set the corresponding bit to ON if the block (or at least one of
the group of blocks) has been written. This aspect of the
present invention is appropriate for existing storage systems
(so-called legacy systems) which are not initially configured
for data migration processing in accordance with the present
invention.
0055 To accommodate the bitmap, the procedure for per
forming a SCSI write command is modified as shown in FIG.
4. Thus, in a Step 131, data is written to the LDEV via the LU
specified by start LBA and size, in response to a write com
mand. In a step 132, the corresponding bit in the bitmap
corresponding to the LDEV is set to ON. Upon the first write
first to an initialized LDEV, the microcode needs to indicate
the fact that the LDEV is no longer in an initialized state.
Thus, in the case of the first of SCSI write command for the
LDEV, the microcode makes a note of this occurrence. Recall
in FIG.3, the FMT field 58 shows whether the LDEV is in the
initialized state ('1') or not (“0”). After the first write opera
tion is performed on the LDEV, the FMT field 58 is changed
to “0” to indicate the volume has been written to or otherwise
modified, and is therefore no longer initialized. As will be

Jul. 22, 2010

explained below, this FMT field 58 is used on migration for
empty data from VDEV to LDEV.
0056. The Virtual Device (VDEV) Manager 22 creates
and manages thin-provisioned Volumes as virtual devices to
provide LUs that are based on virtual devices. When a write
operation to a virtual-device-based LU requires the allocation
of another block, the VDEV manager 22 allocates a storage
segment from a segment pool 27-1 (see FIG. 6). The segment
manager 27 manages the segment pool 27-1.
0057. A storage segment is either “allocated' or “not allo
cated. FIG. 2 shows “allocated” segments 37 and “not allo
cated segments 38. An allocated segment contains data. The
VDEV manager 22 maintains an allocation table 27-0 (FIG.
5) to manage the Virtual LBA(VLBA) space for the virtual
device that are defined by the thin provisioned volumes. The
allocation table 27-0 includes a VDEV number field 141
which identifies the virtual device. A host visible size field
142 can be initialized using the SCSI's READ Capacity com
mand. The allocation table 27-0 also stores a record for each
storage segment that is allocated to a virtual device. Each
record includes a start VLBA field 143 which indicates start
ing address in the virtual device that the storage segment
represents, a Segment Size field 144 which indicates the size
of each segment, and a Segment number field 145 which
identifies the storage segment in the segment pool 27-1. If a
segment does not contain data (i.e., has not been written to),
then the Segment number field will be some undefined value
that indicates the segment has not been written and thus not
yet allocated; e.g., “-1.
0058. The “not allocated” segments (or “free” segments)
are created from one or more LDEVs. Each LDEV is divided
into a plurality of segments and added to the free segment
pool 27-1. The free segment pool comprises a segment num
ber field 146 which uniquely identifies the segment among all
of the segments; this typically is simply a sequential number
ing of the segments comprising the LDEV. An LDEV field
147 identifies the LDEV from which a particular segment
originates. The LBA field 148 and Segment Size field 149
identify the location of a segment in the LDEV.
0059 FIG. 7 shows the processing for performing a write
operation on a virtual-device-based LU. In a step 111, a
determination is made whether the target of the write opera
tion has been allocated a storage segment or not. If not then
the process continues at a Step 112, otherwise processing
proceeds to a Step 113. At Step 112, a storage segment is
allocated from the free segment pool 27-1. Then in Step 113
the write operation is performed.
0060 Step 111 involves an inspection of the allocation
table 27-0 (FIG. 5). The entry for the virtual device (VDEV)
that corresponds to the LU is consulted. The target address of
the write operation is used to search the VLBA field 143. If the
Segment number field 145 is not filled in (e.g., set to “-1),
then a storage segment has not yet been allocated.
0061 An important aspect of this thin provisioning aspect
of the present invention is that the thin provisioned volume is
dynamically expanded as storage is needed, and that the
expansion occurs automatically without user involvement.
0062 FIG. 8 illustrates the processing of the flowchart of
FIG. 7. For example, a write operation issues for VDEV 115,
targeting LBA 22520 in the VDEV. Assuming the storage
segment 116 corresponding to the target address of 22520 has
not yet been allocated, the VDEV manager 22 allocates a
segment (#301) from the free segment pool 117. FIG. 8 also
shows an underlying LDEVs 201 that is configured to imple

US 2010/0185814 A1

ment the free segment pool. The LDEV 201 is partitioned into
appropriately sized segments. Each of the segments is num
bered and listed in the table 27-1 (FIG. 6) and thus collec
tively constitute the free segment pool 117.
0063 FIG.9 shows the actions performed for a read opera

tion. FIG. 10 illustrates the processing of FIG. 9. Thus, in a
Step 101, a determination is made whether the storage seg
ment that corresponds to the target LBA of the read operation
has been allocated or not. If not, then in a Step 103, a suitable
NULL response is returned indicating that the target LBA is
an unwritten area in storage. Typically, the response includes
the amount of data read, which in this case is zero. The value
is defined in Console 42 when the LDEV is initialized. On the
other hand, if the target LBA falls within the address range of
an allocated storage segment, then the data in the storage
segment is read out and returned, Step 102.
0064. The determination made in Step 101 is made by
consulting the allocation table 27-0. First, the VDEV that
corresponds to the accessed LU is determined, thus identify
ing the correct entry in the VDEV field 141. The target LBA
is compared to the start VLBA fields 143 of the corresponding
VDEV to identify the corresponding storage segment. The
Segment number field 145 is then consulted to determine if
the segment has been allocated or not; processing then pro
ceeds to Step 102 or Step 103 accordingly.
0065 FIG. 10 shows the situation where the target LBA
accesses a previously allocated storage segment. A read
request is shown targeting LBA 22520 which maps (via allo
cation table 27-0) to segment 106. Segment 106 is shown to
reside on LDEV2.01 at the block location 107. The actual data
for the read operation is then read from LDEV 201.
0066. The IO process 21 processes IO requests made to an
LU from a host. The IO process 21 comprises a component
(not shown) for handling SCSI I/O operations. The JO pro
cess includes a table 25 (FIG.12) that maps LUs to ports in the
storage subsystem 30. The table 25 is used by the controller
20 to coordinate information between ports and LUs. The
table includes a port number field 81 to identify the physical
FC port, a WWN field 82 which associates the world wide
name (WWN) to the port, a logical unit number (LUN) field
83, and a device name field 84.
0067. The Migrater 24 performs migration operations to
move data between LDEVs and VDEVs according to the
present invention. The migration operations include migrat
ing data between LDEVs, migrating data from an LDEV to a
VDEV, migrating data from a VDEV to an LDEV, and migrat
ing data between VDEVs.
0068. In the migration of data from a first LDEV to a
second LDEV, the administrator specifies an LU as the source
LDEV and he selects a target LDEV. The target LDEV is
selected from the free LDEV pool 173 (FIG. 11) via a suitable
interface provided on console 390 or console 402. The free
LDEV pool 173 shows the change in state for each LDEV.
There are three States: One State is “Used LDEV 172 which
indicates those LDEVs that been assigned to an LU or to a
free segment pool 27-1 (as discussed above, and discussed
further below). Another state is “Free LDEV 173 which
indicates those LDEVs that are not assigned to an LU or to a
free segment pool 27-1. The final state is “Reserved LDEV”
174 which indicates those LDEVs in an intermediate state of
operation. More specifically, these LDEVs are those which
had been allocated for a migration operation which is still in
progress.

Jul. 22, 2010

0069. The Migrater 24 can schedule a task to reserve the
target LDEV and to perform the migration operation. When
the migration task executes, the Migrater 24 creates a pair of
mirror between the source LDEV and the target LDEV. Dur
ing mirroring, the host’s write IO is sent to the source LDEV
and to the target LDEV. setting bits in the associated bitmap
that correspond to blocks written on the target LDEV and the
block of copy for the host written block which have already
written by host is skip. If migration is performed in an
“online' manner, then the Migrater 24 suspends hosts JO
directed to the source LDEV after completion of the mirror
operation, and splits the mirror pair. The Migrater 24 then
changes the LU designation that is used by the host to point to
the target LDEV. The source LDEV then becomes a free
LDEV. If migration is performed in an "offline' manner, then
the Migrater 24 simply continues to process IOS for the source
LDEV upon completion of the data migration. Performing
“offline' migration allows the administrator to re-use the
target LDEV; e.g., connecting it to another LU, or the LU may
have been already assigned to and LDEV before the mirror
operation.
0070 FIG. 13 shows the operation of the change state on
migration. In Step 1, the Migrater 24 reserves a target LDEV
187 and enters a migration task to the scheduler. Then in Step
2, the scheduler invokes the task and starts to migrate data
from used LDEV 186. This includes mirroring data from the
source LDEV to the reserved LDEV which is the target
LDEV 187. Of course, during the minoring, the host's write
JO is sent to source LDEV and to the target LDEV. If migra
tion is on-line, Source 10 is Suspended and path is changed to
target LDEV. After the mirroring, target LDEV is changed to
a used LDEV state and the source LDEV is changed to a Free
LDEV state in Step 3.
(0071. To migrate data from one VDEV to another VDEV.
the administrator specifies a target LU on the console. To
ensure that the data migration occurs properly, there is the
idea of a VDEV number. The controller 20 has a table of
Pooled VDEV 28-1 (FIG. 14) to manage the state of the
VDEVs. The table includes a “Used VDEV number field
475 that shows the VDEVs which have already been assigned
to an LU, a “Reserved VDEV field 476 that shows the VDEV
number of the target VDEV that has been reserved for the
migration operation, and a “Free'VDEV field 477 that shows
VDEVs which have not been assigned to an LU.
0072. During a migration operation, Migrater 24 on stor
age subsystem 30 picks a free VDEV from the Free VDEV
field 477 in the VDEV pool 28-1, and move the VDEV num
ber of the selected VDEV to the Reserved VDEV field 476. A
migration task is then created and scheduled. The migration
task is executed as shown in Step 1 in FIG. 15.
0073. When task is executed, Migrater 24 allocates a new
storage segment (Step 2.1 in FIG. 15) and copies data by each
segment from segment on Source VDEV to the new segment
on target VDEV (Step 2.2 in FIG. 15). Of course during the
copying, the host’s write IO is sent to source VDEV and to the
target VDEV to also write data on targetVDEV. If migration
is performed in an “online' manner, then the host will be
“connected to the target VDEV upon completion of the
migration. The Migrater 24 suspends the host's IOs after
completing copying of all the segments from the Source
VDEV to the target VDEV. The LU designation that is used
by the host to access the Volume is changed to point to the
target VDEV (Step 3.1 in FIG. 15). The VDEV number of the
target is moved from the Reserved VDEV field 476 (FIG. 14)

US 2010/0185814 A1

to the Used VDEV field 475. The segments in the source
VDEV are put into the free segment pool 117 and the source
VDEV number is moved to the Free VDEV 477 field 477
(Step 3.2 in FIG. 15). If migration is performed in an "offline'
mode, then the Migrater 24 continues to process IOS using the
source VDEV. The administrator can re-use the target VDEV
after split of the pair and assigning an LU to a VDEV or the
LU may have been assigned to the VDEV before the copy in
the case of OFFLINE operation: Step 1 in FIG. 15.
0074 The scheduler that is used to schedule the migration
tasks is typically provided by the OS. For example, the “cron'
utility is provided on UNIX-based OSs. The Windows(R oper
ating system from Microsoft also provides for task Schedul
ing. As mentioned, user access to schedule and otherwise
monitor migrations tasks can be provided by the console 390
in the storage subsystem 30, or remotely via the console 402.
0075 Typical operation of the present invention involves a
user (e.g., a customer service engineer) creating a parity
group from among the physical storage devices 32. Next, a
system administrator creates a plurality of LDEVs from the
parity group. The administrator assigns at least one of the
LDEVs to the free segment pool. The storage subsystem 30
then divides the LDEV, according to predetermined segment
size criteria, into a plurality of segments which constitute the
free segment pool. To create a VDEV, the administrator picks
aVDEV number from VDEV numberpool 477 in FIG.14 and
a size for the VDEV. To access an LU from the host, the
administrator defines apath between the VDEV or LDEV and
the LU.

0076. A migration operation of date from an LDEV to a
VDEV requires that at least one LDEV is associated with an
LU. The free segment pool must have free segments for
allocation. There must be an available VDEV in the VDEV
pool 477 (FIG. 14) for allocation. Similarly, a migration
operation of data from a VDEV to an LDEV requires aVDEV
that is associated with an LU. A free LDEV from the LDEV
pool 173 (FIG. 11) must be available for allocation.
0077. Before migration commences, the administrator
needs to know which LDEV or VDEV is best to use and must
create a task in the scheduler to initiate the migration process.
The basic logic is that the storage subsystem performs sched
uled checks of the rate of written data to an LU comprising
VDEVs or to an LU comprising LDEVs on a storage sub
system, e.g., on a monthly basis, quarterly, or the like. The
storage Subsystem checks the rate of the allocated segment
among the segments in the VDEV and checks turned-on bits
in the bitmap for the LDEV (indicating that the corresponding
segment for LDEV was modified since the initial format of
the LDEV).
0078 FIG.16 shows a graphical interface that can be used

to set a threshold 231 (more generally a criterion) for activat
ing the migration process. In the example shown, the value
entered in the field 231 represents the percentage utilization
of an LU that will trigger a migration. For example Suppose
the value is 50%, and suppose the LU is initially associated
with an LDEV. If the amount of storage used on the LDEV
falls below 50%, then this will trigger a migration of data
from the LDEV to a VDEV, where the LU is then associated
with the VDEV after the migration. If later the usage of the
LU (now associated with a VDEV) rises above 50%, then this
could trigger a migration of the data back to an LDEV, when
the LU is then associated with the LDEV. The GUI shown in
FIG.16 can include a field (not show) that specifies how often

Jul. 22, 2010

to perform a check of the usage level of the LDEV or VDEV
that the LU is currently associated with.
0079 Since data migration is a large undertaking, it may
be more practical to simply recommend to the system admin
istrator that a migration operation is indicated for an LU,
rather than autonomously performing the migration. The sys
tem administrator can make the final decision based on the
recommendation.
0080 FIG. 17 shows the processing by which a migration

is triggered. This process can be periodically performed at a
predetermined rate, or according to a schedule; either of
which can be user-specified. In a step 201, a check is made
whether the criteria for migrating data from an LDEV to a
VDEV has been met. This is discussed in further detail in
FIG. 18. In a step 202, a check is made whether the criteria for
migrating data from a VDEV to an LDEV has been met. This
is discussed in further detail in FIG. 19. If there is an alert list
(step 203), then each user in the alert list is notified in a step
204. The notification can be made by any of numerous ways:
e.g., email, fax, pager, SNMP trap, etc. Thus, the example
shown in FIG. 16 illustrates a simple criterion for deciding
when to perform a migration, namely, monitoring the usage
level. For discussion purposes, this simple criterion will be
used as an illustrative example. It can be appreciated however,
that other criteria can be readily employed.
I0081 FIG. 18 shows the processing for determining which
LDEVs are migrated. In a step 206, a check is made whether
each LDEV has been examined for migration. If all the
LDEVs have been examined, then the process ends. Steps 207
and 208 constitute an example of a criterion (indicated by the
dashed lines) for triggering migration or making a recom
mendation to perform a migration. Step 207 checks the num
ber of bits that are turned on in the bitmap corresponding to
the LDEV being examined. This indicates the usage level of
the LDEV. For example, the usage rate might be computed as:

usage rate(LDEV)=turned on bits/total # of bits*100

In step 208, if the usage level falls below a threshold percent
age (as set in FIG. 16, for example, the threshold would use a
dedicated threshold for VDEV like Y independent from X. In
this case, there is no suggestion of migration between X and
Y threshold), then the LU that is associated with this LDEV is
scheduled or recommended for data migration to a VDEV.
Processing continues to step 206 to examine the next LDEV.
I0082 FIG. 19 shows the processing for determining which
VDEVs are migrated. In a step 211, a check is made whether
each VDEV has been examined for migration. If all the
VDEVs have been examined, then the process ends. Steps
212 and 213 constitute an example of a criterion (indicated by
the dashed lines) for triggering migration or making a recom
mendation to perform a migration. Step 212 checks the num
ber of segments that have been allocated to the VDEV being
examined. This indicates the usage level of the VDEV. In step
213, if the usage level rises above a threshold percentage (as
set in FIG. 16, for example), then the LU that is associated
with this VDEV is scheduled or recommended for data. For
example, the usage rate might be computed as:

usage rate(VDEV)=assigned segments total # of seg
ments 100

This indicates the usage level of the VDEV. In step 213, if the
usage level rises above a threshold percentage (as set in FIG.
16, for example), then the LU that is associated with this
VDEV is scheduled or recommended for data migration to an
LDEV. Processing continues to step 211 to examine the next

US 2010/0185814 A1

VDEV migration to an LDEV. Processing continues to step
211 to examine the next VDEV.

I0083. As another criterion for step 207/212 and step 208/
213, we may use number of read/write access for an LDEV or
aVDEV to determine activity in the LDEV or VDEV. Migra
tion of data from an LDEV to a VDEV can be performed if
there are too few read/write accesses to the LDEV. In the case
of data from a VDEV to the LDEV, migration can be per
formed if there are many read and write accesses. In this
operation, an Administrator defines a threshold X of the
counter for migration timing of LDEV, and the threshold
indicates that the VDEV migrates to LDEV. The Administra
tor also defines a threshold Y of the counterfor VDEV and the
threshold indicates that the LDEV migrates to VDEV. Each
VDEV and LDEV has a counter of accessed I/O number for
periodically monitoring within term like a week, a month, a
quarter or a year. The counter watches each read and write IO
access and increases the count until the microcode checks the
recommendation like Step 208/213 after the each recommen
dation, the counter is reset.
0084 As same as step 208, the microcode checks the
usage level for the counter with the defined threshold. If the
counter is above a threshold percentage X, the microcode
code recommends to migrate data to LDEV. Also as same as
step 213, the microcode checks the usage level for the counter
with the defined threshold. If the counterfalls below a thresh
old percentageY, the microcode code recommends to migrate
data to VDEV.

I0085 FIG. 20 shows an example of a GUI that lists the
recommendations for migration. The interface shows a
source LU field 221 which identifies the LU that contains the
data that is the object of possible migration operation. A target
device field 222 identifies the target of the data migration. A
configuration field 223 indicates whether the device identi
fied in the LDEV field 222 is configured as an LDEV or a
VDEV. These fields are obtained from the table 25 shown in
FIG. 12. A recommendation field 224 shows the results of the
processing outlined in FIGS. 17-19. A usage field 225 shows
amount of used space on an LDEV, or in the case of a VDEV
the amount of allocated segments. In the figure, the usage is
expressed as a percentage of the total available space or
segments. A request migration field 226 is an input field that
allows the user to select an LU for migration or not.
0086. The GUI shown in FIG. 20 can be enhanced to allow
the user to select the target LDEV or VDEV, by specifying an
LDEV number in the target in the field 222. The GUI can be
enhanced with a field that specifies “online” migration, mean
ing that when an LU has migrated it data to the target, the LU
is then assigned to that target for Subsequent IO.
I0087. When the Apply button is “activated” by the user via
amouse click, for example, any selected migration operations
are then scheduled. FIG. 21 shows the processing performed
by the scheduler. This is a standard wait loop which looks for
tasks that are scheduled.

0088 FIG.22 shows the processing for a migration opera
tion 150, which comprises the following:

I0089 Step 151: The Migrater 24 creates a pair of a
Source device and a target device.

(0090 Step 152: A check is made on the direction of
migration. If the migration is from an LDEV to a VDEV.
then processing continues at Step 153. If migration is
from a VDEV to an LDEV, then processing continues at
Step 154.

Jul. 22, 2010

(0.091 Step 153: The Migrater 24 copies data from the
source LDEV to the target VDEV based on the corre
sponding bitmap. The migration continues until data
between the source device and the VDEV is synchro
nized. If a host sends a write 10 to the source during the
copying, the data for the write 10 is also sent to the target
to write data after the allocation of a segment.

0092 Step 154: The Migrater 24 allocates segments and
copies data from the source VDEV to the target LDEV
based on allocated segment table 27-0 (FIG. 5). If the
host sends a write 10 to the source during the copying,
the data for the write 10 is also sent to the target to write
data, turning ON the bit in the LDEV's bitmap that
corresponds to the written segment. Also, the Migrater
fills empty segments (shown as “-1 in the Segment
field 145 in FIG. 5) in the LDEV with a fill character.
Typically, the NULL fill value which is ASCII“0” (zero)
or the NULL character (\0) is the same as the LDEV's
formatted value to indicate an empty block. Regarding
the Migrater filling empty segments in LDEV, we
assume that the volume is not un-initialized by the
NULL when some of the bits in the bitmap are “1”. If the
volume is initialized by the NULL when all of the bits in
the bitmap are “0”, the filling operation is skipped. This
check is done before Step 154. FIG. 3 includes a FMT
field 58 to indicate if the LDEV is in the initialized State
(1 ”) O not (“O).

(0.093 Step 155: The Migrater 24 creates a bitmap table
for target device.

0094 Step 156: The Migrater 24 confirms whether the
migration task is an online operation oran offline opera
tion. If the task is an online migration, this procedure
goes to Step 157. If the task is an offline migration, this
procedure goes to Step 159.

(0.095 Step 157: The Migrater 24 suspends the source
and target. If the host issues an IO operation, it will be
placed in a wait state until Step 158 is performed.

(0.096 Step 158: The Migrater 24 changes the path from
Source device to target device. The host can then resume
with its IO operations.

0097 Step 159: The Migrater 24 discards the pair.
(0098 FIG. 23 shows the re-creation of a bitmap for an
LDEV that was the targetofa migration operation, performed
in step 155 above. After the data has been copied over to the
target LDEV from the source VDEV (step 161), a bitmap for
the LDEV must be created. In a step 162, the Migrater 24 gets
a next segment from the allocated segments and turns on the
corresponding bits in the bitmap associated with the LDEV.
(0099 FIG. 24 shows the data flow for migration of data
from an LDEV to a VDEV resulting from the migration
process of FIG.22. The Migrater 24 creates a pair relationship
between the VDEV and the LDEV. Data is then copied from
blocks in the source LDEV based on the bitmap table 26
corresponding to the source LDEV. Prior to the copy opera
tion of a block of data from the LDEV, the Migrater allocates
a segment from the free segment pool and creates an entry
segment in the allocated segment table 27-0 associated with
the VDEV. The block of data from the LDEV is then copied to
the allocated segment in the VDEV. When the migration is
complete the LDEV can be re-assigned to another LU. The
VDEV is associated with the LU that was originally associ
ated with the LDEV in the ONLINE case or is associated with
the another LU in case of OFFLINE operation.

US 2010/0185814 A1

0100 FIG. 25 shows an embodiment which avoids the
copying of data. The source LDEV is identified by way of the
LU designation associated with the LDEV. An available
VDEV number is selected from the table 28-1 (FIG. 14) and
thus identifies the target VDEV. Basically, the bitmap corre
sponding to the source LDEV is converted to the table 27-0
(FIG. 5) and the free segment pool of the target VDEV. The
Migrater 24 proceeds down the bitmap associated with the
target LDEV. The VDEV numbergets us into a corresponding
VDEVentry (field 141) of the table 27-0 (FIG.5). For each bit
that is set (i.e., ON), indicating there is data in the correspond
ing block, the sequence number of the corresponding block is
entered into the appropriate entry in the Segment field 145 of
the table 27-0, using the LBA address of the corresponding
block as a key into the table 27-0. The sequence numbers of
the blocks in the LDEV whose bit is not set are entered into
the free segment pool 117. In this way, there is no actual
copying of data from the source LDEV to the target VDEV.
0101 FIG. 26 shows the data movement and the creation
of a bitmap for the target LDEV during a migration from a
VDEV to an LDEV, as shown in the process flow of FIG. 22.
A copy pair is created comprising the source VDEV and the
target LDEV. Using the entry in table 27-0 (FIG. 5) that
corresponds to the source VDEV, each segment in the VDEV
is copied to the LDEV at the address indicated in the VLBA
field 143. And if the LDEV is not formatted; the state of the
FMT field 58 in FIG. 3 is “O’. The microcode fills data for the
segment addressed region, indicated by the Start LBA field 56
and the End LBA field 57 in FIG. 3 when the microcode
encounters a “-1 value in Segment field 145 of FIG. 5.
0102. In accordance with a second embodiment of the
present invention, the storage subsystems 32 (FIG. 1) are
external storage systems. The benefit for this configuration is
the added flexibility of using an external storage resource.
FIG. 27 shows a system configuration according to this
embodiment. One or more host systems 2, each has an oper
ating system (OS) and a hardware configuration of a conven
tional computer system. The host system includes a CPU 11,
memory 12, and an internal disk 13. The host system further
includes a host bus adapter (HBA) 14 for connection to a
Fibre Channel (FC) switch 35 (or an Ethernet switch or the
like). Each host system can store its data (e.g., production data
created and used by applications such as a database) on a
logical unit (LU) provided by a storage Subsystem 40.
0103) The storage subsystem 40 is configured to provide
storage using SCSI-2.3 command sets on its LUs. The storage
system comprises several RAID controllers (CTL) 45 and
several physical storage devices 49. The controller 45 com
prises components such as a processor, memory, and network
interface cards (NICs) such as Ethernet cards or FC ports (not
shown). The controller provides SAN (storage area network)
capability, or can process SCSI I/O requests to provide
RAID-based access to the physical storage devices 49.
0104. The controller 45 typically includes non-volatile
random access memory (NVRAM) and can store data to the
NVRAM. The NVRAM can serve as a data cache that is
protected against power failures. In case of power failure, for
example, data on the NVRAM can be de-staged to a storage
configuration area on the physical storage devices 49 using a
backup battery as a power source. The controller can provides
FC ports (e.g., port 46) which have WWN (World Wide
Name) to specify the target ID as SCSI world, and consists of
LUN on a FC port. An additional port 47 is provided for

Jul. 22, 2010

connection to an external storage system 30 via a switch91.
The external storage system 30 comprises external storage
devices 32.
0105 FIG. 28 shows a functional view of the system of
FIG. 27. The external storage subsystem 30 defines logical
units (LUs). A mapping table 240 (FIG.30) provides access to
the internal LUs defined by storage subsystem 30 from stor
age Subsystem 40. The mapping table includes an external
LUN field 241 which contains LU numbers (LUNs) that are
used by the storage Subsystem 40 to access the LUs of storage
subsystem 30. A Size field 242 indicates the size of the LU. A
WWN field 243 Stores the WWN to access an LU. An internal
LUN field 244 represents the LU number used internally by
the storage subsystem 30.
0106 The storage subsystem 40 includes a Disc-External
LU mapping table 230 (FIG. 29) which provides a mapping
capability to see the external LUs defined on storage sub
system 30. The mapping table 230 is the same as the table
shown in FIG. 3. The Disk number field 234 points to the
external LU number field 241 of the mapping table 240.
0107 As an example of how these mappings can be used,
consider the example shown in FIG. 31. A one terabyte (TB)
logical unit can be defined in storage Subsystem 40 compris
ing logical units in storage Subsystem 30. Parity group 3 in
mapping 230 shows such a configuration. The 1 TB LUN
comprises LUNs Ex, and Ex of storage subsystem30. As can
be seen from mapping 240, LUN EX, is a 500 gigabyte (GB)
LUN, as is LUN Ex.
0108. The header information 511, 512 has an offset of
LBA (Logical Block Address), which is the address space of
LU, the unit and other functionality information for the LU is
5MB. The 5 MB is an example of header file. We may extend
the size based on new information. The header is used for data
space on the parity group number, belonging parity group,
size, affiliation LU (port and LUN on port), number of logical
disc, configuration (concatenation, RAID0/1/2/3/4/5/6, and
etc), Sequence of LU for the configuration, and Data space of
which size is a total of LU size minus header for the LDEV.
0109 The migration operation for this embodiment of the
present invention is the same as discussed above. The fact that
there is an external storage Subsystem is hidden by the use of
the external LUN mapping provided between mappings 240
and 230.
0110. Further detail regarding the processing for thin pro
visioned volumes is disclosed in commonly owned U.S. Pat.
No. 6,725,328 which is hereinincorporated by reference in its
entirety for all purposes.

1-2. (canceled)
3. A storage system comprising:
a first port for receiving commands from a host;
a second port for transferring data and commands to a

plurality of storage devices;
a processor; and
a memory storing programs,
wherein said programs control a plurality of virtual

devices, for which allocations from a pool are performed
in response to a write operation,

wherein said programs manage a plurality of logical
devices, of which segments are allocated to said plural
ity of storage devices and are associated with logical
block addresses, where said plurality of logical devices
present a logical storage area for a logical unit to store
and present data to and from said host,

US 2010/0185814 A1

wherein said programs process a first migration from a first
virtual device of said plurality of virtual devices to a first
logical device of said plurality of logical devices, and

wherein when said programs process said first migration, a
pair is created between said first virtual device and said
first logical device, and data stored in said first virtual
device is copied to a portion of said first logical device.

4. The storage system according to claim 3,
wherein said plurality of logical devices are defined by an

administrator, and mapping between said plurality of
logical devices and parity groups is stored in said
memory, and

wherein in response to write operations, if a target of the
write operation has not been allocated a storage seg
ment, a storage segment is allocated from said pool
before the write operation is performed.

5. The storage system according to claim 4,
wherein remainder of said portion of said first logical

device not copied is filled by “0” if the first logical
device is not formatted.

6. The storage system according to claim 3,
wherein said programs process a second migration from a

second logical device of said plurality of logical devices
to a second virtual device of said plurality of virtual
devices, and

wherein when said programs process said second migra
tion, a copy pair is created between said second logical
device and said second virtual device.

7. The storage system according to claim 6.
wherein said plurality of logical devices are associated

with a bitmap, and said bitmap indicates whether blocks
within said plurality of logical devices have stored data
or not, and

wherein during said second migration, said bitmap is
checked and copy is performed from said second logical
device to said second virtual device using said bitmap.

8. The storage system according to claim 7.
wherein if said bitmap indicates that there is no stored data,

copy is not executed against corresponding region of
said second logical device to said second virtual device.

9. The storage system according to claim 3,
wherein when said second migration is performed, a bit
map is created for said first logical device.

10. The storage system according to claim 3,
wherein said plurality of storage devices are external to

said storage system,
wherein said plurality of storage devices are magnetic

disks, and
wherein said migrations are recommended or scheduled

based on a usage level of each logical device or each
virtual device.

11. A method for controlling a storage system, comprising
a first port coupled to a host, a second port coupled to a
plurality of storage devices, a processor, and a memory, the
method comprising:

providing a plurality of thin-provisioned Volumes to said
host, wherein in response to a write operation, storage
segments for said plurality of thin-provisioned Volumes
are allocated from a pool;

Jul. 22, 2010

managing a plurality of logical devices, of which segments
are allocated to said plurality of storage devices and are
associated with logical block addresses, wherein said
plurality of logical devices presentalogical storage area
for a logical unit to store and present data to and from
said host; and

performing a first migration from a first thin-provisioned
volume of said plurality of thin-provisioned volumes to
a first logical device of said plurality of logical devices,

wherein when performing said first migration, a pair is
created between said first thin-provisioned volume and
said first logical device, and data stored in said first
thin-provisioned Volume is copied to a portion of said
first logical device.

12. The method according to claim 11,
wherein said plurality of logical devices are defined by an

administrator, and mapping between said plurality of
logical devices and parity groups is stored in said
memory, and

wherein in response to write operations, if a target of the
write operation has not been allocated a storage seg
ment, a storage segment is allocated from said pool
before the write operation is performed.

13. The method according to claim 12.
wherein remainder of said portion of said first logical

device not copied is filled by “0” if the first logical
device is not formatted.

14. The method according to claim 11,
wherein said programs process a second migration from a

second logical device of said plurality of logical devices
to a second thin-provisioned volume of said plurality of
thin-provisioned Volumes, and

wherein when said programs process said second migra
tion, a copy pair is created between said second logical
device and said second thin-provisioned Volume.

15. The method according to claim 14,
wherein said plurality of logical devices are associated

with a bitmap, and said bitmap indicates whether blocks
within said plurality of logical devices have stored data
or not, and

wherein during said second migration, said bitmap is
checked and copy is performed from said second logical
device to said second thin-provisioned Volume using
said bitmap.

16. The method according to claim 15,
wherein if said bitmap indicates that there is no stored data,

copy is not executed against corresponding region of
said second logical device to said second thin-provi
sioned Volume.

17. The method according to claim 11,
wherein when said second migration is performed, a bit
map is created for said first logical device.

18. The method according to claim 11,
wherein said plurality of storage devices are magnetic

disks, and
wherein said migrations are recommended or scheduled

based on a usage level of each logical device or each
thin-provisioned Volume.

c c c c c

