2016/079626 A1 |1 000 OO0 OO0 00

<

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(43) International Publication Date
26 May 2016 (26.05.2016)

(10) International Publication Number

WO 2016/079626 Al

WIPOIPCT

(51) International Patent Classification:
GO6F 15/16 (2006.01) HO4L 29/08 (2006.01)
HO4L 12/861 (2013.01)

(21) International Application Number:

PCT/IB2015/058524

(22) International Filing Date:

4 November 2015 (04.11.2015)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

62/081,593 19 November 2014 (19.11.2014) US

(71) Applicant: STRATO SCALE LTD. [IL/IL]; 6 Galgalei
Haplada Street, 46733 Herzliya (IL).

(72) Inventors: KAMPER, Liaz; 3 Dubnov Street, 43370
Ra'anana (IL). SURAEYV, Vadim; 35 Ganim Street, 44837
Ariel (IL).

(74) Agent: D. KLIGLER LP. SERVICES LTD.; P.O. Box

57651, 61576 Tel Aviv (IL).

(81) Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:
with international search report (Art. 21(3))

(54) Title: REDUCING SHORT-PACKET OVERHEAD IN COMPUTER CLUSTERS

24

5\2 52 52 52
NODE A
HYPERVISOR 56
-

TCP

AGGREGATION | [T48

MAC—NODE
MAPPING

{ 1
32 36

i)

[mc

S 58
40 I

58~

TCP TUNNEL
TO NODE B+

hY
NODE B

HYPERVISOR 86
60
MAC—NODE
MAPPING
_ 3
<]
9 (
36 40

J
32

TCP
AGGREGATION

44

in-58
TCP TUNNEL: TCP TUNNEL
TO NODE Ci TONODE D
FIG. 2 24’\»{ NODE C NODEDl’\,24

(57) Abstract: A method includes, in a computing system (20) that includes multiple compute nodes (24) that run workloads (52)
and are connected by a network (28), establishing a dedicated Transport Control Protocol (TCP) connection (58) over the network
between a first compute node and a second compute node. Packets, which originate from one or more source workloads on the first
compute node and are destined to one or more destination workloads on the second compute node, are identified and queued in the

first compute node. The queued packets are aggregated in the first

compute node into one or more TCP segments, and the TCP seg -

ments are sent over the dedicated TCP connection to the second compute node. In the second compute node, the TCP segments are
received over the dedicated TCP connection, the packets are extracted from the received TCP segments, and the extracted packets

are forwarded to the destination workloads.

10

15

20

25

30

WO 2016/079626 PCT/IB2015/058524

REDUCING SHORT-PACKET OVERHEAD IN COMPUTER CLUSTERS

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Patent Application 62/081,593,

filed November 19, 2014, whose disclosure is incorporated herein by reference.

FIELD OF THE INVENTION
The present invention relates generally to computing systems, and particularly to

methods and systems for efficient communication between computer-system nodes.

BACKGROUND OF THE INVENTION
Machine virtualization is commonly used in various computing environments, such as
in data centers and cloud computing. Various virtualization solutions are known in the art. For
example, VMware, Inc. (Palo Alto, California), offers virtualization software for environments

such as data centers, cloud computing, personal desktop and mobile computing.

SUMMARY OF THE INVENTION

An embodiment of the present invention that is described herein provides a method
including, in a computing system that includes multiple compute nodes that run workloads and
are connected by a network, establishing a dedicated Transport Control Protocol (TCP)
connection over the network between a first compute node and a second compute node.
Packets, which originate from one or more source workloads on the first compute node and are
destined to one or more destination workloads on the second compute node, are identified and
queued in the first compute node. The queued packets are aggregated in the first compute node
into one or more TCP segments, and the TCP segments are sent over the dedicated TCP
connection to the second compute node. In the second compute node, the TCP segments are
received over the dedicated TCP connection, the packets are extracted from the received TCP
segments, and the extracted packets are forwarded to the destination workloads.

In some embodiments, aggregating the queued packets includes generating a TCP
segment that jointly encapsulates at least two packets that are destined to different destination
workloads on the second compute node. In an embodiment, aggregation of the queued packets
into the TCP segments is performed by a Central Processing Unit (CPU) of the first compute
node. In another embodiment, aggregation of the queued packets into the TCP segments is
performed by a Network Interface Controller (NIC) in the first compute node, while
offloading a Central Processing Unit (CPU) of the first compute node.

10

15

20

25

30

WO 2016/079626 PCT/IB2015/058524

In some embodiments, aggregating the queued packets includes deciding to terminate
aggregation of the packets into a current TCP segment, by evaluating a predefined criterion. In
an example embodiment, deciding to terminate the aggregation includes constraining a
maximum delay incurred by queuing the packets. In another embodiment, deciding to
terminate the aggregation includes constraining a maximum total data volume of the queued
packets.

In a disclosed embodiment, identifying the packets destined to the second compute
node includes querying a mapping that maps Medium Access Control (MAC) addresses to
compute-node identifiers. Querying the mapping may include extracting destination MAC
addresses from the packets generated in the first compute node, and selecting, using the
mapping, the packets whose destination MAC addresses are mapped to a compute-node
identifier of the second compute node.

In yet another embodiment, queuing the packets includes identifying an Address
Resolution Protocol (ARP) packet that duplicates another ARP packet that is already queued,
and discarding the identified ARP packet. In still another embodiment, queuing the packets
includes identifying a TCP packet that is a retransmission of another TCP packet that is
already queued, and discarding the identified TCP packet. In an example embodiment,
aggregating the queued packets includes, in response to identifying a TCP packet that is a
retransmission of another TCP packet that is already queued, terminating aggregation of the
packets into a current TCP segment and sending the current TCP segment to the second
compute node.

In some embodiments, aggregating the queued packets in the first compute node
includes, in response to identifying among the packets at least a predefined number of
duplicate TCP acknowledgements belonging to a same TCP connection, terminating
aggregation of the packets into a current TCP segment. In an embodiment, extracting the
packets in the second compute node includes, in response to identifying among the packets at
least a predefined number of duplicate TCP acknowledgements belonging to a same TCP
connection, delivering the duplicate TCP acknowledgements immediately to a respective
destination workload.

There is additionally provided, in accordance with an embodiment of the present
invention, a compute node including a Network Interface Controller (NIC) for communicating
over a network, and a Central Processing Unit (CPU). The CPU is configured to run one or
more source workloads, to establish a dedicated Transport Control Protocol (TCP) connection

over the network with a peer compute node, to identify and queue packets that originate from
2

10

15

20

25

30

WO 2016/079626 PCT/IB2015/058524

the source workloads and are destined to one or more destination workloads on the peer
compute node, and, in conjunction with the NIC, to aggregate the queued packets into one or
more TCP segments and send the TCP segments over the dedicated TCP connection to the
peer compute node.

There 1s further provided, in accordance with an embodiment of the present invention,
a compute node including a Network Interface Controller (NIC) for communicating over a
network, and a Central Processing Unit (CPU). The CPU is configured to run one or more
destination workloads, to establish a dedicated Transport Control Protocol (TCP) connection
over the network with a peer compute node, to receive via the NIC over the dedicated TCP
connection one or more TCP segments that encapsulate packets that originate from one or
more source workloads on the peer compute node and are destined to the destination
workloads, and to forward the packets to the destination workloads.

The present invention will be more fully understood from the following detailed

description of the embodiments thereof, taken together with the drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a block diagram that schematically illustrates a computing system, in
accordance with an embodiment of the present invention;
Fig. 2 is a block diagram that schematically illustrates a tunneling scheme used in the
computing system of Fig. 1, in accordance with an embodiment of the present invention; and
Fig. 3 is a flow chart that schematically illustrates a method for communication among

VMs, in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

OVERVIEW

Embodiments of the present invention that are described herein provide improved
methods and systems for communication among Virtual Machines (VMs) that run on different
compute nodes in a compute-node cluster. In particular, the disclosed techniques improve the
efficiency of transporting short packets over the network connecting the compute nodes.

In some embodiments, dedicated Transport Control Protocol (TCP) connections, also
referred to as TCP tunnels, are established between pairs of compute nodes. Each compute
node monitors the packets originating from the VMs it hosts. Upon detecting a packet that is

destined to a VM on another compute node (referred to as a destination node), the compute

10

15

20

25

30

WO 2016/079626 PCT/IB2015/058524
node adds the packet to a queue associated with the TCP tunnel leading to this destination
node (if such a tunnel exists).

At some point, the compute node encapsulates the pending packets of a given queue in
a TCP segment, and sends the TCP segment over the TCP tunnel to the destination node. The
destination node receives the TCP segment, extracts the packets encapsulated therein, and
forwards each packet to its destination VM.

The individual packets encapsulated in a given TCP segment may be short, and often
belong to multiple connections between different VMs. The traffic that is ultimately
exchanged over the network, however, is made-up of large TCP segments that are handled
efficiently by the network elements and incur little overhead. The disclosed techniques lend
themselves to implementation that exploits offloading capabilities of the compute-node
Network Interface Controllers (NICs).

Various associated techniques are also described, such as methods for identifying
which packet is destined to which compute node, i.e., which packet is to be transported via
which TCP tunnel. Methods for detecting and discarding duplicate Address Resolution
Protocol (ARP) packets, and methods for efficiently supporting TCP fast retransmission

mechanisms between VMs are also described.

SYSTEM DESCRIPTION

Fig. 1 is a block diagram that schematically illustrates a computing system 20, which
comprises a cluster of multiple compute nodes 24, in accordance with an embodiment of the
present invention. System 20 may comprise, for example, a data center, a cloud computing
system, a High-Performance Computing (HPC) system or any other suitable system.

Compute nodes 24 (referred to simply as “nodes” for brevity) typically comprise
servers, but may alternatively comprise any other suitable type of compute nodes. System 20
may comprise any suitable number of nodes, either of the same type or of different types.
Nodes 24 are also referred to as physical machines.

Nodes 24 are connected by a communication network 28, typically a Local Area
Network (LAN). Network 28 may operate in accordance with any suitable network protocol,
such as Ethernet or Infiniband. In the embodiments described herein, network 28 comprises an
Internet Protocol (IP) network.

Each node 24 comprises a Central Processing Unit (CPU) 32. Depending on the type of
compute node, CPU 32 may comprise multiple processing cores and/or multiple Integrated

Circuits (ICs). Regardless of the specific node configuration, the processing circuitry of the

4

10

15

20

25

30

WO 2016/079626 PCT/IB2015/058524
node as a whole is regarded herein as the node CPU. Each node 24 further comprises a
memory 36 (typically a volatile memory such as Dynamic Random Access Memory - DRAM)
and a Network Interface Card (NIC) 44 for communicating with network 28. In some
embodiments a node may comprise two or more NICs that are bonded together, e.g., in order
to enable higher bandwidth. This configuration is also regarded herein as an implementation of
NIC 44. Some of nodes 24 (but not necessarily all nodes) may comprise one or more non-
volatile storage devices 40 (e.g., magnetic Hard Disk Drives — HDDs - or Solid State Drives -
SSDs).

The system and compute-node configurations shown in Fig 1 are example
configurations that are chosen purely for the sake of conceptual clarity. In alternative
embodiments, any other suitable system and/or node configuration can be used. For example,
although the embodiments described herein refer mainly to virtualized data centers, the
disclosed techniques can be used for communication between workloads in any other suitable
type of computing system.

The various elements of system 20, and in particular the elements of nodes 24, may be
implemented using hardware/firmware, such as in one or more Application-Specific Integrated
Circuit (ASICs) or Field-Programmable Gate Array (FPGAs). Alternatively, some system or
node elements, e.g., elements of CPUs 32, may be implemented in software or using a
combination of hardware/firmware and software elements.

Typically, CPUs 32, memories 36, storage devices 40 and NICs 44 are physical,
hardware implemented components, and are therefore also referred to as physical CPUs,
physical memories, physical storage devices physical disks, and physical NICs, respectively.

In some embodiments, CPUs 32 comprise general-purpose processors, which are
programmed in software to carry out the functions described herein. The software may be
downloaded to the processors in electronic form, over a network, for example, or it may,
alternatively or additionally, be provided and/or stored on non-transitory tangible media, such

as magnetic, optical, or electronic memory.

EFFICIENT COMMUNICATION AMONG VMS ON DIFFERENT NODES USING
DEDICATED TCP TUNNELS

In some embodiments nodes 24 run Virtual Machines (VMs) that, among other tasks,
communicate with one another. Although the embodiments described herein refer mainly to

communication among VMs, the disclosed techniques can be used for communication among

10

15

20

25

30

WO 2016/079626 PCT/IB2015/058524
any other suitable types of workloads running on nodes 24, such as applications and/or
operating-system processes or containers.

When a VM on a certain node communicates with a VM running on a different node,
the communication traffic, typically a flow of packets, traverses network 28. In many practical
cases, at least some of these packets are short. Short packets may comprise, for example,
authentication request and response packets between a VM that runs an HTTP server and a
VM running an authentication service, packets sent due to a small congestion window or
advertised window of a TCP connection, Address Resolution Protocol (ARP) packets, and
many others. The term “short packet” may be defined in various ways. For example, any
packet that is shorter than the maximum Generic Segmentation Offload (GSO) size used by
the respective NIC 44 may be regarded as a short packet.

Conventional transfer of short packets over network 28, i.e., naive packet-by-packet
processing, is inefficient and wastes both communication bandwidth and CPU resources. In
some embodiments, nodes 24 queue and aggregate packets, and transfer them between nodes
over dedicated TCP connections. These techniques are described in detail below.

Fig. 2 is a block diagram that schematically illustrates a tunneling scheme used in
computing system 20, in accordance with an embodiment of the present invention. The figure
shows four nodes 24 denoted NODE A, NODE B, NODE C and NODE D, by way of
example. Each node comprises a CPU 32, one or more volatile memory devices 36 (e.g.,
RAM), one or more non-volatile storage devices 40 (e.g., hard disk drives or solid-state disks),
and one or more Network Interface Controllers (NICs) 44.

As noted above, CPUs 32, memories 36, storage devices 40 and NICs 44 are physical,
hardware implemented components, and are therefore also referred to as physical CPUs,
physical memories, physical storage devices physical disks, and physical NICs, respectively.
The internal structure is shown in detail only for NODE A and NODE B, for simplicity. The
other compute nodes typically have similar structure.

Each node 24 runs one or more VMs 52. Allocation of physical resources of the node
to the VMs (e.g., CPU, volatile memory, non-volatile storage and/or networking resources) is
carried out by a hypervisor 48. The hypervisor is typically implemented as a virtualization
software component that runs on CPU 32.

In some embodiments of the present invention, hypervisor 48 of each node 24
aggregates and transfers packets that originate from the VMs of that node and are destined to
VMs on other nodes 24. Each hypervisor 48 comprises a TCP aggregation module 56 and a
MAC-to-node mapping database 60.

10

15

20

25

30

WO 2016/079626 PCT/IB2015/058524

Each database 60 holds a mapping between the Medium Access Control (MAC)
addresses of the VMs in system 20 and the nodes 24 that host the VMs. In other words,
database 60 specifies, for each VM in the system, the MAC address of the VM and the identity
of the node 24 on which the VM runs. Database 60 may be stored in any suitable location. In
an embodiment, database 60 is extracted from a virtual-switch database that is stored at some
centralized location.

Typically, the hypervisor of each node 24 advertises the MAC addresses of the VMs it
hosts, and the other hypervisors use this information for constructing their respective databases
60. Advertising may be performed, for example, periodically, upon a change (e.g., upon set-
up, migration or tear-down of a VM), or in any other suitable manner.

Each TCP aggregation module 56 establishes one or more dedicated TCP connections
58 to one or more of its peer modules 56 on other nodes 24. TCP connections 58 are also
referred to herein as TCP tunnels, and the two terms are used interchangeably. In the present
example, module 56 of NODE A has established three TCP tunnels 58 connecting to NODE
B, NODE C and NODE D. Generally, however, not every pair of nodes 24 is necessarily
connected by a TCP tunnel.

In the present context, the node sending traffic over a TCP tunnel 58 is referred to as a
source node, and the node receiving the traffic at the other end of the TCP tunnel is referred to
as a destination node. Thus, a given node may serve as a source node for some tunnels and as a
destination node for other tunnels.

In addition, each TCP aggregation module 56 maintains one or more outgoing queues
per TCP tunnel, i.e., per destination node. In the description that follows, each module 56
maintains one respective outgoing queue per each TCP tunnel (per destination node).
Generally, however, a module 56 may maintain several queues for a given tunnel (per
destination node), e.g., for queuing packets having different Quality-of-Service (QoS) levels.

Typically, TCP aggregation module 56 in a given source node 24 monitors the packets
originating from VMs 52 of that node. In response to detecting a packet destined to a VM on
another node, module 56 adds the packet to the queue associated with the tunnel connecting to
this destination node (if such a tunnel exists).

For example, module 56 of NODE A queues the packets destined to VMs on NODE B
in one queue, the packets destined to VMs on NODE C in another queue, and the packets
destined to VMs on NODE C in yet another queue. Module 56 may identify the queue to
which a given packet is to be added, for example, by extracting the destination MAC address

from the packet, and querying database 60 with this MAC address.
7

10

15

20

25

30

WO 2016/079626 PCT/IB2015/058524

Module 56 aggregates the packets queued in a given queue, so that the node produces
one or more TCP segments containing these packets and sends the TCP segments over the
respective TCP tunnel 58 to the corresponding destination node. Thus, a given TCP segment
may jointly encapsulate multiple packets that are destined to different VMs on the destination
node.

In some embodiments, assembly of the TCP segments from the aggregated packets is
performed by module 56 in the hypervisor. In other embodiments, module 56 delivers the
aggregated packets to NIC 44, and assembly of the TCP segments is performed by the NIC
while offloading CPU 32. In either implementation, the source node applies a single
encapsulation to multiple packets destined to VMs in a given destination node. As a result,
bandwidth overhead and computational complexity (in the CPU or in the NIC) are reduced.

At the destination node, the peer module 56 or the peer NIC 44 extracts the individual
packets from the TCP segments received over the TCP tunnel. Module 56 in the hypervisor of
the destination node then forwards each packet to its destination VM. In the destination node,
too, the fact that multiple packets are received in a given TCP segment reduces overhead and
computational complexity.

It is important to note that the individual packets, which modules 56 aggregate and
send over TCP tunnels 58, may themselves be TCP packets. To avoid confusion, such
individual packets are referred to as “TCP packets” and the aggregated TCP segments
produced by modules 56 are referred to as “TCP segments” throughout this patent application.

In some embodiments, module 56 in the source node handles broadcast traffic (e.g.,
ARP requests) differently than unicast traffic. In an embodiment, upon receiving a broadcast
packet, module 56 reference-counts the packet and adds it to the queues of all the dedicated
TCP tunnels 58 established in the node. The packet will thus be broadcast over all TCP
tunnels.

Fig. 3 is a flow chart that schematically illustrates a method for communication among
VMs 52, in accordance with an embodiment of the present invention. The method begins with
TCP aggregation module 56 in hypervisor 48 of a destination node 24 receiving a packet for
transmission, at a packet reception step 70. The packet in question originates from some
source VM 52 on the source node and is destined to a certain destination VM 52 on a certain
destination node 24.

At a destination identification step 74, module 56 in the source node determines the

identity of the destination node of the packet. Typically, module 56 finds the identity of the

10

15

20

25

30

WO 2016/079626 PCT/IB2015/058524
destination node by extracting the destination MAC address from the packet, and querying the
MAC-to-node mapping in database 60 with this MAC address.

If the packet is found to be destined to another VM on the source node (i.e., the
destination node is the same as the source node), then the hypervisor forwards the packet to its
destination directly, without going out to network 28.

If the destination node is different from the source node, and if a TCP tunnel has been
established from the source node to the destination node, module 56 adds the packet to the
queue associated with this tunnel, at a queuing step 78.

At a checking step 82, module 56 decides whether the packets pending in the particular
queue are to be encapsulated and sent, or whether it should keep waiting for additional
packets. In other words, module 56 decides when it is time to terminate the aggregation of
packets into the current TCP segment, send it and start aggregating packets into a new TCP
segment. The decision may be based on any suitable criterion. For example, encapsulation
may be triggered by expiry of a predefined time-out since the oldest packet was added to the
queue, so that packets are not delayed by more than a certain delay even if throughput is low.
As another example, encapsulation may be triggered if the total volume of data in the queued
packets exceeds some predefined threshold. Additional triggering events are suggested further
below.

If module 56 decides that the criterion is not yet met, the method loops back to step 70
above. Otherwise, module 56 removes the queued packets from the queue and assembles them
into a TCP segment, at an assembly step 86. As noted above, this function may be performed
by module 56 or by NIC 44. At a sending step 90, NIC 44 sends the TCP segment over the
appropriate TCP tunnel 58 via network 28 to the destination node. The method loops back to
step 70 above.

At the destination node, module 56 or NIC 44 extracts the packets from the received
TCP segment, and module 56 forwards each packet to its destination VM, at a forwarding step
94,

The method of Fig. 3 is an example method, which is depicted purely for the sake of
conceptual clarity. In alternative embodiments, system 20 may implement the disclosed

technique using any other suitable method.

10

15

20

25

30

WO 2016/079626 PCT/IB2015/058524
OPTIMIZATIONS AND VARIATIONS

In some embodiments, TCP aggregation modules 56 in hypervisors 48 take various
measures for enhancing the efficiency and reducing the latency of the disclosed tunneling
process.

For example, in some embodiments a module 56 identifies one or more duplicate
Address Resolution Protocol (ARP) packets in a given outgoing queue, and discards them. In
an example implementation, module 56 applies a hash function to every ARP packet it intends
to add to the queue, and also maintains a list of the hash values of all ARP packets that are
currently pending in the queue.

If, when intending to add a new ARP packet to the queue, module 56 finds that the
hash value of this packet is identical to a hash value of an already-pending ARP packet,
module 56 concludes that the new ARP packet is duplicate and discards it. If the hash value of
the new packet is not found on the list, i.e., if no identical ARP packet is already queued,
module 56 adds the packet to the queue and adds the hash value to the list.

In some embodiments, module 56 applies a hash function and computes hash values
over the TCP headers of the packets that are to be added to the queue. The hash is typically
computed over the header fields excluding the TCP options. Module 56 also maintains a list of
the hash values of the TCP headers of the packets that are currently pending in the queue.

If, when intending to add a new packet to the queue, module 56 finds that the hash
value of the TCP header of this packet is identical to a hash value of the TCP header of an
already-pending packet, module 56 concludes that the new packet is a retransmission of a
previous packet. In response, module 56 discards the new packet (the retransmission). In
addition, module 56 terminates (or instructs NIC 44 to terminate) the aggregation of the
current TCP segment, so as to transmit the TCP segment immediately. The rationale behind
this technique is that the retransmission may have been caused by some TCP timeout expiry in
the source-node TCP stack.

In some embodiments, TCP aggregation modules 56 in the source and destination
nodes facilitate the use of the TCP “fast retransmit” mechanism on TCP connections between
source VMs (on the source node) and destination VMs (on the destination node). The fast
retransmit mechanism is described, for example, in section 3.2 of IETF RFC 5681, entitled
“TCP Congestion Control,” September, 2009, which is incorporated herein by reference.

Consider, for example, a TCP connection between a source VM on a source node and a

destination VM on a destination node. The TCP packets of this connection are aggregated into

10

10

15

20

25

30

WO 2016/079626 PCT/IB2015/058524
TCP segments (possibly with other packets originating in the source node and destined to the
destination node) by modules 56 and sent over TCP tunnel 58.

The TCP stacks in the source and destination VMs support TCP fast retransmit. The
source VM marks each TCP packet in the connection with an incrementing sequence number.
The destination VM sends a respective acknowledgement (ACK) in response to each received
packet. The ACK indicates the sequence number of the received packet. If the destination VM
detects that a packet was lost (by identifying that the next packet has arrived), it acknowledges
the next packet but without incrementing the sequence number. As a result, the source VM
will receive “duplicate ACKs” — ACKs having the same sequence number. The number of
duplicate ACKs, and the sequence number indicated in the duplicate ACKs, indicate to the
source VM which packets were lost, and enable the source VM to retransmit the lost packets.

In some embodiments, TCP aggregation module 56 keeps track of the current sequence
numbers being used in the various TCP connections transferred over the TCP tunnel. For each
TCP connection, module 56 also monitors the TCP ACKs received over the TCP tunnel. Upon
detecting a predefined number (e.g., three) duplicate ACKs having the same sequence number,
module 56 transfers these ACKs immediately to their destination, so as to enable the VM to
trigger fast retransmission.

Additionally or alternatively, module 56 may monitor the TCP ACKs that are queued
and pending for transmission over the TCP tunnel. Upon detecting, for a given connection, a
predefined number (e.g., three) duplicate ACKs having the same sequence number, module 56
terminates the aggregation and immediately sends the current TCP segment to the destination
node. This technique enables the VM at the opposite side of the tunnel to initiate fast
retransmit with minimal delay.

Since TCP is a byte-stream protocol, in some embodiments the destination module 56
performs framing when extracting the packets from a received TCP segment. In some
embodiments the destination module 56 performs framing using a state machine. In an
example embodiment, the state machine has two states:

» “Receiving Segment Header” state, in which module 56 receives the header of a TCP
segment of the dedicated TCP connection.

» “Receiving Packet Data” state, in which module 56 receives the individual packets
encapsulated in the TCP segment.

In the “Receiving Segment Header” state, module 56 counts the received bytes so as to
determine the total IP packet length (segment length) and the boundary between the segment

header and the encapsulated packets. When reaching this boundary, the state machine
11

10

15

WO 2016/079626 PCT/IB2015/058524
transitions to the “Receiving Packet Data” state. After a sufficient volume of data is received,
the state machine transitions back to the “Receiving Segment Header” state and again looks
for total IP packet length. This implementation assumes that each TCP segment is prepended
with a header that includes segment metadata (e.g., a 2-byte “total length” field).

It will be appreciated that the embodiments described above are cited by way of
example, and that the present invention is not limited to what has been particularly shown and
described hereinabove. Rather, the scope of the present invention includes both combinations
and sub-combinations of the various features described hereinabove, as well as variations and
modifications thereof which would occur to persons skilled in the art upon reading the
foregoing description and which are not disclosed in the prior art. Documents incorporated by
reference in the present patent application are to be considered an integral part of the
application except that to the extent any terms are defined in these incorporated documents in
a manner that conflicts with the definitions made explicitly or implicitly in the present

specification, only the definitions in the present specification should be considered.

12

10

15

20

25

WO 2016/079626 PCT/IB2015/058524
CLAIMS

1. A method, comprising:

in a computing system that includes multiple compute nodes, which run workloads and
are connected by a network, establishing a dedicated Transport Control Protocol (TCP)
connection over the network between a first compute node and a second compute node;

in the first compute node, identifying and queuing packets that originate from one or
more source workloads on the first compute node and are destined to one or more destination
workloads on the second compute node;

aggregating the queued packets in the first compute node into one or more TCP
segments, and sending the TCP segments over the dedicated TCP connection to the second
compute node; and

in the second compute node, receiving the TCP segments over the dedicated TCP
connection, extracting the packets from the received TCP segments, and forwarding the

extracted packets to the destination workloads.

2. The method according to claim 1, wherein aggregating the queued packets comprises
generating a TCP segment that jointly encapsulates at least two packets that are destined to

different destination workloads on the second compute node.

3. The method according to claim 1 or 2, wherein aggregation of the queued packets into

the TCP segments is performed by a Central Processing Unit (CPU) of the first compute node.

4. The method according to claim 1 or 2, wherein aggregation of the queued packets into
the TCP segments is performed by a Network Interface Controller (NIC) in the first compute
node, while offloading a Central Processing Unit (CPU) of the first compute node.

5. The method according to claim 1 or 2, wherein aggregating the queued packets
comprises deciding to terminate aggregation of the packets into a current TCP segment, by

evaluating a predefined criterion.

6. The method according to claim 5, wherein deciding to terminate the aggregation

comprises constraining a maximum delay incurred by queuing the packets.

7. The method according to claim 5, wherein deciding to terminate the aggregation

comprises constraining a maximum total data volume of the queued packets.

13

10

15

20

25

30

WO 2016/079626 PCT/IB2015/058524
8. The method according to claim 1 or 2, wherein identifying the packets destined to the
second compute node comprises querying a mapping that maps Medium Access Control

(MAC) addresses to compute-node identifiers.

0. The method according to claim 8, wherein querying the mapping comprises extracting
destination MAC addresses from the packets generated in the first compute node, and
selecting, using the mapping, the packets whose destination MAC addresses are mapped to a

compute-node identifier of the second compute node.

10. The method according to claim 1 or 2, wherein queuing the packets comprises
identifying an Address Resolution Protocol (ARP) packet that duplicates another ARP packet
that is already queued, and discarding the identified ARP packet.

11. The method according to claim 1 or 2, wherein queuing the packets comprises
identifying a TCP packet that is a retransmission of another TCP packet that is already queued,
and discarding the identified TCP packet.

12. The method according to claim 1 or 2, wherein aggregating the queued packets
comprises, in response to identifying a TCP packet that is a retransmission of another TCP
packet that is already queued, terminating aggregation of the packets into a current TCP

segment and sending the current TCP segment to the second compute node.

13. The method according to claim 1 or 2, wherein aggregating the queued packets in the
first compute node comprises, in response to identifying among the packets at least a
predefined number of duplicate TCP acknowledgements belonging to a same TCP connection,

terminating aggregation of the packets into a current TCP segment.

14. The method according to claim 1 or 2, wherein extracting the packets in the second
compute node comprises, in response to identifying among the packets at least a predefined
number of duplicate TCP acknowledgements belonging to a same TCP connection, delivering

the duplicate TCP acknowledgements immediately to a respective destination workload.

15. A compute node, comprising:

a Network Interface Controller (NIC) for communicating over a network; and

a Central Processing Unit (CPU), which is configured to run one or more source
workloads, to establish a dedicated Transport Control Protocol (TCP) connection over the
network with a peer compute node, to identify and queue packets that originate from the
source workloads and are destined to one or more destination workloads on the peer compute

node, and, in conjunction with the NIC, to aggregate the queued packets into one or more TCP
14

10

WO 2016/079626 PCT/IB2015/058524
segments and send the TCP segments over the dedicated TCP connection to the peer compute

node.

16. A compute node, comprising:

a Network Interface Controller (NIC) for communicating over a network; and

a Central Processing Unit (CPU), which is configured to run one or more destination
workloads, to establish a dedicated Transport Control Protocol (TCP) connection over the
network with a peer compute node, to receive via the NIC over the dedicated TCP connection
one or more TCP segments that encapsulate packets that originate from one or more source
workloads on the peer compute node and are destined to the destination workloads, and to

forward the packets to the destination workloads.

15

WO 2016/079626

1/3

PCT/IB2015/058524

24

2 24

COMPUTE NODE 2

36 M COMPUTE NODE .

MEMORY | 2
- %

~— 3% | CPU
40sT|
~~ [STORAGE

D 44 .ANIC

Nl

20
/
24
%
COMPUTE NODE
32
MEMORY
—1/¢
835 CPU
<
N—
STORAGE
D 44 ANIC
28

FIG. 1

PCT/IB2015/058524

WO 2016/079626

2/3

v ™

d 3dON

d3dONOL
TANNNL 401

8G ™

9¢
)

Q

877

(

AHOWIN

JIN

ONIddYIN

JAON<—OVIN

NOILYDIHOOV
dOl

09 T

9¢ HOSINY3dAH

AAT [INA

WA

N 44

N

\
4 4

))a3aon
\

44

9 300N [#2 ¢ 94
9 3AON OL
TINNNL dOL
~ 86
% , oy 9¢ 2€
86)))
i~ AN E Adowan | [ndo
<>
ONIddYW
oy NOILYDIHOOV JAON—IVYIN
dl
0 09
95 MOSIAYIdAH
Al o {mal mal [wa
)))) v3aoN
¢ 2 % 5 2
4

WO 2016/079626 PCT/IB2015/058524

3/3

A 4

70~"RECEIVE PACKET FOR TRANSMISSION TO VM

Y

DETERMINE DESTINATION
74~ NODE BY LOOKING-UP
MAC—NODE MAPPING

A 4

78~ ADD PACKET TO QUEUE

82

QUEUE
SIZE OR TIME-OUT
EXCEEDED?

NO

A 4

86
¢

REMOVE PACKETS PENDING FOR TRANSMISSION TO DESTINATION
NODE FROM QUEUE, AGGREGATE INTO TCP SEGMENT

A 4

SEND TCP SEGMENT OVER TCP
TUNNEL TO DESTINATION NODE

90N

i EXTRACT PACKETS FROM TCP
94~ SEGMENT AT DESTINATION NODE AND
: DELIVER TO VMs

FIG. 3

INTERNATIONAL SEARCH REPORT

International application No.

PCT/IB2015/058524

Al CLASSIFICATION OF SUBJECT MATTER
IPC (2016.01) GOGF 15/16, HO4L 29/08, HO4L 12/861

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

IPC (2016.01) HO4L

Minimum decumentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documertation to the extent that such docwments are inchuded in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Databases consulted: PATENTSCOPE, THOMSON INNOVATION, Google Patents, FamPat database

Search terms used: TCP, offload, packet, aggregate, combine, concatenate, coalescing, workload, process, service, application, t ask, discard, drop,
terminate, dedicate, connection, queue, buffer, destination, identify, virtual machine, hypervisor, MAC, ARP, Layer 2, tunnel

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Categorv*

J

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y EP 1104141 A2 LUCENT TECHNOLOGIES INC.
30 May 2001 (2001/05/30)
9 0003,0008, 0009 fig. 6

1-7,11-16

Y US 2012005369 A1 CAPONE et al.
05 Jan 2012 (2012/01/05)
1 0004

1-7,11-16

Y US 2007014245 A1 ALONI et al.
18 Jan 2007 (2007/01/18)
T 0008, 0009, 0032, 0046

Y EP 0912028 B1 SUN MICROSYSTEMS INC.
01 Mar 2006 (2006/03/01)
10060

11,12

A US 2005041688 A1 BERNHARD et al.
24 Feb 2005 (2005/02/24)
‘Whole document

TFurther documents are listed in the continuation of Box €.

See patent family annex.

* Special categorics of cited documents:
A” document defining the general state of the art which is not considered
1o be of particular relevance

«p» earlier application or patent but published on or after the

international filing date

document which may throw doubits on priotity claim(s) or which is

cited fo establish the publication date of another citation or other

special reason {as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

«“p” document published prior to the international filing date but later
than the priority date claimed

o

P

later document published after the infernational {i
date and not in conflict with the application but ci
the principle or theory underlying the invention

ing date or priority
d to understand

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered {o involve an inventive sicp when the document is
conmbined with one or more other such documents, such combination
being obvious 1o a person skilled ia the art

“&” document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the infemational search report

Technology Park, Bldg.5, Malcha, Jerusalem, 9695101, Israel
Facsimile No. 97225651616

18 Feb 2016 21 Feb 2016
Name and mailing address of the [SA: Authorized officer
Israel Patent Office COPPENHAGEN Uri

Telephone No. 972.2-.5657811

Form PCT/ISA/210 {second sheet) {Jannary 2615)

INTERNATIONAL SEARCH REPORT

International application No.

26 Dec 2013 (2013/12/26)
‘Whole document

PCT/IB2015/058524
C (Continnation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2011271008 A1 AN et al. 1-16
03 Nov 2011 (2011/11/03)
‘Whole document
A US 2013343182 A1 HASSAN et al. 1-16

Form PCT/ISA/210 (continuation of second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT
[nformation on patent family members

International application No.

PCT/IB2015/058524
Patent docug;g;cited search Publication date Patent family member(s) Publication Date
EP 1104141 A2 30 May 2001 EP 1104141 A2 30 May 2001
EP 1104141 A3 21 Jan 2004
US 2012005369 Al 05 Jan 2012 US 2012005369 Al 05 Jan 2012
US 8799504 B2 05 Aug 2014
US 2007014245 Al 18 Jan 2007 US 2007014245 Al 18 Jan 2007
US 7693138 B2 06 Apr 2010
CN 101253745 A 27 Aug 2008
CN 101253745 B 22 Jun 2011
EP 1917782 A2 07 May 2008
KR 20080042812 A 15 May 2008
KR 100973201 Bl 30 Jul 2010
US 2007076623 Al 05 Apr 2007
US 7684344 B2 23 Mar 2010
US 2008310420 Al 18 Dec 2008
US 8004459 B2 22 Nov 2011
US 2010174824 Al 08 Jul 2010
US 8274976 B2 25 Sep 2012
US 2010198984 Al 05 Aug 2010
US 8416768 B2 09 Apr 2013
US 2007014246 Al 18 Jan 2007
US 2007033301 Al 08 Feb 2007
WO 2007069095 A2 21 Jun 2007
WO 2007069095 A8 23 Aug 2007
WO 2007069095 A3 06 Dec 2007
EP 0912028 Bl 01 Mar 2006 EP 0912028 A2 28 Apr 1999
EP 0912028 A3 17 Dec 2003
EP 0912028 Bl 01 Mar 2006
CA 2249169 Al 02 Apr 1999

Form PCT/ISA/210 (patent family annex) (Jamary 2615)

INTERNATIONAL SEARCH REPORT
[nformation on patent family members

International application No.

PCT/IB2015/058524
Patent docug;g;tcned search Publication date Patent family member(s) Publication Date
DE 69833631 D1 27 Apr 2006
JP HI11234339 A 27 Aug 1999
US 6473425 Bl 29 Oct 2002
US 2005041688 Al 24 Feb 2005 US 2005041688 Al 24 Feb 2005
EP 1517515 A2 23 Mar 2005
EP 1517515 A3 15 Mar 2006
FR 2859059 Al 25 Feb 2005
US 2011271008 Al 03 Nov 2011 US 2011271008 Al 03 Nov 2011
US 2013343182 Al 26 Dec 2013 US 2013343182 Al 26 Dec 2013
US 8982847 B2 17 Mar 2015
US 2011019557 Al 27 Jan 2011
US 8509193 B2 13 Aug 2013
US 2015163153 Al 11 Jun 2015

Form PCT/ISA/210 (patent family annex) (Jamary 2615)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - wo-search-report
	Page 21 - wo-search-report
	Page 22 - wo-search-report
	Page 23 - wo-search-report

