0870482403 A2 |0 V0 000 OO 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T O O O 00O

International Bureau

(43) International Publication Date
24 April 2008 (24.04.2008)

(10) International Publication Number

WO 2008/048403 A2

(51) International Patent Classification:
HO4L 9/00 (2006.01) HO4L 9/32 (2006.01)
GOG6F 12/14 (2006.01) GOG6F 11/30 (2006.01)

(21) International Application Number:
PCT/US2007/019862

(22) International Filing Date:

12 September 2007 (12.09.2007)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/852,151 16 October 2006 (16.10.2006) US
11/586,446 24 October 2006 (24.10.2006) US
(71) Applicant (for all designated States except US):

BROADON COMMUNICATIONS CORP. [US/US]J;
1200 Villa Street, Suite 100, Mountain View, CA 94041
(US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PRINCEN, John
[AU/US]; 10439 Plum Tree Lane, Cupertino, CA 95014
(US). SRINIVASAN, Pramila [US/US]; 1853 Channing
Avenue, Palo Alto, CA 94303 (US). ANDERSON, Craig

(74)

(81)

(34)

[US/US]; 1092 Yorktown Drive, Sunnyvale, CA 94087
(US).

Agent: AHMANN, William, F.; Perkins Coie LLP, 101
Jefferson Drive, Menlo Park, CA 94025 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

(54) Title: SECURE DEVICE AUTHENTICATION SYSTEM AND METHOD

& (57) Abstract: A technique for security and authentication on block-based media includes involves the use of protected keys, pro-
viding authentication and encryption primitives. A system according to the technique may include a secure device having a security
kernel with protected keys. A disk drive security mechanism may support authentication of data, secrecy, and ticket validation using
the security kernel and, for example, a ticket services module (e.g., a shared service that may or may not be used by other storage

devices like flash).

WO 2008/048403 PCT/US2007/019862

SECURE DEVICE AUTHENTICATION SYSTEM AND METHOD

BACKGROUND

Authentication and other security issues are currently areas of extensive research and
development, both theoretical and practical. One field of endeavor is the authentication of data -
on a DVD or comparable technology, which may or may not include CDs and new DVD
technologies, but is typically applicable across DVD technologies due to the similarities between
DVD technologies. With DVDs, CDs, and other freely distributable media disks, the
authentication has to be particularly strong (e.g., use a cryptographic method).

Disk-based media are typically block-based devices. So the access time of block data
and the computation time of any cryptographic algorithm used should meet the specifications of
a system on which the disk-based media are used. Moreover, the contents could sometimes be
encrypted for secrecy. Other considerations for secure device secrecy and authenticity
techniques for disk-based media include that the technique should support a read-only medium,
should support mass production of disks (not requiring custom or unique data on each disk), and
the additional data stored on the disk for authentication should only impose a reasonable

overhead.

Some efforts to meet these requirements have been proposed, but, as is the case with
many solutions in secrecy and authentication techniques, there is room for improvement. For
example, one could attach a block signature based on public‘key cryptography (example, RSA
signature), but this is relatively slow since every block of data that is read would require an RSA
verification calculation. RSA is an algorithm for public-key encryption.’ It was the first
algorithm known to be suitable for signing as well as encryption. RSA is believed to be secure
given sufficiently long keys. Moreover, in addition to being relatively slow, the size of an RSA

signature for every block would impose a relatively high overhead.

As another example, one could attach a SHA hash (or equivalent) for every block
written in a custom protected area of disk, but this would require the manufacture of custom
disks. As another example, one could attach a secret-key based message authentication code
such as HMAC (or equivalent) for each block, but if the HMAC has to be the same for all disks,
this becomes a single secret key mechanism, which may not provide a desired level of security.

As another example, one could use a hierarchical signature approach that requires multiple seeks

1

WO 2008/048403 PCT/US2007/019862

of the block device for every block access, to read the members of the hierarchy, but this may

lead to increased latency.

The foregoing examples of the related art and limitations related therewith are intended
to be illustrative and not exclusive. Other limitations of the related art will become apparent to

those of skill in the art upon a reading of the specification and a study of the drawings.

SUMMARY

The following embodiments and aspects thereof are described and illustrated in
conjunction with systems, tools, and methods that are meant to be exemplary and illustrative, not
limiting in scope. In various embodiments, one or more of the above-described problems have

been reduced or eliminated, while other embodiments are directed to other improvements.

A technique for security and authentication on block-based media includes involves the
use of protected keys, providing authentication and encryption primitives. A system according
to the technique may include a secure device having a security kernel with protected keys. A
disk drive security mechanism may support authentication of data, secrecy, and ticket validation
using the security kernel and, for example, a ticket services module (e.g., a shared service that
may or may not be used by other storage devices like flash). Depending upon the
implementation, the security kernel, disk drive security mechanism, and ticket services module
may operate in three different execution spaces, and can be commonly used by various I/O and

storage devices including, by way of example but not limitation, an optical disk.

In a non-limiting embodiment, the block-based media is read-only, but the technique
may be applicable on write once, read many (WORM), writable, or other block-based media.
The technique may also be applicable to other storage media, other licensing mechanisms
leading to alternate methods to derive the encryption key, and/or other transport media (for

example, Internet packet-based download.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the inventions are illustrated in the figures. However, the

embodiments and figures are illustrative rather than limiting; they provide examples of the

invention.

FIG. 1 depicts an example of a binary tree structure associated with a hierarchical hashing

technique.

WO 2008/048403 PCT/US2007/019862

FIG. 2 depicts a non-binary tree structure associated with a hierarchical hashing technique.
FIG. 3 depicts an example of a 32 KB block.

FIG. 4 depicts a computer system suitable for implementation of the techniques described above
with reference to FIGS. 1-3.

FIG. 5 depicts an example of a secure system suitable for implementation of the techniques

described above with reference to FIGS. 1-3.

FIGS. 6A and 6B depict a flowchart of an example of a method for secure block-based media

access.
FIGS. 7A, 7B, and 7C depict a flowchart 700 of an alternative method for secure block-based

media access.

DETAILED DESCRIPTION

In the following description, several specific details are presented to provide a thorough

understanding of embodiments of the invention. One skilled in the relevant art will recognize,
however, that the invention can be practiced without one or more of the specific details, or in
combination with other components, etc. In other instances, well-known implementations or
operations are not shown or described in detail to avoid obscuring aspects of various

embodiments, of the invention.

FIG. 1 depicts an example of a binary tree structure 100 associated with a hierarchical
hashing technique. The notation is as used in U.S. Pat. No. 4,309,569 entitled “Method of
Providing Digital Signatures,” which was issued January 5, 1982 to Merkle, and which is
incorporated herein by reference. A set of data blocks {Y,...Yk...Y,}, 1 <=k <=n, are to be
authenticated. In the example of FIG. 1, n=8. A block Yy is authenticated using Yy, and a set of
values H(i, j, Y). A transmitted block Yy and a corresponding set of values H(j, j, Y) can be
independently used to establish the authenticity of Yy. H(, j, k) is defined as:

H(, i, Y) = F(Y3)

H(@, j, Y) =FH(3G, (i+-1)/2, Y), H((iH+1)/2,],),
where F(Y;) is a one-way function such as SHA-1. It follows that H(i, j, Y) is a one-way
function of Y;, Yi+1...Yj, and H(1, n, Y) is a one-way function of Y, through Y,. Thus, the

receiver can selectively authenticate Yy and a set of values of H.

WO 2008/048403 PCT/US2007/019862

In order to trust the root value, H(1,8,Y), of the binary tree structure 100, it should be
possible to obtain, for example, a public key-based cryptographic signature (e.g., a RSA
signature) against the value. The signature can be validated with appropriate certificate chain
validation up to a trusted root key. However, any applicable known or convenient security

mechanism could be used for the purpose of establishing trust.

In the example of FIG. 1, in order to authenticate Ys, it is necessary to have a trusted
H(1, 8, Y) and receive H(6, 6, Y), H(7, 8, Y), and H(1, 4, Y). H(5,6,Y) and H(5,8,Y) can be
derived. For illustrative purposes, these boxes are shaded in FIG. 1, the boxes representing the
derivative values have dashed lines, the H(5,5,Y) is the target of validation and is represented in
a block surrounded by a heavy line, and the root, H(1,8,Y) is surrounded by both dashed an
unbroken lines to represent that H(1,8,Y) is both received and derived. For authentication to
succeed, the received and derived values of H(1,8,Y) must match. Values associated with the

unshaded boxes need not be known to authenticate Ys.

In the example of FIG. 1, the target, H(5,5,Y), and a first one of the received values,
H(6,6,Y), together can be used to derive H(5,6,Y) using the definition of H(i,j,k) above. The
derived value, H(5,6,Y), and a second one of the received values, H(7,8,Y), can be used to derive
H(5,8,Y). The derived value, H(5,8,Y), and a third one of the received values, H(1,4,Y) can be
used to derive the root H(1,8,Y). H(1,8,Y) was also a fourth received value. If the derived and
received values of H(1,8,Y) match, then H(5,5,Y) is authenticated, assuming the fourth received

value is trusted.

Groups of H() values belonging to different levels of the binary tree structure 100 can
be denoted by their level in the hierarchy. For example:

H3 :=H(1,8,Y)

H2 := values from {H(1,4,Y), H(5,8,Y)}

HI := values from {H(1,2,Y), H(3,4,Y), H(5,6,Y), ...}

HO := values from {H(1,1,Y), H(2,2,Y), H(3,3,Y), ...}
Thus HO hashes refer to hashes of data blocks Y, Y2, etc., the leaf nodes of the binary tree
structure 100. The structure of a tree may be defined by the number of levels in the hierarchy

and the number of children for each node in the tree structure.

The technique described with reference to FIG. 1 can be extended to other non-binary
tree structures. The choice of structure may be governed by, by way of example but not

limitation. the resulting sizes of data block and authentication data required to authenticate a
4

WO 2008/048403 PCT/US2007/019862

block; the number of one-way hash function (e.g., SHA-1) calculations to satisfy the desired data
read rate from the device; the need to minimize seeks and have the authentication data available
as a side-effect of reading the data or in other ways minimize the read overhead for the

authentication data; the maximum size of data that has to be covered by the tree.

FIG. 2 depicts a non-binary tree structure 200 associated with a hierarchical hashing
technique. The structure of the tree chosen for the example of FIG. 2 is one that satisfies the
above requirements for a block-based media device, such as a DVD disk, and leads to a

placement of the HO, H1... values along with data blocks Y;, Y2 etc on the device.

In the example of FIG. 2, the HO hashes 202 are chosen as H(1,1,Y), H(2,2,Y) etc.,
where each HO hash covers one 1K data block. The data block size is chosen to be 1K bytes, but

could be of any convenient size.

In the example of FIG. 2, the H1 hashes of the non-binary tree structure 200 are chosen
as H(1,31,Y), H(32,62,Y) etc. That is, in the example of FIG. 2, each H1 covers 31 blocks of
data. In other implementations, rather than 31 blocks of data, any convenient nurﬁber of blocks
could be used instead. The 31 blocks of data conform to a data block illustrated by way of

example but not limitation in FIG. 3.

FIG. 3 depicts an example of a 32 KB block 300. The 32 KB block 300 includes a hash
block 302 and 31 1 KB data blocks 304. The hash block include hashes and padding, which are
described later. Depending upon the implementation, the 31 1 KB data blocks 304 could be
preceded by or interleaved with the hash block 302 and stored together in the 32 KB block 300
on, for example, a DVD disk.

Referring once again to the example of FIG. 2, the H2 hashes are chosen as follows:
H(1,31*8,Y), H(31*8+1, 31*2*8,Y) etc. That is, each H2 hash covers 31*8 blocks of data. This
translates to each H2 node having 8 children in H1. In this example, the multiplicand is an '8’,
however any convenient number could be chosen. Increasing the multiplicand has the effect of
decreasing the number of nodes in H3 (unless a counterbalancing action is taken), while

decreasing the multiplicand will have the opposite effect.

The H3 hashes are chosen as H(1,31*8*8, Y), H(31*8*8+1,31*2*8%8, Y) etc. That is,
each H3 hash covers 31*8*8 blocks of data. This translates to each H3 node having 8 children in
H2. In this example, the multiplicand is an '8', however any convenient number could be chosen.

In a non-limiting embodiment, the number of H3 hashes is chosen to cover the maximum size of

5.

WO 2008/048403 PCT/US2007/019862

the data covered by the authentication mechanism. For example, 4182 hashes may be used in a
9.4G implementation, while 768 hashes may be used in a 1.5 G implementation. In the example
of FIG. 2, the non-binary tree structure 200 includes n hashes, which is intended to be a
generalization for any size block-based media device with the parameters indicated for this

example.

A final H4 hash (the root of the tree hierarchy) is a signed value, and is signed by using
known or convenient public key signature methods in a secure server authorized to publish the
content data. The size of the content may or may not be arbitrary. In order to compute values of
the hierarchy the additional content blocks or hash values may be padded as random bytes. The
techniques described with reference to FIG. 2 can be used with DVD blocks, or extended to

other applications.

Referring once again to FIG. 3, the hash block 302, which is subdivided, in this
example, into 31 HO hashes and padding 310, 8 H1 hashes and padding 312, and 8 H2 hashes
and padding 314.

A header (not shown), such as a disk header, would typically be included at a first
accessed area of a block-based media device associated with the 32 KB block 300. In an
embodiment, the header is included once, and is applicable to all of the blocks on the block-
based media device. It may be noted that, although this is sufficient for most purposes, The
header may be prepended, appended, or otherwise included with the blocks of data. In a non-
limiting embodiment, the header includes the H4 hash and the relevant H3 hash (see, e.g., FIG.
2). In an alternative embodiment the relevant H3 could be derived from all 8 of the H2 hashes,
and would not have to be provided, though this may require accessing data from the whole

block-based device.

In a non-limiting embodiment, the header may include a signed data structure called a
"ticket" which includes at least the final hash (e.g., H4), a content identification, and an optional
key. The ticket may, for example, be signed by a content publishing server using a public key
signature method such as, by way of example but not limitation, RSA. In a non-limiting
embodiment, the ticket may include other rights management data granting rights to the content
and a signature by another licensing server. The header may further include ancillary data
structures to help validate the signatures, such as a chain of certificates, revocation lists, etc.
Rights management licenses may be used in conjunction with other rights management licenses

deliverad hv alternate means, to reduce or extend the rights applicable to the content.
6

WO 2008/048403 PCT/US2007/019862

Following the header, the hash blocks 310, 312, 314 and the 31 1KB data blocks 304
may be interleaved. In the example of FIG. 3, one block is 32 KB, and the first 1KB block is
reserved as the hash block 302. In an embodiment, the hash block 302 may include all
authentication data needed to validate the 31 1KB data blocks 304, assuming the header is
preloaded. The 31 1KB data blocks 304 may'include content. Any applicable known or
convenient hash algorithm may be used. For example, SHA1, where the hash size is 20 bytes,

would suffice.

In an embodiment, all data blocks are encrypted (e.g., using AES encryption) to ensure
copy protection of the content. In an alternative embodiment, some of the data blocks may not
be encrypted. In a non-limiting embodiment, data is decrypted starting from the hash block 302.
Any known or convenient technique may be used to decrypt the hashes. For example, a constant
known value may be chosen as an initialization vector to decrypt the beginning of the hash block
302, and a portion of the H2 hashes may be used as an initialization vector for the data block
decryption. The decryption key may be obtained as a byproduct of a ticket validation procedure
(see, e.g., FIG. 5).

FIG. 4 depicts a computer system 400 suitable for implementation of the techniques
described above with reference to FIGS. 1-3. The computer system 400 includes a computer
402, I/O devices 404, and a display device 406. The computer 402 includes a processor 408, a
communications interface 410, memory 412, display controller 414, non-volatile storage 416,
and I/O controller 418. The computer 402 may be coupled to or include the /O devices 404 and
display device 406.

The computer 402 interfaces to external systems through the communications interface
410, which may include a modem or network interface. The communications interface 410 can
be considered to be part of the computer system 400 or a part of the computer 402. The
communications interface 410 can be an analog modem, ISDN modem, cable modem, token ring
interface, satellite transmission interface (e.g. "direct PC"), or other interfaces for coupling a
computer system to other computer systems. Although conventional computers typically include
a communications interface of some type, it is possible to create a computer that does not include

one, thereby making the communications interface 410 optional in the strictest sense of the word.

The processor 408 may include, by way of example but not limitation, a conventional
microprocessor such as an Intel Pentium microprocessor or Motorola power PC microprocessor.

While the nrocessor 408 is a critical component of all conventional computers, any applicable
7

WO 2008/048403 PCT/US2007/019862

known or convenient processor could be used for the purposes of implementing the techniques
described herein. The memory 412 is coupled to the processor 408 by a bus 420. The memory
412, which may be referred to as "primary memory," can include Dynamic Random Access
Memory (DRAM) and can also include Static RAM (SRAM). The bus 220 couples the
processor 408 to the memory 412, and also to the non-volatile storage 416, to the display
controller 414, and to the I/O controller 418.

The /O devices 404 can include a keyboard, disk drives, pﬁntérs, a scanner, and other
input and output devices, including a mouse or other pointing device. For illustrative purposes,
at least one of the 1/0O devices is assumed to be a block-based media device, such as a DVD
player. The display controller 414 may control, in a known or convenient manner, a display on
the display device 406, which can be, for example, a cathode ray tube (CRT) or liquid crystal
display (LCD).

The display controller 414 and I/O controller 418 may include device drivers. A device
driver is a specific type of computer sofiware developed to allow interaction with hardware
devices. Typically this constitutes an interface for communicating with the device, through a bus
or communications subsystem that the hardware is connected to, providing commands to and/or
receiving data from the device, and on the other end, the requisite interfaces to the OS and

software applications.

The device driver may include a hardware-dependent computer program that is also OS-
specific. The computer program enables another program, typically an OS or applications
software package or computer program running under the OS kernel, to interact transparently
with a hardware device, and usually provides the requisite interrupt handling necessary for any

necessary asynchronous time-dependent hardware interfacing needs.

The non-volatile storage 416, which may be referred to as "secondary memory," is often
a magnetic hard disk, an optical disk, or another form of storage for large amounts of data. Some
of this data is often written, by a direct memory access process, into memory 412 during
execution of software in the computer 402. The non-volatile storage 416 may include a block-
based media device. The terms "machine-readable medium" or "computer-readable medium"
include any known or convenient storage device that is accessible by the processor 408 and also

encompasses a carrier wave that encodes a data signal.

WO 2008/048403 PCT/US2007/019862

The computer system 400 is one example of many possible computer systems which
have different architectures. For example, personal computers based on an Intel microprocessor
often have multiple buses, one of which can be an I/O bus for the peripherals and one that
directly connects the processor 408 and the memory 412 (often referred to as a memory bus).
The buses are connected together through bridge components that perform ariy necessary

translation due to differing bus protocols.

Network computers are another type of computer system that can be used in
conjunction with the teachings provided herein. Network computers do not usually include a
hard disk or other mass storage, and the executable programs are loaded from a network
connection into the memory 412 for execution by the processor 408. A Web TV system, which
is known in the art, is also considered to be a computer system, but it may lack some of the
features shown in FIG. 4, such as certain input or output devices. A typical computer system
will usually include at least a processor, memory, and a bus coupling the memory to the

processor.

The computer system 400 may be controlled by an operating system (OS). AnOSisa
software program—used on most, but not all, computer systems—that manages the hardware
and software resources of a compﬁter. Typically, the OS performs basic tasks such as
controlling and allocating memory, prioritizing system requests, controlling input and output
devices, facilitating networking, and managing files. Examples of operating systems for
personal computers include Microsoft Windows®, Linux, and Mac OS®. Delineating between
the OS and application software is sometimes rather difficult. Fortunately, delineation is not
necessary to understand the techniques described herein, since any reasonable delineation should

suffice.

The lowest level of an OS may be its kernel. The kernel is typically the first layer of
software loaded into memory when a system boots or starts up. The kernel provides access to

various common core services to other system and application programs.

As used herein, algorithmic descriptions and symbolic representations of aperations on
data bits within a computer memory are believed to most effectively convey the techniques to
others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent
sequence of operations leading to a desired result. The operations are those requiring physical
manipulations of physical quantities. Usually, though not necessarily, these quantities take the

form of electrical or magnetic signals capable of being stored, transferred, combined, compared,
9

WO 2008/048403 PCT/US2007/019862

and otherwise manipulated. It has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values, elements, symbols, characters, terms,

numbers, or the like.

It should be borne in mind, however, that all of these and similar terms are to be
associated with the appropriate physical quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as apparent from the following discussion,
it is appreciated that throughout the description, discussions utilizing terms such as "processing"
or "computing" or "calculating” or "determining" or "displaying" or the like, refer to the action
and processes of a computer that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s registers and memories into other data
similarly represented as physical quantities within the computer system memories or registers or

other such information storage, transmission or display devices.

An apparatus for performing techniques described herein may be specially constructed
for the required purposes, or it may comprise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer. Such a computer program may be
stored in a computer readable storage medium, such as, by way of example but not limitation,
read-only memories (ROMs), RAMs, EPROMs, EEPROMs, magnetic or optical cards, any type
of disk including floppy disks, optical disks, CD-ROMs, DVDs, and magnetic-optical disks, or

any known or convenient type of media suitable for storing electronic instructions.

The algorithms and displays presented herein are not inherently related to any particular
computer architecture. The techniques may be implemented using any known or convenient
programming language, whether high level (e.g., C/C++) or low level (e.g., assembly language),
and whether interpreted (e.g., Perl), compiled (e.g., C/C++), or Just-In-Time (JIT) compiled from
bytecode (e.g., Java). Any known or convenient computer, regardless of architecture, should be
capable of executing machine code compiled or otherwise assembled from any language into

machine code that is compatible with the computer's architecture.

FIG. 5 depicts an example of a secure system 500 suitable for implementation of the
techniques described above with reference to FIGS. 1-3. A typical secure system 500 may
include a game console, media player, an embedded secure device, a "conventional" PC with a

secure processor, or some other computer system that includes a secure processor.

10

WO 2008/048403 PCT/US2007/019862

In the example of FIG. 5, the secure system 500 includes a secure processor 502, an OS
504, a block-based media driver 506, a block-based media device 508, protected memory 510,
and ticket services 512. In the example of FIG. 5, the OS 504 includes a security kernel 514,
which in turn includes a key store 516, an encryption/decryption engine 517, and a security API
518. It should be noted that one or more of the described components, or portions thereof, may

reside in the protected memory 510, or in unprotected memory (not shown).

It should further be noted that the security kernel 514 is depicted as residing inside the
OS 504 by convention only. It may or may not actually be part of the OS 504, and could exist
outside of an OS or on a system that does not include an OS. For the purpeses of illustrative
simplicity, it is assumed that the OS 504 is capable of authentication. In an embodiment, the
block-based media driver 506 and/or the ticket services 512 may also be part of the OS 504.
This may be desirable because loading the block-based media driver 506 and the ticket services
512 with authentication can improve security. Thus, in such an embodiment, the OS 504 is
loaded with authentication and includes the block-based media driver 506 and the ticket services
512.

For illustrative simplicity, protected memory is represented as a single memory.
However protected memory may include protected primary memory, protected secondary
memory, and/or secret memory. It is assumed that known or convenient mechanisms are in
place to ensure that memory is protected. The interplay between primary and secondary memory
and/or volatile and non-volatile storage is known so a distinction between the various types of

memory and storage is not drawn with reference to FIG. 5.

The ticket services 512 may be thought of as, for example, "digital license validation
services" and, in a non-limiting embodiment, may include known or convenient procedures
associated with license validation. For example, the ticket services 512 may include procedures
for validating digital licénses, PKI validation procedures, etc. In the example of FIG. 5, the
ticket services 512 can validate a ticket on the block-based media device 508. In operation, the
block-based media driver 506 obtains the ticket from the block-based media device 508. The
block-based media driver 506 then provides the ticket to the ticket services 512, which proceeds
to validate the ticket. If the ticket is valid, the block-based media driver 506 is permitted to
decrypt blocks associated with the ticket. A

In an embodiment, the security kernel 514 may be loaded at start-up. In another

embodiment. a portion of the security kernel may be loaded at start-up, and the remainder loaded
11

WO 2008/048403 PCT/US2007/019862

later. An example of this technique is described in App. No. 10/360,827 entitled "Secure and
Backward-Compatible Processor and Secure Software Execution Thereon," which was filed on
February 7, 2003, by Srinivasan et al., and which is incorporated by reference. Any known or

convenient technique may be used to load the security kernel 514 in a secure manner.

The key store 516 is a set of storage locations for keys. The key store 516 may be
thought of as an array of keys, though the data structure used to store the keys is not critical.
Any applicable known or convenient structure may be used to store the keys. In a non-limiting
embodiment, the key store 516 is initialized with static keys, but variable keys are not initialized
(or are initialized to a value that is not secure). For example, some of the key store locations are
pre-filled with trusted values (e.g., a trusted root key) as part of the authenticated loading of the

security kernel 514.

The encryption/decryption engine 517 is, in an embodiment, capable of both encryption
and decryption. For example, in operation, an application may request of the security API 518 a
key handle that the application can use for encryption. The encryption/decryption engine 517
may be used to encrypt data using the key handle. Advantageously, although the security API

518 provides the key handle in the clear, the key itself never leaves the security kernel 514,

The security API 518 is capable of performing operations using the keys in the key
store 516 without bringing the keys out into the clear (i.e., the keys do not]eavé the security
kernel 514 or the keys leave the security kernel 514 only when encrypted). The security API 518
. may include services to create, populate and use keys (and potentially other security material) in
the key store 516. In an embodiment, the security API 518 also provides access to internal
secrets and non-volatile data, including secret keys and device private key. Depending upon the
implementation, the security API 518 may support AES and SHA operations using hardware

acceleration.

In the example of FIG. 5, the block-based media driver 506 may be configured to
perform the following security operations while reading from the block-based media device 508:

1) Decrypt the media device 508 using a secret key, and

2) Authenticate content on the media device 508 using authentication data on the media

device 508. (Read fails if the authentication fails.)

In the example of FIG. 5, to perform these security operations, the block-based media

driver 506 may make use of other secure services in the system 500, such as the ticket services

12

WO 2008/048403 PCT/US2007/019862

512 and the security API 518. In an embodiment, each of these modules executes in a separate
execution space for system security. In order to validate data blocks, the block-based media
driver 506 reads a data block header, and uses the ticket services 512 to validate the ticket using
data in the header. To support the decryption of the blocks, the ticket may include an gncrypted'
key. The ticket services 512 decrypts the key using services in the security kernel 514 (e.g., the
encryption/decryption engine 517).

In an embodiment, the encryption/decryption engine 517 uses secret common keys from
the key store 518 to perform this decryption. In another embodiment, the ticket services 512
could use a device personalized ticket obtained from flash or network (not shown), validate some
rights to content, and then return the key. In any case, this process returns to the block-based
media driver 506 a reference to a key for use in decrypting blocks. This key reference is used by
the block-based media driver 506 to make subsequent calls to the security API 516 to decrypt
blocks associated with the key.

After decryption, the block-based me;iia driver 506 makes calls to the security API1 516
(or some other interface to a hash computation engine) to validate a hierarchical hash tree
associated with the ticket. (See, e.g., FIG. 3.) The security API 516 validates the root hash
against the one in the ticket. Assuming validation is successful, the content associated with the
ticket is made available for use. In a non-limiting embodiment, the order of the decryption and

authentication is immaterial and can be interchanged.

An example of data flow in the system 500 is provided for illustrative purposes as
arrows 520-536. Receiving the block header at the block-based media driver 506 is represented
by a header access arrow 520 from the block-based media device 508 to the block-based media
driver 506. The arrow 520 is bi-directional because the data block header can presumably be

accessed and read.

Sending data from the data block header, including a ticket, to the ticket services 512 is
represented by an authentication data arrow 522. The ticket may include an encrypted key.
Sending a request to the security API 516 to decrypt the key is represented as a key decryption
request arrow 524. Returning a reference to the decrypted key, now stored in the key store 518,
is represented by a reference to key arrow 526. After a successful validation of the ticket, the
ticket services will send ticket validation data to the block-based media driver 506, including a
reference to a key that the driver can use to decrypt blocks. The data sent from the ticket

services 512 fo the block-based media driver 506 is represented as a ticket validation arrow 528.
13

WO 2008/048403 PCT/US2007/019862

A data block access arrow 530 represents reading blocks from the block-based media
device 508 by the block-based media driver 506. The data access may or may not occur
concurrently with the receipt of the header (520). The accessed blocks are decrypted using the
ticket validation data (528) and a block decryption request arrow 532 represents the request. A

hash tree validation arrow 534 represents a subsequent validation of the content of a block.

In an embodiment, one level of hashes (see, e.g., FIG. 2, H3) could be provided in the
header. In such an embodiment, the first hash tree validation sequence may involve calculating a
hash, and comparing the hash to the relevant value provided in the header. In another
embodiment, vallues of portions of a hierarchical hash tree could be hashed for future reference,

which may save some hash computation time.

FIGS. 6A and 6B depict a flowchart 600 of an example of a method for secure block-
based media access. This method and other methods are depicted as serially arranged modules.
However, modules of the methods may be reordered, or arranged for parallel execution as
appropriate. In the example of FIG. 6A, the flowchart 600 begins at module 602 where a block-
based media header is read. In the example of FIG. 6A; the flowchart 600 continues to module

604 where a ticket is validated and a reference to a decryption key is obtained.

In the example of FIG. 6A, the flowchart 600 continues to decision point 606 where it is
determined whether the ticket is valid. If it is determined that the ticket is not valid (606-N), the
process aborts and the flowchart 600 ends. If, on the other hand, it is determined that the ticket
is valid (606-Y), the flowchart 600 continues to module 608 where a hash of H3 hashes are
compared with the root hash value in the ticket. The comparison may be performed, for

example, by security services.

In the example of FIG. 6A, the flowchart 600 continues to decision point 610 where it is
determined whether the ticket is valid. If the comparison (608) is a match, it is assumed the
ticket is valid. Ifit is determined that the ticket is not valid (610-N), the process aborts and the
flowchart 600 ends. If, on the other hand, it is determined that the ticket is valid (610-Y), the
flowchart 600 continues to module 612 where an H3 hash value of the set of H3 hashes is stored;
and then a read request is awaited. The H3 hash value may be stored, for example, in secure
DRAM.

In the example of FIG. 6A, the flowchart 600 contiriues to module 614 where a

reference to a key to decrypt content is obtained. The reference to the key to decrypt content

14

WO 2008/048403 PCT/US2007/019862

may be obtained, for example, by making a call to ticket services (with header information) to
obtain the reference. In the example of FIG. 6A, the flowchart 600 continues to module 616
where a hash sub-block and a data sub-block of a read request are located. In the example of
FIG. 6A, the flowchart 600 continues to module 618 where the hash sub-block and the data sub-
block are decrypted. In the example of FIG. 6B, the flowchart 600 continues to module 620

where a hash of the data sub-block is calculated.

In the example of FIG. 6B, the flowchart 600 continues to module 622 where the hash
of the data sub-block is compared against a corresponding HO hash value in the set of HO hashes.
(See, e.g., FIG. 3.) In the example of FIG. 6B, the flowchart 600 continues to decision point 624
where it is determined whether the comparison yields a valid result. If it is determined that the
result is not valid (624-N), then the flowchart 600 aborts the read request from the block-based
media device. If, on the other hand, it is determined that the result is valid (624-Y), then the
flowchart 600 continues to module 626 where a hash of the set of HO hashes, H1', including the

HO hash value, is calculated.

In the example of FIG. 6B, the flowchart 600 continues to module 628 where H1'is
compared against a corresponding H1 hash value in the set of H1 hashes. (See, e.g., FIG.3.) In
the example of FIG. 6B, the flowchart 600 continues to decision point 630 where it is determined
whether the comparison yields a valid result. If it is determined that the result is not valid (630-
N), then the flowchart 600 aborts the read request from the block-based media device. If, on the
other hand, it is determined that the result is valid (630-Y), then the flowchart 600 continues to
module 632 where a hash of the set of H1 hashes, H2', including the H1 hash value, is calculated.

In the example of FIG. 6B, the flowchart 600 continues to module 634 where H2' is
compared against a corresponding H2 hash value in the set of H2 hashes. (See, e.g., FIG.3.) In
the example of FIG. 6B, the flowchart 600 continues to decision point 636 where it is determined
whether the comparison yields a valid result. If it is determined that the result is not valid (636-
N), then the flowchart 600 aborts the read request from the block-based media device. If, on the
other hand, it is determined that the result is valid (636-Y), then the flowchart 600 continues to
module 638 where a hash of the set of H2 hashes, H3', including the H2 hash value, is calculated.

In the example of FIG. 6B, the flowchart 600 continues to module 640 where H3' is
compared against the corresponding stored H3 hash value (612). (Seg, e.g., FIG. 3.) Inthe
example of FIG. 6B, the flowchart 600 continues to decision point 642 where it is determined

whether the comparison yields a valid result. Ifit is determined that the result is not valid (642-
15

WO 2008/048403 PCT/US2007/019862

N), then the flowchart 600 aborts the read request from the block-based media device. If, on the
other hand, it is determined that the result is valid (642-Y), then the flowchart 600 continues to
module 644 where the block read request is fulfilled.

FIGS. 7A, 7B, and 7C depict a flowchart 700 of an alternative method for secure block-
based media access. In the example of FIG. 7A, the flowchart 700 starts at module 702 with
accessing a header of a block-based media device. The flowchart 700 continues to module 704
with authenticating a data structure included in the header. The data structure may be, by way of
example but not limitation, a ticket, an eTicket, or practically any other data structure that works

for the intended purposes described herein.

In the example of FIG. 7A, the flowchart 700 continues to module 706 with securely
storing a set of hash values included in the header. These hash values may be, by way of
example but not limitation, similar to the H3 hashes of FIG. 2. Any number of hash values may
be provided in the header (e.g., HO, H1, H2, H3, H4). However, it may be desirable to include
only those headers that are not provided in a hash sub-block (see, e.g., FIG. 3).

In the example of FIG. 7A, the flowchart 700 continues to module 708 with caching a
hierarchical hash tree for future reference. In at least one embodiment, caching the hierarchical
hash tree can result in some improved speed during the data block verification process.
However, there may be reasons to proceed without caching the hierarchical hash tree, and this

should not detract from the effectiveness of the technique.

In the example of FIG. 7A, the flowchart 700 continues to module 710 with obtaining
from the data structure a first root hash of the hierarchical hash tree. Since the data structure is

authenticated (704) independently of the set of hash values, this can result in additional security.

In the example of FIG. 7A, the flowchart 700 continues to module 712 with computing
a second root hash from the set of hash values. The hash values may or may not be secure, but
they are presumably from the block-based media device, since the header is accessed from the

block-based media device.

In the example of FIG. 7A, the flowchart 700 continues to module 714 with comparing
the first root hash to the second root hash. Here, the first root hash, which was included in the
data structure, has been authenticated (704), and the second root hash is derived from the set of

hashes provided in the header of the block-based media device.

16

WO 2008/048403 PCT/US2007/019862

In the example of FIG. 7A, the ﬂdwc_:hart 700 continues to decision point 716 where it is
determined whether the first root hash and the second root hash match. If it is determined that
the first root hash and the second root hash do not match (716-N), then the header is rejected
(and the flowchart 700 ends). If, on the other hand, it is determined that the first root hash and
the second root hash match (716-Y), then the flowchart 700 continues to an optional module 718

with validating a rights management ticket from a source other than the header.

In the example of FIG. 7B, the module 718 is optional because it may not be possible
for a particular implementation, or because this extra level of security may be deemed
unnecessary. If the rights management ticket from a source other than the header is used, then
the method for using the rights management ticket is similar to that described with respect to
modules 704, 710, 714. For illustrative purposes, it is assumed that if this optional module is

used, the validation is successful (so the header is not rejected).

In the example of FIG. 7B, the flowchart 700 continues to module 720 with obtaining
an encrypted key from the data structure. The key is particularly secure because the data
structure is first authenticated (704), and the key is encrypted when it is extracted from the data

structure.

In the example of FIG. 7B, the flowchart 700 continues to module 722 with securely
decrypting the encrypted key. By "securely decrypting" it is assumed that the key is decrypted in
a secure kernel. Any level of security that can match that of a secure kernel would be
appropriate. However, many such security mechanisms, if equivalent to the security afforded by
a secure kernel, may simply be secure kernels that are renamed as something else. Nevertheless,
if a sufficiently secure mechanism is known or convenient, the techniques described herein may

be applicable.

In the example of FIG. 7B, the flowchart 700 continues to module 724 with securely
storing the key. By "securely storing” it is assumed that the key is stored in a secure kernel, or in
a memory associated with a secure kernel that is accessed by a secure processor. Again, any

level of security that can match that of a secure kernel would be appropriate.

In the example of FIG. 7B, the flowchart 700 continues to module 726 with providing a
reference to the key in the clear. By way of example but not limitation, a block-based media

driver may receive the reference to the key. The block-based media driver may then send the

17

WO 2008/048403 PCT/US2007/019862

reference to the key back to, for example, a secure kernel that can use the reference to access the

key. In this way, the key can remain in the secure kernel, and only the reference is in the clear.

In the example of FIG. 7B, the flowchart 700 continues to module 728 with providing
the reference to the key to a secure decryption engine. By "secure decryption engine" it is
assumed the decryption engine is a part of a secure kernel, or the equivalent. This prevents the

key from ever being used in the clear.

In the example of FIG. 7B, the flowchart 700 continues to module 730 with decrypting
a data block. The data block is securely decrypted. The flowchart 700 then optionally continues
to module 732 where a sub-block of the data block is decrypted. This is optional because this
level of security may or may not be redundant and could unnecessarily (probably slightly) reduce

performance of the system.

In the example of FIG. 7C, the flowchart 700 continues to module 734 with loading
authentication data from the sub-block, and to module 736 with identifying, in the authentication
data, a first set of hash values associated with a first level of the hierarchical hash tree. The first
level may correspond to HO of FIG. 2. The number of levels is an implementation detail that is

not a part of this example method.

In the example of FIG. 7C, the flowchart 700 continues to module 738 with computing
a cryptographic hash of the data block to determine a first hash value and to module 740 with

comparing the first hash value to a corresponding value in the first set of hash values.

In the example of FIG. 7C, the flowchart 700 continues to decision point 742 where it is
determined whether the first hash value and the corresponding value in the first set of hash
values matches. If it is determined that the first hash value and the corresponding value in the
first set of hash values does not match (742-N), then the data block read request is rejected (and
the flowchart 700 ends). If, on the other hand, it is determined that the first hash value and the
corresponding value in the first set of hash values matches (742-Y), then the flowchart 700
continues to module 744 with computing and comparing hashes as appropriate. The number of
iterations of computations and comparisons will likely depend upon the number of levels of the

hierarchical hash tree, which varies depending upon the implementation.

In the example of FIG. 7C, the flowchart 700 continues to decision point 746 where it is
determined whether all of the hash comparisons result in a match. If it is determined that not all

of the hash comparisons result in a match (746-N), then the data block read request is rejected

18

WO 2008/048403 PCT/US2007/019862

(and the flowchart 700 ends). If, on the other hand, it is determined that all of the hash
comparisons result in a match (746-Y), then the data block is returned (and the flowchart 700
ends). Presumably, some of the modules would not have to be repeated for subsequent data
block accesses, as should be apparent to those of skill in the relevant art with this reference

before them.

As used herein, the term "content" is intended to broadly include any data that can be

stored in memory.

As used herein, the term "embodiment" means an embodiment that serves to illustrate

by way of example but not limitation.

It will be appreciated to those skilled in the art that the preceding examples and
embodiments are exemplary and not limiting to the scope of the present invention. It is intended
that all permutations, enhancements, equivalents, and improvements thereto that are apparent to
those skilled in the art upon a reading of the specification and a study of the drawings are
included within the true spirit and scope of the present invention. It is therefore intended that the
following appended claims include all such modifications, permutations and equivalents as fall

within the true spirit and scope of the present invention.

19

WO 2008/048403 PCT/US2007/019862

CLAIMS

1. A method comprising:
accessing a header including a data structure and a set of hash values;
obtaining from the data structure a first root hash of a hierarchical hash tree;
computing a second root hash from the set of hash values;
comparing the first root hash to the second root hash;
if the first root hash and the second root has match,
obtaining an encrypted key from the data structure;
securely decrypting the encrypted key;
securely storing the key such that the key is not passed in the clear;
providing a reference to the key;
decrypting a data block with the reference to the key;
loading authentication data from a sub-block associated with the data block;
identifying, in the authentication data, a first set of hash values associated with a
first level of the hierarchical hash tree;
computing a cryptographic hash of the data block to determine a first hash value;
comparing the first hash value to a corresponding value in the first set of hash
values;
rejecting a block data request if the first hash value and the corresponding value

in the first set of hash values do not match.

2. The method of claim 1, wherein the data structure is public key signed.
3. The method of claim 1, further comprising authenticating the data structure.
4. The method of claim 1, further comprising securely storing the set of hash values

included in the header.
5. The method of claim 1, further comprising caching the hierarchical hash tree.

6. The method of claim 1, further comprising rejecting the header if the first root hash and

the second root hash do not match.

7. The method of claim 1, further comprising validating a rights management ticket from a

source other than the header.
20

WO 2008/048403 PCT/US2007/019862

8. The method of claim 1, wherein the reference to the key is provided in the clear.

9. The method of claim 1, wherein decrypting a data block with the reference to the key
further comprises:
providing the reference to the key to a secure decryption engine;

decrypting the data block such that the key is not passed in the clear.
10. The method of claim 1, further comprising decrypting at least a portion of the sub-block.

11. The method of claim 1, further comprising, in each hash block:
inserting a calculated hash in an appropriate location;

computing the hash of the hash block.

12. The method of claim 1, if the first hash value matches the corresponding value in the first
set of hash values, further comprising:

computing a second hash value corresponding to the first set of hash values;

identifying, in the authentication data, a second $et of hash values associated with a
second level of the hierarchical hash tree;

comparing the second hash value to a corresponding value in the second set of hash-
values;

rejecting the block data request if the second hash value and the corresponding value in

the second set of hash values do not match.

13. The method of claim 12, if the second hash value matches the corresponding value in the
second set of hash values, further comprising:

computing a third hash value corresponding to the second set of hash values;

identifying, in the authentication data, a third set of hash values associated with a third
level of the hierarchical hash tree;

comparing the third hash value to a corresponding value in the third set of hash values;

rejecting the block data request if the third hash value and the corresponding value in the

third set of hash values do not match.

21

WO 2008/048403 PCT/US2007/019862

14. The method of claim 13, if the third hash value matches the corresponding value in the
third set of hash values, wherein the set of hash values of the header are a fourth set of hash
values, and wherein the fourth set of hash values are associated with a fourth level of the
hierarchical hash tree, further comprising:

computing a fourth hash value corresponding to the third set of hash values;

providing a fourth set of hash values associated with a fourth level of the hierarchical
hash tree;

comparing the fourth hash value to a corresponding value in the fourth set of hash values;

rejecting the block data request if the fourth hash value and the corresponding value in
the fourth set of hash values do not match;

returning the data block if the fourth hash value and the corresponding value in the fourth

set of hash values match.

15. A system comprising:

a block-based media driver coupled to a security API, wherein, in operation, the block-
based media driver accesses a header associated with a block-based media device and extracts
authentication data from the header;

ticket services coupled to the block-based media driver and the security API, wherein, in
operation, the ticket services receive the authentication data from the block-based media driver
and send a key decryption request to the security API;

a security kernel including the security API, an encryption/decryption engine, and a key
store accessible to the security API, wherein, in operation; the encryption/decryption engine
decrypts the key, the key is stored in the key store, and the security API returns a reference to the
key to the ticket services;

wherein, in operation, the ticket services validates the authentication data and returns the
reference to the key to the block-based media driver;

wherein, in operation, the block-based media driver accesses data blocks of the block-
based media device, sends a block decryption request to the security API, and the security kernel

decrypts the blocks and validates a hierarchical hash tree associated with the data blocks.

16. The system of claim 15, further comprising the block-based media device, wherein the
header associated with the block-based media device includes a root hash value and a plurality of

root-child hash values.

22

WO 2008/048403 PCT/US2007/019862

17. The system of claim 15, further comprising the block-based media device, wherein the

data blocks each include a hash sub-block and a plurality of content data blocks.

18. A system having a means for secure content delivery with block-based media,
comprising:

a secure key store means;

a means for accessing an encrypted key from a header of a block-based media device;

a means for securely decrypting the encrypted key;

a means for securely storing the key in the key store;

a means for referencing the key to securely decrypt data blocks of the block-based media
device;

a means for providing hash values in association with the block-based media device and

each data block of the block-based media device.

19. The system of claim 18, further comprising a means for aborting block-based media

device access if hash values in the header are rejected.

20. The system of claim 18, further comprising a means for aborting data block access if

hash values in the data block are rejected.

23

WO 2008/048403 PCT/US2007/019862

21. A method comprising:
accessing a header including a data structure and a set of hash values;
obtaining from the data structure a first root hash of a hierarchical hash tree;
computing a second root hash from the set of hash values;
comparing the first root hash to the second root hash;
if the first root hash and the second root has match,
obtaining an encrypted key from the data structure;
securely decrypting the encrypted key;
securely storing the key such that the key is not passed in the clear;
providing a reference to the key;
loading authentication data from a sub-block associated with an encrypted data
block;
identifying, in the authentication data, a first set of hash values associated with a
first level of the hierarchical hash tree;
computing a cryptographic hash of the encrypted data block to determine a first
hash value;
comparing the first hash value to a corresponding value in the first set of hash
values;
rejecting a block data request if the first hash value and the corresponding value
in the first set of hash values do not match;

decrypting the encrypted data block with the reference to the key.

24

WO 2008/048403

1/10

PCT/US2007/019862

H(3.4,Y)

H(3,3,Y)

H(1,2,Y)

H(2,2,Y)

H(1,1,Y)

FIG. 1

PCT/US2007/019862

WO 2008/048403

2/10

"
u

{
]

¢ 9ld

a{

(A'U'UH (A'0g-u'0g-WH (A'LE'LOH (A'2DH (A'LIH
NI ity (K8re8ioH (RZgZOH || (W1e'IH
(AU 2pz-UH Awmmmﬁvn NI (A'9v'6vOH | | (A'abeu

(A'u'egBL-UH - (A'896€'5861)H (A'y861"'LH
(KU'H

€ 9ld

PCT/US2007/019862

3/10

i2% [ATS
(salhg (saikq oIt
z6)) Buipped Z61) Buipped (se3Aq o19) Buipped pue ssysey °H Lg
pue seysey ¢y g | puesaysey 'y g :
~ - - /
$0E : 20¢
(a9 1€) syoojg elep @M | L€ (88X 1) ¥ooig yseH

WO 2008/048403

WO 2008/048403

4/10

NV Storage
416

PCT/US2007/019862

ontrol
418

1/O Devices
404

Display Device

406

FIG. 4

PCT/US2007/019862

WO 2008/048403

5/10

41
SSOIAIBS J19Y0LL

G Ol

905
JoALQ eIPSIN paseg-yoolg

ces

805
20IA8(BIPSIN
paseg-3o0ig

1 !lllll
| |
" Idv funoss _
| — |
N 775 |
| |si01S Aoy auibug uondAaquondiioug ,
| _
lm —— — _ e Jtllllillllsllll)lL

01
Aowspy

pojos0ld

205
10SS3001d

2inoeg

»— 005

WO 2008/048403
6/10

PCT/US2007/019862

602
/

]
@
3
v

Read block-based media header

604
v -

Validate ticket and obtain reference to a

decryption key

i /- 608

| Compare hash of H3 hashes with root
hash value in ticket

} /-612

Store H3 hash value of set of H3
hashes; wait for read request

614
v /‘

Obtain reference to a key to decrypt
content

616
¢ -

Locate hash sub-block and data sub-

block of read request

618
v f

Decrypt hash sub-block and data sub-
block

FIG. 6A

WO 2008/048403 PCT/US2007/019862
7/10

/ 620

Calculate hash of data sub-block

622
i %

Compare against corresponding HO.
hash value in the set of HO hashes

% /- 626

Calculate hash of the set of HO hashes,
H1', including the HO hash value

] /- 628

Compare H1' against corresponding H1
hash value in the set of H1 Hashes

! %

Calculate hash of the set of H1 hashes,
H2', including the H1 hash value

! /- 634

Compare H2' against corresponding H2
hash value in the set of H2 Hashes

& /- 638

Calculate hash of the set of H2 hashes,
H3', including the H2 hash value

640
v -

Compare H3' against corresponding
stored H3 hash value

gl ~ 644

End S Fulfill block read request

FIG. 6B

WO 2008/048403 PCT/US2007/019862
8/10

(Start)
‘ . e 102
v _ 4

Accessing a header of a block-based media device

L (- 704

Authenticating a data structure included in the header

706
v /

Securely storing a set of hash values included in the header

708
A /

Caching a hierarchical hash tree for future reference
(optional)

710
v -

Obtaining from the data structure a first root hash of the hierarchical hash tree

712
¥ -

Computing a second root hash from the set of hash values

714
v [

Comparing the first root hash to the second root hash

716

N
(Reject Header Match? Y @

FIG. TA

)4

WO 2008/048403

700 —g

9/10

PCT/US2007/019862

718
/_

®__.

(optional)

| Validating a rights management ticket from a source other than the header

<

‘ 720
K.

—t

Obtaining an encrypted key from the data structure

\ 4

722
/_

Securely decrypting the encrypted key

4

724
/—

Securely storing the key

\4

726
f

Providing a reference to the key in the clear

Y

728
.

Providing the reference to the key to a secure decryption engine

4

730
/-

Decrypting a data block

v

/- 732

Decrypting a sub-block of the data block
(optional)

FIG. 7B

WO 2008/048403 PCT/US2007/019862
10/10

732
/-

-Loading authentication data from the sub-block

734
\ 4 {-

ldentifying, in the authentication data, a first set of hash values associated with a
first level of the hierarchical hash tree

736
‘ -

Computing a cryptographic hash of the data block to determine a first hash
value

738
: -

Comparing the first hash value to a corresponding value in the first set of hash
values

740

Match?

Y

742
/.

Computing and comparing hashes as appropriate

A4 Y

—(Reject Data Request) (Return Data Block —>

FIG. 7C

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings

