wo 2010/043025 A1 IO 0 OO O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

oo AT
1 rld Intellectual Property Organization /) -sady
(19) World Intellectual Property Organization /g5 1IN 0T 0000 A0 OO A0 OO 1
International Bureau S,/)
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10
22 April 2010 (22.04.2010) PCT WO 2010/043025 Al

(51) International Patent Classification: (74) Agent: RIDOUT & MAYBEE LLP; 225 King Street
HO4L 12/16 (2006.01) GO6F 9/44 (2006.01) West, 10th Floor, Toronto, Ontario M5V 3M2 (CA).
Ho4W 4/18 (2009.01) GOGE 17/00 (2006.01) (81) Designated States (unless otherwise indicated, for every

(21) International Application Number: kind of national protection available): AE, AG, AL, AM,

PCT/CA2009/000906 AOQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

. e CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

(22) International Filing Date: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
29 June 2009 (29.06.2009) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

(25) Filing Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
Lo . ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

(26) Publication Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,

(30) Priority Data: SE, $G, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
61/106,594 19 October 2008 (19.10.2008) US TZ,UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant (for all designated States except US): RE- 84) Designateq States (unlgss othemise indicated, for every
SEARCH IN MOTION LIMITED [CA/CA], 295 kind ofregzonal p}"Ol@C’llOl’l avazlable): ARIPO (BW, GH,
Phillip Street, Waterloo, Ontario N2L 3W8 (CA). GM, KE, LS, MW, MZ, NA, SD, SL. 8Z, TZ, UG, ZM,

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

(72) Inventors; and TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

(75) Inventors/Applicants (for US orly): GUNEY, Ergin ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

[TR/US]; 62510 - 2000 Bridge Parkway, Redwood City,
California 94065 (US). FRESKO, Nedim [US/US]J;
62473 - 2000 Bridge Parkway, Redwood City, California
94064 (US).

MC, MK, MT, NL, NO, PL, PT, RO, SE, SL, SK, TR),
OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW, ML,
MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: WEB APPLICATION FRAMEWORK FOR ENABLING THE CREATION OF APPLICATIONS THAT PROVIDE
AN INTERFACE WITH CLIENTS THAT IS INDEPENDENT OF SCRIPTING CAPABILITY

NPUT DETECTED 248
BY CLIENT AS T0 4
DATA 0BJECT

CLIENT GENERATES A REQUEST

FROM THE DATA OBJECT IN THE

FORM OF AN AJAX REQUEST OR
A PAGE REQUEST

(57) Abstract: An improved web application framework methodology
that enables the creation of web applications which can respond to client
requests in a fashion that results in providing an interface to a client,
which appears on the client to be independent of scripting capability.

252

REQUEST
RECEVED BY
SERVER

256

i Y
AJAY REQUEST [PAGE REQUEST INITIATES |26
TRANSFERRED 10 |~ 260 * APPLICATION ENVIRONWENT
CUSTOM SERVLET SERVLET IN JAVA RUNTIME| 20
v {
CUSTON SERVLET | [ENVIRONMENT SERVLET INVOKES CLASSES OF THE
CHANGES STATE OF DATA OBJECT TO CHANGE STATE OF VARIABLE
VARIABLE REPRESENTED REPRESENTED BY DATA OBJECT AND T0
BY DATA OBJECT GENERATE ALTERNATIVE VERSION OF DATA OBJECT
!
FORWARD 10 CLIENT ENVIRONENT SERVLET RETRIEVES
268
INTEGER VALUE [B SoRED STATES OF OTHER COMPONENTS
REPRESENTATVE OF OF PAGE AND RECREATES
SUCCESS CORRESPONDING DATA OBJECTS
CLIENT ENPLOYS 288~ ASSEWBLE DATA
SCRIFTING INSTRUCTIONS [~272 OBJECTS INTO NEW
OF DATA DBJECT T0 DATA SET AND FORWARD
RE-RENDER DATA OBJECT T0 CLIENT A4S NEW PAGE
292~ Cuen
RENDERS. NEW
FIC.9 PAGE

WO 2010/043025 A1 W00 00 N0 O

Published:
— with international search report (Art. 21(3))

WO 2010/043025 PCT/CA2009/000906

WEB APPLICATION FRAMEWORK FOR ENABLING THE CREATION OF APPLICATIONS THAT
PROVIDE AN INTERFACE WITH CLIENTS THAT IS INDEPENDENT OF SCRIPTING
CAPABILITY

CROSS-REFERENCE TO RELATED APPLICATION
[0001] The present application claims priority to U.S. Provisional Application Serial

No. 61/106,594, filed October 19, 2008, the contents of which are hereby incorporated by

reference.

BACKGROUND

Field

[0002] The disclosed concept relates generally to web applications and, more
particularly, to a web application framework that enables optimum rendering performance on
a client based upon detected parameters of the client.

Related Art

[0003] It is known that web application developers develop web applications that are
executed on servers and that include web content which is made available to clients via a
network such as the worldwide web. Such content typically is stored in the form of web
pages and other content that are made available to a web application that is deployed to a
server. Such web pages often include instructions in the form of markup language such as
html which are in the nature of instructions for a client, such as an instruction as to how
certain content should be rendered on a display of the client.

[0004] It is understood, however, that the various clients, which may take the form of
mobile electronic devices and other devices, for instances, have various hardware
characteristics, software characteristics, and other characteristic that affect the capabilities of
the clients. For example, the various characteristics of a client may include physical
properties such as: screen size; screen resolution; screen aspect ratio; color or black-and-
white-only, etc. Additionally or alternatively, the various characteristics of a client may
include software capabilities, such as: does/doesn't support various fonts; does/doesn't
support style sheets; supports only up to HTML 4.0 standard or supports HTML 5.0 (and it's
additional features); does/doesn't support JavaScript, etc.

[0005] A given piece of markup instruction often is usable for at most a limited
number of different clients since certain clients having differing characteristics likely will
render in different fashions or in incorrect fashions the subject matter of the markup

instructions. Additionally, web pages having JavaScript content will have their JavaScript go

WO 2010/043025 PCT/CA2009/000906

unexecuted if the client is incapable of executing JavaScript or has a JavaScript feature
disabled.

[0006] Various methodologies have been proposed to deal with the large variety of
client characteristics. One proposed solution is to provide multiple versions of any given web
page, with a different version of the web page being created for each permutation of client
characteristics that are deemed to be worthy of supporting. Such an approach requires
extensive work by a web application developer because of the large number of times any
given web page must be individually replicated in various forms to suit various device
characteristics. Another approach has been to write a single version of each web page, with
the content being tailored to the client having singularly the lowest level of functionality,
whereby all clients, including those having progressively greater degrees of rendering
functionality, will be rendered at the same low capability level. While such an approach can
save effort, at least initially, on the part of the web application developer, the resulting web
application has an undesirably low level of rendering functionality which fails to take
advantage of the generally greater rendering capabilities of many of the existing clients.
Another proposed approach is to write web applications having pages that are highly
sophisticated and which include scripting instructions that are executable on a client, that
detect the various characteristics of a client, and that tailor the markup instructions to take
advantage of the individual client’s rendering and other capabilities. However, such web
applications are of an extremely high level of sophistication and are therefore difficult to
create, and such web pages often are prohibitively large in size and as a result are very slow
to download. Moreover, clients lacking the ability to execute such scripting instructions will
be incapable of correctly rendering the content of such a web page. There thus exists a need
to provide an improved methodology of enabling web content to be properly rendered on a
wide variety of clients.

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] A full understanding of the disclosed concept can be obtained from the

following Description when read in conjunction with the accompanying drawings in which:
[0008] Fig. 1 schematically depicts a data processing arrangement in which the
disclosed concept can be created, deployed, or utilized, in any combination;
[0009] Fig. 2 schematically depicts a first platform for creating web applications;
[0010] Fig. 3 depicts a second platform for developing web applications;
[0011] Fig. 4 depicts one exemplary form of a database having permutations of client

parameters and corresponding sets of machine-readable storage elements;

WO 2010/043025 PCT/CA2009/000906

[0012] Fig. 5 depicts in a schematic fashion a library of components that can be used
in creating web application;

[0013] Fig. 6 depicts in a schematic fashion a portion of a page of web content;

[0014] Fig. 7 depicts in a schematic fashion a portion of another page of web content;

[0015] Fig. 8 is a flowchart depicting certain aspects of a method in accordance with
the disclosed concept; and

[0016] Fig. 9 is another flowchart depicting other aspects of a method in accordance
with the disclosed concept.

[0017] Similar numerals refer to similar parts throughout the specification.

DESCRIPTION

[0018] Fig. 1 depicts in a schematic fashion an exemplary desktop computer 8, an
exemplary server 12, and a plurality of clients that are each indicated with the numeral 16 and
which are wirelessly connected with a network 4 via an antenna 20. The desktop computer 8,
the server 12, and the clients 16 are indicated in Fig. 1 as exemplary components of a data
processing system, and it is understood that other components or additional components or
both can be employed in accordance with the disclosed concept without departing therefrom.

[0019] The clients 16, while being indicated generally with the same numeral 16, are
understood to be different from one another or to at least potentially be different from one
another. That is, each client 16 has a number of characteristics such as hardware properties
and software capabilities, and one or more of the characteristics of any given client 16 may
be different from the corresponding one or more characteristics of another client 16, although
this need not be the case.

[0020] It is advantageously noted that in making an http request, a client 16 typically
includes in a header of the request one or more client parameters. A small portion of such a
header may look like this fragment:

[0021] user-agent:BlackBerry8120/4.3.0Profile/MIDP-2.0 Configuration/CLDC-1.1 VendorID/-1

[0022] which includes client parameters indicative of client characteristics such as the
client device model number and the browser type and version that is making the request. As
employed herein, the expression “parameter” and variations thereof shall refer to arguments
that are placed in and that can be parsed from an http request and read by a server receiving
the request. While at certain locations herein a client 16 may be characterized as having or
possessing client parameters, it is understood that this terminology is understood to be
referring to the fact that those parameters are the ones that would be provided in an http

request from such a client 16 and that relate to various characteristics of the client 16. As

WO 2010/043025 PCT/CA2009/000906

employed herein, the expression ‘“characteristic” and variations thereof shall refer to
capabilities of a client 16. In accordance with the disclosed concept, the various client
parameters are parsed from the header of the http request, and from these client parameters
one or more characteristics of the client can be discerned with the use of a database 36.

[0023] Various parameters may be employed in making http requests. For instance,
hardware parameters might be said to include, by way of example, the model number of the
device of the client, the screen size, the screen pixel density, and the presence or absence of a
pointing device, among other hardware parameters. Software parameters might include, for
instance, the type of browser that is running on the client device and the version of such
browser, among other software parameters. Another parameter might include, for example,
whether or not the client has a present capability to execute a scripting language such as
JavaScript.

[0024] The clients 16 that are expressly depicted in Fig. 1 are representative of a large
number of clients 16, each of which will have a particular set of characteristics. While the
clients 16 are depicted in Fig. 1 as being wirelessly connected with the network 4, it is
understood that other clients 16 may have other types of connections with the network 4 such
as wired connections or other wireless connections without departing from the disclosed
concept.

[0025] The server 12 is depicted in Fig. 1 as comprising a processor 18 and a memory
22 and as having a web application 24 deployed thereon. The memory 22 is an exemplary
machine readable storage medium having stored thereon instructions which comprise the
application 24 and which, when executed on the processor 18, cause the server 12 to perform
certain operations such as one or more of those that are set forth herein. It is understood,
however, that the expression “machine readable storage medium” could comprise any type of
medium, whether or not presently in existence, that is capable of having instructions stored
thereon, and would specifically include, for example, CD and DVD storage media, hard
disks, memory chips, and the like without limitation.

[0026] Specifically, the instructions executed on the processor 18 generate a runtime,
such as a Java runtime or other runtime, within which the application 24 runs. The
exemplary server 12 is depicted in Fig. 1 as being an individual component connected with
the network 4, but it is understood that the server 12 is more particularly in the nature of the
aforementioned runtime within which the application 24 runs. The application 24 can be said

to interface with the clients 16 and vice-versa.

WO 2010/043025 PCT/CA2009/000906

[0027] The exemplary application 24 is schematically depicted as comprising a
plurality of pages indicated at the numerals 28 and 32, a database 36, and a database access
engine 44 that are compiled together into an executable form that runs in the runtime afforded
by the server 12. As a general matter, the database access engine 44 generally is platform-
specific, and it interfaces with the database 36 which generally and advantageously is
platform-independent. The database access engine 44 thus can be said to provide an interface
between a particular platform and a more generically-conceived database 36. More
specifically, the database access engine 44 acts as a mediator between the code for a number
of custom tags in a library and the information in the database 36, exposing the database
contents to the library in a form that the library code can more easily understand and access.

[0028] It is understood that the pages 28 and 32 are exemplary only, and it is also
understood that the application 24 may include numerous additional pages that are not
expressly depicted herein. The pages 28 and 32 are in the form of files that each comprise a
number of components and other data objects that are broadly characterized as being “web
content”, but the expression is not intended to be limiting in any fashion whatsoever. It is
also noted that the elements of the exemplary application 24 depicted in Fig. 1 are not
intended to be viewed as being necessary in all formulations of the disclosed concept, and
rather are intended to illustrate one example of a system wherein the disclosed concept can be
implemented.

[0029] The database 36 can be characterized as being a data arrangement and is
described in greater detail in conjunction with Fig. 4. It is noted, however, that the database
36 comprises large quantities of machine-readable storage elements that correspond with
permutations of client parameters. Any given set of the machine readable storage elements
that correspond in the database 36 with a given permutation of client parameters will
typically have been selected in view of a number of characteristics of a client 16 having the
given permutations of client parameters. Responsive to one or more client parameters being
input to the database 36, the database 36 accesses a number of machine-readable storage
elements that may be in the nature of data or instructions or both, for instance, which have
been selected and stored in the database 36 in view of the set of characteristics that would be
found on a client 16 having the one or more client parameters. This therefore enables a
number of client parameters that have been provided by a client 16 in making an http request
to be input to the database 36, with the database 36 responsively providing some type of
output that is tailored to the characteristics of the client 16 since the database 36 already has

built in the correlations between a permutation of client parameters and the corresponding set

WO 2010/043025 PCT/CA2009/000906

of device characteristics that would be possessed by a client 16 having that permutation of
client parameters.

[0030] The database 36 can advantageously be created once and implemented on any
of a variety of platforms without requiring the machine-readable storage elements to be
rewritten or reconstituted for any specific platform. For example, a platform for use in
developing a web application (such as on the desktop computer 8) is specifically depicted in
Fig. 2 and is indicated generally with the numeral 40. In the example presented herein, the
platform 40 is a Java-based web application framework called JavaServer Faces, and while
this particular web application framework will be further described in the example
embodiment described herein, it is understood that it is exemplary in nature and is provided
for the sake of explanation of the concept rather than being limiting. The example platform
40 comprises the database access engine 44 and a library 48 of components 52 that, in the
exemplary depicted embodiment, are in the form of tags. The components 52 may be
employed, with or without other content, to create the pages 28 and 32 for deployment to the
server 12 as part of the application 24. The database access engine 44 is depicted in Fig. 2 as
being structured to interface with the library 48 and the database 36, and in at least some
respects the database access engine 44 functions as an application programming interface
(API). However, the database 36 is depicted as not necessarily being a part of the platform
40 in order to indicate that the database 36 is not platform-dependent.

[0031] In order to illustrate the portability of the database 36 from one platform to
another, the same database 36 is depicted in Fig. 3 as being employed by another platform
40A. The alternate platform 40A can be used to develop web applications and can be any of
a variety of other web application frameworks such as, for instance and without limitation,
one entitled “ASP .NET”, although this is not intended to be limiting and rather is intended to
be merely illustrative of an alternate web application framework. The exemplary platform
40A includes an database access engine 44A and a library 48A of components that can be
used in creating pages of web content for deployment on the server 12 or on another server.
The database access engine 44A is depicted in Fig. 3 as interfacing directly with the database
36 and the library 48A, and the database 36 is depicted as being in the same condition as
when it is depicted in Fig. 2, i.e., as interfacing with the database access engine 44.

[0032] As a general matter, the database 36 can be implemented for use in
conjunction with virtually any web application framework by creating a library of
components that are usable in creating pages of web content, and by further creating a

database access engine that comprises class logic and other content and which, when invoked

WO 2010/043025 PCT/CA2009/000906

by a component of a web page being requested, is capable of interfacing with the database 36.
Such interfacing would include, for instance, taking one or more of the parameters of the
client 16 that is requesting the page and determining from the database 36 what markup
language or other instruction or both should be created and provided as a data object in place
of such web page component. As such, the database 36, which represents a large amount of
machine-readable storage elements that correspond with various permutations of client
parameters, can be created once and implemented on numerous platforms by creating a
custom database access engine and library, thus enabling widespread use of the database 36
without requiring that the database 36 be recreated or reconstituted for the various platforms.

[0033] As mentioned above, the database 36 comprises a set of machine-readable
storage elements for each of a plurality of permutations of client parameters. The exemplary
client parameters employed herein comprise the device model of the client, the version of the
firmware on the device, the type of browser executed on the device of the client, and the
version of the browser. This listing of client parameters is intended to be exemplary only and
is not intended to be exclusive or exhaustive. Such client parameters or other parameters or
additional parameters in any combination may be obtained or otherwise ascertained by the
application 24 from a header of a request made by a client 16. That is, when a client 16
makes a request that is received by the application 24 on the server 12, the received request
comprises a header which includes the client parameters among other information. As such,
a header of a request from a client 16 can be said to include information indicative of the
particular permutation of the client parameters possessed by the client 16.

[0034] Such client parameters in the header are indicative of a number of hardware
characteristics or software characteristics or other characteristics in any combination of the
client 16 that possesses the particular permutation of client parameters. One or more of the
characteristics may results from one or more parameters, and vice-versa, and thus in some
circumstances a “parameter’” in a header may in some cases be the same as a “characteristic”
of a client 16 but in other cases the two may be different. The database 36 thus
advantageously comprises permutations of client parameters and, corresponding to each
permutation of client parameters, a set of machine-readable storage elements that are selected
in accordance with a number of hardware characteristics or software characteristics or other
characteristics in any combination of a client 16 possessing the permutation of parameters.
The database 36 may be a relational database or may be in other forms without departing

from the present concept.

WO 2010/043025 PCT/CA2009/000906

[0035] Fig. 4 depicts in an exemplary fashion a portion of the database 36.
Specifically, Fig. 4 depicts the contents of the database 36 in a tabular fashion that is
provided solely for purposes of illustration. The exemplary database 36 comprises a plurality
of parameter keys 54, with each parameter key being representative of a permutation of client
parameters. In the example presented herein, each parameter key 54 is formed by appending
together the values of each of a number of the client parameters for each of a plurality of
permutations of the number of client parameters. The exemplary parameters employed
herein are mentioned above.

[0036] Fig. 4 also depicts for each parameter key a number of characteristics 56
which are indicated in a checked-box fashion, meaning that for a given parameter key 54, a
check mark in the column of any given characteristic 56 indicates that a client 16 having the
permutation of client characteristics represented by the given parameter key 54 will possess
the given characteristic 56. By way of example, and without limitation, one characteristic 56
might be “display has aspect ratio 1.5:1”, and another characteristic 56 might be “display has
aspect ratio 1:1”, and yet another characteristic 56 might be “display is 256 color capable”,
and still yet another characteristic 56 might be “display not color capable”. It is reiterated
that the tabular configuration of Fig. 4 is intended to be illustrative of the various hardware
characteristics, software characteristics, or other characteristics in any combination of a client
16 that possesses a particular permutation of client parameters as indicated by a parameter
key 54. The exemplary nature of Fig. 4 is further illustrated by schematically depicting for at
least some of the parameter keys 54 one or more instructions 60 which may be provided as an
alternative or as an addition to the characteristics 56. This is intended to illustrate the fact
that different types of machine-readable storage elements, check values as to characteristics
56 and executable instructions in the present example, which may variously be retrieved by
the various classes invoked at various time by various components 52 of retrieved web pages.

[0037] More particularly, it is noted that the library 48 comprises a number of
components 52, and each component 52 may invoke one or more classes of logic whenever a
page 28 or 32 that comprises the component 52 is requested by a client 16. As used herein,
the expression “class” and variations thereof shall refer broadly to a set of machine-readable
instructions that embody a piece of logic, and such logic can comprise a reusable set of
associated properties and can further comprise a set of operations that can be performed on or
using such properties. The database access engine 44 comprises instructions, and each class
can access a certain portion of the instructions of the database access engine 44. Each class

of logic of the database access engine 44 may also access a particular portion of the database

WO 2010/043025 PCT/CA2009/000906

36. As such, the database 36 can have numerous portions, such as may be represented as
being in the form of various tables, that are variously accessed by the various classes when
invoked by the components 52 on the pages 28 and 32. Due to the variability of the logic of
each class of the database access engine 44, the various classes may have different
requirements with regard to the particular subject matter that is sought to be obtained from
the database 36 in order to enable the classes to create markup instructions that are tailored to
the characteristics of a client 16 as indicated by the client parameters. That is, upon receipt of
a request from a client 16 for a page 28 or 32 of the application 24, the various components
52 of the requested page 28 or 32 each invoke the various classes that correspond with the
components 52. In the example of the JavaServer Faces (JSF) platform example described
herein, each component has at least three classes, including a component class, a renderer
class, and a tag class, although other classes or additional classes or both can be deployed
without departing from the present concept.

[0038] Each class typically has some dedicated logic which may perform various
operations, and the operations of the classes invoked by a given component 52 typically
result in the generation of markup instructions, such as html instructions, that are configured
to render the component 52 on the client 16 in a fashion that is optimized for the
characteristics of the client 16 as were indicated by the client parameters extracted from the
header of the request. While in the example presented herein the markup or other instructions
are optimized for rendering on the client 16, it is understood that such optimization may be
for virtually any other type of operation on the client 16. Each class thus may include its own
logic or may include its own individual need for information regarding the characteristics of a
client 16 or both, and it may additionally or alternatively require instructions for the
particular client 16 that are obtained from the database 36 or may provide specialized post-
processing of data or instructions for the entire class or both, by way of example. As such, it
can be understood that the database 36 depicted in Fig. 4 is merely representative of the
extensive, varied, and detailed contents actually possessed by the database 36.

[0039] Fig. 5 depicts in an exemplary fashion a portion of the library 48 with its
components 52 in the form of tags. The components 52 comprise standard tags 64 and
custom tags 68, by way of example. The standard tags 64 may, for instance, be employed on
a page 28 or 32 to provide unchanging, i.e., static, markup instructions such as html. On the
other hand, the custom tags 68 may be employed to provide dynamically-created markup
instructions that may or may not additionally include scripting instructions such as in the

form of JavaScript, by way of example. The use of the standard tags 64 in a retrieved page

WO 2010/043025 PCT/CA2009/000906

28 or 32 will result in the invoking of one or more classes that generate static markup
instructions. However, the classes that are invoked by custom tags 68 in a retrieved page 28
or 32 will invoke classes that may access the database 36 or perform other operations that
result in the generation of markup instructions that are optimized according to the client
parameters of the request header. Such optimization may additionally include the creation of
scripting instructions such as JavaScript that may be provided in addition to the markup
instructions. The disclosed concept thus allows the building of applications such as web
pages and other applications by using the components 52 as "building blocks", and each
component 52 comes with the type of logic built in that will enable it to render itself in the
most appropriate way for each particular client device. The developer of an application such
as a web page therefore can simply use the components 52, i.e., the standard tags 64 and the
custom tags 68, to compose the web page or other application without being required to give
thought to client device variability because the components 52 self-adapt to the capabilities of
each client device.

[0040] It is noted that JavaScript or other scripting instructions typically will be
provided only if the client 16 is determined to have a present capability of executing the
scripting instructions. That is, it may be determined that a client 16 does not possess the
present capability to execute, for instance, JavaScript, such as by the request header
parameters indicating that the client would be incapable of executing JavaScript or indicating
that the JavaScript capability of the client 16 is presently disabled. In such a situation, the
invoked classes will generate a resultant data object that typically will consist of markup
language, for instance, without the addition of scripting instructions. On the other hand, if
the client 16 possesses a present capability to executed scripting instructions such as
JavaScript, these same invoked classes will generate a resultant data object that typically will
include both markup language and scripting instructions. Advantageously, therefore, a data
object that includes markup alone will function on a suitable client 16 in a fashion that is
functionally identically to or nearly so to the function on a suitable client 16 of a data object
that includes markup together with scripting instructions. The developer of the web
application is thus advantageously freed from having to consider factors of client device
capabilities because the resultant application and generated data objects function identically
or nearly so on all device types, regardless of device capabilities It is noted that the markup
language created in the JavaScript enabled situation may be the same as or different from that

created in the JavaScript non-enabled situation.

10

WO 2010/043025 PCT/CA2009/000906

[0041] An existing web application framework such as the exemplary JSF described
herein may already include a library that comprises at least some of the standard tags 64
along with a database access engine comprising corresponding classes and their logic. The
creation of the library 48 typically would involve creating the custom tags 68 along with
enhancements to the database access engine to form the database access engine 44, or
creation of an entirely new database access engine to form the database access engine 44. It
is noted that the database 36 provides significant advantages in portability of the data
contained therein, but it is understood that the machine-readable storage elements of the
database 36 could instead be incorporated into the database access engine if needed.

[0042] As mentioned above, the library 48 lists the standard tags 64 and custom tags
68 that are employable in creating the pages 28 and 32. More specifically, Fig. 6 depicts an
exemplary portion of the exemplary page 28, and Fig. 7 depicts an exemplary portion of the
exemplary page 32. The schematically depicted lines of instruction in Figs. 6 and 7 which
employ the standard tags 64 could be said to each comprise an html instruction. However,
those lines of instruction in Figs. 6 and 7 that employ the custom tags 68 would be better
referred to as an extensible markup language (XML) instruction. When either of the pages 28
and 32 is requested by a client 16, the classes associated with the components 52 of the
requested page 28 or 32, i.e., the classes associated with the standard and custom tags 64 and
68 of the requested page 28 or 32, are invoked and, as set forth above, generate a number of
data objects that comprise html or other markup instructions, possibly with the addition of
scripting instructions such as in JavaScript. The data objects are assembled together and are
forwarded as a data set in the form of a page of web content to the requesting client 16. The
client 16 then renders the web page on its display in accordance with the received markup
instructions with the possible addition of received scripting instructions. Advantageously,
therefore, the data set is customized to the capabilitics of the requesting client 16, and this
facilitates advantages such as, by way of example only, automatic scaling of bitmap images
on the server side to fit the available space on small-screened devices, and automatic
inclusion of other types of integration between a web page and the built-in features of a
particular device (e.g., add an entry to its contact list, show the location of an address in a
mapping application, etc.).

[0043] The application 24 is also advantageously configured to enable further
interfacing with the clients 16 by receiving other requests from the clients 16, i.e., updating
requests that involve communication with the server 12, to be handled regardless of whether

the client 16 has a present capability to execute instructions in a scripting language, such as

11

WO 2010/043025 PCT/CA2009/000906

JavaScript. By way of example, a data set that is downloaded as a page of web content to a
client 16 typically will include one or more data objects, and each data object typically
includes instructions in a markup language. If the client 16 has a present capability to
execute, for instance, JavaScript, one or more of the data objects may additionally comprise
some JavaScript instructions in addition to the markup instructions. On the other hand, if the
client 16 lacks a present capability to execute JavaScript, the data set will have been provided
with versions of the data objects having markup language alone, i.e., without the addition of
JavaScript. This is, as mentioned above, in keeping with the creation of a customized data set
in the form of a web page created for a client 16 that makes a request for a page 28 or 32 and
that is customized for optimum rendering performance on the client 16 in view of its client
parameters.

[0044] In the circumstance where a given data object stored on a client 16 includes
some JavaScript or other scripting instructions, the data object may make an updating request
to the server 12 by transmitting to the server 12 an XMLhttpRequest, which is a request that
does not require a reloading of an entire page, but rather is intended to request that the
application 24 change a state of a variable or make some other change, for example. Such a
request is also referred to as an AJAX request. If available, an AJAX request is desirable
because it avoids the need to reload an entire page on the client 16, and it thereby avoids the
shortcomings that are typically associated with the reloading of a web page, such as losing
partially entered text in text fields of a browser, losing the location and degree of zoom of a
portion of a page rendered in a browser, losing locations of vertical or other scroll positions,
and the like. It also avoids consuming transmission bandwidth by avoiding a transmission of
a page in its entirety.

[0045] In the situation where a request is in the form of an XMLhttpRequest, the
URL of such an XMLhttpRequest typically will include the identity of a custom servlet of the
application 24, and the request is thus automatically transferred directly to the identified
custom servlet. The custom servlet will then perform the same set of class logic as when the
requesting component was originally generated by the database access engine 44, except that
it will additionally, for instance, change the state of a variable that is represented by the
requesting component of the data set on the client 16. If the requested change of state is
successful, the custom servlet will generate and transmit to the client 16 response that is
representative of “success”. Otherwise, it may send a response that is representative of
“failure” or another appropriate communication indicative of the result. In the situation

where the returned response is representative of “success”, the JavaScript or other scripting

12

WO 2010/043025 PCT/CA2009/000906

instructions of the requesting data object may cause the rendered element to be re-rendered
on the client 16 in such a fashion to represent the changed state of the aforementioned
variable. By way of example, the response may be a value such as an integer value, such as
an integer value of one for “success” and an integer value of zero for “failure”, although the
response could be any type of communication without limitation.

[0046] On the other hand, if a data object of a web page stored on a client 16 needs
updating but lacks scripting instructions, the data object will typically be unable to make an
XMLhttpRequest and rather will make an http POST request, which is a request for the
reloading of an entire page. In such a situation, the receipt of an http POST request, i.¢., a
page request, results in initiation of an application environment servlet in a runtime, such as
in the exemplary JSF environment wherein a FacesServlet is initiated in a Java runtime on the
server 12. Based upon the request header, the exemplary FacesServlet invokes the classes of
the data object that made the request, and such classes include logic to cause, for example, a
change in state of a variable that is represented by the requesting data object. Additionally,
an alternate version of the requesting data object is generated for inclusion in the updated
page. The exemplary FacesServlet also retrieves the stored states of the other components of
the page and recreates with these stored states the data objects that had previously been
created for such components. All of the data objects are assembled into the updated page,
which is then transferred to the client 16 and is rendered thereon. As is generally understood,
JSF provides the feature of saving states of web page components, thereby avoiding the
necessity of reprocessing of the associated class logic if a given component did not make an
http POST request of the application 24.

[0047] The aforementioned XMLhttpRequest and http POST Request are intended to
illustrate a request initiated by two different versions of the same data object on two different
clients 16, i.e., one data object on one client 16 possessing a present capability to execute
scripting instructions such as JavaScript, the other data object on the other client 16 lacking a
present capability to execute scripting instructions such as JavaScript. For the client 16
having the JavaScript capable version of the data object, the XMLhttpRequest requires far
less communications bandwidth and far less processing since it requires the transmission to
the client of less than an entire page and additionally is processed by a custom servlet that
generally at most, for example, changes a state of a variable and communicates a
confirmation or other indication of the success or failure of such a processing effort. For the
version of the data object that is not JavaScript enabled, the requesting data object must

request that the entire page be reloaded via the html POST Request. The receipt of the html

13

WO 2010/043025 PCT/CA2009/000906

POST request on the server 12 initiates the exemplary FacesServlet which executes the class
logic of the requesting data object and retrieves stored states of other data objects to generate
an updated page for transmission to the client. The class logic invoked with the FacesServlet
also possesses logic to cause, for example, the change of state of the same variable, albeit
through slightly different operations.

[0048] In either situation, however, the rendered result of the update on any particular
client 16 is substantially the same regardless of whether the client 16 is JavaScript enabled or
not (neglecting for the moment differences among other characteristics of, for instance, the
displays of the clients 12). That is, the application 24 is advantageously configured to
download to a given client 16 whichever version of the data object, i.e., the JavaScript
enabled version or the JavaScript non-enabled version, is best suited to the client 16 based
upon the client parameters of the header of the original page request. The data object
downloaded to and stored on the client 16 then makes either an XMLhttpRequest or an html
POST Request depending upon whether the data object is the JavaScript enabled version or
the JavaScript non-enabled version, respectively. For the JavaScript enabled version of the
data object, the application 24 changes a state of a variable represented by the data object, for
example, and sends to the client 16 a confirmation of the change in state, thereby causing the
data object to re-render itself to indicate the change in state of the variable. On the other
hand, if the JavaScript non-enabled version of the data object makes its http POST Request,
the JSF lifecycle is initiated and executed on the server 12 and creates an updated version of
the page which is downloaded to the client 16 and rendered thereon. The client logic invoked
by the JSF lifecycle changes the state of the same variable, for instance, and generates a
replacement data object reflective of the change in state for inclusion in the updated version
of the page.

[0049] As such, the application 24 enables an initial request for a page from a client
16 to result in the rendering of web content on the client 16 in a substantially consistent
fashion regardless of whether the requesting client 16 is JavaScript enabled or is JavaScript
non-enabled, and the application 24 achieves the same kind of consistent rendered result in
the situation of an updating request from either type of client. It is expressly noted, however,
that such similarity may be unavailable in cases where a client 16 is limited in its rendering
capabilities, such as if it is capable of providing text in a single font and color rather than in
multiple fonts and colors, by way of example.

[0050] Fig. 8 generally depicts certain aspects of the method of the disclosed concept.

The server 12 receives from a client 16 an initial request for a page, as at 104. In response

14

WO 2010/043025 PCT/CA2009/000906

thereto, the application 24 initiates an application environment servlet in a runtime afforded
by the server 12, as at 108. In the example presented herein, the environment servlet is a
FacesServlet executed in a Java runtime, although the servlet may be on a different platform
without departing from the present concept.

[0051] Thereafter, the application analyzes the header of the request to identify one or
more client parameters, as at 112. The identity of the requested web page typically will be
included in the URL of the request, and this information is employed to retrieve, as at 116,
the requested web page, which is typically in the form of a data file and comprises a number
of components. Thereafter, the one or more classes that are associated with each component
of the retrieved page are invoked, as at 120. If the logic of an invoked class determines, as at
124, that input is required from the database 36, processing is transferred to 128 where the
class logic associated by the component employs one or more of the client parameter in
interfacing with the database 36 to generate a set of markup instructions. In so doing, the
class logic may employ the one or more client parameters to retrieve one or more
corresponding machine-readable storage elements from the database 36. The class logic may
additionally generate some scripting instructions, such as JavaScript, if it is determined that
the requesting client 16 is capable of executing such scripting language. The class logic,
which is embodied in the database access engine 44, will then generate a data object that
comprises the markup instructions and, as appropriate, any scripting instructions. The data
object is added to a data set, as at 132.

[0052] On the other hand, if it is determined, as at 124, that the component being
processed does not require input from the database 36, such as if it is determined that the
component employs a standard tag 64, processing continues at 136 where the class logic
generates static markup instructions, whether or not additionally including scripting
instructions, and a data object is generated therefrom. Such data object is similarly added to
the data set, as at 132.

[0053] It is then determined, as at 140, whether all components of the retrieved page
have been processed. If not, processing continues, as at 120, wherein another component is
processed by invoking its associated classes. Otherwise, such as if it is determined at 140
that all of the components of the retrieved page have been processed, the assembled data set
is sent to the client, as at 144, for rendering on the client. It is noted that additional
processing such as post-processing may be performed during the operations depicted

generally in Fig. 8.

15

WO 2010/043025 PCT/CA2009/000906

[0054] Other aspects of the disclosed concept are indicated in flowchart depicted
generally in Fig. 9. An input is detected by a client 16, as at 248, with respect to a data object
of a data set that is in the form of a web page stored on and rendered on the client 16. Such
an input typically will be an action performed by a user of the client 16, such as a double
clicking on a page component, a movement of a mouse cursor onto a page component, or a
typing of some text into a page component, although thesec arc intended to be non-limiting
examples. The client 16 thereafter generates, as at 252, a request from the requesting data
object in the form of an AJAX Request, i.e., an XMLhttpRequest, or a page request, i.e., and
html POST Request. The request is then received, as at 256, by the server 12. The
application 24 on the server 12 then takes one of two courses of action depending upon
whether the request was an AJAX request or a page request.

[0055] An AJAX request is transferred, as at 260, to a custom servlet such as would
be designated in the URL of the AJAX request. The custom servlet would then change, for
example, and as at 264, a state of a variable that is represented by the requesting data object.
The application 24 would then forward to the client 16 a response that is representative of
“success”, as at 268. For the sake of completeness, it is noted that if the custom servlet is
unsuccessful in changing the state of the variable, a different type of response will be
returned to the client 16. The client 16 then employs, as at 272, scripting instructions such as
JavaScript already existent in the data object on the client 16 to re-render the requesting data
object, for example, or take other action.

[0056] On the other hand, a page request initiates, as at 276, the application
environment servlet which, in the present example, is a FacesServlet running in a Java
runtime. As at 280, the exemplary FacesServlet then would retrieve the web page that
comprises the requesting data object, would invoke the classes of the requesting data object
to change a state of the variable represented by the data object, for example, and would
generate an alternate version of the data object for inclusion in a new version of the requested
page. Processing thereafter continues, as at 284, where the exemplary FacesServlet retrieves
the stored states of any non-requesting components of the requested page and recreates the
data objects that had previously been transmitted as part of the original data set to the client
16. All of the data objects are assembled into a new version of the data set, as at 288, that is
forwarded to the client 16 in the form of a new page. The client then renders, as at 292, the
new page.

[0057] The concept presented herein thus advantageously provides a database 36 that

can be employed on numerous platforms without recreating the contents of the database 36.

16

WO 2010/043025 PCT/CA2009/000906

The database 36 can be extensive and can be interfaced by class logic having a rich content.
The library 48 of standard tags 64 and custom tags and 68 can be advantageously employed
to create a single version of each page 28 or 32 having by way of its custom tags 68 an ability
to dynamically generate markup instructions, whether or not additionally including
JavaScript or other scripting instructions, that are configured for optimum processing on the
requesting client 16 based upon the detected parameters of the client 16. The concept also
advantageously enables an updating operation to occur which provides substantially the same
rendered result on a client 16 regardless of whether the client 16 is Java enabled or is Java
non-enabled, it being reiterated that the rendering capabilities of any given client 16 may be
otherwise limited in terms of color, font size, font content, and the like.

[0058] While specific embodiments of the disclosed concept have been described in
detail, it will be appreciated by those skilled in the art that various modifications and
alternatives to those details can be developed in light of the overall teachings of the
disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative
only and not limiting as to the scope of the disclosed concept which is to be given the full

breadth of the claims appended and any and all equivalents thereof.

17

WO 2010/043025 PCT/CA2009/000906

CLAIMS

What is claimed is:

1. A method of interfacing a server (12) with a client (16) from among a plurality
of clients (16), the method comprising:
receiving (256) on the server a request from a data object of a data set stored on the
client, the request being one of:
a first type of request (276) when the data object is a first version of the data
object and has a first type of instruction set, and
a second type of request (260) when the data object is a second version of the
data object and has the first type of instruction set plus a second type of instruction set; and
sending to the client as a response to the request:
an updated version (288) of the data set when the request is the first type, and
a communication (268) that is less than the entirety of the data set when the
request is the second type.
2. The method of Claim 1 wherein the first type of instruction set is a markup
instruction set, and wherein the second type of instruction set is a script instruction set.
3. The method of Claim 1, further comprising:
responsive to the request, changing (264, 280) a state of a variable from one state to
another state;
when the request is the first type, providing as part of the updated version of the data
set an alternate first version of the data object reflective of the another state of the variable;
and
when the request is the second type, providing as the response a confirmation of the
another state of the variable.
4. The method of Claim 1, further comprising receiving:
an http POST request when the request is the first type, and
an XMLhttpRequest when the request is the second type.
5. A server (12) structured to interface with a client (16) from among a plurality
of clients (16), the server comprising:
a processor (18); and
a memory (22) having stored therein instructions which, when executed on the
processor, cause the server to perform operations comprising:
receiving (256) a request from a data object of a data set stored on the client,

the request being one of:

18

WO 2010/043025 PCT/CA2009/000906

a first type of request (276) when the data object is a first version of
the data object and has a first type of instruction set, and

a second type of request (260) when the data object is a second version
of the data object and has the first type of instruction set plus a second type of instruction set;
and

sending to the client as a response to the request:

an updated version (288) of the data set when the request is the first
type, and

a communication (268) that is less than the entirety of the data set
when the request is the second type.

6. The server of Claim 5 wherein the first type of instruction set is a markup
instruction set, and wherein the second type of instruction set is a script instruction set.

7. The server of Claim 5 wherein the operations further comprise:

responsive to the request, changing (264, 280) a state of a variable from one state to
another state;

when the request is the first type, providing as part of the updated version of the data
set an alternate first version of the data object reflective of the another state of the variable;
and

when the request is the second type, providing as the response a confirmation of the
another state of the variable.

8. The server of Claim 5 wherein the operations further comprise receiving:

an http POST request when the request is the first type, and

an XMLhttpRequest when the request is the second type.

9. A machine-readable storage medium (22) having stored thereon instructions
which, when executed on a processor (18) of a server (12) that is structured to interface with
a client (16) from among a plurality of clients (16), cause the server to perform operations
comprising:

receiving (256) a request from a data object of a data set stored on the client,
the request being one of:
a first type of request (276) when the data object is a first version of
the data object and has a first type of instruction set, and
a second type of request (260) when the data object is a second version
of the data object and has the first type of instruction set plus a second type of instruction set;

and

19

WO 2010/043025 PCT/CA2009/000906

sending to the client as a response to the request:
an updated version (288) of the data set when the request is the first
type, and
a communication (268) that is less than the entirety of the data set
when the request is the second type.

10. The machine-readable storage medium of Claim 9 wherein the first type of
instruction set is a markup instruction set, and wherein the second type of instruction set is a
script instruction set.

11. The machine-readable storage medium of Claim 9 wherein the operations
further comprise:

responsive to the request, changing (264, 280) a state of a variable from one state to
another state;

when the request is the first type, providing as part of the updated version of the data
set an alternate first version of the data object reflective of the another state of the variable;
and

when the request is the second type, providing as the response a confirmation of the
another state of the variable.

12. The machine-readable storage medium of Claim 9 wherein the operations
further comprise receiving:

an http POST request when the request is the first type, and

an XMLhttpRequest when the request is the second type.

20

WO 2010/043025 PCT/CA2009/000906
1/5
y 15
/ 234 18 = 1
29 oo
5 (N
3 SERVER / ./ LEEE
o | [HPPUCATON 2
N PacE — y
— 39+ PAGE COJ/
.y N Ry 4
Eg
| DB
\\
)
36
/40 /4OA
PLATFORM 1 . PLATFORM 2 W
44~ [DATABASE 44A—] [DATABASE /
ACCESS DB ACCESS 0B
ENGINE ENGINE
| = 180 —
B LIBRARY N LIBRARY

G2

FIG.3

WO 2010/043025

PCT/CA2009/000906

36\\5\6
CHARACTERISTIC SET |INSTRUCTION
PARAMETER KEY [C1[C2]C3[C4]C5]C6 B0~
54——P1P2IP3IPY |+ | < g/l v [56d < | A B &
54—P1P2IP3 P4 | | & v || v |60A, T, D7 E—60
54—P1P21P3P43 | v | v v | v A~60
54—"P11 P21 P3P 44 VI v\ v v D, EnR
. Y
54— PINPENP3NP AN v’ VIV | XN Z
Y60

WO 2010/043025

3/5

48

11 TCl1—588
adTe TCet~
-T3 TC3]
T4 TC4~—68
g4-15 TCS T

PCT/CA2009/000906

6
6417
‘ FIG.5
64—~TN
/)za
b4

68<T8> CONTENT </T&>
\XTC4> CONTENT </TC4>
{T6> CONTENT </T6>
<TC3> CONTENT </TC3>

FIG.6

32

/

68

6&2TC8> CONTENT </TC2>
<{T3> CONTENT </T3>
{TCI1> CONTENT </TCL>
\—58——1‘————’/

FIG. 7

WO 2010/043025

RECEIVE
REQUEST FROM
CLIENT

Y

INITIATE APPLICATION
ENVIRONMENT SERVLET
IN JAVA RUNTIME

Y

ANALYZE HEADER OF
REQUEST TO IDENTIFY
CLIENT PARAMETERS

Y
RETRIEVE WEB
PAGE COMPRISING
COMPONENTS

| 112

16

PCT/CA2009/000906

i
INVOKE THE ONE OR MORE
CLASSES ASSOCIATED WITH A

COMPONENT OF RETRIEVED PAGE

128

124

DOES COMPONENT
REQUIRE INPUT FROM

DATABASE
?

EXECUTE CLASS LOGIC TO EMPLOY
CLIENT PARAMETERS, INTERFACE WITH
DATABASE, AND GENERATE MARKUP
INSTRUCTIONS, WHETHER OR NOT
INCLUDING SCRIPTING INSTRUCTIONS,
AND GENERATE A DATA OBJECT FROM IT

RETRIEVE CLASS MARKUP |13
INSTRUCTIONS AND GENERATE

A DATA OBJECT FROM IT

-
-

144
Y HAVE ALL /
132~ ADD DATA COMPONENTS OF SEND DATA SET
OBDJAETCAT STSTA RETRIEVED PAGE BEEN TO CLIENT

140

FIG.8

PROCESSED
?

Y

WO 2010/043025 PCT/CA2009/000906

5 /5

INPUT DETECTED 248
BY CLIENT AS TO A
DATA OBJECT

Y

CLIENT GENERATES A REQUEST | 252

FROM THE DATA OBJECT IN THE

FORM OF AN AJAX REQUEST OR
A PAGE REQUEST

REQUEST
RECEVED By [28
SERVER
R e y
AJAX REQUEST PAGE REQUEST INITIATES |276
TRANSFERRED TO |~ 260 APPLICATION ENVIRONMENT
CUSTOM SERVLET SERVLET IN JAVA RUNTIME| 280
Y Y
CUSTON SERVLET | . ENVIRONMENT SERVLET INVOKES CLASSES OF THE
CHANGES STATE OF |~ DATA OBJECT TO CHANGE STATE OF VARIABLE
VARIABLE REPRESENTED REPRESENTED BY DATA OBJECT AND TO
BY DATA OBJECT GENERATE ALTERNATIVE VERSION OF DATA OBJECT
Y Y
FORWARD TO CLIENT ENVIRONMENT SERVLET RETRIEVES
268 284
INTEGER VALUE [~ “\{ STORED STATES OF OTHER COMPONENTS
REPRESENTATIVE OF OF PAGE AND RECREATES
SUCCESS CORRESPONDING DATA OBJECTS
Y Y
CLIENT EMPLOYS 288~ ASSEMBLE DATA
SCRIPTING INSTRUCTIONS b272 OBJECTS INTO NEW
OF DATA OBJECT TO DATA SET AND FORWARD
RE-RENDER DATA OBJECT TO CLIENT AS NEW PAGE
Y
299~ CLENT
RENDERS NEW
PAGE

FIG.9

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CA2009/000906

A. CLASSIFICATION OF SUBIECT MATTER

I[PC: HO4L 12/16 (2006.01) , HO4W 4/18 (2009.01) , GOGF 9/44 (2006.01) , GO6F 17/00 (2006.01)
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: HO4L 12/16 , HO4W , GOGF 9/44 , GO6F 17/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

Canadian Patent Database, Delphion, EPODOC, WFI, and [EEE Xplore

- Search terms used: web application, interface, "UI", request,

client, server, independent, data set, platform, object, type, version, markup, XML, HTML, POST, wireless, mobile, capability(ies)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 7,155,681 B2 (MANSOUR et al.) 26 December 2006 (26-12-2006) 1-12
Abstract

Figures 1,2, 7, 9-11, and 24

Column 26, line 63 - column 27, line 2
Claims 1,2,6,7,12,and 17

Column 4, line 45 - column 3, line 6, Column 17, lines 53-67,

A US 7,222,138 B2 (FOMENKO) 22 May 2007 (22-05-2007) 1-12

Whole document

A US 2005/0193380 Al (VITANOV et al.) 01 September 2005 (01-09-2005) 1-12

Whole document

[X] Further documents are listed in the continuation of Box C.

[X] See patent family annex.

* Special categories of cited documents :
“A” document defining the general state of the art which is not considered
to be of particular relevance
“E” earlier application or patent but published on or after the international
filing date
“L” document which may throw doubts on priorig claim(s) or which is
cited to establish the publication date of another citation or other

special reason (as specified)
document referring to an oral disclosure, use, exhibition or other means

“p” document published prior to the international filing date but later than
the priority date claime

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

03 September 2009 (03-09-2009)

Date of mailing of the international search report

1 October 2009 (01-10-2009)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office

Place du Portage I, C114 - 1st Floor, Box PCT
50 Victoria Street

Gatineau, Quebec K1A 0C9

Facsimile No.: 001-819-953-2476

Authorized officer

Donald Lefebvre (819) 997-2822

Form PCT/ISA/210 (second sheet) (July 2008)

Page 3 of 5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CA2009/000906

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages |Relevant to claim No.
A US 2004/0148375 A1 (LEVETT et al.) 29 July 2004 (29-07-2004) 1-12
Whole document
A US 2004/0128358 Al (APFEL et al.) 01 July 2004 (01-07-2004) 1-12
Whole document
A US 2004/0027375 Al (ELLIS et al.) 12 February 2004 (12-02-2004) 1-12
Whole document
A US 2003/0005019 Al (PABLA et al.) 02 January 2003 (02-01-2003) 1-12

Whole document

Form PCT/ISA/210 (continuation of second sheet) (July 2008)

Page 4 of 5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CA2009/000906

Information on patent family members
Patent Document Publication Patent Family Publication
Cited in Search Report Date Member(s) Date
US7155681B2 26-12-2006 AU2002237773A1 28-08-2002
US2002109718A1 15-08-2002
US2007150822A1 28-06-2007
WO02065273A2 22-08-2002
WO02065273A3 20-11-2003
US7222138B2 22-05-2007 US2003158871A1 21-08-2003
US2005193380A1 01-09-2005 None
US2004148375A1 29-07-2004 GB0103308D0 28-03-2001
GB0112433D0 11-07-2001
GB0203281D0 27-03-2002
GB0203282D0 27-03-2002
GB2377518A 15-01-2003
GB2377518B 22-10-2003
GB2377784A 22-01-2003
GB2377784B 05-11-2003
US2004117439A1 17-06-2004
WO02065278A2 22-08-2002
WO02065278A3 08-01-2004
WO02065286A2 22-08-2002
WO02065286A3 08-01-2004
US2004128358A1 01-07-2004 CN1520089A 11-08-2004
EP1434127A2 30-06-2004
EP1434127A3 13-12-2006
JP2004213664A 29-07-2004
KR20040060806A 06-07-2004
US7185116B2 27-02-2007
US2004027375A1 12-02-2004 AU6054901A 24-12-2001
CN1197001C 13-04-2005
CN1446333A 01-10-2003
EP1292884A2 19-03-2003
JP2004503862T 05-02-2004
WO0197014A2 20-12-2001
WO0197014A3 16-05-2002
US2003005019A1 02-01-2003 AU2002314850A1 03-03-2003
EP1405493A2 07-04-2004
WO03003688A2 09-01-2003
WOO03003688A3 18-12-2003

Form PCT/ISA/210 (patent family annex) (July 2008)

Page 5 of 5

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - wo-search-report
	Page 29 - wo-search-report
	Page 30 - wo-search-report

