08/085343 A1 | N 000 P R0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T O 5000

International Bureau

(43) International Publication Date
17 July 2008 (17.07.2008)

(10) International Publication Number

WO 2008/085343 Al

(51) International Patent Classification:
GOGF 9/445 (2006.01)

(21) International Application Number:
PCT/US2007/025850

(22) International Filing Date:

18 December 2007 (18.12.2007)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
11/620,691

(71) Applicant (for all designated States except US): APPLE
INC. [US/US]; 1 Infinite Loop, Cupertino, CA 95014 (US).

7 January 2007 (07.01.2007) US

(72) Inventors; and

(75) Inventors/Applicants (for US only): DE CESARE,
Joshua [US/US]; 678 Regas Drive, Campbell, CA 95008
(US). DOUGLAS, Simon [NZ/US]; 21890 Eaton Place,
Cupertino, CA 95014 (US). KOSUT, Alexei, Elias
[US/US]; 575 S. Rengsdorff Avenue #126, Mountain
View, CA 94040 (US).

(74) Agents: SCHELLER, James, C., Jr. et al.; Blakely,
Sokoloff, Taylor & Zafman Llp, 1279 Oakmead Parkway,
Sunnyvale, CA 94805-4040 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(54) Title: METHOD AND APPARATUS FOR INTERCOMMUNICATIONS AMONGST DEVICE DRIVERS

& (57) Abstract: Techniques for intercommunication amongst device drivers are described herein. In one embodiment, an application
programming interface (API) is provided by a kernel of an operating system (OS) running within a data processing system. The API
is accessible by device drivers associated with multiple devices installed in the system. In response to a request from a first instance
of a driver via the API, information indicating whether another instance of the same driver is currently started is returned via the

API. Other methods and apparatuses are also described.

WO 2008/085343 PCT/US2007/025850

METHOD AND APPARATUS FOR INTERCOMMUNICATIONS AMONGST
DEVICE DRIVERS

FIELD OF THE INVENTION

[0001] The present invention relates generally to data processing systems.
More particularly, this invention relates to intercommunications amongst

multiple device drivers in a data processing system.

BACKGROUND

[0002] Data processing systems, such as, computer systems, are composed of
a variety of different components or "devices" that operate together to form the
resultant system. Typically, some of the devices are supplied with the computer
system initially, such as a central processing unit and a communication bus, and
some devices can be installed into the computer system after the initial
configuration of the system. In any event, in the general case, each device has an
associated driver that, among other functions, configures the device and allows
the device to be operable within the overall system. Drivers are typically software
instructions that can be loaded into the computer system's memory and when
executed will communicate with the device to properly configure the device for
operation. The driver may initialize the device so that the device can function and
the driver may also allow the device to communicate normally within the overall
system.

[0003] In certain system configurations, a device driver may support multiple
devices. During the initialization of a computer system, the system may
enumerate the devices installed within the system. As a result, multiple instances
of a driver may be loaded to support multiple devices. In order to avoid loading
multiple instances of the same driver, in the past, a driver developer had to know
how to determine whether another instance of the same driver is loaded. For
example, when an instance of a driver is initialized, the driver has to acquire a
lock to a device dictionary maintained by a kernel of an operating system to

prevent others from accessing the same. Once the driver acquires the lock, the

-1-

WO 2008/085343 PCT/US2007/025850

driver accesses the dictionary to determine whether another instance of the device
driver has already registered its driver handle. If not, the current instance of
driver registers with the dictionary by inserting its driver handle. If there is a
previous driver registered with the dictionary, the current instance of the driver
may unload itself. Thus, this is a first-come-first-serve situation where multiple
instances of the same driver race to acquire the lock and register with the
dictionary. In addition, a driver has to maintain the dictionary. Such a
mechanism is relatively complicated and inconvenient, and an author of a device
driver must write this software each time they write a driver.

[0004] Further, in certain situations, a driver may have to invoke another
driver to perform certain functionalities that the driver is not capable of doing so.
In the past, one driver has to call another driver via a communication protocol,
such as, those described in IEEE 1275 firmware standard ("IEEE Standard for
Boot (Initialization Configuration) Firmware: Core Requirements and Practices"
IEEE Std 1275-1994, Oct. 28, 1994, pp. 1-262), which requires a driver
developer to fully understand such a protocol and the system software has to fully

support it.

SUMMARY OF THE DESCRIPTION

[0005] Techniques for intercommunication amongst device drivers are
described herein. In one embodiment, an application programming interface
(API) is provided and accessible by device drivers of a data processing system.
In one embodiment, such an API is provided by a kernel of an operating system
(OS) running within a data processing system. The API is accessible by device
drivers associated with multiple devices installed in the system. During an
initialization period of an instance of a driver, the instance of the driver invokes
the API to determine whether there is another instance of driver that has been
initialized. In response to a request from a first instance of a driver via the API,
information indicating whether another instance of the same driver is currently

started is returned via the APIL

WO 2008/085343 PCT/US2007/025850

[0006] Other features of the present invention will be apparent from the

accompanying drawings and from the detailed description which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The present invention is illustrated by way of example and not
limitation in the figures of the accompanying drawings in which like references
indicate similar elements.

[0008] Figure 1 is a block diagram illustrating a system configuration
according to one embodiment of the invention.

[0009] Figure 2 illustrates a logical representation of a simplified device tree
database according to one embodiment of the invention.

[0010] Figure 3A is a block diagram illustrating a data structure representing
a device tree according to one embodiment.

[0011] Figure 3B is diagram illustrating an example of a dictionary according
to one embodiment.

[0012] Figure 4A is a block diagram illustrating a system configuration
according to one embodiment.

[0013] Figure 4B is a flow diagram illustrating a process for managing device
drivers according to one embodiment of the invention.

[0014] Figure 5A illustrates an example of a device tree, device tree plane,
and/or a service plane according to one embodiment.

[0015] Figure 5B is a diagram illustrating a data structure representing device
500 of Figure 5A.

[0016] Figure 6A is a flow diagram illustrating a process performed by an
instance of a driver according to one embodiment.

[0017] Figure 6B is a flow diagram illustrating a process of an API ofa
kernel according to one embodiment of the invention.

[0018] Figures 7A-7D illustrate pseudo codes of certain routines according to

certain embodiments of the invention.

WO 2008/085343 PCT/US2007/025850

[0019] Figure 8 is a diagram illustrating an example of a device tree where a
device node encodes information regarding another device node, according to
one embodiment of the invention.

[0020] Figure 9 is a diagram illustrating a particular example of having
information encoded within a device node to allow the device node to invoke a
driver of another device node, according to one embodiment of the invention.
[0021] Figure 10 is a flow diagram illustrating a process that enables a driver
to communicate with another driver using a device tree according to one
embodiment of the invention.

[0022] Figure 11 is a block diagram of a digital processing system, which
may be used with one embodiment of the invention.

[0023] Figure 12 is a block diagram of a digital processing system, which

may be used with another embodiment of the invention.

DETAILED DESCRIPTION

[0024] In the following description, numerous details are set forth to provide
a more thorough explanation of embodiments of the present invention. It will be
apparent, however, to one skilled in the art, that embodiments of the present
invention may be practiced without these specific details. In other instances,
well-known structures and devices are shown in block diagram form, rather than
in detail, in order to avoid obscuring embodiments of the present invention.
[0025] Reference in the specification to “one embodiment” or “an
embodiment” means that a particular feature, structure, or characteristic
described in connection with the embodiment is included in at least one
embodiment of the invention. The appearances of the phrase “in one
embodiment” in various places in the specification do not necessarily all refer to
the same embodiment.

[0026] Figure 1 is a block diagram illustrating a system configuration
according to one embodiment of the invention. Figure 1 illustrates a simplified
diagram of the interaction between a client process and an operating system

having an I/O system that uses device drivers for processing /O requests. This

4-

WO 2008/085343 PCT/US2007/025850

diagram is representative, for example, of Mac OS from Apple Computer or
Windows operating system from Microsoft Corporation. The diagram of Figure 1
may also represent any operating system which uses device drivers for processing
I/O requests.

[0027] Referring to Figure 1, according to one embodiment, system
configuration 100 includes an operating system environment having a user space
101 (also referred to as user mode) and a kernel space 102 (also referred to as
kernel mode) to allow certain software components to communicate with certain
hardware components (e.g., devices) installed in hardware space 103. For
example, client process 104 makes use of operating system services 105 to
perform /O requests. This is typically achieved by client process 104 making a
call to an application program interface (API) function provided by the operating
system. Calling the appropriate API function ultimately results in a call to
operating system services 105.

[0028] Client process 104 is illustrated as operating in “user” mode and the
operating system surfaces are illustrated as operating in "kernel” mode. Modern
operating systems typically provide a robust environment for various application
programs and intuitive user interfaces. Such operating systems normally have
different operating levels or "modes," depending on the level of sophistication of
the operating system and the security features that are implemented by the
operating system. Normal application programs typically run at the lowest
priority and have a full complement of security devices in place to prohibit
interference with other applications, or with other layers of the operating system.
[0029] Hardware and other services provided by the operating system are
accessed through controlled interfaces or mechanisms which limit the ability of a
user application or other process in the user mode to "crash" the system. This
lowest priority mode is typically referred to as a user mode and is the mode that
most computer users are familiar with. Because of the close integration of drivers
with their associated hardware and because of the time critical nature of the tasks
that many drivers perform, drivers typically run in an operating system mode that

has a much higher priority and a much lower security protection. This mode is

-5-

WO 2008/085343 PCT/US2007/025850

generally referred to as a “kernel” mode. Placing the drivers and other operating
system services in the kernel mode allows the operating system to run at a higher
priority and perform many functions that would not be possible from user mode.
[0030] Referring back to Figure 1, when client process 104 makes a call to
OS services 105, the call is routed to one of the device drivers 108-109 via
Device Manager 106 (also referred to as an I/O manager). In addition, device
manager 106 maintains a device information base 107. Device information base
107 is used to store any information regarding device drivers 108-109 and the
associated devices 110-111. For example, device information base 107 may
include a data structure, such as, for example, a device tree having multiple
nodes in a hierarchical structure, where each node represents a device (e.g.,
devices 110-111) installed within the system 100. Each node may be associated
with a device driver (e.g., deQice drivers 108-109) that supports the associated
device.

[0031] In one embodiment, the information stored in device information base
107 may be initially stored in a storage, such as, for example, ROM, of the
system 100. When system 100 is initialized (e.g., boot), the information is read
from the storage to construct a data structure loaded in a memory (e.g., main
memory or RAM), also referred to as a device tree plane. In addition, during the
initialization, each node of the data structure is processed to identify a proper
device driver to be associated with the respective node. The data structure
having each node matched with a proper device driver is referred to as a service
plane. Note that throughout this application, a device tree is used as an example
of a data structure for storing relationship amongst the devices installed in the
system. However, it is not so limited; other types of data structures may also be
utilized.

[0032] Figure 2 illustrates a logical representation of a simplified device tree
database according to one embodiment of the invention. This device tree 200 is a
database stored in computer memory as is a hierarchical tree composed of device
nodes such as nodes 201-211. This device tree 200 is constructed during the

initialization of the system 100 of Figure 1 (e.g., during "boot") and may be

-6-

WO 2008/085343 PCT/US2007/025850

altered thereafter. A number of different procedures can be used within the
present invention to generate a listing of devices coupled within the computer
system 100. One such procedure is the IEEE 1275 firmware procedure that is
used by one embodiment of the present invention.

[0033] The device tree 200 begins as a single root node 201 that may
represent the CPU's memory bus. All I/O buses and attached devices are assumed
to descend from this single root or "node" 201. Layers descending the device tree
200 are dependent on the operation of devices associated with nodes above them.
Buses are parent nodes and devices for the leaf nodes of the device tree 200. A
complete device tree 200 represents the device topology of the computer system.
A bus node in the device tree represents an I/O address space. Each device on a
bus operates within the address space supported by its parent bus. Buses also
contain information regarding interrupts, so that a device can request service
from a driver. It is appreciated that drivers of embodiments of the present
invention are matched to devices, but not to buses. In the device tree 200, buses
can lead to other buses. A node of the device tree 200 that corresponds to a
device is called a "device node." Devices added to the computer system will be
added to the device tree 200 upon initialization of the computer system.

[0034] Embodiments of the invention use information described above in a
service plane which is essentially a copy of pertinent information obtained from
the device tree 200 with an associated driver associated with each device.

[0035] Referring to Figure 2, an exemplary device tree 200 may be generated
by firmware upon the initialization of the computer system 100 of Figure 1.
While a portion of the information contained in the device tree 200 is utilized by
the embodiments of the invention, the actual (complete) copy of the device tree
200 as generated by the firmware needs to be used. At system initialization,
devices communicate their presence to firmware which cooperates with the
operating system to construct the device tree 200 (also referred to as a device tree
plane). Information of the device tree 200 used by the present invention can be
constructed under the IEEE 1275 standard which is well known in the art and is

not described herein. The device tree 200 can be modified by the computer

-7-

WO 2008/085343 PCT/US2007/025850

system's operating system from time to time as required or instructed. Note that
device tree 200 is shown for the purposes of illustration only. Other formats or
architectures may also be utilized.

[0036] Figure 3A is a block diagram illustrating a data structure representing
a device tree according to one embodiment. For example, data structure 300 may
be used to represent device tree 200 of Figure 2. Referring to Figure 3A, data
structure 300 includes multiple fields or attributes to represent each of the
devices installed in the system such as, for example, each device node as shown
in Figure 2. Data structure 300 includes a root device 301 which may represent
device 201 of Figure 2. As described above, a root device may represent a CPU,
a chipset, or both of a computer system. In addition, data structure 300 includes
multiple child devices 302-303 and 306-307 under the root device 301. For
example, child devices 302-303 may represent some of device nodes 204-207 of
Figure 2, while child devices 306-307 may represent some of device nodes 208-
211 of Figure 2.

[0037] Each device includes a device name for identifying a corresponding
device in a device name space and one or more properties specifying information
associated with the respective device. For example, device 302 includes a device
name 304 and a property attribute having a property field 305 having one or more
properties. Each property is identified by a property name (e.g., property names
308-309) and property data (e.g., data fields 310-311), similar to a key-value pair
configuration.

[0038] Data structure 300 may be presented to the operating system and
drivers by associated descriptive pieces of data (e.g., properties) that are within
each node. A device name may be used as a primary basis for matching a driver
to a device. A name property may be implemented as a null-terminated string of
characters or alternatively, by a UUID (universally unique identifier) or GUID
(global unique identifier). Device nodes may also contain a property that
indicates compatible devices (not shown) to the corresponding device name.
[0039] Referring to Figure 3A, root device 301 may further include an

optional dictionary 312 for storing relationship between a device and a handle of

-8-

WO 2008/085343 PCT/US2007/025850

the associated device driver. An example of a dictionary is shown in Figure 3B.
Alternatively, dictionary 312 may be implemented as a separate data structure or
table accessible by the root device 301. Further, each device such as device 302
may further include an optional driver field 313 to store a handle of a
corresponding driver supporting the respective device. Alternatively, the driver
handle 313 may be specified via dictionary 312 as shown in Figure 3B. Note that
the data structure 300 is shown for the purposes of illustration only. Other
formats or architectures may also be utilized.

[0040] Figure 3B is a block diagram illustrating a data structure representing
an example of a dictionary, such as, for example, dictionary 312 of Figure 3A. In
one embodiment, dictionary 350 includes multiple entries, each corresponding to
a unique device installed in the system supported by a unique driver. In one
embodiment, each entry includes a first field 351 to store a device identifier and a
second field 352 to store a driver identifier of a device driver supporting the
device identified by the first field 351. A device identifier may be a device name
or UUID/GUID. A driver identifier may be a handle of a device driver, also
referred to as a pointer pointing to a memory location of a device driver currently
loaded in memory (e.g., an entry point of the driver loaded in certain areas of the
main memory).

[0041] According to one embodiment, dictionary 350 may be constructed
during initialization of a computer system or operating system. In a particular
embodiment, when the system is initialized (e.g., boot), a device tree stored in a
storage (e.g., ROM) is fetched to form a device tree plane. For each device
identified in the device tree plane, the identified device is checked against each
entry of the dictionary. An identifier of the device (e.g., device name or
UUID/GUID) may be inserted into the first field 351. In addition, a matched
device driver is identified loaded and its driver handle is inserted into the second
field 352. Note that the data structure 350 is shown for the purposes of
illustration only. Other formats or architectures may also be utilized.

[0042] According to one embodiment, root device 301 may maintain an API

to allow any of the child devices to inquire whether there is another driver or

9.

WO 2008/085343 PCT/US2007/025850

another instance of a driver supporting the same device. As described above,
certain devices may be supported by the same driver. However, under certain
circumstances, only one instance of the same driver is allowed to load. In one
embodiment, when a first instance of a device driver is initialized in preparing to
be loaded, the first instance of the driver calls the API, in this example, the root
device, to determine whether a second instance of the same driver has already
been loaded.

[0043] In response, a function providing the API performs a lookup operation
into the dictionary to determine whether a second instance of the same driver has
been loaded. In one embodiment such a function may be part of a kernel
function. Alternatively, such a functionality may be provided by a dedicated
component of an operating system. For example, the kernel may look up based
on a device name provided by the first instance and based on the device name, to
determine whether a driver handle exist in the corresponding second field 352. If
the corresponding second field 352 is empty, it means that no driver has been
loaded for this device. The kernel may insert the driver handle of the first
instance into the corresponding second field 352 indicating the first instance of
driver has been loaded. Otherwise, according to one embodiment, the kernel may
return a driver handle from the corresponding second field 352 indicating another
instance of the same driver has been loaded. Based on a result of calling the API,
the first instance driver may act properly, such as, for example, unload itself.
Other configurations may exist.

[0044] Figure 4A is a block diagram illustrating a system configuration
according to one embodiment of the invention. For example, system 400 may be
implemented as part of system 100 of Figure 1. Referring to Figure 4A, system
400 includes a driver coordinator 401 communicating with one or more drivers
or instances of drivers 403-404 via an API 402. For example, driver coordinator
401 may be a root device of a device tree, such as, for example, root device 201
of device tree 200 as shown in Figure 2. Alternatively, driver coordinator 401
may be a kernel component of an operating system, such as, for example, an IO

manager or a device manager. In one embodiment, driver coordinator 401

-10-

WO 2008/085343 PCT/US2007/025850

maintains an API 402 to allow any of the drivers or instances of drivers 403-404
to determine whether there is another related driver.

[0045] For example, for illustration purposes only, a first instance 403 of a
driver may invoke API 402 to communicate with component 401 in an attempt to
determining whether there is another instance of the same driver existing or
already started. When instance 403 calls the API 402, it passes its device
identifier (e.g., device name or UUID/GUID associated with the device) to the
driver coordinator 401. In one embodiment, the first instance 403 may retrieve
its device identifier from a corresponding device node of device tree 405 which
may be implemented in a data structure representing at least a portion of a device
tree such as device tree 200 of Figure 2. In response to the calling of the AP1 402,
driver coordinator 401 may perform a lookup operation into data structure 405 to
determine whether another instance of the same driver has been loaded or started.
If there is another instance of a driver has been started, driver coordinator 401
may return a driver identifier (e.g., driver handle) of the existing driver to the
caller. Otherwise, driver coordinator 401 may insert caller’s driver identifier into
the data structure 405.

[0046] According to certain embodiments of the invention, API 402 may also
be used by drivers or instances of drivers 403-404 to communicate with each
other, based on information stored within a device tree (e.g., data structure 405).
For example, one driver or driver instance may communicate with another driver
or driver instance based on the information stored within a device tree or data
structure.

[0047] Figure 4B is a flow diagram illustrating a process for managing device
drivers according to one embodiment of the invention. Note that process 450
may be performed by processing logic which may include software, hardware, or
a combination of both. For example, process 450 may be performed by a kernel
(e.g., 10 manager or device manager) of an operating system of a data processing
system such as system 100 of Figure 1 or system 400 of Figure 4A.

[0048] Referring to Figure 4B, at block 451, data representing a device tree is

retrieved from a storage, such as, for example ROM (read-only memory) of a

-11-

WO 2008/085343 PCT/US2007/025850

data processing system. The device tree includes multiple device nodes and each
node represents a device installed in the system. The data may be retrieved by a
kernel component of an operating system, such as, for example, IO manager or
device manager. The data may be retrieved via IEEE 1275 protocol. Note that
the retrieved data may not necessarily in a tree style structure. Other
configurations may also be utilized.

[0049] In response to the data representing a device tree, at block 452, the
kernel forms a device tree plane based on the data retrieved from the storage and
loads the device tree plane in memory (e.g., main memory or RAM). At block
453, the kernel creates a dictionary or data structure having entries, each entry
corresponding to a device. Each entry includes a first field to store an identifier
of a device (e.g., device name or UUID/GUID) and a second field to store an
identifier of a driver (e.g., driver handle or pointer) associated with the device.
At block 454, the kernel maintains an API to allow an instance of a driver to call
in order to determine whether another instance of the driver has been loaded or
started, based on information obtained from the device tree plane and/or
dictionary. At block 455, the kernel also provides a mechanism based on the
device tree plane and/or dictionary to allow a driver to communicate (e.g.,
invocation) with another driver at runtime. Other operations may also be
performed.

[0050] Figures 5A-5C are diagrams illustrating an example of a system
configuration according to one embodiment. Note that Figures SA-5C are shown
and described for illustration purposes only. Figure 5A illustrates an example of
a device tree, device tree plane, and/or a service plane according to one
embodiment. Referring to Figure 5A, device tree 500 includes a root device 501
having multiple child devices, such as, for example, SOC (system on a chip)
device 502. Device 502 also includes multiple child devices, such as, for
example, I12S (integrated interchip sound) device or controller 504 and I12C (inter-
integrated circuit) device or controller 503. The I2S controller 504 has one or

more child devices, such as, for example, an audio control device 506. The I2C

-12-

WO 2008/085343 PCT/US2007/025850

controller 503 has one or more child devices, such as, for example, an audio data
device 505.

[0051] In this example, audio control device 505 is responsible for handling
audio control signals while audio data device 506 is responsible for handling
audio data signals. Although audio control device 505 and audio data device 506
are considered as two devices; they may be supported or serviced by the same
audio driver 507. Figure 5B is a diagram illustrating a data structure representing
device 500 of Figure SA. As shown in Figure 5B, both audio control device 505
and audio data device 506 have a name property (e.g., properties 507-508) of
“Audio0” to indicate they are associated with the same device driver. Figure 5C
is a block diagram illustrating the corresponding dictionary maintained by the
kernel. As shown in Figure 5C, there is only one entry corresponding to the
name of “Audio0”.

[0052] During initialization of the system, for the illustration purposes, as the
kernel of an operating system “walks” through the device tree 500, a driver or an
instance of a driver associated each device node is launched and initialized. For
example, when audio control device 505 is initialized, a first instance of audio
driver 507 associated with audio control device 505 is launched. The first
instance may invoke the API (e.g., FindCo-provider) provided by the kernel to
determine whether there is another instance of the same driver, in this example, a
second instance of driver 507 associated with audio data device 506. In this
example, if the second instance of the audio driver has already been launched, the
corresponding entry of the dictionary as shown in Figure 5C should have already
included a driver handle of the second instance. As a result, the invocation of the
API may return the driver handle of the second instance.

[0053] On the other hand, if there is no existing driver instance registered
with the dictionary, the kernel may insert the driver handle of the first instance
into the corresponding entry of the dictionary. Based on the result of the
invocation of the API, the first instance can decide whether the respective
instance should continue to start. In one embodiment, when the first instance of

the audio driver determines that, based on calling the API (e.g., FindCo-

-13-

WO 2008/085343 PCT/US2007/025850

provider), the second instance of the audio driver has already been loaded, the
first instance may unload itself. As a result, only instance of the same driver will
be loaded in the memory.

[0054] Figure 6A is a flow diagram illustrating a process performed by an
instance of a driver according to one embodiment. Note that process 600 may be
performed by processing logic which may include software, hardware, or a
combination of both. For example, process 600 may be performed by the kernel
when initializing a device driver. Referring to Figure 6A, at block 601, the
kernel creates a new driver object for a node of a device tree, where the new
driver object is identified by an identifier (e.g., driver handle or pointer). At
block 602, the kernel calls an initialization routine of the new driver object which
invokes an API of the kernel (e.g., FindCo-provider) to determine whether there
is another driver instance has been already loaded. At block 603, if there is no
other driver instance existing, the kernel starts the new driver object. Otherwise,
at block 604, the kernel unloads the newly created driver object.

[0055] Figure 6B is a flow diagram illustrating a process of an APl of a
kernel according to one embodiment of the invention. Note that process 650 may
be performed by processing logic which may include software, hardware, or a
combination of both. For example, process 650 may be performed by the kernel
to provide an API (e.g., FindCo-provider) to enable device drivers to determine
whether there is an instance of a driver has been started. Referring to Figure 6B,
at block 651, the kernel receives, as part of an AP, a request from a first driver
instance associated with a first device node of a device tree to determine whether
a second driver instance associated with a second device node exists. The first
and second device nodes are supported by the same driver. At block 652, the
kernel performs a lookup operation in a dictionary having entries, where each
entry representing a device having a unique device name and its associated
driver. At block 653, based on a device name extracted from the request, the
kernel identifies the corresponding entry and determine whether the entry is
already associated with a driver (e.g., the corresponding entry includes a driver

handle of the driver). At block 654, if there is no driver handle exists, insert an

-14-

WO 2008/085343 PCT/US2007/025850

identifier of the first driver instance in the entry of the dictionary and returns the
identifier of the first driver instance. Otherwise, at block 655, the kernel returns
the driver identifier exists in the dictionary. Other operations may also be
performed. Figures 7A-7D illustrate pseudo codes of certain routines
representing at least some of the operations described above.

[0056] According to certain embodiments of the invention, certain properties
of a device node in a device tree may be used to encode information regarding
another device node and/or a device driver of that device node. As aresult, a
driver of a first device node may invoke or communicate with a driver of a
second device node using property information retrieved from the device tree.
For example, based on the information retrieved from a device tree, a first driver
may communicate with the kernel to receive a driver handle of a second driver
and call the second driver via the driver handle of the second driver.
Alternatively, the first driver may instruct the kernel to directly call the second
driver based on the information retrieved from the device tree. In these
examples, the second driver being called may not need to know who is calling
and the first driver does not need to know where to call the second driver. That
is, the first driver may know that someone else can help on certain functionality,
but it does not know who has the capability of performing such functionality.
[0057] Figure 8 is a diagram illustrating an example of a device tree where a
device node encodes information regarding another device node, according to
one embodiment of the invention. Referring to Figure 8, device tree 800 includes
a root device 801 having one or more child device nodes 802-803. Note that
there may be one or more device nodes (e.g., intermediate nodes or parent/sub-
parent nodes) between device nodes 802-803 and root device 801. Device node
802 is associated with a data structure 805 representing properties or attributes of
device node 802. Like wise, device node 803 is associated with a data structure
806 representing properties or attributes of device node 803.

[0058] In one embodiment, for example, data structure 805 of device node
802 includes information encoded as part of property 807 regarding another

device node 803 and/or a device driver associated with device node 803. Based

-15-

WO 2008/085343 PCT/US2007/025850

on the encoded information retrieved from property 807, a driver associated with
device node 802 may locate a driver associated with device node 803 and invoke
the driver associated with device node 803. This is typically useful when one
driver of a device is responsible of certain functionality (e.g., control and data
signal communications) while another driver is responsible for other
functionality of the same device (e.g., power management or clock signal
control).

[0059] For example, based on information extracted from property 807, a
first driver of first device node 802 may communicate with the root device 801 or
kernel to locate a second driver of device node 803. In a particularly,
embodiment, property 807 may include an identifier regarding device node 803,
such as, for example, a device name. When the first driver needs to invoke the
second driver, although the first driver does not know who and where the second
driver is, the first driver (or its parent) retrieves the encoded information from the
device tree. The first driver then communicates with the kernel with the
retrieved information. Based on the information provided by the first driver, the
kernel (e.g., root device 801) performs a lookup operation in dictionary 804 to
determine a driver identifier (e.g., driver handle) of the second device node 803.
The kernel returns the driver handle of device node 803 back to the first driver
and thereafter, the first driver may invoke the second driver via the associated
driver handle. Alternatively, the kernel may directly invoke the second driver.
Other configurations may exist.

[0060] Figure 9 is a diagram illustrating a particular example of having
information encoded within a device node to allow the device node to invoke a
driver of another device node, according to one embodiment of the invention. In
this example, device tree 900 is implemented using object oriented techniques
which resembles the architecture of the device tree 900. Referring to Figure 9,
device tree 900 includes a root device node 901 having child device nodes 902-
904 on one branch and one or more device nodes such as device node 905 on
another branch. Each of the device nodes 901-905 is associated with a class of

function and data members 906-910.

-16-

WO 2008/085343 PCT/US2007/025850

[0061] Note that in this example, C/C++ is used as an example of object
oriented programming (OOP) language; however, other OOP languages may also
be applied. It will be appreciated that an OOP language is not required to
practice embodiments of the invention. Other non-OOP programming languages
(e.g., assembly) may also be utilized. Other programming languages (e.g.,
assembly) may also be utilized. Referring to Figure 9, when device node 904
needs to invoke a driver 910 of device node 905 to control clock signals of a
device associated with device node 904, such as, for example, turning off the
clock, its corresponding function member 909 invokes its parent (e.g.,
“provider”) function 908. Within the function 908, the encoded information is
retrieved from the device tree (e.g., getProperty). In this example, data of a
property of “clock_gates” under device node 903 is retrieved. Thereafter, the
parent function 907 of function 908 is invoked which in turn communicates with
function 906 of root device node 901. Based on the encoded information
retrieved from the device tree, function 906 determines (e.g., via dictionary) a
driver handle of driver associated with 905 and the corresponding function
member 910. Thereafter, function 910 is called. As a result, a driver associated
with device node 904 can invoke a driver associated with device node 905 based
on information extracted from the device tree.

[0062] Figure 10 is a flow diagram illustrating a process that enables a driver
to communicate with another driver using a device tree according to one
embodiment of the invention. Note that process 1000 may be performed by
processing logic which may include software, hardware, or a combination of
both. Referring to Figure 10, at block 1001, a first driver of a first device node in
a device tree retrieves information from the device tree regarding a particular
functionality that can be operated on the associated device. At block 1002, the
first driver communicates with the kernel of an operating system and provides the
retrieved information to the kernel for requesting a driver identified by the
information to be invoked. At block 1003, the kernel identifies, via dictionary, a
second driver that is capable of perform such functionality based on the provided

information. At block 1004, the kernel retrieves a driver handle of the second

-17-

WO 2008/085343 PCT/US2007/025850

driver from the dictionary and returns the driver handle to the first driver. At
block 1005, the first driver invokes the second driver using the driver handle
returned from the kernel. Other operations may also be performed.

[0063] Figure 11 is a block diagram of a digital processing system, which
may be used with one embodiment of the invention. For example, the system
1100 shown in Figure 11 may be used as a system as described above with
respect to Figures 1 and/or 4A. Note that while Figure 11 illustrates various
components of a computer system, it is not intended to represent any particular
architecture or manner of interconnecting the components, as such details are not
germane to the present invention. It will also be appreciated that network
computers, handheld computers, cell phones and other data processing systems
which have fewer components or perhaps more components may also be used
with the present invention.

[0064] As shown in Figure 11, the system 1100, which is a form of a data
processing system, includes a bus or interconnect 1102 which is coupled to one
or more microprocessors 1103 and a ROM 1107, a volatile RAM 1105, and a
non-volatile memory 1106. The microprocessor 1103, which may be, for
example, a PowerPC G4 or PowerPC G5 microprocessor from Motorola, Inc. or
IBM, is coupled to cache memory 1104 as shown in the example of Figure 11.
The bus 1102 interconnects these various components together and also
interconnects these components 1103, 1107, 1105, and 1106 to a display
controller and display device 1108, as well as to input/output (I/O) devices 1110,
which may be mice, keyboards, modems, network interfaces, printers, and other
devices which are well-known in the art.

[0065] Typically, the input/output devices 1110 are coupled to the system
through input/output controllers 1109. The volatile RAM 1105 is typically
implemented as dynamic RAM (DRAM) which requires power continuously in
order to refresh or maintain the data in the memory. The non-volatile memory
1106 is typically a magnetic hard drive, a magnetic optical drive, an optical drive,

or a DVD RAM or other type of memory system which maintains data even after

18-

WO 2008/085343 PCT/US2007/025850

power is removed from the system. Typically, the non-volatile memory will also
be a random access memory, although this is not required.

[0066] While Figure 11 shows that the non-volatile memory is a local device
coupled directly to the rest of the components in the data processing system, the
present invention may utilize a non-volatile memory which is remote from the
system; such as, a network storage device which is coupled to the data processing
system through a network interface such as a modem or Ethernet interface. The
bus 1102 may include one or more buses connected to each other through various
bridges, controllers, and/or adapters, as is well-known in the art. In one
embodiment, the /O controller 1109 includes a USB (Universal Serial Bus)
adapter for controlling USB peripherals. Alternatively, I/O controller 1109 may
include an IEEE-1394 adapter, also known as FireWire adapter, for controlling
FireWire devices.

[0067] Figure 12 is a block diagram of a digital processing system, which
may be used with another embodiment of the invention. For example, the system
1200 shown in Figure 12 may be used as a system as described above with
respect to Figures 1 and/or 4A. The data processing system 1200 shown in Figure
12 includes a processing system 1211, which may include one or more
microprocessors, or which may be a system on a chip integrated circuit, and the
system also includes memory 1201 for storing data and programs for execution
by the processing system. The system 1200 also includes a media (e.g.,
audio/video) input/output subsystem 1205 which may include, for example, a
microphone and a speaker for, for example, playing back music or providing
telephone functionality through the speaker and microphone. A display
controller and display device 1207 provide a visual user interface for the user.
[0068] This digital interface may include a graphical user interface which is
similar to that shown on a typical computer, such as, for example, a Macintosh
computer when running OS X operating system software. The system 1200 also
includes a communication interface (e.g., wired or wireless communication
interface) 1203, such as, for example, one or more wireless transceivers to

communicate with another system or device. A wireless transceiver may be a

-19-

WO 2008/085343 PCT/US2007/025850

WiFi transceiver, an infrared (IR) transceiver, a Bluetooth transceiver, and/or a
wireless cellular telephony transceiver. It will be appreciated that additional
components, not shown, may also be part of the system 1200 in certain
embodiments, and in certain embodiments fewer components than shown in
Figure 12 may also be used in a data processing system.

[0069] The data processing system 1200 also includes one or more input
devices 1213 which are provided to allow a user to provide input to the system.
These input devices may be a keypad or a keyboard or a touch panel or a multi
touch panel. Alternatively, input devices 1213 may include a voice interactive
interface that can receive and interact with a voice command. The data
processing system 1200 also includes an optional input/output device 1215 which
may be a connector for a dock. It will be appreciated that one or more buses, not
shown, may be used to interconnect the various components as is well known in
the art. The data processing system shown in Figure 12 may be a handheld
computer or a personal digital assistant (PDA), or a cellular telephone with PDA
like functionality, or a handheld computer which includes a cellular telephone, or
a media player, such as an iPod, or devices which combine aspects or functions
of these devices, such as a media player combined with a PDA and a cellular
telephone in one device. In other embodiments, the data processing system 1200
may be a network computer or an embedded processing device within another
device, or other types of data processing systems which have fewer components
or perhaps more components than that shown in Figure 12.

[0070] At least certain embodiments of the inventions may be part of a
digital media player, such as a portable music and/or video media player, which
may include a media processing system to present the media, a storage device to
store the media and may further include a radio frequency (RF) transceiver (e.g.,
an RF transceiver for a cellular telephone) coupled with an antenna system and
the media processing system. In certain embodiments, media stored on a remote
storage device may be transmitted to the media player through the RF
transceiver. The media may be, for example, one or more of music or other

audio, still pictures, or motion pictures.

220-

WO 2008/085343 PCT/US2007/025850

[0071] The portable media player may include a media selection device, such
as a click wheel input device on an iPod® or iPod Nano® media player from
Apple Computer, Inc. of Cupertino, CA, a touch screen input device, pushbutton
device, movable pointing input device or other input device. The media selection
device may be used to select the media stored on the storage device and/or the
remote storage device. The portable media player may, in at least certain
embodiments, include a display device which is coupled to the media processing
system to display titles or other indicators of media being selected through the
input device and being presented, either through a speaker or earphone(s), or on
the display device, or on both display device and a speaker or earphone(s).
Examples of a portable media player are described in published U.S. patent
application numbers 2003/0095096 and 2004/0224638, both of which are
incorporated herein by reference. Other configurations may exist.

[0072] Some portions of the preceding detailed descriptions have been
presented in terms of algorithms and symbolic representations of operations on
data bits within a computer memory. These algorithmic descriptions and
representations are the ways used by those skilled in the data processing arts to
most effectively convey the substance of their work to others skilled in the art.
An algorithm is here, and generally, conceived to be a self-consistent sequence of
operations leading to a desired result. The operations are those requiring physical
manipulations of physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals capable of being stored,
transferred, combined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
[0073] 1t should be borne in mind, however, that all of these and similar
terms are to be associated with the appropriate physical quantities and are merely
convenient labels applied to these quantities. Unless specifically stated otherwise
as apparent from the above discussion, it is appreciated that throughout the
description, discussions utilizing terms such as "processing" or "computing” or

"calculating” or "determining" or "displaying" or the like, refer to the action and

21-

WO 2008/085343 PCT/US2007/025850

processes of a computer system, or similar electronic computing device, that
manipulates and transforms data represented as physical (electronic) quantities
within the computer system's registers and memories into other data similarly
represented as physical quantities within the computer system memories or
registers or other such information storage, transmission or display devices.
[0074] Embodiments of the present invention also relate to an apparatus for
performing the operations herein. This apparatus may be specially constructed
for the required purposes, or it may comprise a general-purpose computer
selectively activated or reconfigured by a computer program stored in the
computer. Such a computer program may be stored in a computer readable
storage medium, such as, but is not limited to, any type of disk including floppy
disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), erasable programmable ROMs
(EPROMs), electrically erasable programmable ROMs (EEPROMs), magnetic or
optical cards, or any type of media suitable for storing electronic instructions, and
each coupled to a computer system bus.

[0075] The algorithms and displays presented herein are not inherently
related to any particular computer or other apparatus. Various general-purpose
systems may be used with programs in accordance with the teachings herein, or it
may prove convenient to construct more specialized apparatus to perform the
required method operations. The required structure for a variety of these systems
will appear from the description below. In addition, embodiments of the present
invention are not described with reference to any particular programming
language. It will be appreciated that a variety of programming languages may be
used to implement the teachings of embodiments of the invention as described
herein.

[0076] A machine-readable medium may include any mechanism for storing
or transmitting information in a form readable by a machine (e.g., a computer).
For example, a machine-readable medium includes read only memory (“ROM”);

random access memory (“RAM”); magnetic disk storage media; optical storage

22

WO 2008/085343 PCT/US2007/025850

media; flash memory devices; electrical, optical, acoustical or other form of
propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.); etc.
[0077] In the foregoing specification, embodiments of the invention have
been described with reference to specific exemplary embodiments thereof. It will
be evident that various modifications may be made thereto without departing
from the broader spirit and scope of the invention as set forth in the following
claims. The specification and drawings are, accordingly, to be regarded in an

illustrative sense rather than a restrictive sense.

3.

WO 2008/085343 PCT/US2007/025850

CLAIMS

What is claimed is:

1. A machine-implemented method for managing device drivers of devices
in a computer, the method comprising:
providing an application programming interface (API) within a kernel of
an operating system (OS) running within a computer, the API
being accessible by a plurality of device drivers associated with a
plurality of devices in the computer; and
in response to a request from a first instance of a device driver via the
API, returning information indicating whether a second instance

of the device driver is currently loaded within the kernel.

2. The method of claim 1, wherein each of the plurality of devices is
represented by a node of a device tree having a hierarchical structure, and
wherein the API is maintained by a node that is a most top node in the device

tree.

3. The method of claim 1, further comprising, in response to the request and
as part of the API, accessing a data structure having a plurality entries
corresponding to the plurality of devices in the computer, wherein each entry
includes a first field to store an identifier of a corresponding device and a second
field to store a handle of a device driver currently associated with the

corresponding device.

4. The method of claim 3, further comprising acquiring a lock prior to
accessing the data structure to prevent others from accessing the data structure
and releasing the lock after accessing the data structure to allow others to access

the data structure.

24-

WO 2008/085343 PCT/US2007/025850

5. The method of claim 3, further comprising:
the API inserting a first handle of the first instance of the device driver in
the second field of a corresponding device in the data structure if
the second field is empty; and

the API returning a first handle of the first instance of the device driver.

6. The method of claim 5, further comprising starting the first instance of

the device driver if the second field of the corresponding device is empty.

7. The method of claim 5, further comprising the API returning a second
handle of the second instance of the device driver retrieved from the second field
of the corresponding device if the second stance of the device driver is currently

associated with the corresponding device.

8. The method of claim 7, further comprising unloading the first instance of

the device driver if the second instance of the device driver is currently loaded.

9. The method of claim 3, wherein each of the plurality of devices is
represented by a node of a device tree having a hierarchical structure, each being
associated with a device driver, wherein the first instance of the device driver is
associated with a first device node and the second instance of the device driver is
associated with a second device node of the device tree, and wherein devices
corresponding to the first and second device nodes are supported by the same

device driver.

10. The method of claim 9, wherein the first device node includes a property
attribute to store a first identifier of a device corresponding to the first device
node and the second device node includes a property attribute to store a second
identifier of a device corresponding to the second device node, and wherein the
first and second identifiers are used by the API to determine which of the first

and second instances of the device driver is loaded.

5.

WO 2008/085343 PCT/US2007/025850

11. The method of claim 10, wherein the first and second identifiers are
identical and unique in the device tree, which indicates that the first and second

device nodes are supported by the same device driver.

12. A machine-readable medium having instructions stored herein, which
when executed by a computer, cause a machine to perform a method, the method
comprising:
providing an application programming interface (API) within a kernel of
an operating system (OS) running within a computer, the API
being accessible by a plurality of device drivers associated with a
plurality of devices in the computer; and
in response to a request from a first instance of a device driver via the
API, returning information indicating whether a second instance

of the device driver is currently loaded within the kernel.

13. The machine-readable medium of claim 12, wherein each of the plurality
of devices is represented by a node of a device tree having a hierarchical
structure, and wherein the API is maintained by a node that is a most top node in

the device tree.

14. The machine-readable medium of claim 12, wherein the method further
comprises, in response to the request and as part of the API, accessing a data
structure having a plurality entries corresponding to the plurality of devices in the
computer, wherein each entry includes a first field to store an identifier of a
corresponding device and a second field to store a handle of a device driver

currently associated with the corresponding device.

15. The machine-readable medium of claim 14, wherein the method further

comprises acquiring a lock prior to accessing the data structure to prevent others

-26-

WO 2008/085343 PCT/US2007/025850

from accessing the data structure and releasing the lock after accessing the data

structure to allow others to access the data structure.

16. The machine-readable medium of claim 14, wherein the method further
comprises:
the API inserting a first handle of the first instance of the device driver in
the second field of a corresponding device in the data structure if
the second field is empty; and

the API returning a first handle of the first instance of the device driver.

17. The machine-readable medium of claim 16, wherein the method further
comprises starting the first instance of the device driver if the second field of the

corresponding device is empty.

18. The machine-readable medium of claim 16, wherein the method further
comprises the API returning a second handle of the second instance of the device
driver retrieved from the second field of the corresponding device if the second

stance of the device driver is currently associated with the corresponding device.

19. The machine-readable medium of claim 18, wherein the method further
comprises unloading the first instance of the device driver if the second instance

of the device driver is currently loaded.

20. The machine-readable medium of claim 14, wherein each of the plurality
of devices is represented by a node of a device tree having a hierarchical
structure, each being associated with a device driver, wherein the first instance of
the device driver is associated with a first device node and the second instance of
the device driver is associated with a second device node of the device tree, and
wherein devices corresponding to the first and second device nodes are supported

by the same device driver.

27-

WO 2008/085343 PCT/US2007/025850

21. The machine-readable medium of claim 20, wherein the first device node
includes a property attribute to store a first identifier of a device corresponding to
the first device node and the second device node includes a property attribute to
store a second identifier of a device corresponding to the second device node, and
wherein the first and second identifiers are used by the API to determine which

of the first and second instances of the device driver is loaded.

22. The machine-readable medium of claim 21, wherein the first and second
identifiers are identical and unique in the device tree, which indicates that the

first and second device nodes are supported by the same device driver.

23. An apparatus for managing device drivers of devices in a computer, the
method comprising:
means for providing an application programming interface (API) within a
kernel of an operating system (OS) running within a computer, the
API being accessible by a plurality of device drivers associated
with a plurality of devices in the computer; and
in response to a request from a first instance of a device driver via the
API, means for returning information indicating whether a second

instance of the device driver is currently loaded within the kernel.

24. A computer system architecture, comprising:

a plurality of device drivers loaded in a kernel of an operating system of a
computer, each of the device drivers corresponding to a device
presented in the computer; and

an application programming interface (API) for coupling the kernel with
the plurality of device drivers, the API enabling an instance of a
device driver to communicate with the kernel to determine

whether another instance of the device driver is currently loaded.

8-

WO 2008/085343 PCT/US2007/025850

25. The architecture of claim 23, wherein the AP is invoked during an

initialization of the instance of the device driver.

26. The architecture of claim 23, further comprising a device map maintained
by the kernel, the device map having a plurality of entries and each
corresponding to a device, wherein the device map is accessible by the kernel as
part of the API to determine whether an instance of a device driver for a

particular device is loaded.

27. The architecture of claim 25, wherein the device map includes a first field
to store an identifier of a corresponding device and a second field to store a

driver handle of a device driver associated with the corresponding device.

28. The architecture of claim 26, wherein the API returns a driver handle of
an existing driver specified in a second field of a device, indicating that the

existing driver has been loaded.

29. A computer implemented method, comprising:
a first instance of a driver calling an application programming interface
(API) maintained by a kernel of an operating system, the first
instance of the driver being identified via a first driver identifier;
and
in response to a result of calling the API, the first instance of the driver
determining whether a second instance of the driver has been

initialized.

30. The method of claim 29, further comprising examining a second driver
identifier returned by the API to determine whether the first and second driver

identifiers are identical.

31. The method of claim 30, further comprising:

-29.

WO 2008/085343 PCT/US2007/025850

starting the first instance of the driver if the first and second driver
identifiers are identical; and
unloading the first instance of the driver if the first and second driver

identifiers are different.

32. A machine-readable medium having instructions stored therein, which
when executed by a machine, cause a machine to perform a method, the method
comprising:
a first instance of a driver calling an application programming interface
(API) maintained by a kernel of an operating system, the first
instance of the driver being identified via a first driver identifier;
and
in response to a result of calling the API, the first instance of the driver
determining whether a second instance of the driver has been

initialized.

33. The machine-readable medium of claim 32, wherein the method further
comprises examining a second driver identifier returned by the API to determine

whether the first and second driver identifiers are identical.

34, The machine-readable medium of claim 33, wherein the method further
comprises:
starting the first instance of the driver if the first and second driver
identifiers are identical; and
unloading the first instance of the driver if the first and second driver

identifiers are different.

35. A machine implemented method, comprising:
in response to a request received from a first instance of a driver via an
application program interface (API), determining whether a

second instance of the driver for a device associated with the first

-30-

WO 2008/085343 PCT/US2007/025850

36.

37.

38.

instance of the driver has already been initialized, wherein the
determination is performed based on information retrieved from a
data structure having driver registration information; and

return a driver identifier to the first instance of the driver via the API, the
driver identifier indicating whether a second instance of the driver

has already been initialized.

The method of claim 35, further comprising:

performing a lookup operation within the data structure to determine
whether a device identified by a device identifier extracted from
the request is associated with a driver identifier; and

returning the driver identifier associated with the device to the first
instance of the driver via the API, if the device has been

associated with the driver identifier in the data structure.

The method of claim 36, further comprising;:

inserting a driver identifier of the first instance into the data structure of
the device has not been associated with any driver identifier; and

returning the driver identifier of the first instance to the first instance of

the driver via the API.

A machine-readable medium having instructions stored therein, which

when executed, cause a machine to perform a method, the method comprising:

in response to a request received from a first instance of a driver via an
application program interface (API), determining whether a
second instance of the driver for a device associated with the first
instance of the driver has already been initialized, wherein the
determination is performed based on information retrieved from a

data structure having driver registration information; and

-31-

WO 2008/085343 PCT/US2007/025850

return a driver identifier to the first instance of the driver via the API, the

driver identifier indicating whether a second instance of the driver
has already been initialized.

39. The machine-readable medium of claim 38, wherein the method further
comprises:
performing a lookup operation within the data structure to determine
whether a device identified by a device identifier extracted from
the request is associated with a driver identifier; and
returning the driver identifier associated with the device to the first
instance of the driver via the API, if the device has been
associated with the driver identifier in the data structure.
40.

The machine-readable medium of claim 39, wherein the method further
COmprises:
inserting a driver identifier of the first instance into the data structure of

the device has not been associated with any driver identifier; and

returning the driver identifier of the first instance to the first instance of

the driver via the APL

41. A machine-implemented method for managing device drivers of devices

in a computer, the method comprising:
providing an application programming interface (API) within an
operating system (OS) running within a computer, the API being

accessible by a plurality of device drivers associated with a

plurality of devices in the computer; and
in response to a request from a first instance of a device driver via the

API, returning information indicating whether a second instance

of the device driver is currently loaded within the OS.

-32-

WO 2008/085343 PCT/US2007/025850

42. A machine-readable medium having a library to be loaded within an
operating system of a computer, comprising:
an application programming interface (API) accessible by a plurality of

device drivers associated with a plurality of devices in the

computer,

wherein in response to a request from a first instance of a device driver
via the API, the API is configured to return information indicating

whether a second instance of the device driver is currently loaded

within the OS.

43. The machine-readable medium of claim 42, wherein the library is a

component of a kernel of the OS.

-33-

PCT/US2007/025850

WO 2008/085343

1/18

| "B

=

135 " oLt
ao1neQ aoneq
0]
8IBMpIEH
601 ... 801
JanuQ admeg JaAlQ 921A9Q
01
(freuopoig 904
8al] aoneq “6°9) Jabeuep a21naq/Ol
oju| 99IrneQq
S0L
SINSS
201
aoeds |jaway %
i I
aoeds sesn)

(=
o
-~

01
$9553001d

Root
201

WO 2008/085343

O
N

PCT/US2007/025850
2/18

Fig. 2

204

WO 2008/085343 PCT/US2007/025850

3/18

Root | A2 Zo0
JI Dictionary I""?Il ' —

oot 302

(oo e~ 104
oo 313
oy Jes
et] 3-8

L omioN 753
Fig. 3A

PCT/US2007/025850

WO 2008/085343

4/18

(o
™

gae¢ "bi4

€1€ S|pUBH J3AL(Q 801ARQg

$0¢ aweN 991A8Q

2S¢
Jeypuep] JeAuq 831Aeq

3]
Jaynuepj 8atneq

PCT/US2007/025850

WO 2008/085343

5/18

vov

JoAI(jO BoURISU| JO JaALQ

Sov
‘aue|d 981 92IAI3S 9DIASD
Jospue ‘sueld e a31A8p
‘(Aiysibas aweu s9Aup
1oonep 6:8) Areuonoiq
Bunuasaidal anjpnng ejeq

v{ B4

coy
JaAuQ Jo 82uUB)SU| JO JBALQ

(1dv) eoegaiu Buiwwesboid uonesiddy

oy
(1apinoad-0npui4 “6'9)

-

g

114
(19beURy
901A0(Jospue ‘1abeuepy
Ol ‘901A3(Q Jooy “6'9)
10]euIpioo) JeAuq

o
(=)
~r

PCT/US2007/025850

WO 2008/085343

6/18

ay "bi14

*1*14
"3WRUN Je JOAD Jayloue
YA S]EDIUNWILIOD 0} JAANP E MOjje 0) AJRuoHaIp 10
fpue aueid a1 801Aap oY) BuIsh WSIUBYDSW B aPIACIH

14°14
*A1euonoip 10/pue a1} 801A8p Sy} WO
PaUIeIqO UONEULIOJUI UO PASEq ‘PapEo| Uaaq SBY JaALIP
SUWES 8} JO JDUBISU] JOYIOUE JOYIBYM SUILLISISP O}
1122 0) JBALP B JO 30UBISUI UB MOJ[E O} |dV UE UIRjuieyy

sy
‘90IAnap 8y} Buuoddns
19AUD B JO J8Unusp! Ue 8J0JS 0} p[aYy PuUoI3s B pue
S0IASD 8Y} JO JaYRUBPI UB BI0JS O} PaY JSIY B SOpNjou)
Anua yoe3 -aoinep pajeisul ue o) Buipuodsaiiod
Aiua yoea ‘sauua Buiaey Aseuonoip e ajealn

sy
waysAs ay} ul pajeIsul
eo1Aap e Bunuasaidas yoea ‘ainjonus |eaIydsEIaNY
e ul sapou Buiney aue|d aas) aoinep ay) ‘Klowaw
€ Ul papeo| aue|d 891} 82IASP B SULIO) [SUISY BY .

1844
/Ew?ﬁ
Buissaooid ejep e jo (WOY '6'3) abeso)s e woyy aal
#o1nap e Bunuasaidas ejep sanaujas weysks buierado
ue Jo (Jabeuew oiaap 10 1abeuew Q) "6°a) juiay

PCT/US2007/025850

7/18

WO 2008/085343

vs "bi4

Les -

_ Jonuq oipn
N QIM -— 18AuQ OIpNY uQg oipny

- ejleq o [ojuod
ysel4
R COES O

00$ _QM.\e

PCT/US2007/025850

WO 2008/085343

8/18

$e§ —|

QOIpNY ‘OWeN j

9eS ~| ooneq ejeq oipny

Les -]

g6 "bid

00IpNY SWEN j

SaS5

.l_‘cosoo jonuoY olpny

Jos ~[o]

PCT/US2007/025850

WO 2008/085343

9/18

o9

‘B4

m._ncwx JaAuQg oipny goipny
9jpuey Jaauq o2l 19j|0u0) J2I
sIpuEH J9MI] SZI 191101U09) SZI
9jpuey JaAuQg J0S J8jjonuod JOS

Jaynuap| 19ANQ 891A8Q

Jayjuapy adlreQg

PCT/US2007/025850

WO 2008/085343

10/18

eC

v9 614

$e9 <

“palqo
Jaaup pajeass fimau ay) peojun '108(qo Jaaup By
uey) Juaiagip a|puey JaALP B SuINial Japiacid-0)puld J|

Mo% ~

"3[qo JaAUp Yy Weys '193lqo JeAup By Jo Bjpuey auy)
0} |eonuUap! SpuBY JOALP B SUINJeI 13PIACIA-0DPUL J)

No%)\

198[q0 18Aup 8Y) Aq pajusseidas aweu
90IASD € pue g|puey Y} yum Japiaoid-0opuld jle)

Je9~

(e1puey Janup ‘6-8) Jaynuapl
Jaaup e AQ paynuspi s| 195[qo JAUP BY) B1OYM ‘901
S0IASP B JO BpOU 80IABD B 10j 193[q0 19AUP B gjeal)

PCT/US2007/025850

WO 2008/085343

11/18

04%\

g9 "H14

357~

‘Ajua ayy
Ul SISIX® SOUB)ISUI JBALIP B JO JONNUSPI Ue uinja) ‘'os J|

hs9 -

*aoue)SUl JOAUP ISIY
8y} Jo Jaunusp! ay} uimas pue Aeuooip ay) Jo Anua ay)
Ul SOUBISUI JOAUP ISIY 8Y) JO JSYNUSPI Ue pasut ‘Jou §)

£59 ~

"JIOALIP B YyIm pajerdosse Apealje s) Aijus ay)
Jaylaym auluuaiep pue Anua Buipuodsanod ayy Ajnuep:
‘}sanbal 8y} Woy psjoelIXe SlIBU SJIASD B UO paseg

25

*10AUP Pa)BIOOSSE S) pue
ewieu 80iA9p anbiun e Buirey aoiasp e Bujuaseids)
yoea ‘'seujud buiney Aseuooip e ul dn %007

)59~

"801ABP SWies ay) Sjuasaidal JOUBISUI JOALP PUCIas
8U} 213yM ‘apOU BDIABP PUODSS B UM PIJEIO0SSE
SISIX3 SOUBISU] JOALIP PUOISS B JAYISYM SUILLIBJap
0] 991} SOIASD E JO SPOU 2DIA3P B UM pajeioosse
SOUE]S Ul J8ALP JSIY € WOy }Sanbal B 9AIS08Yy

WO 2008/085343 PCT/US2007/025850

12/18

IOManager::|nitialize()

{
b'briverObj = new DriverObj();

if (pDriverObj == pDriverObj->Probe())
pDriverObj->Start();

else :

delete pDriverObj;

Fig. 7A

DrverObj::Probe()
{

getProperty (this, &DeviceName);

return FindCo-provider(this, DeviceName);

Fig. 7B

WO 2008/085343 PCT/US2007/025850

13/18
FindCo-provider(pNewDriverObj, DeviceName)
{
BbriverObj = LookupDictionary (DeviceName);
if (pDriverObj = NULL)
return pDriverObj;
else
{
InsertDictionary (DeviceName, pNewDriverObj);
return pNewDriverObj;
}
}

Fig. 7C

Class DrverObj
{

int Init();

pDriverHandle Probe(DeviceName, pDriverHandle);
} int Start();

Fig. 7D

PCT/US2007/025850

WO 2008/085343

14/18

— oju) papoous ‘ejeq _,_

_ oju popoous BweN

\

A
n
Do

| SpON 301A8Q

£<g

Z 9pON
soIneQ

}e8

Keuondig

PCT/US2007/025850

WO 2008/085343

15/18

0\%
)

‘9Jempiey Ul OO ey} o wn)

(Juonoun 41je9::18)|01U0DMNI01D

{
}

S94

10101U0D
%010

A
)

{
(38 TV4)¥0|0801Aege|qRUS<-10pIACId

}
% 0% d (Oo|DeaInege)qeus:.eoireqg

b

36
)

“(3STv4 'spipoR)N0IDe0INeas|Geus<-1epiAold
‘(spi oo ‘ sajebypop,)Ausdoidiet

{

(o0o1Qe01negelqeus S|

R
)

(3814 'SPIT0I) UOKOUN|[E9<-UOROUN HIOP

{

}
(worgeoirege|qeus::00s

{
‘(spi™ypop)uonounjjed<-ejpueHAIqd

‘Kieuonoip oy U dnyoo = ejpueHAIgd

}

{Juonoundjjea:jooy

PCT/US2007/025850

WO 2008/085343

16/18

th\

0l ‘614

‘uonjesado ue yons wiopad
0} 3|pueY J3ALP Y} BIA PAXOAUI S| JAALP PUOAS 8y |

tee /o

"JOAUP 181y 9y} Aq papinoad
uotjeuliojul ay) uo paseq Aieuorip e u) dn Bupjoo) Aq
JOAUP pU0daS Y} JO BjpUBY JSALP B SUINJAI [2WaY By

ﬂow.\l\

‘uonesado ue yons Sujuuoped
JO 8|qedeD S| Jey} JOALP PUODSS B SAYNUSP] [Ay |

Tee [

‘Rjjeuonouny yons uuopad
0} JaAup Jayloue 1sanbay o} (ac1Aap J001 **B°3) jausay
3 0) uonewLojus paAaias ay) sassed JoAup ISij oY)

\A.Q \I\

"80IASp PIJBIDOSSE Y} U
pajesado 8q ueo jey) Alijeuoiouny Jejnoiued e Guipiebal
90J) SOIASP B WOJ) UOIJBULIOJU} SBAS}S) JOAUP IS

PCT/US2007/025850

WO 2008/085343

17/18

Ll "By

0oill

(so)unid 1o
‘oepalul oMau
1o ‘wapow
10 ‘pieoqghay
Jo 'asnow "6°3)
(s)polneq
wm_

H

8041 /

(s)1ayj05u09
on

2o1naQ Aejdsig g
Jsjjonuos Aeydsig

6011

4% /

H

H

sng
(eaup prey "6°9)
Aoweapy Wvy WO Jossaoosdosoiy
9|NejOAUON SIneion .
a0tLi 7 SOLL 1011 €0L1L 7 H
ayoe)

Yol

PCT/US2007/025850

WO 2008/085343

18/18

(%48
(leuondo)

On 8yio

21 b

%43

(s)soi1raQ Indu)

021
8oneQ
Reidsiq / Jsijionu0)) Aeidsiq

P

Ligh
(r0ssao0ud

“6°8) walsAg Buissaoold

{749
(ssoepelul 08pIA "oIpny
6°9) eoeuoIU| BIPSIN

[r4}

{019 ‘aoepBUI SO
Jein)ieo ‘yioolanig “Hi 1M
‘(s)ranizosuen 4y 6°9)
30B118JU} UOHEJIUNWILINY)
SS3JalIAN 10 PAIIM

10Ct
Aowspy

o
N
-~

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2007/025850

A. CLASSIFICATION OF SUBJECT MATTER -

INV. GO6F9/445

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F -

Minimum documentation searched (claSSIflcanon system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the fields searched

‘EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Gitation of document, with indication, where appropriate, of the relevant passages ’ Relevant to claim No.

Y EP 1 056 001 A (XEROX CORP [US])
© 29 November 2000 (2000-11-29)

fiqures .2-4

AL) 21 May 2002 (2002-05-21)
fiqures 1,3,6,7 ‘
column 7, line 66 - line 67
column 8, lines 1-27

13 February 2001 (2001-02- 13)
abstract

paragraph [0010] - paragraph [0030]

1-43

Y US 6 393 557 Bl (GUTHRIDGE D SCOTT [us] ET ' . 1-43

A us 2004/199920 Al (RESCH PAUL M [US]) o 1-43
: 7 October 2004 (2004-10-07) '
abstract
A ~US 6 189 050 B1 (SAKARDA PREMANAND [US]) o - 1-43

D‘ Further documents are listed in the continuation of Box C.

E See patent tamily annex.

* Special categories of cited documents :

"A* document deflnmg the general state of the art which is not
considered to be of particular relevance

‘E* earlier document but published on or after the international
filing date

“L* document which may throw doubts on priority claim(s) or
which is.cited to establish the publication date of another
citation or other special reason (as specified)

O -document referring to an oral disclosure, use, exhibmon or .
other means

"P* document published prior to the international filing dale but
later than the priority date-claimed

T later document published after the international flllng date .
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of parlicular relevance the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

“Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
-document is combined with one or more other such docu—
Irnems such combination bemg obvious to a person skilled
n the art.

*&" document member of the same patem tamily

Date of the actual completion of the international search

29 May 2008

Date of mailing of the intlemational search repon

- 11/06/2008

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Weidmann, Matthias

Form PCT/ISA/210 (second sheet) (April 2006)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2007/025850
Patent document Publication Patent family ' Publication - -
. cited in search report date - member(s) -date .
_.EP 1056001 A 29-11-2000 JP 2001005622 A 12-01-2001
US 6393557 Bl 21-05-2002 NONE
 US 2004199920 Al - 07-10-2004 NONE
us '6189050 Bl 13-02-2001 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - wo-search-report
	Page 54 - wo-search-report

