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METHODS FOR CONSISTENT FOREWARNING OF CRITICAL EVENTS
ACROSS MULTIPLE DATA CHANNELS

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

[001] This invention was made with assistance under
Contract No. DE-AC05-000R22725 with the U.S. Department of
Energy. The Government has certain rights in this

invention.

\

BACKGROUND OF THE INVENTION

[002] The field of the invention is methods of computer
analysis for forewarning of c¢ritical events, such as
eplleptic seizures in human medical patients, and meéhanical
falilures in machines and other physical processes.

[003] Hively et al., U.S. Pat. Nos. 5,743,860 and 5,857,978

disclose methods for detecting and predicting epileptic

seilzures by acquiring brain wave data from a patient, and

analyzing the data with traditional nonlinear methods.

[004] Many of the prior art methods of epileptic
forewarning were based on intercranial electroencephalogram
(EEG) data. The present invention can be practiced with EEG
data obtained from sensors applied to the scalp of the

patient. Prior advances using scalp EEG data removed

artifacts with a zero-phase quadratic filter to permit
analysis of single-channel scalp EEG data. Hively et al.,
U.S5. Pat. No. 5,815,413, disclosed the use of phase space
dissimilarity measures (PSDM) to forewarn of impending

eplleptic events from scalp EEG in ambulatory settings.

Despite noise 1n scalp EEG data, PSDM has yielded superior
performance over traditional nonlinear indicators, such as

Kolmogorov entropy, Lyapunov exponents, and correlation

dimension. However, a problem still exists in forewarning

indicators, because false positives and false negatives may

oCccur.
[005] Hively et al., U.s. Pat. No. 5,815,413, also

discloses the applicability of nonlinear techniques to
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monitor machine conditions such as the condition of a drill
bit or the performance of an electrical motor driving a

pump.
SUMMARY OF THE INVENTION

[006] The present invention uses prior advances in the
application of phase space dissimilarity measures to provide

forewarning indications. In this method, a renormalized

measure of dissimilarity, e.g., U(;jz) or U(L), 1is compared
to a threshold wvalue (U.) and upon exceeding the threshold
value for a sequential number of occurrences (N,.);. a
forewarning indication is determined.

[007] Forewarning indications are further resolved 1into
true positives, true negatives, false positives and (false
negatives in multiple data sets taken from the same patient
over multiple channels, where it 1is known whether the

patients experienced biomedical events or did not experience

gsuch events. The results are then used to calculate a

channel-consistent total true rate (f7). This approach

allows the observation of a channel or channels providing

the largest channel-consistent total-true forewarning
indications. Test data 1s then procegssed from the selected
channel or channels to develop measures of dissimilarity and
forewarning indications, which are most 1likely to be true
forewarning indications.

[008] Forewarning indications are used to forewarn of

critical events, such as various biomedical events. Typical

biomedical events and sources of data include, but are not

limited to, epileptic selzures from EEG, cardiac

fibrillation from EKG, and breathing difficulty from lung

sounds.
[009] The methods of the present invention also include

determining a trend in renormalized measures, e.g., U(y°) or

U(L), based on phase space dissimilarity measures (y°,L) for

data sets collected during increasing fault conditions 1n

machines or other physical processes. The 1nvention then
uses a “least squares” analysis to fit a straight 1line to

the sum of the renormalized measgsures in order to forewarn of

~D-
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a critical event, such as a machine or process failure.

[0010] Typical machines include, but are not limited to,

motors, pumps, turbines, and metal cutting. Typical time-

serial machine data include, but are not limited to,

electrical current, voltage, and power; position, velocity,

and acceleration; and temperature and pressure. Other

physical processes capable of being monitored by sensors can

also be observed to forewarn of malfunctions or failures.

[0011] In the present invention, the data can also be

analyzed to determine values for specific parameters that

maximize the total true rate for one or more regpective
channels.

[0012] A  further aspect of the invention  enhances
Cechniques by utilizing equiprobable symbols for computing
the distribution functions from a connected or unconnected
phase space. | |

[0013] Other objects and advantages of the invention,
besides those discussed above, will be apparent to those of
ordinary skill in the art from the description of the
preferred embodiments, which follows. In the description
reference is made to the accompanying drawings, which form a
part hereof, and which illustrate examples of the invention.
Such examples, however are not exhaustive of the various
embodiments of the invention, and therefore reference isg

made to the claims, which follow the description for

determining the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] Fig. 1 is a graph of renormalized dissimilarity as
a rfunction of forewarning time (t) for determining true
positive (TP), true negative (TN), false positive (FP) and

false negative (FN) forewarning indications.

[0015] Figs. 2a-2d are graphs of channel-consistent

total-true rates for forewarning of epileptic seizures, £,

vs. selected parameters: (a) £, versus S (number of phase

space symbols) for d = 2, w = 62, N = 22,000; (b) largest £,

versus d (number of phase space dimensions) for w = 62, N =

-3 -
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22,000 using equiprobable symbols (solid curve) and uniform
symbols (dash-dot curve): (c) f, versus w (half width of the

artifact-filter window width) for d = 2, § = 20, N = 22,000;
and (d) £, versus N (number of data points in each cutset)
for d = 2, § =20, and w = 54.

[0016] Figs. 3a-3d are sgemi-log,, plots of the four
nonlinear dissimilarity measures for a set of broken-rotor
seeded~-fault power data. ‘Dataset #1 is for the nominal (no
fault) state. Dataset #2 is for the 50% cut in one rotor

bar. Dataset #3 is for the 100% cut in one rotor bar.

Dataset #4 is for two cut rotor bars. Dataset #5 is for four
cut rotor bars. The exponential rise in the severity of the
seeded faults is shown as an almost linear rise (solid line)
in the logarithm of all four dissimilarity measures (*) for

the chosen set of phase-space parameters.

[0017] Fig. 4 is a plot of the composite PS dissimilarity

measure, Ci, versus dataset number for a gearbox failure

(d=2, S=274, and A=1).

[0018] Fig. 5 is a plot of the maximum value of the ¥?

statistic versus the number (n) of sequential points from

the sample distribution for (bottom) a normal distribution
with zero mean and unity sample standard deviation; (middle)
composite measure, C;, of condition change from the 200
datasets that span the straight-line fit; (top) composite
measure, (;, of condition change during failure onset
(datasets #394-400). The middle and top curves use the same

analysis parameters as in Fig. 4.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0019] In a first embodiment of the present invention, a
database of forty (40) data sets were collected, each with
at least one electrographic temporal lobe (TL) event, as
well as twenty (20) data sets without epileptic events, as
controls. Data sets were obtained from forty-one (41)
different patients with ages between 4 and 57 vears. This

data included multiple data sets from eleven (11) patients

-4 -
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(for a total of 30 events), which were used for the channel

consistency analysis. Such data can be collected (for

example) with a 32-channel EEG instrument (Nicolet-BMSI,

Madison, Wisconsin) with 19 scalp electrodes in the
International 10-20 system of placement as referenced to the

ear on the opposing hemisphere. Each channel of scalp

potential was amplified separately, band-pass filtered
between 0.5-99 Hz, and digitized at 250 Hz. The 19 EEG
channels in each of these data sets had lengths between

5,016 seconds (1 hour and 23 minutes) and 29,656 seconds (8

hours and 14 minutes).

[0020] The following description incorporates the methods
first disclosed in Hively, U.S. Pat. No. 6,484,132, 1ssued
Nov. 19, 2002. To the extent that the methods of the

present invention build upon the methods disclosed there,
Che disclosure of that application is hereby incorporated by

reference.

[0021] In the present invention, eye blink artifacts from

scalp EEG are removed with a zero-phase quadratic filter

that 1s more efficient than conventional linear filters.

This filter uses a moving window of data points, e;, with

the same number of data points, w, on either side of a

central point. A quadratic curve is fitted to these 2w+l

data points, taking the central point of the fit as the low-

frequency artifact, £f;. The residual, g; = e; - f;, has

essentially no low-frequency artifact activity. All

subsequent analysis uses this artifact-filtered data.

[0022] Next, each next artifact-filtered value is

converted into a symbolized form, s;, that is, one of S

different integers, 0,1, . - . 4, S-1:
0< 3 = INT[S(gz = gmz‘n)/(gmax - gmin)] <S5-1. (1)
[0023] The function INT converts a decimal number to the

closest lower integer; gmin and gup.x denote the minimum and

maximum values of gj;, respectively, over the base case

(reference data). To maintain S distinct symbols, the

-5
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following expression holds, namely s;= S — 1 when g;i = GQnax-

Expression (1) creates symbols that are uniformly spaced

between the minimum and maximum in signal amplitude (uniform

symbols). Alternatively, one can use equiprobable symbols,

by ordering all N base case data points from the smallest to

the largest value. The first N/S of these ordered data

values correspond to the first symbol, 0. Ordered data

values (N/S)+1 through 2N/S correspond to the second symbol,

1, and so on up to the last symbol, S-1. By definition,

equiprobable symbols have non-uniform partitions in signal

amplitude and present the advantage that dynamical structure

arises only from the phase-space reconstruction. Moreover,

F
p—

large negative or positive values of g; have little effect

on equiprobable symbolization, but significantly change the

partitions for uniform symbols. Finally, the mutual

information function is a smooth function of the

reconstruction parameters for equiprobable symbols, but is a

noisy function of these same parameters for uniform symbols.

Thus, equilprobable symbols provide better discrimination of

condition change than uniform symbols when constructing a

connected phase space.

[0024] Phase-space (PS) construction uses time-delay

vectors, y(i) = [Si, Sitn r =+ « « s Sitta-1a] to unfold the

underlying dynamics. Critical parameters in this approach

are the time delay, A, and system dimensionality, d, and the

type and number of symbols, S. Symbolization divides the

phase space into SY bins. The resulting distribution

function (DF) 1is a discretized density on the attractor,

which 1is obtained by counting the number of points that

occur 1in each phase space bin. The population of the ith

bin of the distribution function, is denoted Q;, for the

base case, and R; for a test case, respectively. The test

case 1s compared to the base case by measuring the

difference between Q0; with R; as:

—6—
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2" =20, -R) /0, +R,), @)
L=>|0,- R}, (3)

[0025] Here, the summations run over all of the populated

phase space cells. These measures account for changes in the

geometry, shape, and visitation frequency of the attractor,

and are somewhat complementary. The ¥° measure is one of the

gt

most powerful, robust, and widely used statistics for

comparison between observed and expected frequencies. In

p—

this context, »° is a relative measure of dissimilarity,

rather than an unbiased statistic for accepting or rejecting

a null statistical hypothesis. The L distance is the natural

metric for distribution functions by its direct relation to

the total invariant measure on the attractor and defines a

bona fide distance. Consistent calculations of these

y—

measures obviously require the same number of points in both

the Dbase case and test case distribution functions,

identically sampled; otherwise, the distribution functions

must be properly rescaled.

[0026] The connected PS 1is constructed by connecting

successive PS points as prescribed by the underlying

dynamics, y(i) — y(i + 1). Thus, a discrete representation
of the process flow is obtained in the form of a 2d-
dimensional vector, Y(i) = ly(i), yv(i + 1)], that is formed

by adjoining two successive vectors from the d-dimensional

reconstructed PS. Y(i) is a vector for the connected phase

space (CPS). As before, Q and R denote the CPS distribution
functions for the base case and test case, respectively.

The measure of dissimilarity between the two distribution

&6 __ 32

functions for the CPS, signified by the “c subscript are

thus defined as follows:

Xe =Z(Q5“Rﬁ)2/(Qﬁ+Rﬁ) (4)
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if
[0027] The first subscript in Eqgs. (4)-(5) denotes the

initial PS point, and the second subscript denotes the

sequel PS point in the PS pair. These CPS measures have

higher discriminating power than unconnected PS measures of

dissimilarity. Indeed the measures defined in Egs. (4)-(5)

satisfy the following inequalities: ¥ < L, 2 < L, L < L,

and ;(2 < ;{CZ, where ch and L. are dissimilarity measures for

connected phase space and x° and L are dissimilarity

measures for unconnected PS.
[0028] To assure robustness, the construction of the base

case data requires careful statistics to eliminate outlier

base case cutsets. The first B non-overlapping windows of N

points (cutsets) for each dataset become the base case
cutsets. A few of these base case cutsets can be very

atypical, causing a severe bias in the detection of

condition change. The base case cutsets are tested for
outliers as follows. A comparison of the B(B - 1)/2 unique
pairs among the B base case cutsets via BEgs. (2)-(5) vyields

dissimilarities, from which we obtain an average, V, and

sample standard deviation, o, for each of the four measures

of dissimilarity, V = |{IL, L., )(2, and ZC‘?}, where the

C

subscript, ¢, denotes the measures of dissimilarity for the

CPS. Then, a ij statistic, ij = 2 (Vi; - V)%/o, is

calculated for each of these four dissimilarity measures.

The 1index i runs over the B non-overlapping basecase

cutsets. The 1index j is fixed, to test the Jth cutset

against the other B - 1 cutsets, thereby giving B ~ 1

degrees of freedom in the y;° statistic. The null statistical

hypothesis allows a random outlier with a probability less

than 2/B(B - 1). If this hypothesis is not satisfied, we

identify an outlier cutset as having ;g'jz > 19.38 for at

-8 -
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least one of the four dissimilarity measures, which

corresponds to a probability larger than 1/45 foxr B = 10. If

this analysis does not identify an outlier, then the

previous values of V and o are used for subsequent

renormalization, as described below. If this analysis

identifies an outlier, the cutset is removed. The analysis

1s repeated with a new value, B = 9 for the remaining base

case cutsets to identify any additional outliers. Their

presence is indicated by the largest y;° statistic exceeding

the new threshold of 17.24, corresponding to a random

probability larger than 1/36, as interpolated from standard

statistical tables for 8 degrees of freedom. Rejection of

the null hypothesis for even fewer remaining cutsets

(degrees of freedom) corresponds to a ij statistic larger

than 15.03, 12.74, and 10.33, for B = 8, 7, and 6,

respectively. f the analysis identifies five (or more)

i

outliers, we would have to reject all of the base cases as

unrepresentative, and acquire a new set of ten cutsets as

base cases. However, 1in the present analysis, more than

four outliers were not seen.

[0029] The disparate range and variability of these

measures are difficult to interpret for noisy EEG, so a

consistent method of comparison is needed. To this end, the

dissimilarity measures are renormalized, as described below.

The B non-outlier base case cutsets are compared to each

test case cutset, to obtain the corresponding average

— -
—

dissimilarity value, V;, of the ith cutset for each

dissimilarity measure. Here, V denotes each dissimilarity

casure from the set, V = {L, L., %°, and 7). The mean

alin,

m

’“

value, 'V, and the standard deviation, o, of the

dissimilarity measure V are calculated using the remaining

base case cutsets, after the outliers have been eliminated,

as discussed above. The renormalized dissimilarity is the

- 9-
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number of standard deviations that the test case deviates

from the base case mean: U(V) = |V; - V|/o.

jO030] Once the renormalized measures for the test and

base cases have been obtained, a threshold, Us 1is selected

for each renormalized measure U to distinguish between

normal (base) and possibly abnormal (test) regimes. The

choice of a reasonable threshold is critical for obtaining

robust, accurate, and timely results. A forewarning

indication 1s obtained when a renormalized measure of

dissimilarity exceeds the threshold, U > U;, for a specified

number, Ngcc, ©0f sequential occurrences within a preset

forewarning window.

[0031] According to the present invention, and as

illustrated in Fig. 1, Npec sequential occurrences above the

threshold (U =2 Ug) are interpreted as a forewarning

indication. Such forewarning indications are true positives,

TP, 1f they occur within a forewarning window 20. Other

performance metrics include true negatives, TN, false
positives, FP, and false negatives, FN, also defined with
respect to the same preset forewarning window, as shown in
Fig. 1. The horizontal axis represents time, t. The thick

vertical line at Trgyeyy denotes an event onset time. The

thin vertical lines delimit the forewarning-time window 20,

during which T; < t < T, < Tgvenr. For 1llustration,
“reasonable” forewarning windows are set at T; = Trvenr — 60
min and Tz = Tgygyr — 1 min, for biomedical events. A typical

-t
p—

forewarning window for machine failure is on the order of.

either hours or days. The vertical axis corresponds to a

renormalized measure of dissimilarity, U, as discussed

above. The horizontal dashed line (--) shows the threshold,

Ue. A forewarning time in one channel, Tmy, 1is that time

when the number of simultaneous indications, Nsmy, among the

four dissimilarity measures exceeds some minimum value. The

~10-
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y—
—

best elimination of FPs occurs for a value of Nsgpu = 4.

Analysis starts at t = 0, and proceeds forward in time until

the first forewarning occurs, as defined above. The

algorithm then obtains the forewarning statistics by an

ordered sequence of logical tests for each channel:

[0032] FP = false positive = forewarning at any time,

when no event occurs, or forewarning with T < T4, Or T >

T, for an event at t = Tgyexr;

[0033] TP = true positive = forewarning with Ty £ Tm <
T for an event at t = Teyexrs
[0034] I'N = true negative = no forewarning, when no

event occurs; and

[0035] FN = false negative = no forewarning for t <
Tevent With an event at t = Teyenr.
[0036] The 1-th dataset is referred to as TP if at least

one channel shows forewarning within the desired window, T,

< Tsw £ Tp. This indication is equivalent to TP; = 1 in the
equations below. A TN dataset shows no forewarning in at

least one channel when no event occurs. This indication is

equivalent to TN; = 1 in the equations below. The total true

rate, T = X;(TP; + TN;)/Z;(TP; + TN; + FP; + FN;), and the

total false rate, F = Z(FP; + FN;)/Z;(TP; + TN; + FP; + FN;),

where the sums run over all data sets. This approach allows

P~
r—is-

selection of an appropriate channel for subsequent real-time

forewarning, consistent with the previous characterization

of the data.

[0037] Improvement in the channel-consistent total-true

rate 1s carried out by maximizing an objective function that

F—

measures the total true rate for any one channel, as well as

channel consistency. For this analysis, 30 data sets were

used from 11 different patients with multiple data sets as

follows: 7 patients with 2 data sets, one patient with 3

data sets, 2 patients with 4 data sets, and one patient with

-1] -
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o data sets. To quantify channel consistency, the following

notation and definitions are used:

1 = dataset number;

J = channel number in which forewarning is determined

(1 < 7 £19);

k = patient number;

M(k) = number of data sets for the k-th patient;

P = number of patients with multiple data sets (eleven

for the present analysis);

INijjy = 1 for a true negative indication in the j-th

channel of the i-th dataset for the k-th patient, and = 0

for a false negative indication in the j-th channel of the

1-th dataset for the k-th patient;

TPijx = 1 for a true positive indication in the j-th

channel of the i-th dataset for the k-th patient, and = 0

for a false positive indication in the j-th channel of the

i-th dataset for the k-th patient.

[0038] The total-true rate for the j-th channel of the k-

th patient is Ty = 23 [TPijx + TNjixl, by summing over the

datasets,- i=1 to M(k). The occurrence of more than one true

positive and/or true negative in the j-th channel is

indicated by Ty 2 2, while T4y < 1 means that the 7j-th

channel provides no consistency with other data sets for the

same patient. Consequently, the channel overlap is defined

as:
Cyx = max (Ts), for Tisx 2 2 and k fixed,
= 0, for Ty = 1.
[0039] The channel-consistent total-true rate is the
average, fr = [Zx cil/[2x M(k)], where the index, k, sums

over all P patients, welghting each dataset equally. If the

channel-consistent total-true rate had been defined as [Z:

max (Tjx)/M(k)]/P, then patients with only one dataset would

have Dbeen improperly weighted the same as patients with

-12-
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several data sets). For selected values of the parameters

(¢e.g., N, w, S, d), the renormalized measures of PS

dissimilarity are computed with these parameters for each

dataset, and then exhaustively searched over Npe and Us to

find the largest fy value.

[0040] Figs. 2a-2d i1llustrate a series of single

parameter searches to maximize the channel-consistent total-

g

true rate for forewarning of epileptic seizures. The value

of one parameter is systematically changed, while the others

are fixed. In this example, the first-round optimization

uses the parameter pair, {S, d}, constrained by a

computational limit on the numeric labels for the CPS bins

using modular arithmetic. This 1limit arises from the

largest double-precision real number 2°° that can be
distinguished from one unit larger: 5% < 2°¢, or d £ INT(26
In2/1nS). Two PS symbols (S = 2) limit the search to 2 £ d

< 260; three PS symbols (S = 3) correspond to 2 < d £ 16; and

so forth. Since equiprobable symbols always vyield larger

values for fr, the analysis 1in this example was performed

using this symbolization.

[0041] Fig. 2a shows fy as a noisy function of the

number of eguiprobable symbols, S, with the number of PS

dimensions, d = 2. The largest channel-consistent total-true

rate 1s fr = 0.8667 at S = 20 and S = 26. Next, the largest

value of fry was obtained over all of the possible

equiprobable symbols for each wvalue of PS dimension in the

range, 2 < d £ 26. These results are displayed as the solid
curve 1n Fig. 2b, showing that fr decreases non-

monotonically from a maximum at d = 2 to a minimum at d =

17-18, and then rises somewhat for still larger wvalues of d.

For completeness, Fig. 2b also shows similar analysis only

for an even number of uniform symbols (dash-dot curve),

because the central bin for an odd number of uniform symbols

accumulates the vast majority of the PS points, thus

~-13 -
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degrading the results in every case. Based on these results,
further analysis for uniform symbols is unnecessary. Thus,

we set d = 2 and S = 20 (equiprobable symbols) while varying

the half-width of the artifact filter window, w, as shown in

g—
SN

Fig. 2c. It is observed that fr also is a noisy function of

98 .

{

w with a maximum value of fr = 0.8833 at w = 54 and w

The former value (w = 54) is selected for the next parameter

scan, because a slight trend for 1larger fy lies in that

F

region. Figure 2d displays fr versus the number of points

in each cutset, N, in increments of 1000 with the other

parameters fixed at S = 20, d = 2, and w = 54. This plot

shows that fry rises non-monotonically with increasing cutset

length to a noisy plateau for N > 21,000. The largest value,
fr = 0.8833, occurs at N = 22,000; N = 54,000, and N =

61,000. All of the above analysis used a time delay, A =
INT[0.5 + M/(d - 1)], which in general is different for

every channel of each dataset, as discussed previously.

However, this parameter also is a variable. Consequently,

the variation of £, was determined as a function of the time

delay, A, which was set to the same value for every channel

of every dataset. A single peak occurs at £, = 0.9 for A =
17, with the other parameters fixed at § = 20, d = 2, w =
54, and N = 22 000.

10042] The above results show  that a substantial

improvement 1n the rate of channel-consistent total trues

(fr = 0.9) 1s obtained for sub-optimal choices of the

analysis parameters. Moreover, the new set of analysis

parameters yielded credible event forewarning (29 total

trues) for solitary data sets from each of 30 different

g

patients. It 1s expected that a robust choice of the

parameters can be obtained by analysis of much more data,

and subsequently fixed for an ambulatory device.

Alternatively, initial clinical monitoring might be used to

determine the Dbest patient-specific analysis parameters,
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which would be fixed subsequently for ambulatory monitoring.

This sequence of single parameter searches for maximizing

the objective function was necessary because the

computational effort for an exhaustive search is excessive.

However, a small amount of experimental data or very narrow

parameter ranges make an exhaustive parameter search

feasible, as one normally skilled in the art can appreciate.

[0043] The best choice of the parameter set for analyzing

the dissimilarity measures for each channel, (e.g., N, w, S,

d, B, Ny, and U,), depends not only on the system, but also
on the sgpecific data under consideration. A “reasonable”

value for the number of base case cutsets, 5 < B £ 10, was

selected as a balance between a reasonably short quasi-

stationary period of “normal” dynamics and a sufficiently

long period for statistical significance. This method of
the present invention involves: selecting the parameters to

be included in a parameter set, such as (N, w, S, and d},

finding specific values for the parameters that maximize the
objective function for the respective channels, computing
the renormalized measures of PS dissimilarity for the
specific data sets with the parameters set to their best

values, and systematically searching over the values of N,..

and U, to find the best channel for forewarning indication.

[0044] Besides epileptic seizures, the above methods can
be applied to detect condition change in patients having

cardiac or breathing difficulties.

[0045] The above methods can also be applied to electric

motor predictive maintenance, other machinery, and physical
processes. In the second example, data sets were recorded
in snapshots of 1.5 seconds, sampled at 40 kHz (60,000 total

time-serial samples), including three-phase voltages and

currents, plus tri-axial accelerations at inboard and
outboard locations on a three-phase electric motor. The

subsequent description describes analysis of one seeded
fault.

[0046] The test sequence began with the motor running in
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its nominal state (first dataset), followed by progressively

more severe broken rotor bars. The second dataset involved a

simulated failure that was one rotor bar cross section cut
through by 50%. The third dataset was for the same rotor bar

now cut through 100%. The fourth dataset was for a second

rotor bar cut 100%, exactly 180° from and in addition to the

first rotor fault. The fifth dataset was for two additional
rotor bars cut adjacent to the first rotor bar, with one bar
cut on each side of the original, vielding four bars
completely open. These five datasets were concatenated into
a single long dataset for ease of analysis. The three-phase

voltages, = V,, and currents, L., were converted into

instantaneous power, P 2; I,V; , where the sum runs over

the three phases. We split each of the five datasets into
five subsets of 12,000 points each, giving twenty-five (25)
total subsets. The power has a slow, low-amplitude variation
with a period of roughly 0.1s. To avoid confounding the

analysis, this artifact was removed with the zero-phase

quadratic filter.

[0047] The PS reconstruction parameters were
systematically varied, as before, to obtain the most linear
increase in the logarithm of condition change, in a least-
squares sense, for the broken-rotor test sequence. Fig. 3
shows that the phase-space dissimilarity measures rise by

ten-fold over the test sequence. The parameters are: S=88

(number of equiprobable phase-space symbols), d=4 (number of

phase-space dimensions), A=31 (time delay lag in time

steps), and w=550 (half width of the artifact filter window

in time steps). The exponential rise in the severity of the
broken-rotor faults (doubling from 0.5 to 1.0 to 2.0 to 4.0)
is mirrored in Figs. 3a-3d by a linear rise (solid line) in
the logarithm of all four dissimilarity measures (*) for the
chosen set of analysis parameters.

[0048] The present invention not only responds to the
problem of false positives and false negatives in
forewarning of events from biomedical data, but also is also

applicable to forewarning of machine failures and even
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failures 1n other physical processes capable of being
measured through sensors and transducers.
[0049] A third example involves tri-axial acceleration
data from a motor connected to a mechanical load wvia a
gearbox. Application of excess load causes accelerated
failure of the gears. The data were obtained at ten-minute
intervals through the test sequence, sampled at 102.4 kHz.
The total amount of data was 4.5 GB (three accelerometer

channels, times 401 snapshots for a total of 1203 files).

The 100,000 data points were serially concatenated from each

of the data files into a single three-channel dataset for
ease of analysis (1.6 GB). Each 100,000-point snapshot was
divided into ten 10,000-point subsets for this analysis; the
results were then averaged over these ten cutsets to obtain
a typical value for the entire snapshot. The accelerometer

data shows quasi-periodic, complex, nonlinear features.

[0050] The use of tri-axial acceleration has an important
advantage, which can be explained as follows. Acceleration
1s a three-dimensional vector that can be integrated once in
time to give velocity (vector). Mass timeé acceleration
(vector) is force (vector). The vector dot-product of force
and velocity 1is power (scalar). Thus, three-dimensional
acceleration data can be converted directly into a scalar
power (within a proportionality constant), which captures
the relevant dynamics and has more information about the

process than any single accelerometer channel. The resulting

accelerometer power also has very complex, nonlinear
features.
[0051] Fig. 4 shows a systematic rise in a composite PS

dissimilarity of accelerometer power as the test progresses,
with an additional abrupt rise at the onset of failure,

which occurs at dataset #394. This result was obtained by

constructing a composite measure, C;, of condition change,

namely the sum of the four renormalized measures of

gr—
p—t

digsimilarity in accelerometer power for each of the

datasets in the test sequence. The following method was used

to obtain this result:
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1) Construct a composite measure, C; = U(xz) + U(XCz) +

U(L) + U(Lc), for the i-th dataset;
2) Fit Ci to a straight line, y; = ai + b via least-

squares over a window of m datasets (datasets #194-393 in

this case), also shown in Fig. 4;

3) Obtain the wvariance, c.° = 2 (yi - Ci)z/(m—l) , of C;

about the straight-line fit from step 2;
4) Determine the statistic, ¥* = Z;, (y; - ¢,)%*/0,%, from
this straight-line fit for datasets #394-400;

5) Maximize the wvalue of y* from step 4 over the

parameters (d, S, A).

[0052] The variance, o0,°, in step 3 measures the

variability of (C;, about the straight-line fit over the

window of m datasets (#194-393).

[0053} The statistic, y°, in step 4 measures the

variability of datasets #394-400 from the straight-line fit.

180.42, which is incongistent

The value from step 4 is %°

with a normal distribution for n=7 degrees of freedom

(corresponding to the seven datasets in the computation of

the y* statistic in step 4), and is a strong indication of

the failure onset. Indeed, Fig. 5 shows a clear statistical

indication of failure onset. The bottom plot (labeled
“normal distribution”) in Fig. 5 depicts the maximum value
of the y%° statistic for n sequential values out of 200

samples from a Gaussian (normal) distribution with zero mean

and a unity sample standard deviation. The middle curve in

Fig. 5 1s the maximum value of the y® statistic, using step

4 above, for n sequential values of the composite measure,

C. over the window of m=200 datasets that span the

straight-line fit (datasets #194-393). The upper curve in
Fig. 5 is the y*® statistic, also using step 4 above, for n

sequential values - from datasets #394-400. This upper curve

(labeled “failure onset”) deviates markedly from the lower
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CA 02491987 2005-01-07
WO 2004/008373 PCT/US2003/020700

curves after two datasets (#394-395), with overwhelming
indication for three and more datasets. Thus, the composite

PS dissimilarity measure provides an objective function that

shows consistent indication of condition change, as well as

clear indication of the failure onset.

1]0054] The fourth and final example used the sgame
overloaded gearbox test bed, as in the third example. A
separate test sequence acquired load torque that was sampled
at 1 kHz. Each ten-second dataset had 10,000 data points,
all of which were concatenated serially into a single data
file for ease of analysis. These data are quasi-periodic
with complex, nonlinear features. The analysis parameters
were varied, as described above, to obtain phase-space
dissimilarity measures that remain below a threshold for
datasets #1-29. All four dissimilarity measures subsequently
rise, beginning at dataset #30, and remain above threshold
(U > U, = 0.894) for the remainder of the test sequence
until final failure at dataset #44. These results illustrate
that the phase-space dissimilarity measures can provide
forewarning of an 1mpending machine failure, not unlike the

first example for forewarning of an epileptic event from EEG
data.

[0055] This has been a description of detailed examples

of the invention. These examples illustrate the technical

improvements, as taught in the present invention: use of
equiprobable symbols, quantitification of channel -
consistent total-true rate of forewarning, various objective
functions for event forewarning, different search strategies
to maximize these objective functions, and forewarning of
various biomedical events and failures in machines and
physical processes. Typical biomedical events and data
include, but are not limited to, epileptic seizures from
EEG, cardiac fibrillation from EKG, and breathing difficulty
from lung sounds. Typical machines include, but are not
limited to, motors, pumps, turbines, and metal cutting.

Typical time-serial machine data include, but are not

limited to, electrical current, <voltage, and power;

position, velocity, and acceleration; and temperature and
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pressure. It will apparent to those of ordinary skill in
the art that certain modifications might be made without
departing from the scope of the invention, which is defined

by the following claims.
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CLAIMS
I claim:
1. A method for processing data to provide a

forewarning of a critical event, comprising:
acquiring a plurality of sets of data with a plurality
of channels of data for at least one test subject or

Process;
computing a renormalized measure of dissimilarity for

distribution functions derived from a connected phase space

for each respective channel of data;

comparing sald renormalized measure of dissimilarity to

a threshold (Ug) for a number of occurrences (Npee) toO

indicate a condition change in said renormalized measure of
dissimilarity;

detecting a simultaneous <condition change in a
plurality (Ng,) of renormalized measures of dissimilarity to
determine a forewarning of the critical event:

determining true ©positive, true negative, false

positive and false negative indications of condition change

forewarning of the critical event for each channel of data

in the plurality of sets of data;
calculating a total true rate for forewarning

indications for each channel of data; and

comparing the total true rates for respective channels

to determine at least one channel with the greatest channel-

consistent total-true rate in said at least one channel.

2. The method of claim 1, wherein the test subject is

a human patient.

3. The method of claim 1, wherein the test subject is

a mechanical device or physical process.

4. The method of claim 1, further comprising:

testing a plurality of parameters for each channel to

determine optimum values for the parameters corresponding to

a highest channel -consistent total-true rate for a
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respective channel; and
setting the plurality of parameters to the optimum

values for processing data from other channels of data.

5. The method of claim 1, wherein the connected phase
space 1is constructed by computing equiprobable symbols for
the data in the data sets.

6. The method of claim 1, wherein the total true rate

is calculated as 2;(TP; + TN;)/2;(TP; + TN; + FP; + FN;),

where TP are true positives, TN are true negatives, FP are

false positives and FN are false negative forewarning

6C * 22

1ndications and wherein “i” is the data set number.

7. The method of «c¢laim 1, further comprising

determining a sequence of renormalized phase space

dissimilarity measures from data sets collected during
increasingly severe fault conditions; summing said

for the

i-th data set; performing a least-squares analysis over a

renormalized measures into a composite measure, C.

1 f

window of m points of the said composite measure to obtain a

straight line, y,=ai+b, that best fits sgaid composite data

in a least-squares sense; determining the variance, o;° = I

(yi — Ci)%/(m-1), of said composite measure with respect to

the straight line fit; obtaining the variance of a sequel

window of n sequential points via the statistic, %° = Z; (y;

— Ci)z/clz; comparing said value of xz to the maximal value

 amad

of the same statistic, xz(Ci) for a window of n sequential

gr—
p—

points from said C; values; and determining the onset of a

critical event, such as a machine failure, when %% is

significantly more than xz(Ci) :
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8. The method of claim 1, further comprising:

selecting a set of parameter values (N, w, S, and d) for

computing the measures of dissimilarity for distribution

functions in connected phase space for the data sets to be

processed; and
searching over the wvalues of the forewarning threshold

(U.) and a corresponding number of occurrences (N,.) for

each channel to find the best channel for forewarning

indication.

9. The method of claim 8, wherein the connected phase

space 1is constructed by computing equiprobable symbols for

the data in the data sets.

10. The method of claim 1, wherein
a plurality of renormalized measures of dissimilarity

are computed for distribution functions derived from a

connected phase space for each respective channel of data;

and
wherein said plurality of renormalized measures of

dissimilarity are compared to respective thresholds to

indicate respective condition change forewarning of the

critical event.

11. The method of claim 10, wherein

a second plurality of renormalized measures of
dissimilarity are also computed for distribution functions
derived from an unconnected phase space for each respective

channel of data; and
wherein said second plurality of renormalized measures

of dissimilarity are compared to respective thresholds to

indicate respective condition change forewarning of the

critical event.

12. The‘method of claim 1, wherein
a plurality of renormalized measures of digsimilarity
are computed for distribution functions derived from a

connected phase space for each respective channel of data;

~23 -



CA 02491987 2005-01-07
WO 2004/008373 PCT/US2003/020700

wherein said renormalized measures of dissimilarity are
summed to provide a composite measure of dissimilarity; and

wherein said composite measure of dissimilarity is
compared to a threshold to indicate a respective condition

change forewarning of the critical event.

13. The method of claim 12, further comprising:

computing a chi-squared statistic, 7= X (yv:i - Ci)?%/a6i?,

for the composite dissimilarity measure;

testing a plurality of parameters for each channel to

determine optimum values for the parameters corresponding to

a largest value of y° for a respective channel; and

setting the plurality of parameters to the optimum

values for processing data from other channels of data.
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