PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(21) International Application Number: PCT/US00/05 (22) International Filing Date: 2 March 2000 (02.03	0553′	(43) International Publication Date: 21 September 2000 (21.09.00) (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
 (30) Priority Data: 60/124,118 12 March 1999 (12.03.99) (71) Applicant (for all designated States except US): REGENER PHARMACEUTICALS, INC. [US/US]; 777 Old Saw River Road, Tarrytown, NY 10591–6707 (US). (72) Inventor; and (75) Inventor/Applicant (for US only): ECONOMIDES, Aris. [GR/US]; 12 Mt. Morris Park West, New York, NY 10 (US). (74) Agents: PALLADINO, Linda, O.; Regeneron Pharmaceutic Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10 (US) et al. (54) Title: NOVEL NUCLEIC ACIDS AND POLYPEPTIDES 	US ERON W Mil 1002 Inticals 1059	BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). Published Without international search report and to be republished upon receipt of that report.

(57) Abstract

<u>DAN/Cerberus</u> Related protein <u>6</u> (DCR6) polypeptides and related nucleic acids are provided. Included are natural (DCR6) homologs from several species and polypeptides comprising a (DCR6) domain having specific activity. The polypeptides may be produced recombinantly from transformed host cells with the subject nucleic acids. Also provided are isolated hybridization probes and oligonucleotide primers capable of specifically hybridizing with the disclosed genes, specific binding agents and methods of making and using the subject compositions.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
	Austria	FR	France	LU	Luxembourg	SN	Senegal
AT		GA	Gabon	LV	Latvia	SZ	Swaziland
AU	Australia Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
AZ BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BB		GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BE BF	Belgium Burkina Faso	GR	Greece	27828	Republic of Macedonia	TR	Turkey
		HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BG	Bulgaria	IE	Ireland	MN	Mongolia	UA	Ukraine
BJ	Benin	IL.	Israel	MR	Mauritania	UG	Uganda
BR	Brazil		Iceland	MW	Malawi	US	United States of America
BY	Belarus	IS		MX	Mexico	UZ	Uzbekistan
CA	Canada	IT	Italy	NE NE	Niger	VN	Viet Nam
CF	Central African Republic	JP	Japan	NE NL	Netherlands	YU	Yugoslavia
CG	Congo	KE	Kenya		•	ZW	Zimbabwe
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

This International Application claims priority of U.S. Provisional Application No. 60/124,118, filed March 12, 1999. All publications and patent applications cited in this specification are hereby incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

INTRODUCTION

10

15

20

25

30

Field of the Invention

The field of this invention is polypeptides which regulate cell function and, in particular, antagonize bone morphogenic proteins and which are involved in the development and maintenance of the vascular system.

Background

Natural regulators of cellular growth, differentiation and function have provided important pharmaceuticals, clinical and laboratory tools, and targets for therapeutic intervention. A variety of such regulators have been shown to have profound effects on basic cellular differentiation and developmental pathways. For example, the recently cloned cerberus protein induces the formation of head structures in anterior endoderm of vertebrate embryos. Similarly, the noggin protein induces head structures in vertebrate embryos, and can redirect mesodermal fates from ventral fates, such as blood and mesenchyme, to dorsal fates such as muscle and notochord and can redirect epidermal fates to anterior neural fates. The activities of chordin are similar to those of noggin, reflecting a common mechanism of action - namely antagonizing bone morphogenic proteins (BMPs) and thereby preventing their function. BMPs have diverse biological activities in different biological contexts, including the induction of

cartilage, bone and connective tissue, and roles in kidney, tooth, gut, skin and hair development.

Different members of the TGFβ superfamily can instruct cells to follow different fates, for example TGFβ induces neural crest to form smooth muscle, while BMP2 induces the same cells to become neurons. In Xenopus experiments, dissociated animal cap cells (prospective ectoderm) become epidermis in response to BMP4 but become mesoderm in response to activin.

Since the sequence identity between activin and BMP4 is low, it is not surprising that they induce different fates. It is more surprising that members of the BMP subfamily, which are quite closely related in sequence, can induce distinct fates. A striking example results from implantation of a matrix impregnated with a BMP into muscle; when the effects are monitored histologically, BMP2, 4 and 7 induce endochondral bone formation, whereas a related molecule BMP12/GDF7 induces connective tissue similar to tendon. Similarly, BMP4 can induce cell death in the hindbrain neural crest, while the related protein dorsalin does not.

Since different BMP family members can induce different fates, then BMP antagonists that have specificity in blocking subsets of BMPs could change the balance of BMPs that are presented to a cell, thus altering cell fate. In view of the importance of relative BMP expression in human health and disease, regulators of cellular function and BMP function in particular, such as noggin and cerberus, provide valuable reagents with a host of clinical and biotechnological applications.

The ability of ligands to bind cells and thereby elicit a phenotypic response such as development, differentiation, growth, proliferation, survival and regeneration in such cells is often mediated through transmembrane receptors. The extracellular portion of each receptor is generally the most distinctive portion of the molecule, as it provides the protein with its ligand-recognizing characteristic.

In the case of receptor tyrosine kinases (RTKs), binding of a ligand to the extracellular domain results in signal transduction via an intracellular tyrosine kinase catalytic domain which transmits a biological signal to intracellular target proteins. For example, a gene encoding an endothelial cell transmembrane tyrosine kinase, originally identified by RT-PCR as an unknown tyrosine kinase-homologous cDNA fragment from human leukemia cells, was described by Partanen, et al., Proc. Natl. Acad. Sci. USA, 87: 8913-8917 (1990). This gene and its encoded protein are called "tie" which is an abbreviation for "tyrosine kinase with Ig and EGF homology domains." Partanen, et al. Mol. Cell. Biol. 12: 1698-1707 (1992).

10

15

20

25

30

It has been reported that <u>tie</u> mRNA is present in all human fetal and mouse embryonic tissues. Upon inspection, <u>tie</u> message has been localized to the cardiac and vascular endothelial cells. <u>tie</u> mRNA has been localized to the endothelia of blood vessels and endocardium of 9.5 to 18.5 day old mouse embryos. Enhanced <u>tie</u> expression was shown during neovascularization associated with developing ovarian follicles and granulation tissue in skin wounds. Korhonen, et al. Blood 80: 2548-2555 (1992). Thus <u>tie</u> has been suggested to play a role in angiogenesis, which is important for developing treatments for solid tumors and several other angiogenesis-dependent diseases such as diabetic retinopathy, psoriasis, atherosclerosis and arthritis.

Two structurally related rat TIE receptor proteins have been reported to be encoded by distinct genes with related profiles of expression. One gene, termed tie-1, is the rat homolog of human tie. Maisonpierre, et al., Oncogene 8: 1631-1637 (1993). The other gene, tie-2, may be the rat homolog of the murine tek gene, which, like tie, has been reported to be expressed in the mouse exclusively in endothelial cells and their presumptive progenitors. Dumont, et al. Oncogene 8: 1293-1301 (1993). Both genes were found to be widely expressed in endothelial cells of embryonic and postnatal tissues. Significant levels of tie-2 transcripts were also present in other embryonic cell populations, including lens epithelium, heart epicardium and regions of mesenchyme. Maisonpierre, et al.,

Oncogene 8: 1631-1637 (1993). The predominant expression of the TIE receptor in vascular endothelia suggests that TIE plays a role in the development and maintenance of the vascular system. This could include roles in endothelial cell determination, proliferation, differentiation and cell migration and patterning into vascular elements. In the mature vascular system, TIE could function in endothelial cell survival, maintenance and response to pathogenic influences.

An angiogenic factor, which was originally called TIE-2 ligand-1 (TL1) but is also referred to as angiopoietin-1 (Ang1), has been identified that signals through the TIE-2 receptor and is essential for normal vascular development in the mouse. By homology screening, an Ang1 relative has been identified and called TIE-2 ligand-2 (TL2) or angiopoietin-2 (Ang2). Ang2 is a naturally occurring antagonist for Ang1 and the TIE2 receptor. For a description of the cloning and sequencing of TL1 (Ang1) and TL2 (Ang2) as well as for methods of making and uses thereof, reference is hereby made to PCT International Publication No. WO 96/31598 published 18 April 1996 and PCT International Publication No. WO 96/31598 published 10 October 1996 both in the name of Regeneron Pharmaceuticals, Inc.; and S. Davis, et al., Cell 87: 1161-1169 (1996) each of which is hereby incorporated by reference.

20

15

10

The present invention relates to a novel regulator of cellular functions such as antagonizing bone morphogenic proteins and playing a role in the development and maintenance of the vascular system. This novel regulator shares homology with the DAN/cerberus family and is expressed in vascular tissues.

25

Relevant Literature

Bouwmeester, et al. (1996) Nature 382: 595-601 describe the cloning of Xenopus cerberus gene; Lamb, T. M., et al. (1993) Science 262: 713-718; Smith, W. C., et al. (1992) Cell 70: 829-840; Smith, W. C., et al. (1993) Nature 361: 547-549; and Zimmerman, L. B., et al. (1996) Cell 86: 599-606 describe the isolation and function of the noggin protein. Piccolo, S., et al. (1996) Cell 86: 589-598; Sasai, Y., et al.

(1995) Nature 376: 333-336; and Sasai, Y., et al. (1994) Cell 79: 779-790 relate to the chordin protein. Enomoto et al. (1994) Oncogene 9: 2785-2791 and Ozaki, et al. (1996) Jpn. J. Cancer Res. 87: 58-61 describe human and murine homologs of the DAN gene.

5

10

15

SUMMARY OF THE INVENTION

The invention provides methods and compositions relating to <u>D</u>AN/<u>C</u>erberus - <u>Related protein 6</u> (DCR6) polypeptides and related nucleic acids. Included are natural DCR6 homologs from different species, as well as polypeptides comprising a DCR6 domain and having DCR6-specific activity. The polypeptides may be produced recombinantly from transformed host cells with the subject nucleic acids. The invention provides isolated hybridization probes and primers capable of specifically hybridizing with the disclosed genes, specific binding agents such as specific antibodies, and methods of making and using the subject compositions in diagnosis (e.g., genetic hybridization screens for DCR6 transcripts), therapy (e.g., gene therapy to modulate DCR6 gene expression) and in the biopharmaceutical industry (e.g., reagents for screening chemical libraries for lead pharmacological agents).

20

25

30

Preferred applications of the subject DCR6 polypeptides include modifying the physiology of a cell comprising an extracellular surface by contacting the cell or medium surrounding the cell with an exogenous DCR6 polypeptide under conditions whereby the added polypeptide specifically interacts with a component of the medium and/or the extracellular surface to effect a change in the physiology of the cell. Also preferred are methods for screening for biologically active agents, which methods involve incubating a DCR6 polypeptide in the presence of an extracellular DCR6 polypeptide-specific binding target and a candidate agent, under conditions whereby, but for the presence of the agent, the polypeptide specifically binds the binding target at a reference affinity; detecting the binding affinity of the polypeptide to the binding target to determine an agent-biased affinity, wherein a difference between the agent-biased

affinity and the reference affinity indicates that the agent modulates the binding of the polypeptide to the binding target.

BRIEF DESCRIPTION OF THE FIGURES

5

Figure 1A-1F. The genomic DNA sequence of vts_hDCR6. The predicted boundaries of exons 1, 2, 3, and 4 are indicated underneath the sequence.

Figure 2A-2B. The nucleic acid and deduced amino acid sequence of vts_hDCR6 that was created by PCR-amplifying the individual exons from human genomic DNA and splicing them together. Silent mutations introduced to facilitate cloning and polypeptide expression are indicated in bold above the nucleic acid sequence and splice-junction sites between adjacent exons are underlined.

Figure 3A-3B. The nucleic acid and deduced amino acid sequence of hDCR6 that was cloned from a human kidney cDNA library having exons 1 and 4.

DETAILED DESCRIPTION OF THE INVENTION

20 **Definitions**

25

30

An "oligonucleotide" or "oligonucleotide primer" or "primer" is a stretch of nucleotide residues which has a sufficient number of bases to be used in, for example, a polymerase chain reaction (PCR) or in DNA sequencing methodologies. These short sequences are based on (or designed from) genomic or cDNA sequences or back translated from protein sequences and are used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue or to initiate sequencing reactions. Oligonucleotides or oligomers comprise portions of a DNA sequence having at least about 10 nucleotides and as many as about 50 nucleotides, preferably about 15 to 30 nucleotides. They are chemically synthesized and may be used as probes.

"Probes" are nucleic acid sequences of variable length, preferably between at least about 10 and as many as about 6,000 nucleotides, depending on use. They are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are usually obtained from a natural or recombinant source, are highly specific and much slower to hybridize than oligonucleotides. They may be single- or double-stranded and carefully designed to have specificity in PCR, hybridization membrane-based, or ELISA-like technologies.

10

A "portion" or "fragment" of a polynucleotide or nucleic acid or polypeptide comprises all or any part of the polynucleotide or a polypeptide sequence having fewer nucleotides or amino acids than the complete polynucleotide or nucleic acid or polypeptide.

15

A "signal sequence" is a short amino acid sequence which can be used, when desired, to direct the polypeptide through a membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous sources by recombinant DNA techniques.

20

"Animal" as used herein may be defined to include human, domestic (i.e., cats, dogs), agricultural (i.e., cows, horses, sheep, goats, chicken, fish) or test species (i.e., frogs, mice, rats, rabbits, simians).

Since the list of technical and scientific terms cannot be all encompassing, any undefined terms shall be construed to have the same meaning as is commonly understood by one of skill in the art to which this invention belongs.

Furthermore, the singular forms "a", "an" and "the" include plural referents unless the context clearly dictates otherwise. For example, reference to a "restriction enzyme" or a "high fidelity enzyme" may include mixtures of such enzymes and any other enzymes fitting the stated criteria, or reference to the method includes reference to one or more methods for obtaining cDNA

sequences which will be known to those skilled in the art or will become known to them upon reading this specification.

Before the present sequences, variants, formulations and methods for making and using the invention are described, it is to be understood that the invention is not to be limited only to the particular sequences, variants, formulations or methods described. The sequences, variants, formulations and methodologies may vary, and the terminology used herein is for the purpose of describing particular embodiments. The terminology and definitions are not intended to be limiting since the scope of protection will ultimately depend upon the claims.

10

15

20

The invention provides DCR6 polypeptides which include natural DCR6 polypeptides and recombinant polypeptides comprising a DCR6 amino acid sequence, or a functional DCR6 polypeptide domain thereof having an assay-discernable DCR6-specific activity. Accordingly, the polypeptides may be deletion mutants of the disclosed natural DCR6 polypeptides and may be provided as fusion products, e.g., with non-DCR6 polypeptides. The subject DCR6 polypeptide domains have DCR6-specific activity or function and are functionally distinct from each other and from DAN/Cerberus family and noggin homologs. Such domains include at least 6 and preferably at least 8 consecutive amino acid residues of a natural DCR6 polypeptide (see human DCR6 sequence disclosed herein). Preferred DCR6 polypeptides comprise a DCR6 sequence conserved across species.

Note that contrary to prior art teachings which state that DAN is an intracellular zinc finger protein, applicants disclose that the natural DAN protein is extracellularly active as an antagonist of certain morphogenic proteins such as BMPs. In addition, the DCR5 sequence, set forth in co-pending US Provisional Application No. 60/097,296, filed August 20, 1998, is also extracellularly active as an antagonist of certain morphogenic proteins such as BMPs. Because DCR-6 is structurally similar to DAN and DCR5, applicants predict that DCR6 will exhibit biological activities similar to these two related proteins. DCR6-specific activity

or function may be determined by convenient <u>in vitro</u>, cell-based, or <u>in vivo</u> assays - e.g., <u>in vitro</u> binding assays, cell culture assays, in animals (e.g., immune response, gene therapy, transgenics). Binding assays encompass any assay where the specific molecular interaction of a DCR6 polypeptide with a binding target is evaluated. The binding target may be a natural binding target, a chaperon, or other regulator that directly modulates DCR6 activity or its localization; or non-natural binding target such as a specific immune protein such as an antibody, or a DCR6-specific agent such as those identified in assays described below. Generally, binding specificity is assayed by bioassay (e.g., the ability to induce neuronal tissue from injected embryonic ectoderm), target protein binding equilibrium constants (usually at least about 10⁷ M⁻¹, preferably at least about 10⁸ M⁻¹, more preferably at least about 10⁹ M⁻¹), by the ability of the subject polypeptide to function as negative mutants in DCR6-expressing cells, by the ability to elicit DCR6-specific antibody production in a heterologous host (e.g., a rodent or rabbit).

15

20

25

10

The claimed polypeptides may be isolated or pure - an "isolated" polypeptide is one that is no longer accompanied by some of the material with which it is associated in its natural state, and that preferably constitutes at least about 0.5%, and more preferably at least about 5% by weight of the total protein in a given sample; a "pure" polypeptide constitutes at least about 90%, and preferably at least about 99% by weight of the total protein in a given sample. The subject polypeptides and polypeptide domains may be synthesized, produced by recombinant technology, or purified from cells. A wide variety of molecular and biochemical methods are available for biochemical synthesis, molecular expression and purification of the subject compositions (see e.g., Molecular Cloning, A Laboratory Manual (Sambrook, et al., Cold Spring Harbor Laboratory), Current Protocols in Molecular Biology (Eds. Ausubel, et al., Greene Publ. Assoc., Wiley-Interscience, NY).

The subject polypeptides find a wide variety of uses including use as immunogens, targets in screening assays, bioactive reagents for modulating cell

growth, differentiation and/or function. For example, the invention provides methods for modifying the physiology of a cell comprising an extracellular surface by contacting the cell or medium surrounding the cell with an exogenous DCR6 polypeptide under conditions whereby the added polypeptide specifically interacts with a component of the medium and/or the extracellular surface to effect a change in the physiology of the cell. According to these methods, the extracellular surface includes plasma membrane-associated receptors; the exogenous DCR6 refers to a polypeptide not made by the cell or, if so, expressed at non-natural levels, times or physiologic locales; and suitable media include in vitro culture media and physiological fluids such as blood, synovial fluid or lymph. Effective administrations of subject polypeptides may be useful in reducing undesirable (e.g., ectopic) bone formation, inhibit the growth of cells that require a morphogenic protein (e.g., BMP-dependent neuroblastomas and gliomas), alter morphogen-dependent cell fate/differentiation in culture, such as with cells for transplantation or infusion. The polypeptides may be may be introduced, expressed, or repressed in specific populations of cells by any convenient way such as microinjection, promoter-specific expression of recombinant enzyme, or targeted delivery of lipid vesicles.

The invention provides natural and non-natural DCR6-specific binding agents, methods of identifying and making such agents, and their use in diagnosis, therapy and pharmaceutical development. DCR6-specific binding agents may include ligands such as BMPs, and receptors, such as somatically recombined protein receptors like specific antibodies or T-cell antigen receptors (See, e.g., Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory) and may also include other natural binding agents identified with assays such as one-, two- and three-hybrid screens, and non-natural binding agents identified in screens of chemical libraries such as described below. Agents of particular interest modulate DCR6 function.

30

5

10

15

The invention provides DCR6 nucleic acids, which find a wide variety of applications including use as translatable transcripts, hybridization probes, PCR

primers, diagnostic nucleic acids, as well as use in detecting the presence of DCR6 genes and gene transcripts and in detecting or amplifying nucleic acids encoding additional DCR6 homologs and structural analogs.

The subject nucleic acids are of synthetic/non-natural sequences and/or are isolated, i.e., no longer accompanied by some of the material with which it is associated in its natural state, preferably constituting at least about 0.5%, more preferably at least about 5% by weight of total nucleic acid present in a given fraction, and usually recombinant, meaning they comprise a non-natural sequence or a natural sequence joined to nucleotide(s) other than that which it is joined to on a natural chromosome. Nucleic acids comprising the nucleotide sequence of Figure 2A-2B or Figure 3A-3B or fragments thereof, contain such sequences or fragments at a terminus, immediately flanked by a sequence other than that to which it is joined on a natural chromosome, or flanked by a native flanking region fewer than 10 kb, preferably fewer than 2 kb, which is immediately flanked by a sequence other than that to which it is joined on a natural chromosome. While the nucleic acids are usually RNA or DNA, it is often advantageous to use nucleic acids comprising other bases or nucleotide analogs to provide modified stability.

20

25

30

15

DCR6-encoding nucleic acids may be part of expression vectors and may be incorporated into recombinant host cells, e.g., for expression and screening, for transgenic animals, for functional studies such as the efficacy of candidate drugs for diseases associated with DCR6-mediated signal transduction. Expression systems are selected and/or tailored to effect DCR6 polypeptide structural and functional variants through alternative post-translational processing.

The invention also provides for nucleic acid hybridization probes and replication/amplification primers having a DCR6 cDNA specific sequence and sufficient to effect specific hybridization with the sequences set forth in Figures 1A-1F, 2A-2B, or 3A-3B. Demonstrating specific hybridization generally requires stringent conditions, for example, hybridizing in a buffer comprising 30%

formamide in 5 x SSPE (0.18 M NaCl, 0.01 M NaPO₄, pH7.7, 0.001 M EDTA) buffer at a temperature of 42°C and remaining bound when subject to washing at 42°C with 0.2 x SSPE; preferably hybridizing in a buffer comprising 50% formamide in 5 x SSPE buffer at a temperature of 42°C and remaining bound when subject to washing at 42°C with 0.2x SSPE buffer at 42°C. DCR6 cDNA homologs can also be distinguished from other cDNA-encoding polypeptides using alignment algorithms, such as BLASTX (Altschul, et al. (1990) Basic Local Alignment Search Tool, J. Mol. Biol. 215: 403-410).

DCR6 hybridization probes find use in identifying wild-type and mutant alleles 10 in clinical and laboratory samples. Mutant alleles are used to generate allelespecific oligonucleotide (ASO) probes for high-throughput clinical diagnoses. DCR6 nucleic acids are also used to modulate cellular expression or intracellular concentration or availability of active DCR6. DCR6 inhibitory nucleic acids are typically antisense - single stranded sequences comprising complements of the 15 disclosed natural DCR6 coding sequences. Antisense modulation of the expression of a given DCR6 polypeptide may employ antisense nucleic acids operably linked to gene regulatory sequences. Cells are transfected with a vector comprising a DCR6 sequence with a promoter sequence oriented such that transcription of the gene yields an antisense transcript capable of binding to 20 endogenous DCR6-encoding mRNA. Transcription of the antisense nucleic acid may be constitutive or inducible and the vector may provide for stable extrachromosomal maintenance or integration. Alternatively, single-stranded antisense nucleic acids that bind to genomic DNA or mRNA encoding a given DCR6 polypeptide may be administered to the target cell, in or temporarily 25 isolated from a host, at a concentration that results in a substantial reduction in expression of the targeted protein. An enhancement in DCR6 expression is effected by introducing into the targeted cell type DCR6 nucleic acids which increase the functional expression of the corresponding gene products. Such nucleic acids may be DCR6 expression vectors, vectors which upregulate the 30 functional expression of an endogenous allele, or replacement vectors for

targeted correction of mutant alleles. Techniques for introducing the nucleic acids into viable cells are known in the art and include retroviral-based transfection or viral coat protein-liposome mediated transfection.

The invention provides efficient methods of identifying agents, compounds or lead compounds for agents active at the level of DCR6 modulatable cellular function. Generally, these screening methods involve assaying for compounds which modulate DCR6 interaction with a natural DCR6 binding target. A wide variety of assays for binding agents are provided including protein-protein binding assays, immunoassays or cell based assays. Preferred methods are amenable to automated, cost-effective high throughput screening of chemical libraries for lead compounds.

15

20

25

30

<u>In vitro</u> binding assays employ a mixture of components including a DCR6 polypeptide, which may be part of a fusion product with another peptide or polypeptide, e.g., a tag for detection or anchoring. The assay mixtures comprise a natural DCR6 binding target. While native binding targets may be used, it is frequently preferred to use portions thereof as long as the portion provides binding affinity and avidity to the subject DCR6 that is conveniently measurable in the assay. The assay mixture also comprises a candidate pharmacological agent. Candidate agents encompass numerous chemical classes, though typically they are organic compounds, preferably small organic compounds, and are obtained from a wide variety of sources including libraries of synthetic or natural compounds. A variety of other reagents such as salts, buffers, neutral proteins, e.g., albumin, detergents, protease inhibitors, nuclease inhibitors or antimicrobial agents, may also be included. The mixture components can be added in any order that provides for the requisite binding and incubations may be performed at any temperature which facilitates optimal binding. The mixture is incubated under conditions whereby, but for the presence of the candidate pharmacological agent, the DCR6 specifically binds the cellular binding target, portion or analog with a reference binding affinity. Incubation periods are chosen for optimal binding but are also minimized to facilitate rapid, high throughput screening.

After incubation, the agent-biased binding between the DCR6 and one or more binding targets is detected by any convenient way. For cell-free binding type assays, a separation step is often used to separate bound from unbound components. Separation may be effected by, for example, precipitation or immobilization, followed by washing by, e.g., membrane filtration or gel chromatography. For cell-free binding assays, one of the components usually comprises or is coupled to a label. The label may provide for direct detection such as radioactivity, luminescence, optical or electron density, or indirect detection such as an epitope tag or an enzyme. A variety of methods may be used to detect the label depending on the nature of the label and other assay components, e.g., through optical or electron density, radiative emissions, nonradiative energy transfers, or indirectly detected with antibody conjugates. A difference in the binding affinity of the DCR6 polypeptide to the target in the absence of the agent as compared with the binding affinity in the presence of the agent indicates that the agent modulates the binding of the DCR6 polypeptide to the corresponding binding target. A difference, as used herein, is statistically significant and preferably represents at least a 50%, more preferably at least a 90% difference.

20

25

15

The invention provides for a method for modifying the physiology of a cell comprising an extracellular surface in contact with a medium, said method comprising the step of contacting said medium with an exogenous DCR6 polypeptide under conditions whereby said polypeptide specifically interacts with at least one of a component of said medium and said extracellular surface to effect a change in the physiology of said cell.

The invention further provides for a method for screening for biologically active agents, said method comprising the steps of a) incubating a DCR6 polypeptide in the presence of an extracellular DCR6 polypeptide specific binding target and a candidate agent, under conditions whereby, but for the presence of said agent, said polypeptide specifically binds said binding target at a reference affinity; b)

detecting the binding affinity of said polypeptide to said binding target to determine an agent-biased affinity, wherein a difference between the agent-biased affinity and the reference affinity indicates that said agent modulates the binding of said polypeptide to said binding target.

5

The invention provides for an isolated nucleic acid molecule encoding human DCR6.

The invention further provides for an isolated nucleic acid molecule having a sequence selected from the group consisting of (a) the nucleotide sequence comprising the coding region of human DCR6 as set forth in Figure 2A-2B; (b) the nucleotide sequence comprising the coding region of human DCR6 as set forth in Figure 3A-3B; (c) a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence of (a) or (b) and which encodes a molecule having the biological activity of human DCR6; or (d) a nucleotide sequence which, but for the degeneracy of the genetic code would hybridize to a nucleotide sequence of (a), (b), or (c) and which encodes a molecule having the biological

The invention provides for a vector or plasmid wherein the DCR6 nucleic acid molecule is operatively linked to an expression control sequence capable of directing its expression in a host cell.

activity of the human DCR6.

The invention further provides for isolated human DCR6 polypeptide comprising the amino acid sequence as set forth in Figure 2A-2B or Figure 3A-3B, or a fragment thereof having DCR6-specific activity.

The invention provides for a host-vector system for the production of human DCR6 wherein the host cell is a bacterial, yeast, insect or mammalian cell.

30

25

The invention provides for a method of producing human DCR6 which comprises growing cells of a host-vector system under conditions permitting

production of the human DCR6, and recovering the human DCR6 so produced.

The invention also provides for an antibody which specifically binds the human DCR6 polypeptide. The antibody may be a polyclonal antibody or a monoclonal antibody.

The invention provides for a pharmaceutical composition comprising human DCR6 polypeptide and an acceptable carrier as well as a pharmaceutical composition comprising an antibody an acceptable carrier.

10

The invention further provides for human DCR6 polypeptide, an antibody, or a composition for use in a method of treatment of the human or animal body, or in a method of diagnosis.

The invention provides for a ligandbody which comprises human DCR6 fused to an immunoglobulin constant region and a ligandbody wherein the immunoglobulin constant region is the Fc portion of human IgG1.

The invention provides for a ligandbody for use in a method of treatment of the human or animal body, or in a method of diagnosis.

Another embodiment of the invention is a recombinant nucleic acid encoding DCR6 polypeptide comprising the amino acid sequence as set forth in Figure 2A-2B or Figure 3A-3B or a fragment thereof having DCR6- specific activity.

25

30

Still another embodiment is an isolated nucleic acid comprising a nucleotide sequence as set forth in Figure 2A-2B or Figure 3A-3B or a fragment thereof having at least 18 consecutive bases of the sequences set forth in Figure 2A-2B or Figure 3A-3B and sufficient to specifically hybridize with a nucleic acid having the sequences as set forth in Figure 2A-2B or Figure 3A-3B in the presence of natural DCR6 cDNA.

The present invention also provides for antibodies to the DCR6 polypeptide described herein which are useful for detection of the polypeptide in, for example, diagnostic applications. For preparation of monoclonal antibodies directed toward this DCR6 polypeptide, any technique which provides for the production of antibody molecules by continuous cell lines in culture may be used. For example, the hybridoma technique originally developed by Kohler and Milstein (1975, Nature 256:495-497), as well as the trioma technique, the human B-cell hybridoma technique (Kozbor et al., 1983, Immunology Today 4:72), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., 1985, in "Monoclonal Antibodies and Cancer Therapy," Alan R. Liss, Inc. pp. 77-96) and the like are within the scope of the present invention.

10

15

20

25

30

The monoclonal antibodies for diagnostic or therapeutic use may be human monoclonal antibodies or chimeric human-mouse (or other species) monoclonal antibodies. Human monoclonal antibodies may be made by any of numerous techniques known in the art (e.g., Teng et al., 1983, Proc. Natl. Acad. Sci. U.S.A. 80:7308-7312; Kozbor et al., 1983, Immunology Today 4:72-79; Olsson et al., 1982, Meth. Enzymol. 92:3-16). Chimeric antibody molecules may be prepared containing a mouse antigen-binding domain with human constant regions (Morrison et al., 1984, Proc. Natl. Acad. Sci. U.S.A. 81:6851, Takeda et al., 1985, Nature 314:452).

Various procedures known in the art may be used for the production of polyclonal antibodies to epitopes of the DCR6 polypeptide described herein. For the production of antibody, various host animals can be immunized by injection with the DCR6 polypeptide, or a fragment or derivative thereof, including but not limited to rabbits, mice and rats. Various adjuvants may be used to increase the immunological response, depending on the host species, and including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, polypeptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (Bacille

Calmette-Guerin) and Corynebacterium parvum.

A molecular clone of an antibody to a selected DCR6 polypeptide epitope can be prepared by known techniques. Recombinant DNA methodology (see e.g., Maniatis et al., 1982, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York) may be used to construct nucleic acid sequences which encode a monoclonal antibody molecule, or antigen binding region thereof.

The present invention provides for antibody molecules as well as fragments of such antibody molecules. Antibody fragments which contain the idiotype of the molecule can be generated by known techniques. For example, such fragments include but are not limited to: the F(ab')₂ fragment which can be produced by pepsin digestion of the antibody molecule; the Fab' fragments which can be generated by reducing the disulfide bridges of the F(ab')₂ fragment, and the Fab fragments which can be generated by treating the antibody molecule with papain and a reducing agent. Antibody molecules may be purified by known techniques, e.g., immunoabsorption or immunoaffinity chromatography, chromatographic methods such as HPLC (high performance liquid chromatography), or a combination thereof.

The invention further provides for a method of using a DCR6 polypeptide or fragment thereof as an antagonist of the activity of a bone morphogenic protein (BMP).

25

The following examples are offered by way of illustration and not by way of limitation.

EXAMPLES

Example 1: Cloning and Sequencing of "Virtual" Human DCR6

A. "Virtual" cloning

The Human Virtual Transcribed Sequence Database (Kazusa DNA Research Institute, http://zearth.kazusa.or.jp/vts/intro.html), is a database that contains protein sequences that are predicted to be encoded by human genomic sequences. The Human Virtual Transcribed Sequence Project aims to provide candidate transcribed sequences from the available human genome sequencing data by using the gene detection method, GENSCAN (see *infra*) by Chris Burge (cburge@mit.edu). Therefore it is entirely *in silico* gene cloning.

15

25

30

10

5

Currently, the database is collecting human genome sequence data from Genbank gss, htg, new, pri1, pri2, entries and from the Web pages of Lawrence Berkeley National Laboratory Human Genome Center, Whitehead Institute/MIT Genome Sequencing Project, The Sanger Centre, Washington University Genome Sequencing Center, Genome Therapeutics Corporation, Japan Science and Technology Corporation, and Yale Center for Medical Informatics.

VTS has been developed by Nobuyuki Miyajima (miyajima@kazusa.or.jp, Kazusa DNA Research Institute) and Toshiyuki Saito (t_saito@nirs.go.jp, National Institute of Radiological Sciences).

GENSCAN is a program designed to predict complete gene structures, including exons, introns, promoter and polyadenylation signals, in genomic sequences. It differs from the majority of existing gene finding algorithms in that it allows for partial genes as well as complete genes and for the occurrence of multiple genes in a single sequence, on either or both DNA strands. The program is based on a probabilistic model of gene structure/compositional properties and does not

make use of protein sequence homology information. The text output of the program is a list of one or more (or possibly zero) predicted genes together with the corresponding peptide sequences. The graphical output (PostScript or gif) is a diagram of the locations of the predicted exons.

5

10

15

20

25

In an attempt to clone novel members of the DAN/Cerberus family, the Human Virtual Transcribed Sequence Database was searched by querying with the sequences of several different DAN/Cerberus family members, including the human DCR5 sequence as set forth in co-pending US Provisional Application No. 60/097,296, filed August 20, 1998). A "virtual" predicted polypeptide sequence sharing homology to the human DCR5 query sequence was identified and the corresponding genomic DNA sequence was obtained from the NCBI database (http://www.ncbi.nih.gov; Entrez Search System, nucleotides, Accession #AC003098). This genomic DNA sequence, designated virtual Human DAN/Cerberus related protein 6 (vts_hDCR6) was used to design oligonucleotide primers for use in a PCR-based homology cloning strategy to determine if the "virtual" sequence was in fact transcribed *in vivo*..

Vts_hDCR6 was identified as a predicted open reading frame (ORF) encoding a polypeptide that shares sequence homology with the DAN/Cerberus protein family. The vts_hDCR6 genomic DNA sequence and the regions corresponding to the predicted open reading frame consisting of four exons is set forth in Figure 1A-1F. Because vts_hDCR6 is only a predicted ORF identified by a computer algorithm, it was necessary to (a) show that hDCR6 is expressed in human tissues, (b) determine if the predicted ORF has the same sequence as any actual cDNA clone of hDCR6, and (c) demonstrate that it is a secreted polypeptide.

B. PCR-amplification and cloning of vts hDCR6 exons 1, 2, 3, and 4:

The predicted four exons comprising vts_hDCR6 that are set forth in Figure 1A-1F were each PCR-amplified independently using the following oligonucleotide primers:

Exon 1:

vts_DCR6.ex1 PCR5' (Sal I):

CAG ATA GTC GAC GCC GCC ACC ATG GTG CTC CCA CTG GCC CTG TGT

5 CTC GTC TGC

vts_DCR6.ex1 PCR3' (Spe I):

CTC GAC TAG TGC TTT GGT CTC AAA GGG GTG GTG GGG AGG

10 **Exon 2**:

vts_DCR6.ex2 PCR5' (Spe I):

AAA GCA CTA GTC GAG GAA CAG TCT TGC CTG GAG GTG

vts_DCR6.ex2 PCR3' (Eae):

15 CTC GGC CAC CTT GTT CCC TTC CCA GTG GTA CCA GCA GCT

Exon 3:

vts_DCR6.ex3 PCR5' (Eae):

CAT GTG GCC GAG AAG TCC ACT GCC CAG GCT

20

vts_DCR6.ex3 PCR3' (Afl 3):

CTC GGA CAC GTA GCC CTT CAG GCA GTC GCT GGA GCC

Exon 4:

vts_DCR6.ex4 PCR5' (Afl 3):

CAG TAC GTG TCC GAG TAC AGC TGC CGC GAG

vts_DCR6.ex4 PCR3' (Not I):

GTA GCG GCC GCC TAG TAG GCG TTC TCC AGC TCG GCC TG

30

Exons 1, 2, and 3 were PCR-amplified from human genomic DNA using the ExTaq DNA Polymerase PCR system (Panvera, Madison, WI, Cat. #TAKRR001C).

Exon 4 was amplified from human genomic DNA using the ExTaq DNA Polymerase PCR system in conjunction with PCRx Enhancer System (Life Technologies, Inc., Rockville, MD, Cat. # 11495-017). Each PCR-amplified exon was subcloned into the pUC18 vector using the SureClone Ligation Kit

(Amersham Pharmacia Biotech AB, Uppsala, Sweden, Cat. #27-9300-01) and standard genetic engineering methodologies (see e.g., Molecular Cloning, A Laboratory Manual (Sambrook, et al., Cold Spring Harbor Laboratory), Current Protocols in Molecular Biology (Eds. Ausubel, et al., Greene Publ. Assoc., Wiley-Interscience, NY). The sequence of each exon was verified using an ABI 373A DNA sequencer and Taq Dideoxy Terminator Cycle Sequencing Kit (Applied Biosystems, Inc., Foster City, CA).

The complete ORF encoding vts_hDCR6 was then genetically engineered by piecing together the four individual exons into the expression vector pCS107 using standard techniques familiar to one of skill in the art. In order to facilitate reconstruction of the vts_hDCR6 ORF into this expression vector, it was necessary to introduce restriction sites between exons to allow for ligating the individual pieces in one unit. However, in each instance, the introduction of restriction sites resulted in silent mutations that did not alter the polypeptide sequence. The sites of exon boundaries are underlined in the sequence set forth in Figure 2A-2B. In addition to the silent mutations described *supra*, the second codon of vts_hDCR6 was changed from CAG to GTG to accommodate a Kozak sequence (Kozak, M., 1987, Nucleic Acids Res. 15:8125-8148) at the 5' end to promote efficient translational initiation.

25

30

15

20

Example 2: Northern blot analysis to evaluate the expression profile of hDCR6.

To determine whether vts_hDCR6 is expressed in human tissues, Multiple Tissue Northern blots (Clontech, Palo Alto, CA, Cat. # 7760-1, 7759-1, 7767-1, and 7765-1) were probed using standard Northern blot methodology with a ³²P-labeled nucleic acid fragment of vts_hDCR6 consisting of exons 1, 2, and 3. Exon

4 was omitted because its sequence is very GC-rich and as a result is prone to high background levels of non-specific hybridization. The results of the Northern analysis revealed low levels of hDCR6 mRNA expression in the adult kidney and very low levels of expression in heart muscle and colon. The size of the hDCR6 mRNA transcript was approximately 2.4kb.

Example 3: Cloning of hDCR6 by screening human kidney cDNA and a human kidney cDNA library:

5

10 Based on the results obtained in the Northern analysis, human kidney cDNA (Clontech, Palo Alto, CA, Cat. #7405-1) was used as a template in the following PCR-based gene cloning strategy. Using the 5' oligonucleotide primer used to amplify exon 1 of vts_hDCR6 (vts_DCR6.ex1 PCR5' (Sal I)) and the 3' oligonucleotide primer used to amplify exon 4 of vts_hDCR6 (vts_DCR6.ex4 PCR3' (Not I)) and human kidney cDNA as a template, a PCR reaction was performed. Unexpectedly, the PCR reaction resulted in the amplification of an approximately 0.7kb DNA fragment, rather than the expected 1.2kb fragment predicted by the vts_hDCR6 ORF. Because the size of this fragment was smaller than that expected for vts_hDCR6, it was reasoned that the splicing of the hDCR6 mRNA differed from that of vts_hDCR6. To verify this, the PCR-derived DNA fragment was directly sequenced by standard techniques. The sequence revealed that hDCR6 as expressed in kidney was comprised of exons 1 and 4 of vts_hDCR6 and not any sequence associated with exons 2 and 3.

To obtain a cDNA clone of hDCR6, a human kidney cDNA Rapid-Screen cDNA Library Panel (Origene Technologies, Inc., Rockville, MD, Cat. #LKD-1001) was screened by PCR using the same oligonucleotide primers (vts_DCR6.ex1 PCR5' (Sal I) and vts_DCR6.ex4 PCR3' (Not I)). A full length cDNA clone of hDCR6, comprising only exons 1 and 4 was thus obtained and sequence-verified. The nucleic acid and deduced amino acid sequence of this hDCR6 clone is set forth in Figure 3A-3B. Using the computer program MacVector, it is predicted that the approximately first 20 amino acids encode a signal peptide sequence.

Example 4: Expression pattern of DCR6 in rat tissues.

As described *supra*, Northern analysis revealed that the expression of human DCR6 in adult human tissues is highly restricted to the heart, kidney, and colon (see Table 1).

5

TABLE 1

Tissue	relative level of expression of hDCR6
adrenal gland	undetectable
bladder (muscle only)	undetectable
bone marrow	' undetectable
brain	undetectable
colon (mucosa lining)	low
colon (no mucosa) (muscle only)	undetectable
heart	low
heart (muscle only)	medium
kidney	high
kidney liver	undetectable
lung	undetectable
lymph node	undetectable
ovary	undetectable
pancreas	undetectable
peripheral blood leukocytes	undetectable
placenta	undetectable
prostate	undetectable
prostate (muscle only)	undetectable
skeletal muscle	undetectable
sleletal (muscle only)	undetectable
small intestine	undetectable
small intestine (muscle only)	undetectable
spinal chord	undetectable
spleen	undetectable
stomach	undetectable
stomach (muscle only)	undetectable
testis	undetectable
thymus	undetectable
thyroid	undetectable
trachea	undetectable
uterus (no endometrium) (muscle only)	undetectable

Because these data do not yield any information as to which part of the tissue and which cell type(s) human DCR6 is expressed in, the expression of rat DCR6 was also examined in rat embryos at embryonic day 15 (E15) and in adult rat kidneys, using standard in situ hybridization techniques. Consecutive sections were hybridized either to a sense or an anti-sense rat DCR6 probe and those tissues that 5 hybridized to the anti-sense but not the sense probe where considered to be positive. By this criteria, rat DCR6 was found to be expressed throughout the choroid plexus (in the brain), in the dorsal surface of the tongue, in the pulmonary artery and aorta, the iliac artery, the lower intestine, and the developing whisker follicles (follicles of vibrissa). There was also expression in 10 the liver either in the lymphatic channels or in the portal veins. In the adult rat kidney, expression of rat DCR6 was restricted to the glomeruli. The association of DCR6 expression with vascular structures indicates that DCR6 may play an important role in the development and homeostasis of these structures. It is also possible that in different diseases (e.g. kidney fibrosis) DCR6 may play an 15 important role.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

20

WHAT IS CLAIMED IS:

10

15

1. An isolated nucleic acid molecule encoding human DCR6.

- 5 2. An isolated nucleic acid molecule as in claim 1 having a sequence selected from the group consisting of:
 - (a) the nucleotide sequence comprising the coding region of the human DCR6 as set forth in Figure 2A-2B;
 - (b) the nucleotide sequence comprising the coding region of the human DCR6 as set forth in Figure 3A-3B;
 - (c) a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence of (a) or (b) and which encodes DCR6; or
 - (d) a nucleotide sequence which, as a result of the degeneracy of the genetic code, differs from the nucleic acid of (a), (b) or (c) and which encodes DCR6.
 - 3. A vector which comprises a nucleic acid molecule of claim 1 or 2.
- 4. A vector according to claim 3, wherein the nucleic acid molecule is
 20 operatively linked to an expression control sequence capable of directing its expression in a host cell.
 - 5. A vector according to claim 3 which is a plasmid.
- 25 6. Isolated human DCR6 polypeptide.
 - 7. Isolated human DCR6 polypeptide, having the amino acid sequence as set forth in Figure 2A-2B.
- 30 8. Isolated human DCR6 polypeptide, having the amino acid sequence as set forth in Figure 3A-3B.

9. A host-vector system for the production of human DCR6 which comprises a vector of claim 3, in a host cell.

- 10. A host-vector system according to claim 9, wherein the host cell is a bacterial, yeast, insect or mammalian cell.
 - 11. A method of producing human DCR6 which comprises growing cells of a host-vector system of claim 9, under conditions permitting production of the human DCR6, and recovering the human DCR6 so produced.
 - 12. An antibody which specifically binds the human DCR6 of claim 6, 7, or 8.

10

20

- 13. An antibody according to claim 12, which is a monoclonal antibody.
- 15 14. A pharmaceutical composition comprising human DCR6 according to claim 6, 7, or 8, and an acceptable carrier.
 - 15. A pharmaceutical composition comprising an antibody according to claim 12 and an acceptable carrier.
 - 16. Human DCR6 according to claim 6, 7, or 8 for use in a method of treatment of the human or animal body, or in a method of diagnosis.
- 17. An antibody according to claim 12 for use in a method of treatment of the human or animal body, or in a method of diagnosis.
 - 18. A composition according to claim 14 for use in a method of treatment of the human or animal body, or in a method of diagnosis.
- 30 19. A polypeptide produced by the method of claim 11.

20. A ligandbody which comprises human DCR6 fused to an immunoglobulin constant region.

- 21. The ligandbody of claim 20, wherein the immunoglobulin constant region is the Fc portion of human IgG1.
 - 22. A ligandbody according to claim 20 or 21, for use in a method of treatment of the human or animal body, or in a method of diagnosis.

10

5

1/10 Figure 1A

10	20	30	40	50	60	70	80
* TCATTGGCTG	* GCATGAAGCA	GAGAGGGGCT	TTAAAAAGGC	GACCGTGTCT	* CGGCTGGAGA	* CCAGAGCCTG	TGCTACTGGA
90	100	110	120	130	140	150	160
* AGGTGGCGTG	* CCCTCCTCTG	* GCTGGTACCA	TG CAGCTCCC				
		_6	aa	VTS_F	HDCR6 EXON 1	L	>>
170	180	190	200	210	220	230	240
		GGGGTGGCAG		ATGATGCCAC	GGAAATCATC	CCCGAGCTCG	
	1	ā				ic	
250 *	260 *	270	280	290 *	300 *		320
		AGAACAACAA					CACCCCTTTG
330	340	350 *	360 *	370	380	390	400
AGACCAAAGG	TATGGGGTGG	AGGAGAGAAT					TTGGGAGGCT
>							
410	420	430 *	440			470 *	480 *
	GGGTAGACCC	AGTGAAGATT		GCCAGCACTG	GTCGAGGAAC		
					oVTS_HD	CR6 EXON 2_1	>>
49 0	500 *	510 *	520 *	530 *	540 *	550 *	560 *
	TCGCTGGTGC	AGCCTTCAAA	TTCAGGTGCA	GAGGCATGAG	GCAACAGACG	CTGGTGAGAG	
	0	D	ovrs_hdcre	S EXUN ZI	0	0	>>
570 *	580 *	590 *	600 *	610 *	620 *		640 *
		GGGTATGGCA	TCAGGGCATC	AGAACAGGCT			
	D	D	UVTS_HLCR	EAON Z	U	0	b>
650 *	660 *		680 *			710 *	720 *
		GGAGCCACGT b VTS HDC					GCCTCCCATC
<u> </u>	D	DV15_HDC.	RO EAON ZI	O		0>	
730 *				770 *			
CACAGAACAG	CACCTGTGGG	GCACCGGACA	CTCTATGCTG	GTGGTGGCTG	TCCCCACCAC	ACAGACCCAC	ATCATGGAAT
810						870 *	
		GCTCGAAGGG					
890							
* GTGTGAACCT							CAAAGCAGTG

2/10

Figure 1B

1050	970	980	990	1000	1010	1020	1030	1040
1130	GGGAGGAAGG (* CCAGAGAGGC	ACCCTGCAG			CCCAGGGAGC	TGGCACTTGA	AGGAATGGGA
STITTCOGCA CAGTITTAGG CCCTGACATG GITGCAGCTG AGTCCAGGCC CTGGAGGGGA GAGCAGCATC CTCTGTGCAG 1130	1050	1060	1070	1080			1110	1120
1210 1220 1230 1240 1250 1260 1270 1280	GTTTTCGGCA	CAGTTTTAGC	CCCTGACATG		AGTCCAGGCC	CTGGAGGGGA	GAGCAGCATC	CTCTGTGCAG
1210 1220 1230 1240 1250 1260 1270 1280 1260 1270 1280 1260 1270 1280 1260 1270 1280 1260 1270 1280 1260 1270 1280 1270 1280 1270 1280 1270 1280 1270 1280 1290 1300 1310 1320 1330 1340 1350 1360 1360 1370 1380 1390 1400 1410 1420 1430 1440 1440 1430 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1450 1430 1440 1450 1450 1460 1470 1480 1490 1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1530 1540 1550 1560 1570 1580 1590 1600 1600 1670 1680 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1760 1400 1770 1780 1790 1800 1810 1820 1830 1840 1840 1850 1850	1130	1140	1150 *					1200
1390	GAGTAGGGAC .	ATCTGTCCTC	AGCAGCCACC	CCAGTCCCAA	CCTTGCCTCA	TTCCAGGGGA	GGGAGAAGGA	AGAGGAACCC
1390 1300 1310 1320 1330 1340 1350 1360	1210	1220	1230	1240	1250	1260 *		
CATGGGGGGG TCTGAAATGA CACTTCAGAC TAAGAGCTTC CCTGTCCTCT GGCCATTATC CAGGTGGCAG AGAAGTCCACVTS_HDCR6 E> 1370	TGGGTTCCTG	GTCAGGCCTG	CACAGAGAAG	CCCAGGTGAC	AGTGTGCATC	TGGCTCTATA	ATTGGCAGGA	ATCCTGAGGC
1370	1290	1300	1310					
TECCCAGGCT CCTGGACCCC AGCCCTCCCC GCCTCACAAC CTGTTTGGGAC TATGGGGTGC TAAAAAAGGGC AACTGCATGG C C VTS_HDCR6 EXON 3 C C C C C C C C C C C C C C C C C C	CATGGGGGCG	TCTGAAATGA	CACTTCAGAC	TAAGAGCTTC	CCTGTCCTCT	GGCCATTATC		
Tecccagget Cetegaaccc Agcceteccc Geeteacaac Cetetteggac Tatagegete Taaaaaaggec Aactgeatege Aactg	1370	1380	1390	1400	1410	1420	1430	1440
1450	*	*	*	*	*	*	*	*
## AGGGCCAGCC AGGACCCTCC GTCTTCAAAA TGGAGGACAA GGGCGCCTCC CCCCACAGCT CCCCTTCTAG GCAAGGTCAG C	TGCCCAGGCT	CCTGGACCCC	AGCCCTCCCC	CVTS_HDCR	EXON 3	TA1666616C		c>
GAGGCCAGCC AGGACCCTCC GTCTTCAAAA TGGAGGACAA GGGCGCCTCC CCCCACAGCT CCCCTTCTAG GCAAGGTCAG	1450	1460	1470	1480			1510	1520
1530	* GAGGCCAGCC	* AGGACCCTCC	GTCTTCAAAA	TGGAGGACAA	GGGCGCCTCC	CCCCACAGCT	CCCCTTCTAG	GCAAGGTCAG
CTGGGCTCCA GCGACTGCCT GAAGGGCTGT AAGGAACCCA AACACAAAAT GTCCACCTTG CTGGACTCCC ACGAGAGGCC		:	<u> </u>	CVTS_HDCR	5 EXON 3	C	C	c>
	1530	1540	1550	1560	1570	1580 *	1590 *	1600
1610 1620 1630 1640 1650 1660 1670 1680 *** ACAGCCCCTG AGGAAGCCAC ATGCTCAAAA CAAAGTCATG ATCTGCAGAG GAAGTGCCTG GCCTAGGGGC GCTATTCTCG 1690 1700 1710 1720 1730 1740 1750 1760 *** AAAAGCCGCA AAATGCCCCC TTCCCTGGGC AAATGCCCCC CTGACCACA ACACATTCCA GCCCTGCAGA GGTGAGGATG 1770 1780 1790 1800 1810 1820 1830 1840 *** CAAACCAGCC CACAGACCAG AAAGCAGCC CAGACGATGG CAGTGGCCAC ATCTCCCCTG CTGTGCTTGC TCTTCAGAGT 1850 1860 1870 1880 1890 1900 1910 1920 *** *** *** *** *** *** *** *** *** *		GCGACTGCCT	r					
* ACAGCCCCTG AGGAAGCCAC ATGCTCAAAA CAAAGTCATG ATCTGCAGAG GAAGTGCCTG GCCTAGGGGC GCTATTCTCG 1690 1700 1710 1720 1730 1740 1750 1760 * AAAAGCCGCA AAATGCCCCC TTCCCTGGGC AAATGCCCCC CTGACCACAC ACACATTCCA GCCCTGCAGA GGTGAGGATG 1770 1780 1790 1800 1810 1820 1830 1840 * CAAACCAGCC CACAGACCAG AAAGCAGCCC CAGACGATGG CAGTGGCCAC ATCTCCCCTG CTGTGCTTGC TCTTCAGAGT 1850 1860 1870 1880 1890 1900 1910 1920 * * * * * * * * * * * * * * * * * * *				AAGGAACCCA	AACACAAAAT	GTCCACCTTG	CTGGACTCCC	ACGAGAGGCC
1690 1700 1710 1720 1730 1740 1750 1760 ** AAAAGCCGCA AAATGCCCCC TTCCCTGGGC AAATGCCCCC CTGACCACAC ACACATTCCA GCCCTGCAGA GGTGAGGATG 1770 1780 1790 1800 1810 1820 1820 1830 1840 ** CAAACCAGCC CACAGACCAG AAAGCAGCCC CAGACGATGG CAGTGGCCAC ATCTCCCCTG CTGTGCTTGC TCTTCAGAGT 1850 1860 1870 1880 1890 1900 1910 1920 ** * * * * * * * * * * * * * * * * *	1.710	IDCR6 EXON	3>					
AAAAGCCGCA AAATGCCCCC TTCCCTGGGC AAATGCCCCC CTGACCACAC ACACATTCCA GCCCTGCAGA GGTGAGGATG 1770 1780 1790 1800 1810 1820 1820 1830 1840 ** CAAACCAGCC CACAGACCAG AAAGCAGCCC CAGACGATGG CAGTGGCCAC ATCTCCCCTG CTGTGCTTGC TCTTCAGAGT 1850 1860 1870 1880 1890 1900 1910 1920 ** * * * * * * * * * * * * * * * * *	*	iDCR6 EXON :	1630	1640 *	1650 *	1660 *	1670 *	1680
1770 1780 1790 1800 1810 1820 1830 1840 * * * * * * * * * * * * * * * * * * *	*	iDCR6 EXON :	1630	16 4 0 *	1650 *	1660 *	1670 *	1680
CAAACCAGCC CACAGACCAG AAAGCAGCCC CAGACGATGG CAGTGGCCAC ATCTCCCCTG CTGTGCTTGC TCTTCAGAGT 1850 1860 1870 1880 1890 1900 1910 1920 * * * * * * * *	* ACAGCCCCTG 1690	IDCR6 EXON: 1620 * AGGAAGCCAC	3> 1630 * ATGCTCAAAA	1640 * CAAAGTCATG	1650 * ATCTGCAGAG	1660 * GAAGTGCCTG	1670 * GCCTAGGGGC	1680 * GCTATTCTCG
CAAACCAGCC CACAGACCAG AAAGCAGCCC CAGACGATGG CAGTGGCCAC ATCTCCCCTG CTGTGCTTGC TCTTCAGAGT 1850 1860 1870 1880 1890 1900 1910 1920 * * * * * * * *	* ACAGCCCCTG 1690 *	1620 * AGGAAGCCAC 1700	3> 1630 * ATGCTCAAAA 1710 *	1640 * CAAAGTCATG 1720 *	1650 * ATCTGCAGAG 1730 *	1660 * GAAGTGCCTG 1740 *	1670 * GCCTAGGGGC 1750 *	1680 * * GCTATTCTCG 1760 *
* * * * * * * * * * * * * * * * * * * *	* ACAGCCCCTG 1690 * AAAAGCCGCA	DCR6 EXON: 1620 * AGGAAGCCAC 1700 * AAATGCCCCC	3> 1630 * ATGCTCAAAA 1710 * TTCCCTGGGC	1640 * CAAAGTCATG 1720 * AAATGCCCCC	1650 * ATCTGCAGAG 1730 * CTGACCACAC	1660 * GAAGTGCCTG 1740 * ACACATTCCA	1670 * GCCTAGGGGC 1750 * GCCCTGCAGA	1680 * GCTATTCTCG 1760 * GGTGAGGATG
"	* ACAGCCCCTG 1690 * AAAAGCCGCA 1770 *	AGGAAGCCAC 1700 AAATGCCCCC 1780 *	3> 1630 * ATGCTCAAAA 1710 * TTCCCTGGGC 1790 *	1640 * CAAAGTCATG 1720 * AAATGCCCCC 1800 *	1650 * ATCTGCAGAG 1730 * CTGACCACAC	1660 * GAAGTGCCTG 1740 * ACACATTCCA 1820 *	1670 * GCCTAGGGGC 1750 * GCCCTGCAGA 1830	1680 * GCTATTCTCG 1760 * GGTGAGGATG 1840 *
	* ACAGCCCCTG 1690 * AAAAGCCGCA 1770 * CAAACCAGCC	AGGAAGCCAC 1700 * AAATGCCCCC 1780 * CACAGACCAG	3> 1630 * ATGCTCAAAA 1710 * TTCCCTGGGC 1790 * AAAGCAGCCC	1640 * CAAAGTCATG 1720 * AAATGCCCCC 1800 * CAGACGATGG	1650 * ATCTGCAGAG 1730 * CTGACCACAC 1810 * CAGTGGCCAC	1660 * GAAGTGCCTG 1740 * ACACATTCCA 1820 * ATCTCCCCTG	1670 * GCCTAGGGGC 1750 * GCCCTGCAGA 1830 * CTGTGCTTGC	1680 * GCTATTCTCG 1760 * GGTGAGGATG 1840 * TCTTCAGAGT

3/10

Figure 1C

1930	1940	1950	1960	1970	1980	1990	2000
* CTATCCCCAT	* GAAACCTTTG	GGGGTGGACT	GGTACTCACA	CGACGACCAG	CTATTTAAAA	AGCTCCCACC	CATCTAAGTC
2010	2020	2030	2040	2050	2060	2070	2080
CACCATAGGA	GACATGGTCA	AGGTGTGTGC	AGGGGATCAG	GCCAGGCCTC	GGAGCCCAAT	CTCTGCCTGC	CCAGGGAGTA
2090	2100	2110	2120	2130	2140	2150	2160
TCACCATGAG	GCGCCCATTC	AGATAACACA	GAACAAGAAA	TGTGCCCAGC	AGAGAGCCAG	GTCAATGTTT	GTGGCAGCTG
2170	2180	2190	2200	2210	2220	2230	2240
AACCTGTAGG	TTTTGGGTCA	GAGCTCAGGG	CCCCTATGGT	AGGAAAGTAA	CGACAGTAAA	AAGCAGCCCT	CAGCTCCATC
2250	2260	2270	2280	2290	2300	2310	2320
CCCCAGCCCA	GCCTCCCATG	GATGCTCGAA	CGCAGAGCCT	CCACTCTTGC	CGGAGCCAAA	AGGTGCTGGG	ACCCCAGGGA
2330	2340	2350	2360	2370	2380	2390 *	2400
* AGTGGAGTCC	GGAGATGCAG	CCCAGCCTTT	TGGGCAAGTT	CTTTTCTCTG	GCTGGGCCTC	AGTATTCTCA	TTGATAATGA
2410	2420	2430	2440	2450	2460	2470	2480
* GGGGGTTGGA	CACACTGCCT	TTGATTCCTT	TCAAGTCTAA	TGAATTCCTG	TCCTGATCAC	CTCCCCTTCA	GTCCCTCGCC
2490	2500	2510	2520	2530	2540	2550 *	2560 *
* TCCACAGCAG	* CTGCCCTGAT	TTATTACCTT	CAATTAACCT	CTACTCCTTT	CTCCATCCCC	TGTCCACCCC	TCCCAAGTGG
2570	2580	2590	2600	2610	2620	2630	2640
* CTGGAAAAGG	* AATTTGGGAG	* AAGCCAGAGC	CAGGCAGAAG	GTGTGCTGAG	TACTTACCCT	GCCCAGGCCA	GGGACCCTGC
2650	2660	2670	2680	2690	2700	2710	2720
* GGCACAAGTG	* TGGCTTAAAT	* CATAAGAAGA	. CCCCAGAAGA	GAAATGATAA	TAATAATACA	TAACAGCCGA	CGCTTTCAGC
2730	2740	2750	2760	2770	2780	2790	2800
* TATATGTGCC	* : AAATGGTATI	* TTCTGCATTG	* CGTGTGTAAT	GGATTAACTC	GCAATGCTTG	GGGCGGCCCA	TTTTGCAGAC
2810	2820	2830	2840	2850	2860	2870	2880
* AGGAAGAAGA					GCGATGGAGC		
2890	2900	2910	2920	2930	2940	2950	2960
AGTCATTTGO	· G CTCCGAGGGC	* ACAGGGTGCC	* CAGGAGAGCI	TTCCACCAG	TCTAGAGCA	CTGGGACCTT	CCTGCAATAG

4/10

Figure 1D

2970	2980	2990	3000			3030	3040
* ATGTTCAGGG (*	* CMCCACACAC	* ~~~~~~~~	*		*	* СТССАССССА
ATGTTCAGGG (CAAAAGCCT	CIGGAGACAG	GCIIGGCAAA	AGCAGGGC 1G	0001000000	HOHOOOCCO	01001000011
3050	3060					3110	
*	*	*					
GGGTGGCCA (GGCGGGCGGC	CACCCTCACG	CGCGCCTCTC	TCCACAGACG	TGTCCGAGTA VTS HE	CAGCIGCEGE CR6 EXON 4_	>
3130	3140	3150	3160	3170	3180	3190	3200
* TCACCCGCTA	* ~~~~~~~~~	*				CCTCCGGCCA	CTGCGGCCCG
						dereeddeen 1d	
3210	3220	3230 *				3270	3280
*	* ייירריריא ארכיר					TTCCGCTGCA	TCCCCGACCG
							l>
3290	3300	3310	3320			3350	3360
* C#&CCGCGCG	CAGCGCGTGC	AGCTGCTGTG				GGTGCGCCTG	GTGGCCTCGT
d	L	1	L_VTS_HDCR	5 EXON 4	dc	đc	i>
						2.420	2440
3370	3380	3390	3400		3420	3430	3440
GCAAGTGCAA	GCGCCTCACC	CGCTTCCACA			TTCGGGACCG	AGGCCGCTCG	GCCGCAGAAG
							i>
2450		2.470	2400	2400	3500	3510	3520
3450			3480	3490	2200	3310	3320
*	3460 *	*	*	*	*	*	*
* GGCCGGAAGC	* CGCGGCCCCG	* CGCCCGGAGC	* GCCAAAGCCA	* ACCAGGCCGA	* GCTGGAGAAC	GCCTACTAGA	*
* GGCCGGAAGC	* CGCGGCCCCG	* CGCCCGGAGC	* GCCAAAGCCA	* ACCAGGCCGA	*	GCCTACTAGA	*
GGCCGGAAGC	cgcggccccg	* CGCCCGGAGC LVTS	* GCCAAAGCCA _HDCR6 EXON	ACCAGGCCGA	GCTGGAGAAC	GCCTACTAGA	GCCGCCCGC
GGCCGGAAGC	cgcggccccg	* CGCCCGGAGC LVTS	GCCAAAGCCA _HDCR6 EXON 3560	ACCAGGCCGA	GCTGGAGAAC d	GCCTACTAGA	GCCGCCCGC
GGCCGGAAGC 3530	* cgcggccccg 13540 *	CGCCCGAGC LVTS 3550	* GCCAAAGCCA _HDCR6 EXON 3560 *	ACCAGGCCGA 4G 3570	GCTGGAGAAC dG 3580	GCCTACTAGA	3600 *
GGCCGGAAGC 3530 * GCCCCTCCCC	cgcggccccg 3540 * Accggcgggc	CGCCCGGAGC VTS 3550 c cccccGGCCC	GCCAAAGCCA _HDCR6 EXON 3560 * TGAACCCGCG	ACCAGGCCGA 4 3570 * CCCCACATTT	GCTGGAGAAC dG 3580 * CTGTCCTCTG	GCCTACTAGA d> 3590 * CGCGTGGTTT	GCCCGCCCGC 3600 * GATTGTTTAT
GGCCGGAAGC 3530	cgcggccccg 3540 * Accggcgggc	CGCCCGGAGC VTS 3550 c cccccGGCCC	GCCAAAGCCA _HDCR6 EXON 3560 * TGAACCCGCG	ACCAGGCCGA 4 3570 * CCCCACATTT 3650	GCTGGAGAAC d 3580 * CTGTCCTCTG	GCCTACTAGA d> 3590 * CGCGTGGTTT 3670	GCCCGCCCGC 3600 * GATTGTTTAT
GGCCGGAAGC 3530 * GCCCCTCCCC 3610 *	CGCGGCCCCG 3540 ACCGGCGGGGC 3620 *	CGCCCGGAGC 3550 cGCCCCGGCCC 3630 *	GCCAAAGCCA LHDCR6 EXON 3560 * TGAACCCGCG 3640 *	ACCAGGCCGA 4 3570 * CCCCACATTT 3650 *	GCTGGAGAAC dG 3580 * CTGTCCTCTG 3660 *	GCCTACTAGA d 3590 * CGCGTGGTTT 3670 *	GCCCGCCCGC 3600 * GATTGTTTAT
GGCCGGAAGC 3530 * GCCCCTCCCC 3610 * ATTTCATTGT	3540 ACCGGCGGGG 3620 AAATGCCTGC	CGCCCGGAGC 3550 CGCCCGGCCC 3630 AACCCAGGGC	GCCAAAGCCA LHDCR6 EXON 3560 * TGAACCCGCG 3640 * AGGGGGGCTGA	ACCAGGCCGA 4 3570 * CCCCACATTT 3650 * GACCTTCCAG	GCTGGAGAAC dG 3580 * CTGTCCTCTG 3660 * GCCCTGAGGA	GCCTACTAGA d 3590 * CGCGTGGTTT 3670 * ATCCCGGGCG	GCCCGCCCGC 3600 * GATTGTTTAT 3680 * CCGGCAAGGC
GGCCGGAAGC 3530 * GCCCCTCCCC 3610 *	3540 ACCGGCGGGG 3620 AAATGCCTGC	CGCCCGGAGC 3550 CGCCCGGCCC 3630 AACCCAGGGC	GCCAAAGCCA LHDCR6 EXON 3560 * TGAACCCGCG 3640 * AGGGGGGCTGA	ACCAGGCCGA 4 3570 * CCCCACATTT 3650 * GACCTTCCAG	GCTGGAGAAC dG 3580 * CTGTCCTCTG 3660 * GCCCTGAGGA	GCCTACTAGA d 3590 * CGCGTGGTTT 3670 * ATCCCGGGCG	GCCCGCCCGC 3600 * GATTGTTTAT 3680 *
GGCCGGAAGC 3530 * GCCCCTCCCC 3610 * ATTTCATTGT 3690 *	CGCGGCCCCG 3540 * ACCGGCGGGGC 3620 * AAATGCCTGC 3700 *	CGCCCGGAGC JUTS 3550 * GCCCCGGCCC 3630 * AACCCAGGGC	GCCAAAGCCA HDCR6 EXON 3560 * TGAACCCGCG 3640 * AGGGGGGCTGA 3720 *	ACCAGGCCGA 3570 * CCCCACATTT 3650 * GACCTTCCAG 3730 *	GCTGGAGAAC d 3580 * CTGTCCTCTG 3660 * GCCCTGAGGA 3740 *	GCCTACTAGA d 3590 * CGCGTGGTTT 3670 * ATCCCGGGCG 3750 *	GCCCGCCCGC 3600 * GATTGTTTAT 3680 * CCCGGCAAGGC 3760 *
GGCCGGAAGC 3530 * GCCCCTCCCC 3610 * ATTTCATTGT 3690 * CCCCCTCAGC	ACCGGCGGCCGGC 3540 * ACCGGCGGGGC 3620 * AAATGCCTGC 3700 * CCGCCAGCTG	CGCCCGGAGC 3550 CGCCCGGCCC 3630 AACCCAGGGC 3710 AGGGGTCCCA	GCCAAAGCCA HDCR6 EXON 3560 * TGAACCCGCG 3640 * AGGGGGCTGA 3720 * CGGGGCAGGG	ACCAGGCCGA 3570 * CCCCACATTT 3650 * GACCTTCCAG 3730 * GAGGGAATTG	GCTGGAGAAC d 3580 * CTGTCCTCTG 3660 * GCCCTGAGGA 3740 * AGAGTCACAG	GCCTACTAGA d 3590 * CGCGTGGTTT 3670 * ATCCCGGGCG 3750 * ACACTGAGCC	GCCCGCCCGC 3600 * GATTGTTTAT 3680 * CCGGCAAGGC 3760 * ACGCAGCCCC
GGCCGGAAGC 3530 * GCCCCTCCCC 3610 * ATTTCATTGT 3690 * CCCCCTCAGC	ACCGGCGGCCGGC 3540 * ACCGGCGGGGC 3620 * AAATGCCTGC 3700 * CCGCCAGCTG	CGCCCGGAGC JUTS 3550 * GCCCCGGCCC 3630 * AACCCAGGGC 3710 * AGGGGTCCCA	GCCAAAGCCA LHDCR6 EXON 3560 * TGAACCCGCG 3640 * AGGGGGCCTGA 3720 * CGGGGCAGGG	ACCAGGCCGA 3570 * CCCCACATTT 3650 * GACCTTCCAG 3730 * GAGGGAATTG	GCTGGAGAAC d 3580 * CTGTCCTCTG 3660 * GCCCTGAGGA 3740 * AGAGTCACAG	GCCTACTAGA 3590 * CGCGTGGTTT 3670 * ATCCCGGGCG 3750 * ACACTGAGCC	GCCCGCCCGC 3600 * GATTGTTTAT 3680 * CCGGCAAGGC 3760 * ACGCAGCCCC
GGCCGGAAGC 3530 * GCCCCTCCCC 3610 * ATTTCATTGT 3690 * CCCCCTCAGC	ACCGGCGGCCGGC 3540 * ACCGGCGGGGC 3620 * AAATGCCTGC 3700 * CCGCCAGCTG	CGCCCGGAGC 3550 CGCCCGGCCC 3630 AACCCAGGGC 3710 AGGGGTCCCA 3790 *	GCCAAAGCCA HDCR6 EXON 3560 * TGAACCCGCG 3640 * AGGGGGGCTGA * CGGGGGCAGGG 3800 *	ACCAGGCCGA 3570 CCCCACATTT 3650 * GACCTTCCAG 3730 * GAGGGAATTG 3810 *	GCTGGAGAAC d 3580 * CTGTCCTCTG 3660 * GCCCTGAGGA 3740 * AGAGTCACAG 3820 *	GCCTACTAGA d 3590 * CGCGTGGTTT 3670 * ATCCCGGGCG 3750 * ACACTGAGCC 3830 *	GCCCGCCCGC 3600 CGATTGTTTAT 3680 CCCGGCAAGGC 3760 ACGCAGCCCC 3840 *
GGCCGGAAGC 3530 * GCCCCTCCCC 3610 * ATTTCATTGT 3690 * CCCCCTCAGC	CGCGGCCCGGGCGGGCGGGCGGGCGGGGGGGGGGGGGG	CGCCCGGAGC JUTS 3550 * GCCCCGGCCC 3630 * AACCCAGGGC 3710 * AGGGGTCCCA 3790 * TTGCTGGTCC	GCCAAAGCCA HDCR6 EXON 3560 * TGAACCCGCG 3640 * AGGGGGCTGA * CGGGGCAGGG 3800 * CACTTCAGAG	ACCAGGCCGA 3570 CCCCACATTT 3650 * GACCTTCCAG 3730 * GAGGGAATTG 3810 * GAGGCAGAAA	GCTGGAGAAC d 3580 * CTGTCCTCTG 3660 * GCCCTGAGGA 3740 * AGAGTCACAG 3820 * TGGAAGCATT	GCCTACTAGA d 3590 * CGCGTGGTTT 3670 * ATCCCGGGCG 3750 * ACACTGAGCC 3830 * TTCACCGCCC	GCCCGCCCGC 3600 * GATTGTTTAT 3680 * CCGGCAAGGC 3760 * ACGCAGCCCC 3840 * TGGGGTTTTA
GGCCGGAAGC 3530 * GCCCCTCCCC 3610 * ATTTCATTGT 3690 * CCCCCTCAGC	CGCGGCCCCG 3540 * ACCGGCGGCGGC 3620 * AAATGCCTGC 3700 * CCGCCAGCTG 3780 * CCGCCTACCT	CGCCCGGAGC JUTS 3550 CGCCCGGCCC 3630 AACCCAGGGC 3710 AGGGGTCCCA 3790 TTGCTGGTCC	GCCAAAGCCA HDCR6 EXON 3560 * TGAACCCGCG 3640 * AGGGGGGCTGA 3720 * CGGGGCAGGG 3800 * CACTTCAGAG	ACCAGGCCGA 3570 CCCCACATTT 3650 * GACCTTCCAG 3730 * GAGGGAATTG 3810 * GAGGCAGAAA 3890	GCTGGAGAAC d 3580 * CTGTCCTCTG 3660 * GCCCTGAGGA 3740 * AGAGTCACAG 3820 * TGGAAGCATT	GCCTACTAGA d 3590 * CGCGTGGTTT 3670 * ATCCCGGGCG 3750 * ACACTGAGCC 3830 * TTCACCGCCC	GCCCGCCCGC 3600 CGATTGTTTAT 3680 CCCGGCAAGGC 3760 ACGCAGCCCC 3840 *
GGCCGGAAGC 3530 * GCCCCTCCCC 3610 * ATTTCATTGT 3690 * CCCCCTCAGC 3770 * GCCTCTGGGG 3850 *	CGCGGCCCCG 3540 * ACCGGCGGGGC 3620 * AAATGCCTGC 3700 * CCGCCAGCTG 3780 * CCGCCTACCT 3860	CGCCCGGAGC JUTS 3550 * GCCCCGGCCC 3630 * AACCCAGGGC 3710 * AGGGGTCCCA 3790 * TTGCTGGTCC 3870	GCCAAAGCCA HDCR6 EXON 3560 * TGAACCCGCG 3640 * AGGGGGGCTGA * CGGGGCCAGGG 3800 * CACTTCAGAG *	ACCAGGCCGA 3570 CCCCACATTT 3650 * GACCTTCCAG 3730 * GAGGGAATTG 3810 * GAGGCAGAAA 3890 *	GCTGGAGAAC d 3580 * CTGTCCTCTG 3660 * GCCCTGAGGA 3740 * AGAGTCACAG 3820 * TGGAAGCATT	GCCTACTAGA d 3590 * CGCGTGGTTT 3670 * ATCCCGGGCG 3750 * ACACTGAGCC 3830 * TTCACCGCCC 3910 *	GCCCGCCCGC 3600 * GATTGTTTAT 3680 * CCGGCAAGGC 3760 * ACGCAGCCCC 3840 * TGGGGTTTTA

5/10 **Figure 1E**

3930	3940	3950	3960	3970	3980	3990	4000
* TCAGAAAGCC	TGAGGCGTGC	* CCAGAGCACA	* AGACTGGGGG	CAACTGTAGA	TGTGGTTTCT	AGTCCTGGCT	CTGCCACTAA
4010	4020	4030	4040	4050	4060	4070	4080
* CTTGCTGTGT	* AACCTTGAAC	* TACACAATTC	* TCCTTCGGGA	* CCTCAATTTC	CACTTTGTAA	AATGAGGGTG	GAGGTGGGAA
4090	4100	4110	4120	4130	4140	4150	4160
* TAGGATCTCG	* AGGAGACTAT	* TGGCATATGA	* TTCCAAGGAC	* TCCAGTGCCT	* TTTGAATGGG	* CAGAGGTGAG	* AGAGAGAGAG
4170	4180	4190	4200	4210	4220	4230	4240
* AGAAAGAGAG	* ?///	* CAGTTGCATT	* GATTCAGTGC	* CAAGGTCACT	* TCCAGAATTC	* AGAGTTGTGA	* TGCTCTCTTC
4250	4260	4270		4290	4300		4320
425U *	420U *	4270	4200 *	*	*	*	*
TGACAGCCAA	AGATGAAAAA	CAAACAGAAA	AAAAAAAGTA	AAGAGTCTAT	TTATGGCTGA	CATATTTACG	GCTGACAAAC
4330	4340	4350	4360	4370	4380	4390	4400
*	*	*	*	*	* ርጥል ርርጥ ርርልር	* CCCTCCATCT	* Сааасааата
TCCTGGAAGA	AGCTATGCTG	CITCCAGCC	1660110000	CONTOTITOG	C111CC1CC1.C		
4410	4420	4430	4440 *	4450 *	4460 *	4470 *	4480 *
ACATCATCCA	TTGGGGTAGA	AAAGGAGAGG	GTCCGAGGGT	GGTGGGAGGG	ATAGAAATCA	CATCCGCCCC	AACTTCCCAA
4490	4500	4510	4520	4530	4540	4550	4560
* AGAGCAGCAT	* CCCTCCCCCG	* ACCCATAGCC	* ATGTTTTAAA	* GTCACCTTCC	* GAAGAGAAGT	* GAAAGGTTCA	* AGGACACTGG
4570	4580	4590	4600	4610	4620	4630	4640
*	*	*	*		*	*	*
CCTTGCAGGC	CCGAGGGAGC	AGCCATCACA	AACTCACAGA	CCAGCACATC	CCTTTTGAGA	CACCGCCTTC	TGCCCACCAC
4650	4660	4670	4680	4690	4700	4710	4720
* TCACGGACAC	ATTTCTGCCT	AGAAAACAGC	TTCTTACTGC	TCTTACATGT	GATGGCATAT	CTTACACTAA	AAGAATATTA
4730	4740	4750	4760	4770	4780	4790	4800
*		*	*			*	
TTGGGGGAAA						CACCCAAAAA	
4810	4820	4830	4840	4850	4860	4870 *	4880
* AATCATTTCC						· TTTAAACAGA	
4890	4900	4910	4920	4930	4940	4950	4960
ATATGAAAGC	CTGCAGGACT	GGTCGTTTTT	TTGGCAATTC	TTCCACGTGG	GACTTGTCCA	CAAGAATGAA	AGTAGTGGTT

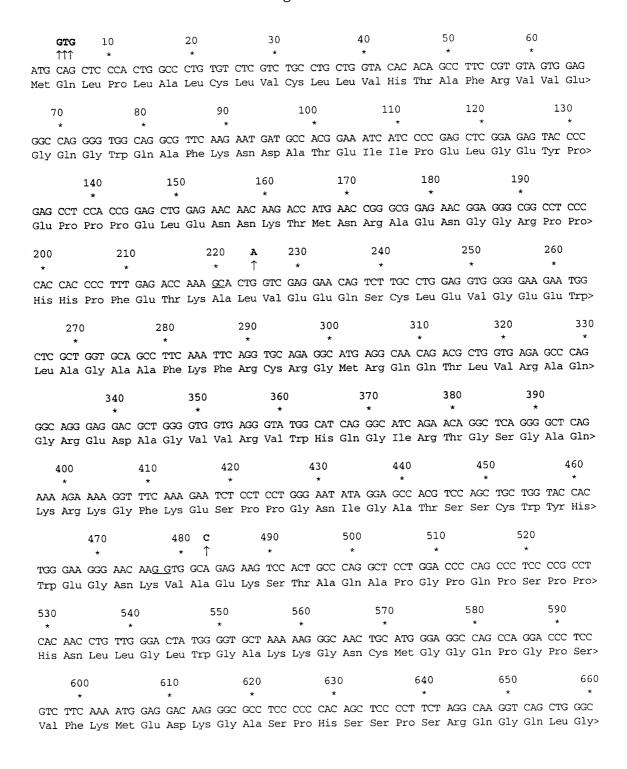

6/10

Figure 1F

4970	4980	4990 *	5000 *	5010 *	5020 *	5030 *	5040
TTTAAAGAGT						TTGTAGAGAA	TGACAATGTT
5050 *	5060 *	5070 *	5080	5090 *	5100 *	5110 *	5120 *
AATATTGCTT	TATGAATTAA		TTCCAGAGTC	CAGAGACATT	GTTAATAAAG	ACAATGAATC	ATGACCGAAA
5130 *	51 4 0 *	5150 *		5170 *	5180 *	5190 *	5200 *
GGATGTGGTC	TCATTTTGTC	AACCACACAT	GACGTCATTT	CTGTCAAAGT	TGACACCCTT	CTCTTGGTCA	CTAGAGCTCC
5210 *	5220 *	5230 *		5250 *	5260 *	5270 *	5280 *
AACCTTGGAC	ACACCTTTGA	CTGCTCTCTG	GTGGCCCTTG	TGGCAATTAT	GTCTTCCTTT	GAAAAGTCAT	GTTTATCCCT
5290 *	5300 *	5310 *		5330 *	5340 *	5350 *	5360 *
TCCTTTCCAA	ACCCAGACCG	CATTTCTTCA	CCCAGGGCAT	GGTAATAACC	TCAGCCTTGT	ATCCTTTTAG	CAGCCTCCCC
5370 *	5380 *		5400 *	5410 *		5430 *	5440 *
TCCATGCTGG	CTTCCAAAAT	GCTGTTCTCA	TTGTATCACT	CCCCTGCTCA	AAAGCCTTCC	ATAGCTCCCC	CTTGCCCAGG
5450 *	5460 *			5490 *		*	*
ATCAAGTGCA	GTTTCCCTAT	CTGACATGGG	AGGCCTTCTC	TGCTTGACTC	CCACCTCCCA	CTCCACCAAG	CTTCCTACTG
5530 *	55 4 0 *	*	*	*		*	
ACTCCAAATG	GTCATGCAGA				TAGCACCCC		
5610 *	*	*	*	*		*	*
TAGGATTCAC	ATTACTTGTC	ATCTCTTCCC	CTAACCTTCC	AGAGATGTTC	CAATCTCCCA	TGATCCCTCT	CTCCTCTGAG

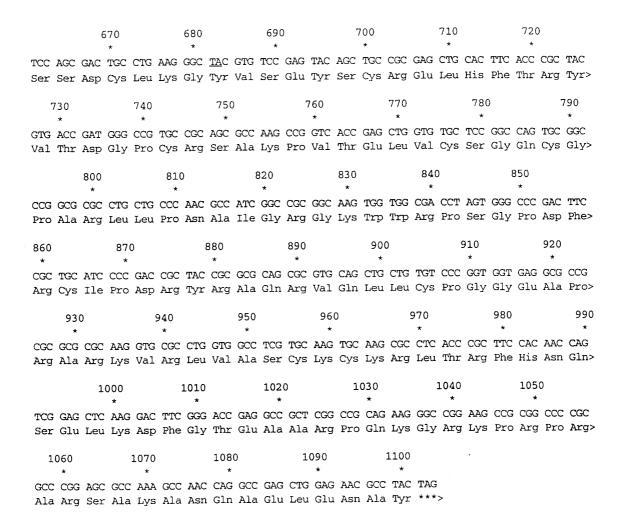

7/10

Figure 2A

8/10

Figure 2B

Figure 3A

10	20	30	40	50	60 *
ATG CAG CTC CCA CTG Met Gln Leu Pro Leu	GCC CTG TGT (Ala Leu Cys I	CTC GTC TGC CT Leu Val Cys Le (10)	G CTG GTA CAC ACA	GCC TTC CGT Ala Phe Arg	GTA GTG GAG Val Val Glu> (20) 22
70 80	90	100	110	120	130
* * GGC CAG GGG TGG CAG	* GCG TTC AAG A	* AAT GAT GCC AG	CG GAA ATC ATC CCC	GAG CTC GGA	GAG TAC CCC
Gly Gln Gly Trp Gln	Ala Phe Lys A	Asn Asp Ala Th	nr Glu Ile Ile Pro	Glu Leu Gly (40)	Glu Tyr Pro> 44
140	150	160	170 18	30	190
*	*	*	* *		*
GAG CCT CCA CCG GAG Glu Pro Pro Pro Glu	CTG GAG AAC A Leu Glu Asn A (50)	AAC AAG ACC A' Asn Lys Thr M	IG AAC CGG GCG GAC et Asn Arg Ala Glu (60)	ı Asn Gly Gly	CGG CCT CCC Arg Pro Pro> 66
200 210	220	230	240	250	260
* *	*	*	*	* ~	* *
CAC CAC CCC TTT GAG His His Pro Phe Glu	Thr Lys Asp '	Val Ser Glu T	yr Ser Cys Arg Glı	Leu His Phe	e Thr Arg Tyr>
(70)			(80)		
270 *	280 *	290 *	300 310	320	330
GTG ACC GAT GGG CCG Val Thr Asp Gly Pro	TGC CGC AGC	GCC AAG CCG G	TC ACC GAG CTG GTV	G TGC TCC GG(C CAG TGC GGC V Gln Cys Gly>
(90)	Cys Arg Der	(10			110
340	350 *	360 *	370 *	380	390
CCG GCG CGC CTG CTG	CCC AAC GCC	ATC GGC CGC G	GC AAG TGG TGG CG.	A CCT AGT GG	G CCC GAC TTC
Pro Ala Arg Leu Leu	Pro Asn Ala	Ile Gly Arg G (120)	ly Lys Trp Trp Ar		y Pro Asp Phe> (130) 132
400 410 *	420	43	0 440	4 50	460
CGC TGC ATC CCC GAC	CGC TAC CGC	GCG CAG CGC G	TG CAG CTG CTG TG	T CCC GGT GG	T GAG GCG CCG
Arg Cys Ile Pro Asp	Arg Tyr Arg (140)		al Gln Leu Leu Cy	s Pro Gly Gl; (150)	y Glu Ala Pro> 154
470 *	480 *	490	500 5 *	10	520 *
CGC GCG CGC AAG GTG	CGC CTG GTG	GCC TCG TGC A	AAG TGC AAG CGC CT	C ACC CGC TT	C CAC AAC CAG
Arg Ala Arg Lys Val	Arg Leu Val (160)	Ala Ser Cys I	ys Cys Lys Arg Le (17	eu Thr Arg Ph	e His Asn Gln> 176
530 540	550	560	570	580	590
* * TCG GAG CTC AAG GAC	* TTC GGG ACC	* GAG GCC GCT (* CGG CCG CAG AAG GC	* SC CGG AAG CC	* G CGG CCC CGC
Ser Glu Leu Lys Asp (180)	Phe Gly Thr	Glu Ala Ala	Arg Pro Gln Lys Gl	y Arg Lys Pr	o Arg Pro Arg>

10/10 Figure 3B

600 610 620 630 640

* * * * * *

GCC CGG AGC GCC AAA GCC AAC CAG GCC GAG CTG GAG AAC GCC TAG

Ala Arg Ser Ala Lys Ala Asn Gln Ala Glu Leu Glu Asn Ala Tyr ***>
(200) (210) 213