01/82072 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

1 November 2001 (01.11.2001) PCT WO 01/82072 Al

(51) International Patent Classification’: GOG6F 9/445 (74) Agents: BURTON, Thomas, J. et al.; Sonnenschein Nath
& Rosenthal, P.O. Box 061080, Wacker Drive Station,

(21) International Application Number: PCT/US01/12852 Sears Tower, Chicago, IL. 60606-1080 (US).
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
(22) International Filing Date: 20 April 2001 (20.04.2001) AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
(25) Filing Language: English HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
(26) Publication Language: English NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,

(30) Priority Data:

60/199,046 21 April 2000 (21.04.2000) US
09/630,063 4 October 2000 (04.10.2000) US
09/839,045 20 April 2001 (20.04.2001) US

(71) Applicant: TOGETHERSOFT CORPORATION

[US/US]; Suite 410, 920 Main Campus Drive, Raleigh,
NC 27606 (US).

(72) Inventors: CHARISIUS, Dietrich; Gablenbergerweg 26,
70186 Stuttgart (DE). COAD, Peter; 1720 Leigh Drive,

Raleigh, NC 27603 (US).

TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND SYSTEMS FOR GENERATING SOURCE CODE FOR OBJECT-ORIENTED ELEMENTS

204

206

| _-

Transient
| Meta Model
L

A
1
I

\

202

\
\

(57) Abstract: Methods and systems consistent with the present invention (Fig. 2, 200, 202, 204, 206, 208) provide an improved
software development tool that allows a programmer to develop source code by receiving an indication to form the link (Fig. 20,
2000, 2002, 2004, 2006, 2008 2010, 2012, 2014, 2016, 2018, 2020, 2022, 2024, 2026, 2028, 2030, 2032), receiving an indication of
a first of the plurality of elements, receiving an indication of a second of the plurality of elements, and adding new code to the first
element to reflect the link to the second element (Fig. 21, 2102, 2104, 2106, 2108, 2110, 2112, 2114).

10

15

20

25

WO 01/82072 PCT/US01/12852

METHODS AND SYSTEMS FOR GENERATING SOURCE CODE FOR OBJECT-
‘ ORIENTED ELEMENTS

Cross-Reference To Related Applications

This application claims the benefit of the filing date of U.S. Provisional Application
No. 60/199,046, entitled “Software Development Tool,” filed on April 21, 2000, and is a
continuation-in-part of U.S. Patent Application No. 09/680,063, entitled “Method and
System for Developing Software,” filed on October 4, 2000, which claims the benefit of the
filing date of U.S. Provisional Application No. 60/157, 826, entitled “Visual Unified
Modeling Language Development Tool,” filed on October 5, 1999, and U.S. Provisional
Application No. 60/199,046, entitled “Software Development Tool,” filed on April 21,
2000; all of which are incorporated herein by reference.

The following identified U.S. patent applications are also relied upon and are
incorporated by reference in this application:

U.S. Patent Application No. 09/680,065, entitled “Method And System For
Displaying Changes Of Source Code,” filed on October 4, 2000;

U.S. Patent Application No. 09/680,030, entitled “Method And Systém For
Generating, Applying, And Defining A Pattern,” filed on October 4, 2000;

U.S. Patent Application No. 09/680,064, entitled “Method And System For
Collapsing A Graphical Representation Of Related Elements,” filed on October 4, 2000;
| U.S. Patent Application No. , entitled “Methods and Systems for

Relating Data Structures and Object Oriented Elements for Distributed Computing,” bearing
attorney docket no. 30013630-0009, and filed on the same date herewith;
U.S. Patent Application No. _, entitled “Methods and Systems for

Finding Specific Line Of Source Code,” bearing attorney docket no. 30013630-0011, and
filed on the same date herewith,
U.S. Patent Application No. , entitled “Methods and Systems for

Finding and Displaying Linked Objects,” bearing attorney docket no. 30013630-0012, and

filed on the same date herewith;

10

15

20

25

WO 01/82072 PCT/US01/12852

U.S. Patent Application No. _, entitled “Methods and Systems for

Animating the Interaction of Objects in an Object Oriented Program,” bearing attorney
docket no. 30013630-0013, and filed on the same date herewith;
U.S. Patent Application No. , entitled “Methods and Systems for

Supporting and Deploying Distributed Computing Components,” bearing attorney docket
no. 30013630-0014, and filed on the same date herewith;

U.S. Patent Application No. _, entitled “Diagrammatic Control of a
Software in a Version Control System,” bearing attorney docket no. 30013630-0015, and
filed on the same date herewith;

U.S. Patent Application No. _, entitled “Navigation Links in

Generated Documentation,” bearing attorney docket no. 30013630-0016, and filed on the
same date herewith;

U.S. Patent Application No. , entitled “Methods and Systems for

Identifying Dependencies Between Object-Oriented Elements,” bearing attorney docket no.
30013630-0019, and filed on the same date herewith, and '
U.S. Patent Application No. , entitled “Methods and Systems for

Relating a Data Definition File and a Data Model for Distributed Computing,” bearing
attorney docket no. 30013630-0020, and filed on the same date herewith.

Field Of The Invention

The present invention relates to a method and system for developing software. More
particularly, the invention relates to a method and system for generating source code in an

object-oriented element to reflect an added link to another object-oriented element.

Background Of The Invention

Computer instructions are written in source code. Although a skilled programmer
can understand source code to determine what the code is designed to accomplish, with
highly complex software systems, a graphical representation or model of the source code is

helpful to organize and visualize the structure and components of the system. Using models,

10

15

20

25

30

WO 01/82072 PCT/US01/12852

the complex systems are easily identified, and the structural and behavioral patterns can be
visualized and documented.

The well-known Unified Modeling Language (UML) is a general-purpose notational
language for visualizing, specifying; constructing, and documenting complex software
systems. UML is used to model systems ranging from business information systems to
Web-based distributed systems, to real-time embedded systems. UML formalizes the notion
that real-world objects are best modeled as self-contained entities that contain both data and

functionality. UML is more clearly described in the following references, which are

incorporated herein by reference: (1) Martin Fowler, UML Distilled Second Edition:
Applying the Standard Object Modeling I anguage, Addison-Wesley (1999); (2) Booch,
Rumbaugh, and Jacobson, The Unified Modeling Language User Guide, Addison-Wesley
(1998); (3) Peter Coad, Jeff DeLuca, and Eric Lefebvre, Java Modeling in Color with UML:
Enterprise Components and Process, Prentice Hall (1999); and (4) Peter Coad, Mark

Mayfield, and Jonathan Kern, Java Design: Building Better Apps & Applets (2nd Ed.),
Prentice Hall (1998).

As shown in Fig. 1, conventional software development tools 100 allow a
programmer to view UML 102 while viewing source code 104. The source code 104 is
stored in a file, and a reverse engineering module 106 converts the source code 104 into a
representation of the software project in a database or repository 108. The software project
comprises source code 104 in at least one file which, when compiled, forms a sequence of
instructions to be run by the data processing system. The repository 108 generates the UML
102. If any changes are made to the UML 102, they are automatically reflected in the
repository 108, and a code generator 110 converts the representation in the repository 108
into source code 104. Such software development tools 100, however, do not synchronize
the displays of the UML 102 and the source code 104. Rather, the repository 108 stores the
representation of the software project while the file stores the source code 104. A
modification in the UML 102 does not appear in the source code 104 unless the code
generator 110 re-generates the source code 104 from the data in the repository 108. When
this occurs, the portion of the source code 104 that is not protected from being overwritten is

rewritten. Similarly, any modifications made to the source code 104 do not appear in the

10

15

20

25

WO 01/82072 PCT/US01/12852

UML 102 unless the reverse engineering module 106 updates the repository 108. As a
result, redundant information is stored in the repository 108 and the source code 104. In
addition, rather than making incremental changes to the source code 104, conventional
software development tools 100 rewrite the overall source code 104 when modifications are
made to the UML 102, resulting in wasted processing time. This type of manual, large-
grained synchronization requires either human intervention, or a “batch” style process to try
to keep the two views (the UML 102 and the source code 104) in sync. Unfortunately, this
approach, adopted by many tools, leads to many undesirable side-effects; such as desired
changes to the source code being overwritten by the tool. A further disadvantage with
conventional software development tools 100 is that they are designed to only work in a
single programming language. Thus, a tool 100 that is designed for Java™ programs cannot
be utilized to develop a program in C++. There is a need in the art for a tool that avoids the

limitations of these conventional software development tools.

Summary Of The Invention

Methods and systems consistent with the present invention provide an improved
software development tool that overcomes the limitations of conventional software
development tools. The improved software development tool of the present invention
allows a developer to simultaneously view a graphical and a textual display of source code.
The graphical and textual views are synchronized so that a modification in one view is
automatically reflected in the other view. In addition, the software development tool is
designed for use with more than one programming language.

The software development tool also saves a developer time and effort in producing
error free code. The software development tool enables the developer to graphically
designate a desired link between a source and a destination element in a software project and
then automatically adds source code in the respective element to reflect the link. The link
can be a generalization link that identifies an inheritance relationship, resulting in the source
element (the source of the link) inheriting all the attributes and methods of the destination
element (the destination of the link). The link can also be an implementation link that

identifies a specification relationship, resulting in the source of the link implementing all the

10

15

20

25

30

WO 01/82072 PCT/US01/12852

methods contained in an interface, the destination of the link. To ensure error free coding,
the software development tool determines whether the desired link adheres to object-
oriented programming rules. In addition, the software development tool saves a developer
time and effort in correcting the source code. The software development tool allows the
developer to selectively replace the source element or the destination element in an existing
link with another element to produce a new link. In the process of generating the new link,
the software development tool determines whether the new link is permissible before
automatically changing the source code of the respective elements to reflect the new link
and the removal of the existing link. To further aid a programmer in developing source code
for a project, the software development toof allows a developer to graphically designate that
source code associated with a source element be nested within the source code of a
destination element in the project. Where a source element is already nested within a
destination element, the software development tool allows the developer to graphically
designate that the first be removed from the destination element. Thus, a developer can
efficiently manage and organize software in a project and more easily allow other
programmers to access or use the source code associated with the nested elements.
Conversely, a developer can effectively remove nested source code when it is determined no
longer to be a desirable design.

In accordance with methods consistent with the present invention, a method is
provided in a data processing system. The data processing system has a plurality of
elements, and each element has corresponding code. The method comprising the steps of
receiving a request to form a link, receiving an indication of a first of the plurality of
elements, receiving an indication of a second of the plurality of elements, and in response to
receiving the request, the indication of the first element, and the indication of the second
element, adding new code to the first element to reflect the link to the second element.

In accordance with methods consistent with the present invention, a method is
provided in a data processing system. The data processing system has a plurality of
elements with a link between two of the plurality of elements. FEach element has
corresponding code, and the linked elements include a source and a destination. The method

comprising the steps of receiving a selection of one of the linked elements, receiving an

10

15

20

25

30

WO 01/82072 PCT/US01/12852

identification of another of the plurality of elements that is different than the linked
elements, determining whether the selected element is the destination, and when it is
determined that the selected element is the destination, modifying the corresponding code of
the other element to reflect a new link between the other element and the destination
element.

In accordance with methods consistent with the present invention, a method is
provided in a data processing system. The data processing system has a plurality of
elements with a link between two of the plurality of elements. Each element has
corresponding code, and the linked elements include a source and a destination. The method
comprising the steps of receiving an identification of the link, receiving a selection of one of
the linked elements, receiving an identification of another of the plurality of elements that is
different than the linked elements, determining whether the selected element is the source,
and when vit is determined that the selected element is the source, modifying the
corresponding code of the source to reflect a new link between the source and the other
element.

In accordance with methods consistent with the present invention, a method is
provided in a data processing system. The data processing system has a plurality of
elements. The method comprising the steps of receiving an identification of a first of the
plurality of elements, receiving an identification of a second of the plurality of elements,
receiving an indication that the first element is to be included in the second element,
determining whether the first element is a class and whether the second element is another
class, and when it is determined that the first element is the class and that the second
element is the other class, transferring code corresponding to the first element into the
second element.

In accordance with methods consistent with the present invention, a method is
provided in a data processing system. The data processing system has a plurality of
elements. Each element has corresponding code. The code corresponding to a first of the
plurality of elements is nested in the code corresponding to a second of the plurality of
elements. The method comprising the steps of receiving an indication that the first element

is to be removed from the second element, determining whether the first element is a class

10

15

20

25

30

WO 01/82072 PCT/US01/12852

and whether the second element is another class, and when it is determined that the first
element is the class and that the second element is the other class, removing code
corresponding to the first element from the second element.

In accordance with articles of manufacture consistent with the present invention, a
computer-readable medium is provided. @ The computer-readable medium contains
instructions for controlling a data processing system to perform a method. The data
processing system has a plurality of elements, and each element haé corresponding code.
The method comprising the steps of receiving a request to form a link, receiving an
indication of a first of the plurality of elements, receiving an indication of a second of the
plurality of elements, and in response to receiving the request, the indication of the first
element, and the indication of the second element, adding new code to the first element to
reflect the link to the second element.

In accordance with articles of manufacture consistent with the present invention, a
computer-readable medium is provided. @ The computer-readable medium contains
instructions for controlling a data processing system to perform a method. The data
processing system has a plurality of elements with a link between two of the plurality of
elements. Each element has corresponding code, and the linked elements include a source
and a destination. The method comprising the steps of receiving a selection of one of the
linked elements, receiving an identification of another of the plurality of elements that is
different than the linked ‘elements, determining whether the selected element is the
destination, and when it is determined that the selected element is the destination, modifying
the corresponding code of the other element to reflect a new link between the other element
and the destination element.

In accordance with articles of manufacture consistent with the present invention, a
computer-readable medium is provided. The computer-readable medium contains
instructions for controlling a data processing system to perform a method. The data
processing system has a plurality of elements with a link between two of the plurality of
elements. Each element has corresponding code, and the linked elements include a source
and a destination. The method comprising the steps of receiving an identification of the

link, receiving a selection of one of the linked elements, receiving an identification of

10

15

20

25

WO 01/82072 PCT/US01/12852

another of the plurality of elements that is different than the linked elements, determining
whether the selected element is the source, and when it is determined that the selected
element is the source, modifying the corresponding code of the source to reflect a new link
between the source and the other element.

In accordance with articles of manufacture consistent with the present invention, a
computer-readable medium is provided. @ The computer-readable medium contains
instructions for controlling a data processing system to perform a method. The data
processing system has a plurality of elements. The method comprising the steps of receiving
an identification of a first of the plurality of elements, receiving an identification of a second
of the plurality of elements, receiving an indication that the first element is to be included in
the second element, determining whether the first element is a class and whether the second
element is another class, and when it is determined that the first element is the class and that
the second element is the other class, transferring code corresponding to the first element
into the second element.

In accordance with articles of manufacture consistent with the present invention, a
computer-readable medium is provided. = The computer-readable medium contains
instructions for controlling a data processing system to perform a method. The data
processing system has a plurality of elements. Each element has corresponding code. The
code corresponding to a first of the plurality of elements is nested in the code corresponding
to a second of the plurality of elements. The method comprising the steps of receiving an
indication that the first element is to be removed from the second element, determining
whether the first element is a class and whether the second element is another class, and
when it is determined that the first element is the class and that the second element is the
other class, removing code corresponding to the first element from the second element.

Other systems, methods, features and advantages of the invention will be or will
become apparent to one with skill in the art upon examination of the following figures and
detailed description. It is intended that all such additional systems, methods, features and
advantages be included within this description, be within the scope of the invention, and be

protected by the accompanying claims.

10

15

20

25

WO 01/82072 PCT/US01/12852

Brief Description Of The Drawings

The accompanying drawings, which are incorporated in and constitute a part of this
specification, illustrate an implementation of the invention and, together with the
description, serve to explain the advantages and principles of the invention. In the drawings,

Fig. 1 depicts a conventional software development tool;

Fig. 2 depicts an overview of a software development tool in accordance with
methods and systems consistent with the present invention;

Fig. 3 depicts a data structure of the language-neutral representation created by the
software development tool of Fig. 2;

Fig. 4 depicts representative source code;

Fig. 5 depicts the data structure of the language-neutral representation of the source
code of Fig. 4;

Fig. 6 depicts a data processing system suitable for practicing the present invention;

Fig. 7 depicts an architectural overview of the software development tool of Fig. 2;

Fig. 8A depicts a user interface displayed by the software development tool depicted
i Fig. 2, where the user interface displays a list of predefined criteria which the software
development tool checks in the source code;

Fig. 8B depicts a user interface displayed by the software development tool depicted
in Fig. 2, where the user interface displays the definition of the criteria which the software
development tool checks in the source code, and an example of source code which does not
conform to the criteria;

‘Fig. 8C depicts a user interface displayed by the software development tool depicted
in Fig. 2, where the user interface displays an example of source code which conforms to the
criteria which the software development tool checks in the source code;

Fig. 9 depicts a flow diagram of the steps performed by the software development
tool depicted in Fig. 2;

Figs. 10A and 10B depict a flow diagram illustrating the update model step of Fig. 9;

Fig. 11 depicts a flow diagram of the steps performed by the software development

tool in Fig. 2 when creating a class;

10

15

20

25

WO 01/82072 PCT/US01/12852

in Fig.

in Fig.

code;

in Fig.

in Fig.

in Fig,

in Fig,

in Fig.

in Fig.

Fig. 12 depicts a user interface displayed by the software development tool depicted
2, where the user interface displays a use case diagram of source code;
Fig. 13 depicts a user interface displayed by the software development tool depicted

2, where the user interface displays both a class diagram and a textual view of source

Fig. 14 depicts a user interface displayed by the software development tool depicted
2, where the user interface displays a sequence diagram of source code;

Fig. 15 depicts a user interface displayed by the software development tool depicted
2, where the user interface displays a collaboration diagram of source code;

Fig. 16 depicts a user interface displayed by the software development tool depicted
2, where the user interface displays a state chart diagram of source code;

Fig. 17 depicts a user interface displayed by the software development tool depicted
2, where the user interface displays an activity diagram of source code;

Fig. 18 depicts a user interface displayed by the software development tool depicted
2, where the user interface displays a component diagram of source code;

Fig. 19 depicts a user interface displayed by the software development tool depicted
2, where the user interface displays a deployment diagram of source code;

Fig. 20 depicts an exemplary user interface displayed by the software development

tool depicted in Fig. 2 for initiating the generation of a link between a source element and a

destination element;

Fig. 21 depicts a flow diagram illustrating an exemplary process performed by the

software development tool in Fig. 2 to add a link in source code of a source element, when it

is determined that the source element is capable of being linked to a destination element;

Fig. 22 depicts an exemplary user interface displayed by the sofiware development

tool depicted in Fig. 2, where the user interface displays a package as the source element

selected and a class as the destination element selected;

Fig. 23 depicts an exemplary user interface showing a link error generated by the

software development tool depicted in Fig. 2 in response to a determination that the source

element cannot be linked to the destination element;

-10-

10

15

20

25

30

WO 01/82072 PCT/US01/12852

 Fig. 24 depicts an exemplary user interface showing new code added by the software
development tool in Fig. 2 to the source code associated with the source element in response
to a determination that the source element can be linked to the destination element;

Fig. 25 depicts a flow diagram of the process performed by the software
development tool in Fig. 2 for determining whether the source element can have a link to the
destination element;

Fig. 26 depicts an exemplary user interface showing new code added by the software
development tool in Fig. 2 to the source code associated with the source element in response
to a determination that the source element is an interface that can be linked to the destination
element that is another interface;

Fig. 27 depicts an exemplary user interface showing new code added by the software
development tool in Fig. 2 to the source code associated with the source element in response
to a determination that the source element is a class that can be linked to the destination
element that is another class;

Fig. 28 depicts an exemplary user interface showing new code added by the software
development tool in Fig. 2 to the source code associated with the source element in response
to a determination that the source element is a class that can be linked to the destination
element that is an interface;

Fig. 29 depicts a flow chart illustrating an exemplary process performed by the

-software development tool in Fig. 2 to replace one of a source or a destination element in an

existing link with another element to form a new link;

Fig. 30 depicts an exemplary user interface displayed by the software development
tool depicted in Fig. 2, where the user interface shows an existing link that has been selected
by a user to be replaced,;

Fig. 31 depicts an exemplary user interface displayed by the sofiware development
tool in Fig. 2, where the user interface shows an identification of another element to link to
one element in the existing link;

Fig. 32 depicts an exemplary user interface showing a link error generated by the
software development tool depicted in Fig. 2 in response to a determination that the other

element cannot be linked to the destination element;

-11-

10

15

20

25

30

WO 01/82072 PCT/US01/12852

Fig. 33 depicts an exemplary user interface showing new code added by the software
development toél in Fig. 2 to the source code associated with the other element to reflect the
new link with the destination element;

Fig. 34 depicts an exemplary user interface displayed by the software development
tool depicted in Fig. 2, where the user interface displays an identification that the one
element to keep from an existing link is the source element, and displays an identification of
the other element for the new link with the source element;

Fig. 35 depicts an exemplary user interface displayed by the sofiware development
tool depicted in Fig. 2, where the user interface displays a graphical representation of the
source code of the source element, a class, to reflect the new link to the other element,
another class;

Fig. 36 depicts a flow diagram of the process performed by the software
development tool in Fig. 2 for determining whether the other element can have a link to the
destination element;

Fig. 37 depicts an exemplary user interface displayed by the sofiware development
tool depicted in Fig. 2, where the user interface displays the destination element, an
interface, in the existing link as the one element to keep to form a new link with the selected
other element, another interféce;

Fig. 38 depicts an exemplary user interface displayed by the software development
tool depicted in Fig. 2, where the user interface displays a graphical representation of the
source code of the other element, an interface, to reflect the new link to the destination
element, another interface;

Fig. 39 depicts an exemplary user interface displayed by the software development
tool depicted in Fig. 2, where the user interface displays an identification that the one
element to keep from an existing link is the destination element, and displays an
identification of the other element for the new link with the destination element;

Fig. 40 depicts an exemplary user interface displayed by the software development
tool depicted in Fig. 2, where the user interface displays a graphical representation of the
source code of the other element, a class, to reflect the new link to the destination element,

another class;

-12 -

10

15

20

25

30

WO 01/82072 PCT/US01/12852

Fig. 41 depicts a flow diagram of the steps performed by the software development
tool in Fig. 2 for determining whether the source element can have a link to the other
element;

Fig. 42 depicts an exemplary user interface displayed by the software development
tool depicted in Fig. 2, where the user interface displays an identification that the one
element to keep from an existing link is the source element, and displays an identification of
the other element for the new link with the source element;

Fig. 43 depicts an exemplary user interface displayed by the software development
tool depicted in Fig. 2, where the user interface displays a graphical representation of the
source code of the source element, an interface, to reflect the new link to the other element,
another interface;

Fig. 44 depicts a flow chart of the process performed by the software development
tool in Fig. 2 for moving source code associated with a source element into source code of a
destination element;

Fig. 45 depicts an exemplary user interface displayed by the software development
tool depicted in Fig. 2, where the user interface displays an identification of the source
element and an identification of the destination element;

Fig. 46 depicts an exemplary user interface displayed by the software development
tool in Fig. 2 after moving the source code corresponding to the source element within the
source code corresponding to the destination element;

Fig. 47 depicts an exemplary user interface displayed by the software development
tool in Fig. 2 after moving a first file associated with the source element within the directory
associated with the destination element that is a package;

Fig. 48 depicts an exemplary user interface displayed by the software development
tool in Fig. 2 after moving a first directory associated with a source element within the
second directory associated with the destination element when it is determined that both
elements are packages;

Fig. 49 depicts a flow of the process performed by the software development tool in
Fig. 2 for removing source code associated with a source element from within source code

of a destination element;

- 13 -

10

15

20

25

WO 01/82072 PCT/US01/12852

Fig. 50 depicts an exemplary user interface displayed by the software development
tool depicted in Fig. 2, where the user interface displays an identification of the source
element and an identification of the destination element;

Fig. 51 depicts an exemplary user interface displayed by the software development
tool in Fig. 2 after removing the source code corresponding to the source element from
within the source code corresponding to the destination element;

Fig. 52 depicts an exemplary user interface displayed by the software development
tool depicted in Fig. 2, where the user interface displays an identification of the source
element and an identification of the destination element;

Fig. 53 depicts an exemplary user interface displayed by the software development
tool in Fig. 2 after removing a first file associated with the source element from within the
directory associated with the destination element that is a package;

Fig. 54 depicts an exemplary user interface displayed by the sofiware development
tool depicted in Fig. 2, where the user interface displays an identification of the source
element and an identification of the destination element; and

Fig. 55 depicts an exemplary user interface displayed by the sofiware development
tool in Fig. 2 after removing a first directory associated with a source element within the
second directory associated with the destination element when it is determined that both

elements are packages.

Detajled Description Of The Invention

Methods and systems consistent with the present invention provide an improved
software development tool that creates a graphical representation of source code regardless
of the programming language in which the code is written. In addition, the software
development tool simultaneously reflects any modifications to the source code to both the
display of the graphical representation as well as the textual display of the source code.

As depicted in Fig. 2, source code 202 is being displayed in both a graphical form
204 and a textual form 206. In accordance with methods and systems consistent with the
present invention, the improved software development tool generates a transient meta model

(TMM) 200 which stores a language-neutral representation of the source code 202. The

-14 -

10

15

20

25

30

WO 01/82072 PCT/US01/12852

graphical 204 and textual 206 representations of the source code 202 are generated from the
language-neutral representation in the TMM 200. Alternatively, the textual view 206 of the
source code may be obtained directly from the source code file. Although modifications
made on the displays 204 and 206 may appear to modify the displays 204 and 206, in
actuality all modifications are made directly to the source code 202 via an incremental code
editor (ICE) 208, and the TMM 200 is used to generate the modifications in both the
graphical 204 and the textual 206 views from the modifications to the source code 202.

The improved software development tool provides simultaneous round-trip
engineering, i.e., the graphical representation 204 is synchronized with the textual
representation 206. Thus, if a change is made to the source code 202 via the graphical
representation 204, the textual representation 206 is updated automatically. Similarly, if a
change is made to the source code 202 via the textual representation 206, the graphical
representation 204 is updated to remain synchronized. There is no repository, no batch code
generation, and no risk of losing code.

The data structure 300 of the language-neutral representation is depicted in Fig. 3.
The data structure 300 comprises a Source Code Interface (SCI) model 302, an SCI package
304, an SCI class 306, and an SCI member 308. The SCI model 302 is the source code
organized into packages. The SCI model 302 corresponds to a directory for a software
project being developed by the user, and the SCI package 304 corresponds to a subdirectory.
The software project comprises the source code in at least one file that is compiled to form a
sequence of instructions to be run by a data processing system. The data processing system
is discussed in detail below. As is well known in object-oriented programming, the class
306 is a category of objects which describes a group of objects with similar properties
(attributes), common behavior (operations or methods), common relationships to other
objects, and common semantics. The members 308 comprise attributes and/or operations.

For example, the data structure 500 for the source code 400 depicted in Fig. 4 is
depicted in Fig. 5. UserInterface 402 is defined as a package 404. Accordingly,
Userlnterface 402 is contained in SCI package 502. Similarly, Bank 406, which is defined
as a class 408, is contained in SCI class 504, and Name 410 and Assets 412, which are

defined as attributes (strings 414), are contained in SCI members 506. Since these elements

- 15 -

10

15

20

25

WO 01/82072 PCT/US01/12852

are in the same project, all are linked. The data structure 500 also identifies the language in
which the source code is written 508, e.g., the Java™ anguage.

Fig. 6 depicts a data processing system 600 suitable for practicing methods and
systems consistent with the present invention. Data processing system 600 comprises a
memory 602, a secondary storage device 604, an I/O device 606, and a processor 608.
Memory 602 includes the improved software development tool 610. The software
development tool 610 is used to develop a software project 612, and create the TMM 200 in
the memory 602. The project 612 is stored in the secondary storage device 604 of the data
processing system 600. One skilled in the art will recognize that data processing system 600
may contain additional or different components.

Although aspects of the present invention are described as being stored in memory,
one skilled in the art will appreciate that these aspects can also be stored on or read from
other types of computer-readable media, such as secondary storage devices, like hard disks,
floppy disks or CD-ROM,; a carrier wave from a network, such as Internet; or other forms of
RAM or ROM either currently known or later developed.

Fig. 7 illustrates an architectural overview of the improved software development
tool 610. The tool 610 comprises a core 700, an open application program interface (API)
702, and modules 704. The core 700 includes a parser 706 and an ICE 208. The parser 706
converts the source code into the language-neutral representation in the TMM, and the ICE
208 converts the text from the displays into source code. There are three main packages
composing the API 702: Integrated Development Environment (IDE) 708; Read-Write
Interface (RWI) 710; and Source Code Interface (SCI) 712. Each package includes
corresponding subpackages. As is well known in the art, a package is a collection of classes,
interfaces, attributes, notifications, operations, or behaviors that are treated as a single
module or program unit.

IDE 708 is the API 702 needed to generate custom outputs based on information
contained in a model. It is a read-only interface, i.e., the user can extract information from
the model, but not change the model. IDE 708 provides the functionality related to the

model’s representation in IDE 708 and interaction with the user. Each package composing

-16 -

10

15

WO 01/82072 PCT/US01/12852

the IDE group has a description highlighting the areas of applicability of this concrete
package.

RWI 710 enables the user to go deeper into the architecture. Using RWI 710,
information can be extracted from and written to the models. RWI not only represents
packages, classes and members, but it may also represent different diagrams (class diagrams,
use case diagrams, sequence diagrams and others), links, notes, use cases, actors, states, etc.

SCI 712 is at the source code level, and allows the user to work with the source code
almost independently of the language being used.

There are a variety of modules 704 in the software development tool 610 of the
present invention. Some of the modules 704 access information to generate graphical and
code documentation in custom formats, export to different file formats, or develop patterns.
The softwaré development tool also includes a quality assurance (QA) module which
monitors the modifications to the source code and calculates various complexity metrics,
i.e., various measurements of the program’s performance or efficiency, to support quality
assurance. The types of metrics calculated by the software development tool include basic
metrics, cohesion metrics, complexity metrics, coupling metrics, Halstead metrics,
inheritance metrics, maximum metrics, polymorphism metrics, and ratio metrics. Examples

of these metrics with their respective definitions are identified in Tables 1-9 below.

Basic Metrics Description

Lines Of Code Counts the number of code lines.

Number Of Attributes | Counts the number of attributes. If a class has a high number of
attributes, it may be appropriate to divide it into subclasses.

Number Of Classes Counts the number of classes.
Number Of Import Counts the number of imported packages/classes. This measure
Statements can highlight excessive importing, and also can be used as a

measure of coupling.

Number Of Members | Counts the number of members, i.e., attributes and operations. If
a class has a high number of members, it may be appropriate to
divide it into subclasses.

Number Of Operations | Counts the number of operations. If a class has a high number of
operations, it may be appropriate to divide it into subclasses.

Table 1 — Basic Metrics

-17 -

WO 01/82072

PCT/US01/12852

Cohesion Metrics Description

Lack Of Cohesion Of | Takes each pair of methods in the class and determines the set of

Methods 1 fields they each access. A low value indicates high coupling
between methods, which indicates potentially low reusability and
increased testing because many methods can affect the same
attributes.

Lack Of Cohesion Of | Counts the percentage of methods that do not access a specific

Methods 2 attribute averaged over all attributes in the class. A high value of
cohesion (a low lack of cohesion) implies that the class is well
designed.

Lack Of Cohesion Of = | Measures the dissimilarity of methods in a class by attributes. A

Methods 3 low value indicates good class subdivision, implying simplicity
and high reusability. A high lack of cohesion increases
complexity, thereby increasing the likelihood of errors during the
development process.

Table 2 — Cohesion Metrics

Complexity Metrics | Description

Attribute Complexity | Defined as the sum of each attribute’s value in the class.

Cyclomatic Represents the cognitive complexity of the class. It counts the

Complexity number of possible paths through an algorithm by counting the
number of distinct regions on a flowgraph, i.e., the number of ‘if,’
“for’ and ‘while’ statements in the operation’s body.

Number Of Remote Processes all of the methods and constructors, and counts the

Methods number of different remote methods called. A remote method is

defined as a method which is not declared in either the class itself
or its ancestors.

Response For Class

Calculated as ‘Number of Local Methods’ + ‘Number of Remote
Methods.” A class which provides a larger response set is
considered to be more complex and requires more testing than
one with a smaller overall design complexity.

Weighted Methods Per | The sum of the complexity of all methods for a class, where each

Class 1 method is weighted by its cyclomatic complexity. The number of
methods and the complexity of the methods involved is a
predictor of how much time and effort is required to develop and
maintain the class.

Weighted Methods Per | Measures the complexity of a class, assuming that a class with

Class 2 more methods than another is more complex, and that a method

with more parameters than another is also likely to be more
complex.

Table 3 — Complexity Metrics

- 18-

WO 01/82072

PCT/US01/12852

Coupling Metrics

Description :

Coupling Between
Objects

Represents the number of other classes to which a class is
coupled. Counts the number of reference types that are used in
attribute declarations, formal parameters, return types, throws
declarations and local variables, and types from which attribute
and method selections are made.

Excessive coupling between objects is detrimental to modular
design and prevents reuse. The more independent a class is, the
easier it is to reuse it in another application. In order to improve
modularity and promote encapsulation, inter-object class couples
should be kept to a minimum. The larger the number of couples,
the higher the sensitivity to changes in other parts of the design,
and therefore maintenance is more difficult. A measure of
coupling is useful to determine how complex the testing of
various parts of a design is likely to be. The higher the inter-
object class coupling, the more rigorous the testing needs to be.

Data Abstraction
Coupling

Counts the number of reference types used in the attribute
declarations.

FanOut

Counts the number of reference types that are used in attribute
declarations, formal parameters, return types, throws declarations
and local variables.

Table 4 — Coupling Metrics

-19-

WO 01/82072 PCT/US01/12852
Halstead Metrics Description
Halstead Difficulty This measure is one of the Halstead Software Science metrics. It
i8 calculated as (‘Number of Unique Operators’ / ‘Number of
Unique Operands’) * (‘Number of Operands’ / ‘Number of
Unique Operands’).
Halstead Effort This measure is one of the Halstead Software Science metrics. It
is calculated as ‘Halstead Difficulty’ * ‘Halstead Program
Volume,’
Halstead Program This measure is one of the Halstead Software Science metrics. It
Length is calculated as ‘Number of Operators’ + ‘Number of Operands.’
Halstead Program This measure is one of the Halstead Software Science metrics. It
Vocabulary is calculated as ‘Number of Unique Operators’ + ‘Number of
Unique Operands.’
Halstead Program This measure is one of the Halstead Software Science metrics. It
Volume is calculated as ‘Halstead Program Length’ * Log2(‘Halstead
Program Vocabulary”).
Number Of Operands | This measure is used as an input to the Halstead Software Science
metrics. It counts the number of operands used in a class.
Number Of Operators | This measure is used as an input to the Halstead Software Science
metrics. It counts the number of operators used in a class.
Number Of Unique This measure is used as an input to the Halstead Software Science
' Operands metrics. It counts the number of unique operands used in a class.
Number Of Unique This measure is used as an input to the Halstead Software Science
Operators metrics. It counts the number of unique operators used in a class.

Table 5 — Halstead Metrics

Inheritance Metrics

Description

Depth Of Inheritance | Counts how far down the inheritance hierarchy a class or

Hierarchy interface is declared. High values imply that a class is quite
specialized.

Number Of Child Counts the number of classes which inherit from a particular

Classes class, i.e., the number of classes in the inheritance tree down from

a class. Non-zero value indicates that the particular class is being
re-used. The abstraction of the class may be poor if there are too
many child classes. It should also be stated that a high value of
this measure points to the definite amount of testing required for
each child class.

Table 6 — Inheritance Metrics

-20 -

WO 01/82072

PCT/US01/12852

Maximum Metrics

Description

Maximum Number Of
Levels

Counts the maximum depth of ‘if,” “for’ and ‘while’ branches in
the bodies of methods. Logical units with a large number of
nested levels may need implementation simplification and
process improvement because groups that contain more than
seven pieces of information are increasingly harder for people to
understand in problem solving.

Maximum Number Of
Parameters

Displays the maximum number of parameters among all class
operations. Methods with many parameters tend to be more
specialized and, thus, are less likely to be reusable.

Maximum Size Of

Counts the maximum size of the operations for a class. Method

Operation size is determined in terms of cyclomatic complexity, i.e., the
number of ‘if,” “for’ and ‘while’ statements in the operation’s
body.

Table 7 — Maximum Metrics

Polymorphism Description

Metrics

Number Of Added Counts the number of operations added by a class. A large value

Methods of this measure indicates that the functionality of the given class
becomes increasingly distinct from that of the parent classes. In
this case, it should be considered whether this class genuinely
should be inheriting from the parent, or if it could be broken
down into several smaller classes.

Number Of Counts the number of inherited operations which a class

Overridden Methods overrides. Classes without parents are not processed. High

values tend to indicate design problems, i.e., subclasses should
generally add to and extend the functionality of the parent classes
rather than overriding them.

Table 8 — Polymorphism Metrics

221 -

WO 01/82072 PCT/US01/12852
Ratio Metrics Description
Comment Ratio Counts the ratio of comments to total lines of code including
comments.
Percentage Of Package | Counts the percentage of package members in a class.
Members

Percentage Of Private
Members

Counts the percentage of private members in a class.

Percentage Of

Counts the percentage of protected members in a class.

Protected Members
Percentage Of Public | Counts the proportion of vulnerable members in a class. A large
Members proportion of such members means that the class has high

potential to be affected by external classes and means that
increased efforts will be needed to test such a class thoroughly.

True Comment Ratio

Counts the ratio of comments to total lines of code excluding
comments.

The QA module also provides audits, i.e., the module checks for conformance to

predefined or user-defined styles.

Table 9 — Ratio Metrics

coding style, critical errors, declaration style, documentation, naming style, performance,

possible errors and superfluous content. Examples of these audits with their respective

definitions are identified in Tables 10-17 below.

-22-

The types of audits provided by the module include

WO 01/82072

PCT/US01/12852

Coding Style Audits | Description

Access Of Static Static members should be referenced through class names rather
Members Through than through objects.

Objects

Assignment To Formal
Parameters

Formal parameters should not be assigned.

Complex Assignment | Checks for the occurrence of multiple assignments and
assignments to variables within the same expression. Complex
assignments should be avoided since they decrease program
readability.

Don’t Use the The negation operator slows down the readability of the program.

Negation Operator Thus, it is recommended that it not be used frequently.

Frequently

Operator ‘?:> May Not
Be Used

The operator “?:” makes the code harder to read than the
alternative form with an if-statement.

Provide Incremental In
For-Statement or use
while-statement

Checks if the third argument of the ‘for’-statement is missing.

Replacement For
Demand Imports

Demand import-declarations must be replaced by a list of single
import-declarations that are actually imported into the
compilation unit. In other words, import-statements may not end
with an asterisk.

Use Abbreviated
Assignment Operator

Use the abbreviated assignment operator in order to write
programs more rapidly. Also some compilers run faster with the
abbreviated assignment operator.

Use ‘this’ Explicitly
To Access Class
Members

Tries to make the developer use ‘this’ explicitly when trying to
access class members. Using the same class member names with
parameter names often makes what the developer is referring to
unclear.

Table 10 — Coding Style Audits

-23 -

WO 01/82072

PCT/US01/12852

Critical Errors Description

Audits

Avoid Hiding Detects when attributes declared in child classes hide inherited

Inherited Attributes attributes.

Avoid Hiding Detects when inberited static operations are hidden by child

Inherited Static classes.

Methods

Command Query Prevents methods that return a value from a modifying state. The

Separation methods used to query the state of an object must be different
from the methods used to perform commands (change the state of
the object).

Hiding Of Names Declarations of names should not hide other declarations of the
same naime.

Inaccessible Overload resolution only considers constructors and methods that

Constructor Or are visible at the point of the call. If, however, all the

Method Matches constructors and methods were considered, there may be more
matches. This rule is violated in this case.
Imagine that ClassB is in a different package than ClassA. Then
the allocation of ClassB violates this rule since the second
constructor is not visible at the point of the allocation, but it still
matches the allocation (based on signature). Also the call to open
in ClassB violates this rule since the second and the third
declarations of open are not visible at the point of the call but it

still matches the call (based on signature).

Multiple Visible Multiple declarations with the same name must not be

Declarations With simultaneously visible except for overloaded methods.

Same Name

Overriding a Non- Checks for abstract methods overriding non-abstract methods in a

Abstract Method With | subclass.

an Abstract Method

Overriding a Private
Method

A subclass should not contain a method with the same name and
signature as in a superclass if these methods are declared to be
private.

Overloading Within a
Subclass

A superclass method may not be overloaded within a subclass
unless all overloading in the superclass are also overridden in the
subclass. It is very unusual for a subclass to be overloading
methods in its superclass without also overriding the methods it is
overloading. More frequently this happens due to inconsistent
changes between the superclass and subclass —i.e., the intention
of the user is to override the method in the superclass, but due to
the error, the subclass method ends up overloading the superclass
method.

Use of Static Attribute
for Initialization

Non-final static attributes should not be used in initializations of
attributes.

-24 -

WO 01/82072 PCT/US01/12852
Table 11 — Critical Errors Audits
Declaration Style Description
Audits
Badly Located Array | Array declarators must be placed next to the type descriptor of
Declarators their component type.
Constant Private Private attributes that never get their values changed must be
Attributes Must Be declared final. By explicitly declaring them in such a way, a
Final reader of the source code get some information of how the
attribute is supposed to be used.
Constant Variables Local variables that never get their values changed must be
Must Be Final declared final. By explicitly declaring them in such a way, a

reader of the source code obtains information about how the
variable is supposed to be used.

Declare Variables In

Several variables (attributes and local variables) should not be

One Statement Each declared in the same statement.

Instantiated Classes This rule recommends making all instantiated classes final. It

Should Be Final checks classes which are present in the object model. Classes
from search/classpath are ignored.

List All Public And Enforces a standard to improve readability. Methods/data in your

Package Members class should be ordered properly.

First

Order Of Appearance | Checks for correct ordering of modifiers. For classes, this

Of Modifiers includes visibility (public, protected or private), abstract, static,
final. For attributes, this includes visibility (public, protected or
private), static, final, transient, volatile. For operations, this
includes visibility (public, protected or private), abstract, static,
final, synchronized, native.

Put the Main Function | Tries to make the program comply with various coding standards

Last regarding the form of the class definitions.

Table 12 — Declaration Style Audits

Documentation Description

Audits

Bad Tag In JavaDoc This rule verifies code against accidental use of improper

Comments JavaDoc tags.

Distinguish Between | Checks whether the JavaDo¢ comments in your program ends

JavaDoc And Ordinary | with ‘**/* and ordinary C-style ones with ‘*/.

Comments

Table 13 — Documentation Audits

-25-

WO 01/82072 PCT/US01/12852
Naming Style Audits | Description
Class Name Must Checks whether top level classes or interfaces have the same
Match Its File Name | name as the file in which they reside.
Group Operations Enforces standard to improve readability.
With Same Name
Together

Naming Conventions

Takes a regular expression and item name and reports all
occurrences where the pattern does not match the declaration.

‘Names Of Exception
Classes

Names of classes which inherit from Exception should end with
Exception.

Use Conventional

One-character local variable or parameter names should be

Variable Names avoided, except for temporary and looping variables, or where a
variable holds an undistinguished value of a type.
Table 14 — Naming Style Audits
Performance Audits | Description
Avoid Declaring This rule recommends declaring local variables outside the loops
Variables Inside Loops | since declaring variables inside the loop is less efficient.
Append To String Performance enhancements can be obtained by replacing String
Within a Loop operations with StringBuffer operations if a String object is
appended within a loop.
Complex Loop Avoid using complex expressions as repeat conditions within
Expressions loops.

Table 15 — Performance Audits

-26 -

WO 01/82072

PCT/US01/12852

Possible Error Audits | Description

Avoid Public And Declare the attributes either private or protected, and provide

Package Attributes operations to access or change them.]

Avoid Statements Avoid statements with empty body.

With Empty Body

Assignment To For- ‘For’-loop variables should not be assigned.

Loop Variables

Don’t Compare Avoid testing for equality of floating point numbers since

Floating Point Types | floating-point numbers that should be equal are not always equal
due to rounding problems.

Enclosing Body The statement of a loop must always be a block. The ‘then’ and

Within a Block ‘else’ parts of ‘if’-statements must always be blocks. This makes

it easier to add statements without accidentally introducing bugs
in case the developer forgets to add braces.

Explicitly Initialize All
Variables

Explicitly initialize all variables. The only reason not to initialize
a variable is where it’s declared is if the initial value depends on
some computation occurring first.

Method finalize()
Doesn’t Call
super.finalize()

Calling of super.finalize() from finalize() is good practice of
programming, even if the base class doesn’t define the finalize()
method. This makes class implementations less dependent on
each other.

Mixing Logical An expression containing multiple logical operators should be
Operators Without parenthesized properly.

Parentheses

No Assignments In Use of assignment within conditions makes the source code hard
Conditional to understand.

Expressions

Use ‘equals’ Instead
Of ‘==

The ‘==° operator used on strings checks if two string objects are
two identical objects. In most situations, however, one likes to
simply check if two strings have the same value. In these cases,
the ‘equals’ method should be used.

Use ‘L’ Instead Of ‘I’
at the end of integer
constant

It is better to use uppercase ‘L’ to distinguish the letter ‘I’ from
the number ‘1.’

Use Of the
‘synchronized’
Modifier

The ‘synchronized’ modifier on methods can sometimes cause
confusion during maintenance as well as during debugging. This
rule therefore recommends against using this modifier, and
instead recommends using ‘synchronized’ statements as
replacements.

Table 16 — Possible Error Audits

~27 -

WO 01/82072

PCT/US01/12852

Superfluous Content
Audits

Description

Duplicate Import There should be at most one import declaration that imports a
Declarations particular class/package.

Don’t Import the No classes or interfaces need to be imported from the package to
Package the Source which the source code file belongs. Everything in that package is
File Belongs To available without explicit import statements.

Explicit Import Of the | Explicit import of classes from the package ‘java.lang’ should not
java.lang Classes be performed.

Equality Operations Avoid performing equality operations on Boolean operands.

On Boolean ‘True’ and ‘false’ literals should not be used in conditional
Arguments clauses.

Imported Items Must | It is not legal to import a class or an interface and never use it.

Be Used . This rule checks classes and interfaces that are explicitly

imported with their names — that is not with import of a complete
package, using an asterisk. If unused class and interface imports
are omitted, the amount of meaningless source code is reduced -
thus the amount of code to be understood by a reader is
minimized.

Unnecessary Casts

Checks for the use of type casts that are not necessary.

Unnecessary Verifies that the runtime type of the left-hand side expression is
‘instanceof’ the same as the one specified on the right-hand side.
Evaluations

Unused Local Local variables and formal parameter declarations must be used.
Variables And Formal

Parameters

Use Of Obsolete The modifier ‘abstract’ is considered obsolete and should not be
Interface Modifier used.

Use Of Unnecessary All interface operations are implicitly public and abstract. All
Interface Member interface attributes are implicitly public, final and static.
Modifiers

Unused Private Class
Member

An unused class member might indicate a logical flaw in the
program. The class declaration has to be reconsidered in order to
determine the need of the unused member(s).

Table 17 — Superfluous Content Audits

If the QA module determines that the source code does not conform, an error

message is provided to the developer. For example, as depicted in Fig. 8A, the software

development tool checks for a variety of coding styles 800. If the software development

tool were to check for “Access Of Static Members Through Objects” 802, it would verify

whether static members are referenced through class names rather than through objects 804.

-28 -

10

15

20

25

30

WO 01/82072 PCT/US01/12852

Further, as depicted in Fig. 8B, if the software development tool were to check for
“Complex Assignment” 806, the sofiware development tool would check for the occurrence
of multiple assignments and assignments to variables within the same expression to avoid
complex assignments since these decrease program readability 808. An example of source
code having a complex assignment 810 and source code having a non-complex assignment
812 are depicted in Figs. 8B and 8C, respectively. The QA module of the software
development tool scans the source code for other syntax errors and/or other deviations from
well known rules, as described above, and provides an error message if any such errors are
detected.

The improved sofiware development tool of the present invention is used to develop
source code in a project. The project comprises a plurality of files and the source code of a
chosen one of the plurality of files is written in a given language. The software development
tool determines the language of the source code of the chosen file, converts the source code
from the language into a language-neutral representation, uses the language-neutral
representation to textually display the source code of the chosen file in the language, and
uses the language-neutral representation to display a graphical representation of at least a
portion of the project. As discussed above, in an alternative embodiment, the textual display
may be obtained directly from the source code file. The source code and the graphical
representation are displayed simultaneously.

The improved software development tool of the present invention is also used to
develop source code. The software development tool receives an indication of a selected
language for the source code, creates a file to store the source code in the selected language,
converts the source code from the selected language into a language-neutral representation,
uses the language-neutral representation to display the source code of the file, and uses the
language-neutral representation to display a graphical representation of the file. Again, the
source code and the graphical representation are displayed simultaneously.

Moreover, if the source code in the file is modified, the modified source code and a
graphical representation of at least a portion of the modified source code are displayed
simultaneously. The QA module of the software development tool provides an error

message if the modification does not conform to predefined or user-defined styles, as

-29.

10

15

20

25

30

WO 01/82072 PCT/US01/12852

described above. The modification to the source code may be received by the software
development tool via the programmer editing the source code in the texiual pane or the
graphical pane, or via some other independent software tool that the programmer uses to
modify the code. The graphical representation of the project may be in Unified Modeling
Language; however, one skilled in the art will recognize that other graphical representations
of the source code may be displayed. Further, although the present invention is described
and shown using the various views of the UML, one of ordinary skill in the art will
recognize that other views may be displayed.

Fig. 9 depicts a flow diagram of the steps performed by the sofiware development
tool to develop a project in accordance with methods consistent with the present invention.
As previously stated, the project comprises a plurality of files. The developer either uses the
software development tool to open a file that contains existing source code, or to create a file
in which the source code will be developed. If the sofiware development tool is used to
open the file, determined in step 900, the software development tool initially determines the
programming language in which the code is written (step 902). The language is identified
by the extension of the file, e.g., “java” identifies source code written in the Java™
language, while “.cpp” identifies source code written in C++. The software development
tool then obtains a template for the current programming language, ie., a collection of
generalized definitions for the particular language that can be used to build the data structure
(step 904). For example, the templates used to define a new Java™ class contains a default
name, e.g., “Classl,” and the default code, “public class Classl {}.” Such templates are
well known in the art. For example, the “Microsoft Foundation Class Library” and the
“Microsoft Word Template For Business Use Case Modeling” are examples of standard
template libraries from which programmers can choose individual template classes. The
software development tool uses the template to parse the source code (step 906), and create
the data structure (step 908). After creating the data structure or if there is no existing code,
the software development tool awdits an event, i.e., a modification or addition to the source
code by the developer (step 910). If an event is received and the event is to close the file
(step 912), the file is saved (step 914) and closed (step 916). Otherwise, the software

development tool performs the event (step 918), i.e., the tool makes the modification. The

-30-

10

15

20

25

30

WO 01/82072 PCT/US01/12852

software development tool then updates the TMM or model (step 920), as discussed in detail
below, and updates both the graphical and the textual views (step 922).

Figs. 10A and 10B depict a flow diagram illustrating the update model step of Fig. 9.
The software development tool selects a file from the project (step 1000), and determines
whether the file is new (step 1002), whether the file has been updated (step 1004), or
whether the file has been deleted (step 1006). If the file is.new, the software development
tool adds the additional symbols from the file to the TMM (step 1008). To add the symbol
to the TMM, the software development tool uses the template to parse the symbol to the
TMM. If the file has been updated, the software development tool updates the symbols in
the TMM (step 1010). Similar to the addition of a symbol to the TMM, the software
development tool uses the template to parse the symbol to the TMM. If the file has been
deleted, the software development tool deletes the symbols in the TMM (step 1012). The
software development tool continues this anélysis for all files in the project. After all files
are analyzed (step 1014), any obsolete symbols in the TMM (step 1016) are deleted (step
1018).

Fig. 11 depicts a flow diagram illustrating the performance of an event, specifically
the creation of a class, in accordance with methods consistent with the present invention.
After identifying the programming fanguage (step 1100), the software development tool
obtains a template for the language (step 1102), creates a source code file in the project
directory (step 1104), and pastes the template into the file (step 1106). The project directory
corresponds to the SCI model 302 of Fig. 3. Additional events which a developer may
perform using the software development tool include the creation, modification or deletion
of packages, projects, attributes, interfaces, links, operations, and the closing of a file.

Applications to be developed using the software development tool are collectively
broken into three views of the application: the static view, the dynamic view, and the
functional view. The static view is modeled using the use-case and class diagrams. A use
case diagram 1200, depicted in Fig. 12, shows the relationship among actors 1202 and use
cases 1204 within the system 1206. A class diagram 1300, depicted in Fig. 13 with its
associated source code 1302, on the other hand, includes classes 1304, interfaces, packages

and their relationships connected as a graph to each other and to their contents.

-31-

10

15

20

25

30

WO 01/82072 PCT/US01/12852

The dynamic view is modeled using the sequence, collaboration and statechart
diagrams. As depicted in Fig. 14, a sequence diagram 1400 represents an interaction, which
is a set of messages 1402 exchanged among objects 1404 within a collaboration to effect a
desired operation or result. In a sequence diagram 1400, the vertical dimension represents
time and the horizontal dimension represents different objects. A collaboration diagram
1500, depicted in Fig. 15, is also an interaction with messages 1502 exchanged among
objects 1504, but it is also a collaboration, which is a set of objects 1504 related in a
particular context. Contrary to sequence diagrams 1400 (Fig. 14), which emphasize the time
ordering of messages along the vertical axis, collaboration diagrams 1500 (Fig. 15)
emphasize the structural organization of objects.

A statechart diagram 1600 is depicted in Fig. 16. The statechart diagram 1600
includes the sequences of states 1602 that an object or interaction goes through during its
life in response to stimuli, together with its responses and actions. It uses a graphic notation
that shows states of an object, the events that cause a transition from one state to another,
and the actions that result from the transition.

The functional view can be represented by activity diagrams 1700 and more
traditional descriptive narratives such as pseudocode and minispecifications. An activity
diagram 1700 is depicted in Fig. 17, and is a special case of a state diagram where most, if
not all, of the states are action states 1702 and where most, if not all, of the transitions are
triggered by completion of the actions in the source states. Activity diagrams 1700 are used
in situations where all or most of the events represent the completion of internally generated
actions.

There is also a fourth view mingled with the static view called the architectural view.
This view is modeled using package, component and deployment diagrams. Package
diagrams show packages of classes and the dependencies among them. Component
diagrams 1800, depicted in Fig. 18, are graphical representations of a system or its
component parts. Component diagrams 1800 show the dependencies among software
components, including source code components, binary code components and executable
components. As depicted in Fig. 19, deployment diagrams 1900 are used to show the

distribution strategy for a distributed object system. Deployment diagrams 1900 show the

-32 -

10

15

20

25

WO 01/82072 PCT/US01/12852

configuration of run-time processing elements and the software components, processes and
objects that live on them.

Although discussed in terms of class diagrams, one skilled in the art will recognize
that the software development tool of the present invention may support these and other

graphical views.

Adding or Modifying a Link Between Two Elements, and Nesting Two Elements

In addition to the functionality described above, the software development tool saves
significant programming development time by allowing a programmer to manipulate a
diagram so as to form a link (e.g., generalization or implementation link) between two
elements, and to automatically generate the source code to reflect the link. An element may
be a class, or an interface. As known to one skilled in the art, a generalization link
corresponds to an inheritance relationship between the source and destination of the link,
where the link source inherits all the attributes and methods of the link destination. An
implementation link corresponds to a specification relationship between the source and the
destination elements, where the link source implements all the methods contained in an
interface of the link destination. When a link is already formed, the software development
tool saves programming time by allowing a programmer to manipulate a graphical
representation of the link on a diagram so as to form a new link between one of the two
linked elements and a selected different element, and to automatically generate the source
code to reflect the new link. Finally, the software development tool frees a programmer
from typing code by allowing the programmer to manipulate a diagram to nest the source
code of one element within the source code of another element. In addition, when creating a
link, removing a link in lieu of a new link, or nesting one element within another element,
the software development tool enforces object-oriented programming rules, thus assisting a
programmer in producing error free code. Exemplary object-oriented programming rules for
inheritance or implementation links are described in Stephen Gilbert & Bill McCarthy,
Object-Oriented Design In Java, Waite Group Press (1998), which is incorporated herein by

reference.

33 .

10

15

20

25

30

WO 01/82072 PCT/US01/12852

As shown in Fig. 20, the source and the destination element may be any object-
oriented component that the sofiware development tool 610 may display in graphical pane
2008 or textual pane 2010 to model a project and which a programmer can select via a
mouse click, a predefined keyboard input, or by using some other known input device. For
example, the source and destination element may be selected from among a package

(graphically depicted as package diagram 2002), a class (graphically depicted as a class

~ diagram 2004), or an interface (graphically depicted as an interface diagram 2006). The

software development tool, however, enforces known object-oriented programming rules
that dictate that only a class or an interface may have a generalization link or an
implementation link. In addition, class 2004 and interface 2006 have associated source code
stored in a respective file, but package 2002 does not. As shown in Fig. 20, although
package 2002 can be displayed in graphical form 2008, package 2002 does not have
associated source code to be displayed in textual form 2010. The package 2002 identifies a
directory 2012 of a project 2014 that contains related classes and interfaces that can be used
by an unrelated class when the unrelated class imports the package 2002 into a source code
file associated with the unrelated class.

Fig. 21 depicts a flow diagram illustrating an exemplary process performed by the
software development tool to add a link in source code of a source element, when it is
determined that the source element is capable of being linked to a destination element. To
add a link, such as a generalization link or an implementation link, in the source code of the
source element, the software development tool receives an indication or request from a user
or a programmer to generate a link between a source element and a destination element (step
2102). In one implementation, the software development tool may receive the indication to
generate a link based on the actuation of a button 2032 on an exemplary user interface 2000.
One skilled in the art will appreciate that any known programming technique for inputting
data may be used to convey the same information to the software development tool.

The software development tool receives an indication identifying the source element
(step 2104). The software development tool also received an indication identifying the
destination element (step 2106). The software development tool may receive the indication

identifying the source element via a programmer using any known data input technique

-34 -

10

15

20

25

30

WO 01/82072 PCT/US01/12852

associated with I/O device 606, such as a mouse click while the cursor is over a first
diagram (e.g., class 2004) associated with the source element. The software development
tool may receive the indication identifying the destination element in a similar manner.
Note that for each package 2012, 2016, 2018, 2020, and 2022 in the project 2014, the
software development tool stores in a respective graphical view file 2024, 2026, 2028, and
2030 (file for 2022 is not shown) the name and display coordinates of each symbol, such as
a class 2004 or a link to a class (not shown), that is displayed in the graphical pane 2008.
When the project is opened, the software development tool reads the graphical view file into
the TMM 200 which correlates the names and display coordinates of each symbol of the
respective source code file in the project as discussed in reference to Figs. 10A and 10B,
above. Thus, the software development tool may invoke the TMM 200 to identify the
source element and the destination element based on display coordinates received in
conjunction with the first selection and the second selection, respectively.

Fig. 22 depicts an exemplary user interface 2200 displayed by the software
development tool in response to receiving an indication identifying the source element as a
package 2202 and an indication identifying the destination element as a class 2204. The
software development tool displays a graphical reference line 2206 to visually identify the
source and destination elements that have been selected for a link.

In one embodiment, the software development tool allows the user to split the textual
pane 2010 into two windows to separately display source code associated with a source
element and source code associated with a destination element. In this implementation, the
user may select one of two windows as the first selection using I/O device 606. The
software development tool then automatically determines that the source code displayed in
the unselected window is the second selection.

Next, the software development tool determines whether the source element can
have a link to the destination element (step 2108). This process is described in greater detail
below. If the source element cannot have a link to the destination element, the software
development tool displays a link error (step 2110). The exemplary screen 2300 of Fig. 23
shows that link error 2302 is displayed by the sofiware development tool in response to the

request to link package 2202 to class 2204. The rule enforced here by the development tool

-35.

10

15

20

25

30

WO 01/82072 PCT/US01/12852

is discussed below. As illustrated in Fig. 24, if the source element 2410 can have a link
2408 to the destination element 2410, the software development tool adds new code 2402 to
the source code associated with the source element to reflect the link (e.g., a genefa]ization
link or an implementation link) with the destination element (step 2112). The new code
2402 includes a keyword 2404 and a link destination name 2406. In the example shown in
Fig. 24, the keyword 2404 is “implements” which corresponds to a known Java™
programming language construct for an implementation link. As illustrated in reference to
Fig. 26 and Fig. 27, the keyword 2604, 2704 that corresponds to a generalization or
inberitance link is “extends.” The link destination name 2406 is the name of the destination
element, which is “ProductPricelnterface” in the example depicted in Fig. 24,

The software development tool also modifies the graphical representation of the
source code of the source element to reflect the link from the source to the destination
element (step 2114). For example, in Fig. 24, a dashed lined arrow 2408 reflects an
implementation link from the source element (class 2410) to the destination element
(interface 2412), and Fig. 26 and Fig. 27, a solid lined arrow (2608, 2708) reflects the an
inheritance link from the source element (interface 2610, class 2710) to the destination
element (interface 2612, class 2712).

Fig. 25 depicts a flow diagram illustrating the process performed by the software
development tool in step 2108 of Fig. 20 for determining whether the source element can
have a link to the destination element. Having received the indications of the source and
destination elements, respectively, the software development tool determines whether the
source element is a class (step 2502) or, if not, an interface (step 2504). If the source
element is any other object-oriented component, such as a package, the software
development tool identifies a link error (step 2506). Because the software development tool
enforces object-oriented programming rules, the software development tool recognizes that a
class or an interface can have source code reflecting a link to another class or interface, and
thus indicates a link error when this rule would be violated. In accordance with the
functions previously described, upon receiving the indication of the source element, the
software development tool parses the source code for the source element into a respective

data structure 300 of TMM 200, which stores a language-neutral representation of the source

-36 -

10

15

20

25

WO 01/82072 PCT/US01/12852

code for the source element. Similarly, upon réceiving the second selection, the software
development tool parses the source code for the destination element into a respective data
structure 300 of TMM 200. In an exemplary embodiment, if the source element or the
destination element had been selected prior to initiating the process depicted in Fig. 20, then
TMM 200 already contains a language-neutral representation of the source code for the
respective element. Thus, the software development tool may invoke the TMM 200 to
ascertain whether the source element is a class or an interface.

If the source element is an interface (step 2504), the software development tool
determines whether the destination element is also an interface (step 2508). The software
development tool identifies a link error if the destination element is not an interface (step
2510) because object-oriented programming rules only allow an interface to have a link to
another interface. Alternatively, if the destination element is an interface, the software
development tool identifies the link as an “inheritance” link (step 2512) because object-
oriented programming rules allow an interface to inherit all method signatures associated
with another interface, but not implement them. As shown in Fig. 26, after identifying the
source and destination elements as interfaces (2610 and 2612, respectively), the software
development tool generates new code 2602 that includes the keyword 2604 “extends” and
the link destination name 2606 of “ProductPricelnterface,” corresponding to the name of the
destination element or interface 2612.

If the source element is a class (step 2502) the software development tool determines
whether the destination element is a class (step 2514). If the destination element is not a
class, the software development tool determines whether the destination is an interface (step

2516). If the destination element is a class, the software development tool identifies the link

" as an “inheritance” link (step 2518) because object-oriented programming rules allow a class

to inherit all attributes and methods defined by another class. As shown in Fig. 27, after
identifying the source element as class 2710 and the destination element as class 2712, the
software development tool generates new code 2702 that includes the keyword 2704
“extends” and the link destination name 2706 “ProductPrice,” corresponding to the name of

the destination element or class 2712.

-37 -

10

15

20

25

30

WO 01/82072 PCT/US01/12852

If the destination element is an interface (step 2516), the software development tool
identifies the link as an “implementation” link (step 2520) because object- oriented
programming rules allow a class to implement all method signatures specified by an
interface. As shown in Fig. 28, after identifying the source element as class 2810 and the
destination element as interface 2812, the sofiware development tool generates new code
2802 that includes the keyword 2804 “implements” and the link destination name 2806
“ProductPricelnterface,” corresponding to the name of the destination element or interface
2812. While enforcing object-oriented programming rules that support a class having
multiple links, the software development tool recognized that the class 2810 already had an
inheritance link reflected by code 2814 and added new code 2802 without disturbing the
original code 2814. Alternatively, if the destination element is a class (step 2514) or an
interface (step 2516), the software development tool identifies a link error (step 2522)
because object-oriented programming rules allow a class to inherit from another class or to
implement from an interface.

The process depicted in Fig. 29 illustrates the replacement of a source element (link
source) or a destination element (link destination) in an existing link with another element to
form a new link. The software development tool either replaces an existing link from the
source element to the destination element with a new link from the source element to the
other element (new link destination), or replaces an existing link from the source element to
the destination élement with a new link from the other element (new link source) to the
destination element. By performing the process depicted in Fig. 29, the software
development tool again saves a programmer from manually modifying the source code of
the source element to reflect the new link with the other element. Moreover, by enforcing
object-oriented programming rules for a link, the software development tool prevents the
programmer from producing errors that may not be discovered until compilation of the
source or other element.

To replace an existing link with a new link, the sofiware development tool receives -
an identification of the existing link between a source element and a destination element
(step 2902). In one implementation discussed below in reference to Fig. 30, the software

development tool receives the display coordinates for the existing link when a user or

-38 -

10

15

20

25

30

WO 01/82072 PCT/US01/12852

programmer clicks on the existing link 3002 displayed on the graphical form 3004. The
TMM 200 identifies the symbol associated with the received display coordinates and
provides this information to the software development tool, which correlates and stores the
display coordinates of the existing link with the associated source code for the source
element (i.e., the link destination). The identification of the existing link includes the link
source name 3004 and link destination name 3006, corresponding respectively to the source
element and the destination element in the existing link. The identification of the existing
link also includes the keyword 3008 that identifies the type of link. As shown in Fig. 30, the
existing link 3002 has a keyword 3008 of “extend” that identifies the existing link 3002 as a
generalization or inheritance link. To clarify the following discussion, the source element
and the destination element will be identified by the graphical representation of each
element, such as 3010 and 3014, respectively.

The software development tool also receives an identification of a selected element
from among the source and destination elements (step 2904). As shown in Fig. 31, the
source element 3108 and the destination element 3110 are associated with link 3102. The
software development tool recognizes that the selected element will be used to form a new
link. The link 3102 has a first end 3104 associated with the link source (source element)
3108 and a second end 3106 associated with the link destination (destination element) 3110.
Any known programming technique may be used to select the element that will be used to
form a new link. For example, by clicking on the first end 3104 of the link 3102 and
dragging away from the link source, the selected element (i.e., the link destination) remains
linked. Accordingly, as depicted in Fig. 31, the destination element 3110 associated with
the second end 3106 of the link 3102 remains linked because the first end 3104 is dragged
away from the source element 3108.

To replace the link with a new link, the software development tool also receives an
identification of another element for a new link (step 2906). Again, any known
programming technique may be used to indicate the other element to the software
development tool. In the implementation shown in Fig. 31, the sofiware development tool
receives the indication of the other element (package 3112) when the first end 3104 of link
3102 is dragged and dropped over package 3112. The software development tool receives

-39-

10

15

20

25

30

WO 01/82072 PCT/US01/12852

display coordinates from the TMM 200, which correlates the display coordinates to the other
element as a class, an interface, or other object-oriented component, such as a package (e.g.,
3112), and identifies the other element to the software development tool.

Next, the software development tool determines whether the selected element to
keep from the existing link 3102 is the source element (i.e. link source) (step 2908). As
described in reference to step 2904, the software development tool determines that the
selected element is the source element 3108 when the second end 3106 is removed or
dragged from the destination element 3110. Alternatively, the software development tool
determines that the selected element is the destination element 3110 (link destination) when
the first end 3104 is removed or dragged from the source element 3108. In addition, the
TMM 200 identifies whether the selected element (i.e., the source element or the destination
element) is a class, an interface, or other object-oriented component, such as a package.

If the selected element is the destination element or link destination, then the
software development tool determines whether the other element can be linked to the
destination element (step 2910), as discussed further below. If the other element cannot
have a link to the destination element, the software development tool displays a link error
(step 2912). For example, as shown on screen 3200 of Fig. 32, the software development
tool displays link error 3202 after determining that package 3112 cannot have a link to class
3110 (i.e., 3108 of Fig. 31). If the other element can have a link to the destination element,
the software development tool removes a portion of the source code associated with the
source element that reflects the exiting link to the destination element (step 2914). In the
example shown in Fig. 33, the portion of the source code associated with the source element
3308 that is removed may be “extend ProductPrice” 3012 in Fig. 30. As discussed in
reference to Fig. 10A and 10B, the software development tool may remove the portion of the
source code from a file containing the source code associated with the source element 3308
and then update the TMM 200. The software development tool also modifies the graphical
representation of the source code of the source element to reflect the removal of the existing
link (step 2916). As shown in Fig. 33, the software development tool removes the link
3102, in Fig. 31, to reflect the removal of code 3012 from the source element 3108 and

3308. The software development tool may modify the graphical representation of the source

- 40 -

10

15

20

25

30

WO 01/82072 PCT/US01/12852

code of the source element based on the language neutral representation of the code in the
updated TMM 200.

To generate the new link from the other element to the destination element, the
software development tool adds new code to the source code associated with the other
element to reflect the new link with the destination element (step 2918). For example, in
Fig. 33, the software development tool adds new code 3310 to the source code associated
with the other element 3304 to generate new link 3302 from the other element 3304 to the
destination element 3306. The new code 3310 includes a keyword 3312 and a link
destination name 3314. In the example shown in Fig. 33, the keyword 3312 is “extends”
which identifies a generalization or inheritance link. The link destination name 3314 is the
name of the destination element, which is “ProductPrice” in the example depicted in Fig. 33.
The software development tool then modifies the graphical representation of the source code
of the other element to reflect the link to the destination element (step 2920).

If the one element selected from the linked elements (i.e., source or destination
element) is the source element (link source), then the software development tool determines
whether the source element can be linked to the other element (step 2922). When it is
determined that the source element cannot have a link to the other element, the software
development tool displays a link error as shown on screen 3200 of Fig. 32 (step 2912). As
illustrated in Fig. 34, when it is determined that the source element 3404 can have a link to
the other element 3406, the software development tool replaces a portion of the source code
associated with the source element 3404 that reflects the existing link to the destination
element 3408 with new code to reflect a new link to the other element 3406 (step 2924). As
discussed in reference to Figs. 10A and 10B, the software development tool may replace the
portion of the source code from a file containing the source code associated with the source
element 3308 and then update the TMM 200. In the example shown in Fig. 34, the portion
of the source code associated with the source element 3404 that is replaced is “implements
ProductPricelnterface” 3410. As shown in Fig. 35, the sofiware development tool adds new
code 3510 to the source code associated with the source element 3504 to reflect the new link
3502 with the other element 3506. The new code 3510 includes a keyword 3512 and a link
destination name 3514. Inthe example shown in Fig. 35, the keyword 3512 is “implements”

-41 -

10

15

20

25

WO 01/82072 PCT/US01/12852

which identifies an implementation link. The link destination name 3514 is the name of the
other element, which is “Interfacel” in the example depicted in Fig. 35. The software
development tool then modifies the graphical representation of the source code of the source
element to reflect the new link 3502 from the source to the other element (step 2926).

Fig. 36 depicts a flow chart illustrating the process performed by the software
development tool in step 2910 for determining whether the other element (new link source)
can have a link to the destination element (link destination). As shown in Fig. 36, the
software development tool determines whether the other element is a class (step 3602) or, if
not, an interface based on the received identification of the other element (step 3604). If the
other element is any other object-oriented component, such as package, the software
development tool identifies a link error (step 3606).

If the other element is an interface, the software development tool determines
whether the destination element is also an interface (step 3608). The software development
tool identifies a link error if the destination element is not an interface (step 3610) because
object-oriented programming rules allow an interface to have a link to another interface, but
not to a class or a package. Alternatively, if the destination element is an interface, the
software development tool identifies the new link as an “inheritance” link (step 3612)
because object-oriented programming rules allow an interface to inherit all method
signatures associated with another interface, but not to implement them. For example, as
shown in Fig. 37, the software development tool displays user interface 3700 in response to
recetving an identification that the one element selected from the linked elements is the
destination element 3710 and to receiving an identification of the other element 3712. In
Fig. 38, when it is determined that the other element and the destination element are
interfaces (3804 and 3806, respectively), the software development tool identifies the new
link 3802 as an “inheritance “ link. Thus, while performing step 2918, the software
development tool generates new code 3810 that includes the keyword 3812 “extends” and
the link destination name 3814, “ProductPricelnterface,” corresponding to the name of the
destination element or interface 3804. While performing step 2920, the software

development tool modifies the graphical representation of the source code of the other

-42 -

10

15

20

25

30

WO 01/82072 PCT/US01/12852

element 3806 to reflect the new link 3802 by displaying the new link 3802 as a solid arrow
as shown in Fig. 38.

If the other element is a class (step 3602), the software development tool determines
whether the destination element is a class (step 3614). If the destination element is a class,
the software development tool identifies the link as an “inheritance” link (step 3618)
because object-oriented programming rules allow a class to inherit all attributes and methods
defined by another class. For example, returning to Fig. 31, the software development tool
displays user interface 3100 in response to receiving an identification that the one element
selected from the linked elements is the destination element 3110 and to receiving an
identification of the other element 3112. When it is determined that the destination element
and other elements are classes (3306 and 3304, respectively), the software development tool
identifies the new link 3302 as an “inheritance “ link. Thus, while performing step 2918, the
software development tool generates new code 3310 that includes a keyword 3312
“extends” and a link destination name 3314 of “ProductPrice,” corresponding to the name of
the destination element or interface 3306. While performing step 2920, the software
development tool modifies the graphical representation of the source code of the other
element 3304 to reflect the new link 3302 by displaying the new link 3302 as a solid arrow
as shown in Fig. 38.

If the destination element is not a class, the software development tool determines
whether the destination element is an interface (step 3616). If the destination element is an
interface, the software development tool identifies the link as an “implementation” link (step
3620) because object-oriented programming rules allow a class to implement all method
signatures specified by an interface. For example, as shown in Fig. 39, the software
development tool displays user interface 3900 in response to receiving an identification that
the one element selected from the linked elements is the destination element 3910 and to
receiving an identification of the other element 3912 in accordance with methods and system
consistent with the present invention. As illustrated in Fig. 40, when it is determined that
the other element is a class and the destination element is an interface (4004 and 4006,
respectively), the software development tool identifies the new link 4002 as an “inheritance

“ link. Thus, while performing step 2918, the software development tool generates new

-43 -

10

15

20

25

30

WO 01/82072 PCT/US01/12852

code 4010 that includes a keyword 4012 “extends” and a link destination name 4014 of
“ProductPricelnterface,” corresponding to the name of the destination element or interface
4006. While performing step 2920, the software development tool modifies the graphical
representation of the source code of the other element 4004 to reflect the new link 4002 by
displaying the new link 4002 as a dashed arrow as shown in Fig. 40.

Alternatively, when the destination element is determined not to be a class in step
3614 or an interface in step 3616, the software development tool identifies a link error (step
3622) because object-oriented programming rules only allow a class to inherit from another
class or to implement from an interface.

Fig. 41 depicts a flowchart of the steps performed by the software development tool
in the step 2922 for determining whether the source element (link source) can have a link to
the other element (new link destination). As shown in Fig. 41, the software development
tool determines whether the source element is a class (step 4102), or if not, an interface (step
4104) based on the received identification of one element to keep as the source element. If
the source element is any other object-oriented component, such as a package, the software
development tool identifies a link error (step 4106) which it may display in step 2912. If the
source element is an interface in step 4104, the sofiware development tool determines
whether the other element is also an interface (step 4108). The software development tool
identifies a link error when the other element is determined not to be an interface (step 4110)
because object-oriented programming rules only allow an interface to have a link to another
interface, but not to a class or a package. Alternatively, when its determined that the source
element is an interface, the software development tool identifies the new link as an
“inheritance” link (step 4112) because object-oriented programming rules allow an interface
to inherit all method signatures associated with another interface, but not to implement them.
For example, as shown in Fig. 42, the software development tool displays user interface
4200 in response to receiving an identification that the one element to keep is the source
element 4204 and to receiving an identification of the other element 4206. When it is
determined that the source and other elements are interfaces (4304 and 4306, respectively),
the software development tool identifies the new link 4302 as an “inheritance “ link. Thus,

while performing step 2924, the software development tool replaces portion of code 4210

- 44 -

10

15

20

25

30

WO 01/82072 PCT/US01/12852

with new code 4310 that includes a keyword 4312 “extends” and a link destination name
4314 of “Interfacel,” corresponding to the name of the other element or interface 4306.
While performing step 2926, the software development tool modifies the graphical
representation of the source code of the source element 4304 to reflect the new link 4302 by
displaying the new link 4302 as a solid arrow as shown in Fig. 43.

If the source element is a class in step 4102, the software development tool
determines whether the other element is a class (step 4114). If the other element is a class,
the software development tool identifies the link as an “inheritance” link (step 4118)
because object-oriented programming rules allow a class to inherit all attributes and methods
defined by another class.

If the other element is not a class, the software development tool determines whether
the other element is an interface (step 4116). If the source element is an interface, the
software development tool identifies the link as an “implementation” link (step 4120)
because object-oriented programming rules allow a class to implement all method signatures
specified by an interface.

Alternatively, when the source element is determined not to be a class in step 4114
or a interface in step 4116, the software development tool identifies a link error (step 4122)
because object-oriented programming rules allow a class to inherit from another class, but
not an interface, or to implement from an interface, but not another class.

To further aid a programmer in developing source code for a software project, the
software development tool performs the exemplary process depicted in Fig. 44 to move
source code associated with a source element into source code of a destination element. By
performing this process the software development tool allows a programmer to nest a first
object-oriented element, such as a class or interface, within a second object-oriented element
without having to manually open and edit the respective files for each object-oriented
element as described below. Thus, for example, a programmer can automatically combine a
first class within a related second class to easily manage and organize software in a project
and to more easily allow other programmers to access or use the source code associated with
the combined classes. Similarly, the software development tool performs the exemplary

process, depicted in Fig. 49, to remove source code associated with a source element from

- 45 -

10

15

20

25

30

WO 01/82072 PCT/US01/12852

within a destination element. By performing this process the softiware development tool
allows a user or programmer to remove a first object-oriented element, such as a class or
interface, from a second object-oriented element, where source code associated with the
source element is nested within source code associated with the destination element. Thus,
for example, a programmer can automatically remove a first class nested within a second
class to separate unrelated functionality between the first and second classes that has become
apparent to the programmer during the development of the first and second classes.

Fig. 44 depicts a flow chart of the process performed by the software development
tool for moving source code associated with a source element into source code of a
destination element. To move source code in this manner, the software development tool
receives an identification of the source element (step 4402). The software development tool
also receives an identification of the destination element (step 4404). In one implementation
shown in Fig. 45, the software development tool may receive the identification of the source
element via a programmer selecting a first diagram 4506 associated with the source element
on the graphical form 4502, and may receive the identification of the destination element via
the programmer dragging the first diagram over a second diagram 4508 associated with the
destination element. It is also contemplated that the software development tool may receive
the identification of the source element or the destination element via a programmer
selecting source code associated with the respective source or destination element when in
view on the textual form 4504.

The software development tool also receives an indication or request that the source
element is to be moved within the destination element (step 4406). In one implementation,
the software development tool receives the indication to move the source element into the
destination element via a programmer completing the action of dragging and dropping the
first diagram 4506 associated with the source element on the second diagram 4508
associated with the destination element as shown in Fig. 45. It is also contemplated that the
software development tool may receive the indication to move the source element into the
destination element via a programmer actuating a button on the user interface 4500,
selecting a choice on a pull-down or speed menu (not shown) on the user interface 4500, or

other known programming techniques for receiving inputs.

- 46 -

10

15

20

25

WO 01/82072 PCT/US01/12852

Next, the software development tool determines whether the source and the
destination elements are either a class or an interface (step 4408). A class and an interface
are known object-oriented elements that have source code which may be moved into another
class or interface. As previously discussed, the software development tool may determine
whether an identified element is a class or interface by invoking the TMM 200 to correlate
the selected or identified diagram (or display coordinates for the identified diagram) to the
corresponding element in a file in the software project. For example, the sofiware
development tool determines that the first diagram 4506 corresponds to source code 4514
for the source element (named “Class3”) that is stored in a first file 4510 (“Class3.java”) in
the software project. Similarly, the software development tool determines that the second
diagram 4506 corresponds to source code (not shown in Fig. 45) for the destination element
(named “SubClassProductPrice”) that is stored in a second file 4512
(“SubClassProductPrice.java”) in the software project.

When it is determined that both the source and destination elements are a class or an
interface, the software development tool moves the source code corresponding to the source
element 4602 within the source code corresponding to the destination element 4604 (step
4410) as shown in Fig. 46. In performing this step, the software development tool copies the
source code corresponding to the source element from the first file 4510 and properly inserts
or nests it into the source code corresponding to the destination element that is contained in
the second file 4512. The software development tool then deletes the first file 4510 as is
apparent from the user screen 4600 in Fig. 46, displayed by the software development tool
after performing step 4410.

The software development tool also modifies the graphical representation of the
destination element to reflect the movement of the source code corresponding to the source
element into the destination element (step 4412). For example, in Fig. 46, the software
development tool modifies the second diagram 4606 that graphically represents the source
code of the destination element to include a notation 4608, “+Class3,” to reflect that the
source code corresponding to the source element is nested within the source code of the

destination element. As known to those skilled in the art, the notation 4608 may be

-47 -

10

15

20

25

WO 01/82072 PCT/US01/12852

abbreviated and be positioned on or near the second diagram 4606 to convey the movement
of the source element

When it is determined that both the source and destination elements are not a class or
an interface, the software development tool determines whether the source element is a class
or an interface (step 4414). When it is determined that the source element is a class or an
interface, the software development tool knows that the destination element is not a class or
an interface so the software development tool determines whether the destination element is
a package. When it is determined that the destination element is a package, the software
development tool moves the first file that includes the source code associated with the
source element within a directory associated with the destination element (step 4418). While
a package does not include source code except to the extent related classes or interfaces are
included in a directory associated with the package, a package may be used in object-
oriénted iarogramming to import a related class or a related interface into an unrelated class.
Therefore, the software development tool advantageously aids a programmer to organize
and relate the source element with a selected package by performing the process depicted in
Fig. 44. For example, assuming the source element identified to be moved in accordance
with this invention is associated with the first diagram 4606 and the destination element
identified is associated with the second diagram 4610, the software development tool may
then display the exemplary user interface 4700 in Fig. 47 based on the determination that the
source element is the class named “SubClassProductPrice” and the destination element is the
package named “Package2.” As shown in Fig. 47, the software development tool moves the
first file 4702 associated with the source element within the directory 4704 associated with
the destination element, “Package2.”

In addition, the software development tool also modifies the graphical representation
of the destination element to reflect the movement of the source code corresponding to the
source element into the destination element (step 4412). For example, as shown in Fig. 47,
the software development tool modifies the second diagram 4706 that graphically represents
the destination element, “Package2,” to include a notation 4708, “+SubClassProductPrice”

to reflect that the first file 4702 that includes source code corresponding to the source

- 48 -

10

15

20

25

30

WO 01/82072 PCT/US01/12852

element is moved within the directory 4704 corresponding to the destination element,

“Package2.”

When it is determined that the source element is not a class or an interface, the
sofiware development tool knows that neither the source nor the destination element is a
class or an interface. The software development tool then determines whether the source
element is a package (step 4420). When it is determined that the source element is a
package, the software development tool next determines whether the destination element is
also a package (step 4422). When it is determined that the destination element is a package,
the software development tool moves a first directory associated with the source element
within a second directory associated with the destination element. For example, assuming
that first diagram 4606 and second diagram 4610 graphically depict the source and
destination elements, respectively, the software development tool 110 displays the
exemplary user interface 4800 in Fig. 48 upon determining that the source and the
destination elements are packages. As shown in Fig. 48, the software development tool 110
moves the first directory 4704 within the second directory 4712. Thus, a programmer can
diagrammatically move a first package within a second package to allow another
programmer to access all classes and interfaces contained within both packages by
importing only the second package.

Fig. 49 depicts a flow chart illustrating an exemplary process performed by the
software development tool for removing source code associated with a source element from
within source code of a destination element. To remove source code associated with a
source element from within a destination elément, the software development tool receives an
identification of a source element within a destination element (step 4902). In one
implementation, the software development tool may receive the identification of the source
element via a programmer selecting a graphical notation 5006 displayed by the software
development tool in association with a diagram' 5008 that graphically represents the source
code corresponding to the destination element. The graphical notation 5006 represents the
source code of the source element that is within the source code of the destination element.
Therefore, the software development tool receives the identification of both the source

element and the destination element when a programmer selects the graphical notation 5006.

-49 -

10

15

20

25

30

WO 01/82072 PCT/US01/12852

It is also contemplated that the software development tool may receive the identification of
the source element and the destination element via a programmer selecting source code
associated with the source element within the source code of the destination element when
in view on the textual form 5004.

The software development tool also receives an indication or request that the source
element is to be removed from within the destination element (step 4904). In one
implementation, the software development tool receives the indication to remove the source
element from the destination element via a programmer completing the action of dragging
and dropping the notation 5006 associated with the source element on an unoccupied area
5010 of the graphical form 5002 as shown in Fig. 50. It is also contemplated that the
software development tool may receive the indication fo move the source element into the
destination element via a programmer actuating a button on the user interface 5000,
selecting a choice on a pull-down or speed menu (not shown) on the user interface 5000, or
other known programming techniques for receiving inputé.

Next, the software development tool determines whether the source and the
destination elements are either a class or an interface (step 4906). The software
development tool may determine whether the destination element is a class or interface by
invoking the TMM 200 to correlate the selected diagram 5008 (or display coordinates for
the diagram 5008) to the corresponding source code of the destination element that is
language neutrally represented in the TMM 200. By identifying the destination element in
this manner, the software development tool may identify a second file 5012 in the software
project that includes the source code 5014 of the destination element. Similarly, the
software development tool may determine whether the destination element is a class or
interface by invoking the TMM 200 to correlate the graphical notation 5006 displayed in
association with the selected diagram 5008 to the corresponding source code of the source
element that resides within the source code of the destination element. For example, the
software development tool determines that the second diagram 5008 corresponds to source
code 5014 for the destination element (named “SubClassProductPrice”) that is stored in the
second file 5012 (“SubClassProductPrice.java”) in the software project. Similarly, the

softiware development tool determines that the graphical notation 5006 corresponds to

- 50 -

10

15

20

25

30

WO 01/82072 PCT/US01/12852

source code 5016 for the source element (named “Class3”) that is nested within the source
code 5014 of the destination element.

When it is determined that both the source and destination elements are a class or an
interface, the software development tool removes the source code corresponding to the
source element 5016 from within the source code corresponding to the destination element
5014 (step 4908) as shown in Fig. 50 and Fig. 51. To remove the source code corresponding
to the source element 5016, the software development tool may open the second file 5012,
search for the source element, and remove source code corresponding to the source element.
The software development tool displays the user interface 5100 in Fig. 51 after removal of
the source element from within the destination element. Once the source code for the source
element is removed, the software development tool stores the source code of the source
element 5016 within a first file 5102 (step 4909).

The software development tool also displays a graphical representation of the source
code corresponding to the source element (step 4910), and modifies the graphical
representation of the destination element to reflect the movement of the source code
corresponding to the source element (step 4912). For example, the software development
tool displays the first diagram 5104 to graphically represent the source code of the source
element, named “Class3.” The software development tool modifies the graphical
representation of the source code of the destination element by redisplaying the second
diagram 5106 without the notation 5006 to reflect that the source code corresponding to the
source element is not within the source code of the destination element. As part of
performing step 4910, the software development tool updates the TMM 200 by using parser
706 to read the first file 5102 and the modified second file 5012 such that the TMM 200
holds a current language neutral representation of both the source and the destination
elements.

Returning to Fig. 49, when it is determined that both the source and destination
elements are not a class or an interface, the software development tool determines whether
the source element is a class or an interface (step 4914). When it is determined that the
source element is a class or an interface, the software development tool knows that the

destination element is not a class or an interface. The software development tool then

-571 -

10

15

20

25

30

WO 01/82072 PCT/US01/12852

determines whether the destination element is a package (step 4916). It is contemplated that
step 4916 may not be performed when the source element, identified as a class or an
interface, would not reside in a repository other than a directory associated with a package.

If the destination element is a package, the software development tool removes a first
file that includes the source code associated with the source element from a directory
associated with the destination element to another directory (step 4918). In one
implementation depicted in Fig. 53, the software development tool removes the first file
5206 from a directory 5208 to another directory 5302 based on a programmer completing
the action of dragging and dropping the notation 5202 associated with the source element on
an unoccupied area of the graphical form 5210. In this implementation, the other directory
5302 includes the directory 5208 associated with the destination element (“Package2”) and
the first file 5206. However, it is contemplated that the software development tool may
remove the first file 5206 to another directory, such as the directory 5310
(“DataManagement” package) based on a programmer dragging and dropping the notation
5202 on a symbol associated with directory 5310. Thus, a programmer that finds the source
element no longer relates to the destination element package can easily move the source
element from the destination element package to another package to group the source
element with classes or interfaces that are more related to the source element.

The software development tool also displays a graphical representation of the source
code corresponding to the source element (step 4910), and modifies the graphical
representation of the destination element to reflect the movement of the source code
corresponding to the source element (step 4912). For example, in Fig. 53 the software
development tool displays the first diagram 5304 to graphically represent the source code of
the source element, named “SubClassProductPrice,” stored in the first file 5206. The
software development tool modifies the graphical representation of the destination element,
“Package2,” by redisplaying the second diagram 5306 without the graphical notation 5202
to reflect that the first file 5206 is removed from the directory 5208 corresponding to the
destination element, “Package2.”

As illustrated in Figs. 54 and 55, when it is determined that the source element is not

a class or an interface, the software development tool knows that neither the source nor the

-52 .-

10

WO 01/82072 PCT/US01/12852

destination element is a class or an interface. The sofiware development tool then
determines whether the source element is a package (step 4920). When it is determined that
the source element is a package, the software development tool next determines whether the
destination element is also a package (step 4922). When it is determined that the destination
element is a package, the software development tool removes a directory associated with the
source element from within a second directory associated with the destination element to a
third directory.

While various embodiments of the present invention have been described, it will be
apparent to those of ordinary skill in the art that many more embodiments and
implementations are possible that are within the scope of this invention. Accordingly, the

invention is not to be restricted except in light of the attached claims and their equivalents.

-53-

WO 01/82072 PCT/US01/12852

CLATIMS

‘What is claimed is:

1. A method in a data processing system having a plurality of elements, each
element having corresponding code, the method comprising the steps of:
5 receiving a request to form a link;
receiving an indication of a first of the plurality of elements;
receiving an indication of a second of the plurality of elements; and
in response to receiving the request, the indication of the first element, and the
indication of the second element, adding new code to the first element to reflect the

10 link to the second element.

2. The method of claim 1, further comprising the step of displaying a graphical

representation of the code associated with the first element.

3. The method of claim 2, further comprising the step of modifying the graphical
representation of the code associated with the first element to reflect the link to the second

15 element.

4. The method of claim 1, wherein the step of adding new code to the first element
comprises the steps of:
determining whether linking the first element to the second element would violate a
predefined rule; and
20 when it is determined that linking the first element to the second element would not
violate a predefined rule,
adding the new code to the first element to form the link to the second

element.

-54 -

WO 01/82072 PCT/US01/12852

5. The method of claim 4, wherein the step of determining whether linking the first
element to the second element would violate a predefined rule comprises the steps of*
determining whether the first element is a class and whether the second element is
another class; and
5 when it is determined that the first element is the class and that the second element is
the other class,
identifying the link from the first element to the second element as an

inheritance link.

6. The method of claim 5, further comprising the step of identifying a link error
10 when it is determined that the first element is the class and that the second element is not the

other class.

7. The method of claim 4, wherein the step of determining whether linking the first
element to the second element would violate a predefined rule comprises the steps of:
determining whether the first element is a class and whether the second element is an
15 interface; and
when it is determined that the first element is the class and that the second element is
the interface,
identifying the link from the first element to the second element as an

implementation link.

20 8. The method of claim 7, further comprising the step of identifying a link error
when it is determined that the first element is the class and that the second element is not the

interface.

-55-

WO 01/82072 PCT/US01/12852

9. The method of claim 4, wherein the step of determihing whether linking the first
element to the second element would violate a predefined rule comprises the steps of:
determining whether the first element is an interface and the second element is
another interface; and
5 when it is determined that the first element is the interface and the second element is
the other interface,
identifying the link from the first element to the second element as an

inheritance link.

10. The method of claim 9, further comprising the step of identifying a link error
10 when it is determined that the first element is the interface and the second element is not the

other interface.

11. A method in a data processing system having a plurality of elements, each
element having corresponding code, the method comprising the steps of:

receiving a request to form a link;
15 receiving an indication of a first of the plurality of elements;

receiving an indication of a second of the plurality of elements;

determining whether linking the first element to the second element would violate a

predefined rule; and

when it is determined that linking the first element to the second element would not
20 violate a predefined rule,

adding new code to the first element to reflect the link to the second element.

12. The method of claim 11, further comprising the step of displaying a graphical

representation of the code associated with the first element.

13. The method of claim 12, further comprising the step of modifying the graphical
25 representation of the code associated with the first element to reflect the link to the second

element.

-56 -

WO 01/82072 PCT/US01/12852

14. The method of claim 11, wherein the step of determining whether linking the
first element to the second element would violate a predefined rule comprises the steps of:
determining whether the first element is a class and whether the second element is
another class; and
5 when it is determined that the first element is the class and that the second element is
the other class, |
identifying the link from the first element to the second element as an

inheritance link,

15. The method of claim 11, wherein the step of determining whether linking the
10 first element to the second element would violate a predefined rule comprises the steps of:
determining whether the first element is a class and whether the second element is an
interface; and
when it is determined that the first element is the class and that the second element is
the interface,
15 identifying the link from the first element to the second element as an

implementation link.

16. The method of claim 11, wherein the step of determining whether linking the
first element to second element would violate a predefined rule comprises the steps of:
determining whether the first element is an interface and the second element is
20 another interface; and
when it is determined that the first element is the interface and the second element is
the other interface,
identifying the link from the first element to the second element as an

inheritance link.

~-57-

WO 01/82072 PCT/US01/12852

17. A method in a data processing system having a plurality of elements, each
element having corresponding code, the method comprising the steps of:
displaying a graphical representation of the code associated with a first of the
plurality of elements and a graphical representation of the code associated with a
5 second of the plurality of elements;
receiving a request to form a link from the first element to the second element;
determining whether the first element is a class and whether the second element is
another class; and
when it is determined that the first element is the class and that the second element is
10 the other class,
identifying the link from the first element to the second element as an
inheritance link;
adding new code to the first element to reflect the link to the second element;
and
15 modifying the graphical representation of the code associated with the first

element to reflect the link to the second element.

18. Thg method of claim 17, further comprising the steps of:
when it is determined that the first element is the class and that the second element is
not the other class,
20 determining whether the second element is an interface; and
when it is determined that the second element is the interface,
identifying the link from the first element to the second element as an

implementation link.

-58 -

WO 01/82072 PCT/US01/12852

19. The method of claim 17, further comprising the steps of:
when it is determined that the first element is not the class and that the second
element is not the other class,
determining whether the first and the second elements are interfaces; and
5 when it is determined that the first and second elements are interfaces,
identifying the link from the first element to the second element as an

inheritance link.

20. A method in a data processing system having a plurality of elements and having
a link between two of the plurality of elements, wherein each element has corresponding
10 code and the linked elements include a source and a destination, the method comprising the
steps of:
receiving a selection of one of the linked elements;
receiving an identification of another of the plurality of elements that is different
than the linked elements;
15 determining whether the selected element is the destination; and
when it is determined that the selected element is the destination,
modifying the corresponding code of the other element to reflect a new link

between the other element and the destination element.

21. The method of claim 20, wherein the modifying step further includes the step of
20 modifying the corresponding code of the source to reflect the removal of the link between

the source and the destination.

22. The method of claim 21, further comprising the step of displaying a graphical

representation of the corresponding code of the source.

23. The method of claim 22, further comprising the step of modifying the graphical
25 representation of the corresponding code of the source to reflect the removal of the link

between the source and the destination.

-59 -

WO 01/82072 PCT/US01/12852

24. The method of claim 20, further comprising the step of displaying a graphical

representation of the corresponding code of the other element.

25. The method of claim 24, further comprising the step of modifying the graphical
representation of the corresponding code of the other element to reflect the new link

5 between the other element and the destination element.

26. The method of claim 20, wherein the modifying step includes the steps of:
determining whether linking the other element to the destination would violate a
predefined rule; and
when it is determined that linking the other element to the destination would not
10 violate a predefined rule,
modifying the corresponding code of the source to reflect the removal of the
link between the source and the destination; and
adding new code to the corresponding code of the other element to reflect the

new link between the other element and the destination element.

15 27. The method of claim 26, wherein the step of determining whether linking the
other element to the destination would violate a predefined rule, comprises the steps of’
determining whether the other element is a class and whether the destination is
another class; and
when it is determined that the other element is the class and that the destination is the
20 other class,
identifying the new link between the other element and the destination as an

inheritance link.

-60-~

WO 01/82072 PCT/US01/12852

28. The method of claim 26, wherein the step of determining whether linking the
other element to the destination would violate a predefined rule, comprises the steps of:
determining whether the other element is a class and whether the destination is an
interface; and A
5 when it is determined that the other element is the class and that the destination is the
interface,
identifying the new link between the other element and the destination as an

implementation link.

29. The method of claim 28, further comprising the step of identifying a link error
10 when it is determined that the other element is the class and that the destination is not the

interface.

30. The method of claim 26, wherein the step of determining whether linking the
other element to the destination would violate a predefined rule, comprises the steps of:
determining whether the other element is an interface and the destination is another
15 interface; and
when it is determined that the other elemen‘; is the interface and the destination is the
other interface,
identifying the new link between the other element and the destination as an

inheritance link.

20 31. The method of claim 30, further comprising the step of identifying a link error

when it is determined that the other element is not the interface.

32. The method of claim 30, further comprising the step of identifying a link error

when it is determined that the destination is not the other interface.

33. The method of claim 20 further comprising the step of’
25 when it is determined that the selected element is the source,
modifying the corresponding code of the source to reflect a new link between

the source and the other element.

-61 -

WO 01/82072 PCT/US01/12852

34. The method of claim 33, further comprising the steps of:
when it is determined that the selected element is the source,
determining whether linking the source to the other element would violate a
predefined rule; and
5 when it is determined that linking the source to the other element would not
violate a predefined rule,
modifying the corresponding code of the source to reflect the removal
of the link between the source and the destination; and
adding new code to th“e corresponding code of the source to reflect the

10 new link to the other element.

35. The method of claim 34, further comprising the step of displaying a graphical
representation of the code of the source to reflect the removal of the link and to reflect the

new link to the other element when it is determined that the selected element is the source.

36. The method of claim 34, wherein the step of determining whether linking the
15 source to the other element would violate a predefined rule, comprises the steps of:
determining whether the source is a class and whether the other element is another
class; and
when it is determined that the source is the class and that the other element is the
other class,
20 identifying the new link between the source and the other element as an

inheritance link.

-62 -

WO 01/82072 PCT/US01/12852

37. The method of claim 34, wherein the step of determining whether linking the
source to the other element would violate a predefined rule, comprises the steps of:
determining whether the source is a class and whether the other element is an
interface; and
5 when it is determined that the source is the class and that the other element is the
interface,
identifying the new link from the source to the other element as an

implementation link.

38. The method of claim 37, further comprising the step of identifying a link error

10 when it is determined that the other element is not the interface.

39. The method of claim 34, wherein the step of determining whether linking the
source to the other element would violate a predefined rule, comprises the steps of:
determining whether the source is an interface and the other element is another
interface; and
15 when it is determined that the source is the interface and the other element is the
other interface,
identifying the new link between the source and the other element as an

inheritance link.

40. The method of claim 39, further comprising the step of identifying a link error

20 when it is determined that the source is not the interface.

41. The method of claim 39, further comprising the step of identifying a link error

when it is determined that the other element is not the other interface.

-63 -

WO 01/82072 PCT/US01/12852

42. A method in a data processing system having a plurality of elements and having
a link between two of the plurality of elements, wherein each element has corresponding
code and the linked elements include a source and a destination, the method comprising the
steps of:

5 receiving an identification of the link;

receiving a selection of one of the linked elements;

receiving an identification of another of the plurality of elements that is different

than the linked elements; ‘

determining whether the selected element is the source; and

10 when it is determined that the selected element is the source,
modifying the corresponding code of the source to reflect a new link between

the source and the other element.

43, The method of claim 42, further comprising the step of displaying a graphical
representation of the corresponding code of the source and a graphical representation of the

15 corresponding code of the other element.

44. The method of claim 43, further comprising the step of modifying the graphical
representation of the corresponding code of the source to reflect the removal of the link

when it is determined that the selected element is the source.

45. The method of claim 42, further comprising the steps of:
20 when it is determined that the selected element is the source,
determining whether linking the source to the other element would violate a
predefined rule; and
when it is determined that linking the source to the other element would not
violate a predefined rule,
25 modifying the corresponding code of the source to reflect the removal
of the link between the source and the destination; and
adding new code to the corresponding code of the source to reflect the

new link to the other element.

-64 -

WO 01/82072 PCT/US01/12852

46. The method of claim 45, further comprising the step of displaying a graphical
representation of the code of the source to reflect the removal of the link and to reflect the

new link to the other element when it is determined that the selected element is the source.

47. The method of claim 45, wherein the step of determining whether linking the
5 source to the other element would violate a predefined rule, comprises the steps of:
determining whether the source is a class and whether the other element is another
class; and
when it is determined that the source is the class and that the other element is the
other class,
10 identifying the new link between the source and the other element as an

inheritance link,

48. The method of claim 45, wherein the step of determining whether linking the
source to the other element would violate a predefined rule, comprises the steps of:
determining whether the source is a class and whether the other element is an
15 interface; and
when it is determined that the source is the class and that the other element is the
interface,
identifying the new link from the source to the other element as an

implementation link.

20 49. The method of claim 48, further comprising the step of identifying a link error

when it is determined that the other element is not the interface.

~ 65 -

WO 01/82072 PCT/US01/12852

50. The method of claim 45, wherein the step of determining whether linking the
source to the other element would violate a predefined rule, comprises the steps of:
determining whether the source is an interface and the other element is another
interface; and
5 when it is determined that the source is the interface and the other element is the
other interface, ‘
identifying the new link between the source and the other element as an

inheritance link.

51. The method of claim 50, further comprising the step of identifying a link error

10 when it is determined that the source is not the interface.

52. The method of claim 50, further comprising the step of identifying a link error

when it is determined that the other element is not the other interface.

53. The method of claim 42 further comprising the step of:
when it is determined that the selected element is the destination,
15 ‘ modifying the corresponding code of the other element to reflect a new link

between the other element and the destination element.

54. The method of claim 53, wherein the modifying step further includes the steps
of:
determining whether linking the other element to the destination would violate a
20 predefined rule; and |
when it is determined that linking the other element to the destination would not
violate a predefined rule,
modifying the corresponding code of the source to reflect the removal of the
link between the source and the desﬁnation; and
25 adding new code to the corresponding code of the other element to reflect a

new link between the other element and the destination element.

- 66 -

WO 01/82072 PCT/US01/12852

55. The method of claim 54, wherein the step of determining whether linking the
other element to the destination would violate a predefined rule, comprises the steps of:
determining whether the other element is a class and whether the destination is
another class; and
5 when it is determined that the other element is the class and that the destination is the
other class,
identifying the new link between the other element and the destination as an

inheritance link.

56. The method of claim 54, wherein the step of determining whether linking the
10 other element to the destination would violate a predefined rule, comprises the steps of:
determining whether the other element is a class and whether the destination is an
interface; and
when it is determined that the other element is the class and that the destination is the
interface,
15 identifying the new link between the other element and the destination as an

implementation link.

57. The method of claim 56, further comprising the step of identifying a link error

when it is determined that the destination. is not the interface.

58. The method of claim 54, wherein the step of determining whether linking the
20 other element to the destination would violate a predefined rule, comprises the steps of:
determining whether the other element is an interface and the destination is another
interface; and
when it is determined that the other element is the interface and the destination is the
other interface,
25 identifying the new link between the other element and the destination as an

inheritance link.

-67-

10

15

20

25

WO 01/82072 PCT/US01/12852

59. The method of claim 58, further comprising the step of identifying a link error

when it is determined that the other element is not the interface.

60. The method of claim 58, further comprising the step of identifying a link etror

when it is determined that the destination is not the other interface.

61. A method in a data processing system having a plurality of elements and having
a link between two of the plurality of elements, wherein each element has corresponding
code and the linked elements include a source and a destination, the method comprising the
steps of:
displaying a graphical representation of the corresponding code of each of the
plurality of elements;
receiving a selection of one of the linked elements;
receiving an identification of another of the plurality of elements that is different
than the linked element;
determining Whether/the selected element is the destination; and
when it is determined that the selected element is the destination,
determining whether the other element is a class and whether the destinaﬁon
is another class; and
when it is determined that the other element is the class and that the
destination is the other class,
identifying a new link from the other element to the destination as an
inheritance link;
removing a portion of the corresponding code of the source that
reflects the link between the source and the destination;
adding new code to corresponding code of the other element to reflect
the new link between the other element and the destination;
modifying the graphical representation of the corresponding code of
the source to reflect the removal of the link; and
modifying the graphical representation of the corresponding code of

the other element to reflect the new link.

- 68 -

10

15

20

25

WO 01/82072 PCT/US01/12852

62. The method of claim 61, further comprising the steps of’
when it is determined that the other element is the class and that the destination is not
the other class,
determining whether the destination is an interface; and
when it 1s determined that the destination is the interface,
identifying the new link between the other element and the destination

as an implementation link.

63. The method of claim 61, further comprising the steps of:
when it is determined that the other element is not the class and that the destination is
not the other class,
determining whether the other element is an interface and whether the
destination is another interface; and
when it is determined that the other element is the interface and that the
destination is the other interface,
identifying the new link between the other element and the destination

as an inheritance link.

64. The method of claim 61, further comprising the steps of:
when it is determined that the selected element is the source,
determining whether the source is a class and whether the other element is
another class; and
when it is determined that the source is the class and that the other element is
the other class,
identifying the new link between the source and the other element as
an inheritance link;
removing a portion of the corresponding code of the source that
reflects the link between the source and the destination; and
adding new code to corresponding code of the source to reflect the

new link between the source and the other element.

- 69 -

WO 01/82072 PCT/US01/12852

65. The method of claim 64, further comprising the step of modifying a graphical
representation of the corresponding code of the source to reflect the removal of the link and
to reflect the new link when it is determined that linking the source to the other element

would not violate a predefined rule.

5 66. The method of claim 64, further comprising the steps of:
when it is determined that the source is the class and that the other element is not the
other class,
determining whether the other element is in an interface; and
when it is determined that the other element is the interface,
10 identifying the new link between the source and the other element as

an implementation link.

67. The method of claim 64, further comprising the steps of:
when it is determined that the source is not the class and that the other element is not
the other class,
15 determining whether the source is an interface and the other element is
anothef interface; and
when it is determined that the source is the interface and the other element is
the other interface,
identifying the new link between the source and the other element as

20 an inheritance link.

=70 -

10

15

20

WO 01/82072 PCT/US01/12852

68. A method in a data processing system having a plurality of elements, the method
comprising the steps of:

receiving an identification of a first of the plurality of elements;

receiving an identification of a second of the plurality of elements;

receiving an indication that the first element is to be included in the second element;

determining whether the first element is a class and whether the second element is

another class; and

when it is determined that the first element is the class and that the second element is

the other class,

transferring code corresponding to the first element into the second element.

69. The method of claim 68, wherein the method further comprises the step of
displaying a graphical representation of the code of the first element and a graphical

representation of the code of the second element.

70. The method of claim 69, further comprising the step of modifying the graphical
representation of the code of the second element to reflect the transfer of the code

corresponding to the first element into the second element.

71. The method of claim 68, wherein the step of transferring code comprises the
steps of:

removing the code corresponding to the first element from a file;

placing the code corresponding to the first element within the code corresponding to

the second element; and

deleting the file.

-71 -

10

15

20

25

WO 01/82072 PCT/US01/12852

72. The method of claim 68, wherein the method further comprises the steps of:
when it is determined that the first element is the class and that the second element is
not the other class,
determining whether the second element is a package; and
when it is determined that the second element is a package,
moving a file that includes code corresponding to the first element to

a directory associated with the second element.

73. A method in a data processing system having a plurality of elements, each
element having corresponding code, the method comprising the steps of:
displaying a graphical representation of the code of a first of the plurality of elements
and a graphical representation of the code of a second of the plurality of elements;
receiving an indication that the first element is to be included in the second element;
determining whether the first element is a class and whether the second element is
another class; and
when it is determined that the first element is the class and that the second element is
the other class,
transferring code corresponding to the first element into the second element;
and
modifying a graphical representation of the code of the second element to

reflect the transfer of the first element into the second element.

74. The method of claim 73, wherein the step of transferring code comprises the
steps of:

removing the code corresponding to the first element from a file;

placing the code corresponding to the first element within code corresponding to the

second element; and

deleting the file.

-72 -

WO 01/82072 PCT/US01/12852

75. A method in a data processing system having a plurality of elements, each
element having corresponding code, wherein code corresponding to a first of the plurality of
elements is nested in the code corresponding to a second of the plurality of elements, the
method comprising the steps of:

5 receiving an indication that the first element is to be removed from the second
element;

determining whether the first element is a class and vs}hether the second element is

another class; and

when it is determined that the first element is the class and that the second element is

10 the other class,

removing code corresponding to the first element from the second element.

76. The method of claim 75, further comprising the step of placing the code

corresponding to the first element into a file.

77. The method of claim 76, further comprising the step of displaying a graphical

15 representation of the code corresponding to the first element.

78. The method of claim 75, further comprising the step of modifying a graphical
representation of the code corresponding to the second element to reflect the removal of the

first element from the second element.

79. The method of claim 75, further comprising the steps of:
20 when it is determined that the first element is the class and that the second element is
not the other class,
determining whether the second element is a package; and
when it is determined that the second element is the package,
removing a first file that includes code corresponding to the first
25 element from a directory associated with the second element to

another directory.

-73 -

WO 01/82072 PCT/US01/12852

80. A method in a data processing system having a plurality of elements, wherein a
first of the plurality of elements is nested within a second of the plurality of elements, the
method comprising the steps of:

receiving an indication that the first element is to be removed from the second

5 element;

determining whether the first element is a class and whether the second element is

another class; and

when it is determined that the first element is the class and that the second element is

the other class,

10 removing code corresponding to the first element from the second element;
placing the code corresponding to the first element into a file; and
displaying a graphical representation of the code corresponding to the first

element.

81, The method of claim 80, further comprising the step of modifying a graphical
15 representation of the code corresponding to the second element to reflect the removal of the

first element from the second element.

82. The method of claim 80, further comprising the steps of:
when it is determined that the first element is the class and the second element is not
the other class,
20 determining whether the second element is a package; and
when it is determined that the second element is the package,
removing a first file that includes code corresponding to the first

element from a directory associated with the second element.

- 74 -

WO 01/82072 PCT/US01/12852

83. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system having a plurality of
elements, each element having corresponding code, the method comprising the steps of:

receiving a request to form a link;

5 receiving an indication of a first of the plurality of elements;

receiving an indication of a second of the plurality of elements; and

in response to receiving the request, the indication of the first element, and the

indication of the second element, adding new code to the first element to reflect the

link to the second element.

10 84. The computer-readable medium of claim 83, wherein the method further
comprises the step of displaying a graphical representation of the code associated with the

first element.

85. The computer-readable medium of claim 84, wherein the method further
comprises the step of modifying the graphical representation of the code associated with the

15 first element to reflect the link to the second element.

86. The computer-readable medium of claim 83, wherein the step of adding new
code to the first element comprises the steps of:
determining whether linking the first element to the second element would violate a
predefined rule; and
20 when it is determined that linking the first element to the second element would not
violate a predefined rule,
adding the new code to the first element to form the link to the second

element.

-75 -

WO 01/82072 PCT/US01/12852

87. The computer-readable medium of claim 86, wherein the step of determining
whether linking the first element to the second element would violate a predefined rule
comprises the steps of:

determining whether the first element is a class and whether the second element is

5 another class; and
when it is determined that the first element is the class and that the second element is
the other class,
identifying the link from the first element to the second element as an

inheritance link.

10 88. The computer-readable medium of claim 87, wherein the method further
comprises the step of identifying a link error when it is determined that the first element is

the class and that the second element is not the other class.

89. The computer-readable medium of claim 86, wherein the step of determining
whether linking the first element to the second element would violate a predefined rule
15 comprises the steps of:
determining whether the first element is a class and whether the second element is an
interface; and
when it is determined that the first element is the class and that the second element is
the interface,
20 identifying the link from the first element to the second element as an

implementation link.

90. The computer-readable medium of claim 89, wherein the method further
comprises the step of identifying a link error when it is determined that the first element is

the class and that the second element is not the interface.

-76 -

10

15

20

25

WO 01/82072 PCT/US01/12852

91. The computer-readable medium of claim 86, wherein the step of determining
whether linking the first element to the second element would violate a predefined rule
comprises the steps of:

determining whether the first element is an interface and the second element is

another interface; and

when it is determined that the first element is the interface and the second element is

the other interface,

identifying the link from the first element to the second element as an

inheritance link.

92. The computer-readable medium of claim 91, wherein the method further
comprises the step of identifying a link error when it is determined that the first element is

the interface and the second element is not the other interface.

93. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system having a plurality of
elements, each element having corresponding code, the method comprising the steps of:

receiving a request to form a link;

receiving an indication of a first of the plurality of elements;

recetving an indication of a second of the plurality of elements;

determining whether linking the first element to the second element would violate a

predefined rule; and

when it is determined that linking the first element to the second element would not

violate a predefined rule,

adding new code to the first element to reflect the link to the second element.

94. The computer-readable medium of claim 93, wherein the method further
comprises the step of displaying a graphical representation of the code associated with the

first element.

-77 -

10

15

20

WO 01/82072 PCT/US01/12852

95. The computer-readable medium of claim 94, wherein the method further
comprises the step of modifying the graphical representation of the code associated with the

first element to reflect the link to the second element.

96. The computer-readable medium of claim 93, wherein the step of determining
whether linking the first element to the second element would violate a predefined rule
comprises the steps of:

determining whether the first element is a class and whether the second element is

another class; and

when it is determined that the first element is the class and that the second element is

the other class,

identifying the link from the first element to the second element as an

inheritance link.

97. The computer-readable medium of claim 93, wherein the step of determining
whether linking the first element to the second element would violate a predefined rule
comprises the steps of:

determining whether the first element is a class and whether the second element is an

interface; and

when it is determined that the first element is the class and that the second element is

the interface,

identifying the link from the first element to the second element as an

implementation link.

-78 -

WO 01/82072 PCT/US01/12852

98. The computer-readable medium of claim 93, wherein the step of determining
whether linking the first element to second element would violate a predefined rule
comprises the steps of:

determining whether the first element is an interface and the second element is

another interface; and

when it is determined that the first element is the interface and the second element is

the other interface,

identifying the link from the first element to the second element as an

inheritance link,

99. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system having a plurality of
elements, each element having corresponding code, the method comprising the steps of:

displaying a graphical representation of the code associated with a first of the

plurality of elements and a graphical representation of the code associated with a

second of the plurality of elements;

receiving a request to form a link from the first element to the second element;

determining whether the first element is a class and whether the second element is

another class; and

when it is determined that the first element is the class and that the second element is

the other class,

identifying the link from the first element to the second element as an
inheritance link;

adding new code to the first element to reflect the link to the second element;
and

modifying the graphical representation of the code associated with the first

element to reflect the link to the second element.

-79 -

10

15

20

25

WO 01/82072 PCT/US01/12852

100. The computer-readable medium of claim 99, wherein the method further
comprises the steps of:
when it is determined that the first element is the class and that the second element is
not the other class,
determining whether the second element is an interface; and
when it is determined that the second element is the interface,
identifying the link from the first element to the second element as an

implementation link.

101. The computer-readable medium of claim 99, wherein the method further
comprises the steps of:
when it is determined that the first element is not the class and that the second
element is not the other class, |
determining whether the first and the second elements are interfaces; and
when it is determined that the first and second elements are interfaces,
identifying the link from the first element to the second element as an

inheritance link.

102. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system having a plurality of
elements and having a link between two of the plurality of elements, wherein each element
has corresponding code and the linked elements include a source and a destination, the
method comprising the steps of:

receiving a selection of one of the linked elements;

receiving an identification of another of the plurality of elements that is different

than the linked elements;

determining whether the selected element is the destination; and

when it is determined that the selected element is the destination,

modifying the corresponding code of the other element to reflect a new link

between the other element and the destination element.

-80 -

10

15

20

25

WO 01/82072 PCT/US01/12852

103. The computer-readable medium of claim 102, wherein the modifying step
further includes the step of modifying the corresponding code of the source to reflect the

removal of the link between the source and the destination.

104. The computer-readable medium of claim 103, wherein the method further
comprises the step of displaying a graphical representation of the corresponding code of the

source.

105. The computer-readable medium of claim 104, wherein the method further
comprises the step of modifying the graphical representation of the corresponding code of

the source to reflect the removal of the link between the source and the destination.

106. The computer-readable medium of claim 102, wherein the method further
comprises the step of displaying a graphical representation of the corresponding code of the

other element.

107. The computer-readable medium of claim 106, wherein the method further
comprises the step of modifying the graphical representation of the corresponding code of
the other element to reflect the new link between the other element and the destination

element.

108. The computer-readable medium of claim 102, wherein the modifying step
includes the steps of:
determining whether linking the other élement to the destination would violate a
predefined rule; and
when it is determined that linking the other element to the destination would not
violate a predefined rule,
modifying the corresponding code of the source to reflect the removal of the
link between the source and the destination; and
adding new code to the corresponding code of the other element to reflect the

new link between the other element and the destination element.

-81-

WO 01/82072 PCT/US01/12852

109. The computer-readable medium of claim 108, wherein the step of
determining whether linking the other element to the destination would violate a predefined
rule, comprises the steps of: |

determining whether the other element is a class and whether the destination is

5 another class; and
when it is determined that the other element is the class and that the destination is the
other class,
identifying the new link between the other element and the destination as an

inheritance link.

10 110. The computer-readable medium of claim 108, wherein the step of
determining whether linking the other element to the destination would violate a predefined
rule, comprises the steps of:

determining whether the other element is a class and whether the destination is an
interface; and

15 when it is determined that the other element is the class and that the destination is the

interface,
identifying the new link between the other element and the destination as an

implementation link.

111. The computer-readable medium of claim 110, wherein the method further
20 comprises the step of identifying a link error when it is determined that the other element is

the class and that the destination is not the interface.

-82-

10

15

20

WO 01/82072 PCT/US01/12852

112. The computer-readable medium of claim 108, wherein the step of
determining whether linking the other element to the destination would violate a predefined
rule, comprises the steps of:

determining whether the other element is an interface and the destination is another

interface; and

when it is determined that the other element is the interface and the destination is the

other interface,

identifying the new link between the other element and the destination as an

inheritance link.

113. The computer-readable medium of claim 112, wherein the method further
comprises the step of identifying a link error when it is determined that the other element is

not the interface.

114. The computer-readable medium of claim 112, wherein the method further
comprises the step of identifying a link error when it is determined that the destination is not

the other interface.

115. The computer-readable medium of claim 102 wherein the method further
comprises the step of:
when it is determined that the selected element is the source,
modifying the corresponding code of the source to reflect a new link between

the source and the other element.

-83 -

10

15

20

WO 01/82072 PCT/US01/12852

116. The computer-readable medium of claim 115, wherein the method further
comprises the steps of:
when it is determined that the selected element is the source,
| determining whether linking the source to the other element would violate a
predefined rule; and
when it is determined that linking the source to the other element would not
violate a predefined rule,
modifying the corresponding code of the source to reflect the removal
of the link between the source and the destination; and
adding new code to the corresponding code of the source to reflect the

new link to the other element.

117. The computer-readable medium of claim 116, wherein the method further
comprises the step of displaying a graphical representation of the code of the source to
reflect the removal of the link and to reflect the new link to the other element when it is

determined that the selected element is the source.

118. The computer-readable medium of claim 116, wherein the step of
determining whether linking the source to the other element would violate a predefined rule,
comprises the steps of:

determining whether the source is a class and whether the other element is another

class; and

when it is determined that the source is the class and that the other element is the

other class,

identifying the new link between the source and the other element as an

inheritance link.

-84 .

10

15

20

25

WO 01/82072 PCT/US01/12852

119. The computer-readable medium of claim 116, wherein the step of
determining whether linking the source to the other element would violate a predefined rule,
comprises the steps of:

determining whether the source is a class and whether the other element is an

interface; and

when it is determined that the source is the class and that the other element is the

interface,

identifying the new link from the source to the other element as an

implementation link.

120. The computer-readable medium of claim 119, wherein the method further
comprises the step of identifying a link error when it is determined that the other element is

not the interface.

121. The computer-readable medium of claim 116, wherein the step of
determining whether linking the source to the other element would violate a predefined rule,
comprises the steps of:

determining whether the source is an interface and the other element is another

interface; and

when it is determined that the source is the interface and the other element is the

other interface,

identifying the new link between the source and the other element as an

inheritance link.

122, The computer-readable medium of claim 121, wherein the method further
comprises the step of identifying a link error when it is determined that the source is not the

interface.

123. The computer-readable medium of claim 121, wherein the method further
comprises the step of identifying a link error when it is determined that the other element is

not the other interface.

-85 -

10

15

20

WO 01/82072 PCT/US01/12852

124. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system having a plurality of
elements and having a link between two of the plurality of elements, wherein each element
has cofresponding code and the linked elements include a source and a destination, the
method comprising the steps of:

receiving an identification of the link;

receiving a selection of one of the linked elements;

recetving an identification of another of the plurality of elements that is different

than the linked elements;

determining whether the selected element is the source; and

when it is determined that the selected element is the source,

modifying the corresponding code of the source to reflect a new link between

the source and the other element.

125. The computer-readable medium of claim 124, wherein the method further
comprises the step of displaying a graphical representation of the corresponding code of the

source and a graphical representation of the corresponding code of the other element.

126. The computer-readable medium of claim 125, wherein the method further
comprises the step of modifying the graphical representation of the corresponding code of
the source to reflect the removal of the link when it is determined that the selected element is

the source.

- 86 -

10

15

20

WO 01/82072 PCT/US01/12852

127. The computer-readable medium of claim 124, wherein the method further
comprises the steps of:
when it is determined that the selected element is the source,
determining whether linking the source to the other element would violate a
predefined rule; and
when it is determined that linking the source to the other element would not
violate a predefined rule,
modifying the corresponding code of the source to reflect the removal
of the link between the source and the destination; and
adding new code to the corresponding code of the source to reflect the

new link to the other element.

128. The computer-readable medium of claim 127, wherein the method further
comprises the step of displaying a graphical representation of the code of the source to
reflect the removal of the link and to reflect the new link to the other element when it is

determined that the selected element is the source.

129. The computer-readable medium of claim 127, wherein the step of
determining whether linking the source to the other element would violate a predefined rule,
comprises the steps of:

determining whether the source is a class and whether the other element is another

class; and

when it is determined that the source is the class and that the other element is the

other class,

identifying the new link between the source and the other element as an

inheritance link.

-87-

10

15

20

25

WO 01/82072 PCT/US01/12852

130. The computer-readable medium of claim 127, wherein the step of
determining whether linking the source to the other element would violate a predefined rule,
comprises the steps of:

determining whether the source is a class and whether the other element is an

interface; and |

when it is determined that the source is the class and that the other element is the

interface,

identifying the new link from the source to the other element as an

implementation link.

131. The computer-readable medium of claim 130, wherein the method further
comprises the step of identifying a link error when it is determined that the other element is

not the interface.

132. The computer-readable medium of claim 127, wherein the step of
determining whether linking the source to the other element would violate a predefined rule,
comprises the steps of:

determining whether the source is an interface and the other element is another

interface; and

when it is determined that the source is the interface and the other element is the

other interface,

identifying the new link between the source and the other element as an

inheritance link.

133. The computer-readable medium of claim 132, wherein the method further
comprises the step of identifying a link error when it is determined that the source is not the

interface.

134. The computer-readable medium of claim 132, wherein the method further
comprises the step of identifying a link error when it is determined that the other element is

not the other interface.

- 88 -

WO 01/82072 PCT/US01/12852

135. The computer-readable medium of claim 124, wherein the method further
comprises the step of: '
when it is determined that the selected element is the destination,
modifying the corresponding code of the other element to reflect a new link

5 between the other element and the destination element.

136. The computer-readable medium of claim 135, wherein the modifying step
further includes the steps of:
determining whether linking the other element to the destination would violate a
predefined rule; and
10 when it is determined that linking the other element to the destination would not
violate a predefined rule,
modifying the corresponding code of the source to reflect the removal of the
link between the source and the destination; and
adding new code to the corresponding code of the other element to reflect a

15 new link between the other element and the destination element.

137. The computer-readable medium of claim 136, wherein the step of
determining whether linking the other element to the destination would violate a predefined
rule, comprises the steps of:

determining whether the other element is a class and whether the destination is

20 another class; and
when it is determined that the other element is the class and that the destination is the
other class,
1dentifying the new link between the other element and the destination as an

inheritance link.

-89-

10

15

20

25

WO 01/82072 PCT/US01/12852

138. The computer-readable medium of claim 136, wherein the step of
determining whether linking the other element to the destination would violate a predefined
rule, comprises the steps of:

determining whether the other element is a class and whether the destination is an

interface; and

when it is determined that the other element is the class and that the destination is the

interface,

identifying the new link between the other element and the destination as an

implementation link.

139. The computer-readable medium of claim 138, wherein the method further
comprises the step of identifying a link error when it is determined that the destination is not

the interface.

140. The computer-readable medium of claim 136, wherein the step of
determining whether linking the other element to the destination would violate a predefined
rule, comprises the steps of:

determining whether the other element is an interface and the destination is another

interface; and

when it is determined that the other element is the interface and the destination is the

other interface,

identifying the new link between the other element and the destination as an

inheritance link.

141. The computer-readable medium of claim 140, wherein the method further
comprises the step of identifying a link error when it is determined that the other element is

not the interface.

142. The computer-readable medium of claim 140, wherein the method further
comprises the step of identifying a link error when it is determined that the destination is not

the other interface.

-90 -

10

15

20

25

WO 01/82072 PCT/US01/12852

143. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system having a plurality of
elements and having a link between two of the plurality of elements, wherein each element
has corresponding code and the linked elements include a source and a destination, the
method comprising the steps of:

displaying a graphical representation of the corresponding code of each of the

plurality of elements;

receiving a selection of one of the linked elements;

receiving an identification of another of the plurality of elements that is different

than the linked element; '

determining whether the selected element is the destination; and

when it is determined that the selected element is the destination,

determining whether the other element is a class and whether the destination
is another class; and
when it is determined that the other element is the class and that the
destination is the other class,
identifying a new link from the other element to the destination as an
inheritance link;
removing a portion of the corresponding code of the source that
reflects the link between the source and the destination;
adding new code to corresponding code of the other element to reflect
the new link between the other element and the destination;
modifying the graphical representation of the corresponding code of
the source to reflect the removal of the link; and
modifying the graphical representation of the corresponding code of

the other element to reflect the new link.

-91-

WO 01/82072 PCT/US01/12852

144. The computer-readable medium of claim 143, wherein the method further
comprises the steps of:
when it is determined that the other element is the class and that the destination is not
the other class,
5 determining whether the destination is an interface; and
when it is determined that the destination is the interface,
identifying the new link between the other element and the destination

as an implementation fink.

145. The computer-readable medium of claim 143, wherein the method further
10 comprises the steps of:
when it is determined that the other element is not the class and that the destination is
not the other class,
determining whether the other element is an interface and whether the
destination is another interface; and
15 when it is determined that the other element is the interface and that the
destination is the other interface,
identifying the new link between the other element and the destination

as an inheritance link.

-92-

10

15

20

25

WO 01/82072 PCT/US01/12852

146. The computer-readable medium of claim 143, wherein the method further
comprises the steps of:
when it is determined that the selected element is the source,
determining whether the source is a class and whether the other element is
another class; and
when it is determined that the source is the class and that the other element is
the other class,
identifying the new link between the source and the other element as
an inheritance link;
removing a portion of the corresponding code of the source that
reflects the link between the source and the destination; and
adding new code to corresponding code of the source to reflect the

new link between the source and the other element.

147. The computer-readable medium of claim 146, wherein the method further
comprises the step of modifying a graphical representation of the corresponding code of the
source to reflect the removal of the link and to reflect the new link when it is determined that

linking the source to the other element would not violate a predefined rule.

148. The computer-readable medium of claim 146, wherein the method further
comprises the steps of:
when it is determined that the source is the class and that the other element is not the
other class,
determining whether the other element is in an interface; and
when it is determined that the other element is the interface,
identifying the new link between the source and the other element as

an implementation link.

-93-

WO 01/82072 PCT/US01/12852

149. The computer-readable medium of claim 146, wherein the method further
comprises the steps of:
when it is determined that the source is not the class and that the other element is not
the other class,
5 determining whether the source is an interface and the other element is
another interface; and
when it is determined that the source is the interface and the other element is
the other interface,
identifying the new link between the source and the other element as

10 -an inheritance link.

150. A computer-readable medium containing instructions for controlling a data
- processing system to perform a method, the data processing system having a plurality of
elements, the method comprising the steps of:
receiving an identification of a first of the plurality of elements;
15 recetving an identification of a second of the plurality of elements;
receiving an indication that the first element is to be included in the second element;
determining whether the first element is a class and whether the second element is
another class; and
when it is determined that the first element is the class and that the second element is
20 the other class,

transferring code corresponding to the first element into the second element.

151. The computer-readable medium of claim 150, wherein the method further
comprises the step of displaying a graphical representation of the code of the first element

and a graphical representation of the code of the second element.

25 152. The computer-readable medium of claim 151, wherein the method further
comprises the step of modifying the graphical representation of the code of the second
element to reflect the transfer of the code corresponding to the first element into the second

element,

-94 -

WO 01/82072 PCT/US01/12852

153. The computer-readable medium of claim 150, wherein the step of transferring
code comprises the steps of:

removing the code corresponding to the first element from a file;

placing the code corresponding to the first element within the code corresponding to

the second element; and

deleting the file.

154. The computer-readable medium of claim 150, wherein the method further
comprises the steps of:
when it is determined that the first element is the class and that the second element is
not the other class,
determining whether the second element is a package; and
when it is determined that the second element is a package,
moving a file that includes code corresponding to the first element to

a directory associated with the second element.

155. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system having a plurality of
elements, each element having corresponding code, the method comprising the steps of:

displaying a graphical representation of the code of a first of the plurality of elements

and a graphical representation of the code of a second of the plurality of elements;
receiving an indication that the first element is to be included in the second element;
determining whether the first element is a class and whether the second element is
another class; and

when it is determined that the first element is the class and that the second element is

the other class,

transferring code corresponding to the first element into the second element;
and
modifying a graphical representation of the code of the second element to

reflect the transfer of the first element into the second element.

-95.

10

15

20

25

WO 01/82072 PCT/US01/12852

156. The computer-readable medium of claim 155, wherein the step of transferring
code comprises the steps of:

removing the code corresponding to the first element from a file;

placing the code corresponding to the first element within code corresponding to the

second element; and

deleting the file.

157. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system having a plurality of
elements, each element having corresponding code, wherein code corresponding to a first of
the plurality of elements is nested in the code corresponding to a second of the plurality of
elements, the method comprising the steps of:

receiving an indication that the first element is to be removed from the second

element;

determining whether the first element is a class and whether the second element is

another class; and

when it is determined that the first element is the class and that the second element is

the other class,

removing code corresponding to the first element from the second element.

158. The computer-readable medium of claim 157, wherein the method further

comprises the step of placing the code corresponding to the first element into a file.

159. The computer-readable medium of claim 158, wherein the method further
comprises the step of displaying a graphical representation of the code corresponding to the

first element.

160. The computer-readable medium of claim 157, wherein the method further
comprises the step of modifying a graphical representation of the code corresponding to the

second element to reflect the removal of the first element from the second element.

- 96 -

10

15

20

25

WO 01/82072 PCT/US01/12852

161. The computer-readable medium of claim 157, wherein the method further
comprises the steps of:
when it is determined that the first element is the class and that the second element is
not the other class,
determining whether the second element is a package; and
when it is determined that the second element is the package,
removing a first file that includes code corresponding to the first
element from a directory associated with the second element to

another directory.

162. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system having a plurality of
elements, wherein a first of the plurality of elements is nested within a second of the
plurality of elements, the method comprising the steps of:

receiving an indication that the first element is to be removed from the second

element;

determining whether the first element is a class and whether the second element is

another class; and

when it is determined that the first element is the class and that the second element is

the other class,

removing code corresponding to the first element from the second element;
placing the code corresponding to the first element into a file; and
displaying a graphical representation of the code corresponding to the first

element.

163. The computer-readable medium of claim 162, wherein the method further
comprises the step of modifying a graphical representation of the code corresponding to the

second element to reflect the removal of the first element from the second element.

-97 -

WO 01/82072 _ PCT/US01/12852

164. The computer-readable medium of claim 162, wherein the method further
comprises the steps of:
when it is determined that the first element is the class and the second element is not
the other class,
5 determining whether the second element is a package; and
when it is determined that the second element is the package,
removing a first file that includes code corresponding to the first

element from a directory associated with the second element.

165. A data processing system comprising;
10 a secondary storage device further comprising a plurality of elements, each element
having corresponding code;
a memory device further comprising a program that receives a request to form a link,
that receives an indication of a first of the plurality of elements, that receives an
indication of a second of the plurality of elements, that determines whether linking
15 the first element to the second element would violate a predefined rule, and when it
is determined that linking the first element to the second element would not violate a
- predefined rule, the program adds new code to the first element to reflect the link to
the second element; and

a processor for running the program.

20 166. The data processing system of claim 165, wherein the program further

displays a graphical representation of the code associated with the first element.

167. The data processing system of claim 166, wherein the program further
modifies the graphical representation of the code associated with the first element to reflect

the link to the second element.

- 98 -

10

15

WO 01/82072 PCT/US01/12852

168. The data processing system of claim 165, wherein when the program
determines whether linking the first element to the second element would violate a
predefined rule, the program determines whether the first element is a class and whether the
second element is another class, and when it is determined that the first element is the class
and that the second element is the other class, the program identifies the link from the first

element to the second element as an inheritance link.

169. The data processing system of claim 165, wherein when the program
determines whether linking the first element to the second element would wviolate a
predefined rule, the program determines whether the first element is a class and whether the
second element is an interface, and when it is determined that the first element is the class
and that the second element is the interface, the program identifies the link from the first

element to the second element as an implementation link.

170. The data processing system of claim 165, wherein when the program
determines whether linking the first element to second element would violate a predefined
rule, the program determines whether the first element is an interface and the second
element is another interface, and when it is determined that the first element is the interface
and the second element is the other interface, the program identifies the link from the first

element to the second element as an inheritance link.

-99.

10

15

20

25

WO 01/82072 PCT/US01/12852

171. A data processing system comprising:

a secondary storage device further comprising a plurality of elements and having a
link between two of the plurality of elements, wherein each element has
corresponding code and the linked elements include a source and a destination;

a memory device further comprising a program that displays a graphical
representation of the corresponding code of each of the plurality of elements, that
receives a selection of one of the linked elements, that receives an identification of
another of the plurality of elements that is different than the linked element, that
determines whether the selected element is the destination, and when it is determined
that the selected element is the destination, the program determines whether the other
element is a class and whether the destination is another class, and when it is
determined that the other element is the class and that the destination is the other
class, the program identifies a new link from the other element to the destination as
an inheritance link, removes a portion of the corresponding code of the source that
reflects the link between the source and the destination, adds new code to
corresponding code of the other element to reflect the new link between the other
element and the destination, modifies the graphical representation of the
corresponding code of the source to reflect the removal of the link, and modifies the
graphical representation of the corresponding code of the other element to reflect the
new link; and

a processor for running the program.

172. The data processing system of claim 171, wherein when it is determined that
the other element is the class and that the destination is not the other class, the program
further determines whether the destination is an interface, and when it is determined that the
destination is the interface, the program identifies the new link between the other element

and the destination as an implementation link.

- 100 -

10

15

20

WO 01/82072 PCT/US01/12852

173. The data processing system of claim 171, wherein when it is determined that
the other element is not the class and that the destination is not the other class, the program
further determines whether the other element is an interface and whether the destination is
another interface, and when it is determined that the other element is the interface and that
the destination is the other interface, the program identifies the new link between the other

element and the destination as an inheritance link.

174. The data processing system of claim 171, wherein when it is determined that
the selected element is the source, the program further determines whether the source is a
class and whether the other element is another class, and when it is determined that the
source is the class and that the other element is the other class, the program identifies the
new link between the source and the other element as an inheritance link, removes a portion
of the corresponding code of the source that reflects the link between the source and the
destination, and adds new code to corresponding code of the source to reflect the new link

between the source and the other element.

175. The data processing system of claim 174, wherein the program further
modifies a graphical representation of the corresponding code of the source to reflect the
removal of the link and to reflect the new link when it is determined that linking the source

to the other element would not violate a predefined rule.

176. The data processing system of claim 174, wherein when it is determined that
the source is the class and that the other element is not the other class, the program further
determines whether the other element is in an interface, and when it is determined that the
other element is the interface, the program identifies the new link between the source and

the other element as an implementation link.

- 101 -

10

15

20

WO 01/82072 PCT/US01/12852

177. The data processing system of claim 174, wherein when it is determined that
the source is not the class and that the other element is not the other class, the program
further determines whether the source is an interface and the other element is another
interface, and when it is determined that the source is the interface and the other element is
the other interface, the program identifies the new link between the source and the other

element as an inheritance link.

178. A data processing system comprising:

a secondary storage device further comprising a plurality of elements, each element
having corresponding code;

a memory device further comprising a program that displays a graphical
representation of the code of a first of the plurality of elements and a graphical
representation of the code of a second of the plurality of elements, that receives an
indication that the first element is to be included in the second element, that
determines whether the first element is a class and whether the second element is
another class, and when it is determined that the first element is the class and that the
second element is the other class, the program transfers code corresponding to the
first element into the second element, and modifies a graphical representation of the
code of the second element to reflect the transfer of the first element into the second
element; and

a processor for running the program.

179. The data processing system of claim 178, wherein when the program
transfers code, the program removes the code corresponding to the first element from a file,
places the code corresponding to the first element within code corresponding to the second

element, and deletes the file.

-102 -

10

15

20

25

WO 01/82072 PCT/US01/12852

180. A data processing system comprising:

a secondary storage device further comprising a plurality of elements, wherein a first
of the plurality of elements is nested within a second of the plurality of elements;

a memory device further comprising a program that receives an indication that the
first element is to be removed from the second element, that determines whether the
first element is a class and whether the second element is another class, and when it
is determined that the first element is the class and that the second element is the
other class, the program removes code corresponding to the first element from the
second element, places the code corresponding to the first element into a file, and
displays a graphical representation of the code corresponding to the first element;
and

a processor for running the program.

181. The data processing system of claim 180, wherein the program further
modifies a graphical representation of the code corresponding to the second element to

reflect the removal of the first element from the second element.

182. The data processing system of claim 180, wherein when it is determined that
the first element is the class and the second element is not the other class, the program
further determines whether the second element is a package, and when it is determined that
the second element is the package, the program removes a first file that includes code

corresponding to the first element from a directory associated with the second element.

183. A system having a plurality of elements, each element having corresponding
code, the system comprising:

means for receiving a request to form a link;

means for receiving an indication of a first of the plurality of elements;

means for receiving an indication of a second of the plurality of elements; and

means for adding new code to the first element to reflect the link to the second

element in response to receiving the request, the indication of the first element, and

the indication of the second element.

- 103 -

WO 01/82072 PCT/US01/12852

1/54

102

UML

100

108

Repository

106—\ 110

Reverse
Engineering ‘ Code
Module Generator

Source Code

FIG. 1
(Prior Art)

104

WO 01/82072

2/54

Transient
Meta Model

Y ——— ———

204

206

W =

FIG. 2

PCT/US01/12852

Source Code

WO 01/82072

 PCT/US01/12852
3/54
SCI SCI SCl SCI
Model Package Class Member

302/

2

300

304/

\306

FIG. 3

\308

404——

408——

414 ——

e

ublic string Name;

402

package Userinterface;
_/

410
412

ic string Assets;

X

400

/ 502

SCI Package

FIG. 4

/ 504

SCI Class

Userinterface

402/

Language =
Java

508/

406

SCI Member

506

WO 01/82072

4/54

PCT/US01/12852

600

4

Data Processing System

602
% 604
Memory Secondary
010 Storage ‘/612
\ Software .
Development Project |
|
200 Too
\ Transient
Meta Model
606
\ 608
110 Processor -

FIG. 6

WO 01/82072 PCT/US01/12852

5/54

610

R
R 708

/’ 704

710
Modules / > 702
RWI 712
IDE
SCl /_./
Parser Incremental Code Editor

\ 706 \ 208

: J

~
700

FIG.7

WO 01/82072 PCT/US01/12852

6/54

- §= Coding Style ~__ [V - Severity: |Hgh v
Access Of Static Members Through Objects A0SMTO 3 g 2o
Assignmert To Formal Parameters ATFP [
Complex Assignment ca T ”[Tj)
Don't Use the Negation Operator Frequertly DUNOF ¥

; Operator '7:' May Not Be Used OMNBU [#1

. Provide Incremertsl In For-Statement or use w... PIFS ¥l

Replacement For Demand Imports RFDI [l

s | Use Abbrevisted Assignment Operstor UARO v
i Use 'this' Explicitly To Access Class Members |UTETACM vl
V|

|
i

" 1E Critical Errors

Avoid Hiding Inherited Attributes AHIA
Avoid Hiding Inherited Static Methods AHISM
Command Query Separation CQs
Hiding Of Names HON

|

Inaccessible Constructor Or Method Matches ICOM
Multiple Visible Declarations With Same Name MVDWSH

Overtiding a Non-Abstract Method With an Ab... ONAMWAM |

£
i

e

NRINNRINRR

VOverriding a Private Methqd OPN
Select all | 'Qnsele’ct al | 'Sétél_efédlté S_a_v§'§e{ As.. || Load set..
AOSMTO - Aceess Of Static Members Through Objects 804

Static members should be referenced through class names rather than through objects.—/

Stert || Cancel Help

FIG. 8A

WO 01/82072 PCT/US01/12852

7/54

806
e oA Aud I ' B
‘ CTile oo/ 07| sbbrevigtion | Chosen _
Complex Assignmert 7 ICA = Saveriy: JNOV‘"‘?' "’
Don't Use the Negation Operator Frequently DUNOF ¥l
Operator '7:' May Not Be Used OMNBU P
__Provide Inctemental In For-Statement or use w... PIFS | ¥
Replacement For Demand Imports RFDI | M -
) lse Abhrevisted A innment Onerator | JAAD ! [l r
Selectall || Unsslectall || Setdefauts || Save'setds.. || Loadset.
) 808
;CA - Complex Assignment /
- | Checks for the occutrence of multiple assightments and assignments to variables within the same
expression. Too complex assignments should be avoided siice they decrease program readability.
. | Wrong
; . 810
/7 compound aszignment —
i ot= 3
k=13 = 10;
1l =3 4= 15;
// nested assignment
i o= 3+ 4+ 20!
1= (1 = 25) + 30;
| Tip: Break statement into several ones. oy
| st flconeel || e -

FIG. 8B

WO 01/82072

Title - -

8/54

Abreviion .

Chosn

Complex Assignmert

/4

Ca

[v]

Don't Use the Negstion Opersator Frequertly

DUNOF

Operstor '?:' May Not Be Used

OMNBU

¥l

[v]

Pravide Incremertsl In For-Statement or use wv... [PIFS

[v]

Select all

Unselect all

Save set As...

Load set...

| Set defaults. |

PCT/US01/12852

Severty: [Normal

"I Right

/7 instead of 1 *= j

e
i %= 3

/7 instead
k= 10;
1= 10;

// instead
3 4= 15;
1=73:

/7 instead

1+

1= 3+ 20;
/7 instead
= 25;

E
i =3 + 30;

of k

of 1

of i

of i

1
.

. | Tip: Break statement into several ones.

j += 15;
4+ + 20;

{j = 25) + 30;

812

5

~Start.

Cancel:

Help

0

FIG. 8C

WO 01/82072

900

Existing
source
code?

9/54

902

Identify current
language

904
\ |

Obtain template
for current
language

906
N

Parse source
code

908

A

Create data
structure

910

Receive

event?

Event =
close file?

PCT/US01/12852

Perform event

920

Update model

A4

Update views

922

/914
/[

Save file

916

Close file

End

FIG. 9

WO 01/82072 ' PCT/US01/12852

10/54
v (Begin)
R joo
Select file
1002
Is file new? Y
1008
.y
1004 Add symbol
to TMM
Has file v
been
updated? 1010
Sy
Update
1006 symbol »
in TMM
Has file been Y
deleted?
1012
Y j
N Delete
symbol >
from TMM

) FIG. 10A

WO 01/82072 PCT/US01/12852

11/54

More files?

Y 1016

Any
obsolete

symbols in
TMM?
N v 1018
Delete
obsolete
symbols
from TMM
End

FIG. 10B

WO 01/82072 PCT/US01/12852

12/54

{ Begin)

1100

T

Identify current

language
1102
Obtain template
for current
language
1104

Create source
file in project
directory

Paste template

End

FIG. 11

WO 01/82072 PCT/US01/12852

13/54

B Together 4.- untitled!

File Edit Objed Search Vxew Select Options Tools Help

et | B e]t 3 e | @it

’mmmi'ﬂ e | ,

B 55 urtiled! i S . o : 1200
o ‘
7/

@ [B) packaget
1204

28 <defautt>
% untitied
8 uriitied
o urtitled g
=] untitted -l
3 urtitieat pry
T untitled! '
G5 untitied Val
uniitted ' e
;,}é urtitted! : o
% untitied =)
W untitied

1206

1202

UseCase1

UseCase2

Acmﬂ \ » | B i
Ca ‘ UseCase3 -
; ' o o Actor2

}

iTH

I
szt J[am e

B |]

FIG. 12

WO 01/82072 PCT/US01/12852

14/54

' Yogether 4. CashSales .
File Edt oest Seerch View Select . Opfions Tools Help

IHED 52D B S RERE |+ [@§eswilalwelE
‘f%é—] ’@—I rgg Usarinterface ‘Bl

e e A 1300 smain(arte
i B9 CashSales B i ‘{
@ [B] DetaManagement .
[ProblemDomain B . i
" | B | s = o
6 pos System ge . (:rnblemDomam.CashSaleDetall - . 'l:(r\ﬂp[gmpgmpln.lf{rbductngsq - POSFrame
® [# MakeCashSate R B 1 2 — currentSale:CashSale=new CashS
WA * products:ProduciDesc]
s i -colNames:String[={"ltem", “rame’
//’/ Iy e .) N TAILint=0
o - | ffmument—mten/al» - " . § -REMOYED DETAIL'int=1
A) Eﬁ:roh!embomain.CashSale o -cashiers:Strin
. -) currencyFormatNumberFormat=tit
i A o menuBart :JMenuBar=new JMenuE
[Ex)] JPanel menuFile:Menu=new JMenu()
. R Salell) menuFileExit:Jienuitern=new Jie| B
‘ ' menuHelp:JWenu=new JienuQ Y

o a3

import java.math,BigDecinal?

/Wﬁ'
* faurhor TogevherSofr 1302

* flgrensonype ni-detail %/
public class CashSaleDetail {

£72 Thas andicates how many of this item ave heing yurchared. =7
private int quy:
,-".‘.'7‘
= This would allom war to use wolks lxlke: each, poumels, case, B0 comuse, you maalld ha o Do Lo zated L
£ oproduct pricang side ag well, We won

[

| CashSaléDetailjava |

i private CashSale thsCash‘&Qle

LM e [Taine 1 eorar |

FIG. 13

WO 01/82072 PCT/US01/12852

15/54

[Together 4-- CashSales
File. Edt Ob)ect Search View* Selec’t Ogt[ons Toola Help

3 lalllb”lxﬂal&lleu@@@l*&»leﬁl@ﬁoi"lwlalbﬁeﬁgﬁ

*[1. CashSatesApp main(1)]

B o
C

= %P CashSales
@ [#] DataManagement T Initial 1 402 static
i [2] PrablemDomain L . Class1 : ' o UlManager
£ [B) Userintertace : N . , -
29 Userlnterface - . “Qblect
untitied Y : ‘ ! 1400
: N | o
o untitied o ’ 'mam(smngn) \rul ' |
s cashsalesAppm| 7] T gelSystemLookAnd FeelClagaName . ° |
, urtitied : BT S
. untitiedt :) .
962 urtitled2 b setLookAndFeeI(UIManager.getSystemLuokAndEgC assiNameQ) |
urtitied 5 .) O [""'LJ)
1 urtitled : |
B4 Cashsalesapp || = [
B] i Classt . R [R econsiructor-0*] frame
i [PosFrame ’ L ; ~<construclor» I] POSFrame
@ [£] PosFrame_Akou ') . :] | =
jE) SaleUt . Do L] <‘]i
<defautt> { SeiDefaultc
2% untitled
% FOS Syslem o : . } <constructo
untitled i
[, untitied : { x
1 untitled I addwindow
M [2] MekeCashsale ! |
{ [.E setUpPrody
¢ I =<
: I jblnit
. | -
! [j getCanten)
{ setlayoul(h
|
I
! [Fculnst}u;j 4

t S ’ »‘M“~‘”|::]!‘ Homset 1 m i o1 |

FIG. 14

WO 01/82072 PCT/US01/12852

16/54

[Together 4. CnshSaIes :

File Edt Object - Search Yiew Select - ogtluns Tools Help”

lalmawuwwﬂmﬁﬁh@mwm¢ﬁﬁmw@wﬂgwMWMHW
g=yg:ge .

IED
1) &0 CashSales
[E3] Datalanagemert
[&] ProblemDomain
1 [§] Userinterface
B8 Userintertace
26 untitied
n&, urtitled
2£2 CashSalesApp.l
*l], untitled
. untitled
920 untitiec2
% untitied
£ unttied
i g2 CashSalesApp . ; o ' %1,3,5: screenSize=gel
18 B Classt o i - (
® [E] POSFrame : “1.3.4: getDefaultToolkt
POSFrame_Abou .
3 B selelt
B8 <defautt>
=% untitted o
3 POS System e : .
, untitied - Lol ' ,
%umiﬂecﬁ !
untitted

@ [MakeCashSale

> J o5 unittied | *f], CashSalesapp. maln(1)]

| | 1500
1504 S

- 1502 anonvimous:Toalkit

\\ﬂlﬁmﬁ

) static:UIManager

’ ‘i.1: geiSysiemLookAndFeelClassName &
1.2: seiLookAndF eel(UIManager.getSysteml okAndFeelClassMare) <

B

eenSize

'scanstructar» o=

1504

’;51: ‘main(stringt))void'

. . . L ' Oblect1,

BN ‘ — IR N e 1] ne.

FIG. 15

WO 01/82072 PCT/US01/12852

17/54

B Together 4 - untitledt :
File Edit Object Search View, Select Opfions Tools Hclp

| %

e

15 58 untiledt

7 packaget
29 <defautt>
B, uniitied
% untitled
A untitied
=] untitled
(7 untitiedt
T8 urtitledt
untitied
H, untitled
242 untitledt

%® utitled
4 untitled

BOA$LEwe

I[}JI@C"lX[IhEﬂlGGl[ﬁ@r’@l‘*‘lﬁ'I@f“i"

1602
’ (st
J

1600
s

—

itied [C] ipitedl |G e]

FIG. 16

I

i .tn

=

WO 01/82072

18/54

B Together 4-- untitledt .
File Edt Object Search View Select Options ' Tools Help .

miEED|E X wE o @R

PCT/US01/12852

TN PR | % e |
LB
=P untitledt
@ [& packaget
28 «defautt>
B, urtitled

28 untitled

o untitled

untitled
7 untitledt
T8 untitiect
@ untitied
L, untitied
242 untitieds
99 untitied
o untitied

Activityl

. Activity2)

"ExAE%E0 s O000HO0T]

|

Activity4

|

[y

{ Activity {-\c?iV‘nyl4

FIG. 17

TR T)
ALt gl Lo r

WO 01/82072 PCT/US01/12852

19/54

[£] Togeter 4-- untiticdt

'e Edt Object Search Vew Select - Og!lons Tools, Help

EFIEY: |xrt,rt1Ieslﬁi'@r"-ml@lcsewlwl@l'me-
AT rikied |5,

&l B unfitiect
@ E] packaged
22 <defauts
&, untitled
2% unlited
By untitled
gunﬁlled
3 untitied
T untiledt
&2 unttied
“]Lunhtled ‘ |
S ® untittedt - LR e e ; KRS
ummed RE P P ';_,-"'"

—

& untit ' :)
W untitled oo T : Component2

Componentt

OB w N O i @

e 1800

Interface2

n = . - s
%cgmponenﬂ _______ > literface3
13 v
- . '

B 1]

B C R T T T

Bl T

FIG. 18

WO 01/82072 PCT/US01/12852

20/54

[Tonether 4-- untitiedt

file Edﬂ Object Search View. Select Ogllons Tools Help

led | ummedr[.,’@i(jﬁt-“niég]

1 %8 untitledt
@ [B] packagel
B3 <defaut>
&, untitied
€ untitled
2 unitied

(=
&
=]
(o}
=] untitled /s . Componentt
3 untitiect 1 L : s
}I
8
E

, untitied
2¢2 untitiedt
@@ uriitled
1F untitied

T8 untitlect “ ‘ '

urtitied

Eg Component?

Interface1

g
Moset J{T i J{ cats

O | G

FIG. 19

WO 01/82072 PCT/US01/12852

21/54

FIG. 20

2000'\

ogalher 4 -- CashSales : [_ O] X]
'Fle Ect Object Search. View! .Select Ogtions 'Tools: ‘Help ') '

léﬁlﬁI‘M\lethL”Jleﬁﬁr‘r‘lle»lr@l@nﬂﬂl'{ﬂ@l_l@ggmﬁ

_‘I ! [By packaget ‘
= 9 Current Project

1 &) CashSales ;
7014_/[:] & Datattenagement 2026 f
/ B Da‘laManagemerﬁ/d(Packag'

20 1 6 [) DataManagement.dfPacka
B saleDMjava
& & packaget 5 ;
_/—1 & package2 2024
] 201 8- ‘ 2] package2.dfPackage
20 12] Class2java

B Interfacet Java
2] package!.dfPackage
2028 packaget .dfPackage wmi
ProductPrice java :
ProductPricelntertace Java |:
SubClassProductPrice Java
153 & ProblemDomain
20 2 O_/ CashSale.calcTil.dfSequend
CashSale java E
CashSaleDetail java
IMakeCashSele Java a9
InsuftPaymentException jav, I .
Make A Sale.dfUseCase ! % :]
[7) Meke A Sale dfUseCase.wr] “2008 ¢ - : ‘ -
2] ProblemDomain.dfPackage l -
ProblemDomain.dfPackage.
B ProductDesc java s -
B ProductPrice java Co
Sale Activity dtActivity
Sele Stete Diagram.dfState
[} sale State Diagram diState.
[B Total of Sale.dfSequence

Userlinterface .
2022_j B CashSalesAppjava B E ¢

[B) POSFramejava |

[E5 POSFrame_aboutBox]ava hd

;’! RN IR B o= 17 [= ST N =

vl

t-Interval
<<momentInterval>> 2006\ interface

ProductPrice
validStarti ﬁg:Daie ProguctPricelnterface|

-notvalidAfier:Date +operationt (Amt:8igDecima,
-price:BlgDacimal

S /_2@ 3 P-priceatyint=1

: /‘/ -priceUOM: int=1

| ,_— ;L | +ProductPrice(startDate,end:Date, 2004 2thclassProductPrice |
: +makeBradctPrice(:vold

[Generallzatlnnﬂmplementaﬁon Eer\t(q'lnt)'EigDe cimal

4T 5 i’ .
[" | +lsvalidOnDate(date:Date):boolear

20 | +getPrice:BigDecimal - 200 .
| : +setPrice(aPrice:BigDecimalyvald

: +getf’rlctey0:)nt mpackage?2 (¢
. | +setPriceQty(aPriceQiyint:vold

o .{.’

2030

[«

[»]

WO 01/82072 PCT/US01/12852

22/54
(Begin) FIG. 21
v 2102
Receive indication
to form a link
\ S 2104

Receive indication
of an element

Y 2106

Receive a second selection
identifying the destination
element

Can link be
formed between
source element
and destination
element?

¥ . 2112

Add new code to the source code of
2110 source element to reflect link to
v [destination element

Display link error

' /-2114

Display graphical representation of
source code of source element to reflect
link from the source element to the
destination element

End

WO 01/82072 PCT/US01/12852
23/54
FIG. 22
2200\

Together 4 -- Chale » =1 E3

CFlle Edit Object Seerch . View Select Options Tools Help
II'.BI@@I%%@I%I@F—F@I"%’II ?H?I@I%Se"gﬁ_

: (B8 package? |

g ' <<m0ment—lntewai>>

% ‘ProductPrice

__ -validStarting.Date interface

. '~—n0ﬁ}élldAﬂEr'Date ProductPriceinterface

. F .| -price:BigDecimal - — ——
;§E ' -pnceQWlnt—‘l , | +operationt (Amit:BigDecimal) :BigL
S . -priceUOM:int=1 . 1 ‘

;[7 o +ProductPrice(start: Date,end: Date SubClassProductPrice /‘2204
e +makeProductPrlceo vold. y

L] LA ;+calcPrlceFoery(qInt) BlgDemmal [

LI "o | +isValidOnDate(date:Date): boolear} '

e +getPrice():BigDecimal. “ 2206

, +setPrice(aPrice!BlgDecimal)void ’_]
= ‘ +getPrIcthr0 int acka o2 2202
B - +setPnceQ1\;(aPrlcthy|nt) vnld packages }—

T

[}]
f* Generated by Together *¢ M
package packagel:
ublic clags SubClassProductPrice {
}:
i [»]
f - PLSubClassProductPrice java S O S . ‘
. . [Thls element doesn‘t support ge:nerallzanon : Bl :M] Llnéert _] | Lo ,‘i 1 Col 1]

WO 01/82072 PCT/US01/12852

24/54

FIG. 23
2300-\

. Together 4 -- CashSales 4 B) Mi=1E3
' File Edit ObjEC’t Search. V:ew Select Ogﬂons Tools Help

B % lEﬁl@@lxﬂallaﬁlmrl_-lélll hm’“i"l&‘i?l@lfsjsg

———
[EE package'l |

g <<moment-interval=» . =
B ____ ProductPrice ’)
__ .| -validStarting:Date i interface

-notvalidAfter:Date ProductPricelnterface

‘B -price‘BigDeclmai - — - —1

ge -prlcthflntﬂ o .) +opetationi(AmtBigDecimal) . Bigl

- ~priceUOM:int=1. ‘

NS 1.

,l—_ , i+Pr0dUctPrice(start :Date, end Date, | - SubClassProductPrice

I - +makeProduciPrice): vold. ;

; /(, 3]+ca|cPrIceF0ery(q int): EllgDecImal e -

o min | +IsvalidOnDate(date: Date} booleat! ‘ e o

) +getPrice(BigDecimal . .

; +setPtice(aPrice:Bi Decimal vmd wn A '—"I

, = € g) i)

: +getPrlcthy0 int. lane2

j ‘ +setPrlcthf(aPrlcthf|nt) vo[d . [Backage

: : This element doesn't éupport generalization HWE]

KIE » L]

;% Gemerated by Together 5/ - ' Ok —

. package packagel.

public class SubClassProductPrice { . N

i } it

j [af [»]

oo —lSubCIassProductPrIce java | -

f o) ————— 1] — TR

WO 01/82072 PCT/US01/12852

25/54

FIG. 24

2400
-Togelher A - CashSales I D ‘ !El

, File Edit Object Search Yiew Select Ogtlons Tools ‘Help

‘B & lll@“‘*!%[ﬁallﬁl@f—r-léll‘l@ﬁi"laffl@l%%"c"ﬁ_

| ES packaget |

IK; <<momént~1htehxal>> S n .
B ProductPnce 1 24’12\ mte.rface
: ’ -validStarting:Date - - - R TN ProductPricemterface

JEET) . - - ERS

= | |-notvalidAfierDate’ ‘| +operationt (At BigDecimal):Bigt
i B |- |-price:BigDecimal - e
iga : 5-pr1ceQiymt-1 U & <
P -priceUOM:int=1 A | : 2408
: 2l +ProductPnce(start Dats, end Date -\1
LS +makeProductPnceo\fmd \SuhClassProductPnce
;4? B +calcF'r|ceF0rQ1y(q int): EllgDecnmal K - '
.= | | sisvalidonDate(daté:Dateybaolear|-
' A || +oetPrice:BigDecimal

| +setPrice(aPrice:BigDecimalvoid |

| { g) 4 I
: +getPrIcthy0 int (ackane?
B +setPrlceQW(aPrlceQ1ymt) soid B

(4] []

J% Denerated by Together */ PN
Co 2402 =
.| package packagel; N
:[public class SubClassProductPrice implements ProductPriceInterface { -
; }
» 2404 2406
R [' [¥]
i ,—LSubCIassProduciPnce Java . B I o

o —— R -] — e (N

WO 01/82072

element an
interface

destination
element an

interface
?

Y 2512
[

Link =
"inheritance" link
to destination

2506 element interface

\

Link Error;
Source
element

not a class

or interface 2510

PCT/US01/12852

FIG. 25

destination
element a
class?

destination
glement an

interface
l?

Link =

Y "inheritance” link
‘ to destination
element class

2520

[

Link =
"implementation”
link to
destination
element
interface

2522

[

Link Error: First
Element
interface can
only inherit from
another
interface

Link Error: Class
can inherit from
another class or

implement an
interface

‘ Y

End

WO 01/82072 PCT/US01/12852

27/54

o FIG. 26

flé Together 4 —CashSales ==k

Fle Edt Object. Search View Select O@iﬁr{é Toois Help | |
BlaEDb|selibEl QR ¢ & e 0|W|a[%PF
[B8 packaget | - o R) :

<<moment-interval>» 20612

ProductPrice N\ interface
|-validStarting!Date .« . ProductPriceinterface

-notvalidAfter.Date -~ B +operationt (AmtBigDecimal . BigL
.| -price:BigDecimal " ' '
-price@tyint=1 . t N
-priceUOM:ini=1 x 2608 _j\
+ProductPrice(startDate,end:Date, oo \
+makeProductPriceQvold - ' {SubClassProductPrice interface
+caIcPlrl‘ceForQly(q:Int):BlgDeclmal : interface?
.| *isValidOnDate(date:Date):boolear | - i
A +getPrica(:BigDecimal o ‘

' +setPrice(aPrice:BigDecimalvoid. | = o ‘)
& , | +getPriceqtyg:int SR KO V] 2610 _/
Bl - "+‘setPrlch,t\}(aPrlcer:I'nt):yp!ﬁ.f‘f») ‘ packafie

D m| T

BN\ M

v

d

A% Generaved by Together =7 e

2602 .

package packagel; A

}
_ 2604 2606

KT i 3 - D
f intertace2java ; ' K : RS P ‘ :

-

L Lo [_cotn |

WO 01/82072 PCT/US01/12852

28/54

FIG. 27

Filé Edit ’object : \‘séércﬁ 'View "'Select ‘Ogtions “Tools Help o o
€% b EMERERE ¢ & e 2@ R F

B8 package? |

- e=momentinterval==
ProductPrice interface
-validStarting:Date ' | ProductPriceinterface

7 m A ;"—l

-price; BlgDeclmal
. -pnce@ty 1n1-1
\-prlceUOM |nt~1

'+Pr0ductPrice(startDate end Date, | - |
+makePr0ductPr|c‘e@:\xmd ‘ ’

) +calcPrlceForan(q mﬁ BigDecimal: r\‘708./ .
+ls\/alld0nDate(date Date):bodlear | S 2710—"
. +getPrlceO.BlgDeclmal o '
+getPrice(aPrice:BigDecimalyvaid |

+getPriceQty0iint '
) +setPriceQiv(aPriceQiyintyvold

2712 ~ -notvalidAterDate +operationt (Amount BigDe

“|SubClassProductPrice

B\ N

b |

*

Gen B

L]

[»]

4% Genersated by Togerher 5/

D

2702
A

package paékag‘el : (

public class SubClassProductPrice ex@s ProductPrice {

} 2704 2706

—]\SubCIassProdudPrice Jjava

[}]

[Module "Imnart - E}morl" is achvated oy

?_-LE«'] Messagesl o W
BEL . il e el e

WO 01/82072

PCT/US01/12852

lnwct Search’ \}Iew Select Ogtlnns Tools Help

lmlﬁs@m%llwlmr‘ﬁ@w!m/:ﬂ@ SIEIEY =

goaw 7] o

N N

gl

EN

s,
]

v,

28 packaget | ,

<%moment-|niewal>>
ProductPrlce

. ~valid8tarﬁng Date -
: -noNalldAﬂer.Date

-price:BigDecimal
~priceQiy:int=1
-priceUOM:int=1

| +ProduciPrice(startDate,end:Date, { -
o +makeProductPrlce()vokd _
- +calcPrlceForQh;(qInt) BlgDeclmal RRLY
+IsVahd0nDate(data Date) boolear X
| +getPrIce0 BigDecimal-, - '
: +setPrlce(aPrlce BlgDeclmal) vold

+getPriceQyQiint .,

° +setPrIcer(aPrIcthy Inty: \fold

interface
ProductPriceintierface

+operationtfAmount:BiaDe

b
2808—

SubClassProductPrice

2810

1]

}

package packagel;

S Genegrsted by Togerhier ¥/

2814

2802

N

public class SubClassProductPrice Cxtends ProductPrice

2804

&1anents ProductPriceInterface {

2806

KIE

—lsubCIassProdudPrlce java, r

| >

Y r<oress T

[{ _Insert]

L

s}l cots7 |

WO 01/82072 PCT/US01/12852

30/54

FIG. 29 (Begn)

290
/_ 2

element

Receive an identification of an existing link from a source element to a destination

2904
Y -

Receive an identification of one element to keep from existing link

v - 2906

Receive identification of an other element for the new link

ldentified
one = source
element?

2910 2922

Can source
element be linked to
the other
element?

other element be
linked to the
asstination elemep

2914 —\4——1

Remove portion of source code of source
element reflecting existing link to
destination element

Display link error

N

2912

2924

2916 ; A

Modify graphical representation of source
code of source element to reflect removal
of existing link

Replace portion of source code of
source element reflecting existing link
- {to destination element with new code to
reflect new link to other element

2918 —_ Y
Add new code to source code of other

. . . //" 2926
element to reflect new link to destination Y

element

\
Modify graphical representation of source

Modify graphical representation of
source code of source element to
reflect new link to the ohter element

t
i

code of other element to reflect new link !
to the destination element

2920 —/ | Y

End

WO 01/82072 PCT/US01/12852

31/54

FIG. 30

Together 4 -- CashSales . [O] %]
File Edit’ “Object, Search Vlew Select Ogtlans Tools * Help ' ' o

@xla-m:@@ix%-m fﬁr”r‘-léoigsmci@lam@m

i) ~priceUOM;int=1

e . | +ProductPrice(start Date,end:Date, 3002 \ |

v < +makeProductPrice(vold . B ' \ SubClassProductPrice

’ " | #calcPriceF orQty(a:inty:BlgDecimal <}

+isValldOnDate(date;Date): bonleal

+gatPrice0 BlgDeclmal .
B r+setPrlcs(aPrlce BlgDsclmaI) vold E —_]

TR +gatPrIchy0!nt

+setPriceQty(aPriceQtyindvold

(=8 Directory ! [:3'— <<moment-interval>» 3014 4]
& g g’gzi’s"i"s’ & | p ProductPrice Inferface
" B £ DataManagement E ' [valigstarting:Date 4 » ProductPricelnterface
B & packaget -hotValidAfter:Date . +operationt(Amt BigDecimay:Big
, ® gpackagez’ @] . | ~price:BigDecimal /‘
| Class2 java | ’ 2
spticeQtylint=t | AAndAn 00 L
B intertacet Java %? . 301 O
. . ; l

[8] package .dfPackage
[1 packeget diPackage.
PraductPrice java
B ProductPriceintartace
SubClassProductPrice|
@ 9 ProblemDomain
£ Userinterface
CashSales tpr
[cashsalestws
Class1 java
Class1.operationt(1).diSe|
[class1.opereationt(1).dfSe]
Decorator java
] defaut.dtPackage
[} detautt.dfPackage.wimi
[} demaguide himl
B MekeCashSale java
POS System.dtDeploymend:
[} PoOS System.dfbeployme
[specialini
& 3 Javax Jar
® 2 djar
| ®mescn
I & D\
EA
m &L
¥ Ny
Py

package2

%Q? - ’ . .- ; Class3

1]

/% Ganerated hy Together #/7

3012

T public class SubClassProductPrice extends ProductPrice implements ProductcPrice

3004—// 3008—// \\~3006

package packagel:

]

|2}

[l lSubClassPraducfPrice Java [

. [Er] (B0 [pubic void setPrice@ty(int sericeciy) : ‘ RSN et] s T colan]

WO 01/82072

FIG

|1 Together 4 - CashSales

PCT/US01/12852

iFile Eclt Object Search View Select Options Tools Help

a

"

. - [Incarrect Iink source. _

RIREMNIS @ %Dt

|66 | TaT B 12| 4 | 5 | o

o P AT g s

TEE @Y

& \ 3;]'

I’ B‘E package [‘

=<monient-interval~~
ProductPrice

-yalldstarting:Date
-notvalidAfter.Date
-price:BigDeacimal
-price@lyink=1
-pricalJOM:int=1

Ihterrace
ProductPricalriterface

+ORBFaNoON I (ANt BIGLSCIrna) BigL

+mal<eProducti-'nceU Yold

) +getPriceq: Blgl:leclmal

‘| +sotPrice{aPrice; BlgDemmal} ’v’Dld
+getPriceQiv(:int

+35eiPr lcthy{aF'l lcthy inty: von cl

+F‘roductPnce{9tart Date end Date ~ ;f:

vealeMricel or@iv(ing: DlgDemmal :
+|sVaI1d0nDate(date Date): honlear)

—

i)
|

| 3108

SubClassProductPrice

] 8112
ackage2

Class3

|4 i

[»]

[« v
/% Generated by Together 7 >y
package packagel;
publiv vlass SubClassPruduclPrive exlemds PruduclPrice inplenemls Pouodg
}
E]

Quhf‘laqaprnrﬂuﬁprlrp jﬁ'u‘ﬁ

mgert || tres |[coras |

3100

WO 01/82072

33/54

20 FIG. 32

6l Tngether 4 - CashSales
| Fie - Edit Objac't Search View Select Oghons : Todls Help

B

PCT/US01/12852

T 0 H e ?I |

[E! lj hy B \ b

BBE D X I .l&ﬁl@ml ISDWP%IE’E'I o T |8Y [| 5B 52

o

|"ES packagst |

<zmoment-interwal=»
Productprice

'] -validSlarling Dale :

-notvalidAfierDate

-price:DigDecimal -

pricoQtyiihtﬂ

-pricoUOM:int—1 :

B +ProductPrice(start Date, end Date

: *makerductPuceo vcnd £

"calcPrlceroery(q mt} DlgDemmal =]
+isvalidonDate(date:Dato): boolcar]

+getPnce(} BigDecimal

+getHricetaFriceBiglie cimal)vold

+i RIPTIRR (v Int ‘ '

+5 elPrive Qly(aPrive@ly: inbadid

—_— 3202

Frrnr

+

'-o

-

Innorerct 0k |]rvoce

| .«r'

18

P
i
b
i
£* Generated by T
i

=

Intertace
ProaciPricemterias

+oparationt (AmtBigDecimal) :8igL

.
.
Py

|
|
|

SubClassProduciPlice

—

packagez

4

package packayel;

}

public class SubClassProductPrice extends FroductTPrice dmplements Frod

M‘

¥

1&4 bCIaaeP‘roduc’tP rice Java

B T ()|

P el Ln.‘yﬁfjlh}f_“i.lbff#& j

WO 01/82072 PCT/US01/12852

34/54

w0 FlG. 33

&8 Tooether 4 - CashSales
'Fite Edit Object . Sé:érch' View Seglect Oplions’ Tools - Help |
(BEEDID CX DIDER S IE e S B R T
: {EE package-1 l
P:; ﬂﬁmomontzlntor;xalhh ‘ . -
- ProductPrice . inte1face
: -validS‘-la;li’ng.Dulul‘ -‘ , . ProductPricemterface
Y -nbfva\{ldAﬁer:‘Date ‘ Co +operation { (Amt:Biglecima Bigl
Fl || -price:Bigbeciral a . - 3306 —
‘g || priceatyint=1 N i)
TR -pricelUOM: int=1. ‘ R ‘ . ; 3308
R +Pr0ductPnce(star1 Date,end:Date,” ‘ : el
P lmakeProductPnceﬂ«vmd SRR T ’ |subClassProductPrice
f:“,;,/ 1 +calcPrice Foerxf(q ‘it E(gDecfmal i
;== 'j.:ﬂb\fdlllenDdlu(ddlu. dly); LlUUleI'
A +getPricey: EllgD@tlmal R ,
e +setPnce(af-‘nce ngUeclmaljvmd L o -—I
; B +getPrice@iy(:int ' ’ !\ L 33021 e
B +setPncthv(aPncthxr mt) 'mxd } /- . (ReckalT
‘-x, - | ‘ “\\. . S
|RF ™4 Class3 3304
e | ¥
s Generated by 'l"un:rethei wy oy
; package : packagel; 331 0
| pwac crass viass{ XK m—
1
3312 3314
N T L]
i [f‘laesQ Jjava i
..[publlc claqs uaﬁsu extends Pmuuc Il] 1 meen [t [corv 1

WO 01/82072 PCT/US01/12852

35/54

FIG. 34

3400
Together 4 -- CashSales
_Fle Edit Object Seerch 'View Select Ogtions Toals *Help

FIEE IR I I R I I A I T

(B8 packaget I

P‘—-; <<moament-intervals>- '
z : 3408
By ProductPrice intetface "~
' -validStarting:Date ‘ ProductPricelnterface
= aning: . .
= | |-notvalidAfierDate +operationt(Amt:BigDecima):Bigt
-price:BigDecimal ' .
=10 -priceQiyint=1 S . "ﬁ interface
R (lteevomin=t o f o 3402~ I oot
7 [+producterice(startDate,end:Date, | - - L
/|| *makeProductPriceQuvoid - . . |SubClassProductPrice
> +ealcPriceForQty(q:int):BigDecimal |
** || +isValidOnDate(date:Date) baoleat | >
j.." +getPrice:BigDecimal o i k .349 L
0 +setPrice(aPrice:BlgDecimal)vold L ‘
‘ +getPriceQiyQ:int ok —
+setPriceQiy(aPriceQty:int)void \ . package
57 o \ Class3
i [
J* Generated by Together */ il
package packagel; 3%)
public class SubClassProductPrice implements .
}
=
| 4 e R R []

—LSubCIassProductPr}ce.java

(2]) ()| J[nsent J0 Lrea][coka_)

WO 01/82072

36/54

PCT/US01/12852

FIG. 35

/3500

Together 4 - CashSales

File Edit Ohject Search '\/iew Se!ect Options, Tools Help

=

B &

llﬁ|‘@f§Iétiilléﬁlﬁlrﬁr"Eﬁlﬁ’Hﬂl&b

PRI @ R

(8. packagel- |

<<moment-interval=»

ProduciPrlce
-validStatting:Date
-notvalidAtter:.Date
-price:BigDecimal
-priceGy:int=1
-priceUOM:int=1
+ProductPrIce(sta|1 Date end Datey
+makeProductPriceq:void
+calcPriceForQiy(g:int):BigDecimal |
+isValidOnDate(date:Date):bocleat |
+getPrice():BigDecimal
+setPrIce(aPriEe:BIgDecimal):void
+getPriceQty(:int
‘ fsetPricthy(gPﬂg:thy:lnt):Vn)d

[E"'lﬂ_l aﬁj [ﬂﬂ’?l

N

3504~

intetface
ProduciPriceiiterface

+operationt (Amt.BigDecimal .BigL

interface
nterfacef

3502 \
SubClassProductPrice

'{.«/3

3506~

package2

Class3

enetated by Together %7

package packagel:

3510

}

public class SubClassProductPrice gplmre(l_t;s -
3512 :
3514

Z’j ‘

RIE

|2

rLSulo'\’:lassProe{uctPrlce Java |

III il

[Proprass 1] | I R L L R

LolI 1

WO 01/82072

37/54

element an
interface

PCT/US01/12852

FIG. 36

estinatio

element a
/

class?

3618
4
Link =

"inheritance" link
to destination
element class

destination destination
element an element an
interface interface
2
3612
v % v
Link = :
"inheritance" link 3620
to destination (
3606 element interface ; v
Link =
j "implementation”
link to
Link Error: destination
ohter element
element interface
not a class
or interface
3610
(3622
Link Error:

ohter element
interface can
only inherit from
another
interface

Link Error: Class
can inherit from
another class or
implement an
interface

End

WO 01/82072

fﬂﬂﬂﬂl

t

38/54

FIG.

/3700

. Together 4 -- CashSales

‘Flle Ediit Object Search View Select Options: Tools Help

37

PCT/US01/12852

IDI@@I%%Il%IQI——[—"@l@I‘i@

PR O | @ | R

[[O]X]

[B8 packaget |

‘ : 3710
F’g <<moment-intervalz>. - /—
& Y ' ‘ProductPrice inte ffac e
“valldStarting;Date ProductPticeinterface
| E28 .
= -hotValidAfter.Date +operationt (Amt:BigDecima):Bigh
F -price:BigDecimal —
5o |-priceQiyint=1 3706\/1\
. |-priceUOMint=1 3702
" Vol .| +ProductPricetstart:Date end:Date, 3704~ \ =
. +makeProductPrice(:void , intefface
% 'f +calanceF0rth(q lnt) BigDecImaI SubClassProductPrice Interface2
- +lsVaIIdOnDate(date Date) booleat
T +getPrice(:BigDecimal ‘ : —/
. +setPrice(aPrice:BigDecimal:vold |- 37 3712
0 +getPriceQtyd:int : v /708
: B +seiP'rlceQ’;y(aPrlceQw:lm):vul'q‘ I
e ‘ package2
i N
" Generated by Togstchey 7 (=
package packagel;
public class SubClassProductPrice extemds ProductPrice implements
}

I

[}]

—’\SubclassProducfPrlce Java [

| [

R = 1 DT R

Co1 |-

WO 01/82072 PCT/US01/12852

39/54

FIG. 38

By Together 4 -- CasSaIes

File Edit Object Searoh View Select O[ghons Tools Help

IEL EIEX:
[B8 packegel | /3806 —

<<moment-interval=>

ProductPrice ‘ interface
-validStarting:Date ProductPricelnterface

r’glﬁgz

-notvalidAfter.Date +operationt(AmtBigDecimal):Bigt
-price:BigDecimal '

i, |-priceiyint=1 . ; e a _— ;

" llpriceUOMint=1 R S "‘ 3802\

‘| +ProductPrice(start Date,end:Date, | ‘

. +makeProductPrIce0v0|d B ‘ ‘ interface
| #calcPriceForQty(ainty: ElIgDecimal L .- |SubClassProductPrice Interface?
‘+laValidOniDate(date: Date)'_bb‘dlear <= '
+getPrice(:BigDecimal. B B
+setPnce(aPnce BigDeclmaI)vold Ry _/
| *getPriceQiygiint 4 3808

: +setPrl'ceQty(‘aPrIcaQty:lnt.);void . : —"I

T E 7

AN

“u

BO

_J

3804

'1

"

T ' e . |package2

% 95

1

]

o - - ——

/% Generaved by Together */

w

X

(@]
]

packayge packagel: A

(4]
llrnerfacamava, . el e

..lpuhln. interface lnterfax.e2 extends ProduotPncelnterfaPP ”"] IU[| rTnseﬁm v Ln: 6 ¥ QS: 1 J

WO 01/82072 ‘ PCT/US01/12852

40/54

FIG. 39
/3900

: Together 4 - CashSales R 4 ' [— B[X]

E_F_ile Edit . Object Sesrch. View Select: Options ~ Tools Help e
PR EDh| o bR S DEER| S| E| G| W] 8| %E S

(BE packagel |

3910 =
F‘: <<momentinterval=> — /- =
& ProductPrice |ntel:1ace
-validStarting:Date : ProductPricelnterface
= -notvalidAfter:Date +operationt(AmtBigDecima):Bigl
-price:BigDecimal ‘ o
ga |, -price@ty:int=1 ‘) \
- 1| -priceUOM:Int=1 ‘)
i ‘ fT+PruductErice(stg;t:Dgte,e‘ﬁ"d:Da_ie,,,‘,_ , , ' L
oy “*makeProductPrice(vold i (5 e Intsiface |
! o +calc‘PriceFo‘ery(q:lnt);BigDécimal M ISubCIassProductPrice Interface2
+lsValidOnDate(date:Date):bosleat [T~
e +getPrice(:BigDecimal L8]
s - || +setPrice(aPrice:BigDecimal)void
‘ || +oetPrice@iyQiint S o .
i +setPriceQiy(aPriceQty:invold ' : I
C o 7 — l package2
P 3912~
Kl 2]
A% Generated by Togechey #/]
package packagel;
public interface Interface2 extends [Jprnaararonrnerrr SN B
}
[« Iy

—Llnterfacéz;]avé

B L T mmmmag i dwed (| s] cori |

WO 01/82072 ' PCT/US01/12852

41/54

"Fle Edt Objéci' Search, Yiew Select Opfions Tools Help 7) o 4
BlSEL|2eXhE | S QRED |4 8|0 |8 | w8 F

[B8 package1 | | . . ‘ B
Slioid SRR S— E o 4006
- con ==moment-intetvals» ’ /‘

ProductPrice 4002-\ interface

| -validStarting:Date R I ProductPriceinterface

|-notvalidafierDate - E o +operationt(AmtBigDecimal):Bigl
~price:BigDecimal’

' -price@iy:lntﬂ

“|-priceUOM:int=1
+ProductPrice(start:Date,end:Date,
. .| *makeProductPriceQvold L interface
N +¢a|cPriceFoery(q:int);BigDecimal , B . |SubClassProductPrice mterfacezl
. |#isvalidonDate(date:Date)hoolear [-
+getPrice(:BigDecimal ‘
+setPrice(aPrice:BigDecimalyvoid
+getPriceQtyQ:int))
+setPriceQiy(aPriceQiy:inf):void | ‘ "‘—I

gEae

TN

b}

*,

~,
s

package2

E 4004'/

EF-:

[

! = [Ases ProduotSaleMomt. Product, ProductDese

= fpersiztent 491\0

*7 , 3;
public class ProductPrice gjrple:nents ProductPriceInterface { ! : ‘—

a

= Consttuctors

I

[[»]

: leductPrice.java') RERS S R R 1
& 61l — R~ T = [

WO 01/82072

4106

)

Link Error:
Source
element

not a class

or interface

element an
interface

[

element an
interface
?

Y 4112
[

"inheritance” link
to other element

Link =

interface

4110

element a
class?

PCT/US01/12852

FIG. 41

element an

interface
?

element a

4118
[
Link =

"inheritance" link
to other element
class

Link =
"implementation”
link to other
element
interface

4122

Link Error: First
Element
interface can
only inherit from
another
interface

.

Link Error: Class
can inherit from
another class or
implement an
interface

v

End

WO 01/82072

4200

43/54

FIG. 42

PCT/US01/12852

: Togethel4-— CashSales
iFYle Edrt Object, Search Vlew Select oghons Tools Help '

0 [mhﬂﬁ?}

IR

p

s,

BO

S

*,

e

Er] Y

QEDIoE XD lllé&lﬁar_rutﬁl°9lll I#JCFiﬁ

| @008 2 F

e
| 33 packaget.|

=<moment-interval>»
ProductPrice

-valigStarting:Date

|| -notvalidAfter.Date
-price:BigDecimal
-priceQty:int=1
-priceVOM:int=1 -

+ProductPrice(start.Date, end:Date,
+makeProductPrice(:void
+calcPriceForQiy(o:int):BigDecimal

+getPriceQ:BigDecimal
+setPrice{aPrice:BigDecimal}void
+getPriceQiy(:int

; ‘+setPrIcthy(aPrIceQW:int):void

5

i +isValidOnDate(date:Date)booleat [

interface
ProductPriceinterface

interface
interface

+operationt (Amt:BigDecimay):BigL

4208~

z
Noso
4202 /4206
N/

Tr;te face
SubClassProductPrice Interface2
4204—/
package2

[

[l [»]
/% Generated by Together =/ "M
424 a
package packagel: [j\o \
public interface Intexface2 extends ProductPricelnterface {
}
|
[4 Iy
| Urterface2 java] o . .
[Franress] ||] T neert W e) cokn
JFPUUPUNEURISUUUIS [SV -y~ Sa S PR R H

WO 01/82072

; Together 4 -- CashSales ; - —TET]

"Flle Edt Object Search 'View Selsct Options Tools Help

/4300

44/54

PCT/US01/12852

- FIG. 43

BNl 7|

N

»,

B

v”
.

% o5

:

BEC

o

e
[B2 package? |

<zmoment-intetval=»
P(udutftPrice

-validStarting:Date
-notvalidafter:Date -
| -price:BigDecimal
-priceQtyiint=1
-priceU0M:int=1

+makeProductPrice:void

| +getPrice(:BigDecimal

+getPriceQiy(:int
_ +setPricthy(aPrlce:Qw:int):void

-| +ProductPrice(startDate,end:Date, |-

- *+céIcPrIceFoery(q:int):BigDetiﬁﬁa! v
A ﬂ'[s\!alldon‘Date(date:‘Data):buclllear‘ =<

+setPrice(aF’rlce:BlgDecimlal):yoid'

B GEHDI S XnD M AEER ¢ E e BINI @I WEF

4306

N

interface
ProduciPriceinterface

interface
nterface?

+operationt (Amt.BigDecimal).Bigl

4302

SubClassProductPrice

interface
Interface2

4304~
B

ipackage2

i

| AT

/% Generated by Together ¥/
package packagel;

public intexrface Interface2
}

4310

-

extends
<4

Interfac

312

e} {
4314

[»]

{1

1]

) linterface2 java ,)

R)| reen)| me |l oo

WO 01/82072 PCT/US01/12852

45/54

FIG. 44

f 4402
Receive an identification of a first element
¥ 4404
Receive an identification of a second element (
4406

13 4

Receive indication that the first element is to be included in the second element

Are first

and second

elements a class or
interface?

4414

4410
v

Move source code
corresponding to the first
element within the source code
corresponding to the second
element.

Is first
element a class
or interface?

|s second
element a

|s first
element a
package?

4418
\ Y

Move a file that includes
source code associated
with the first element to a
directory associated with
the second element

Is second
element a
package?

4424
A

' 4412
K

Move a first directory
associated with the first
element within a second

directory assaciated with the
second element

Modify graphical representation
of the second element to
reflect movement of source
code corresponding to the first
element

]

End

WO 01/82072

4500

£ Together 4 -- CashSales

PCT/US01/12852

46/54

FIG. 45

[-]O]x]

- File - Edit Objec:! Search . View Saled Ogﬂuns Tools Help

lm@«;~:lxam(ee(@f@'{*tawlrgmﬁiﬂlwl@lmref

S =) Directory
1# €9 Currert Project
@ @c
H & 0N
@@ EA
H S F
B @Ln
B @ N
Fl @PA
@ an
23] R\
® S
& TA
1 &) Samples
B Sjave
2 &3 CashSales
£ DataManagemert
& & packaget
&) package2
1 9 package3
/’_@ Class3java
i Intertacet java
45 13 O Intertace2java
[E] packaged dtPacka
7 package1 dfPacka;
ProductPrice java
ProductPricelnterta
SubClassPraductPr{ |
3 ProblemDomain
451 2 # €9 Userintertace
CashSales pr
[cashSales tws
Class1 Java
Class1.operationt(1).df
3 Class1.operationd (1).df
Decorstor java v

2 19

>

17 o sl g

N\

"

NN

28 packaget

<<momenl—intewal>>
ProductPrice interface
~validSlarting:Date ProductPriceinterface
_|-notvalldAfter.Date
-price:BigDecimal +operation1(Amt:BigDecimal).Bigt
-pitcaQlyint=1 «
-priceUOMInt=1 4508 4506\
: +P‘ro«ductPrIc‘e(start:Date.end:Date. ‘ \
+makeProductPrice(:vold . Class3
+calcPriceForQty(q:int):BigDecimal | SubClassProductPrice
+sValidOnDate(date:Date):boolear <] l
+getPrice(:BigDecimal L el -
' | +setPrice(aPrice:BigDecimal).vold . !
2| +getPricsQiyQ:int M ' M ;
+setPriceQty(aPriceQyint):void
: ackage3 package2

1r)

jpublic class Class3 { B N —
}

4504 4514

I3

rqL(:Ieass&]aveu '

]
Bl

Inseit Lo . Cof 1

WO 01/82072

€l Together 4 - CashSales T
' File Edit Ob]ect Search - Vlew Select o@lons Tools..: Help

47/54

FIG. 46

PCT/US01/12852

[SS packaget I

%“"W - l;; <<moment-interval=> ~
4] rre| e
g (C:lir i Profect % : .ProductPrlce interface
H @ D =1 -validStarting:Date ProductPricemnterface
& EA e= -notvalidAfter:Date
& FA -price:BlgDecimal +operstiont (Arnt:BigDecimal).BlgL
H &L @a -pricaQiyiint=1
€ M = | |-pricelon:int=1
B &P A / 4606
18 an +ProductPrice(startDate,end:Date,
W 3R\ 4 +makeProductPriceQ:void -
& s 2 +calePriceForQiy{o:int):BigDecimal SuhiClassProductPrice
H & T 0 +isValidOnDate(date:Date):hoolear =7} _
& & Samples o IR A -
8 < jave | +getPrice(:BigDecimal 4608,—-_+Classd - -
12 & CashSsles il +setPrice(aPrice:BigDecimal).void
£ DstaManagemert T | roetPriceQtyQ:int
B &J packagel +setPriceQiy(aPriceQty:int):vold / 46
¥ £ package2 C. package3 package2
£ package3 R
Interface1 java
interface2 jave
B packagei dfPackage
] package dfPackage.wmi P
By ProductPrice Java T5]—'
ProductPricelnterface java
B subClassProductPrice Jave : .
] @ ProblemDomain =~
4612 @ £ = Userinterface o wblic class SubClassProductPrice extends packagel ProductPrice {
7| CashSales dpr o /" jpublic class Class3 { :
CashSslesiws 46)4%)
Class1 Java Rl
Class1 operationt (1).dfSequen \\)
[Class1 .operationt (1).dfSequen)
Decorator Java) 1>
‘ defautt dfPackage < [KIE L]
< o T [T subClassrioducteiice Java |
BB | ()| 1 msert 1 tm2z][ol]

WO 01/82072

//*4700

iIE] Together 4 - CashSales

48/54

FIG. 47

iFlle Edit - Object Seerch Vlew Select - Ogtions * Tools‘; Help

'E"b@“‘ﬂhlf?lleﬁl@@?@lé|a§lw\::@»v|w|@l% By

PCT/US01/12852

(B3 packaget l

Dlrectory
i £9 Current Project
& CA
on
EN
& F:\
Ly
N:A
Py
[eRY
R
&3 S
T
&J samples
& Hjava
2 & CashSales
B 9 DstaManagemert
& & packagel

4704 ﬁ package2

9 package3
Intertacet java
Interface2 java
B1 package1 .dtPackage

3]
E:]

[t}

4702
4712

ProductPrice java

® 9 Problembomaln

57} Userlrterface
CashSeles tpr
CashSalestws
Classt java

Decorstot jave

package2.dfPackage
SubClassProductPrice J

[package1.diPackage.wimt

B ProductPricelnterface java |

Class1 operation?(1).dfSequend .
[class1 .operstiont (1).dfSequen

<

Pl i

“@Em‘mmﬂ?}ﬂ

RN M

"' :

oo

.

)

<<moment-interval>>
ProductPrice

-validStarting:Date
-hotValidAfter:Date
-ptice:BlgDecimal
| -priceQty:int=1
-pricelJOM:Int=1
+ProduciPrlca(start:Date,end:Data.
.| +makeProductPrice(:void ‘
+calcPriceForQty(a:int):BlgDecimal
" | +isValidOnDate(date:Date):boolear |,

interface
ProductPriceinterface

+operationf(Amt.BigDecimal).BigL

fgptPrlceQ‘:algDec[mal ' 47006
+setPricel(aPg'lc‘e:BIgDeclmal):volq
+getPriceQtyQ:int ——l L Ld -
+getPriceQiytaPriceQty:intyvold
package3 package2 J
?ubclassProductPnce
[l 3
AAEEDCLASS ProductPrice e

public class SubClassProductPrice extends packagel,ProductPrice { g
public class Class3 {

[«

[}

\subclassProductPrice Jave |

BB

oecoes T 11T} MRS

A et]

[Towar][oty |

WO 01/82072 PCT/US01/12852

49/54

- FIG. 48

' File Edit Object Ssarch View Select Ogﬁons Tuols Help

Blg IEiI@f’lXﬂﬁ[ﬂl&H@rr@l%lrﬁl IR T

0 e oo . rBS package |
& ‘g"‘?"’ymp - l:'; <<maoment-interval»»
fL:.l (=] c?\rre A) % ! ProductPrice interface
& D -validStarting:Date; ProductPricelnterface
EA = ;-nutValldAner:Date)
@ LN & | -price:BigDecimal)] +operationf(Ami:BigDecimal):Bigl
B @ N ga | |-priceQiyint=1
g g 2_‘\ =L | -priceUOMInt=1
H @ R\ 2 | T+ProductPrice(startDate,end:Date,
s 7 +makeProductPrica(:void
#H & T +calcPriceF orQiy(orint):BigDecimal
o . Y L :
E ﬁ Sémj'::: z +isValidOnDate(date:Date):hooleat
" B & CashSsles " [+getPrice(:BigDecimal
9 DeteManagement ! +setPrica(aPrice:BigDecimal)void 48 02
B & packaget | +getPricadiyoint.) [
__%Pﬁ‘?kﬂge?’ . +setPricthv(aPnceQw int): vold .
4712 /@ package2 Jackage3
package3.dfPackege

4 704 Intertacet java

Interface2 java
1 packaget dtPackage
packagel dtPackage. wmt
ProductPrice java
ProductPricelnterface java
) ProblemDomain
¥ £ Userintertace
CashSales tpr
[CashSelestws
Class1 java i
Class1 .operstion1(1).dfSequence
[Class1 .operationi (1).dfSequence:
B Decarator java '
B defaut.dfPackage
[defautt dtPackage.wmf

W ‘,' i package? |

[

[r]

]

»

q

i T Untied |
-.QC’leagrampeckagﬂ o EEEERI 0 msert 1 ond Y cor |

WO 01/82072

PCT/US01/12852

50/54

FIG. 49

Receive an identification of a first element within a second 4902
element

Y

004
Receive indication that the first element is to be removed from 4
within the second element

4920 Y code corresponding
element a to the first
ackage?” 4918 i i i
Is first p g \ ‘ element in a first file
element a Remove a first file that
package?

Is second

element a
package?

4924
Y

elements a class

Are first

and second 4908

v

Remove source code
corresponding to the first
element from within the
second element to a first
file

! [

Placing source

or interface?

Is second

includes source code
corresponding to the first
element from a directory
associated with the
second element to another
directory

, v/

Display graphical representation of the
source code corresponding to the first
element

4910

Remove a first directory
associated with the first
element from a second
directory associated with the
second element to a third
directory

'

Modify graphical representation of the
second element to reflect movement of
source code corresponding to the first
element

J

y \\\4912

End

4909

WO 01/82072

5000

51/54

FIG. 50

PCT/US01/12852

Tgelhex 4 -- CashSales
‘Flé Edit Object 'Search' View Select. Ogtions Toals --Help

-mlg@lxub-leenﬁr@'r-wlglgzay»plm@lww s

f (2% packagel]
) ' F‘Z <<moment-interval>»
Fﬂ] (C:L{rrem Prolect By ProductPrice Interface
@ @ 0y valldStarting:Date ProductPriceinterface
& E = -notvalidAfter.Date
o) LA B | |-priceBigDecimal +operationt (Amt.BigDecimal.Bigl
B @ N . ga-|. |-priceGlyint=1
IL:J] Z.\\ =1 |-priceUOMint=1 5008\
[a R\ ~ +ProductPrice(start.Date,end:Date, subClassProductPrice
B sy / 1. | +*makeProductPrice(:vold
B & T #talcPriceForQy(g:ind:BigDecimal <3
. ol Anb:
= ﬁsém_p]fs [z ‘| #isvalidOnDate{date:Date):boolear '+?[3353 - o
- ava '
5 Ja Cashsales (N || +getPrice0:BigDecimal 5006—/
B 7 DataManagement = +setPrice(aPrice:BigDecimalyvold]]
B &3 packagel | +getPriceQiyQ:int - V_"I
£9 package2 +setPriceQtytaPriceQly:intyvoid
1 % package3 P package3 package2 50 1 O
) Irterfacet java s
Interface2 java 22
2] package! .dfPackage)
[0 packeget dfPackage.wmi B¥ 5002
ProductPrice Java ' _— -
ProductPricelrtertace java T ol
& SukClassProductPrice java
501 2 #® 9 ProblemDomain N
9 Userlnterface iLM
CeshSales tpr : fubllc class 3ubClassProductPrice extends packagel.ProductPrice {]
glashiajles.lws 5(' 14# public class Class3 {]
asst java i
Class1 .operationt (1).dfSequend 4 501 6
[[1 Class1.operation? (1).dfSequeng 500 4
Decorator java
default.dfPackage
detault.dfPackage wimt I~
4 ol 2]
[" nset 1 U Y

WO 01/82072 PCT/US01/12852

52/54

FIG. 51

9100

Bl Together 4 -- CashSales
FIIe Edt Oblect Seerch View Selec’t Ogﬂons Toals Help

EIELIE &% e lesliﬁﬂ‘-w'l@l NI Iv-arer-y— i
| B packaget

B g Déegtorymp et F: <smoment-interval=>
[+ urre roje +
B P B - ‘PmductPnce interface
I & D = | -validStatting:Date ProductPriceinterface
&= BN =11 [-notvalidAtter.Date
m® Ly A -price:BigDecimal +operaboni(Ami.BigDecimal).BigL
B &Ny e -priceQtyint=1 51 06
&P = | |-priceuomint=1 -\
& an p
#H & RA +ProductPrice(start:Date,end:Date, SubClassProductPrice
€3] S / | | *makeProductPriceQuvoid
B @ T ,// .| +calePriceF orQiy(q:int):BigDecimal]
& & Samples % | | +isvalidonDate(date:Date):boolear | -
B & java o Gty
B) €9 CashSales | | +etPriceQ:BigDecimal 5104\ Class3
® 9 DateManagement =k +setPrice(aPrice:BigDetimal)vaid '
& & package1 i +getPriceQiy(:int ——' F—I
o o =l
@ EJ package2 = +setPriceQiy(aPriceQiy.in:void
£ package3 s . package3 packaye2
Class3java # :

B Intertacet Java
51 02 Intertace? Java
[] package1 dtPackage
[T} packagel dfPackage.wmf
By ProductPrice Java
[ProductPricelnterface java

/—-—. SuhClassProductPrice java

9 ProblemDomain
501 2 # E3 Userinterface
[5) cashsales tpr

g;ss}ja;;tws) jpublic class Class3 {) =

Class1 .opereﬂom(‘l).deequenJ)
[class1 .operstiont (1).deequenq
Decorator Java

B] default.dfPackage

g a5

[»]

/JENDCLASS ProductPrice

4

1»] nClass&}ava , .

BB

WO 01/82072 PCT/US01/12852

53/54

5200 FIG. 52

oge Y
CEilk Frt Objeet Search View' Selent Opfinns Tonls Help
,mgntalss lxullmlﬁﬁlr‘m«%l@
I : l 28 paclaged |
& EnN ol F':;._
£ L\]
H & hA % . QZ@_
m D P &
Q@
W ED R A
SA i =
Ty amn |
0 & Somplos A
= & java N
& < CashSsles N P 5204
£9 Dstahianagement o /
B & package! f“?f I
= &) package2 " package2
5208 B package2 dfPackage ol +Sub assh oductPnce
SubClassProductPrice java | = C\ o _
5206 ® £ packege3 ~ . 5202 ~{
— = T Y
:i H Ingert L Ln '1_"3! solwlmj

e 5300 FIG. 53

[Toocther 4 CoshSales
~Ele Edit Objsct Search View Select Options . Tools Help

B Ig l O l§> el% % B lm@lr‘-w G e T 0 | | B T

= i [B5 packagel |

-
Fl 0 T\
£ & Samples

0 <A java

El &) CashSales 5306
1] DataManagement —
531 O/’;—:E-S] packaget -I /
5302 /ﬁ_ﬂ package? package?
5208] package? dfPackace

] package3
l% Interfacel java
Interface 2 java
E} pochayet APackaye

/ 5304

—
SubClassProductPrice

[package1 dfPackage wmi | - — '
EY ProcluctPrice java : v +Class3
5206 ProdluctPricelntertace java ‘ = -
§ SubClassProductPrice java j |
N B BT [v]
BRI L [[ieeet |1 et [ekt |

WO 01/82072 PCT/US01/12852

54/54

5400 FIG. 54

L-:' Tgether 4 -- CashSales S A Ni=E3
L File Edit cijsetSesrch 'View Select Mptions Tools™" Help
EEIaE IMe @ lé‘é i35 II%IEITI|%Im [B0 @ w2 T
1 ; . r 2% packaged
B & St ey | =]
EPTA
B £ Samples By
B & juva | p— n
2 £ Cashlalrs ‘
£ Dalabianmgene il F1
= L& parkaget R
1= & puchayed .Ef ‘
5408 = parkage? ‘
5406/1b_E| packuyed UPuckaye 7 I
Y Irterfacet java |7 _packaged_
By ller fuue2 jova P
[ﬂ parkagel dfPackange ?_" Fy&gge__}
: packaye ! JdiPackuge vl i “ .
ES PraductPrice java .
: E) PruduulPriveliler fuue juva =]
: lj SubClassProductPrine java :‘“ . -
Y| R RS
III))| I nset J [T e T cee 1)

55

5500 o FIG.

& Together 4 - CashSales
¢ File; . Edit. Object Search 'v’lew Seleck Options:, Tools Help'

L \f‘

EEInEICra=

fBE package]

€2} TA
El & Samples
Bl & java
B & CashSales
9 Dataianagement
=] packaget
5510 —&~J package2

mackage?

0 [ﬂm‘m‘}ﬂ'

=<4 package3
55508 package3.dfPackage -~ _—I
506 Interfacet java o package3
Interface2 java -
packagel .dfPackage ‘ f‘?f
package! .dfPackage wmt -

ProductPrice java
ProductPricelnterface java
SubClassProductPricejava |3

(] B |-+~ | 11| I

INTERNATIONAL SEARCH REPORT : wdonal application No.

PCT/US01/12852
A, CLASSIPICATION OF SUBJECT MATTER
IPC(7). . GO6F 9/445
UsCL : 1173

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 717/3; 703/13; 717/11; 71715

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Internet - www.google.com & www.hotbot.com

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Please See Continuation Sheet

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y Unified Modeling Language (UML) UML BOOCH & OMT 1-183

Quick Reference for Rational Rose 4.0.

Y Rational Rose Corporation, Rational Rose Release 4.0 (November 1996) "Using Rational | 1-183
Rose 4.0" Chapter 3-11, pages 11-207.

Y Object-Oriented Software Bngineering A Use Case Driven Approach (1996) Jacobson, 1-183
Ivar, Part I Chapters 1-5, Part II Chapters 6-12, Part III Chapters 13-16, pages 1-500.

Y USPN 5,761,511 (GIBBONS ET AL.} June 02, 1996 (02.06.1996) see cols. 1-28. 1-183

Y USPN 5,924,098 (KLUGE) July 13, 1999 (13.07.1999) see cols. 1-10. 1-183

Y USPN 5,680,619 (GUDMUNDSON ET AL.) October 21, 1997 (27.10.1997) see cols. 1-183
3-72.

}I‘ Further documents are listed in the continuation of Box C. D See patent family annex.

K Special categories of cited documents: “T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A” document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
“Xn document of particular relevance; the claimed invention cannot be
“E” earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L” document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “y” document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“Q” document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“P” document published prior to the international filing date but later than the “&" document member of the same patent family
priority date claimed .
Date of the actual completion of the international search Date of mailing of the international search report
June 02, 2001 (06.02.2001) 09 AUG 2001
Name and mailing address of the ISA/US Authorized officer
Comumissioner of Patents and Trademarks Mark R. P " O
Box PCT ark R. Powe] %l O /{
Washington, D.C. 20231 \ 6 5 ‘
Facsimile No. (703)305-3230 Telephone No. (703) 308-39G0

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT r aonal application No.

PCT/US01/12852
C (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT
T
Catggoxy"“ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
USPN 5,581,760 (ATKINSON ET AL.) December 03, 1996 (03.12.1996) see cols. 1-69. 1-183
Y USPN 5,682,536 (ATKINSON ET AL.) October 28, 1997 (28.12.1996) see cols. 1-71. 1-183

Form PCT/ISA/210 (continuation of second sheet) (July 1998)]

INTERNATIONAL SEARCH REPORT - matjonal application No.
PCT/US01/12852

Continuation of B. FIELDS SEARCHED Item3:
WEST - US Patents Full-Text Database, US Pre-Grant Publication Full-Text Database, JPO Abstracts Database, EPO Abstracts

Database, Derwent World Patents Index, IBM Technical Disclosure Bulletins.
Terms: version control system data processing link$, etc., etc., efc. ...

Form PCT/ISA/210 (extra sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

