130585 A2 | IV 0 000

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 December 2006 (07.12.2006)

lﬂb A 0 00O

(10) International Publication Number

WO 2006/130585 A2

(51) International Patent Classification:
GOGF 21/24 (2006.01)

(21) International Application Number:
PCT/US2006/020875

(22) International Filing Date: 26 May 2006 (26.05.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/686,671 1 June 2005 (01.06.2005) US

(71) Applicant and

(72) Inventor: DREWS, Dennis [US/US]; 9641 N. 36th Av-

enue, Phoenix, AZ 85051 (US).

(74) Agents: ROGERS, David, E. et al.; Squire, Sanders &
Dempsey L.L.P.,, Two Renaissance Square, Suite 2700, 40
North Central Avenue, Phoenix, AZ 85004-4498 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, L.C, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: DATA SECURITY

B (57) Abstract: Data Security methods, computer programs, and systems for encrypting and decrypting data, process sharing, and
& redundancy. The invention provides techniques for encryption including the encryption of a structured data file where each smallest
& unit of the data file (e.g., a field in a database record) is encrypted separately. The invention also provides techniques for decrypting
such an encrypted data file. Requested fields of data are decrypted, stored in temporary memory, and displayed to the user or used
to complete a task. Once the display is over or the task is completed, the decrypted data in temporary memory is deleted. The
invention also provides techniques for real time process sharing and redundancy that utilize system characteristics to determine the

=

apportionment of processes.

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

DATA SECURITY
Cross Reference to Related Applications
This application claims the benefit of U.S. Provisional Application No. 60/686,671

filed June 1, 2005, the contents of which are hereby incorporated by reference herein.
DESCRIPTION OF THE INVENTION
Field of the Invention

The present invention relates generally to data security, and more specifically to a
method, system and computer program for encrypting and decrypting data, process sharing,
and redundancy.

Background of the Invention

Currently, data and identity theft are large threats to individuals, corporations,
governments, and other organizations. Data stored on Internet servers, home personal
computers, and business governmental databases are all targets. Conventional solutions for
data protection have generally been unacceptable in preventing data and identity theft.

Conventional methods and techniques for protecting data typically involve one or
more layers of protection designed to prevent access to data. Such layers of protection may
include identification cards, passwords, firewalls, biometric identification, and other
techniques to verify that an entity (“e.g., an individual or other electronic device) attempting to
access the data is allowed to view, use, and/or obtain that data. However, if these layers of
protection are circumvented, a thief often gains access to data that is easily copied and
interpreted. This is because conventional data security techniques often only protect access
to data, but leave the data itself as plaintext (i.e., unencrypted).

The encryption of data is well known, however conventional encryption techniques
for databases are often impractical. This is especially the case for large databases. Entire
databases may be encrypted, but the process for accessing and updating such an encrypted
database becomes impractically long. As such, live data (i.e., data that is potentially or
currently in use) stored on databases is often left unencrypted. Conventional encryption
techniques have also been applied to backup data files and transmitted data.

Data backup is another important aspect of data security. Data is typically stored in
more than one location in case one location suffers a catastrophic failure. However,
conventional data backup systems often only back up data at predetermined intervals (e.g.,
once every day). As such, data that is newly stored between backups is vulnerable to being
lost. In addition, when utilizing other computer systems only as backup systems, their

resources are essentially wasted in between backup cycles. Shorter backup intervals may be

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

employed, but this typically results in an unacceptable lowering of computer performance,
especially when either the main computer or backup computer is experiencing heavy usage or
network delays. |

SUMMARY OF THE INVENTION

In view of the foregoing, the present invention provides a method, system and
computer program for data encryption and decryption, process sharing, and redundancy.

According to various aspects, the present invention provides methods and techniques
for encrypting data into and decrypting data from a data file. The data file may be any file
that has one or more definable locations for storing data. As one example, a data file may be
a database that contains multiple records, each record having one or more fields for storing
data. Rather than encrypting the entire database as a whole, each field or record (or group of
fields or records) is individually encrypted using any data encryption techniqué. Each field
may be encrypted with its own unique encryption key(s). Data stored in such a data file is
encrypted and not plaintext, and as such, theft of such an encrypted structured data file
becomes less worrisome since breaking encryption codes is enormously difficult.

Decryption of the encrypted data stored in such a data file may be handled field by
field or record by record. As such, decryption of such an encrypted data base is typically
faster than decrypting a database that was encrypted as a whole. This is because users
typically only desire to access a few fields or records in the database at a tinle and not the
whole database. As such, when specific data is requested from the encrypted database, only
those fields and/or records that were requested are decrypted. This is possible because each
field (or groups of fields) were encrypted individually.

According to one aspect of the invention, users of a system are associated with
certain decryption keys. As one example, users may be associated with decryption keys
through a user profile stored on a computer. When a user accesses the system (e.g., through a
password or other identification means) that user would be allowed to access predetermined
types of fields and/or records that are able to be decrypted by that user’s associated
encryption/decryption keys.

According to another aspect of the invention, in order to further discourage data
theft, data accessed by a user is not permanently saved at any location in plaintext. Rather,
the decrypted plaintext is displayed on a screen and/or saved in temporary memory until the
user’s task is completed. Then the decrypted plaintext is deleted. In this way, even if a thief

had obtained access to an authorized user’s account, the thief would only have access to the

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

types of data (e.g., certain predetermined fields and/or records) that user was authorized to
access. In addition, a thief would only be able to visually view the plaintext data and would
not be able to copy plaintext data electronically.

According to yet another aspect of the invention, the encryption/decryption
techniques may be employed through a distributed computer system. That is, one or more
requesting devices may request access to and/or update encrypted data that is redundantly
stored on one or more server computers. When requesting access to data and/or an update of
the encrypted data, each requesting device determines which of the one or more servers is
able to handle the request. The determination may be based on the current load of the server,
expected network delays, a time to reply to the determination, a time to send the request to
the server, and/or a time to execute the request. If it is determined that a server does not meet
certain predetermined thresholds, the requesting device skips that server and then performs
the determination on other servers until it finds one able to handle the request.

In addition to this real time process sharing, other aspects of the invention include
real time redundancy processes. For example, a request (e.g., a request to amend or add data)
that is handled by one server is sent by that server to each of the other servers in the
distributed system so that each server may have identical data.

According to one embodiment, the invention provides a method of creating a data
file containing encrypted data. The method includes the steps of receiving a plaintext data
file having one or more data structures, each data structure having one or more fields
containing plaintext data, encrypting each field of plaintext data with an encryption algorithm
to create encrypted data, creating an encrypted data file, and storing the encrypted data in the
fields of the encrypted data file.

According to another embodiment, the invention provides a method for decrypting
an encrypted data file. The method includes the steps of providing an encrypted data file, the
encrypted data file having two or more data structures, each data structure having one or
more fields containing encrypted data, receiving a request to decrypt encrypted data in one or
more of the fields, decrypting the requested data into plaintext data, and displaying the
decrypted plaintext data.

According to yet another embodiment, the invention provides a method for sharing
processes among two or more networked computers. The method includes the steps of (1)
receiving a request to execute a process, (2) determining if a networked computer N is within

a predetermined activity threshold, (3) executing the process with the first networked

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

computer if it is determined to be within the predetermined activity threshold, and (4)
repeating steps (2) to (4) with respect to networked computer N+1 if networked computer N
is not within the predetermined activity threshold.

According to another embodiment, the invention provides a method for redundantly
storing data among a plurality of networked computers. The method includes the steps of
executing a process on a first computer, wherein the process amends, adds, and/or deletes
data stored on the first computer, determining if any of one or more of a second group of
computers, other than the first computer, are within a predetermined activity threshold,
sending instructions to execute the process to each computer of the second group of
computers determined to be within the predetermined activity threshold, and placing
instructions to execute the process in a queue for each computer in the second group of
computers determined not to be within the predetermined activity threshold. The method
may further includes the steps of executing the queued process in the second group of
computers determined not to be within the predetermined activity threshold if they return
within a predetermined activity threshold before a predetermined length of time, and
replacing all data stored on the second group of computers determined not to be within the
predetermined activity threshold with data stored on one of the plurality of networked
computers that is within a predetermined activity threshold if the predetermined length of
time has elapsed and processes remain in the queue.

It is to be understood that the descriptions of this invention herein are exemplary and
explanatory only and are not restrictive of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of one embodiment of the invention in its normal

operating environment.

Figure 2 of a block diagram of a computer system.

Figure 3 is a functional block diagram of data security module according to one
embodiment of the invention.

Figure 4 is a flowchart of a check tolerance function according to one embodiment
of the invention.

Figure 5 is flowchart of an ODBC search function according to one embodiment of
the invention.

Figure 6 is a flowchart of a Post Events function according to one embodiment of the

invention.

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

Figure 7 is a flowchart of an ODBC pack function according to one embodiment of
the invention.

Figure 8 is a flowchart of an open database function according to one embodiment of
the invention.

Figure 9 is a flowchart of a close database function according to one embodiment of
the invention.

Figure 10 is a flowchart of an ODBD read function according to one embodiment of
the invention.

Figure 11 is a flowchart of a structure read function according to one embodiment of
the invention.

Figure 12A is a flowchart of a save ODBD function according to one embodiment of
the invention.

Figure 12B is a continuation of the flowchart for the save ODBD function according
to one embodiment of the invention.

Figure 13 is a flowchart of a save structure function according to one embodiment of
the invention.

Figure 14 is a flowchart of a redundancy server status function according to one
embodiment of the invention.

Figure 15 is a flowchart of a server tolerance function according to one embodiment
of the invention.

Figure 16 is a flowchart of an assume processes function according to one
embodiment of the invention.

Figure 17 is a flowchart of a restore processes function according to one
embodiment of the invention.

Figure 18 is a flowchart of a decryption function according to one embodiment of
the invention.

Figure 19 is a flowchart of an encryption function according to one embodiment of
the invention.

Figure 20 is a flowchart of a read communications function according to one
embodiment of the invention.

Figure 21 is a flowchart of a write communications function according to one

embodiment of the invention.

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

Figure 22 is a flowchart of a create socket function according to one embodiment of
the invention.

Figure 23 is a flowchart of an accept connection function according to one
embodiment of the invention.

Figure 24 is a flowchart of a close socket function according to one embodiment of
the invention.

Figure 25 is a flowchart of a route check function according to one embodiment of
the invention.

Figure 26 is a flowchart of an alarm even processing function according to one
embodiment of the invention.

Figure 27 is a flowchart of an access control processing function according to one
embodiment of the invention.

Figure 28 shows a schematic of a Data Security system according to various aspects
of the invention.

Figure 29 shows a schematic of a Data Security system with example requesting
devices according to various aspects of the invention.

Figure 30A is a flowchart showing steps for creating encrypted data according to
various aspects of the invention.

Figure 30B is a flowchart showing steps for creating pointers to encrypted data
according to various aspects of the invention.

Figure 30C is a flowchart showing steps of creating an encryption key data file
according to various aspects of the invention.

Figure 31 is a visual representation of a relational database.

Figure 32 is a visual representation of a structural database.

Figure 33A shows the data flow for creating an encrypted data file according to
various aspects of the invention.

Figure 33B shows the data flow for creating a pointer data file according to various
aspects of the invention.

Figure 34A is a flowchart showing steps for decrypting data according to various
aspects of the invention.

Figure 34B is a flowchart showing steps for decrypting data using a pointer data file

according to various aspects of the invention.

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

Figure 34C is a flowchart showing steps for decrypting data with
encryption/decryption keys associated to a user according to various aspects of the invention.

Figure 34D is a flowchart showing steps for decrypting data with
encryption/decryption keys associated to a user through a logon process according to various
aspects of the invention.

Figure 35 shows a flowchart of a process sharing method according to one

- embodiment of the invention.

Figure 36 shows a flowchart of a redundancy method according to one embodiment
of the invention.

DETAILED DESCRIPTION

Reference will now be made in detail to the present exemplary embodiments of the
invention, examples of which are illustrated in the accompanying drawings.

The present invention provides a method, system and computer program for data
security, including encryption and decryption techniques, process sharing techniques, and
redundancy techniques.

Figure 28 shows a schematic of a data security system according to various aspects
of the invention. The methods, techniques, and systems for encrypting and decrypting data,
process sharing and redundancy are preferably performed in utilizing a computer system,
including a networked system with one or more computers and/or data processing devices.
As shown in Figure 1, one example system may include one or more servers 1 that each
contains a data storage unit 2.

Servers 1 may be any type of computing device including personal computers,
network servers, and/or purpose-built machines for performing the methods of the invention
described below. The one or more servers 1 may be connected to each other in any way that
allows for the transfer of data and/or instructions, including connections via a local area
network (LAN) connection 5, a wireless connection 4, and/or an Internet/ WAN connection 6.
These connections allow the redundant storage of data on all of data storage units 2 as well as
for process sharing.

Data storage units 2 may be any type of media for storing data. Such media may
include flash memory, hard disk drives, optical drives, magnetic tape, CD-ROM, DVD-
ROM, rewriteable CD’s, rewriteable DVD, etc. The data stored on data storage units 2 is
preferably encrypted according to methods and techniques and are preferably in a data format

as is described in more detail below.

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

Servers 1 may be connected to one or more requesting devices 3 through any
connection that allows for the transfer of data and/or instructions. Such connections may
include a LAN connection 5, wireless connection 4, and/or Internet/ WAN connection 6.
Requesting device 3 is any device capable of requesting access to, update of, and/or some
manipulation of data stored on data storage units 2. In this regard, servers 1 may also be
requesting devices. Servers 1 may request access to, update of, and/or manipulation of data
stored in a data storage unit contained in the requesting server or in another server connected
to the system.

Figure 29 shows a schematic of a data security system with example requesting
devices according to various aspects of the invention. Requesting devices 3 may include
personal computers 7, kiosks 8, dumb terminals 9, automatic teller machines (ATM) 10,
personal data assistants (PDA) 11, cell phones 12, access card readers 13 or other electronic
devices 14. The following are some example implementations utilizing the requesting
device. These examples are demonstrative and only, and in no way should be interpreted to
limit the scope of the invention.

Personal computer 7 may be used for accessing a user’s credit card data stored on a
server (e.g., the server of a credit card company) connected to the personal computer through
a LAN and/or Internet/WAN connection. Kiosk 8 may be used to allow a user to access
flight and boarding ticket data stored on a server (e.g., the server of an airline) connected to
the kiosk through a LAN or Internet/ WAN connection. ATM 10 may be used to access a
customer’s bank account data stored on a server (e.g., the server of a bank) connected to the
ATM through a LAN or Internet/WAN connection. PDA 11 or cell phone 12 may be used to
access a user’s e-mail stored on a server (e.g., an e-mail server) connected to the PDA or cell
phone through a wireless and/or Internet/WAN connection. Access card reader 13 may be
used to request verification of a user’s identification information (e.g., a magnetic card) to
entry control data stored on a server connected to the access card reader through a LAN
and/or Internet/WAN connection.

As discussed above with reference to Figures 28 and 29, the data security methods
and techniques of the invention may be implemented in a computer environment, through
software programs and/or purpose-built hardware units. Figure 2 shows an exemplary
hardware configuration of a computer system 200. Computer system 200 has one or more
central processing units 202, such as a microprocessor, and a number of other units

interconnected via a system bus 204.

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

The computer system shown in Figure 2, computer system 200 may include a
Random Access Memory (RAM) 206, Read Only Memory (ROM) 208, and an I/O adapter
210 for connecting peripheral devices such as, for example, disk storage units 212 and
printers 214 to the bus 204. Computer system 200 also includes a user interface adapter 216
for connecting various user interface devices such as, for example, a keyboard 218, a mouse
220, a speaker 222, a microphone 224, and/or other user interface devices such as a touch
screen or a digital camera to the bus 204. Computer system 200 may further include a
communication adapter 226 for connecting the computer system 200 to a communication
network 228 (e.g., wireless network, a LAN network, the Internet/WAN, etc.) and a display
adapter 230 for connecting the bus 204 to a display device 232.

Computer system 200 may utilize an operating system such as the Microsoft
Windows Operating System (OS), the IBM OS/2 operating system, the MAC OS, the
UNIX/Linux operating system, and/or a purpose-built operating system for implementing the
Data Security techniques of the invention. Those skilled in the art will appreciate that the
present invention may also be implemented on platforms and operating systems other than
those mentioned. An embodiment of the present invention may also be written using any
programming language, including but not limited to Java, C, and the C++ language and may
utilize object oriented programming methodology.

Computer system 200 may utilize Transmission Control Protocol/Internet Protocol
(TCP/IP) as the communication language for accessing the Internet. TCP/IP may also be
used as a communications protocol in the private networks called intranet/LAN and in
extranet/WAN. TCP/IP is a two-layering program. The higher layer, Transmission Control
Protocol (TCP), manages the assembling of a message or file into smaller packets that are
transmitted over the Internet and received by a TCP layer that reassembles the packets into
the original message. The lower layer, Internet Protocol (IP), handles the address part of each
packet so that it gets to the right destination. Each gateway computer on the network checks
this address to see where to forward the message. Even though some packets from the same
message are routed differently than others, they'll be reassembled at the destination. TCP/IP
may use a client/server model of communication in which a computer user (a client) requésts
and is provided a service (such as sending a Web page) by another computer (a server) in the
network. TCP/IP and the higher-level applications that use it may be considered "stateless"
because each client request is considered a new request unrelated to any previous one (unlike

ordinary phone conversations that require a dedicated connection for the call duration).

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

Being stateless frees network paths so that everyone can use them continuously. Protocols
related to TCP/IP include the User Datagram Protocol (UDP), which is used instead of TCP
for special purposes. Other protocols are used by network host computers for exchanging
router information. These include the Internet Control Message Protocol (ICMP), the Interior
Gateway Protocol (IGP), the Exterior Gateway Protocol (EGP), and the Border Gateway
Protocol (BGP).

Servers 1 and requesting devices 3 (each possibly implemented as a computer
system 200) may utilize wireless connections for communication. Wireless connections may
refer to a communications, monitoring, or control system in which electromagnetic radiation
spectrum or acoustic waves carry a signal through atmospheric space rather than along a
wire. In wireless systems, radio frequency (RF) or infrared transmission (IR) waves may be
used. Common examples of wireless equipment in use today include the Global Positioning
System (GPS), cellular telephone phones and pagers, cordless computer accessories and
wireless LAN (WLAN). Wi-Fi (short for "wireless fidelity") is a high-frequency wireless
local area network (WLAN). Wi-Fi is specified in the 802.11b specification from the
Institute of Electrical and Electronics Engineers (IEEE) and is part of a series of wireless
specifications together with 802.11, 802.11a, and 802.11g. All four standards use the
Ethernet protocol and CSMA/CA (carrier sense multiple access with collision avoidance) for
path sharing.

Encryption Techniques

One aspect of the invention includes techniques for encrypting data. In general,
encryption is the process of altering data such that it becomes unreadable (i.e., the data no
longer directly conveys its original meaning). The original meaning of the encrypted data is
then only again readable by designated individuals or devices that are given special
knowledge. This process is called decryption. Typically, data is encrypted using an
algorithm (often called a cipher) that may be performed by hand or utilizing a device such as
a computer. Likewise, decryption is an algorithm that essentially reverses the encryption
process. The original data (before encryption) is often referred to as plaintext. Encrypted
plaintext data is often referred to as ciphertext.

Two common types of encryption include symmetric key algorithms (often called
private-key cryptography) and asymmetric key algorithms (often called public-key
cryptography). In a symmetric key algorithm, the sender (e.g., server 1) and the receiver

(e.g., requesting device 3) have identical encryption/decryption keys set up in advance.

10

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

These keys are kept secret from all other parties. The sender uses the key for encrypting data,
while the receiver used the same key for decrypting the data. Examples of symmetric key
algorithms include Twofish, Serpent, Advanced Encryption Standard (AES), Blowfish,
CASTS5, RC4, Data Encryption System (DES), Triple DES (TDES), and International Data
Encryption Algorithm (IDEA).

In an asymmetric-key algorithm, two separate keys are used. One key is published
and available to the public. This “public” key enables any sender to perform encryption. The
other key is kept private. This “private” key enables only the receiver to perform decryption.
The identity of the private key is not deducible from its counterpart public key. Typically,
public key techniques are much more computationally intensive than symmetric-key
techniques.

For proper operation, a public key and its 'owner' must be repeatable and verifiable.
If not, the encryption algorithm may function perfectly but still be insecure. Typically, some
form of a public key infrastructure is used to associate a public key with its owner. Such
infrastructures validate the owner/public key association through the use of a trusted third
party. Such a third party may be in the form of a hierarchical certificate authority (e.g.,
X.509), a local trust model (e.g., simple public key infrastructure or SPKI), or a statistical
‘web of trust’ (e.g., PGP (pretty good privacy) and GPG (GNU privacy guard)). Examples of
asymmetric-key encryption algorithms include Diffie-Hellman, DSS (Digital Signature
Standard), ElGamal, Elliptic Curve techniques, password-authenticated key agreement
techniques, paillier cryptosystem, and the RSA encryption algorithm. Examples of other
protocols that at least partially use asymmetric-key algorithms include GPG, IKE (Internet
key exchange), PGP, SSH (Secure Shell), SSL (Secure Socket Layer), IETF (Internet
Engineering Task Force) standard TLS (Transport Layer Security), and SILC (Secure Internet
Live Conferencing).

Asymmetric-key and symmetric-key algorithms are not always used alone. Some
systems utilize both asymmetric and symmetric algorithms. Such systems include SSL, PGP
and GPG, etc.

Through FIPS 140 (Federal Information Processing Standards Publication 140), the
United States federal government has set guidelines for cryptographic (i.e., encryption and
decryption) modules (both hardware and software) used by the government. The current
version of the standard is FIPS 140-2 that was issued on 25 May 2001. The invention is also
applicable with the new FIPS 140-3 standard. The FIPS 140 encryption standards are

11

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

asymmetric public key/private key standards where the public key is issued by the U.S.
government.

The methods and techniques of this invention may be conformed to operate with the
FIPS 140-2/3 standard or any future amendments to the standards. In fact, the methods and
techniques of the invention are applicable for use with any encryption standard, algorithm or
protocol. Figures 30 to 33 describe how encryption algorithms are used according to various
aspects of the invention.

Aspects of the invention may utilize the following techniques for encrypting data as
part of a data security system. Figure 30A is a flowchart showing steps for creating encrypted
data according to various aspects of the invention. Initially in step S1, plaintext data is
received. This plaintext data may be any data that is to be encrypted and subsequently stored
in an encrypted format in a data file. The plaintext data may itself be a data file that is in a
formatted data file. For example, the plaintext data file may be a relational database,
structural database, or a delimited file (e.g., a tab delimited file). SQL files and ODBC (open
database connectivity) are examples of relational database format, and .DAT files are
examples of structural databases.

A relational database is a database structured in accordance with a relational model.
Relational databases include one or more domains or data types. Under each domain are one
or more attribute values. A set of attribute values is typically called a tuple. An attribute is an
ordered pair of attribute name and type name. An attribute value is a specific value for the
type of the attribute. Figure 31 shows a visual representation of a relational database. As is
shown, relational databases can be thought of as two or more tables with column headings
(domain or data types) and rows (tuples). As one example, the domain values may indicate
types of data, while each attribute (field) in the tuple (record) contain the data. Structured
Query Language (SQL) is one example of database management software that is often used
with relational databases.

Structural databases can also be though of as tables, though unlike relational
databases, structural databases include only one table. Each row of the table is referred to as
arecord. Each element in the record is referred to as a field. All fields in the same column
contain the same type of data (e.g., name, social security number etc.). The data type for the
fields is often included in a header file of the database. The fields in each record also have
common characteristics (e.g., person, account, etc.). Figure 32 shows a visual representation

of a structural database.

12

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

Returning to Figure 30 and step S1, in addition to structured or relational data
formats, the received plaintext data may consist of a single piece of data intended to be stored
in a single field of an encrypted data file. For example, the received plaintext data may
accompany a request to amend data already stored in an encrypted file or add new data to an
encrypted file.

Next in step S2, the plaintext data is encrypted utilizing an encryption algorithm. As
discussed above, any encryption algorithm may be used.

Preferably, each smallest unit of the plaintext data file is encrypted separately. For
example, a structural database may consist of one or more records, each record having a
plurality of fields. As such, each field of data would be encrypted separately. In the case of a
relational database, each attribute value would be encrypted separately. However, the
invention is not limited to encrypting the smallest unit of data separately. In some
applications, it may be beneficial to encrypt multiple fields (or attributes) together or to even
encrypt multiple records (or tuples) together. However, when multiples fields, attributes,
records or tuples are encrypted together, they then must be decrypted together to retrieve
plaintext data. As such, it may be most beneficial to group units of data in situations where
multiple units are likely to be often accessed together as a group.

As shown in step S2, each unit of plaintext data is encrypted separately. For
example, each field may be encrypted with its own unique encryption key. Additionally, one
key may be used for many different fields, for an entire record, or for groups of records.
Furthermore, step S2 may perform several layers of encryption. For example, each field in a
record may be encrypted individually with one or more unique keys, and then the entire
record may be encrypted with its own key.

Next in step S3, an encryption data file is created. The encryption data file is a data
file that will contain the encrypted plaintext data. The encryption data file may be in any
format including a relational database, structural database, or a delimited file (e.g., a tab
delimited file).

Then in step S4, the encrypted plaintext data is stored in the encrypted data file.
Figure 33A shows the data flow for creating an encrypted data file according to various
aspects of the invention. In figure 33A, plaintext data 15 is shown as a record with fields
16a-g containing plaintext data 17a-g. Each field of plaintext data is encrypted with
encrypting algorithm 18 and placed in fields of encrypted data file 19 as encrypted data 20a-
g. Preferably, the plaintext data file 15 is deleted after it has been encrypted so that no stored

13

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

plaintext data remains. In some cases, the encrypted data may be written into the original
plaintext data file such that the plaintext data file becomes the encrypted data file.

However, reusing a plaintext data file is not always feasible. Many fields and
records in conventional relational databases are of fixed data length (e.g., a fixed number of
characters long). Since encryption algorithms generally create data that is generally much
longer length than unencrypted data, it is likely that the fields and records of the plaintext
data file would be unable to store the encrypted data. For example, a FIPS 140-2 based
encryption algorithm may create encrypted data that is up to 128 characters longer that the
plaintext. In this case, a new encrypted data file is created.

Even if an existing plaintext data file (e.g., a plaintext database) cannot be reused to
store encrypted data, for some legacy database systems it may be beneficial to maintain the
plaintext data file rather than deleting it. Instead, pointer data may be substituted into the
fields of the plaintext data file. The pointer data gives the location of the encrypted plaintext
data in the newly created encrypted data file. Utilizing a pointer database provides the further
advantage of not needing to store the encrypted plaintext data linearly in the encrypted data
file. Instead, the encrypted data may be stored in random locations since pointer data in a
known file format (the legacy plaintext database) is used to locate the encrypted plaintext
data. Pointer databases need not only be created from existing plaintext databases, but also
may be newly created in conjunction with the encryption of data.

Figure 30B is a flowchart showing steps for creating pointers to encrypted data
according to various aspects of the invention. After the encrypted plaintext data is stored in
the encrypted data file in step S4, in step S5, pointers to the location of the encrypted
plaintext data in the encrypted data file are created and stored in a pointer data file. As
mentioned above, the pointer data file may be the original plaintext data file or may be a
newly created data file. Optionally, in step S6, the pointer data itself may also be encrypted.

Figure 33B shows the data flow for creating a pointer data file according to various
aspects of the invention. As shown in Figure 33B, the pointer data may be created, stored,
and/or encrypted by encryption algorithm 18. In addition, an algorithm separate from the
encryption algorithm may be used to create the pointer data file. Pointer data file 21 includes
pointer data 22a-g that points to the location of encrypted plaintext data 20a-g. As shown in
Figure 33B, the encrypted plaintext data was stored in successive fields of the encrypted data
file. However, as mentioned above, when used in conjunction with a pointer data file, the

encrypted plaintext data may be stored in the encrypted data file in any order and/or location.

14

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

Figure 30C is a flowchart showing steps of creating an encryption key data file
according to various aspects of the invention. The keys able to decrypt the plaintext data
encrypted by encryption algorithm 18 in S2 are stored so that they may be recalled and used
to decrypt the data. In step S7, after the encrypted plaintext data has been stored, an
encryption key data file is created. In step S8, the keys needed to decrypt the data encrypted
in step S2 are stored in the encryption data file. In step S9, a user and/or class of users is
associated with each decryption key. This association may be stored in the encryption key
data file or in another location. In this way, users of a system may be allowed to have access
to only certain encrypted data fields.

Decryption

Other aspects of the invention relate to the decryption of a structured data file that
was encrypted in the manner described above with reference to Figures 30-33. Decryption of
the encrypted data file may be desired in order to view the data, make amendments to the
data, or use the data to complete another task. For example, the following decryption
processes may be utilized by an individual user to access their bank account data stored on an
encrypted database. In this case, the individual user may only wish to view the data. As
another example, an entry control system may utilize the following decryption processes to
decrypt employee information in an encrypted data file to verify identification information
(e.g., a magnetic card or biometrics) provided by an individual at a point of entry. In this
case, it may not be necessary or wanted to display the decrypted employee information to the
user, but rather the entry control system utilizes the decrypted data to perform verification.

Figure 34A depicts a flowchart showing a method for decrypting an encrypted data
file according to one embodiment of the invention. In step S20, an encrypted data file is
provided. The encrypted data file having two or more data structures, each data structure
having one or more fields containing encrypted data. Preferably, the encrypted data file is
one created with the processes described above with reference to Figure 30-33. As before,
the encrypted data file may be in any format including, but not limited to, structural
databases, relational databases, and delimited files.

In step S21, a request to decrypt encrypted data in one more of the fields is received.
This request may come from a user, a software program, or other electronic device (see
requesting device 3 in Figure 28).

In step S22, the requested data is decrypted into plaintext data. At this point, the

data may be displayed or utilized to complete a task as described above. According to one

15

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

aspect of the invention, if the decrypted data is displayed it is first stored in temporary
memory, displayed, and then deleted. As such, the data is not permanently stored in plaintext
form even when decrypted.

Turning now to Figure 34B, the decryption method may further include the steps of
providing a pointer data file (S23) and associating the received request with pointers in the
pointer data file (S24). The pointer data file contains pointers to fields in the encrypted data
file, and is preferably created utilizing the methods discussed above with reference to 30B.
The location of the requested data obtained by first accessing the pointer data file which then
points to the location of the requested encrypted data in the encrypted data file. This
technique may be especially useful in the situation where a legacy database file was used to
create the pointer data file. In that case, existing database management software would be
used to locate the requested data in the pointer data file which then points to the location of
the actual encrypted data.

Turning now to Figure 34C, the decryption method may further include the steps of
providing an encryption key data file (S25) and associating a user with each encryption key
(S26). The encryption key data file contains the encryption keys (for symmetric key
algorithms) and/or decryption keys (for asymmetric-key algorithms) used to decrypt the
encrypted data in the encrypted data file. Preferably, the encryption key data file contains an
encryption/decryption key for each field of the encrypted data file. The user may be an
individual, hardware unit, or software module. By associating specific users to specific keys,
authorization to decrypt data may be customized for each user.

Turning now to Figure 34D, the decryption method may further include the steps of
receiving a login request from a user (S27) and allowing the user to perform the decrypting
and displaying steps for each field of encrypted data to which they have an associated
encryption key (S28). More specifically, the encryption/decryption keys associated to a user
may be stored in a user profile that is accessed when a user logs on to the system. As such,
the encryption/decryption keys associated with a user are transparent to the user. In addition,
the associations may be controlled by an administrator. Even if a third party obtained the
login password of a user having associated encryption/decryption keys, that third party would
only have access to data that the user had. In addition, if combined with the techniques
described above with reference to Figure 34A, the third party would not have access to any

plaintext data stored in permanent memory since the decrypted data is only temporarily

16

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

stored in memory and deleted once the requested task was completed (e.g., display of the
data).

Process Sharing

In addition to the methods and techniques for encrypting and decrypting data
described above, the invention also provides methods and techniques for sharing processes in
a distributed computer system, such as the system shown in Figure 28. These process sharing
techniques may be utilized in conjunction with the encryption and data encryption techniques
or may be utilized independently.

Based upon a resource and time equation, when a server reaches a certain threshold
for a period of time (set by the user), the machine, if it has processes that it is in control of,
the processes will then be transferred to another server in the system that is not over its preset
threshold and time limit. This threshold and time can be different for all servers in the
cluster. When the original server that had control of the process comes within tolerance of
the set parameters, the process that was transferred may be moved back to the server that was
in charge of that process.

When a machine is offline and was holding processes, the other servers that are alive
in the cluster will find that the server has gone offline and then move its processes that it was
controlling to a live server. When the server then comes back online the process will be
restored to that machine.

Figure 35 shows a flowchart of a process sharing method according to one
embodiment of the invention. The method is for sharing processes among two or more
networked computers and/or electronic devices. The computers and electronic devices may
be networked together using any means including wireless connections, LAN connections,
and Internet/ WAN connections (see Figure 28).

In step S40, a request to execute a process is received. This request may be received
by the device that is to execute the process (e.g., server 1 in Figure 28). Preferably, the
request is received by a device other than the executing device (e.g., requesting device 3 in
Figure 28) that is to send process instructions to the requesting device.

In step S41, it is determined if the networked cofnputer that was requested to execute
the process is within a predetermined activity threshold. The activity threshold may be any
characteristic of the system of networked computers and requesting devices that may affect

the performance of the process.

17

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

The predetermined activity threshold may be at least partially based on expected
network delays. For example, requesting device 3 may utilize any conventional techniques to
determine likely and/or potential delays in sending process instructions and/or data to server
1 to execute a process. For example, the requesting device may ping the server.

The predetermined activity threshold may also be at least partially based on a time to
reply to the predetermined activity threshold determination, a time to send the process request
to the networked computer, and/or a time to execute the process. The predetermined activity
threshold may also be at least partially based on an amount of data needed to send
instructions for executing the process, and/or a current load of the networked computer.

The process for sending a process request to a networked computer may include a
comparison between the activity of the network and/or the receiving computer (e.g., the
activity may include total amount of data to be sent, the receiving computers current CPU
usage, and the echo time from a ping to the receiving computer) to a user defined threshold.
For example, the expected CPU usage of the receiving computer may be calculated from the
computer’s current usage and the amount of data to be sent. This expected value would then
be compared to a predetermined CPU usagé threshold established by the user. As another
example, a current echo time from a ping may be compared to a predetermined echo time
threshold established by the user. If the echo time of the ping is to long, the process is not
sent to that computer.

The time taken and/or needed to execute a process may be another factor taken into
consideration. As one example, the time to execute a process is not calculated before the
process begins, but instead calculated as the process is being executed. If the process is
taking to long to finish (or using too much CPU usage) it may be shared with another
networked computer. The following user defined thresholds may be used to determine the
time to execute a process: the total CPU usage, the CPU usage for a single process, and the
length of time the processes maintain the usage levels. Thresholds may be established in a
setup program for maximum usage tolerance and the amount of time the maximums can be
sustained. These thresholds are setup for the total of the processes as well as each individual
process. For example, a server may have thresholds of 80% total usage for a length time <5
min while an individual process or event may only use 7% for a length of time <1 min. Any
time any of these thresholds are exceeded the processes may be passed to the next computer.

In step S42, the process is executed by the requested networked computer if it is

determined to be within the predetermined activity threshold. In step S43, if the requested

18

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

networked computer is not within the predetermined activity threshold, steps S40-41 are
repeated for another of the two or more networked computers. This process continues until a
networked computer that is within the activity threshold is found.

Redundancy

The invention also provides methods and techniques for live data redundancy in a
distributed computer system, such as the system shown in Figure 28. These redundancy
techniques may be utilized in conjunction with the encryption and data encryption techniques
or may be utilized independently. In addition, the process sharing and redundancy techniques
may also be used together, with or without the encryption and decryption techniques.

When an update to a file or database is made from any server it will automatically be
sent to the other servers that are in the cluster. In the event that a server is offline, the items
that have been changed from any server will be sent to a queue. When the server that is
offline is available again the queue of information will then be sent to the server and it will be
back in sync again. This is a first in, first out process. Meaning the same file can be changed
at any time and the last one to save will be the one that will be at the server.

Figure 36 shows a flowchart of a redundancy method according to one embodiment
of the invention. The method is for storing and accessing data between two or more
networked computers and/or electronic devices. The computers and electronic devices may
be networked together using any means including wireless connections, LAN connections,
and Internet/WAN connections (see Figure 28).

In step S50, a process is executed on a first computer. This process may be any
process that amends, adds, or deletes data stored on the first computer. Next, in step S51, it is
determined if one or more second computers, connected to the first computer, are within a
predetermined activity threshold. The activity threshold may be any characteristic of the
system of networked computers and/or requesting devices that may affect the performance of
the process.

The predetermined activity threshold may be at least partially based on expected
network delays. For example, requesting device 3 or server 1 may utilize any conventional
techniques to determine likely and/or potential delays in sending process instructions and/or
data to server 1 to execute a process. For example, the requesting device may ping the server.

The predetermined activity threshold may also be at least partially based on a time to
reply to the predetermined activity threshold determination, a time to send the process request

to the networked computer, and/or a time to execute the process. The predetermined activity

19

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

threshold may also be at least partially based on an amount of data needed to send
instructions for executing the process, and/or a current load of the networked computer.

In step S52, instructions for executing the process executed by the first computer are
sent to each of the second computers that are determined to be within the predetermined
activity threshold. In step S53, if any of the second group of computers is not within the
predetermined activity threshold, the instructions for executing the process are placed in a
queue on those computers. The computers that were not within the predetermined thresholds
execute the processes stored in the queue when they come back into process. According to
one aspect of the invention, if the time a networked computer remains out of tolerance or the
time a process remains in the queue is longer than a predetermined length of time, the
computer does not execute the processes in the queue. Rather, that computer obtains the
entire database contents of another redundant system that is within tolerance and copies that
content to its internal databases.

Since all computers in such a redundant system continuously update each other, the
data stored on each of the computers may be used by each of the other computers at any time.
As such, if one computer is unable to access data stored on its internal data storage devices
(e.g., because of catastrophic failure or removal), that computer may access data stored on
another computer to carry out any process.

Physical Access Control Example

The following figures and description represent one example implementation of
various aspects of the encryption, decryption, process sharing, and redundancy fjeatures of the
invention. In particular, the following example relates to an entry control system. Such
systems are typically used to control and/or prevent physical access to selected areas of
buildings and complexes. However, the modules and sub-modules described below may be
altered to work with any system where secure storage of live data is desired.

The entry control system described below, which incorporates various aspects of the
invention, may incorporate a plurality of redundant servers, each server running software
which performs various methods and techniques of the invention. The workload between any
or all servers may be shared through the process sharing techniques described above. In
addition, the entry control system provides database security through the use of various
aspects of the encryption and decryption techniques described above. Individual database

fields are encrypted with private and public keys (e.g., a FIPS 140-2 based encryption

20

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

algorithm). In addition, the following entry control system adds an additional layer of
encryption to packets of data sent between devices (e.g., server to server).

The following figures show the system, software modules, software functions, and
steps to implement this entry control system example. The software modules and functions
may be implemented through a specifically designed software application and/or platform, or
may be integrated into existing operating systems and database management software
applications (e.g., Microsoft, Oracle, Cisco, etc.).

Figure 1 is a block diagram of an entry control system in its normal operating
environment. The entry control system may include one or more servers 101 connected to
each other through network communications 139 (see, e.g., Figure 28). Each server 101 .
operates software 102 to carry out the functions of the system. Software 102 includes a Data
Security module 103, Check Tolerances module 104, Network Line Handler module 106, and
a Post Events module 108. In addition, software 102 utilizes various databases to carry out
its functions. The modules and databases will be discussed in more detail below.

Data Security module 103 utilizes various aspects of the encryption, decryption, process
sharing, and redundancy techniques described above, sometimes in conjunction with the
other software modules, to provide security for confidential data from being stolen and
understood by an intruder. In part, this is accomplished by encrypting and saving individual
database fields with a private key rather that the whole database. Data Security module 103
allows users of its libraries to decrypt an individual record and/or field rather then decrypting
the entire file. Data Security module 103 is applicable for use with both structural databases
and relational databases (e.g., an ODBC-based database). For example, when an ODBC
compliant file is used, the encrypted data is stored in the ODBC Extended database 114.
Data Security module 103 also provides for process sharing and control by sharing the
workloads of servers 101. In addition, Data Security module 103 provides for live
redundancy on multiple servers. The functions of Data Security module 103 will be
discussed in more detail in the description of Figure 3.

Check Tolerances 104 module calculates the tolerance levels (i.e., predetermined
activity thresholds) for all servers 101 in the network. Data Security module 103 functions
are integrated with the Check Tolerances module 104. In addition, Check Tolerances module
104 "calls" the Data Security module 103 functions as part of its program. Check Tolerances
module 104 also uses the Data Security module 103 functions to determine if servers 101 on

the network are “Alive” (able to communicate with another co-operating device), and are

21

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

within the tolerances set in the tolerance database for CPU usage. If the “Active” Server is
out of tolerance, Check Tolerances module 104 uses the Data Security module 103 functions
to redirect the processes from one server to another. When the originally-selected server
comes back into tolerance, Check Tolerances module 104 uses the Data Security module 103
functions to restore the workload back to that server. Each time a file is transferred to
another co-operating device in this function, Data Security module 103 uses Public and/or
Private Key Databases to encrypt and/or decrypt the databases required for processing,
communicating and enabling process sharing. When files are transferred to a co-operating
device (servers 101 or processor panels 140), the file is double encrypted as the original file
was encrypted with a public and private key and the transferred file or record is also
encrypted with another private key. The functions of Check Tolerances module 104 will be
discussed in more detail in the description of Figure 4.

Data Security module 103 functions are also integrated with the Network Line
Handler module 106. Network Line Handler module 106 "calls" Data Security module 103
functions as part of its functions. These processes include encrypting and decrypting
databases for processing, communications and enabling process sharing. Network Line
Handler module 106 sends and receives data between servers 101 and processor panels 140.
When files are transferred to a co-operating device (servers 101 or processor panels 104) the
file is double encrypted since the original file was encrypted with a public and private key
and the transferred file or record is also encrypted with another private key. In addition,
Network Line Handler module 106 decrypts sent and received data, gathers information
(located in various databases) required to process an event, formats data for the co-operating
devices, encrypts data, and determines which server to forward data to for processing.

Data Security module 103 functions are also integrated with Post Events module
108. Post Events module 108 "calls" Data Security module 103 functions as part of its
program. Post Events module 108 uses the Data Security module 103 functions to process the
events and manual requests from the user to communicate between the co-operating devices
(servers 101 and processor panels 104). The functions of Post Events module 108 will be
described further in the description of Figure 6.

Structured databases 110, including route DB 120, monitor point DB 124, reader DB
122, ODBC Extended database 114, and tolerance DB (not shown), are used by Data Security
module 103 functions. Route DB 120 contains a list of devices where events can be sent for

processing. The contents of route DB 120 may be encrypted. Reader DB 122 contains

22

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

information needed to process an Access Control Event (i.e., a user requesting to enter a
certain location). The contents of reader DB 122 may be encrypted. Monitor point DB 124
contains information needed to process an event at the monitor (alarm) point). The contents
of monitor point DB 124 may be encrypted.

Data Security module 103 enables the user to encrypt each data record within these
structured databases. Data Security module 103 encrypts the individual records of theses
structured databases, allowing only authorized users to view, edit or delete specific records.
Depending on the password level of the user, the structured databases may display or not
display the individual database records. Structured databases are stored on a hard disk drive
(HDD) of server 101 as a record within a table and may be encrypted. The records are
decrypted for viewing, editing and when the modules or functions use information within the
database. This protects information in the file from being useful if copied or "hacked into"
from outside sources.

Data Security module 103 functions are used to create and use ODBC-compliant
databases such as ODBC databases 112. Data Security module 103 encrypts and decrypts
database fields from an ODBC-compliant database (such as ODBC database 112) and stores
the data as encrypted data in ODBC extended database 114 (a structured database). When the
field is decrypted, it is restored to a field in ODBC database 112. The encryption/decryption
is accomplished with the use of a configuration found in the PXI Setup DB 336 (see Figure
3). The PKI Setup DB defines which fields of the ODBC-compliant database are to be
encrypted. Data Security module 103 encrypts the specified fields, and saves the field data in
the Extended ODBC database 114. In the field of the ODBC-compliant database where the
information was originally stored, a link (or tag) is stored directing the software where to find
the encrypted data. Dependent on the password level of the user when a request to view edit
or use a data field is made, Data Security module 103 will get the link found in the ODBC
database 112 and the linked data in the Extended ODBC database114. The data can then be
displayed, edited or used by the software. If the user does not have the authorization to view
and/or edit the data the words “Encrypted” or an appropriate symbol (e.g., “ ****) will be
displayed in the field where the information should be located.

Data Security module 103 functions are integrated with other software modules and
functions and are used to create and use employee DB 126. Employee DB 126 contains
confidential employee information. The contents of employee DB 126 may be encrypted.

Data Security module 103 enables the user to encrypt data fields within each record of this

23

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

database, though encryption of this database is not required. Encryption is accomplished by
configuration found in the PKI Setup DB 336 (Figure 3), a public key assigned by the US
Government and a private key defined by the user in private key DB 330 (see Figure 3). The
Employee Database 126 is an ODBC-compliant Database. Data Security module 103
encrypts the specified fields of the Employee Database, allowing only authorized users to
view edit or delete specific fields and records. Dependent on the password level of the user
the employee database may display or not display the individual database fields. Employee
Database 126 (or any ODBC compliant database) is stored on the HDD as a record within a
table. It is encrypted and decrypted only when viewing, editing or when a software program
uses information within the database. This protects information in file from being useful if
copied or "hacked into" from outside sources.

Processor panels 140 are hardware panels that control devices used to allow and/or
prevent entry (e.g., opening a lock, allowing the selection of a floor in an elevator, opening a
gate, etc.). The processor panels may utilize some or all of the software functions found in
servers 101. Processor panels 140 gather information regarding events and alarms that are
processed by the software 102. This information is communicated to co-operating devices,
including software 102, using Data Security module 103. The data is encrypted with a public
key assigned by the US Government and a "private key" (Private Key DB 330) when it is sent
to the co-operating device through the network. Data Security module 103 is integrated
within the software running on the processor panels.

Figure 3 is a functional block diagram of Data Security module 103 according to one
embodiment of the invention. Data security module 103 includes the following sub-modules
and databases:

Open Database sub-module 302 is used to open the databases on each server (in a
redundant system). Open Database sub-module 302 opens the ODBC & Structure databases
on any or all servers that are alive (i.e., within tolerance/predetermined activity threshold).
For ODBC Databases, Open Database sub-module 302 gets the Field Name (see Figure 8,
elements 822, 832) and the primary key (see Figure 8, element 824). For ODBC Databases,
the primary key for records in ODBC Databases 112 point to records in associated Extended
ODBC Databases where encrypted data is stored. Open Database sub-module 302 then
repeats the steps to open the databases on all the servers on the list. Open Database then
returns with a list of the open databases. The operation of Open Database sub-module 302

will be discussed in more detail in the description of Figure 8.

24

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

Close Database sub-module 304 closes the ODBC & Structure databases on any or
all servers that are open and ‘alive’ (see Figure 9, elements912, 920, 930, 942). The
operation of Close Database sub-module 304 will be discussed in more detail in the
description of Figure 9.

ODBC Search Function sub-module 306 allows the user to search encrypted ODBC
& Structure databases on any or all servers that are open and alive. The operation of ODBC
Search sub-module 306 will be discussed in more detail in the description of Figure 5.

ODBC Pack Function sub-module 308 removes records marked for deletion and
“packs” ODBC encrypted and decrypted files on any or all servers that are open and alive.
The operation of ODBC Pack Function sub-module 308 will be discussed in more detail in
the description of Figure 7.

ODBC Read Function sub-module 310 reads data stored on ODBC databases.
ODBC Read Function sub-module 310 gets the list of fields that are encrypted from the PKI
Setup DB 336. ODBC Read Function sub-module 310 determines if there is a user request.
If yes, ODBC Read Function sub-module 310 gets the list of permissions for the user from
the PKI Setup DB 336. ODBC Read Function sub-module 310 creates list of fields to be
decrypted. If the read request was not from a user, ODBC Read Function sub-module 310
creates a list of fields to be decrypted with no restrictions. ODBC Read Function sub-module
310 searches the database to get the appropriate field to be read. ODBC Read Function sub-
module 310 gets from the record the primary key and the associated ODBC Extended DB and
field from the server. ODBC Read Function sub-module 310 gets each field to be decrypted,
decrypts it (see Decryption Function sub-module 324) and merges it with the ODBC DB until
all required fields are decrypted. ODBC Read Function sub-module 310 returns with the
ODBC record. The operation of ODBC Read Function sub-module 310 will be discussed in
more detail in the description of Figure 10.

Structure DB Read Function sub-module 311 reads and decrypts data from
structured databases, such as Structured Databases 110. Structure DB Read Function sub-
module 311 first determines if the system is redundant. If the system is redundant, Structure
DB Read Function sub-module 311 finds the first available server within usage tolerance
from the Tolerance & Status DB 334. Structure DB Read Function sub-module 311 then
reads the data from the server stored on a structured database 110. Structure DB Read

Function sub-module 311 also utilizes Decryption Function sub-module 324 to decrypt the

25

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

data. The operation of Structure DB Read Function sub-module 311 will be discussed in
more detail in the description of Figure 11.

ODBC Save Function sub-module 312 saves and encrypts data in ODBC databases.
ODBC Save Function sub-module 312 gets a list of fields to be encrypted from the PKI Setup
DB 336. ODBC Save Function sub-module 312 encrypts the required fields stuffing the
encrypted data in an ODBC Extended DB 114. ODBC Save Function sub-module 312 tags
the field in the ODBC DB 112 where the data came from with a link to the ODBC Extended
DB 114. ODBC Save Function sub-module 312 also determines if the system is redundant.
If not, ODBC Save Function sub-module 312 writes each field of each record of ODBC DB
112 on the current server. ODBC Save Function sub-module 312 also creates the primary
key for the ODBC Extended DB 114. The primary key points a record and/or field in the
relational ODBC Database 112 to a record and/or field in structured ODBC Extended
Database 114 in which the encrypted data is stored. ODBC Save Function sub-module 312
also writes each field of each record to the ODBC Extended DB 114 on the current server.

If the system is redundant, ODBC Save Function sub-module 312 gets a list of all
servers from the Tolerance & Status DB 334. ODBC Save Function sub-module 312 writes
each field of each record of ODBC DB 112 on each server. ODBC Save Function sub-
module 312 creates the primary key for the ODBC Extended DB 114. ODBC Save Function
sub-module 312 writes each field of each record to the ODBC Extended DB 114 on each
server. The operation of ODBC Save Function sub-module 312 will be discussed in more
detail in the description of Figure 12.

Structure DB Save Function sub-module 313 saves and encrypts data in structured
databases. It may be used to save databases across a network or as a standalone database.
Structure DB Save Function sub-module 313 also encrypts data in a structure databases 110.
The operation of Structure DB Save Function sub-module 313 will be discussed in more
detail in the description of Figure 13.

Redundancy Server Status sub-module 316 checks the status of the servers to
determine if they are “alive” Or “Inactive.” Redundancy Server Status is also part of the
continuous loop of Check Tolerance module 104. The operation of Redundancy Server
Status sub-module 316 will be discussed in more detail in the description of Figure 14

Server Tolerance sub-module 318 checks the status of the servers to determine if the

CPU usage of each server is out of tolerance when compared to the tolerances set in the PKI

26

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

Setup DB 334. The operation of Server Tolerance sub-module 318 will be discussed in more
detail in the description of Figure 15.

Assume Processes sub-module 320 reassigns process from a server that is out of
tolerance to one that is within tolerance. Assume Processes sub-module 320 enables Data
Security module 103 to share the workload between servers in a network. The operation of
Assume Processes sub-module 320 will be discussed in more detail in the description of
Figure 16.

Restore Processes sub-module 322 reassigns processes to the original Active server
when its CPU usage is back within tolerance levels established in the PKI Setup DB 336. the
operation of Restore Processes sub-module 322 will be discussed in more detail in the
description of Figure 17.

Decryption Function sub-module 324 decrypts database files, fields and records.
Decryption Function sub-module may be configured to only decrypt data for authorized
users. The decrypted data is stored in temporary memory and deleted when no longer
needed. The database fields, records and files remain encrypted on the HDD. This keeps
unauthorized individuals from taking information off the HDD and being able to understand
the data. Decryption Function sub-module 324 can configure multiple keys within the same
record or file. The operation of Decryption Function sub-module 324 will be discussed in
more detail in the description of Figure 18.

Encryption Function sub-module 326 encrypts database files, fields and records.
Encryption Function sub-module 326 can configure multiple keys within the same record or
file. The operation of Encryption Function sub-module 326 will be discussed in more detail
in the description of Figure 19.

Read Communications sub-module 328 allows records to be read across a
communications path. Read Communication sub-module 328 decrypts database fields and
records before being read using the public and private keys. Read Communications sub-
module 328 can be used with multiple keys within the same record or file. The operation of
Read Communication sub-module 328 will be discussed in more detail in the description of
Figure 20.

Write Communications sub-module 329 writes database files, fields and records to a
file across a communication path. Write Communications sub-module 329 checks the
Tolerance & Status DB 334 to determine if the recipient co-operating item is alive. Write

Communications sub-module 329 encrypts the database fields, records and files with a public

27

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

and private key, creating a dual encrypted file. The operation of Write Communications sub-
module 329 will be discussed in more detail in the description of Figure 21.

Private Key DB 330 contains the private keys used by Data Security module 103.
Private Key DB is created in the setup of the software. Private Key DB 330 is encrypted and
the decryption key may be buried in the software rather than in a database so that it is not
identifiable.

Tolerance & Status DB 334is a structured database and contains the tolerance levels
and current status of the servers in the network. Tolerance & Status DB 334is created in the
setup of the software and is a structured database. Tolerance & Status DB 334 contains the
following fields: active; alive, CPU Server Percentage Process; CPU Server Percentage Wait
Time; Switch Wait Time Full control; last CPU Server Percentage; ping Time Out; time;
memory; PKI, ID; Server; SPP. The above listed data fields are used to calculate the server
tolerances. The definition of each of the data fields is below:

Active- the current server is the primary server (all other servers are not active)
Alive - any server that can communicate

CPU Server Percentage Process - the CPU run time level (for all processes)

CPU Server Percentage Wait Time - the out of tolerance time for the CPU in nano
seconds

Switch Wait Time Full control - the CPU run time level (for each process)

last CPU Server Percentage - the out of tolerance time for the last CPU in nano
seconds

ping Time Out - how long to wait for response to a ping (an echo)

time - local time in seconds

memory- amount of Random Access Memory

PKI - Public Key Infrastructure identification

ID — Device identification

Server - a single or cluster of CPU’s that are designated for a set of tasks

SPP- Standalone Processor Panel (an access control field panel controller
PKI Setup DB 336 contains the setup information required to use by Data Security module
103 (servers and paths and list of encrypted fields, etc). PKI Setup DB is created in the setup
of the software. PKI Setup DB is encrypted and the decryption key is buried within the
software.

28

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

Figure 4 is a flowchart of Check Tolerance module 104 according to one
embodiment of the invention. First, in Open PKI Setup DB step 402, PKI Setup DB 336 on
the local server (i.e., the server containing the software that is currently running the check
tolerances module). In step 404, a list of servers is read from the open PKI Setup DB (336).
The list contains the names and/or addresses of servers that are configured in the network and
which server is the “Active” server. The active server is the server that has been assigned
responsibility of the current process. In step 406, PKI Setup DB 406 on the local server is
closed. The open and close functions of steps 402 and 406 may be accomplished using any
conventional programming techniques.

Next, Redundancy Server Status sub-module 316 checks the status of the servers to
determine if they are “Alive” Or “Inactive.” This information is then saved on Tolerance &
Status DB 334 on each server. The operation of Redundancy Server Status sub-module is
discussed in more detail in the description of Figure 14. In step 408, the Tolerance & Status
DB 334 is opened on the local server. In step 410, the Tolerance & Status DB 334 is read
and data is gathered for the local server. The data that is gathered comes from the following
fields in Tolerance & Status DB: “Temp_Time”, “Wait_Time”, and “CPU Usage Setting.”
Time- local time in seconds. Temp_Time is the previous time stored in the Tolerance DB.
Wait_Time is how long to wait between cycles and is defined in the setup process. CPU
Usage Setting is the maximum CPU usage level and is defined in the setup process. In step
412, Tolerance & Status DB 334 is closed on the local server. Again, the open and close
functions of steps 408 and 4012 may be accomplished using any conventional programming
techniques.

In step 414, the local time in seconds for the CPU (“Time”) is obtained. In step 416,
the CPU usage for the local server is obtained.

In step 418, the obtained local time (“Time”) of the local server is compared to the
“Temp_Time” plus “Wait_Time” gathered from Tolerance & Status DB 334. If “Time” is
greater than “Temp_Time” plus “Wait_Time”, the CPU usage obtained from the local server
is compared to the “CPU Usage Setting” gathered from the Tolerance & Status DB 334 in
step 420. Then in step 421, the network status is checked against a predetermined speed by
pinging the CPU to see if it is in tolerance. This predetermined speed is stored locally on the
server in the Tolerance & Status DB 334. If step 421 determines that the network was in
status, a new temp_time is set with the currently obtained “Time” value (see step 414) in step

422 and saved in Tolerance & Status DB 334 (on each server in a redundant system) using

29

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

Open Database sub-module 302, Structure DB Save Function sub-module 313, and Close
Database Function sub-module 304. The operations of these sub-modules will be discussed
in more detail in the descriptions of Figures 8, 13, and 9, respectively. Then, Server
Tolerance sub-module 318 checks the status of the servers to determine if the CPU usage of
each server is out of tolerance when compared to the tolerances set in the PKI Setup DB 334.
The operation of Server Tolerance sub-module 318 is discussed in more detail in the
description of Figure 15. The Check Tolerances module then returns to Redundancy Server
Status sub-module 316 and repeats. This branch of the Check Tolerances module represents
the process for local servers that are in tolerance.

If step 421 determines that the network was not in status, a new temp_time is set
with the currently obtained “Time” value (see step 414) in step 422 and saved in Tolerance &
Status DB 334 (on each server in a redundant system) using Open Database sub-module 302,
Structure DB Save Function sub-module 313, and Close Database Function sub-module 304.
The operations of these sub-modules will be discussed in more detail in the descriptions of
Figures 8, 13, and 9, respectively. Then, Server Tolerance sub-module 318 checks the status
of the servers to determine if the CPU usage of each server is out of tolerance when
compared to the tolerances set in the Tolerance & Status DB 334. The operation of Server
Tolerance sub-module 318 is discussed in more detail in the description of Figure 15. This
branch of the Check Tolerances module represents the process for local servers that are out of
tolerance.

Returning to step 418, if “Time” is less than “Temp_Time” plus “Wait_Time”, a
new temp_time is set with the currently obtained “Time” value (see step 414) in step 422.
Temp Time is then saved in Tolerance & Status DB 334 (on each server in a redundant
system) using Open Database sub-module 302, Structure DB Save Function sub-module 313,
and Close Database Function sub-module 304. The operations of these sub-modules will be
discussed in more detail in the descriptions of Figures 8, 13, and 9, respectively. Then,
Server Tolerance sub-module 318 checks the status of the servers to determine if the CPU
usage of each server is out of tolerance when compared to the tolerances set in the Tolerance
& Status DB 334. This branch of the Check Tolerances module represents the process for
local servers that are out of tolerance.

In step 424, Check Tolerances module 104 determines if the local server is the
¢ Active’ Server from the list of servers obtained from PKI Setup DB 336 (see step 404). If

the local server is not the ‘Active’ server, Assume Processes sub-module 320 assumes any

30

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

processes assigned to the local server and reassigns them if possible. If the local server is the
‘Active’ server, Restore Processes sub-module 322 assumes any processes that have be re-
assigned to other servers and re-assigns them to the local server. The Check Tolerances
module then returns to Redundancy Server Status sub-module 316 and repeats.

Figure 5 is flowchart of ODBC Search Function sub-module 306 according to one
embodiment of the invention. ODBC Search Function sub-module 306 is used to search the
ODBC-compliant databases for a specified search string. ODBC Search Function sub-
module 306 may search for plain text and/or encrypted search strings and returns a list of the
records that match the search string.

First in step 502, a search string is passed to ODBC Search Function sub-module
306 by the specific program, module or sub-module that called the ODBC Search Function
sub-module. In step 514, the local databases (ODBC Databases 112 and ODBC Extended
Databases 114) are opened using any conventional programming techniques. Preferably, a
database index for each of the databases is also obtained. In step 516, the local databases are
searched using the index and the plain text search string. The search may be conducted using
any conventional programming techniques.

In step 518, it is determined if the search string was found. If yes, a FIFO (first-in,
first-out) list of records found is created in step 520. Step 522 then checks if the returned
record in the FIFO list is the last record in the database. If no, the search is continued in step
524. If step 522 determines that the returned record in the FIFO list was the last record in the
database, the databases are closed in step 528 using any conventional programming
techniques. Then in step 599, a list of records that contains the search string is returned.

Returning to step 518, if no records are found (or no more records are found) that
contain the search string, step 526 checks if any records were found in the searching process.
If yes, the databases are closed in step 528 using any conventional programming techniques.
Then in step 599, a list of records that contains the search string is returned.

If step 526 determines that no records were found, the ODBC Search Function sub-
module continues the search for the search string, but now uses an encrypted search string.
First, the search string is encrypted using Encryption Function sub-module 326. The
operation of Encryption Function sub-module 326 will be discussed in more detail in the
description of Figure 19. In step 530, the local databases are searched using the index and the
encrypted search string. The search may be conducted using any conventional programming

techniques.

31

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

In step 532, it is determined if the encrypted search string was found. If yes, a FIFO
(first-in, first-out) list of records found is created in step 534. Step 536 then checks if the
returned record in the FIFO list is the last record in the database. If no, the search is
continued in step 538. If step 536 determines that the returned record in the FIFO list was the
last record in the database, the databases are closed in step 542 using any conventional
programming techniques. Then in step 599, a list of records that contains the search string is
returned.

Returning to step 532, if no records are found (or no more records are found) that
contain the encrypted search string, step 540 checks if any records were found in the
searching process. If yes, the databases are closed in step 542 using any conventional
programming techniques. Then in step 599, a list of records that contains the search string is
returned. If step 540 determines that no records were found, the databases are closed in step
542 using any conventional programming techniques. Then in step 598, a message is
returned that no records were found. "

Figure 6 is a flowchart of Post Events module 108 according to one embodiment of
the invention. Post Events module 108 uses the Data Security module 103 functions to
process the events and manual requests from the user to communicate between the co-
operating devices (servers 101 and processor panels 104).

First, Create Socket sub-module 602 creates a socket. A socket establishes a
communications path between two devices (e.g., server 101 to server 101, server 101 to
processor panel 140). Create Socket sub-module 602 checks Tolerance & Status DB 334 to
determine if the recipient co-operating device is alive and within tolerance. Create Socket
sub-module 602, also gets the IP address from the Tolerance & Status DB (334) of the
recipient device. The operation of Create Socket sub-module 602 will be discussed in more
detail in the description of Figure 22.

Then Accept Connection sub-module 604 receives packets of data from a co-
operating device. Accept Connection sub-module 604 uses Read Communications sub-
module 328 to read the data. Accept Connection sub-module 604 decrypts the data and
processes the data through Route Check sub-module 2302 (see Figure 25). Accept
Connection determines the type of event and routes the event for processing. The operation
of Accept Connection sub-module 604 will be discussed in more detail in the description of

Figure 23.

32

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

In step 605 it is determined if there was an error in connecting the co-operating
device. If there was an error, Close Socket sub-module 606 closes the socket and the error is
logged in step 610. A new attempt is then made to process the event until the event process
has been completed successfully. Close Socket sub-module 606 verifies that the server with
the connection is still alive before attempting to close the socket. The operation of Close
Socket sub-module 606 will be discussed in more detail in the description of Figure 24. If
there was not an error connecting, Close Socket sub-module 606 closes the socket. Then in
step 608, it is determined if the socket was closed properly. If not, an error is logged in step
610 and the Post Events module loops back to the beginning. If the socket was closed
properly, the Post Events module loops back to the beginning.

Figure 7 is a flowchart of ODBC Pack Function sub-module 308 according to one
embodiment of the invention. ODBC Pack Function sub-module 308 is used to delete and
condense databases where records have been marked for deletion. ODBC Pack Function sub-
module 308 packs and re-indexes both the ODBC and its associated Extended ODBC
database. Preferably, this sub-module is employed when no other operators or user logged
into the system.

First, Tolerance & Status DB 334 is opened with Open Database sub-module 302.
Then in step 702, the Tolerance & Status DB 334 is opened on the local server. Next in step
704, a current list of ‘Alive’ servers within tolerance and path are obtained from the local
Tolerance and Status DB 334. A Server that is “alive” is able to communicate with the co-
operating items (servers and panels). Close Database sub-module 304 then closes the open
databases.

In step 712, the first server on the list and in the path of the local server is identified. In step
714, ODBC Database(s) 112 and associated ODBC Extended Database(s) 114 located in the
first server are opened using any standard network communications. In step 7 16, the first
record in ODBC Database 112 is read.

In step 718 it is determined if the obtained record has been marked for packing. If
yes, the primary key that connects the Extended ODBC Database record to the current record
that is marked for deletion is obtained. In step 722, the record is deleted in ODBC Database
112 Deletion may be effected using any conventional programming techniques. In step 723 it
is determined if there was an error in deleting the record. If yes, step 782 closes the ODBC
databases and step 798 returns with an error. If there was no error in deleting, step 724

locates the record in the ODBC Extended Database 114 using the primary key from the

33

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

record in ODBC database 112 that was previously deleted. The located record in ODBC
Extended Database 114 is then deleted in step 726 using any conventional programming
techniques. An error in deletion is again determined in step 723. If yes, step 782 closes the
ODBC databases and step 798 returns with an error.

If no, step 728 checks if the current record is the last record in ODBC database 112.
If yes, step 729 re-indexes both ODBC Database 112 and ODBC Extended Database 114
using any conventional programming techniques. The ODBC databases are then closed in
step 782. Step 730 then determines if the current server is the last server on the list (see step
704). If not, the ODBC Pack Function sub-module loops back to step 729. If yes, the sub-
module returns in step 799. Returning to step 728, if the current record is not the last record
in the database, step 780 obtains the next record in ODBC Database 112 and the sub-module
loops back to step 718.

Returning to step 718, if the current record is not marked for packing, the sub-
module proceeds directly to step 728 and proceeds as described above.

Figure 8 is a flowchart of Open Database sub-module 302 according to one
embodiment of the invention. Open Database sub-module 302 is used to open the databases

on each server (in a redundant system). Open Database sub-module 302 is configured to

.open both ODBC and structured databases on any or all servers that are alive (i.e., within

tolerance/predetermined activity threshold).

First, in step 806, it is determined if the database to be opened is a structured
database or an ODBC database. Regardless of what type of database is determined, step 810
then determines if the system is redundant. Step 810 utilizes Tolerance & Status DB 334 to
determine if the system is redundant. If the number of servers listed equals one, then the
system is not redundant.

If step 806 determines that the database to be opened is a structured database and
step 810 determines that the system is not redundant, Open Database sub-module 302
proceeds to step 840. Step 840 opens the local structured database (e.g., Structured
Databases 110). Step 840 may use any conventional programming techniques to open a
structured database. Then in step 899, a list of open databases is returned.

If step 806 determines that the database to be opened is an ODBC database and step
810 determines that the system is not redundant, Open Database sub-module 302 proceeds to
step 830. Step 830 opens the local ODBC database (e.g., ODBC Databases 112). Step 830

may use any conventional programming techniques to open an ODBC database. Next, in step

34

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

822, the header field names of the local ODBC database are obtained. Any conventional
programming techniques may be used to obtain the header field names. Next in step 824, the
field location of the primary key is obtained. The primary key points to fields and/or records
in Extended ODBC database 114 (for the current server) that are associated with fields and/or
records in ODBC databases 112 (for the current server). In step 826, Extended ODBC
Databasel14 associated with the ODBC Database 112 is opened. This database may be
opened using any conventional programming techniques. Then in step 899, a list of open
databases is returned.

If step 806 determines that the database to be opened is a structured database and
step 810 determines that the system is redundant, Open Database sub-module 302 proceeds to
step 802. In step 802, Tolerance & Status DB 334 is opened on the local server. This
database may be opened using any conventional programming techniques. In step 804, a list
of servers that are “alive” and within tolerance is obtained. Step 804 also obtains the path to
the servers. Prior to step 804, the contents of Tolerance & Status DB 334 are decrypted and
then encrypted (i.e., after the data is obtained by step 804) with Decryption Function sub-
module 324 and Encryption Function sub-module 326. The operation of Decryption
Function sub-module 324 and Encryption Function sub-module 326 will be discussed in more
detail in the description of Figures 18 and 19, respectively.

After the list of servers is obtained in step 804, step 812 gets the first server from the
list and its path. Then in step 850, the structured database on the server selected by step 812
is opened. This database may be opened using any conventional programming techniques.

In step 828, it is determined if the current server is the last server on the list. If not, the next
server on the list (and its path) is obtained in step 829 and then steps 850 and 828 repeat. If
step 828 determines that the current server is the last server on the list, the list of open
databases is returned in step 899.

If step 806 determines that the database to be opened is an ODBC database and step
810 determines that the system is redundant, Open Database sub-module 302 proceeds to step
802. In step 802, Tolerance & Status DB 334 is opened on the local server. This database
may be opened using any conventional programming techniques. In step 804, a list of servers
that are “alive” and within tolerance is obtained. Step 804 also obtains the path to the
servers. Prior to step 804, the contents of Tolerance & Status DB 334 are decrypted and then
encrypted (i.e., after the data is obtained by step 804) with Decryption Function sub-module

324 and Encryption Function sub-module 326. The operation of Decryption Function sub-

35

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

module 324 and Encryption Function sub-module 326 will be discussed in more detail in the
description of Figures 18 and 19, respectively.

After the list of servers is obtained in step 804, step 812 gets the first server from the
list and its path. Then in step 820, the ODBC database (i.e., ODBC database 112) on the
server selected by step 812 is opened. This database may be opened using any conventional
programming techniques. In step 822, header and field names of ODBC database 112 on the
current server are obtained. The header and field names may be obtained using any
conventional programming techniques. Next in step 824, the field location of the primary
key is obtained. The primary key points to fields and/or records in Extended ODBC
Database 114 (for the current server) that are associated with fields and/or records in ODBC
Databases 112 (for the current server). Then in step 826, Extended ODBC database 114 is
opened on the current server. In step 828, it is determined if the current server is the last
server on the list. If not, the next server on the list (and its path) is obtained in step 829 and
then steps 820, 822, 824, 826 and 828 are repeated. If step 828 determines that the current
server is the last server on the list, the list of open databases is returned in step 899.

Figure 9 is a flowchart of Close Database sub-module 304 according to one
embodiment of the invention. Close Database sub-module 304 closes the ODBC & Structure
databases on any or all servers that are open and “alive.”

First in step 902, it is determined if the database to be closed is a structured database
or an ODBC database. Regardless of the type of database, Close Database sub-module 304
proceeds to step 904 where it is determined if the system is redundant.

If the database to be closed is a structured database and the system is not redundant,
Close Database sub-module 304 proceeds to step 930. In step 930, the structured database is
closed using any conventional programming téchniques. The sub-module returns in step 999.
If the database to be closed is a structured database and the system is redundant, Close
Database sub-module 304 proceeds to step 940. In step 940, the name and path of the first
server of the redundant system is obtained. Then in step 942, the structured database is
closed on that server using any conventional programming techniques. In step 944, if the
current server is the last server, the sub-module returns in step 999. If not, step 946 obtains
the name and path of the next server in the system and steps 942 and 944 repeat.

If the database to be closed is an ODBC database and the system is not redundant,
Close Database sub-module 304 proceeds to step 920. In step 920, the ODBC database is

closed using any conventional programming techniques. The sub-module returns in step 999.

36

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

If the database to be closed is an OBDC database and the system is redundant, Close
Database sub-module 304 proceeds to step 910. In step 910, the name and path of the first
server of the redundant system is obtained. Then in step 912, the ODBC database is closed
on that server using any conventional programming techniques. In step 914, if the current
server is the last server, the sub-module returns in step 999. If not, step 916 obtains the name
and path of the next server in the system and steps 912 and 914 repeat.

Figure 10 is a flowchart of ODBC Read Function sub-module 310 according to one

embodiment of the invention. ODBC Read Function sub-module 310 reads data stored in an

" ODBC database. First in step 1002, the name and path of the first server in the redundant

system is obtained. For non-redundant systems, there will be only one server. Using the path
letter assigned to the server, ODBC Read Function sub-module 310 opens a standard
communication path. In step 1004, a list of which fields in the ODBC database to be read are
encrypted. This information is obtained from PKI Setup DB 336. Next, in step 1006, it is
determined if the read request came internally from the software or from a user. Ifitis
determined the request came from a user, a list of fields that have been designated as
viewable by the requesting user is created in step 1008. Step 1008 may also create a list of
fields that the requesting user may edit or create. This information is obtained from PKI
Setup DB 336. Then, a list of fields to be decrypted is created in step 1010 (restricted for the
specific user) or step 1012 (unrestricted). Step 1010 may place a symbol (e.g., “***”) or the
word “ENCRYPTED?” in the data fields that are encrypted.

In step 1016, the primary key for ODBC database 112 is obtained. Next, ODBC
Search Function sub-module 306 searches the ODBC database 112 for the record and/or field
to be read. The field or record to be read may come from a user request or from another
software module or sub-module. Then in step 1014, the requested record and/or field is
obtained from ODBC Database 112 on the current server. Then in step 1018, the associated
record and/or field is obtained from ODBC Extended Database 114 using the primary key. In
step 1020, the first field to be decrypted is obtained from the list generated in step 1010 or
1012. That field is then decrypted using Decryption Function sub-module 324. The
operation of Decryption Function sub-module 324 will be discussed in more detail in the
description of Figure 18. In step 1022, the decrypted data from ODBC Extended Database
114 is merged with the associated record in ODBC Database 112. That is, the decrypted data
may be stuffed into a record and/or field in the ODBC Database 112. Alternatively, step

37

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875
1022 may write the decrypted data from ODBC Extended Database 114 into temporary
memory.

In step 1024 it is determined if the current field is the last field in the list. If yes, the
decrypted ODBC record is returned in step 1099. If no, step 1026 obtains the next field in the
list and Decryption Function sub-module 324, step 1022, and step 1024 are repeated for the
next field.

Figure 11 is a flowchart of Structure DB Read Function sub-module 311 according
to one embodiment of the invention. Structure DB Read Function sub-module 311 reads and
decrypts data from structured databases, such as Structured Databases 110.

In step 1102, the name and path of the first server in the redundant system (may be
one server for non-redundant systems) is obtained. Using the path letter assigned to the
server, Structure DB Read Function sub-module 311 opens a standard communication path.
In step 1104, data is read from Structured Databases 110 using any standard read functions
for structured databases. Then Decryption Function sub-module 324 decrypts the read data.
This data may be one or more records and/or fields. Then in step 1199, the decrypted record
and the name and path of the server where the data was located is returned.

Figures 12A and 12B are a flowchart of ODBC Save Function sub-module 312
according to one embodiment of the invention. ODBC Save Function sub-module 312 saves
and encrypts for ODBC databases. ODBC Save Function sub-module 312 saves and encrypts
data for ODBC (or other relational databases) by extracting data in a field (or receiving new
data) that is to be encrypted and storing it in a structural database (e.g., ODBC Extended
Databases 114) in an encrypted format. This information is linked with a primary key that is
created by standard programming functions. ODBC Save Function sub-module 312 stores in
the original record of the ODBC Database 112 either the word “Encrypted” or a symbol (e.g.,
cwok A,

First in step 1202, a list of fields and/or records that require data to be encrypted is
obtained from PKI Setup DB 336. PKI Setup DB 336 may be encrypted, and as such,
Decryption Function sub-module 324 may be used. In step 1203, the first field and/or record
that has been requested to be saved is obtained.

In step 1204, that record and/or field is compared to the list generated in step 1202 to
determine if it needs to be encrypted. If yes, Encryption Function sub-module 326 encrypts
the data to be saved and that data is stuffed into a record and/or field of an Extended ODBC
Database 114 in step 1206. Step 1208 tags a record and/or field in ODBC Database 112 with

38

15

20

25

30

WO 2006/130585 PCT/US2006/020875
the word “Encrypted” or with a symbol. The tagged record and/or field will be associated
with the record and/or field in the ODBC Extended Database 114 with a primary key. If the
data to be saved does not need to be encrypted, step 1210 stuffs the record and/or field in
ODBC Database 112 with plaintext.

Next, in step 1212, it is checked if the current field and/or record is the last field
and/or record to be saved. If no, the next field and/or record are obtained in step 1214 and
the ODBC Save Function sub-module returns to step 1204. If yes, the sub-module proceeds
to step 1216 where it is determined if the system is redundant.

If step 1216 determines that the system is not redundant, step 1250 checks if any of
the fields to which data is to be saved are encrypted fields. If yes, step 1233 checks to see if
there is a primary key. If no, a primary key is created in step 1218. The primary key links
specific fields and/or records of ODBC Extended Databases 114 (a structural database) with
specific fields and/or records of ODBC Database 112. Then in step 1220, the data (the tag
from step 1208 or plaintext from step 1210) for each field and/or record that was requested to
be saved is written to the appropriate ODBC database 112 on the local server. If step 1233
determines that there is a primary key, the ODBC Save Function sub-module proceeds
directly to step 1220. Next in step 1222, the encrypted data for each field and/or record
requested to be saved is written to ODBC Extended Database 114 on the local server. The
sub-module then returns in step 1299.

If step 1250 determines that no fields are to be encrypted, the data (the tag from step
1208 or plaintext from step 1210) for each field and/or record that was requested to be saved
is written to the appropriate ODBC database 112 on the local server in step 1220.

Returning to step 1216, if the system is determined to be redundant, ODBC Save
Function sub-module 312 proceeds to step 1230 in Figure 12B. Step 1230 obtains a list of all
servers that are “Alive” and within tolerance from Tolerance & Status DB 334. Step 1232
then obtains the name and path of the first server on the list. Next, step 1250 checks if any of
the fields to which data is to be saved are encrypted fields. If yes, step 1233 checks to see if
there is a primary key. If no, a primary key is created in step 1218. The primary key links
specific fields and/or records of ODBC Extended Databases 114 (a structural database) with
specific fields and/or records of ODBC Database 112. Then in step 1236, the data (the tag
from step 1208 or plaintext from step 1210) for each field and/or record that was requested to
be saved is written to the appropriate ODBC database 112 on the current server. If step 1233

determines that there is a primary key, the ODBC Save Function sub-module proceeds

39

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

directly to step 1236. Next, regardless of whether or not a key needed to be created, the
encrypted data for each field and/or record requested to be saved is written to ODBC
Extended Database 114 on the current server in step 1238.

Next in step 1240, it is determined if the current server is the last server on the list.
If yes, the sub-module returns in step 1299. If no, step 1242 gets the next server on the list
and the sub-module returns to step 1236. Each subsequent server on the list may utilize the
same primary key (if necessary) created for the first server in step 1218. However, a new
primary key may be created for each server.

Returning to step 1250, if none of the fields are to be encrypted, ODBC Save
Function sub-module proceeds to step 1220 where the data (the tag from step 1208 or
plaintext from step 1210) for each field and/or record that was requested to be saved is
written to the appropriate ODBC database 112 on the local server. Next in step 1240, it is
determined if the current server is the last servér on the list. If yes, the sub-module returns in
step 1299. Ifno, step 1242 gets the next server on the list and the sub-module returns to step
1220.

Figure 13 is a flowchart of Structure DB Save Function sub-module 313 according
to one embodiment of the invention. Structure DB Save Function sub-module 313 saves and
encrypts for structured databases.

First in step 1304, the sub-module determines if the system is redundant. If not,
Encryption Function sub-module 326 encrypts the data to be saved and saves the data to a
structured database (e.g., Structured Databases 110) on the HDD of the local server in step
1308. In step 1310, the record and/or field in which the encrypted data was saved is tagged
indicating that data was saved. Then in step 1399, Structure DB Save Function sub-module
313 returns with a list of saved records.

If step 1304 determines that the system is redundant (i.e., more than one server is
listed in the Tolerance & Status DB 334), step 1306 gets the name and path of the first server
in the redundant system. Then, Encryption Function sub-module 326 encrypts the data to be
saved and saves the data to a structured database (e.g., Structured Databases 110) on the
HDD of the current server in step 1308. In step 1310, the record and/or field in which the
encrypted data was saved is tagged indicating that data was saved. Step 1312 determines if
there are more servers left in the redundant system. If yes, step 1314 obtains the name and

path of the next server. If not, a list of saved records is returned in step 1399.

40

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

Figure 14 is a flowchart of Redundancy Server Status sub-module 316 according to
one embodiment of the invention. Redundancy Server Status sub-module 316 checks the
status of the servers to determine if they are “Alive” Or “Inactive.” A status of “Alive”
indicates that the server is able to communicate with the redundant system. A status of
“Inactive” indicates that the server is unable to communicate with the redundant system.

First, PKI Setup DB 336 is opened with Open Database sub-module 302. Then in
step 1402, a list of servers and their respective paths are obtained from the opened PKI Setup
DB 336. Step 1404 then checks if the system is redundant. If not, Close Database sub-
module 304 is used to close PKI Setup DB 336 and the Redundancy Server Status sub-
module returns.

If the system is determined to be redundant in step 1404, the name and path of the
first server in the list is obtained in step 1406. Using the obtained path, a standard
communication path is opened to that server. Next, Close Database sub-module 304 closes
PKI Setup DB 336. Next in step 1408, it is determined if the current server is “Alive.” If the
sub-module was able to open a communication path to the current server and is able to
communicate with that server it is determined to be “Alive.” If a communication path is not
established and/or communication not received, the server is determined to be “Inactive.”

If the server is determined to be alive, Open Database sub-module 302 opens
Tolerance & Status DB 334 located on the current server and step 1410 updates the database
to indicate that the current server is “Alive.” Next it is determined if the current server is the
last server on the list in step 1412. If yes, Close Database sub-module 304 closes Tolerance
& Status DB 334 on the current server and the Redundancy Server Status sub-module 313
returns in step 1499. If the current server is not the last server on the list, Close Database
sub-module 304 closes Tolerance & Status DB 334 on the current server and step 1414
obtains the name and path of the next server on the list. Redundancy Server Status sub-
module 313 then returns to step 1408.

If the server is determined not to be alive in step 1408, Open Database sub-module
302 opens Tolerance & Status DB 334 located on the current server and step 1420 updates
the database to indicate that the current server is “Inactive.” Next it is determined if the
current server is the last server on the list in step 1412. If yes, Close Database sub-module
304 closes Tolerance & Status DB 334 on the current server and the Redundancy Server
Status sub-module 313 returns in step 1499. If the current server is not the last server on the

list, Close Database sub-module 304 closes Tolerance & Status DB 334 on the current server

41

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875
and step 1414 obtains the name and path of the next server on the list. Redundancy Server
Status sub-module 313 then returns to step 1408.

Figure 15 is a flowchart of Server Tolerance sub-module 318 according to one
embodiment of the invention. Server Tolerance sub-module 318 checks the status of the
servers to determine if the CPU usage of each server is out of tolerance when compared to the
tolerances set in PKI Setup DB 334.

First, Open Database sub-module 302 opens Tolerance & Status DB 334. Then,
utilizing Structure DB Read Function sub-module 311, step 1502 obtains a list of servers,
their respective paths, and their status (i.e., “Alive” or “Inactive”) indicated in Tolerance &
Status DB 334. Close Database sub-module 304 then closes Tolerance & Status DB 334.

Next, Open Database sub-module 302 opens PKI Setup DB 336. Then, utilizing
Structure DB Read Function 311, step 1504 obtains server names, their respective paths, and
their respective server tolerances from the database. The server tolerances indicate what
levels of activity (e.g., CPU usage) would cause a server to be considered out of tolerance.
Then, Close Database sub-module 304 closes PKI Setup DB 336.

Next in step 1506, the current activity of each server is compared to the tolerance
obtained from PKI Setup DB 336. Step 1508 then determines if any server in the system is
out of tolerance based on the comparison. If no, Server Tolerance sub-module 302 returns in
step 1599. If yes, step 1510 creates a list of servers and their respective paths that were
determined to be out of tolerance. Then in step 1512, the first “out of tolerance” server and
its respective path is obtained from the list.

Next in step 1514, the current server from the “out of tolerance” list is checked to
see if it is the “Active” server. The “Active” server is the server that is currently assigned to
perform the tasks of the data security system. If the current server is not the “Active” server,
step 1540 checks to see if the current server is the last server on the “out of tolerance” list. If
yes, Server Tolerance sub-module 318 returns in step 1599. If no, step 1542 obtains the
name and path of the next server on the “out of tolerance list” and returns to step 1514.

If it is determined in step 1514 that the current server is the “Active” server, step
1530 then retrieves the list of active processes for this server. These are all the processes that
the current server is currently being asked to perform. The list of these processes is stored in
Tolerance & Status DB 334. Then in step 1532, a list of servers, their respective paths, and
their redundancy order is obtained from Tolerance & Status DB 334. In step 1534, the first

process in the list created in step 1530 is turned off for the current server and the process is

42

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875
then tagged (i.e., to be reassigned) to the next server in the redundancy chain determined in
step 1532. This reassignment is stored in Tolerance & Status DB 334. Then, utilizing Open
Database sub-module 302, Structure DB Save Function sub-module 313, and Close Database
sub-module 304, the current processes being executed by the servers as altered by steps 1534
and 1536 are stored on the Tolerance & Server DB on all servers in the system. Server
Tolerance sub-module 318 then loops back to the beginning. In this way, the tolerance level
of the “Active” server may again be checked before reassigning a second process.

Figure 16 is a flowchart of Assume Processes sub-module 320 according to one
embodiment of the invention. Assume Processes sub-module 320 completes the
reassignment of processes tagged by Server Tolerance sub-module 318.

First, using Open Database sub-module 302 and Structure DB Read Function 311,
step 1602 reads Tolerance & Status DB 334 to determine if any processes have been tagged
for the current server (i.e., the server calling the Assume Processes sub-module). If no, Close
Database sub-module 304 closes Tolerance & Status DB 334 and the returns.

If yes, Close Database sub-module 304 closes Tolerance & Status DB 334. Then,
Open Database sub-module 302 opens PKI Setup Database 336. Next in step 1604, the
activity level of the current server is obtained and compared to the tolerances levels set in
PKI Setup DB for the current server. Close Database sub-module 304 then closes PKI Setup
DB 336.

Based on the activity level and tolerances obtained in step 1604, step 1606
determines if the current server is out of tolerance. If yes, Tolerance & Status DB 334 is
opened and read by Open Database sub-module 302 and Structure DB Read Function sub-
module 311, respectively. Structure DB Read Function sub-module 311 is used to obtain the
redundancy order. Then in step 1620, the process tagged for the current server is now tagged
to the next server in the obtained redundancy order. Then, Structure DB Save Function 313
saves the tag to Tolerance & Status DB 334 on all servers. Close Database sub-module 304
is used to close each Tolerance & Status DB 334 and Assume Processes sub-module 320
returns in step 1699.

If the current is server is determined not to be out of tolerance in step 1606,
Tolerance & Status DB 334 is opened and read by Open Database sub-module 302 and
Structure DB Read Function sub-module 311, respectively. Then in step 1610, the process
tagged for the current server is turned on. Then, Structure DB Save Function 313 saves the
status of this processor (i.e., “On”) to Tolerance & Status DB 334 on all servers. Close

43

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875
Database sub-module 304 is used to close each Tolerance & Status DB 334 and Assume
Processes sub-module 320 returns in step 1699.

Figure 17 is a flowchart of Restore Processes sub-module 322 according to one
embodiment of the invention. Restore Processes sub-module 322 restores processes to the
“Active” server that were previously reassigned because the “Active” server was not “Alive”
or was out of tolerances.

First, using Open Database sub-module 302 and Structure DB Read Function 311,
step 1702 obtains a list of servers, their respective paths, their status, and tolerances from
Tolerance & Status DB 334. DB 334 is then closed using Close Database sub-module 304.
In step 1704, it is determined if the current server (i.e., the server calling the Restore
Processes sub-module) is the “Active” server. If no, Restore Processes sub-module 322
returns in step 1799. If the current server is the active server, step 1706 then determines if the
current server is in control of all of its process. This may be done, for example, by checking
data stored in Tolerance & Status DB 334 to determine if any processes that are the
responsibility of this server have been reassigned to another server.

If the current server is in control of all of its processes, Restore Processes sub-
module 322 returns in step 1799. If the current server is not in control of all of its processes,
step 1706 opens PKI Setup DB 336, obtains a list of servers, their respective paths, and their
respective tolerance levels, and closes the database using Open Database sub-module 302,
Structure DB Read Function sub-module 311, and Close Database sub-module 304. Then in
step 1710, the activity level of the current server is obtained and compared to the tolerances
obtained in step 1708. Based on this comparison, step 1712 determines if the current server
is out of tolerance. If yes, the sub-module returns in step 1799. If no, step 1714 obtains a list
of re-assigned processes for the current server (which is the “Active” server) from Tolerance
& Status DB 334 on all servers. Step 1716, the first process on this list is removed from the
server to which it was reassigned and is restored to the current server. The status of the
processes is then saved on Tolerance & Status DB 334 on all servers using Structure DB Save
Function 313. Close Database sub-module then closes DB 334 on all servers. Restore
Processes sub-module 322 then loops back to step 1702. In this way, reassigned processes
are restored on the “Active” server one at a time with a check of usage levels against
predetermined tolerances between each restoration. However, it is also acceptable to restore

two or more processes to an “Active” server between out of tolerance determinations.

44

10

15

20

25

30

WO 20
06/130585 PCT/US2006/020875

Figure 18 is a flowchart of Decryption Function sub-module 324 according to one
embodiment of the invention. Decryption Function sub-module 324 is used to decrypt data
stored in the database. In this example, the Decryption sub-module utilizes a public
key/private key encryption system as set forth by FIPS 140-2 or FIPS 140-3. However, this
invention and this embodiment may use any encryption system.

First in step 1802 the public key is obtained. In a FIPS 140-2 or 140-3 encryption
system, the public key may be supplied by the U.S. Government. A user may also create a
public key. This key may be buried within the software (that is stored within the executable
code) rather than in a database so that it is not identifiable. Then, Open Database sub-module
302 opens Private Key DB 330. Step 1804 reads Private Key DB 330 and step 1808 obtains
the private keys needed for decrypting the requested fields and/or records from Private Key
DB 330. Close Database sub-module 304 then closes Private Key DB 330. The private keys
are created by the user (preferably the administrator) of the system. The private keys may be
assigned or associated to different users or groups of users so that access to data may be
controlled on a user by user basis. Also, as each field and/or record of data may be encrypted
with a different public key/private key pair, each field and/or record of data may then be
decrypted with a different public key/private key pair.

In step 1809 it is determined what type of data is to be decrypted. This will be
known from the database type as well as the header information for the fields and/or record to
be decrypted. Data types may include character strings 1810, ODBC fields 1820, and VOID
structures 1830. If the data type is a character string, step 1814 decrypts the data using the
combined public key and private key associated with the data. This process may be repeated
using several keys for different fields within the same database. If the data is an ODBC field,
the field is copied into a string format in step 1824 before decrypting in step 1814. If the data
is in a VOID structure format, the structure is copied into a string format in step 1834 before
decrypting in step 1814.

Next in step 1811, it is again determined what type of data was requested to be
decrthed. For character string 1810, step 1816 reformats the decrypted data into a character
string. For ODBC string 1825, step 1826 reformats the decrypted string into an ODBC field.
For VOID structure 1830, step 1836 copies the decrypted string into a VOID structure. Then
in step 1899, the decrypted data is returned.

Figure 19 is a flowchart of Encryption Function sub-module 326 according to one

embodiment of the invention. Encryption Function sub-module 326 is used to encrypt data

45

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875
stored in the database. In this example, the Encryption sub-module utilizes a public
key/private key encryption system as set forth by FIPS 140-2 or FIPS 140-3. However, this
invention and this embodiment may use any encryption system.

First in step 1902 the public key is obtained. Ina FIPS 140-2 or 140-3 encryption
system, the public key may be supplied by the U.S. Government. The user may also create a
public key. This key may be buried within the software (that is stored within the executable
code) rather than in a database so that it is not identifiable. Then, Open Database sub-module
302 opens Private Key DB 330. Step 1904 reads Private Key DB 330 and step 1906 obtains
the private keys needed for encrypting the requested fields and/or records from Private Key
DB 330. Close Database sub-module 304 then closes Private Key DB 330. The private keys
are created by the user (preferably the administrator) of the system. The private keys may be
assigned or associated to different users or groups of users so that access to data may be
controlled on a user by user basis. Also, each field and/or record of data may be encrypted
with a different public key/private key pair.

In step 1908 it is determined what type of data is to be encrypted. This will be
known from the database type as well as the header information for the fields and/or record to
be decrypted. Data types may include character strings 1910, ODBC fields 1920, and VOID
structures 1930. If the data type is a character string, step 1914 encrypts the data using the
combined public key and private key associated with the data. This process may be repeated
using several keys for different fields within the same database. If the data is an ODBC field,
the field is copied into a string format in step 1924 before encrypting in step 1914. If the data
is in a VOID structure format, the structure is copied into a string format in step 1934 before
encrypting in step 1914.

Next in step 1908, it is again determined what type of data was requested to be
encrypted. For character string 1910, step 1916 reformats the encrypted data into a character
string. For ODBC string 1925, step 1926 reformats the encrypted string into an ODBC field.
For VOID structure 1930, step 1936 copies the encrypted string into a VOID structure. Then
in step 1999, the encrypted data is returned.

Figure 20 is a flowchart of Read Communications sub-module 328 according to one
embodiment of the invention. Read Communications sub-module 328 reads the data
contained in records and/or fields of databases across a communications path.

First in step 2002, a first data packet is read. This data packet is received over a

communication path (socket) from another co-operating device in the system (e.g., another

46

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875
server or a processor panel). The communication path may be created by the process shown
in Figure 22. Next, step 2004 checks to see if the current packet is the last packet. If no, step
2006 gets the next packet of data through the communications path. If the last packet has
been received, step 2008 confirms that the data was received properly. Using standard
programming functions, the record checksum from what was sent to what was received is
verified. If the data was not received properly, the sub-module returns with an error (e.g.,
may display “Read Error™) in step 2098.

If the data was received properly, step 2010 converts that data into a structure
format. Then in step 2012, the data type for decryption is set. This data type is then used by
Decryption Function sub-module 324 to decrypt the data. Then in step 2014 the decrypted
data is read and verified to determine if what was received was expected. In step 2016, an
ACK Flag is set to verify that the Read Communications process was completed properly.
The ACK flag is then sent to the device that sent the data. Read Communications sub-
module 328 then returns in step 2099.

Figure 21 is a flowchart of Write Communications sub-module 329 according to one
embodiment of the invention. Write Communications sub-module 329 writes database files,
fields and records to a file across a communication path.

First in step 2102, a time and date stamp is added to the field and/or record to be
written. Tn step 2104, a “time out” flag is set in PKI Setup DB 336. This flag will be used to
determine if the transfer of data has been completed within a predetermined length of time.
In step 2106, the type of data is set for use by Encryption Function sub-module 326.
Preferably, the data types include VOID structure, character string, or ODBC field (see
Figures 18 and 19). Next, Encryption Function sub-module 326 encrypts the data to be
written across the communication path.

In step 2108, the IP address of the recipient of the data to be written is obtained. The
recipient may be another server 101 or a processor panel 140. Next, using Open Database
sub-module 302 and Structure DB Read Function sub-module 311, step 2110 obtains status
(i.e., “Alive” or “Inactive”) and tolerance information for the recipient from Tolerance &
Status DB 334. Next, Close Database sub-module 304 is used to close Tolerance & Status
DB 334. Based on the information obtained in step 2110, step 2112 determines if the
recipient is “Alive.” If no, step 2198 returns with an error. If yes, step 2114 writes the
encrypted record to the recipient device across the communication path. The communication

path may be created by the process shown in Figure 22.

47

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

Step 2116 then waits until the recipient device responds or the predetermined “time
out” period has expired. If the “time out” period expires before the recipient device responds,
step 2198 returns with an error. If the recipient responds first, Read Communications sub-
module 328 reads the recipient’s response. Step 2118 then determines if an ACK flag
(acknowledges a valid transfer) was included in the recipient’s response. If not, step 2198
returns with an error. If an ACK flag was received, step 2199 returns.

Figure 22 is a flowchart of Create Socket sub-module 602 according to one
embodiment of the invention. Create Socket sub-module 602 is used to create a
communication path (i.e., a socket) between two co-operating devices in the system. First,
Open Database sub-module 302 opens Tolerance & Status DB 334 and step 2202 obtains
tolerance, status, and IP address for the device (server or processor panel) to which a
communication path is to be opened. Close Database sub-module 304 then closes Tolerance
& Status DB 334. Based on the status and tolerance information obtained in step 2202, step
2204 determines if the recipient device is “Alive” and within tolerance. If no, step 2295 logs
an error step 2298 returns with an error. If yes, step 2206 opens the communication path
(socket) using the obtained IP address and then step 2299 returns. Step 2206 may be
performed using any conventional programming techniques.

Figure 23 is a flowchart of Accept Connection sub-module 604 according to one
embodiment of the invention. Accept Connection sub-module 604 receives packets of data
from a co-operating device.

First, step 2301, using standard programming functions, waits for data to be sent.

An error returns in step 2398 when a standard programming message is received from the
socket indicating that the Operating System has closed the socket (typically a hardware error,
e.g. a network card). If data is received, Read Communication sub-module 328 reads the
received data. Step 2303 then determines if an error in the reading of the data occurred based
on the output of Read Communication sub-module 328. If there was an etror, step 2395 logs
the error and step 2398 returns with an error. If there was not an error in reading the data,
Decryption Function sub-module 324 is used to decrypt the read data. Based on the output of
Decryption Function sub-module 324, step 2305 checks if there was an error in the
decryption process. If yes, step 2395 logs the error and step 2398 returns with an error. If
no, Route Check sub-module 2302 reads Route Database 120 and determines how to process
the event (i.e., the data that has been received through the Accept Connection sub-module).
Route Check sub-module 2303 returns the type of event and the data needed to process the

48

15

20

25

30

WO 2006/130585 PCT/US2006/020875
event. The operation of Route Check sub-module 2302 will be discussed in more detail in
the description of Figure 25.

Based on the output of Route Check sub-module 23 02, step 2308 determines if the
event is a route event. A “Route Event” determination is true or false as to whether, under
the current circumstances, an event is to be sent to other devices (e.g. a true statement is that
a PIR (passive infrared) motion detector is set off during operating hours, a false statement is
when the PIR motion detector is set off during closed hours). If the event is not a route event,
step 2399 returns. If the event is a route event, step 2310 determines \the type of event. Route
events may include events that indicate an alarm has been tripped or a request to pass through
an entry control portal (e.g., a controlled gate, door, etc.). This determination may trigger
Alarm Event Processing sub-module 2304 (see Figure 26), Access Control Processing sub-
module 2306 (see Figure 27), or another sub-module 2312 for some other type of event.
Alarm Event Processing sub-module 2304 processes an alarm or event that has occurred
within the system. An example of an alarm or event would be when a PIR motion detector is
triggered in an area where no one is authorized to be at during the time of the event or alarm.
Access Control Processing sub-module 2306 processes an alarm or event that has occurred
within the system. For example, an Access Control event occurs when an access card is
swiped by an individual requesting access to a building or area.

In step 2314, an ACK flag is set once the processing of the event is complete. Then,
Write Communications sub-module 329 posts any data as required by the Processing
functions (i.e., Alarm Event, Access Control, or Other) to the co-operating devices specified.
Step 2316 then checks if Write Communications sub-module 329 returned with an error. If
yes, step 2395 logs the error and step 2398 returns with an error. If no, step 2399 returns.

Figure 24 is a flowchart Close Socket sub-module 606 according to one embodiment
of the invention. Close Socket sub-module 606 closes an open socket. First, step 2402
verifies that the server (or another co-operating device such as a processor panel) is still
“Alive.” The status of the server is found in Tolerance & Status DB 334. The status
information is obtained by first opening DB 334 with Open Database sub-module 302,
reading the desired status with Structure DB Read Function 311, and then closing DB 334
with Close Database sub-module 302. If the server was not alive, step 2495 logs an error and
step 2498 returns with an error. If the server was alive, step 2404 closes the socket (i.e.,
communication path) and step 2499 returns. The socket may be closed using any

conventional programming techniques.

49

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

Figure 25 is a flowchart of Route Check sub-module 2302 according to one
embodiment of the invention. Route Check sub-module 2302 determines, from the
appropriate database, what actions the system needs to take when an event occurs.

First, using Open Database sub-module 302 and Structure DB Read Function sub-
module 311, step 2502 obtains a list of the types of events from Route DB 120. Close
Database 304 then closes Route DB 120. Step 2504 then determines what type of event
needs to be processed based on the information received by Route Check sub-module 2302
and the obtained list of types of events the system is able to process. If the event to be
processed is not on the list, step 2595 returns an error. Otherwise, Route Check sub-module
2302 continues.

Figure 25 shows the process Route Check sub-module 2302 performs for alarm
(monitor point) and access control (reader). If the type of event is Monitor Point event 2510,
step 2512 obtains the name and location of the Monitor point (e.g., an alarm) from the data
(record) received by Route Check sub-module 2302. Next, step 2514 obtains the SPP
(Standalone Processor Panel) number from the data (record) received by Route Check sub-
module 2302. Then step 2516 obtains the routing number from Monitor Point DB 124. The
routing number is assigned to the routing path for a physical device to which events are sent
for processing. Single or multiple devices may be contacted (e.g. Route #1 can be Terminal
1, Event Printer 2 and 3, etc). Step 2516 utilizes Open Database sub-module 302 to open
Monitor Point DB 124, Structure DB Read Function sub-module 311 to read the record in
Monitor Point DB 124 that contains the routing number, and Decryption Function sub-
module 324 to decrypt that record. Next, Close Database sub-module 304 closes Monitor
Point DB 124.

If the type of event is Reader 2520, step 2522 obtains the name and location of the
Reader (e.g., a swipe card reader) from the data (record) received by Route Check sub-
module 2302. Next, step 2524 obtains the SPP number from the data (record) received by
Route Check sub-module 2302. Then step 2526 obtains the routing number from Reader DB
122. Step 2526 utilizes Open Database sub-module 302 to open Reader DB 122, Structure
DB Read Function sub-module 311 to read the record in Reader DB 122 that contains the
routing number, and Decryption Function sub-module 324 to decrypt that record. Next,
Close Database sub-module 304 closes Reader DB 122.

The same process for monitor point and reader processes may be followed for other

types of events 2530. Regardless of the type of event, the database used to obtain the routing

50

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

number is then closed using Close Database sub-module 304. Step 2590, based on the
obtained routing number, determines if the event needs to be routed. If no, step 2598 returns
with a no answer. If yes, step 2599 returns with a yes answer.

Figure 26 is a flowchart of Alarm Event Processing sub-module 2304 according to
one embodiment of the invention. After Post Events module 108 receives an event and Route
Check sub-module 2302 has determined that the event is an alarm (Monitor Point) event that
needs processing, Alarm Event Processing sub-module 2304 processes the event.

First, step 2602 obtains a list of devices to send data regarding the alarm event from
Route DB 120. Open Database sub-module 302 is used to open Route DB 120 and Structure.
DB Read Function sub-module 311 is used to read the record(s) that specify which devices
should be sent data based on the type of event. Close Database sub-module 304 then closes
Route DB 120. Next, Open Database sub-module 302 opens Monitor Point DB 124 and
Structure DB Read Function sub-module 311 reads the database to determine the location of
priority level flags.

Step 2604 then updates the priority level flag based on the type of event. When an
event comes in it is put into a queue, the module picks it up depending upon its priority level.
The priority levels are customer defined (e.g. normally a fire alarm is the highest priority
level). Structure DB Save Function sub-module 313 is then used to save the updated priority
level flag in Monitor Point DB 124 and Close Database sub-module 304 closes Monitor Point
DB 124.

Step 2606 then obtains the name and path of the first server on the list obtained in step 2602.
Step 2608 then sends data regarding the event to the current device. The data may be sent
using any data communication technique, including using the Write Communications sub-
module. Devices may include a terminal display driver (e.g., for displaying an alarm event),
an email server (e.g., for sending an email regarding an alarm event) or a printer driver (e.g.,
for printing information regarding an alarm event). Any device capable of communication
with the system may be utilized for processing an alarm event.

Step 2610 then checks if the current device is the last device on the list. If yes, step
2699 returns. If no, step 2612 obtains the next device on the list obtained in step 2602 and
then returns to step 2608.

Figure 27 is a flowchart of Access Control Processing sub-module 2306 according to
one embodiment of the invention. After Post Events module 108 receives a request (event)

and the Route Check sub-module 2302 determines the event is a Reader event (i.e., access

51

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875
control) and the event needs routing, Access Control Processing sub-module 2306 processes
the Access Control event. As one example, an Access Control Event may occur when an
individual using some identification means (e.g., card swipe) requests entry to a building or
area.

First, step 2702 obtains a list of devices to send data regarding the alarm event from
Route DB 120. Open Database sub-module 302 is used to open Route DB 120 and Structure
DB Read Function sub-module 311 is used to read the record(s) that specify which devices
should be sent data based on the type of event. Close Database sub-module 304 then closes
Route DB 120. Next, Open Database sub-module 302 opens Reader DB 122 and Structure
DB Read Function sub-module 311 reads the database to determine the location of priority
level flags. Step 2704 then updates the priority level flag based on the type of event.
Structure DB Save Function sub-module 313 is then used to save the updated priority level
flag in Reader DB 122 and Close Database sub-module 304 closes Reader DB 122.

Step 2706 then obtains the name of the Employee who requested and/or was granted
access during the event from Employee DB 126. Open Database sub-module 302 opens
Employee DB 126, ODBC Read Function sub-module 310 reads the employee name from the
database, and after obtaining the name in step 2706, Close Database sub-module 304 closes
Employee DB 126. Next, based on the obtained employee name and the known location of
the access control (reader) event, step 2708 updates a flag in Employee DB 126 that indicates
the location of the employee. Step 2708 first opens Employee DB 126 with Open Database
sub-module 302, saves the updated location flag to the database using ODBC Save Function
sub-module 312, and closes the database with Close Database sub-module 304.

Step 2710 obtains the name and path of the first device found in the list created in
step 2702. Step 2712 sends data regarding the access control (reader) event to the current
device. The data may be sent using any data communication technique, including using the
Write Communications sub-module. Devices may include a terminal display driver (e.g., for
displaying an access control event), an email server (e.g., for sending an email regarding an
access control event) or a printer driver (e.g., for printing information regarding an access
control event). Any device capable of communication with the system may be utilized for
processing an access control event.

Step 2714 then determines if the current device is the last device on the list. If yes,
step 2799 returns. If no, step 2716 obtains the name and path of the next device on the list
and returns to step 2712.

52

WO 2006/130585 PCT/US2006/020875

Other embodiments of the invention will be apparent to those skilled in the art from
consideration of the specification and embodiments disclosed herein. Thus, the specification
and examples are exemplary only, with the true scope and spirit of the invention set forth in

the following claims and legal equivalents thereof.

53

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

WHAT IS CLAIMED IS:

1. A method of creating a data file containing encrypted data, the method
comprising the steps of:

receiving a plaintext data having one or more data structures, each data structure
having one or more fields containing plaintext data;

encrypting at least one field of plaintext data with an encryption algorithm to create
encrypted data;

creating an encrypted data file; and

storing the encrypted data in the fields of the encrypted data file.

9 The method of claim 1 wherein the encrypted data file has the same number of

data structures and fields as the plaintext data;

3. The method of claim 1 wherein the plaintext data is a database file.

4. The method of claim 1 wherein the encrypting step encrypts at least one field of

plaintext data with an encryption algorithm that uses an encryption key.

5. The method of claim 4 wherein each field of plaintext data is encrypted with a
different encryption key.

6. The method of claim 5 further comprising the step of:
storing, in a pointer data file, a pointer to the field in the encrypted data file in which

the encrypted plaintext data was stored.

7. The method of claim 6 further comprising the step of:

encrypting the pointers stored in the pointer data file.

8. The method of claim 6 wherein the pointer data file is the plaintext data file.

9. The method of claim 5 further comprising the steps of:

creating an encryption key data file;

54

10

15

20

25

30

WO 2006/130585

storing, in the encryption key data file, decryption keys capable of decrypting the
encrypted plaintext data; and

associating a user with each decryption key.

10. The method of claim 9 wherein the decryption keys are the same as the

encryption keys.

11. The method of claim 9 wherein the decryption keys are different than the

encryption keys.

12. A method for decrypting an encrypted data file comprising the steps of:

providing an encrypted data file, the encrypted data file having two or more data
structures, each data structure having one or more fields containing encrypted data;

receiving a request to decrypt encrypted data in one or more of the fields; and

decrypting the requested data into plaintext data.

13. The method of claim 12 further including the step of displaying the decrypted
plaintext data, wherein the decrypted plaintext data is stored in temporary memory until it is

displayed and then is deleted.

14. The method of claim 12 further comprising the steps of:

providing a pointer data file, the pointer data file containing pointers to fields in the
encrypted data file;

associating the received request with pointers in the pointer data file, wherein the

requested data is the encrypted data pointed to by the associated pointers.

15. The method of claim 12 further comprising the steps of:
providing an encryption key data file, the encryption key data file containing
decryption keys used to decrypt the encrypted data in the encrypted data file;

associating a user with each encryption key.

16. The method of claim 15 wherein the encryption key data file contains a decryption key
for each field of the encrypted data file.

55

PCT/US2006/020875

10

15

20

25

30

WO 2006/130585 PCT/US2006/020875

17. The method of claim 15 wherein the decryption keys are the same as the

encryption keys.

18. The method of claim 15 wherein the decryption keys are different than the

encryption keys.

19. A method for sharing processes among two or more networked computers in
real time, the method comprising the steps of:

(1) receiving a request to execute a process;

(2) determining if a networked computer N is within a predetermined activity
threshold;

(3) executing the process with the first networked computer if it is determined to be
within the predetermined activity threshold; and

(4) repeating steps (2) to (4) with respect to networked computer N+1 if networked

computer N is not within the predetermined activity threshold.

0. The method of claim 19 wherein instructions for executing the process are not
sent to a networked computer until it is determined to be within the predetermined activity

threshold.

1. The method of claim 19 wherein the predetermined activity threshold is at least
partially based on expected network delays.

22, The method of claim 19 wherein the predetermined activity threshold is at least
partially based on a time to reply to the predetermined activity threshold determination, a
time to send the process request to the networked computer, and a time to execute the

process.

23. The method of claim 20 wherein the predetermined activity threshold is at least

partially based on an amount of data needed to send instructions for executing the process.

56

10

15

20

25

30

WO 2006/130585

24. The method of claim 19 wherein the predetermined activity threshold is at least

partially based on a current load of the networked computer.

25. A method for redundantly storing data among a plurality of networked
computers in real time, the method comprising the steps of:
executing a process on a first computer, wherein the process amends, adds, and/or deletes
data stored on the first computer;
determining if any of one or more of a second group of computers, other than the first
computer, are within a predetermined activity threshold;
sending instructions to execute the process to each computer of the second group of
computers determined to be within the predetermined activity threshold; and
placing instructions to execute the process in a queue for each computer in the second group

of computers determined not to be within the predetermined activity threshold.

26. The method of claim 25 further comprising the step of
executing the queued process in the second group of computers determined not to be within
the predetermined activity threshold if they return within a predetermined activity threshold
before a predetermined length of time; and
replacing all data stored on the second group of cdmputers determined not to be within the
predetermined activity threshold with data stored on one of the plurality of networked
computers that is within a predetermined activity threshold if the predetermined length of

time has elapsed and processes remain in the queue.

27. The method of claim 25 wherein the predetermined activity threshold is at least

partially based on expected network delays.

8. The method of claim 25 wherein the predetermined activity threshold is at least
partially based on a time to reply to the predetermined activity threshold determination, a
time to send the process request to the networked computer, and a time to execute the

process.

79. The method of claim 27 wherein the predetermined activity threshold is at least

partially based on a amount of data needed to send instructions for executing the process.

57

PCT/US2006/020875

WO 2006/130585 PCT/US2006/020875

30. The method of claim 25 wherein the predetermined activity threshold is at least

partially based on a current load of the networked computer.

58

PCT/US2006/020875

WO 2006/130585

1/43

!
{

=) __
ALRNJAS ViV 60 3A01dW3 | 90 JOLINOW | 80 ¥30V3Y | 90 3L0 %ﬁa
H/l.JH
— 901~
— “ SINIA3 YITANYH
== DTS ﬁ 1504 Huz: FIOMLIN
ovl SONVATIOL | ALMAS
7 ——
TANVd ¥0SS700M . ﬁ DI H Vv J_ T 5
Yl Zll ol vo/ co/ NS
/ SYIANIS CILIWTINA
Zol
JVMLA0S
| ®9/
- SINIAT 4TTANVH
150 | INTROMIIN
mww__,_uﬁeH zﬁ@%m w INTWNOYIANT 9NILV§3d0
va 7 o] g
vol =0 NS [Dl

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/020875

WO 2006/130585

2/43

¢ ‘bl

oce
=L 222 vee
g7z |
AL
J0L4vCY
40L4vaY J0L4YOY ENAEIL lﬁu
NOLLYDINAWWOD AESIC e o
glc
QNN\ Qy,m_,NR QN\
_ ﬂ 02
A = —{ ¥0Ldv0¥ 0/) Woy W nd)
N o0z) 202t

00¢

SUBSTITUTE SHEET (RULE 26)

N

WO 2006/130585

3/43

ITEM 103

PCT/US2006/020875

DATA SECURITY (ITEM 103)

FUNCTIONS & DATABASES — DATA SECURITY

Copev Y[cos) [obBCSEARCH) [ODBCPACK)
DATABASE DATABASE FUNCTION FUNCTION
302 D04) 306 206
— — ==

(ODBCREAD) [STRUCTUREDB) [ODBCSAVE) [STRUCTURE DB)

FUNCTION | | READFUNCTION | | FUNCTION | | SAVE FUNCTION
53[0 A1 A2 A5
== I\ = J___ == J\ ==

C REDUNDANCY Y [SERVER) [ASSUME) [RESTORE)

SERVER STATUS | | TOLERANCE PROCESSES PROCESSES -
Ao 316 320 522
| 316 18 52C 522

C pecrypioN) [encryerion (R) [WRTE)

FUNCTION FUNCTION | [COMMUNICATIONS| |COMMUNICATIONS
524 526 528)| 229

PRIVATE KEY DB
250

TOLERANCE &
STATUS DB
534

PKI SETUP DB
236

Fig. 3

SUBSTITUTE SHEET (RULE 26)

e e &

WO 2006/130585 PCT/US2006/020875

4/43 TTEM 104

04
™ ceck ToLeRanCes }-————»{ OPENTPK SETUP DB

404~ v “
56 GET LIST OF SERVERS «--
l REDUNDANCY 406y
SERVER smu} CLOSE PKI SETUP DB
" -
TOLERANCE DB [+~
408
e 7 BT LOCALnfM;:v4 o~
GATHER DATA |10 RANCE DB[>| SECONDS (TIE) [| GET CPU USAGE

~4HE

COMPARE
TIME

202 4Rl

OPEN SET FALSE
DATABASE TEMP_TIME

v o1 TRUE
STRUCTURE DB
SAVE FUNCTION
[204 420
CONPARE
*[aos& oampise) < NETWOR CPU USAGE

Dl 422 202
(SERVER TOLERANCE) Vs

SET OPEN
424 | TEMP_TIME *E)MABASE]
YES + /515 f504

STRUCTURE DB CLOSE
SAVE FUNCTION | ~{ DATABASE
v 2
RESTORE
PROCESSES

Fig. 4

3 ,
¢ (554 78
\J
SUBSTITUTE SHEET (RULE 26)

IS THIS
THE "ACTIVE”
SERVER?

,l CHECK
TOLERAN:CE]

WO 2006/130585 PCT/US2006/020875

5/43 12

ITEM 306 —
S—=——
306 514 - 0DBC
» a /5JOZ e W DATABASES
i e T i s
518 ! T
SEARCH DB USING EXTENDED
INDEX & PLAIN TEXT N (OATABASES
1o Y
CREATE FIFO LIST OF 14
CONTINUE SEARCH RECORDS FOUND oo

528 NO 522
c LAST
CLOSE DATABASES“\ RECORD?

RETURN

ENCRYPTION WITH RECORD
FUNCTION 114
| = o0
SEARCH DB LING NDEK CONTINUE SEARCH

599

540 534
c 536
CREATE FIFO LST OF
RECORDS FOUND LAST
RECORD?
o 542
CLOS DATABASES 3=~--- CLOSE DATABASES

vy 598 ™

RETURN
NO RECORD
FOUND

RETURN
WITH RECORD
LIST

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585 PCT/US2006/020875

6/43

ITEM 108 108
//

START “POST
EVENTS” PROGRAM

610 002
i \ S ad

LOG ERROR >| CREATE SOCKET

A

604

vy ~
ACCEPT

CONNECTION

[CLOSE SOCKETJ

l o0&

SOCKET
(LOSED?

FALSE

Fig. 6

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585

1/43

ITEM 308 505

PCT/US2006/020875

@CK ODBC DB]—»(PEN DATABAS]

OPEN THETOLERANCE 702
234 & STATUS DB ON
12 LOCAL SERVER
- 5 712\ 304 N 4
| GET CURRENT LIST OF |~ 704
0DBC GET FIRST _
CLOSE DATABASE |4 ALIVE SERVERS WITHIN
DATABASES), SERVERJ’N LIST - TOLERANCE AND PATH
S— “Temom ™ [GETFRST
ODBC |, ..---»] DATABASE > RECORD
EXTENDED [= <
misis e] ne
e SR
SERVER ON LIST 790 718
/./
, RECORD
722 ~J DELETE RECORD J«—| 6T PRIUARY YES " MARKED FOR
~ * AN
782 723 5 {
YES LOCATE RECORD IN
(A00L O0BC e—=CERROR? EXTENDED ODBC DB
723 726
vy
DELETE RECORD
v 798
RETURN 780
WITH =
ERROR o| GETNEXT
RECORD
762 799
- < e
CLOSE ODBC |
REINDEX 1> pougic @ @
N
Fig. /

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585

810

ISTHIS A
REDUNDANT
SYSTEM?

ITEM 302

8/43

OPEN DATABASE) 2CZ
8506

STRUCTURE
DATABASE

PCT/US2006/020875

810

IS THIS A
REDUNDANT
SYSTEM?

NO NO
OPEN THE TOLERANCE OPEN THE TOLERANCE OPEN LOCAL
OPEN LOCAL
ODBC DATABASE & STATUS DB ON & STATUS DB ON STRUCTURE
LOCAL SERVER LOCAL SERVER DATABASE
D24 v A\ 254 Y v |
CORRYPTON) A" (DECRYPTION L~ 324
DECRYPTION M DECRYPTION
__FUNCTION_ =~~~ - T _FUNCTION
26 L JTOLERANCE} v
ey EyﬁlﬁY_ﬁ%%N o &Sg%TUS ______ N Egﬁﬁzm%}q \ 326
804 . 804
\ y 8127 71
GET CURRENT LIST OF TR GET CURRENT LIST OF
ALIVE SERVERS WITHIN [ccovep otisy | | ALIVE SERVERS WITHIN
TOLERANCE AND PATH TOLERANCE AND PATH
o 1 8224 o2
™\ OPEN ODBC GET HEADER ¥ 4
22 [| DATABASE || FIELD NAVEES BET EST
v 896 SERVER ON LIST 850
GET HEADER o;EN EXTENDED GETFIELD+LOCATION Yy
FIELD NAMES ODBC DATABASE [€1 OF PRIMARY KEY | | OPEN STRUCTURE
DATABASE
¢ 5;24 Y
GET FIELD LOCATION 626 828
OF PRIMARY KEY 1S THIS THENC v vis TS THISTHE
LAST SERVER - LAST SERVER
826 ON THE LIST?
y [~
OPEN EXTENDED 829
ODBC DATABASE £ 899 1
GET NEXT URN W GET NEXT
SERVER ON LIST 'EFSTT ST:’ OPEQ SERVER ON LIST
Fig. 8

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585

9/43
ITEM 304
S04

CLOSE
DATABASE

0DBC OR
STRUCTURE

904

ISTHIS A
REDUNDANT
SYSTEM?

REDUNDANT
SYSTEM?

PCT/US2006/020875

0. - 940
S = Z
GET FIRST SERVER | | CLOSE ODBC | | CLOSE STRUCTURE | | GET FIRST SERVER
ON LIST DATABASE DATABASE ON LIST
N2 l 942
vy [~ ~
| CLOSE ODBC CLOSE STRUCTURE |
| DATABASE 999 DATABASE

N4

IS THIS THE
LAST SERVER
ON THE LIST?

GET NEXT SERVER

ON LIST

Fig. 9

SUBSTITUTE SHEET (RULE 26)

GET NEXT SERVER

ON LIST

WO 2006/130585

PCT/US2006/020875

10/43
ITEM 310

ODBCREAD |~310
FUNCTION

GETFRST 1002
356 SERVER ON LIST
y
_____ GET LIST OF WHICH 1004
PROETUP 1<+ FELDS ARE ENCRYPTED
1008 006 B24 1026
Yy DECRYPTION L[6ET NEXT FIELD
GET USER VIEWABLE FUNCTION ON LIST
FIELDS LIST x
1012
CREATE LIST OF CREATE LIST OF FIELDS
FIELDS 10 BE DECRYPTED / MERGE LATENDED A /
T0 BE DECRYPTED (NO RESTRICTIONS)
T
v v 1/016
[GET PRUMARY KEY
12 ’ 206

ODBC 2" 1S THIS THE
DATABASESJ™~~~~..] " GET ODBC RECORD LAST FIELD ON
14 FROM SERVER -
10186 ¢
J G,
EXTENDED [T
DATABASES FROM iERVER
1020 RETURN
' GETFRSTFELDIN | | WITH ODBC
RECORD ON LIST RECORD
Fig. 10

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585 PCT/US2006/020875

11/43
[TEM 311

STRUCTURE DB V™"
READ FUNCTION

\A

GET FIRST
SERVER ON LIST

1102

\ 4

READ DATA FROM
STRUCTURED |+
DATABASE ON SERVER

DECRYPTION <~
[FUNCTON };524

RETURN
RECORD AND
SERVER WHERE
DATA WAS
LOCATED

Fig. 11

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585

PCT/US2006/020875

12/43

ITEM 312
/326 312 1202 o5
NCRYPTION ODBC SAVE GET LIST OF FIELDS
FUNCTION FUNCTION TO BE ENCRYPTED
| /1206 1203 l moa
RO RED | TGET FRST FIEID],_(DECRYPTION).
R D IN RECORD FUNCTION
TAG THE ODBC
RECORD FIELD AS
"ENCRYPTED DATA" s 1220
"«[WRITE ODBC FIELD
RELORO TG ohnC
OB TN " DATABASES ON |
p WITH PLAIN LOCAL SERVER
12107 | TEXT DATA
W e 1S THERE L e
GET NEXT FIELD A PRIMARY @
KEY?
NO, f1218
CREATE
PRIMARY KEY WRITE EXTE)N/[;:l—JZZ
Y 1220 1 00 ne WiTHIN
WRITE ODBCFIED| | EACH RECORD To
WITHINEACH | | ODBC EXTENDED
RECORD T0 ODRC DATABASES ON
DATABASES ON LOCAL SERVER
LOCAL SERVER
A
A 12

Fig.

DATABASES

12A

SUBSTITUTE SHEET (RULE 26)

0DBC
EXTENDED
DATABASES

WO 2006/130585 PCT/US2006/020875

4

- 1230

GET CURRENT LIST OF ALIVE SERVERS |, _
WITHIN TOLERANCE

«

TOLERANCE
& STATUS DB

\ 1232
GETFIRST
/1220 | rovER ON LIST
WRITE ODBC
FIELD WITHIN 1250

EACH RECORD
10 ODBC
DATABASES

ANY FIELDS
ENCRYPTED?

1253

OsNEkSEéL T 0 \oingy
CREATE PRIMARY KEY [+—-1236 |
3 2 [YES
WRITE ODBC FIELD @ WRITE ODBC FIELD
WITHIN EACH WITHIN EACH
S
onz OCALSERVER | | LOCAL SERVER
GET NEXT ¥ e v
— N
SERVER ON LIST WRITE EXTENDED m/ WRITE EXTENDED
FIELDS WITHIN | { exTengiep le| FIELDS WITHIN
EACH RECORD TO || pxrimacs | | EACH RECORD TO

ODBC EXTENDED ODBC EXTENDED
| |
SERVE
Nizze—

1242
GET NEXT GETNERT ||
s SERVER ON LIST TN SERVER ON LIST

Fig. 128

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585 PCT/US2006/020875

14/43
ITEM 313

STRUCTURE DB =12
SAVE FUNCTION

1304 526

THE SYSTENTN, NO enceverion
REDUNDANT? | FuNCTIoN
1306 f1508
GETFIRST | SavE DATA T
SERVER ON LIST A o0 e
1314 ! a "
JGETNERT | TR
SERVER ON LIST FUNCTION £ MO
l 1208
SAVE DATATO |-
HDD ON SERVER
! L 110
RECORD IS TAGGED %1310 " RECORD 1S TAGGED
A5 SAVED ON DD | 1 AS SAVED ON HOD
v 1599

NO__~7THIS THE LAST - { RETURN LIST

SERVER ON THE ~\ OFSAVED
LIST? RECORDS

Fig. 13

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585

f516

502

PCT/US2006/020875

15/43

ITEM 316
1402

REDUNDANCY OPEN
SERVER STATUS DATABASE
A /

PKI SETUP

GET LIST OF SERVERS
FROM LOCAL PKI SETUP DB

SYSTEM A
REDUNDANT

| GETFRST
. | SERVER ON'LIST

%04 9
s 141”4\ — N 304
GET NEXT GET NEXT CLOSE
SERVER ON LIST SERVER ON LIST [naTARASE
Y P04)
CLOSE oPEN Y O07
| oaTapAse DATABASE
.~ 7y ;
410 vy 140
UPDATE LOCAL
LOCAL UPDATE LOCAL TOLERANCE DB
TOLERANCE g%ﬁ'}@“ﬁ,{}g HBiS “INACTIVE”
' X
1412

DATABASE

554
THIS THE LAST
TOLERANCE SERVER ON THE
18 STATUS DBJ™-
1499 e

4 « CLOSE
’R\H@‘ DATABASE
Fig. 14

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585

318

SERVER

354

b | A

16/43
ITEM 318

f502 Gl
OPEN STRUCTURE DB |....
TOLERANCE DATABASE READ FUNCTION

| 1502,

\

PCT/US2006/020875

202

304 L =04
! aost)| s s AR
SR SDATRSASE) AND TOLERANCES FROM |~ DATABASE |~ DATABASE
<1 | TOLERANCE DB 334 .
B o | j
©
STRUCTURE DB
TOLERANCE & | \FUNCTION \TPRISETUP [+~ geap FUNCTION
UL SERVERS 502 1506 s
- 799 304 w4 1504
- DATABASE -COMPARE CURRENT- - -|--GET-SERVER-
- TOLERANCES TO P [« SR - [~ TOLERANCES
1556 | DB TOLERANCE FROM
TAG PROCESS o5 PH1 DB 336
FOR NEXT 1599
SERVER IN CHAIN | Sz "00T OF NO @
/ 1534 OLERANCE"?
/T TURN OFF FIRST 1510 1512
“Fﬁoﬁﬁé OVUST! T CRENELISTOF | [GET FRST SERVER ON
A e | ol
—1_ | GIT UST/OF :
TOLERANCE [**
T SERVERS AND
& STATUS DB} | REDUNDANCY
Boyy e ORDER |
f1550
RETRIEVE LIST OF
ACTIVE PROCESSES [
FOR THIS SERVER GET NEXT SERVER
ON THE "0UT OF

TOLERANCE"

ON LIST OF “0UT OF

Fig. 15

LIST?

SUBSTITUTE SHEET (RULE 26)

TOLERANCE"

WO 2006/130585

17/43
[TEM 320

-
-
PRl
-
-

-
-
-

320 BO2 e

ASSUME OPEN | [STRUCTURE DB
PROCESS. || DATABASE |1 READ FUNCTION

304
l QoS)
DATABASE)

PROCESSES
TAGGED FOR THE
SERVER?

COMPARE
OPEN CLOSE
matapace.] TOLERANCES "1 natapack.
DATABASE TOPKIDB 336| DATABASE

-
.
-
R
.
s
-
-

o LSTHS
PKI SETUP & NO ~SERVER "0UT OF
DB TOLERANCE"?
302

OPEN
DATABASE

PCT/US2006/020875

(LOSE
DATABASE

11~ 3
STRUCTURE DB STRUCTURE DB
READ FUNCTION ™. e .~ READ FUNCTION
v T 1620
TURN ON FIRST & STATUS DBJe--.__ TAG PROCESS FOR
PROCESS FROM LIST 1 NEXT SERVER IN
FOR THIS SERVER? CHAIN

515
.VI STRUCTURE DB |

TOLERANCE &

STATUS DB ON
ALL SERVERS

Fig. 16

SUBSTITUTE SHEET (RULE

26)

WO 2006/130585

222 302

RESTORE
PROCESSES

18/43

OPEN
DATABASE

ITEM 322

I'”

311

STRUCTURE DB
READ FUNCTION

v

GET CURRENT LIST OF

1702,

PCT/US2006/020875

SERVERS WITH STATUS

AND TOLERANCES

A

DATABASE

4
«

304

f511
1 { STRUCTURE DB~
OF ALL YOUR DATABASE | :l READ ﬂmcnoﬂ
\ 1708
556 GET LIST OF SERVERS
PKISETUP | | AND TOLERANCES
DB .
1710~ Tl 4 g304
COMPARE TOLERANCES],___ [cLoSE
TOLERANCE”? TO PXI DB 334 DATABASE
502 /511 41714- f1716
GET LIST OF RE- RESTORE FIRST
OPEN STRUCTURE DB
 ASSIGNED PROCESSES H—»{PROCESS ACTIVE
(‘W‘\BASE 2 FUNC“O FOR ACTIVE SERVER SERVER
Vo1
554 [strucure o8
__________________________ SAVE FUNCTION
' v 304
ALLSERVERS |~ T e oAk
Fig. 17

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585

D24

DECRYPTION
FUNCTION

CLOSE

1802~

PCT/US2006/020875

19/43
ITEM 324

| GET PUBLIC KEY

-
-
-
-
-
-
-
-
-
-
-

502
| OPEN
~| DATABASE

DATABASE [

____________________ | 1e04
GET PRIVATE KEY| S%Eﬁ%%%g
\1808

f1514-

1824 USING PRIVATE

| COPYFIELDTO & PUBLCKEYS
SRNG || smingTo |

DECRYPT DATA

f1816

1834

COPY STRUCTURE
10 STRING

REFORMAT DATA TO
CHARACTER STRING

1626

RETURN
DECRYPTED
DATA

REFORMAT DATA TO
ODBC FIELD

18656

COPY STRING TO A
VOID STRUCTURE

Fig. 18

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585

320

ENCRYPTION
FUNCTION

CLOSE

PCT/US2006/020875

20/43

1902\

ITEM 326

| GET PUBLIC KEY

302
J opeN
| DATABASE

GET PRIVATE KEY

DATABASE

. | 1904
READ LOCAL
STRUCTURE DB

AND TYPE

f1916

REFORMAT DATA TO
CHARACTER STRING

f1926

RETURN
ENCRYPTED
DATA

REFORMAT DATATO
0DBC FIELD

f1956

COPY STRING TO A
VOID STRUCTURE

1914

M KEYS

_ _,_CQPgT;'lEng 10 1 o _PpROCESS |
Nsmwe 10
154 ENCRYPT DATA
COPY STRUCTURE
10 STRING
/1910

1906

Fig. 19

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585

PCT/US2006/020875

21/43
ELEMENT 328

/528

READ
OMMUNICATI

{

0

D

Y

fZOOZ

RECEIVE FIR

ST
DATA PACKET

N
THIS THE LAST RECEVED RETURN
DATA PACKET? CORRECTLY? ERROR
NO.
,2006 T je010
___7f GET NEXT CONVERT DATA
DATA PACKET T0 A STRUCTURE
| eo2
SET DATA TYPE
FOR DECRYTPION
524
DECRYPTION
FUNCTION
READ /VERIFY
DATA
YES
L2016 2099
SET ACK FLAG @
Fig. 19

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585 PCT/US2006/020875

22/43

/329 M 329
WRITE 256
&ommummnowg PRI SEUP
{202) 2106 506 2108
POST TIME DATE SET TYPE OF DATA GET
SET TINE ENCRYPTION
STANPTO - | FOR ENCRYPTION —» RECIPIENT
RecoR) || QTR 1 eunrion FUNCTION J~11p aDRess
21047 210 B Il
SO aost 6T | { STRUCTURE DB},r OPEN)
OATBISE ™ FOLERANCE R FURCHON ™ | s,

7 \Bo2

~ h
. i
R ;
2112 ~ ,
S
S
~

~ 1S
RECIPIENT
ALIVE?

RETURN
WITH
ERROR /-

{ TOLERANCE | _
& STATUS DB

2114
were VO
RECOED
v r2le 2198
\
WAIT FOR RECIPIENT T0) TIME OUT
(RESPOND ORTIMEOUT [
RECEIVED
RESPONSE
A 4
READ 526
COMMMUNICATIONS
218

RETURN
NOFG

WITH
ERROR

2199

Fig. 21

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585 PCT/US2006/020875

23/43
ITEM 602

602
CREATE
SOCKET
| 302
OPEN
DATABASE

| 2202

GET TOLERANCE
& STATUS
& P ADDRESS

304

CLOSE
DATABASE

2295
06 ERROR |

RETURN
ERROR

FALSE

2295

Fig. 22

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585 PCT/US2006/020875

24 /43
604 ITEM 604

RETURN

225
READ
COMMUNICATIONS

RETURN
ERROR?

RETURN
ERROR?

A

ALARM EVENT
PROCESSING

ALL OTHER
EVENT TYPES

\ 2306
ACCESS CONTROL
PROCESSING

————>| SETACKFIAG |«
v

2
WRITE 229
COMMUNICATIONS

TRUE

RETURN
ERROR?

Fig. 23

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585

PCT/US2006/020875

25/43

504

" ClOSE
DATABASE

~

ITEM 606
606
CLOSE
SOCKET
y 302
‘ OPEN l
554 - DATABASE
) e
TOLERANCE |------ »] STRUCTURE DB
& STATUS DB READ FUNCTION

y

£ Y

2402

Af2495

106
ERROR

IS SERVER
ALIVE?

RETURN
WITH
ERROR

2404

CLOSE
SOCKET

;2¥H99

2495

Fig. 24

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585

MONITOR

2302

PCT/US2006/020875

26/43 ITEM 2302
302 / il /2502
OPEN STRUCTURE DB GET LIST OF
DATABASE READ FUNCTION EVENT TYPES
N

ALL OTHER ERROR — NOT

POINT EVENT TYPES ON LIST READER
1 o5 1 | 1 ;2522
6ET MONITOR POINT] | FoLLOW SME GET READER NUMBER
FROM RECORD MPAHERN AS T REL%RN FROM RECORD
[room | N =g {752
GET SPP # FROM GET SPP # FROM
RECORD RECORD
y Z02 _y 902
OPEN OPEN
DATABASE w2 - DATABASE
I <> IPEi
STRUCTURE DB)., REA'DER _______ STRUCTURE DB
READ FUNCTION 0B READ FUNCTION
- \ B4
DECRYPTION DECRYPTION
(FUNCTION T o4 l FUNCTION l
GET ROUTING # FROM GET ROUTING #
MONITOR POINT DB FROM READER DB

2599

Fig. 25

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585

PCT/US2006/020875

27/43

ITEM 2304
12504
ALARM EVENT
PROCESSING
1 202
(OPEN]
DATABASE ;'N 20z
A OPE
S L] l DATABASE
[STRUCTURE DB x
A READ FUNCTION Bl |
1 2002| STRUCURE DBJ
4 A N
DE\?IETE Su%(T)gEND READ FUNCTION L o
R LN VN A ik 2)
304 | | UPDATE FLAG FOR |
~ CL(;-S_EL PRIORTY LEVEL | HONTOR
DATABASE e
A4 X
STRUCTURE DB |33
y [2006 [SAVE FUNCTIONJ{
GET FIRST
DEVICE ON LIST 204
\ 2608
SEND DATA
T0 DEVICE

ISTHIS
THE LAST DEVICE
ON LIST?

2612

GET NEXT

Fig.

DEVICE ONLIST [

26

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585 PCT/US2006/020875

28/43
ITEM 2306
2306 302 3
ACCESS CONTROL OPEN STRUCTURE DB
PROCESSING DATABASE || READ FUNCTION
1 A vy 2702 302
" GETLIST OF OPEN
DEVICES TO SEND DATABASE
v DATATO ‘
304 2Ny
* STRUCTURE DB | ™
ok [READ FUNCHON)
2704y] T 1%
UPDATE FLAG FOR
PRIORITY LEVEL
.'ef' . v - - 5_10 ,515\ . A ._"f. -
A STRUCTURE DB |
SAVE FUNCTION } /
. — l"
g 504\ v /
: CLOSE
DATABASE
2708 | 304
UPDATEFLAG | Y™ cosE
WHERL 1HE DATABASE
USER S
AL 2710
302~ «
—— o| GETFIRST
OPEN DEVICE ON LIST
l 2712
SEND DATA
10 DEVICE
GET NEXT
DATABASE DEVICE ON LIST
Fig. 27

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585 PCT/US2006/020875
29/43

f1
3 SERVER
REQUESTING /5 2 r°
DEVICE ﬁ
_~D
ﬂ
3 , SERVERZ
REQUESTING A A A AAAA ﬁ NETWORK
DEVICE
4
?;1

2 5 5| SERVER
%)
REQUESTING 2 f
DEVICE

Fig. 28

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585 PCT/US2006/020875
30/43

/5
PERSONAL 1
COMPUTERS SERVER
\7 P 2 Jas
KIOSKS ﬁ
Nz
DUMB TERMINALS -5
9 .
|| 1 SERveR |

< 4
10 A AANRAAAN NETWORK

PDA

1

CELL PHONE 4
N2 ﬂ
SERVER | .

ACCESS CARD
READER 6 &
13

OTHER ELECTRONIC
DEVICES

Mg

Fig. 29

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585

31/43

RECEVE PLAINTEXT DATA

/51

Y

ENCRYPT PLAINTEXT DATA

1

CREATE ENCRYPTED
DATA FILE

|

STORE ENCRYPTED DATA
IN ENCRYPTED DATA FILE

54

Fig. 30A

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/020875

WO 2006/130585 PCT/US2006/020875
32/43

FROM 54

l /65

STORE POINTERS TO
FILEDS IN ENCRYPTED
DATA FILE

56

ENCRYPT POINTERS
(OPTIONAL)

Fig. 30B

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585 PCT/US2006/020875
33/43

FROM S4

l 57
CREATE ENCRYPTION
KEY DATA FILE

A 4 f 68
STORE ENCRYPTION
KEYS

A4 f 59
ASSOCIATE USERS

WITH STORED
ENCRYPTION KEYS

Fig. 30C

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/020875

WO 2006/130585

34/43

L€

i

uy _Ex uy LUy
y by Qy Uy
T T T T T P
S X X K| e—qant
ll.lv_lmm ||||||||||||| M|I.|_MXI_ |||||||||||||||| NIJM) _._.X ‘/.\/m._.:m_m._l—.q
|| 1Nivwoa I Nvwoa ZNIYWOT | L NIYWOC

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/020875

WO 2006/130585

35/43

A

i

L — (11

\
i

1
— 00

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/020875

WO 2006/130585

36/43

yee bl

boz 102 202 rozZ 202 402 eoz
xxxx | wxxx | owxex | oxrxx | owewx | oxxxx | vexx
WHLAHAO9TY
o] NoliDE
OLi (3L | (PLVPLIN Y OLby LN AN
N N s e | o | o [e
Wis | AD | SO | gqyg | oqoaw | 14 | Isd
5\ U@K m@l _@K o,@\ @\ 8_‘\

A\@

4/@

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/020875

WO 2006/130585

37/43

qee ‘bl

%0z | 02 %0z | oz | o0z | 4oz | Eoe
sxxx | xxxx | xyx | oReyyx | RXXX | XXX | XXXX
A » Ar
T2z 773 P22 | Pz | 922 2z | %2
9 .] @) d Y
33INI0d 44INIOd M_Ez_oﬂ_ Y3INIOd 3INIOd YINI0d J4INI0d
WHIAHY09TY
NOILdA4ONT

1

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585

38/43

PCT/US2006/020875

PROVIDE ENCRYPTED
DATA FILE

520

A

RECEIVE REQUEST TO
DECRYPT

Ya S21

|

REQUESTED DATA IS
DECRYPTED

522

Fig. 34A

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585

39/43

FROM S21

l , Ve 525
PROVIDE A POINTER
DATA FILE

) > 524
ASSOCIATE RECEIVED
REQUEST WITH POINTERS

|

10522

Fig. 348

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/020875

WO 2006/130585

PCT/US2006/020875
40/43

FROM S20

l 925
PROVIDE AN ENCRYPTION

KEY DATA FILE

. 521
RECEVEREQUEST [

T0 DECRYPT

l 526
ASSOCIATE REQUESTING

USER WITH ENCRYPTION KEY

|

10522

Fig. 34C

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585

41/43

FROM 520

|

PCT/US2006/020875

PROVIDE ENCRYPTION
KEY DATA FILE

Ya 525

|

RECEIVE LOGIN REQUEST
FROM USER

Ya S27

[

RECEIVE REQUEST
T0 DECRYPT

Ya 521

A4

ASSOCIATING USER WITH
ENCRYPTION KEY

Ve 526

A 4

ALLOW DECRYPTING AND
DISPLAYING FOR USERS
WITH KEYS TO
REQUESTED DATA

/528

|

10522

Fig. 34D

SUBSTITUTE SHEET (RULE 26)

WO 2006/13058
5 PCT/US2006/020875
42/43

Ve 540
RECEIVE REQUEST 10
EXECUTE A PROCESS
: /541

DETERMINE IF NETWORKED
YES | COMPUTER REQUESTEDIS | NO

WITHIN AN ACTIVITY
THRESHOLD. ..
¢ > Ya 545
- S42 REPEAT STEPS S40 AND S41
EXECUTE PROCESS FOR ANOTHER NETWORKED
COMPUTER
Fig. 35

SUBSTITUTE SHEET (RULE 26)

WO 2006/130585

43/43

PCT/US2006/020875

EXECUTE PROCESS ON
FIRST COMPUTER

550

A

YES

DETERMINE IF OTHER
COMPUTERS ARE WITHIN
ACTIVITY THRESHOLD

501
NO

SEND INSTRUCTIONS /DATA
TO EXECUTE PROCESS

ob2

—Y 555
QUEUE INSTRUCTIONS

Fig. 36

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

